Validation of optimization strategies using the linear structured production chains
NASA Astrophysics Data System (ADS)
Kusiak, Jan; Morkisz, Paweł; Oprocha, Piotr; Pietrucha, Wojciech; Sztangret, Łukasz
2017-06-01
Different optimization strategies applied to sequence of several stages of production chains were validated in this paper. Two benchmark problems described by ordinary differential equations (ODEs) were considered. A water tank and a passive CR-RC filter were used as the exemplary objects described by the first and the second order differential equations, respectively. Considered in the work optimization problems serve as the validators of strategies elaborated by the Authors. However, the main goal of research is selection of the best strategy for optimization of two real metallurgical processes which will be investigated in an on-going projects. The first problem will be the oxidizing roasting process of zinc sulphide concentrate where the sulphur from the input concentrate should be eliminated and the minimal concentration of sulphide sulphur in the roasted products has to be achieved. Second problem will be the lead refining process consisting of three stages: roasting to the oxide, oxide reduction to metal and the oxidizing refining. Strategies, which appear the most effective in considered benchmark problems will be candidates for optimization of the mentioned above industrial processes.
Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi
2015-03-01
Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.
NASA Astrophysics Data System (ADS)
Gao, Feng
The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the effects of process parameters on the coating microstructure, and the effects of layers and their interactions on the oxidation behavior of the multilayered coatings.
Dense high temperature ceramic oxide superconductors
Landingham, Richard L.
1993-01-01
Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.
Dense high temperature ceramic oxide superconductors
Landingham, R.L.
1993-10-12
Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.
NASA Astrophysics Data System (ADS)
Xu, Zhaozhao; Qian, Wensheng; Chen, Hualun; Xiong, Wei; Hu, Jun; Liu, Donghua; Duan, Wenting; Kong, Weiran; Na, Wei; Zou, Shichang
2017-03-01
The mechanism and distribution of drain disturb (DD) are investigated in silicon-oxide-nitride-oxide-silicon (SONOS) flash cells. It is shown that DD is the only concern in this paper. First, the distribution of trapped charge in nitride layer is found to be non-localized (trapped in entire nitride layer along the channel) after programming. Likewise, the erase is also non-localized. Then, the main disturb mechanism: Fowler Nordheim tunneling (FNT) has been confirmed in this paper with negligible disturb effect from hot-hole injection (HHI). And then, distribution of DD is confirmed to be non-localized similarly, which denotes that DD exists in entire tunneling oxide (Oxide for short). Next, four process optimization ways are proposed for minimization of DD, and VTH shift is measured. It reveals that optimized lightly doped drain (LDD), halo, and channel implant are required for the fabrication of a robust SONOS cell. Finally, data retention and endurance of the optimized SONOS are demonstrated.
Zhang, Zhenchao
2017-12-01
In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).
Handlogten, Michael W; Lee-O'Brien, Allison; Roy, Gargi; Levitskaya, Sophia V; Venkat, Raghavan; Singh, Shailendra; Ahuja, Sanjeev
2018-01-01
A key goal in process development for antibodies is to increase productivity while maintaining or improving product quality. During process development of an antibody, titers were increased from 4 to 10 g/L while simultaneously decreasing aggregates. Process development involved optimization of media and feed formulations, feed strategy, and process parameters including pH and temperature. To better understand how CHO cells respond to process changes, the changes were implemented in a stepwise manner. The first change was an optimization of the feed formulation, the second was an optimization of the medium, and the third was an optimization of process parameters. Multiple process outputs were evaluated including cell growth, osmolality, lactate production, ammonium concentration, antibody production, and aggregate levels. Additionally, detailed assessment of oxygen uptake, nutrient and amino acid consumption, extracellular and intracellular redox environment, oxidative stress, activation of the unfolded protein response (UPR) pathway, protein disulfide isomerase (PDI) expression, and heavy and light chain mRNA expression provided an in-depth understanding of the cellular response to process changes. The results demonstrate that mRNA expression and UPR activation were unaffected by process changes, and that increased PDI expression and optimized nutrient supplementation are required for higher productivity processes. Furthermore, our findings demonstrate the role of extra- and intracellular redox environment on productivity and antibody aggregation. Processes using the optimized medium, with increased concentrations of redox modifying agents, had the highest overall specific productivity, reduced aggregate levels, and helped cells better withstand the high levels of oxidative stress associated with increased productivity. Specific productivities of different processes positively correlated to average intracellular values of total glutathione. Additionally, processes with the optimized media maintained an oxidizing intracellular environment, important for correct disulfide bond pairing, which likely contributed to reduced aggregate formation. These findings shed important understanding into how cells respond to process changes and can be useful to guide future development efforts to enhance productivity and improve product quality. © 2017 Wiley Periodicals, Inc.
Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine
2003-06-10
Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.
Morales-Pérez, Ariadna A; Maravilla, Pablo; Solís-López, Myriam; Schouwenaars, Rafael; Durán-Moreno, Alfonso; Ramírez-Zamora, Rosa-María
2016-01-01
An experimental design methodology was used to optimize the synthesis of an iron-supported nanocatalyst as well as the inactivation process of Ascaris eggs (Ae) using this material. A factor screening design was used for identifying the significant experimental factors for nanocatalyst support (supported %Fe, (w/w), temperature and time of calcination) and for the inactivation process called the heterogeneous Fenton-like reaction (H2O2 dose, mass ratio Fe/H2O2, pH and reaction time). The optimization of the significant factors was carried out using a face-centered central composite design. The optimal operating conditions for both processes were estimated with a statistical model and implemented experimentally with five replicates. The predicted value of the Ae inactivation rate was close to the laboratory results. At the optimal operating conditions of the nanocatalyst production and Ae inactivation process, the Ascaris ova showed genomic damage to the point that no cell reparation was possible showing that this advanced oxidation process was highly efficient for inactivating this pathogen.
Optimal design of leak-proof SRAM cell using MCDM method
NASA Astrophysics Data System (ADS)
Wang, Qi; Kang, Sung-Mo
2003-04-01
As deep-submicron CMOS technology advances, on-chip cache has become a bottleneck on microprocessor's performance. Meanwhile, it also occupies a big percentage of processor area and consumes large power. Speed, power and area of SRAM are mutually contradicting, and not easy to be met simultaneously. Many existent leakage suppression techniques have been proposed, but they limit the circuit's performance. We apply a Multi-Criteria Decision Making strategy to perform a minimum delay-power-area optimization on SRAM circuit under some certain constraints. Based on an integrated device and circuit-level approach, we search for a process that yields a targeted composite performance. In consideration of the huge amount of simulation workload involved in the optimal design-seeking process, most of this process is automated to facilitate our goal-pursuant. With varying emphasis put on delay, power or area, different optimal SRAM designs are derived and a gate-oxide thickness scaling limit is projected. The result seems to indicate that a better composite performance could be achieved under a thinner oxide thickness. Under the derived optimal oxide thickness, the static leakage power consumption contributes less than 1% in the total power dissipation.
Körbahti, Bahadır K; Taşyürek, Selin
2015-03-01
Electrochemical oxidation and process optimization of ampicillin antibiotic at boron-doped diamond electrodes (BDD) were investigated in a batch electrochemical reactor. The influence of operating parameters, such as ampicillin concentration, electrolyte concentration, current density, and reaction temperature, on ampicillin removal, COD removal, and energy consumption was analyzed in order to optimize the electrochemical oxidation process under specified cost-driven constraints using response surface methodology. Quadratic models for the responses satisfied the assumptions of the analysis of variance well according to normal probability, studentized residuals, and outlier t residual plots. Residual plots followed a normal distribution, and outlier t values indicated that the approximations of the fitted models to the quadratic response surfaces were very good. Optimum operating conditions were determined at 618 mg/L ampicillin concentration, 3.6 g/L electrolyte concentration, 13.4 mA/cm(2) current density, and 36 °C reaction temperature. Under response surface optimized conditions, ampicillin removal, COD removal, and energy consumption were obtained as 97.1 %, 92.5 %, and 71.7 kWh/kg CODr, respectively.
Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C
2009-12-01
Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.
NASA Astrophysics Data System (ADS)
Rajkumar, K.; Muthukumar, M.
2017-05-01
In this study, central composite design at five levels (- β, -1, 0, +1, + β) combined with response surface methodology has been applied to optimize C.I. Reactive Yellow 186 using electro-oxidation process with graphite electrodes in a batch reactor. The variables considered were the pH ( X 1), NaCl concentration (M) ( X 2), and electrolysis time (min) ( X 3) on C.I. Reactive Yellow 186 were studied. A second-order empirical relationship between the response and independent variables was derived. Analysis of variance showed a high coefficient of determination value ( R 2 = 0.9556 and 0.9416 for color and COD, respectively). The optimized condition of the electro-oxidation of Reactive Yellow 186 is as follows: pH 3.9; NaCl concentration 0.11 M; and electrolysis time 18 min. Under this condition, the maximal decolorization efficiency of 99 % and COD removal 73 % was achieved. Detailed physico-chemical analysis of electrode and residues of the electro-oxidation process has also been carried out UV-Visible and Fourier transform infrared spectroscopy. The intermediate compounds formed during the oxidation were identified using a gas chromatography coupled with mass spectrometry. According to these results, response surface methodology could be useful for reducing the time to treat effluent wastewater.
NASA Astrophysics Data System (ADS)
Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu
2018-04-01
We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.
NASA Astrophysics Data System (ADS)
Guo, Zhan; Yan, Xuefeng
2018-04-01
Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.
High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films
NASA Astrophysics Data System (ADS)
Yu, Byoung-Soo; Ha, Tae-Jun
2018-04-01
The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.
Cryptosporidium-contaminated water disinfection by a novel Fenton process.
Matavos-Aramyan, Sina; Moussavi, Mohsen; Matavos-Aramyan, Hedieh; Roozkhosh, Sara
2017-05-01
Three novel modified advanced oxidation process systems including ascorbic acid-, pro-oxidants- and ascorbic acid-pro-oxidants-modified Fenton system were utilized to study the disinfection efficiency on Cryptosporidium-contaminated drinking water samples. Different concentrations of divalent and trivalent iron ions, hydrogen peroxide, ascorbic acid and pro-oxidants at different exposure times were investigated. These novel systems were also compared to the classic Fenton system and to the control system which comprised of only hydrogen peroxide. The complete in vitro mechanism of the mentioned modified Fenton systems are also provided. The results pointed out that by considering the optimal parameter limitations, the ascorbic acid-modified Fenton system decreased the Cryptosporidium oocytes viability to 3.91%, while the pro-oxidant-modified and ascorbic acid-pro-oxidant-modified Fenton system achieved an oocytes viability equal to 1.66% and 0%, respectively. The efficiency of the classic Fenton at optimal condition was observed to be 20.12% of oocytes viability. The control system achieved 86.14% of oocytes viability. The optimum values of the operational parameters during this study are found to be 80mgL -1 for the divalent iron, 30mgL -1 for ascorbic acid, 30mmol for hydrogen peroxide, 25mgL -1 for pro-oxidants and an exposure time equal to 5min. The ascorbic acid-pro-oxidants-modified Fenton system achieved a promising complete water disinfection (0% viability) at the optimal conditions, leaving this method a feasible process for water disinfection or decontamination, even at industrial scales. Copyright © 2017 Elsevier Inc. All rights reserved.
Simulation of uranium and plutonium oxides compounds obtained in plasma
NASA Astrophysics Data System (ADS)
Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.
2018-03-01
The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.
NASA Astrophysics Data System (ADS)
Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir
2015-10-01
A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.
NASA Astrophysics Data System (ADS)
Qi, Qian; Liu, Yan; Wang, Lujie; Huang, Jian; Xin, Xianshuang; Gai, Linlin; Huang, Zhengren
2017-08-01
Titanium carbide/hastelloy (TiC/hastelloy) composites are potential candidates for intermediate-temperature solid oxide fuel cell interconnects. In this work, TiC/hastelloy composites with suitable coefficient of thermal expansion are fabricated by in-situ reactive infiltration method, and their properties are optimized by adjusting TiC particle size (dTiC). The oxidation process of TiC/hastelloy composites is comprehensive performance of TiC and Ni-Cr alloy and determined by outward diffusion of Ti and Ni atoms and internal diffusion of O2. The oxidation resistance of composites could be improved by the decrease of dTiC through accelerating the formation of continuous and dense TiO2/Cr2O3 oxide scale. Moreover, the electrical conductivity of composites at 800 °C for 100 h is 5600-7500 S cm-1 and changes little with the prolongation of oxidation time. The decrease of dTiC is favorable for the properties optimization, and composites with 2.16 μm TiC exhibits good integrated properties.
Preliminary study of oxide-dispersion-strengthened B-1900 prepared by mechanical alloys
NASA Technical Reports Server (NTRS)
Glasgow, T. K.; Quatinetz, M.
1975-01-01
An experimental oxide dispersion strengthened (ODS) alloy based on the B-1900 composition was produced by the mechanical alloying process. Without optimization of the processing for the alloy or the alloy for the processing, recrystallization of the extruded product to large elongated grains was achieved. Materials having grain length-width ratios of 3 and 5.5 were tested in tension and stress-rupture. The ODS B-1900 exhibited tensile strength similar to that of cast B-1900. Its stress-rupture life was lower than that of cast B-1900 at 760 C. At 1095 C the ODS B-1900 with the higher grain length-width ratio (5.5) had stress-rupture life superior to that of cast B-1900. It was concluded that, with optimization, oxide dispersion strengthening of B-1900 and other complex cast nickel-base alloys has potential for improving high temperature properties over those of the cast alloy counterparts.
NASA Astrophysics Data System (ADS)
Barros, Ana Raquel Xarouco de
In spite of the recent p-type oxide TFTs developments based on SnOx and CuxO, the results achieved so far refer to devices processed at high temperatures and are limited by a low hole mobility and a low On-Off ratio and still there is no report on p-type oxide TFTs with performance similar to n-type, especially when comparing their field-effect mobility values, which are at least one order of magnitude higher on n-type oxide TFTs. Achieving high performance p-type oxide TFTs will definitely promote a new era for electronics in rigid and flexible substrates, away from silicon. None of the few reported p-channel oxide TFTs is suitable for practical applications, which demand significant improvements in the device engineering to meet the real-world electronic requirements, where low processing temperatures together with high mobility and high On-Off ratio are required for TFT and CMOS applications. The present thesis focuses on the study and optimization of p-type thin film transistors based on oxide semiconductors deposited by r.f. magnetron sputtering without intentional substrate heating. In this work several p-type oxide semiconductors were studied and optimized based on undoped tin oxide, Cu-doped SnOx and In-doped SnO2.
Long-Term Planning for Open Pits for Mining Sulphide-Oxide Ores in Order to Achieve Maximum Profit
NASA Astrophysics Data System (ADS)
Kržanović, Daniel; Conić, Vesna; Stevanović, Dejan; Kolonja, Božo; Vaduvesković, Jovan
2017-12-01
Profitable exploitation of mineralised material from the earth's crust is a complex and difficult task that depends on a comprehensive planning process. Answering the question of how to plan production depends on the geometry of the deposit, as well as the concentration, distribution, and type of minerals in it. The complex nature of mineral deposits largely determines the method of exploitation and profitability of mining operations. In addition to unit operating costs and metal prices, the optimal recovery of and achievement of maximum profit from deposits of sulphide-oxide ores also depend, to a significant extent, on the level of technological recovery achieved in the ore processing procedure. Therefore, in defining a long-term development strategy for open pits, special attention must be paid to the selection of an optimal procedure for ore processing in order to achieve the main objective: maximising the Net Present Value (NPV). The effect of using two different processes, flotation processing and hydrometallurgical methods (bioleaching acid leaching), on determining the ultimate pit is shown in the case of the Kraku Bugaresku-Cementacija sulphide-oxide ore deposit in eastern Serbia. Analysis shows that the application of hydrometallurgical methods of processing sulphide-oxide ore achieved an increase in NPV of 20.42%.
A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite
NASA Astrophysics Data System (ADS)
Zhang, Yi-min; Wang, Li-na; Chen, De-sheng; Wang, Wei-jing; Liu, Ya-hui; Zhao, Hong-xin; Qi, Tao
2018-02-01
An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.
Koolivand, Ali; Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza
2017-07-31
In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H 2 O 2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H 2 O 2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H 2 O 2 followed by in-vessel composting is a viable choice for the remediation of the sludge.
Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun
2006-03-01
A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.
NASA Astrophysics Data System (ADS)
Swain, Ranjita; Bhima Rao, R.
2018-04-01
In the present investigation, response surface methodology (RSM) is used for a quadratic model that continuously controls the process parameters. This model is used to optimize the removal of iron oxide from Partially Laterised Khondalite (PLK) rocks which is influenced by several independent variables namely acid concentration, time and temperature. Second order response functions are produced for leaching of iron oxide from PLK rocks-a bauxite mining waste. In RSM, Box-Behnken design is used for the process optimization to achieve maximum removal of iron oxide. The influence of the process variables of leaching of iron oxide is presented in the form of 3-D response graphs. The results of this investigation reveals that 3 M hydrochloric acid concentration, 240 min time and 373 K temperature are found to be the best conditions for removal of 99% Fe2O3. The product obtain at this condition contain 80% brightness which is suitable for ceramic and filler industry applications. The novelity of the work is that the waste can be a value added product after suitable physical beneficiation and chemical treatment.
NASA Technical Reports Server (NTRS)
Francis, Somilez Asya
2014-01-01
The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.
Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process.
Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S; Jazar, Reza N; Khayyam, Hamid
2018-03-05
To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.
Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process
Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S.; Jazar, Reza N.; Khayyam, Hamid
2018-01-01
To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large. PMID:29510592
Manenti, Diego R; Módenes, Aparecido N; Soares, Petrick A; Boaventura, Rui A R; Palácio, Soraya M; Borba, Fernando H; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Vilar, Vítor J P
2015-01-01
In this work, the application of an iron electrode-based electrocoagulation (EC) process on the treatment of a real textile wastewater (RTW) was investigated. In order to perform an efficient integration of the EC process with a biological oxidation one, an enhancement in the biodegradability and low toxicity of final compounds was sought. Optimal values of EC reactor operation parameters (pH, current density and electrolysis time) were achieved by applying a full factorial 3(3) experimental design. Biodegradability and toxicity assays were performed on treated RTW samples obtained at the optimal values of: pH of the solution (7.0), current density (142.9 A m(-2)) and different electrolysis times. As response variables for the biodegradability and toxicity assessment, the Zahn-Wellens test (Dt), the ratio values of dissolved organic carbon (DOC) relative to low-molecular-weight carboxylates anions (LMCA) and lethal concentration 50 (LC50) were used. According to the Dt, the DOC/LMCA ratio and LC50, an electrolysis time of 15 min along with the optimal values of pH and current density were suggested as suitable for a next stage of treatment based on a biological oxidation process.
NASA Astrophysics Data System (ADS)
Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin
2010-08-01
Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.
Zhang, Xueyu; Zheng, Shaokui; Zhang, Hangyu; Duan, Shoupeng
2018-04-30
This study clarified the dominant nitrogen (N)-transformation pathway and the key ammonia-oxidizing microbial species at three loading levels during optimization of the anoxic/oxic (A/O) process for sewage treatment. Comprehensive N-transformation activity analysis showed that ammonia oxidization was performed predominantly by aerobic chemolithotrophic and heterotrophic ammonia oxidization, whereas N 2 production was performed primarily by anoxic denitrification in the anoxic unit. The abundances of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria, and anaerobic AOB in activated sludge reflected their activities on the basis of high-throughput sequencing data. AOB amoA gene clone libraries revealed that the predominant AOB species in sludge samples shifted from Nitrosomonas europaea (61% at the normal loading level) to Nitrosomonas oligotropha (58% and 81% at the two higher loading levels). Following isolation and sequencing, the predominant culturable heterotrophic AOB in sludge shifted from Agrobacterium tumefaciens (42% at the normal loading level) to Acinetobacter johnsonii (52% at the highest loading level). Copyright © 2018 Elsevier Ltd. All rights reserved.
Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri
2015-01-01
Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption. PMID:26517827
Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri
2015-01-01
Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.
New generation photoelectric converter structure optimization using nano-structured materials
NASA Astrophysics Data System (ADS)
Dronov, A.; Gavrilin, I.; Zheleznyakova, A.
2014-12-01
In present work the influence of anodizing process parameters on PAOT geometric parameters for optimizing and increasing ETA-cell efficiency was studied. During the calculations optimal geometrical parameters were obtained. Parameters such as anodizing current density, electrolyte composition and temperature, as well as the anodic oxidation process time were selected for this investigation. Using the optimized TiO2 photoelectrode layer with 3,6 μm porous layer thickness and pore diameter more than 80 nm the ETA-cell efficiency has been increased by 3 times comparing to not nanostructured TiO2 photoelectrode.
Alejo-Alvarez, Luz; Guzmán-Fierro, Víctor; Fernández, Katherina; Roeckel, Marlene
2016-11-01
A full-scale process for the treatment of 80 tons per day of poultry manure was designed and optimized. A total ammonia nitrogen (TAN) balance was performed at steady state, considering the stoichiometry and the kinetic data from the anaerobic digestion and the anaerobic ammonia oxidation. The equipment, reactor design, investment costs, and operational costs were considered. The volume and cost objective functions optimized the process in terms of three variables: the water recycle ratio, the protein conversion during AD, and the TAN conversion in the process. The processes were compared with and without water recycle; savings of 70% and 43% in the annual fresh water consumption and the heating costs, respectively, were achieved. The optimal process complies with the Chilean environmental legislation limit of 0.05 g total nitrogen/L.
Xu, Jiqu; Liu, Xiaoli; Gao, Hui; Chen, Chang; Deng, Qianchun; Huang, Qingde; Ma, Zhonghua; Huang, Fenghong
2015-01-01
Micronutrients in rapeseed exert a potential benefit to hepatoprotection, but most of them are lost during the conventional refining processing. Thus some processing technologies have been optimized to improve micronutrient retention in oil. The aim of this study is to assess whether optimized rapeseed oils (OROs) have positive effects on hepatic lipid accumulation and oxidative stress induced by a high-fat diet. Methods: Rats received experiment diets containing 20% fat and refined rapeseed oil or OROs obtained with various processing technologies as lipid source. After 10 weeks of treatment, liver was assayed for lipid accumulation and oxidative stress. Results: All OROs reduced hepatic triglyceride contents. Microwave pretreatment-cold pressing oil (MPCPO) which had the highest micronutrients contents also reduced hepatic cholesterol level. MPCPO significantly decreased hepatic sterol regulatory element-binding transcription factor 1 (SREBP1) but increased peroxisome proliferator activated receptor α (PPARα) expressions, and as a result, MPCPO significantly suppressed acetyl CoA carboxylase and induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. Hepatic catalase (CAT) and glutathione peroxidase (GPx) activities as well as reduced glutathione (GSH) contents remarkably increased and lipid peroxidation levels decreased in parallel with the increase of micronutrients. Conclusion: OROs had the ability to reduce excessive hepatic fat accumulation and oxidative stress, which indicated that OROs might contribute to ameliorating nonalcoholic fatty liver induced by high-fat diet. PMID:26473919
Kassotaki, Elissavet; Pijuan, Maite; Joss, Adriano; Borrego, Carles M; Rodriguez-Roda, Ignasi; Buttiglieri, Gianluigi
2018-05-15
In the past few years, anaerobic ammonium oxidation-based processes have attracted a lot of attention for their implementation at the mainstream line of wastewater treatment plants, due to the possibility of leading to energy autarky if combined with anaerobic digestion. However, little is known about the potential degradation of micropollutants by the microbial groups responsible of these processes and the few results available are inconclusive. This study aimed to assess the degradation capability of biomass withdrawn from a combined nitritation/anaerobic ammonium oxidation (combined N/A) pilot plant towards five pharmaceutically active compounds (ibuprofen, sulfamethoxazole, metoprolol, venlafaxine and carbamazepine). Batch experiments were performed under different conditions by selectively activating or inhibiting different microbial groups: i) regular combined N/A operation, ii) aerobic (optimal for nitrifying bacteria), iii) aerobic with allylthiourea (an inhibitor of ammonia monooxygenase, enzyme of ammonia oxidizing bacteria), iv) anoxic (optimal for anaerobic ammonium oxidizing bacteria), v) aerobic with acetate (optimal for heterotrophic bacteria) and vi) anoxic with acetate (optimal for heterotrophic denitrifying bacteria). Ibuprofen was the most biodegradable compound being significantly degraded (49-100%) under any condition except heterotrophic denitrification. Sulfamethoxazole, exhibited the highest removal (70%) under optimal conditions for nitrifying bacteria but in the rest of the experiments anoxic conditions were found to be slightly more favorable (up to 58%). For metoprolol the highest performance was obtained under anoxic conditions favoring anammox bacteria (62%). Finally, carbamazepine and venlafaxine were hardly removed (≤10% in the majority of cases). Taken together, these results suggest the specificity of different microbial groups that in combination with alternating operational parameters can lead to enhanced removal of some micropollutants. Copyright © 2017 Elsevier B.V. All rights reserved.
Direct reduction processes for titanium oxide in molten salt
NASA Astrophysics Data System (ADS)
Suzuki, Ryosuke O.
2007-02-01
Molten salt electrolysis using CaCl2 is employed to produce pure titanium and its alloys directly from TiO2 and a mixture of elemental oxides, respectively, as an alternate to the Kroll process. This is because CaO, which is a reduction by-product, is highly soluble in CaCl2. Good-quality titanium containing only a small amount of residual oxygen has been successfully produced and scaled to industrial levels. Thermochemical and electrochemical bases are reviewed to optimize the process conditions. Several processes using molten salt are being examined for future progress in titanium processing.
Final report for project "Next-Generation Semiconductors for Solar Photoelectrolysis"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalifah, Peter
2016-09-15
In this paper, effective methods have been developed for preparing high-quality LaTiO 2N films on conductive La 5Ti 5O 17 substrates that can serve as photoanodes for photoelectrochemical water oxidation. One paper has been written by the post-doc who completed this comprehensive, interdisciplinary study, and it is presently being finalized for submission. Our approach to this system integrates expertise that we have developed in single crystal growth, thin film growth, and thin film post-processing. Through this work, LTON films have been fully optimized for light harvesting, as their band gap is optimally matched with the incident solar spectrum and themore » film thicknesses have been optimized based on the absolute absorption coefficients that we have measured for this system. The next step is to optimize the co-catalyst functionalization and the solution conditions to maximize the catalytic activity for water oxidation. Since the preliminary tests described here were done without a water oxidation co-catalyst, and since good water oxidation catalysts have previously been identified based on studies of powder samples, this next step is highly likely to be successful.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong
Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models formore » GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.« less
Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis.
Zeng, Guangming; Jiang, Ru; Huang, Guohe; Xu, Min; Li, Jianbing
2007-01-01
This paper describes an innovative systematic approach, namely hierarchy grey relational analysis for optimal selection of wastewater treatment alternatives, based on the application of analytic hierarchy process (AHP) and grey relational analysis (GRA). It can be applied for complicated multicriteria decision-making to obtain scientific and reasonable results. The effectiveness of this approach was verified through a real case study. Four wastewater treatment alternatives (A(2)/O, triple oxidation ditch, anaerobic single oxidation ditch and SBR) were evaluated and compared against multiple economic, technical and administrative performance criteria, including capital cost, operation and maintenance (O and M) cost, land area, removal of nitrogenous and phosphorous pollutants, sludge disposal effect, stability of plant operation, maturity of technology and professional skills required for O and M. The result illustrated that the anaerobic single oxidation ditch was the optimal scheme and would obtain the maximum general benefits for the wastewater treatment plant to be constructed.
Improving alachlor biodegradability by ferrate oxidation.
Zhu, Jian-Hang; Yan, Xi-Luan; Liu, Ye; Zhang, Bao
2006-07-31
Alachlor can be recalcitrant when present at high concentrations in wastewater. Ferrate oxidation was used as a pretreatment to improve its biodegradability and was evaluated by monitoring alachlor elimination and removal of COD(Cr) (chemical oxygen demand determined by potassium dichromate) during the oxidation process up to a value compatible with biological treatment. Ferrate oxidation resulted in elimination of alachlor followed by degradation of its intermediates. High pH suppressed alachlor removal and COD(Cr) removal due to the low redox potential of ferrate ions. Although alachlor can be totally eliminated within 10 min under optimized conditions (alachlor, 40 mg l(-1); ferrate:alachlor molar ratio, 2; and pH 7.0), its complete mineralization cannot be achieved by ferrate oxidation alone. Alachlor solution treated by ferrate for 10 min inhibited an up-flow biotreatment with activated sludge. The biodegradability of ferrate-pretreated solution improved when the treatment was increased to 20 min, at the point of which BOD(5)/COD(Cr) ratio of the treated solution was increased to 0.87 from 0.35 after 10 min treatment. Under optimized conditions, ferrate oxidation for 20 min resulted in total elimination of alachlor, partial removal of COD(Cr) and the ferrate-treated solution could be effectively treated by the up-flow activated sludge process.
Wang, Jiade; Zhang, Tian; Mei, Yu; Pan, Bingjun
2018-06-01
Reverse osmosis concentrate (ROC) of printing and dyeing wastewater remains as a daunting environmental issue, which is characterized by high salinity, chemical oxygen demand (COD), chroma and low biodegradability. In this study electro-oxidation process (PbO 2 /Ti electrode) coupled with oxidation-reduction potential (ORP) online monitor was applied to treat such a ROC effluent. The results show that with the increase of specific electrical charge (Q sp ), the removal efficiencies of COD, TN and chroma increased significantly at the incipience and then reached a gentle stage; the optimal total current efficiency (12.04 kWh m -3 ) was obtained with the current density of 10 mA cm -2 (Q sp , 3.0 Ah L -1 ). Meanwhile, some inorganic ions can be simultaneously removed to varying degrees. FTIR analyses indicated that the macromolecular organics were decomposed into smaller molecules. A multi-parameter linear relationship between ORP and Q sp , COD and Cl - concentration was established, which can quantitatively reflect the effect of current density, chloride ion concentration, pollutants and reaction time on the performance of the electro-oxidation system. As compared to a traditional constant-current system, the constant-ORP system developed in this study (through the back-propagation neural network [BPN] model with ORP monitoring) approximately reduced the energy cost by 24-29%. The present work is expected to provide a potential alternative in optimizing the electro-oxidation process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Körbahti, Bahadır K.; Demirbüken, Pelin
2017-01-01
Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode (BDD) was investigated in a batch electrochemical reactor in the presence of Na2SO4 supporting electrolyte. The effect of process parameters such as resorcinol concentration (100–500 g/L), current density (2–10 mA/cm2), Na2SO4 concentration (0–20 g/L), and reaction temperature (25–45°C) was analyzed on electrochemical oxidation using response surface methodology (RSM). The optimum operating conditions were determined as 300 mg/L resorcinol concentration, 8 mA/cm2 current density, 12 g/L Na2SO4 concentration, and 34°C reaction temperature. One hundred percent of resorcinol removal and 89% COD removal were obtained in 120 min reaction time at response surface optimized conditions. These results confirmed that the electrochemical mineralization of resorcinol was successfully accomplished using BDD anode depending on the process conditions, however the formation of intermediates and by-products were further oxidized at much lower rate. The reaction kinetics were evaluated at optimum conditions and the reaction order of electrochemical oxidation of resorcinol in aqueous medium using BDD anode was determined as 1 based on COD concentration with the activation energy of 5.32 kJ/mol that was supported a diffusion-controlled reaction. PMID:29082225
Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Medici, Franco; Vegliò, Francesco
2016-12-15
Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (4 2 ). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths. Copyright © 2016 Elsevier Ltd. All rights reserved.
Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions.
Meijide, J; Gómez, J; Pazos, M; Sanromán, M A
2016-12-05
In this work, a comparative study using anodic oxidation, Fenton and electro-Fenton treatments was performed in order to determine the synergic effect for the removal of thiamethoxan. The results determined that electro-Fenton process showed high efficiency in comparison with Fenton or anodic oxidation. After that, this hybrid process was optimized and the influence of iron catalyst concentration and applied current intensity on the degradation and mineralization were evaluated. Degradation profiles were monitored by high performance liquid chromatography (HPLC) being satisfactorily described by pseudo-first order kinetic model. At the optimal experimental conditions (300mA and 0.2mM Fe(+2)), the complete degradation of thiamethoxam was achieved after 10min. On the other hand, mineralization of thiamethoxam was monitored by total organic carbon (TOC) decay reaching more than 92% of TOC removal after 8h. Furthermore, a plausible mineralization pathway for the thiamethoxam degradation was proposed based on the identification of by-products such as aromatic intermediates, carboxylic acids and inorganic ions released throughout electro-Fenton process. Copyright © 2016 Elsevier B.V. All rights reserved.
Study on the pre-treatment of oxidized zinc ore prior to flotation
NASA Astrophysics Data System (ADS)
He, Dong-sheng; Chen, Yun; Xiang, Ping; Yu, Zheng-jun; Potgieter, J. H.
2018-02-01
The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reagents, and magnetic removal of iron minerals for the pre-treatment of zinc oxide ore with a high slime and iron content, and the benefits compared to traditional technologies are shown. In addition, this paper investigates the damage related to fine slime and iron during zinc oxide flotation, the necessity of using hydrocyclone de-sliming together with dispersion reagents to alleviate the influence of slime, and interactions among hydrocyclone de-sliming, reagent dispersion, and magnetic iron removal. Results show that under optimized operating conditions the entire beneficiation technology results in a flotation concentrate with a Zn grade of 34.66% and a recovery of 73.41%.
Scandium recovery from slags after oxidized nickel ore processing
NASA Astrophysics Data System (ADS)
Smyshlyaev, Denis; Botalov, Maxim; Bunkov, Grigory; Rychkov, Vladimir; Kirillov, Evgeny; Kirillov, Sergey; Semenishchev, Vladimir
2017-09-01
One of the possible sources of scandium production - waste (slags) from processing of oxidized nickel ores, has been considered in present research work. The hydrometallurgical method has been selected as the primary for scandium extraction. Different reagents for leaching of scandium, such as sulfuric acid, various carbonate salts and fluorides, have been tested. Sulfuric acid has been recognized as an optimal leaching reagent. Sulfuric acid concentration of 100 g L-1 allowed recovering up to 97 % of scandium.
Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment
NASA Astrophysics Data System (ADS)
Zhou, Ruipeng; Yang, Yuanming
2017-05-01
Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.
Simulation of Triple Oxidation Ditch Wastewater Treatment Process
NASA Astrophysics Data System (ADS)
Yang, Yue; Zhang, Jinsong; Liu, Lixiang; Hu, Yongfeng; Xu, Ziming
2010-11-01
This paper presented the modeling mechanism and method of a sewage treatment system. A triple oxidation ditch process of a WWTP was simulated based on activated sludge model ASM2D with GPS-X software. In order to identify the adequate model structure to be implemented into the GPS-X environment, the oxidation ditch was divided into several completely stirred tank reactors depended on the distribution of aeration devices and dissolved oxygen concentration. The removal efficiency of COD, ammonia nitrogen, total nitrogen, total phosphorus and SS were simulated by GPS-X software with influent quality data of this WWTP from June to August 2009, to investigate the differences between the simulated results and the actual results. The results showed that, the simulated values could well reflect the actual condition of the triple oxidation ditch process. Mathematical modeling method was appropriate in effluent quality predicting and process optimizing.
Jeong, Yesul; Pearson, Christopher; Kim, Hyun-Gwan; Park, Man-Young; Kim, Hongdoo; Do, Lee-Mi; Petty, Michael C
2016-01-27
We report on the optimization of the plasma treatment conditions for a solution-processed silicon dioxide gate insulator for application in zinc oxide thin film transistors (TFTs). The SiO2 layer was formed by spin coating a perhydropolysilazane (PHPS) precursor. This thin film was subsequently thermally annealed, followed by exposure to an oxygen plasma, to form an insulating (leakage current density of ∼10(-7) A/cm(2)) SiO2 layer. Optimized ZnO TFTs (40 W plasma treatment of the gate insulator for 10 s) possessed a carrier mobility of 3.2 cm(2)/(V s), an on/off ratio of ∼10(7), a threshold voltage of -1.3 V, and a subthreshold swing of 0.2 V/decade. In addition, long-term exposure (150 min) of the pre-annealed PHPS to the oxygen plasma enabled the maximum processing temperature to be reduced from 180 to 150 °C. The resulting ZnO TFT exhibited a carrier mobility of 1.3 cm(2)/(V s) and on/off ratio of ∼10(7).
Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization.
Kaur, Inder; Ellis, Laura-Jayne; Romer, Isabella; Tantra, Ratna; Carriere, Marie; Allard, Soline; Mayne-L'Hermite, Martine; Minelli, Caterina; Unger, Wolfgang; Potthoff, Annegret; Rades, Steffi; Valsami-Jones, Eugenia
2017-12-25
The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology.
Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization
Kaur, Inder; Ellis, Laura-Jayne; Romer, Isabella; Tantra, Ratna; Carriere, Marie; Allard, Soline; Mayne-L'Hermite, Martine; Minelli, Caterina; Unger, Wolfgang; Potthoff, Annegret; Rades, Steffi; Valsami-Jones, Eugenia
2017-01-01
The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology. PMID:29364209
Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang
2018-02-26
Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.
[Condition optimization for bio-oxidation of high-S and high-As gold concentrate].
Yang, Caiyun; Dong, Bowen; Wang, Meijun; Ye, Zhiyong; Zheng, Tianling; Huang, Huaiguo
2015-12-04
To study the effects of temperature and lixivium return on the concentrate bio-oxidation and rate of gold cyanide leaching. The bioleaching of a high-sulphur (S) and high-arsenic (As) refractory gold concentrate was conducted, and we studied the effects of different temperature (40 ° and 45 °C) and lixivium return (0 and 600 mL) on the bio-oxidation efficiency. The bacterial community structure also was investigated by 16S rRNA gene clone library. The results showed that both the temperature and lixivium return significantly influenced the oxidation system. The temperature rising elevated the oxidation level, while the addition of lixivium depressed the oxidation. Dissimilarity and DCA (detrended correspondence analysis) indicated the effect of temperature on oxidation system was much greater than lixivium. The bacterial community was comprised by Acidithiocacillus caldu (71%) Leptospirillum ferriphilum (23%) and Sulfobacillus thermosulfidooxidans (6%) indicated by the clone library, and the OTU coverage based on 97% sequence similarity was as high as 93.67%. Temperature rising to 45 T would improve the oxidation efficiency while lixivium return would decrease it. This study is helpful to provide an important guiding value for the industry cost optimization of mesophile bacterial oxidation and reduction process.
Marchal, Wouter; Verboven, Inge; Kesters, Jurgen; Moeremans, Boaz; De Dobbelaere, Christopher; Bonneux, Gilles; Elen, Ken; Conings, Bert; Maes, Wouter; Boyen, Hans Gerd; Deferme, Wim; Van Bael, Marlies; Hardy, An
2017-01-01
The identification, fine-tuning, and process optimization of appropriate hole transporting layers (HTLs) for organic solar cells is indispensable for the production of efficient and sustainable functional devices. In this study, the optimization of a solution-processed molybdenum oxide (MoOx) layer fabricated from a combustion precursor is carried out via the introduction of zirconium and tin additives. The evaluation of the output characteristics of both organic photovoltaic (OPV) and organic light emitting diode (OLED) devices demonstrates the beneficial influence upon the addition of the Zr and Sn ions compared to the generic MoOx precursor. A dopant effect in which the heteroatoms and the molybdenum oxide form a chemical identity with fundamentally different structural properties could not be observed, as the additives do not affect the molybdenum oxide composition or electronic band structure. An improved surface roughness due to a reduced crystallinity was found to be a key parameter leading to the superior performance of the devices employing modified HTLs. PMID:28772483
Marchal, Wouter; Verboven, Inge; Kesters, Jurgen; Moeremans, Boaz; De Dobbelaere, Christopher; Bonneux, Gilles; Elen, Ken; Conings, Bert; Maes, Wouter; Boyen, Hans Gerd; Deferme, Wim; Van Bael, Marlies; Hardy, An
2017-01-30
The identification, fine-tuning, and process optimization of appropriate hole transporting layers (HTLs) for organic solar cells is indispensable for the production of efficient and sustainable functional devices. In this study, the optimization of a solution-processed molybdenum oxide (MoOx) layer fabricated from a combustion precursor is carried out via the introduction of zirconium and tin additives. The evaluation of the output characteristics of both organic photovoltaic (OPV) and organic light emitting diode (OLED) devices demonstrates the beneficial influence upon the addition of the Zr and Sn ions compared to the generic MoOx precursor. A dopant effect in which the heteroatoms and the molybdenum oxide form a chemical identity with fundamentally different structural properties could not be observed, as the additives do not affect the molybdenum oxide composition or electronic band structure. An improved surface roughness due to a reduced crystallinity was found to be a key parameter leading to the superior performance of the devices employing modified HTLs.
Influence of oxalic acid on the dissolution kinetics of manganese oxide
NASA Astrophysics Data System (ADS)
Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.
2012-11-01
The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.
NASA Astrophysics Data System (ADS)
Göll, S.; Samsun, R. C.; Peters, R.
Fuel-cell-based auxiliary power units can help to reduce fuel consumption and emissions in transportation. For this application, the combination of solid oxide fuel cells (SOFCs) with upstream fuel processing by autothermal reforming (ATR) is seen as a highly favorable configuration. Notwithstanding the necessity to improve each single component, an optimized architecture of the fuel cell system as a whole must be achieved. To enable model-based analyses, a system-level approach is proposed in which the fuel cell system is modeled as a multi-stage thermo-chemical process using the "flowsheeting" environment PRO/II™. Therein, the SOFC stack and the ATR are characterized entirely by corresponding thermodynamic processes together with global performance parameters. The developed model is then used to achieve an optimal system layout by comparing different system architectures. A system with anode and cathode off-gas recycling was identified to have the highest electric system efficiency. Taking this system as a basis, the potential for further performance enhancement was evaluated by varying four parameters characterizing different system components. Using methods from the design and analysis of experiments, the effects of these parameters and of their interactions were quantified, leading to an overall optimized system with encouraging performance data.
NASA Astrophysics Data System (ADS)
Kim, Young-Min; Jung, In-Ho
2015-06-01
A complete literature review, critical evaluation, and thermodynamic optimization of phase equilibrium and thermodynamic properties of all available oxide phases in the MnO-B2O3 and MnO-B2O3-SiO2 systems at 1 bar pressure are presented. Due to the lack of the experimental data in these systems, the systematic trend of CaO- and MgO-containing systems were taken into account in the optimization. The molten oxide phase is described by the Modified Quasichemical Model. A set of optimized model parameters of all phases is obtained which reproduces all available and reliable thermodynamic and phase equilibrium data. The unexplored binary and ternary phase diagrams of the MnO-B2O3 and MnO-B2O3-SiO2 systems have been predicted for the first time. The thermodynamic calculations relevant to the oxidation of advanced high-strength steels containing boron were performed to find that B can form liquid B2O3-SiO2-rich phase in the annealing furnace under reducing N2-H2 atmosphere, which can significantly influence the wetting behavior of liquid Zn in Zn galvanizing process.
NASA Astrophysics Data System (ADS)
MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime
2016-03-01
In this work we report the fabrication of thin film transistors (TFT) with zinc oxide channel and molybdenum doped indium oxide (IMO) electrodes, achieved by room temperature sputtering. A set of devices was fabricated, with varying channel width and length from 5μm to 300μm. Output and transfer characteristics were then extracted to study the performance of thin film transistors, namely threshold voltage and saturation current, enabling to determine optimal fabrication process parameters. Optical transmission in the UV-VIS-IR are also reported.
Polyelectrolyte/Graphene Oxide Barrier Film for Flexible OLED.
Yang, Seung-Yeol; Park, Jongwhan; Kim, Yong-Seog
2015-10-01
Ultra-thin flexible nano-composite barrier layer consists of graphene oxide and polyelectrolyte was prepared using the layer-by-layer processing method. Microstructures of the barrier layer was optimized via modifying coating conditions and inducing chemical reactions. Although the barrier layer consists of hydrophilic polyelectrolyte was not effective in blocking the water vapor permeation, the chemical reduction of graphene oxide as well as conversion of polyelectrolyte to hydrophobic nature were very effective in reducing the permeation.
NASA Astrophysics Data System (ADS)
Wang, Wankun; Wang, Fuchun; Lu, Fanghai
2017-12-01
Microwave alkaline roasting-water dissolving process was proposed to improve the germanium (Ge) extraction from zinc oxide (ZnO) dust. The effects of important parameters were investigated and the process conditions were optimized using response surface methodology (RSM). The Ge extraction is consistent with the linear polynomial model type. Alkali-material ratio, microwave heating temperature and leaching temperature are the significant factors for this process. The optimized conditions are obtained as follows, alkali-material ratio of 0.9 kg/kg, aging time of 1.12 day, microwave heating at 658 K for 10 min, liquid-solid ratio of 4.31 L/kg, leaching temperature at 330 K, leaching time of 47 min with the Ge extraction about 99.38%. It is in consistence with the predictive value of 99.31%. Compared to the existed alkaline roasting process heated by electric furnace in literature, the alkaline roasting temperature and holding time. It shows a good prospect on leaching Ge from ZnO dust with microwave alkaline roasting-water dissolving process.
Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae
2009-02-15
Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.
Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.
Vega, Esther; Monclús, Hèctor; Gonzalez-Olmos, Rafael; Martin, Maria J
2015-03-01
Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain
2017-06-01
The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.
NASA Astrophysics Data System (ADS)
Latorre, I.; Hwang, S.
2013-12-01
Di-2-ethylhexyl phthalate (DEHP) has been widely used as plasticizer in the manufacturing of polymeric materials to enhance flexibility, transparency and softness, particularly, in polyvinyl chloride (PVC) production. Several studies elucidated that DEHP could be linked to hepatocellular tumors and pre-term birth and may be a developmental and reproductive toxicant. Arsenic (As) contamination has been widespread in the environment and because of its toxicity and prevalence in nature; it also has become a significant environmental health concern. Most solid waste materials containing DEHP and As(III) are disposed of in landfills and may migrate to groundwater and soil environments representing a threat to human receptors. Therefore, the application of adsorption-Fenton oxidation process with Fe adsorbed to SBA-15 matrix was assessed for simultaneous remediation of DEHP and As(III). Three sequences were run to assess the regeneration efficiency of the SBA-15. A response surface methodology was employed to optimize adsorption and Fenton regeneration. Adsorption optimization was evaluated with regard to SBA-15 doses and the extent of As(III) and Fe concentrations. Optimization of Fenton regeneration, in addition, assessed initial H2O2 concentration. Global optimization for maximum reduction of DEHP and As(III) was performed by D-Optimal. Highest adsorption of DEHP (90-95%) and As (40-95%) into the SBA-15 was predicted at 1.16 mM Fe, 18.74 mg SBA-15 and 3.71 mg/L As(III). Highest reduction of As (78-99%) and DEHP (90-97%) was predicted with 0.50 mM Fe, 22 mg SBA-15, 3.02 mg/L As(III) and 22.50 mM H2O2. Global optimal treatments were validated and SBA-15 regenerated material was characterized via SEM and XPS. The efficiency of DEHP and As(III) remediation by adsorption-Fenton oxidation process, applying optimal treatment combinations, was evaluated using leachate from a lab scale bioreactor monofill (i.e., filled with PVC materials). Capability of As(III) and DEHP adsorption into SBA-15 was affected by the preferentiality adsorption of Fe and other compounds present in the monofill leachate.
Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman
2017-11-01
A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.
An, Ying; Zhou, Zhen; Yao, Jie; Niu, Tianhao; Qiu, Zhan; Ruan, Danian; Wei, Haijuan
2017-12-01
An anaerobic/anoxic/oxic (AAO) wastewater treatment system combining with a potassium ferrate (K 2 FeO 4 ) oxidation side-stream reactor (SSR) was proposed for sludge reduction. Batch experiments showed that optimal K 2 FeO 4 dosage and reaction time for sludge disintegration was 100mg/g suspended solids (SS) and 24h, respectively. Subsequently, an AAO-SSR and a conventional AAO were operated in parallel to investigate effects of K 2 FeO 4 oxidation on process performance, sludge characteristics and microbial community structures. The AAO-SSR process operated under the optimized condition achieved efficient COD and NH 4 + -N removal, and reduced sludge by 47.5% with observed yield coefficient of 0.21gSS/g COD. K 2 FeO 4 addition broke sludge particles, increased dissolved organic matters in the mixed liquor, and improved sludge dewaterability. Illumina-MiSeq sequencing results showed that K 2 FeO 4 oxidation in the AAO-SSR decreased microbial richness and diversity, enriched slow growers (Dechloromonas), anaerobic fermentative bacteria (Azospira) and Fe(III)-reducing bacteria (Ferribacterium), but limited the growth of phosphate-accumulating organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Environmental Factors Affecting Ammonium Oxidation Under Iron Reducing Conditions
NASA Astrophysics Data System (ADS)
Jaffe, P. R.; Huang, S.; Ruiz-Urigüen, M.
2014-12-01
Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. Through a 180-day anaerobic incubation experiment, and using PCR-DGGE, 454-pyosequecing and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, a previously unreported species in the Acidimicrobiaceae family, might be either responsible or plays a key role in the Feammox process, We have enriched these Feammox bacteria (65.8% in terms of cell numbers) in a membrane reactor, and isolated the pure Acidimicrobiaceae bacterium A6 strain in an autotrophic medium. In samples collected and then incubated from a series of local wetland-, upland-, as well as storm-water detention pond-sediments, Feammox activity was only detected in acidic soil environments that contain Fe oxides. Using primers we developed for this purpose, Acidimicrobiaceae bacterium A6 was detected in all incubations where Feammox was observed. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. Feammox was still proceeding at pH as low as 2. In Feammox culture amended with different Fe(III) sources, Feammox reaction proceeded only when Fe oxides (ferrihydrite or goethite ) were supplied, whereas samples incubated with ferric chloride or ferric citrate showed no measurable NH4+ oxidation. Furthermore, we have also determined from incubation experiments conducted with a temperature gradient (10 ~ 35℃), that the Feammox process was active when the temperature is above 15℃, and the optimal temperature is 20℃. Incubations of enrichment culture with 79% Feammox bacteria appeared to remove circa 8% more NH4+ at 20ºC than at 35ºC. This is in contrast to anammox, another anaerobic ammonium oxidation pathway, for which optimal NH4+ oxidation is at temperatures ~ 30ºC. Hence, a Feammox-based process is an attractive candidate for wastewater treatment that could result in further energy savings, by requiring no aeration or heating of the wastewater in temperate climates.
Liu, Yangxian; Wang, Qian; Pan, Jianfeng
2016-12-06
A novel process for NO and SO 2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O 2 /H 2 O/H 2 O 2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO 2 removal was evaluated. Active species (O 3 and ·OH) and liquid products (SO 3 2- , NO 2 - , SO 4 2- , and NO 3 - ) were analyzed. The chemistry and routes of NO and SO 2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO 2 , and a maximum removal of 96.8% for NO and complete SO 2 removal were obtained under optimized conditions. SO 2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H 2 O 2 concentration, solution pH, liquid-to-gas ratio, and O 2 concentration greatly enhances NO removal. Increasing NO and SO 2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO 2 . NO removals by oxidation of O 3 , O·, and ·OH are the primary routes. NO removals by H 2 O 2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.
Fast Optimization of LiMgMnOx/La2O3 Catalysts for the Oxidative Coupling of Methane.
Li, Zhinian; He, Lei; Wang, Shenliang; Yi, Wuzhong; Zou, Shihui; Xiao, Liping; Fan, Jie
2017-01-09
The development of efficient catalyst for oxidative coupling of methane (OCM) reaction represents a grand challenge in direct conversion of methane into other useful products. Here, we reported that a newly developed combinatorial approach can be used for ultrafast optimization of La 2 O 3 -based multicomponent metal oxide catalysts in OCM reaction. This new approach integrated inkjet printing assisted synthesis (IJP-A) with multidimensional group testing strategy (m-GT) tactfully takes the place of conventionally high-throughput synthesis-and-screen experiment. Just within a week, 2048 formulated LiMgMnO x -La 2 O 3 catalysts in a 64·8·8·8·8 = 262 144 compositional space were fabricated by IJP-A in a four-round synthesis-and-screen process, and an optimized formulation has been successfully identified through only 4·8 = 32 times of tests via m-GT screening strategy. The screening process identifies the most promising ternary composition region is Li 0-0.48 Mg 0-6.54 Mn 0-0.62 -La 100 O x with an external C 2 yield of 10.87% at 700 °C. The yield of C 2 is two times as high as the pure nano-La 2 O 3 . The good performance of the optimized catalyst formulation has been validated by the manual preparation, which further prove the effectiveness of the new combinatorial methodology in fast discovery of heterogeneous catalyst.
Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation.
Manu, B; Mahamood, S
2011-01-01
For the treatment of paracetamol in water, the UV-C Fenton oxidation process and classic Fenton oxidation have been found to be the most effective. Paracetamol reduction and chemical oxygen demand (COD) removal are measured as the objective functions to be maximized. The experimental conditions of the degradation of paracetamol are optimized by the Fenton process. Influent pH 3, initial H(2)O(2) dosage 60 mg/L, [H(2)O(2)]/[Fe(2+)] ratio 60 : 1 are the optimum conditions observed for 20 mg/L initial paracetamol concentration. At the optimum conditions, for 20 mg/L of initial paracetamol concentration, 82% paracetamol reduction and 68% COD removal by Fenton oxidation, and 91% paracetamol reduction and 82% COD removal by UV-C Fenton process are observed in a 120 min reaction time. By HPLC analysis, 100% removal of paracetamol is observed at the above optimum conditions for the Fenton process in 240 min and for the UV-C photo-Fenton process in 120 min. The methods are effective and they may be used in the paracetamol industry.
The oxidation of carbon monoxide using tin oxide based catalysts
NASA Technical Reports Server (NTRS)
Sampson, Christopher F.; Jorgensen, Norman
1990-01-01
The preparation conditions for precious metal/tin oxide catalysts were optimized for maximum carbon monoxide/oxygen recombination efficiency. This was achieved by controlling the tin digestion, the peptization to form the sol, the calcination process and the method of adding the precious metals. Extensive studies of the tin oxide structure were carried out over the temperature range 20 to 500 C in air or hydrogen environments using Raman scattering and X ray diffraction. Adsorbed species on tin oxide, generated in an environment containing carbon monoxide, gave rise to a Raman band at about 1600 cm(exp -1) which was assigned to carbonaceous groups, possible carbonate.
Comparison of optimization algorithms for the slow shot phase in HPDC
NASA Astrophysics Data System (ADS)
Frings, Markus; Berkels, Benjamin; Behr, Marek; Elgeti, Stefanie
2018-05-01
High-pressure die casting (HPDC) is a popular manufacturing process for aluminum processing. The slow shot phase in HPDC is the first phase of this process. During this phase, the molten metal is pushed towards the cavity under moderate plunger movement. The so-called shot curve describes this plunger movement. A good design of the shot curve is important to produce high-quality cast parts. Three partially competing process goals characterize the slow shot phase: (1) reducing air entrapment, (2) avoiding temperature loss, and (3) minimizing oxide caused by the air-aluminum contact. Due to the rough process conditions with high pressure and temperature, it is hard to design the shot curve experimentally. There exist a few design rules that are based on theoretical considerations. Nevertheless, the quality of the shot curve design still depends on the experience of the machine operator. To improve the shot curve it seems to be natural to use numerical optimization. This work compares different optimization strategies for the slow shot phase optimization. The aim is to find the best optimization approach on a simple test problem.
Bagal, Manisha V; Gogate, Parag R
2013-09-01
In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Optimal robust control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2018-01-01
Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.
Thermal-mechanical coupling effect on initial stage oxidation of Si(100) surface
NASA Astrophysics Data System (ADS)
Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Izumi, Satoshi
2018-04-01
The initial stage oxidation of biaxially strained Si(100) at temperatures ranging from 300 K to 1200 K has been investigated by Reactive Force Field Molecular Dynamics simulations. We reported that the oxidation process involving the reaction rate and the amount of absorbed O atoms could be enhanced by the coupling effect of higher temperatures and larger external tension. By fitting the simulation results, the relationship between absorbed oxygen and the coupling of temperature and strain was obtained. In probing the mechanism, we observed that there was a ballistic transport of O atoms, displaying an enhancement of inward penetration by external tension. Since such an inward transport was favored by thermal actuation, more O atoms penetrated into deeper layers when the 9% strained Si oxidized at 1200 K. Moreover, the evolution of stress in the surface region during the oxidation process was discussed, as well as the related oxide structure and the film quality. These present results may provide a way to understand the thermally-mechanically coupled chemical reactions and propose an effective approach to optimize microscale component processing in the electronic field.
Electrochemical degradation and mineralization of glyphosate herbicide.
Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau
2017-12-01
The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO 2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C 0 = 16.9 mg L -1 ) decreased up to 0.6 mg L -1 when the optimal conditions were imposed (current intensity of 4.77 A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ± 16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.
NASA Astrophysics Data System (ADS)
Papynov, E. K.; Palamarchuk, M. S.; Mayorov, V. Yu; Modin, E. B.; Portnyagin, A. S.; Sokol'nitskaya, T. A.; Belov, A. A.; Tananaev, I. G.; Avramenko, V. A.
2017-07-01
Molybdenum compounds are industrially demanding as heterogeneous catalysts for oxidation of various organic substances. Highly porous structure of molybdenum-containing catalysts avoids surface's colmatation and prevents blocking catalytic sites that makes these materials play a key role in processes of hydrothermal oxidation of radionuclide organic complexes. The study presents an original way of sol-gel synthesis of new macroporous molybdenum compounds using ;core-shell; colloid template (polymer latex) as poreforming agent. We have described three individual routs of template removal via thermal decomposition to obtain porous materials based on molybdenum compounds. Thermal treatment conditions (temperature, gaseous atmosphere) have been studied with respect to their influence on composition, structure and catalytic properties of synthesized molybdenum systems. The optimal way to synthesis of crystal molybdenum (VI) oxide with ordered porous structure (mean pore size 100-160 nm) has been suggested. Catalytic properties of macroporous molybdenum materials have been investigated in the process of liquid phase and hydrothermal oxidation of such organic substances thiazine and stable Co-EDTA complex. It was shown that macroporous molybdenum oxides could be applied as prospective catalysts for hydrothermal oxidation of organic radionuclide complexes during the processing of radioactive waste.
Final report on the oxidation of energetic materials in supercritical water. Final Air Force report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buelow, S.J.; Allen, D.; Anderson, G.K.
1995-04-03
The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, andmore » models for process design and optimization.« less
Demonstration of submicron square-like silicon waveguide using optimized LOCOS process.
Desiatov, Boris; Goykhman, Ilya; Levy, Uriel
2010-08-30
We demonstrate the design, fabrication and experimental characterization of a submicron-scale silicon waveguide that is fabricated by local oxidation of silicon. The use of local oxidation process allows defining the waveguide geometry and obtaining smooth sidewalls. The process can be tuned to precisely control the shape and the dimensions of the waveguide. The fabricated waveguides are measured using near field scanning optical microscope at 1550 nm wavelength. These measurements show mode width of 0.4 µm and effective refractive index of 2.54. Finally, we demonstrate the low loss characteristics of our waveguide by imaging the light scattering using an infrared camera.
Zhou, Xian-Jiao; Guo, Wan-Qian; Yang, Shan-Shan; Ren, Nan-Qi
2012-02-01
This research set up an ultrasonic-assisted ozone oxidation process (UAOOP) to decolorize the triphenylmethane dyes wastewater. Five factors - temperature, initial pH, reaction time, ultrasonic power (low frequency 20 kHz), and ozone concentration - were investigated. Response surface methodology was used to find out the major factors influencing color removal rate and the interactions between these factors, and optimized the operating parameters as well. Under the experimental conditions: reaction temperature 39.81 °C, initial pH 5.29, ultrasonic power 60 W and ozone concentration 0.17 g/L, the highest color removals were achieved with 10 min reaction time and the initial concentration of the MG solution was 1000 mg/L. The optimal results indicated that the UAOOP was a rapid, efficient and low energy consumption technique to decolorize the high concentration MG wastewater. The predicted model was approximately in accordance with the experimental cases with correlation coefficients R(2) and R(adj)(2) of 0.9103 and 0.8386. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Promeyrat, A; Daudin, J D; Gatellier, P
2013-05-01
Optimizing the nutritional quality of cooked meat needs a better understanding of the mechanisms responsible for protein changes induced by heating. The relative contributions of chemical and thermal effects on protein physicochemical changes were studied using meat models. Two models were tested: a basic model made of an aqueous suspension of myofibrillar proteins, and a complex model, in which oxidants were added in physiological concentrations. Various heating time-temperature combinations were applied to both models in the ranges 45-90 °C and 5-120 min. Protein oxidation was evaluated by carbonyl and free thiol contents. Conformational changes of proteins were assessed by measurements of surface hydrophobicity and aggregation. Carbonyl formation was weakly affected by the thermal process alone but exacerbated by oxidants. A synergistic effect of oxidants and heat treatments on protein oxidation was noted. Changes in protein hydrophobicity and aggregation were dominated by the thermal process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Luyten, J; Sniegowski, K; Van Eyck, K; Maertens, D; Timmermans, S; Liers, Sven; Braeken, L
2013-01-01
In this paper, the abatement of adsorbable halogenated organic compounds (AOX) from an industrial wastewater containing relatively high chloride concentrations by a combined chemical and biological oxidation is assessed. For chemical oxidation, the O(3)/UV, H(2)O(2)/UV and photo-Fenton processes are evaluated on pilot scale. Biological oxidation is simulated in a 4 h respirometry experiment with periodic aeration. The results show that a selective degradation of AOX with respect to the matrix compounds (expressed as chemical oxygen demand) could be achieved. For O(3)/UV, lowering the ratio of O(3) dosage to UV intensity leads to a better selectivity for AOX. During O(3)-based experiments, the AOX removal is generally less than during the H(2)O(2)-based experiments. However, after biological oxidation, the AOX levels are comparable. For H(2)O(2)/UV, optimal operating parameters for UV and H(2)O(2) dosage are next determined in a second run with another wastewater sample.
NASA Astrophysics Data System (ADS)
Muda, M. R.; Ramli, M. M.; Mat Isa, S. S.; Halin, D. S. C.; Talip, L. F. A.; Mazelan, N. S.; Anhar, N. A. M.; Danial, N. A.
2017-06-01
New group of materials derived from hybridization of single walled carbon nanotubes (SWCNTs) and graphene oxide (GO) which resulting novel three dimensional (3D) materials generates an outstanding properties compared to corresponding SWCNTs and GO/Graphene. In this paper, we describe a simple approach using water processing method to develop integrated rGO/GO-SWCNT hybrids with different hybrid ratios. The hybrid ratios were varied into three divided ratio and the results were compared between pristine SWCNTs and GO in order to investigate the structural density and morphology of these carbonaceous materials. With an optimized ratio of rGO/GO-SWCNT, the hybrid shows a well-organized hybrid film structures with less defects density sites. The optimized mixture ratio emphasized the important of both rGO and SWCNTs in the hybrid structures. Morphological structural and defects density degrees were examined by Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy.
2010-10-01
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Colorado School of Mines,1500 Illinois St, Golden ,CO,80401 8. PERFORMING ORGANIZATION REPORT NUMBER 9...Protocol page 13 Overall ISCO Protocol Flow Diagram addition, laboratory studies may be used to select optimal chemistry parameters to maximize oxidant...Design Process 5. Because of the complexity of these oxidants’ chemistry and implementation, with much of the knowledge base residing with those
Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina
2010-04-01
The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.
Sliding Speed-Dependent Tribochemical Wear of Oxide-Free Silicon
NASA Astrophysics Data System (ADS)
Chen, Lei; Qi, Yaqiong; Yu, Bingjun; Qian, Linmao
2017-06-01
Fundamental understanding of tribochemical wear mechanism of oxide-free single crystalline silicon (without native oxide layer) is essential to optimize the process of ultra-precision surface manufacturing. Here, we report sliding speed-dependent nanowear of oxide-free silicon against SiO2 microspheres in air and in deionized water. When contact pressure is too low to induce Si yield, tribochemical wear occurs with the existence of water molecules and wear volume decreases logarithmically to constant as sliding speed increased. TEM and Raman observations indicate that the dynamics of rupture and reformation of interfacial bonding bridges result in the variation of tribochemical wear of the oxide-free Si with the increase of sliding speed.
GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel
2012-01-01
The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, K.; Okuwaki, A.; Verheyen, T.V.
In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.
Analysis of Zinc Oxide Thin Films Synthesized by Sol-Gel via Spin Coating
NASA Astrophysics Data System (ADS)
Wolgamott, Jon Carl
Transparent conductive oxides are gaining an increasingly important role in optoelectronic devices such as solar cells. Doped zinc oxide is a candidate as a low cost and nontoxic alternative to tin doped indium oxide. Lab results have shown that both n-type and p-type zinc oxide can be created on a small scale. This can allow zinc oxide to be used as either an electrode as well as a buffer layer to increase efficiency and protect the active layer in solar cells. Sol-gel synthesis is emerging as a low temperature, low cost, and resource efficient alternative to producing transparent conducting oxides such as zinc oxide. For sol-gel derived zinc oxide thin films to reach their potential, research in this topic must continue to optimize the known processing parameters and expand to new parameters to tighten control and create novel processing techniques that improve performance. The processing parameters of drying and annealing temperatures as well as cooling rate were analyzed to see their effect on the structure of the prepared zinc oxide thin films. There were also preliminary tests done to modify the sol-gel process to include silver as a dopant to produce a p-type thin film. The results from this work show that the pre- and post- heating temperatures as well as the cooling rate all play their own unique role in the crystallization of the film. Results from silver doping show that more work needs to be done to create a sol-gel derived p-type zinc oxide thin film.
Yang, Min; Sun, Peide; Wang, Ruyi; Han, Jingyi; Wang, Jianqiao; Song, Yingqi; Cai, Jing; Tang, Xiudi
2013-09-01
An optimal operating condition for ammonia removal at low temperature, based on fully coupled activated sludge model (FCASM), was determined in a full-scale oxidation ditch process wastewater treatment plant (WWTP). The FCASM-based mechanisms model was calibrated and validated with the data measured on site. Several important kinetic parameters of the modified model were tested through respirometry experiment. Validated model was used to evaluate the relationship between ammonia removal and operating parameters, such as temperature (T), dissolved oxygen (DO), solid retention time (SRT) and hydraulic retention time of oxidation ditch (HRT). The simulated results showed that low temperature have a negative effect on the ammonia removal. Through orthogonal simulation tests of the last three factors and combination with the analysis of variance, the optimal operating mode acquired of DO, SRT, HRT for the WWTP at low temperature were 3.5 mg L(-1), 15 d and 14 h, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zolfaghari, Mehdi; Drogui, Patrick; Blais, Jean François
2018-03-01
Electro-oxidation process by niobium boron-doped diamond (Nb/BDD) electrode was used to treat non-biodegradable oily wastewater provided from soil leachate contaminated by hydrocarbons. Firstly, the diffusion current limit and mass transfer coefficient was experimentally measured (7.1 mA cm -2 and 14.7 μm s -1 , respectively), in order to understand minimum applied current density. Later on, the oxidation kinetic model of each pollutant was investigated in different current densities ranged between 3.8 and 61.5 mA cm -2 . It was observed that direct oxidation was the main removal mechanism of organic and inorganic carbon, while the indirect oxidation in higher current density was responsible for nitrogen oxidation. Hydrocarbon in the form of colloidal particles could be removed by electro-flotation. On the other hand, electro-decomposition on the surface of cathode and precipitation by hydroxyl ions were the utmost removal pathway of metals. According to the initial experiments, operating condition was further optimized by central composite design model in different current density, treatment time, and electrolyte addition, based on the best responses on the specific energy consumption (SEC), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiency. Unde r optimum operating condition (current density = 23.1 mA cm -2 , time = 120 min, Ti/Pt as a cathode, and Nb/BDD as the anode), electro-oxidation showed the following removal efficiencies: COD (84.6%), TOC (68.2%), oil and grease (99%), color (87.9%), total alkalinity (92%), N tot (18%), NH 4 + (31%), Ca (66.4%), Fe (71.1%), Mg (41.4%), Mn (78.1%), P tot (75%), S (67.1%), and Si (19.1%). Graphical abstract Environmental significance statement Soil treatment facilities are rapidly grown throughout the world, especially in North America due to its intense industrialization. High water content soil in humid area like Canada produces significant amount of leachate which is difficult to remove by physical and biological processes. Current treatment facility was modified by applying the electro-chemical oxidation process. The kinetic models of each macro-pollutant included carbon, nitrogen, phosphorous, and metals were developed to investigate their oxidation mechanism (graphical abstract). The efficiency of treatment was monitored in order to optimize the decisive operating parameters of electro-oxidation process. The result of this article could pave the way of future investigation on efficient treatment of variety of oily wastewater.
NASA Astrophysics Data System (ADS)
Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.
2015-09-01
The first part of this two-part study reported the possibility of simultaneously generating a dense, self-healing α-alumina layer by thermal oxidation and a coarse-grained microstructure with a potential goodness for high-temperature creep resistance in a FeCrAl oxide dispersion-strengthened ferritic alloy that was cold deformed after hot rolling and extrusion. In this second part, the factors affecting the formation of the coarse-grained microstructure such as strain gradients induced during the rolling process are analyzed. It is concluded that larger strain gradients lead to more refined and more isotropic grain structures.
Oxidation-induced contraction and strengthening of boron fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Wagner, T. C.
1981-01-01
An investigation was conducted to measure and understand the physical and mechanical effects that occur in boron fibers during and after thermal treatment in a controlled oxygen argon gaseous mixture. Of principal concern was the optimization of this treatment as a secondary processing method for significantly improving fiber tensile strength. Strengthening was accomplished by an oxidation induced axial contraction of the fiber and a resulting axial compression of strength limiting flaws within the fiber's tungsten boride core. Various physical observations were used to develop mechanistic models for oxidation, contraction, and flow formation. Processing guidelines are discussed for possibly exceeding the 5.5 GN/sq m strength limit and also for achieving fiber strengthening during application of boron containing diffusion barrier coatings.
Zhao, Bao-xiu; Li, Xiang-zhong; Wang, Peng
2007-01-01
Degradation of 2,4-dichlorophenol (2,4-DCP) was studied in a novel three-electrode photoelectrocatalytic (PEC) integrative oxidation process, and the factors influencing the degradation rate, such as applied current, flow speed of O2, pH, adscititious voltage and initial 2,4-DCP concentration were investigated and optimized. H2O2 was produced nearby cathode and Fe2+ continuously generated from Fe anode in solution when current and O2 were applied, so, main reactions, H2O2-assisted TiO2 PEC oxidation and E-Fenton reaction, occurred during degradation of 2,4-DCP in this integrative system. The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process, while it was only 31% in E-Fenton process and 46% in H2O2-assisted TiO2 PEC process. So, it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect. By the investigation of pH, it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.
Papadopoulos, A E; Fatta, D; Loizidou, M
2007-07-31
The examination of the effectiveness of the chemical oxidation using Fenton's reagent (H(2)O(2)/Fe(2+)) for the reduction of the organic content of wastewater generated from a textile industry has been studied. The experimental results indicate that the oxidation process leads to a reduction in the chemical oxygen demand (COD) concentration up to 45%. Moreover, the reduction is reasonably fast at the first stages of the process, since the COD concentration is decreased up to 45% within four hours and further treatment time does not add up to the overall decrease in the COD concentration (48% reduction within six hours). The maximum color removal achieved was 71.5%. In addition, the alterations observed in the organic matter during the development of the process, as indicated by the ratios of COD/TOC and BOD/COD and the oxidation state, show that a great part of the organic substances, which are not completely mineralized, are subjected to structural changes to intermediate organic by-products.
Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors
NASA Astrophysics Data System (ADS)
Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar
2018-02-01
The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.
NASA Technical Reports Server (NTRS)
Fucsko, Viola
2005-01-01
Anodized alumina nanotemplates have a variety of potential applications in the development of nanotechnology. Alumina nanotemplates are formed by oxidizing aluminum film in an electrolyte solution.During anodization, aluminum oxidizes, and, under the proper conditions, nanometer-sized pores develop. A series of experiments was conducted to determine the optimal conditions for anodization. Three-micrometer thick aluminum films on silicon and silicon oxide substrates were anodized using constant voltages of 13-25 V. 0.1-0.3M oxalic acid was used as the electrolyte. The anodization time was found to increase and the overshooting current decreased as both the voltage and the electrolyte concentrations were decreased. The samples were observed under a scanning electron microscope. Anodizing with 25V in 0.3M oxalic acid appears to be the best process conditions. The alumina nanotemplates are being used to fabricate nanowires by electrodeposition. The current-voltage characteristics of copper nanowires have also been studied.
Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab
2016-11-01
Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Zheng; Qi, Rong; Wang, Bo; Zou, Zhe; Wei, Guohong; Yang, Min
2013-01-01
A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with acceptable performance in terms of ammonium and phosphorus removal. A unified index was introduced by integrating operational costs (aeration energy and sludge production) with effluent violations for performance evaluation. Scenario analysis showed that, in comparison with the baseline (all of the 9 aerators activated), the strategy of activating 5 aerators could save aeration energy significantly with an ammonium violation below 10%. Sludge discharge scenario analysis showed that a sludge discharge flow of 250-300 m3/day (solid retention time (SRT), 13-15 days) was appropriate for the enhancement of phosphorus removal without excessive sludge production. The proposed optimal control strategy was: activating 5 rotating disks operated with a mode of "111100100" ("1" represents activation and "0" represents inactivation) for aeration and sludge discharge flow of 200 m3/day (SRT, 19 days). Compared with the baseline, this strategy could achieve ammonium violation below 10% and TP violation below 30% with substantial reduction of aeration energy cost (46%) and minimal increment of sludge production (< 2%). This study provides a useful approach for the optimization of process operation and control.
NASA Astrophysics Data System (ADS)
Adam, Rania E.; Alnoor, Hatim; Elhag, Sami; Nur, Omer; Willander, Magnus
2017-02-01
Zinc oxide (ZnO) in its nanostructure form is a promising material for visible light emission/absorption and utilization in different energy efficient photocatalytic processes. We will first present our recent results on the effect of varying the molar ratio of the synthesis nutrients on visible light emission. Further we will use the optimized conditions from the molar ration experiments to vary the synthesis processing parameters like stirring time etc. and the effect of all these parameters in order to optimize the efficiency and control the emission spectrum are investigated using different complementary techniques. Cathodoluminescence (CL) is combined with photoluminescence (PL) and electroluminescence (EL) as the techniques to investigate and optimizes visible light emission from ZnO/GaN light emitting diodes. We will then show and discuss our recent finding of the use of high quality ZnO nanoparticles (NPs) for efficient photo-degradation of toxic dyes using the visible spectra, namely with a wavelength up to 800 nm. In the end, we show how ZnO nanorods (NRs) are used as the first template to be transferred to bismuth zinc vanadate (BiZn2VO6). The BiZn2VO6 is then used to demonstrate efficient and cost effective hydrogen production through photoelectrochemical water splitting using solar radiation.
Effect of high-pressure processing on quality and stability of green mango blended mayonnaise.
Sethi, Swati; Chauhan, O P; Anurag, Rahul K
2017-07-01
The present work was aimed to study and optimize the high pressure treated green mango blended mayonnaise in terms of oxidative and emulsion stability, as a function of technical parameters; pressure intensity, dwell period and level of green mango pulp. Mayonnaise samples were treated at different combinations of pressure (400-600 MPa), holding time (5-10 min) and level of green mango pulp (10-30%) following Box-Behnken design. Mayonnaise quality was evaluated in terms of oxidative stability and emulsion stability using response surface methodology to optimize the best possible combination among all. Analysis of variance showed that the second-order polynomial model fitted well with the experimental results. Pressure and time were the most important factors determining the oxidative stability (free fatty acids, peroxide value and anisidine value) whereas; the emulsion stability (creaming and thermal creaming) was most significantly affected by the level of green mango pulp. The optimized conditions for preparing green mango blended mayonnaise with high oxidative and emulsion stability were: 435 MPa pressure, 5 min of holding time with the addition of green mango pulp at the rate of 28%. The product prepared at optimum conditions showed good correlations between predicted and actual values.
Luo, Ruiling; Yao, Xincheng; Liu, Xieying; Zhang, Yushang; Ying, Xue
2018-03-01
Coreopsis tinctoria flowering tops (CTFs) is a popular health product as herbal tea or as a traditional medicinal herb that is rich in saponins and exerts substantial biological activity. In this study, an ultrasound-assisted aqueous two-phase system (ATPS) was utilized to extract total saponins from CTFs and optimize the extraction process by response surface methodology. Moreover, the nitric oxide and nitrite scavenging capability, and N-nitrosamine formation inhibitory activity of total saponins were evaluated. Results showed that the optimal conditions for total saponins were 37.76% (w/w) ammonium sulfate and 35.62% (w/w) ethanol in ATPS coupled with ultrasonic-assisted extraction. Under the optimal conditions, the maximum yield of total saponins of 33.4 g/kg can be obtained from the CTFs raw material. The nitric oxide radical scavenging, nitrite scavenging, and N-nitrosamine inhibitory activities (SC 50 ) were 287.92 ± 7.42, 191.63 ± 7.69, and 1787.4 ± 51.26 μg/mL, respectively. The total saponins has a certain nitric oxide and nitrite scavenging capability, and N-nitrosamine formation inhibitory activity in vitro. Given these activities, research on saponins from CTFs provides profound and lasting implications for the novel applications of C. tinctoria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
2017-06-08
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
Gladine, C; Meunier, N; Blot, Adeline; Bruchet, Lucile; Pagès, X; Gaud, M; Floter, E; Metin, Z; Rossignol, A; Cano, N; Chardigny, J M
2011-03-01
Numerous micronutrients naturally abundant in oilseeds prevent the risk of cardiovascular diseases by reducing cholesterolemia and oxidative stress. These micronutrients include phytosterols and various antioxidants such as polyphenols, tocopherols and coenzyme Q10/Q9 but most of them are lost during the oilseed oil refining. The main objective of the Optim'Oil project was to modify the processes of oil refining in order to reduce the lost of micronutrients. Two clinical trials (cross-over, monocentric, randomized, double-blind and controlled) were designed to investigate the effect of an optimized rapeseed oil 1) on cardiovascular biomarkers (long-term study) and 2) on oxidative stress parameters (post-prandial study). For the long-term study, 59 volunteers ingested daily 20 g of oil and 22 g of margarine (optimized or standard) for 2 periods of 3 weeks separated by a 3-week wash-out period. Blood samples were collected at the beginning and at the end of each period. For the post-prandial study, a sub-group of 16 volunteers came fasted at the laboratory and took 300 mL of a test meal containing 60% of the optimized or standard oils. Blood samples were collected before and during 6h after the test meal intake. In comparison with the standard oil and margarine, the optimized oil and margarine exhibit as expected an increased content of phytosterol (+22%), polyphenols (× 11), tocopherols (+131%) and coenzyme Q10/Q9 (+165%). Overall, conditions of this study were relevant to investigate the effect of the optimized rapeseed oil and margarine on the cardiovascular risk and the oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.
Development & characterization of alumina coating by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Sebastian, Jobin; Scaria, Abyson; Kurian, Don George
2018-03-01
Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.
Characterisation and Processing of Some Iron Ores of India
NASA Astrophysics Data System (ADS)
Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.
2013-10-01
Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.
NASA Astrophysics Data System (ADS)
Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya
2016-06-01
We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.
Heavy metal mining using microbes.
Rawlings, Douglas E
2002-01-01
The use of acidiphilic, chemolithotrophic iron- and sulfur-oxidizing microbes in processes to recover metals from certain types of copper, uranium, and gold-bearing minerals or mineral concentrates is now well established. During these processes insoluble metal sulfides are oxidized to soluble metal sulfates. Mineral decomposition is believed to be mostly due to chemical attack by ferric iron, with the main role of the microorganisms being to reoxidize the resultant ferrous iron back to ferric iron. Currently operating industrial biomining processes have used bacteria that grow optimally from ambient to 50 degrees C, but thermophilic microbes have been isolated that have the potential to enable mineral biooxidation to be carried out at temperatures of 80 degrees C or higher. The development of higher-temperature processes will extend the variety of minerals that can be commercially processed.
Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood.
Katsimpouras, Constantinos; Kalogiannis, Konstantinos G; Kalogianni, Aggeliki; Lappas, Angelos A; Topakas, Evangelos
2017-01-01
Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that employs hot acetone, water, and oxygen, has been found to be an attractive pretreatment method for removing lignin while producing less degradation products. The remaining enriched cellulose fraction has the potential to be utilized under high gravity enzymatic saccharification and fermentation processes for the cost-competing production of bioethanol. Beech wood residual biomass was pretreated following an acetone/water oxidation process aiming at the production of high concentration of cellulosic ethanol. The effect of pressure, reaction time, temperature, and acetone-to-water ratio on the final composition of the pretreated samples was studied for the efficient utilization of the lignocellulosic feedstock. The optimal conditions were acetone/water ratio 1:1, 40 atm initial pressure of 40 vol% O 2 gas, and 64 atm at reaction temperature of 175 °C for 2 h incubation. The pretreated beech wood underwent an optimization step studying the effect of enzyme loading and solids content on the enzymatic liquefaction/saccharification prior to fermentation. In a custom designed free-fall mixer at 50 °C for either 6 or 12 h of prehydrolysis using an enzyme loading of 9 mg/g dry matter at 20 wt% initial solids content, high ethanol concentration of 75.9 g/L was obtained. The optimization of the pretreatment process allowed the efficient utilization of beech wood residual biomass for the production of high concentrations of cellulosic ethanol, while obtaining lignin that can be upgraded towards high-added-value chemicals. The threshold of 4 wt% ethanol concentration that is required for the sustainable bioethanol production was surpassed almost twofold, underpinning the efficient conversion of biomass to ethanol and bio-based chemicals on behalf of the biorefinery concept.
Modified Graphene Oxide for Long Cycle Sodium-Ion Batteries
NASA Astrophysics Data System (ADS)
Shareef, Muhamed; Gunn, Harrison; Voigt, Victoria; Singh, Gurpreet
Hummer's process was modified to produce gram levels of 2-dimensional nanosheets of graphene oxide (GO) with varying degree of exfoliation and chemical functionalization. This was achieved by varying the weight ratios and reaction times of oxidizing agents used in the process. Based on Raman and Fourier transform infra red spectroscopy we show that potassium permanganate (KMnO4) is the key oxidizing agent while sodium nitrate (NaNO3) and sulfuric acid (H2SO4) play minor role during the exfoliation of graphite. Tested as working electrode in sodium-ion half-cell, the GO nanosheets produced using this optimized approach showed high rate capability and exceptionally high energy density of ~500 mAh/g for up to at least 100 cycles, which is among the highest reported for sodium/graphite electrodes. The average Coulombic efficiency was approximately 99 %. NSF Grant No. 1454151.
Wang, Kaidong; Huang, Ke; Jiang, Guoqiang
2018-03-01
Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.
Mupambwa, Hupenyu Allan; Mnkeni, Pearson Nyari Stephano
2018-04-01
Vermicomposting is a bio-oxidative process that involves the action of mainly epigeic earthworm species and different micro-organisms to accelerate the biodegradation and stabilization of organic materials. There has been a growing realization that the process of vermicomposting can be used to greatly improve the fertilizer value of different organic materials, thus, creating an opportunity for their enhanced use as organic fertilizers in agriculture. The link between earthworms and micro-organisms creates a window of opportunity to optimize the vermi-degradation process for effective waste biodegradation, stabilization, and nutrient mineralization. In this review, we look at up-to-date research work that has been done on vermicomposting with the intention of highlighting research gaps on how further research can optimize vermi-degradation. Though several researchers have studied the vermicomposting process, critical parameters that drive this earthworm-microbe-driven process which are C/N and C/P ratios; substrate biodegradation fraction, earthworm species, and stocking density have yet to be adequately optimized. This review highlights that optimizing the vermicomposting process of composts amended with nutrient-rich inorganic materials such as fly ash and rock phosphate and inoculated with microbial inoculants can enable the development of commercially acceptable organic fertilizers, thus, improving their utilization in agriculture.
Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor
NASA Astrophysics Data System (ADS)
Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan
2013-03-01
The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.
NASA Astrophysics Data System (ADS)
Zhou, Beiming; Rapp, Charles F.; Driver, John K.; Myers, Michael J.; Myers, John D.; Goldstein, Jonathan; Utano, Rich; Gupta, Shantanu
2013-03-01
Heavy metal oxide glasses exhibiting high transmission in the Mid-Wave Infra-Red (MWIR) spectrum are often difficult to manufacture in large sizes with optimized physical and optical properties. In this work, we researched and developed improved tellurium-zinc-barium and lead-bismuth-gallium heavy metal oxide glasses for use in the manufacture of fiber optics, optical components and laser gain materials. Two glass families were investigated, one based upon tellurium and another based on lead-bismuth. Glass compositions were optimized for stability and high transmission in the MWIR. Targeted glass specifications included low hydroxyl concentration, extended MWIR transmission window, and high resistance against devitrification upon heating. Work included the processing of high purity raw materials, melting under controlled dry Redox balanced atmosphere, finning, casting and annealing. Batch melts as large as 4 kilograms were sprue cast into aluminum and stainless steel molds or temperature controlled bronze tube with mechanical bait. Small (100g) test melts were typically processed in-situ in a 5%Au°/95%Pt° crucible. Our group manufactured and evaluated over 100 different experimental heavy metal glass compositions during a two year period. A wide range of glass melting, fining, casting techniques and experimental protocols were employed. MWIR glass applications include remote sensing, directional infrared counter measures, detection of explosives and chemical warfare agents, laser detection tracking and ranging, range gated imaging and spectroscopy. Enhanced long range mid-infrared sensor performance is optimized when operating in the atmospheric windows from ~ 2.0 to 2.4μm, ~ 3.5 to 4.3μm and ~ 4.5 to 5.0μm.
Control of Oxidative Sulfur Metabolism of Chlorobium limicola forma thiosulfatophilum
Cork, Douglas; Mathers, Jeremy; Maka, Andrea; Srnak, Anna
1985-01-01
A metered blend of anaerobic-grade N2, CO2, and H2S gases was introduced into an illuminated, 800-ml liquid volume, continuously stirred tank reactor. The system, described as an anaerobic gas-to-liquid phase fed-batch reactor, was used to investigate the effects of H2S flow rate and light energy on the accumulation of oxidized sulfur compounds formed by the photoautotroph Chlorobium limicola forma thiosulfatophilum during growth. Elemental sulfur was formed and accumulated in stoichiometric quantities when light energy and H2S molar flow rate levels were optimally adjusted in the presence of nonlimiting CO2. Deviation from the optimal H2S and light energy levels resulted in either oxidation of sulfur or complete inhibition of sulfide oxidation. Based on these observations, a model of sulfide and sulfur oxidases electrochemically coupled to the photosynthetic reaction center of Chlorobium spp. is presented. The dynamic deregulation of oxidative pathways may be a mechanism for supplying the photosynthetic reaction center with a continuous source of electrons during periods of varying light and substrate availability, as in pond ecosystems where Chlorobium spp. are found. Possible applications for a sulfide gas removal process are discussed. PMID:16346713
Lee, Seung Y; González-Flores, Diego; Ohms, Jonas; Trost, Tim; Dau, Holger; Zaharieva, Ivelina; Kurz, Philipp
2014-12-01
A mild screen-printing method was developed to coat conductive oxide surfaces (here: fluorine-doped tin oxide) with micrometer-thick layers of presynthesized calcium manganese oxide (Ca-birnessite) particles. After optimization steps concerning the printing process and layer thickness, electrodes were obtained that could be used as corrosion-stable water-oxidizing anodes at pH 7 to yield current densities of 1 mA cm(-2) at an overpotential of less than 500 mV. Analyses of the electrode coatings of optimal thickness (≈10 μm) indicated that composition, oxide phase, and morphology of the synthetic Ca-birnessite particles were hardly affected by the screen-printing procedure. However, a more detailed analysis by X-ray absorption spectroscopy revealed small modifications of both the Mn redox state and the structure at the atomic level, which could affect functional properties such as proton conductivity. Furthermore, the versatile new screen-printing method was used for a comparative study of various transition-metal oxides concerning electrochemical water oxidation under "artificial leaf conditions" (neutral pH, fairly low overpotential and current density), for which a general activity ranking of RuO2 >Co3 O4 ≈(Ca)MnOx ≈NiO was observed. Within the group of screened manganese oxides, Ca-birnessite performed better than "Mn-only materials" such as Mn2 O3 and MnO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-01-01
Background In this research, the removal of natural organic matter from aqueous solutions using advanced oxidation processes (UV/H2O2) was evaluated. Therefore, the response surface methodology and Box-Behnken design matrix were employed to design the experiments and to determine the optimal conditions. The effects of various parameters such as initial concentration of H2O2 (100–180 mg/L), pH (3–11), time (10–30 min) and initial total organic carbon (TOC) concentration (4–10 mg/L) were studied. Results Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model (R2 = 0.98). Experimental results showed that with increasing H2O2 concentration, time and decreasing in initial TOC concentration, TOC removal efficiency was increased. Neutral and nearly acidic pH values also improved the TOC removal. Accordingly, the TOC removal efficiency of 78.02% in terms of the independent variables including H2O2 concentration (100 mg/L), pH (6.12), time (22.42 min) and initial TOC concentration (4 mg/L) were optimized. Further confirmation tests under optimal conditions showed a 76.50% of TOC removal and confirmed that the model is accordance with the experiments. In addition TOC removal for natural water based on response surface methodology optimum condition was 62.15%. Conclusions This study showed that response surface methodology based on Box-Behnken method is a useful tool for optimizing the operating parameters for TOC removal using UV/H2O2 process. PMID:24735555
Effect of N2 flow during deposition on p-type ZnO film
NASA Astrophysics Data System (ADS)
Lin, Chiung-Wei; Liu, Bor-Chang
2017-01-01
In this study, the influence of a nitrogen source on p-type conductive ZnO films was studied. Rapid thermal oxidation was conducted to oxidize ZnN films and convert them to ZnO films. When an as-deposited ZnN film was prepared at a high nitrogen gas flow rate, the converted ZnO film possessed many acceptors and showed stable p-type conduction. This p-type conduction was attributed to the nitrogen gas flow providing many “No” states, which act as acceptors within the processed ZnO film. It was found that the as-deposited ZnN film prepared at a high nitrogen gas flow rate is oxidized slightly so that only a few nitrogen atoms were replaced by oxygen. The carrier concentration and mobility of the optimized oxidized ZnN film were 9.76 × 1017 cm-3 and 62.78 cm2 V-1 s-1, respectively. A good rectified current-voltage characteristic with a turn-on voltage of 3.65 V was achieved for the optimized ZnO:N/ZnO junction.
A Zinc Oxide Nanoflower-Based Electrochemical Sensor for Trace Detection of Sunset Yellow
Ya, Yu; Jiang, Cuiwen; Li, Tao; Liao, Jie; Fan, Yegeng; Wei, Yuning; Yan, Feiyan; Xie, Liping
2017-01-01
Zinc oxide nanoflower (ZnONF) was synthesized by a simple process and was used to construct a highly sensitive electrochemical sensor for the detection of sunset yellow (SY). Due to the large surface area and high accumulation efficiency of ZnONF, the ZnONF-modified carbon paste electrode (ZnONF/CPE) showed a strong enhancement effect on the electrochemical oxidation of SY. The electrochemical behaviors of SY were investigated using voltammetry with the ZnONF-based sensor. The optimized parameters included the amount of ZnONF, the accumulation time, and the pH value. Under optimal conditions, the oxidation peak current was linearly proportional to SY concentration in the range of 0.50–10 μg/L and 10–70 μg/L, while the detection limit was 0.10 μg/L (signal-to-noise ratio = 3). The proposed method was used to determine the amount of SY in soft drinks with recoveries of 97.5%–103%, and the results were in good agreement with the results obtained by high-performance liquid chromatography. PMID:28282900
Mineralization of aniline using hydroxyl/sulfate radical-based technology in a waterfall reactor.
Durán, A; Monteagudo, J M; San Martín, I; Amunategui, F J; Patterson, D A
2017-11-01
The aim of this work is to study the applicability of a UV/H 2 O 2 process intensified with persulfate (PS) as a source of SO 4 - radicals to efficiently mineralize a synthetic effluent containing aniline in a glass reactor arranged in a cascade configuration. pH conditions were studied and the concentration of PS was optimized. The synergism for aniline mineralization between the UV/H 2 O 2 process and the combined UV/H 2 O 2 /PS process was quantified in 10.1%. Aniline degradation reached 100% under the UV/H2O2/PS process after 20 min. Its mineralization is favored under acidic conditions and with the presence of persulfate (optimal conditions: 49% in 90 min; pH = 4; [PS] = 250 ppm). On the contrary, the worst conditions were found at pH = 11, since hydrogen peroxide decomposes and carbonates were formed increasing the scavenging effect. The different mechanisms involved (formulated from intermediates identified by mass spectrometry) confirm these results. Aniline was found to follow a degradation pathway where phenol is the main intermediate. The presence of sulfate radicals increases phenol degradation rate leading to a higher mineralization extent. Benzoquinone was identified as the main aromatic oxidation product of phenol, whereas succinic, 4-oxo-pentanoic, fumaric and oxalic acids were detected as aliphatic oxidation products for both UV/H2O2 and UV/H2O2/PS oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shin, Yong-Uk; Yoo, Ha-Young; Kim, Seonghun; Chung, Kyung-Mi; Park, Yong-Gyun; Hwang, Kwang-Hyun; Hong, Seok Won; Park, Hyunwoong; Cho, Kangwoo; Lee, Jaesang
2017-09-19
A two-stage sequential electro-Fenton (E-Fenton) oxidation followed by electrochemical chlorination (EC) was demonstrated to concomitantly treat high concentrations of organic carbon and ammonium nitrogen (NH 4 + -N) in real anaerobically digested food wastewater (ADFW). The anodic Fenton process caused the rapid mineralization of phenol as a model substrate through the production of hydroxyl radical as the main oxidant. The electrochemical oxidation of NH 4 + by a dimensionally stable anode (DSA) resulted in temporal concentration profiles of combined and free chlorine species that were analogous to those during the conventional breakpoint chlorination of NH 4 + . Together with the minimal production of nitrate, this confirmed that the conversion of NH 4 + to nitrogen gas was electrochemically achievable. The monitoring of treatment performance with varying key parameters (e.g., current density, H 2 O 2 feeding rate, pH, NaCl loading, and DSA type) led to the optimization of two component systems. The comparative evaluation of two sequentially combined systems (i.e., the E-Fenton-EC system versus the EC-E-Fenton system) using the mixture of phenol and NH 4 + under the predetermined optimal conditions suggested the superiority of the E-Fenton-EC system in terms of treatment efficiency and energy consumption. Finally, the sequential E-Fenton-EC process effectively mineralized organic carbon and decomposed NH 4 + -N in the real ADFW without external supply of NaCl.
NASA Astrophysics Data System (ADS)
Aprilliani, F.; Warsiki, E.; Iskandar, A.
2018-03-01
Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.
Cyclical Annealing Technique To Enhance Reliability of Amorphous Metal Oxide Thin Film Transistors.
Chen, Hong-Chih; Chang, Ting-Chang; Lai, Wei-Chih; Chen, Guan-Fu; Chen, Bo-Wei; Hung, Yu-Ju; Chang, Kuo-Jui; Cheng, Kai-Chung; Huang, Chen-Shuo; Chen, Kuo-Kuang; Lu, Hsueh-Hsing; Lin, Yu-Hsin
2018-02-26
This study introduces a cyclical annealing technique that enhances the reliability of amorphous indium-gallium-zinc-oxide (a-IGZO) via-type structure thin film transistors (TFTs). By utilizing this treatment, negative gate-bias illumination stress (NBIS)-induced instabilities can be effectively alleviated. The cyclical annealing provides several cooling steps, which are exothermic processes that can form stronger ionic bonds. An additional advantage is that the total annealing time is much shorter than when using conventional long-term annealing. With the use of cyclical annealing, the reliability of the a-IGZO can be effectively optimized, and the shorter process time can increase fabrication efficiency.
Silicon-Based Ceramic-Matrix Composites for Advanced Turbine Engines: Some Degradation Issues
NASA Technical Reports Server (NTRS)
Thomas-Ogbuji, Linus U. J.
2000-01-01
SiC/BN/SiC composites are designed to take advantage of the high specific strengths and moduli of non-oxide ceramics, and their excellent resistance to creep, chemical attack, and oxidation, while circumventing the brittleness inherent in ceramics. Hence, these composites have the potential to take turbine engines of the future to higher operating temperatures than is achievable with metal alloys. However, these composites remain developmental and more work needs to be done to optimize processing techniques. This paper highlights the lingering issue of pest degradation in these materials and shows that it results from vestiges of processing steps and can thus be minimized or eliminated.
NASA Technical Reports Server (NTRS)
Addona, Brad; Eddleman, David
2015-01-01
A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.
Rafieerad, A R; Bushroa, A R; Nasiri-Tabrizi, B; Kaboli, S H A; Khanahmadi, S; Amiri, Ahmad; Vadivelu, J; Yusof, F; Basirun, W J; Wasa, K
2017-05-01
Recently, the robust optimization and prediction models have been highly noticed in district of surface engineering and coating techniques to obtain the highest possible output values through least trial and error experiments. Besides, due to necessity of finding the optimum value of dependent variables, the multi-objective metaheuristic models have been proposed to optimize various processes. Herein, oriented mixed oxide nanotubular arrays were grown on Ti-6Al-7Nb (Ti67) implant using physical vapor deposition magnetron sputtering (PVDMS) designed by Taguchi and following electrochemical anodization. The obtained adhesion strength and hardness of Ti67/Nb were modeled by particle swarm optimization (PSO) to predict the outputs performance. According to developed models, multi-objective PSO (MOPSO) run aimed at finding PVDMS inputs to maximize current outputs simultaneously. The provided sputtering parameters were applied as validation experiment and resulted in higher adhesion strength and hardness of interfaced layer with Ti67. The as-deposited Nb layer before and after optimization were anodized in fluoride-base electrolyte for 300min. To crystallize the coatings, the anodically grown mixed oxide TiO 2 -Nb 2 O 5 -Al 2 O 3 nanotubes were annealed at 440°C for 30min. From the FESEM observations, the optimized adhesive Nb interlayer led to further homogeneity of mixed nanotube arrays. As a result of this surface modification, the anodized sample after annealing showed the highest mechanical, tribological, corrosion resistant and in-vitro bioactivity properties, where a thick bone-like apatite layer was formed on the mixed oxide nanotubes surface within 10 days immersion in simulated body fluid (SBF) after applied MOPSO. The novel results of this study can be effective in optimizing a variety of the surface properties of the nanostructured implants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patel, Rajankumar L.; Jiang, Ying-Bing; Choudhury, Amitava; Liang, Xinhua
2016-01-01
Atomic layer deposition (ALD) has evolved as an important technique to coat conformal protective thin films on cathode and anode particles of lithium ion batteries to enhance their electrochemical performance. Coating a conformal, conductive and optimal ultrathin film on cathode particles has significantly increased the capacity retention and cycle life as demonstrated in our previous work. In this work, we have unearthed the synergetic effect of electrochemically active iron oxide films coating and partial doping of iron on LiMn1.5Ni0.5O4 (LMNO) particles. The ionic Fe penetrates into the lattice structure of LMNO during the ALD process. After the structural defects were saturated, the iron started participating in formation of ultrathin oxide films on LMNO particle surface. Owing to the conductive nature of iron oxide films, with an optimal film thickness of ~0.6 nm, the initial capacity improved by ~25% at room temperature and by ~26% at an elevated temperature of 55 °C at a 1C cycling rate. The synergy of doping of LMNO with iron combined with the conductive and protective nature of the optimal iron oxide film led to a high capacity retention (~93% at room temperature and ~91% at 55 °C) even after 1,000 cycles at a 1C cycling rate. PMID:27142704
Zhang, Yanyan; Xue, Jinkai; Liu, Yang; Gamal El-Din, Mohamed
2018-04-05
Previously, anoxic-aerobic membrane bioreactor (MBR) coupled with mild ozonation pretreatment has been applied to remove toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW). To further improve MBR performance, the optimal operation conditions including hydraulic retention time (HRT) and initial ammonia nitrogen (NH 4 + -N) need to be explored. In this study, the role of ozone pretreatment on MBR optimization was investigated. Compared with MBR treating raw OSPW, MBR treating ozonated OSPW had the same optimal operation conditions (HRT of 12 h and NH 4 + -N concentration of 25 mg/L). Nevertheless, MBR performance benefited from HRT adjustment more after ozone pretreatment. HRT adjustment resulted in NA removal in the range of 33-50% for the treatment of ozonated OSPW whereas NA removal for raw OSPW only fluctuated between 27% and 38%. Compared with the removal of classical NAs, the degradation of oxidized NAs was more sensitive to the adjustment of operation conditions. Adjusting HRT increased the removal of oxidized NAs in ozonated OSPW substantially (from 6% to 35%). It was also noticed that microbial communities in MBR treating ozonated OSPW were more responsive to the adjustment of operation conditions as indicated by the noticeable increase of Shannon index and extended genetic distances. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Elrouby, Mahmoud; Abdel-Mawgoud, A. M.; El-Rahman, Rehab Abd
2017-11-01
This work is devoted to the synthesis of magnetic iron oxides nanoparticles with very high saturation magnetization to be qualified for supercapacitor applications using, a simple electrodeposition technique. It is found that the electrochemical reduction process depends on concentration, temperature, deposition potential and the scan rate of potential. The nature of electrodeposition process has been characterized via voltammetric and chronoamperometric techniques. The morphology of the electrodeposits has been investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and phase content of these investigated electrodeposits have been examined and calculated. The obtained iron oxides show a high saturation magnetization (Ms) of about 229 emu g-1. The data exhibited a relation between Ms of electrodeposited iron oxide and specific capacitance. This relation exhibits that the highest Ms value of electrodeposited iron oxides gives also highest specific capacitance of about 725 Fg-1. Moreover, the electrodeposited iron oxides exhibit a very good stability. The new characteristics of the electro synthesized iron oxides at our optimized conditions, strongly qualify them as a valuable material for high-performance supercapacitor applications.
Karthikeyan, S; Ezhil Priya, M; Boopathy, R; Velan, M; Mandal, A B; Sekaran, G
2012-06-01
BACKGROUND, AIM, SCOPE: Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst. Ferrous sulfate (FeSO(4)·7H(2)O), sulfuric acid (36 N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50 cm and diameter 6 cm, were fabricated with PVC while one reactor was packed with MAC of mass 150 g and other without MAC served as control. The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89 kJ/mol, respectively. The thermodynamic parameters ΔG, ΔH, and ΔS were calculated for the oxidation processes using Van't Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV-visible spectroscopy, and cyclic voltammetry. The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time-4 h, and H(2)O(2)/FeSO(4)·7H(2)O in the molar ratio of 2:1.
Lagrangian Approach to Jet Mixing and Optimization of the Reactor for Production of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Povitsky, Alex; Salas, Manuel D.
2001-01-01
This study was motivated by an attempt to optimize the High Pressure carbon oxide (HiPco) process for the production of carbon nanotubes from gaseous carbon oxide, The goal is to achieve rapid and uniform heating of catalyst particles by an optimal arrangement of jets. A mixed Eulerian and Lagrangian approach is implemented to track the temperature of catalyst particles along their trajectories as a function of time. The FLUENT CFD software with second-order upwind approximation of convective terms and an algebraic multigrid-based solver is used. The poor performance of the original reactor configuration is explained in terms of features of particle trajectories. The trajectories most exposed to the hot jets appear to be the most problematic for heating because they either bend towards the cold jet interior or rotate upwind of the mixing zone. To reduce undesirable slow and/or oscillatory heating of catalyst particles, a reactor configuration with three central jets is proposed and the optimal location of the central and peripheral nozzles is determined.
Wang, Hui-Long; Dong, Jing; Jiang, Wen-Feng
2010-11-15
The chlorine dioxide (ClO(2)) oxidative degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous solution was studied in detail using Al(2)O(3) as a heterogeneous catalyst. The operating parameters such as the ClO(2) concentration, catalyst dosage, initial DNBP concentration, reaction time and pH were evaluated. Compared with the conventional ClO(2) oxidation process without the catalyst, the ClO(2) catalytic oxidation system could significantly enhance the degradation efficiency. Under the optimal condition (DNBP concentration 39 mg L(-1), ClO(2) concentration 0.355 g L(-1), reaction time 60 min, catalyst dosage 10.7 g L(-1) and pH 4.66), degradation efficiency approached 99.1%. The catalyst was used at least 8 cycles without any appreciable loss of activity. The kinetic studies revealed that the ClO(2) catalytic oxidation degradation of DNBP followed pseudo-first-order kinetics with respect to DNBP concentration. The ClO(2) catalytic oxidation process was found to be very effective in the decolorization and COD(Cr) reduction of real wastewater from DNBP manufacturing. Thus, this study showed potential application of ClO(2) catalytic oxidation process in degradation of organic contaminants and industrial effluents. Copyright © 2010 Elsevier B.V. All rights reserved.
Zhao, Zilong; Liu, Zekun; Wang, Hongjie; Dong, Wenyi; Wang, Wei
2018-07-01
Treatment of Ni-EDTA in industrial nickel plating effluents was investigated by integrated application of Fenton and ozone-based oxidation processes. Determination of integrated sequence found that Fenton oxidation presented higher apparent kinetic rate constant of Ni-EDTA oxidation and capacity for contamination load than ozone-based oxidation process, the latter, however, was favorable to guarantee the further mineralization of organic substances, especially at a low concentration. Serial-connection mode of two oxidation processes was appraised, Fenton effluent after treated by hydroxide precipitation and filtration negatively affected the overall performance of the sequential system, as evidenced by the removal efficiencies of Ni 2+ and TOC dropping from 99.8% to 98.7%, and from 74.8% to 66.6%, respectively. As a comparison, O 3 /Fe 2+ oxidation process was proved to be more effective than other processes (e.g. O 3 -Fe 2+ , O 3 /H 2 O 2 /Fe 2+ , O 3 /H 2 O 2 -Fe 2+ ), and the final effluent Ni 2+ concentration could satisfied the discharge standard (<0.1 mg L -1 , China) under the optimal conditions (H 2 O 2 dosage of 1.0 mL L -1 , Fe 2+ : H 2 O 2 mole ratio of 1.46, and reaction time of 10 min for Fenton reaction, initial influent pH of 3.0, O 3 dosage of 252 mg L -1 , Fe 2+ of 150 mg L -1 , and reaction time of 30 min for O 3 /Fe 2+ oxidation). Furthermore, pilot-scale test was carried out to study the practical treatability towards the real nickel plating effluent, revealing the effective removal of some other co-existence contaminations. And Fenton reaction has contributed most, with the percentage ranging from 72.41% to 93.76%. The economic cost advantage made it a promising alternative to the continuous Fenton oxidation. Copyright © 2018 Elsevier Ltd. All rights reserved.
We present development of a process to perform greyscale photolithography on a 2.55-m thick photoresist in order to transfer tiered and sloped...platinum or iridium oxide (IrO2) electrodes above and below each layer. Process variables including resist rehydration , focus of the exposure, and UV cure...bake temperature were optimized to produce the best greyscale profile through the thickness of the resist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahowald, Natalie
Soils in natural and managed ecosystems and wetlands are well known sources of methane, nitrous oxides, and reactive nitrogen gases, but the magnitudes of gas flux to the atmosphere are still poorly constrained. Thus, the reasons for the large increases in atmospheric concentrations of methane and nitrous oxide since the preindustrial time period are not well understood. The low atmospheric concentrations of methane and nitrous oxide, despite being more potent greenhouse gases than carbon dioxide, complicate empirical studies to provide explanations. In addition to climate concerns, the emissions of reactive nitrogen gases from soils are important to the changing nitrogenmore » balance in the earth system, subject to human management, and may change substantially in the future. Thus improved modeling of the emission fluxes of these species from the land surface is important. Currently, there are emission modules for methane and some nitrogen species in the Community Earth System Model’s Community Land Model (CLM-ME/N); however, there are large uncertainties and problems in the simulations, resulting in coarse estimates. In this proposal, we seek to improve these emission modules by combining state-of-the-art process modules for emissions, available data, and new optimization methods. In earth science problems, we often have substantial data and knowledge of processes in disparate systems, and thus we need to combine data and a general process level understanding into a model for projections of future climate that are as accurate as possible. The best methodologies for optimization of parameters in earth system models are still being developed. In this proposal we will develop and apply surrogate algorithms that a) were especially developed for computationally expensive simulations like CLM-ME/N models; b) were (in the earlier surrogate optimization Stochastic RBF) demonstrated to perform very well on computationally expensive complex partial differential equations in earth science with limited numbers of simulations; and, c) will be (as part of the proposed research) significantly improved both by adding asynchronous parallelism, early truncation of unsuccessful simulations, and the improvement of both serial and parallel performance by the use of derivative and sensitivity information from global and local surrogate approximations S(x). The algorithm development and testing will be focused on the CLM-ME/N model application, but the methods are general and are expected to also perform well on optimization for parameter estimation of other climate models and other classes of continuous multimodal optimization problems arising from complex simulation models. In addition, this proposal will compile available datasets of emissions of methane, nitrous oxides and reactive nitrogen species and develop protocols for site level comparisons with the CLM-ME/N. Once the model parameters are optimized against site level data, the model will be simulated at the global level and compared to atmospheric concentration measurements for the current climate, and future emissions will be estimated using climate change as simulated by the CESM. This proposal combines experts in earth system modeling, optimization, computer science, and process level understanding of soil gas emissions in an interdisciplinary team in order to improve the modeling of methane and nitrogen gas emissions. This proposal thus meets the requirements of the SciDAC RFP, by integrating state-of-the-art computer science and earth system to build an improved earth system model.« less
The TERRAMET® soil remediation system leaches and recovers lead (including metallic lead, and lead salts and oxides), and other metals from contaminated soil, sludge, or sediment. The system uses a proprietary aqueous leachant that is optimized through treatability tests for the ...
Zulkurnain, Musfirah; Lai, Oi Ming; Tan, Soo Choon; Abdul Latip, Razam; Tan, Chin Ping
2013-04-03
The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively.
Billing, Beant Kaur; Dhar, Purbarun; Singh, Narinder; Agnihotri, Prabhat K
2018-01-03
A detailed experimental investigation was carried out to establish the relationship between CNT purification and functionalization routes and the average response of CNT/epoxy nanocomposites under static and dynamic loading. It was shown that the relative improvement in the mechanical properties of the epoxy matrix due to the addition of CNTs depends on the choice of purification and functionalization steps. A better dispersion of CNTs was recorded for the functionalized CNTs as compared to the oxidized and CVD grown CNTs. Moreover, tensile, 3-point bending and nanoDMA testing performed on nanocomposites processed with CVD-grown, oxidized and functionalized CNTs revealed that COOH functionalization after the oxidation of CNTs at 350 °C is the optimized processing route to harness the excellent properties of CNTs in CNT/epoxy nanocomposites.
Hermosilla, Daphne; Merayo, Noemí; Ordóñez, Ruth; Blanco, Angeles
2012-06-01
According to current environmental legislation concerned with water scarcity, paper industry is being forced to adopt a zero liquid effluent policy. In consequence, reverse osmosis (RO) systems are being assessed as the final step of effluent treatment trains aiming to recover final wastewater and reuse it as process water. One of the most important drawbacks of these treatments is the production of a retentated stream, which is usually highly loaded with biorecalcitrant organic matter and inorganics; and this effluent must meet current legislation stringent constraints before being ultimately disposed. The treatment of biorefractory RO retentate from a paper mill by several promising advanced oxidation processes (AOPs) - conventional Fenton, photo-Fenton and photocatalysis - was optimized considering the effect and interaction of reaction parameters; particularly using response surface methodology (RSM) when appropriate (Fenton processes). The economical cost of these treatments was also comparatively assessed. Photo-Fenton process was able to totally remove the COD of the retentate, and resulted even operatively cheaper at high COD removal levels than conventional Fenton, which achieved an 80% reduction of the COD at best. In addition, although these optimal results were produced at pH=2.8, it was also tested that Fenton processes are able to achieve good COD reduction efficiencies (>60%) without adjusting the initial pH value, provided the natural pH of this wastewater was close to neutral. Finally, although TiO(2)-photocatalysis showed the least efficient and most expensive figures, it improved the biodegradability of the retentate, so its combination with a final biological step almost achieved the total removal of the COD. Copyright © 2011 Elsevier Ltd. All rights reserved.
Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures
Sunkara, Mahendra Kumar [Louisville, KY; Vaddiraju, Sreeram [Mountain View, CA; Mozetic, Miran [Ljubljan, SI; Cvelbar, Uros [Idrija, SI
2009-09-22
A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.
Oxidation of benzyl alcohol by K2FeO4 to benzaldehyde over zeolites
NASA Astrophysics Data System (ADS)
Wang, Yuan-Yuan; Song, Hua; Song, Hua-Lin; Jin, Zai-Shun
2016-10-01
A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.
Two-Step Oxidation of Refractory Gold Concentrates with Different Microbial Communities.
Wang, Guo-Hua; Xie, Jian-Ping; Li, Shou-Peng; Guo, Yu-Jie; Pan, Ying; Wu, Haiyan; Liu, Xin-Xing
2016-11-28
Bio-oxidation is an effective technology for treatment of refractory gold concentrates. However, the unsatisfactory oxidation rate and long residence time, which cause a lower cyanide leaching rate and gold recovery, are key factors that restrict the application of traditional bio-oxidation technology. In this study, the oxidation rate of refractory gold concentrates and the adaption of microorganisms were analyzed to evaluate a newly developed two-step pretreatment process, which includes a high temperature chemical oxidation step and a subsequent bio-oxidation step. The oxidation rate and recovery rate of gold were improved significantly after the two-step process. The results showed that the highest oxidation rate of sulfide sulfur could reach to 99.01 % with an extreme thermophile microbial community when the pulp density was 5%. Accordingly, the recovery rate of gold was elevated to 92.51%. Meanwhile, the results revealed that moderate thermophiles performed better than acidophilic mesophiles and extreme thermophiles, whose oxidation rates declined drastically when the pulp density was increased to 10% and 15%. The oxidation rates of sulfide sulfur with moderate thermophiles were 93.94% and 65.73% when the pulp density was increased to 10% and 15%, respectively. All these results indicated that the two-step pretreatment increased the oxidation rate of refractory gold concentrates and is a potential technology to pretreat the refractory sample. Meanwhile, owing to the sensitivity of the microbial community under different pulp density levels, the optimization of microbial community in bio-oxidation is necessary in industry.
Porous metal oxide microspheres from ion exchange resin
NASA Astrophysics Data System (ADS)
Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.
2015-07-01
This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.
A physiologically based kinetic model for bacterial sulfide oxidation.
Klok, Johannes B M; de Graaff, Marco; van den Bosch, Pim L F; Boelee, Nadine C; Keesman, Karel J; Janssen, Albert J H
2013-02-01
In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S⁰ formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Young Chul; Lim, Seong Chu
2013-11-01
Single wall carbon nanotubes (SWCNTs) were synthesized by arc discharge, and then purified by selective oxidation of amorphous carbon layers that were found to encase SWCNT bundles and catalyst metal particles. In order to remove selectively the amorphous carbon layers with SWCNTs being intact, we have systematically investigated the thermal treatment conditions; firstly, setting the temperature by measuring the activation energies of SWCNTs and amorphous carbon layers, and then, secondly, finding the optimal process time. As a consequence, the optimal temperature and time for the thermal treatment was found to be 460 °C and 20 min, respectively. The complete elimination of surrounding amorphous carbon layers makes it possible to efficiently disperse the SWCNT bundles, resulting in high absorbance of SWCNT-ink. The SWCNTs which were thermal-treated at optimized temperature (460 °C) and duration (20 min) showed much better crystallinity, dispersibility, and transparent conducting properties, compared with as-synthesized and the nanotubes thermal-treated at different experimental conditions.
Modeling of process parameters for enhanced production of coenzyme Q10 from Rhodotorula glutinis.
Balakumaran, Palanisamy Athiyaman; Meenakshisundaram, Sankaranarayanan
2015-01-01
Coenzyme Q10 (CoQ10) plays an indispensable role in ATP generation through oxidative phosphorylation and helps in scavenging superoxides generated during electron transfer reactions. It finds extensive applications specifically related to oxidative damage and metabolic dysfunctions. This article reports the use of a statistical approach to optimize the concentration of key variables for the enhanced production of CoQ10 by Rhodotorula glutinis in a lab-scale fermenter. The culture conditions that promote optimum growth and CoQ10 production were optimized and the interaction of significant variables para-hydroxybenzoic acid (PHB, 819.34 mg/L) and soybean oil (7.78% [v/v]) was studied using response surface methodology (RSM). CoQ10 production increased considerably from 10 mg/L (in control) to 39.2 mg/L in batch mode with RSM-optimized precursor concentration. In the fed-batch mode, PHB and soybean oil feeding strategy enhanced CoQ10 production to 78.2 mg/L.
NASA Astrophysics Data System (ADS)
Leu, J.
2012-12-01
A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone sparging wells. Startup test was conducted to optimize sparging pressure and flow rate and evaluate radius of influence (ROI) and pulsed sparging frequency. The startup test results indicated the system is optimized at 6 psi pressure and 3 cfm flow rate at ozone sparging rate of 2 lbs/day at each sparging location. The results also indicated a maximized ROI of 20 ft was reached and pulsed sparging frequency was estimated to be 60 minutes. The results at the completion of the pilot test concluded that TPH concentrations in groundwater decreased by 97% during the two months of ozone sparging, but did rebound to near baseline levels for most groundwater monitoring wells. Concentrations of hexavalent chromium and bromate increased from non-detect to 44 and 110 μg/L, respectively, during the ozone sparging but attenuated to non-detect concentrations within three months following the system shut down. Field measurements during the pilot study displayed an increasing trend of both oxidation-reduction potential (ORP) and dissolved oxygen (DO). After ozone sparging was complete, the ORP and DO in the saturated zone returned to near baseline levels. Based on the results of the pilot study, a full scale ISCO using ozone system was recommended.
Effect of Process Parameters on Catalytic Incineration of Solvent Emissions
Ojala, Satu; Lassi, Ulla; Perämäki, Paavo; Keiski, Riitta L.
2008-01-01
Catalytic oxidation is a feasible and affordable technology for solvent emission abatement. However, finding optimal operation conditions is important, since they are strongly dependent on the application area of VOC incineration. This paper presents the results of the laboratory experiments concerning four most central parameters, that is, effects of concentration, gas hourly space velocity (GHSV), temperature, and moisture on the oxidation of n-butyl acetate. Both fresh and industrially aged commercial Pt/Al2O3 catalysts were tested to determine optimal process conditions and the significance order and level of selected parameters. The effects of these parameters were evaluated by computer-aided statistical experimental design. According to the results, GHSV was the most dominant parameter in the oxidation of n-butyl acetate. Decreasing GHSV and increasing temperature increased the conversion of n-butyl acetate. The interaction effect of GHSV and temperature was more significant than the effect of concentration. Both of these affected the reaction by increasing the conversion of n-butyl acetate. Moisture had only a minor decreasing effect on the conversion, but it also decreased slightly the formation of by products. Ageing did not change the significance order of the above-mentioned parameters, however, the effects of individual parameters increased slightly as a function of ageing. PMID:18584032
Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems
NASA Technical Reports Server (NTRS)
Mwara, Kamwana N.
2015-01-01
Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.
Biologically tunable reactivity of energetic nanomaterials using protein cages.
Slocik, Joseph M; Crouse, Christopher A; Spowart, Jonathan E; Naik, Rajesh R
2013-06-12
The performance of aluminum nanomaterial based energetic formulations is dependent on the mass transport, diffusion distance, and stability of reactive components. Here we use a biologically inspired approach to direct the assembly of oxidizer loaded protein cages onto the surface of aluminum nanoparticles to improve reaction kinetics by reducing the diffusion distance between the reactants. Ferritin protein cages were loaded with ammonium perchlorate (AP) or iron oxide and assembled with nAl to create an oxidation-reduction based energetic reaction and the first demonstration of a nanoscale biobased thermite material. Both materials showed enhanced exothermic behavior in comparison to nanothermite mixtures of bulk free AP or synthesized iron oxide nanopowders prepared without the use of ferritin. In addition, by utilizing a layer-by-layer (LbL) process to build multiple layers of protein cages containing iron oxide and iron oxide/AP on nAl, stoichiometric conditions and energetic performance can be optimized.
IRON OPTIMIZATION FOR FENTON-DRIVEN OXIDATION OF MTBE-SPENT GRANULAR ACTIVATED CARBON
Fenton-driven chemical regeneration of granular activated carbon (GAC) is accomplished through the addition of H2O2 and iron (Fe) to spent GAC. The overall objective of this treatment process is to transform target contaminants into less toxic byproducts, re-establish the sorpti...
Electrochemical removal of carbamazepine in water with Ti/PbO2 cylindrical mesh anode.
García-Espinoza, J D; Gortáres-Moroyoqui, P; Orta-Ledesma, M T; Drogui, P; Mijaylova-Nacheva, P
2016-01-01
Carbamazepine (CBZ) is one of the most frequently detected organic compounds in the aquatic environment. Due to its bio-persistence and toxicity for humans and the environment its removal has become an important issue. The performance of the electrochemical oxidation process and in situ production of reactive oxygen species (ROS), such as O3 and H2O2, for CBZ removal have been studied using Ti/PbO2 cylindrical mesh anode in the presence of Na2SO4 as supporting electrolyte in a batch electrochemical reactor. In this integrated process, direct oxidation at anode and indirect oxidation by in situ electrogenerated ROS can occur simultaneously. The effect of several factors such as electrolysis time, current intensity, initial pH and oxygen flux was investigated by means of an experimental design methodology, using a 2(4) factorial matrix. CBZ removal of 83.93% was obtained and the most influential parameters turned out to be electrolysis time, current intensity and oxygen flux. Later, the optimal experimental values for CBZ degradation were obtained by means of a central composite design. The best operating conditions, analyzed by Design Expert(®) software, are the following: 110 min of electrolysis at 3.0 A, pH = 7.05 and 2.8 L O2/min. Under these optimal conditions, the model prediction (82.44%) fits very well with the experimental response (83.90 ± 0.8%). Furthermore, chemical oxygen demand decrease was quantified. Our results illustrated significant removal efficiency for the CBZ in optimized condition with second order kinetic reaction.
Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.
Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio
2016-06-08
Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS). However, solution-processed display-relevant indium-gallium-tin-oxide (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.
Treatment of hazardous waste landfill leachate using Fenton oxidation process
NASA Astrophysics Data System (ADS)
Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei
2018-03-01
The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.
An atmosphere protection subsystem in the thermal power station automated process control system
NASA Astrophysics Data System (ADS)
Parchevskii, V. M.; Kislov, E. A.
2014-03-01
Matters concerned with development of methodical and mathematical support for an atmosphere protection subsystem in the thermal power station automated process control system are considered taking as an example the problem of controlling nitrogen oxide emissions at a gas-and-oil-fired thermal power station. The combined environmental-and-economic characteristics of boilers, which correlate the costs for suppressing emissions with the boiler steam load and mass discharge of nitrogen oxides in analytic form, are used as the main tool for optimal control. A procedure for constructing and applying environmental-and-economic characteristics on the basis of technical facilities available in modern instrumentation and control systems is presented.
H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: A DFT study
NASA Astrophysics Data System (ADS)
Lin, Changfeng; Qin, Wu; Dong, Changqing
2016-11-01
Reduction of iron based desulfurizer occurs during hot gas desulfurization process, which will affect the interaction between H2S and the desulfurizer surface. In this work, a detailed adsorption behavior and dissociation mechanism of H2S on the perfect and reduced α-Fe2O3(001) surfaces, as well as the correlation between the interaction characteristic and reduction degree of iron oxide, have been studied by using periodic density functional theory (DFT) calculations. Results demonstrate that H2S firstly chemisorbs on surface at relatively higher oxidation state (reduction degree χ < 33%), then dissociative adsorption occurs and becomes the main adsorption type after χ > 33%. Reduction of iron oxide benefits the H2S adsorption. Further, dissociation processes of H2S via molecular and dissociative adsorption were investigated. Results show that after reduction of Fe2O3 into the oxidation state around FeO and Fe, the reduced surface exhibits very strong catalytic capacity for H2S decomposition into S species. Meanwhile, the overall dissociation process on all surfaces is exothermic. These results provide a fundamental understanding of reduction effect of iron oxide on the interaction mechanism between H2S and desulfurizer surface, and indicate that rational control of reduction degree of desulfurizer is essential for optimizing the hot gas desulfurization process.
Li, Jiuyi; Zhao, Lei; Qin, Lele; Tian, Xiujun; Wang, Aimin; Zhou, Yanmei; Meng, Liao; Chen, Yong
2016-03-01
Removal of the refractory organic matters in leachate brines generated from nanofiltration unit in two full-scale municipal solid waste landfill leachate treatment plants was investigated by Fenton oxidative-coagulation and ultraviolet photo - Fenton processes in this study. Fenton oxidative-coagulation was performed under the condition of an initial pH of 5.0 and low H2O2/Fe(2+) ratios. After precipitate separation, the remaining organic constituents were further oxidized by photo - Fenton process. For both leachate brines with varying pollution strength, more than 90% COD and TOC reductions were achieved at H2O2/Fe(2+) dosages of 35 mM/8 mM and 90 mM/10 mM, respectively. The effluent COD ranged 120-160 mg/L under the optimal operating conditions, and the biodegradability was increased significantly. Fenton oxidative-coagulation was demonstrated to contribute nearly 70% overall removal of organic matters. In the combined processes, the efficiency of hydrogen peroxide varied from 216 to 228%, which may significantly reduce the operating cost of conventional Fenton method. Six phthalic acid esters and thirteen polycyclic aromatic hydrocarbons were found in leachate brines, and, on the average, around 80% phthalic acid esters and 90% polycyclic aromatic hydrocarbons were removed by the combined treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Shaoqi; Feng, Xinbin
2017-01-01
In this paper, a statistically-based experimental design with response surface methodology (RSM) was employed to examine the effects of functional conditions on the photoelectrocatalytic oxidation of landfill leachate using a Cu/N co-doped TiO2 (Ti) electrode. The experimental design method was applied to response surface modeling and the optimization of the operational parameters of the photoelectro-catalytic degradation of landfill leachate using TiO2 as a photo-anode. The variables considered were the initial chemical oxygen demand (COD) concentration, pH and the potential bias. Two dependent parameters were either directly measured or calculated as responses: chemical oxygen demand (COD) removal and total organic carbon (TOC) removal. The results of this investigation reveal that the optimum conditions are an initial pH of 10.0, 4377.98mgL-1 initial COD concentration and 25.0 V of potential bias. The model predictions and the test data were in satisfactory agreement. COD and TOC removals of 67% and 82.5%, respectively, were demonstrated. Under the optimal conditions, GC/MS showed 73 organic micro-pollutants in the raw landfill leachate which included hydrocarbons, aromatic compounds and esters. After the landfill leachate treatment processes, 38 organic micro-pollutants disappeared completely in the photoelectrocatalytic process. PMID:28671943
NASA Astrophysics Data System (ADS)
Ji, Ying-xue; Wang, Feng-he; Duan, Lun-chao; Zhang, Fan; Gong, Xue-dong
2013-11-01
The effect of temperature on the adsorption of sulfanilamide (SA) onto aluminum oxide was researched through batch adsorption experiments, and was then simulated using the molecular dynamics (MD) method. The results show that SA can be adsorbed effectively by the adsorbent of aluminum oxide due to their interactions between SA molecule and the surface of aluminum oxide crystal, and temperature is a key factor which influences the adsorption efficiency obviously. The removal ratio of SA at 298 K is the highest among the selected temperatures (293 K, 298 K, 303 K). MD simulations revealed the interactions between SA molecules and (0 1 2) surface of aluminum oxide crystal at molecular level. The SA molecule has clung to the (0 1 2) face of aluminum oxide crystal, and its structure is deformed during its combining process with the surface. Both binding energies (Eb) and deformation energies (ΔEdeform) in the SA-aluminum oxide system follow the same order as: SA-Al2O3 (298 K) > SA-Al2O3 (293 K) > SA-Al2O3 (303 K). Their deformation energies are far less than their non-bonding energies. Analysis of radial distribution functions (RDFs) indicates that SA can be adsorbed effectively by aluminum oxide crystal mainly through non-bond interactions. The simulation results agree well with the experimental results, which verify the rationality and reliability of the MD simulation. The further MD simulations provide theoretically optimal temperature (301 K) for the adsorption of SA onto aluminum oxide. The molecular dynamics simulation will be useful for better understanding the adsorption mechanism of antibiotics onto metal oxides, which will also be helpful for optimizing experimental conditions to improve the adsorptive removal efficiency of antibiotics.
Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics
NASA Astrophysics Data System (ADS)
Kyoung, Sinsu; Hong, Young-sung; Lee, Myung-hwan; Nam, Tae-jin
2018-02-01
In order to enhance specific on-resistance (Ron,sp), the trench gate structure was also introduced into 4H-SiC MOSFET as Si MOSFET. But the 4H-SiC trench gate has worse off-state characteristics than the Si trench gate due to the incomplete gate oxidation process (Šimonka et al., 2017). In order to overcome this problem, P-shielding trench gate MOSFET (TMOS) was proposed and researched in previous studies. But P-shielding has to be designed with minimum design rule in order to protect gate oxide effectively. P-shielding TMOS also has the drawback of on-state characteristics degradation corresponding to off state improvement for minimum design rule. Therefore optimized design is needed to satisfy both on and off characteristics. In this paper, the design parameters were analyzed and optimized so that the 4H-SiC P-shielding TMOS satisfies both on and off characteristics. Design limitations were proposed such that P-shielding is able to defend the gate oxide. The P-shielding layer should have the proper junction depth and concentration to defend the electric field to gate oxide during the off-state. However, overmuch P-shielding junction depth disturbs the on-state current flow, a problem which can be solved by increasing the trench depth. As trench depth increases, however, the breakdown voltage decreases. Therefore, trench depth should be designed with due consideration for on-off characteristics. For this, design conditions and modeling were proposed which allow P-shielding to operate without degradation of on-state characteristics. Based on this proposed model, the 1200 V 4H-SiC P-shielding trench gate MOSFET was designed and optimized.
NASA Astrophysics Data System (ADS)
Reinitz, Steven D.
Ultra-high molecular weight polyethylene (UHMWPE) remains the most common bearing material for total joint arthroplasty. Advances in radiation cross-linking and other post-consolidation treatments have led to a rapid differentiation of polyethylene products on the market, with more than twenty unique materials currently being sold by the five largest orthopaedic manufacturers alone. Through oxidation, cross-link density, and free radical measurements, this work demonstrates for the first time that in vivo material degradation is occurring in cross-linked UHMWPE materials. Based on the rate of the reaction in certain materials, it is concluded that oxidative degradation may compromise the mechanical properties of the bearings in as few as ten years, potentially leading to early clinical failure of the devices. Using the knowledge gained from this work as well as previously published observations about UHMWPE oxidation, a two-mechanism model of oxidation is proposed that offers an explanation for the observed in vivo changes. From this model it is concluded that oxidative degradation is in part the result of in vivo chemical species. The two-mechanism model of oxidation suggests that different processing techniques for UHMWPE may reduce the risk of oxidative degradation. It is concluded that by avoiding any radiation cross-linking step, Equal Channel Angular Processing (ECAP) can produce UHMWPE materials with a reduced risk for in vivo oxidation while at the same time offering superior mechanical properties compared to commercially available UHMWPE materials, as well as similar wear behavior. Using dynamic mechanical analysis, the entanglement density in ECAP materials is quantified, and is related back to the ECAP processing parameters. The relationship between entanglement density and resultant material properties is established. The results will allow informed processing parameter selection for producing optimized materials for orthopaedics and other applications.
NASA Astrophysics Data System (ADS)
Vignesh, S.; Dinesh Babu, P.; Surya, G.; Dinesh, S.; Marimuthu, P.
2018-02-01
The ultimate goal of all production entities is to select the process parameters that would be of maximum strength, minimum wear and friction. The friction and wear are serious problems in most of the industries which are influenced by the working set of parameters, oxidation characteristics and mechanism involved in formation of wear. The experimental input parameters such as sliding distance, applied load, and temperature are utilized in finding out the optimized solution for achieving the desired output responses such as coefficient of friction, wear rate, and volume loss. The optimization is performed with the help of a novel method, Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based on an evolutionary algorithm. The regression equations obtained using Response Surface Methodology (RSM) are used in determining the optimum process parameters. Further, the results achieved through desirability approach in RSM are compared with that of the optimized solution obtained through NSGA-II. The results conclude that proposed evolutionary technique is much effective and faster than the desirability approach.
NASA Astrophysics Data System (ADS)
vellaichamy, Lakshmanan; Paulraj, Sathiya
2018-02-01
The dissimilar welding of Incoloy 800HT and P91 steel using Gas Tungsten arc welding process (GTAW) This material is being used in the Nuclear Power Plant and Aerospace Industry based application because Incoloy 800HT possess good corrosion and oxidation resistance and P91 possess high temperature strength and creep resistance. This work discusses on multi-objective optimization using gray relational analysis (GRA) using 9CrMoV-N filler materials. The experiment conducted L9 orthogonal array. The input parameter are current, voltage, speed. The output response are Tensile strength, Hardness and Toughness. To optimize the input parameter and multiple output variable by using GRA. The optimal parameter is combination was determined as A2B1C1 so given input parameter welding current at 120 A, voltage at 16 V and welding speed at 0.94 mm/s. The output of the mechanical properties for best and least grey relational grade was validated by the metallurgical characteristics.
Salari, Marjan; Rakhshandehroo, Gholam Reza; Nikoo, Mohammad Reza
2018-09-01
The main purpose of this experimental study was to optimize Homogeneous Fenton oxidation (HFO) and identification of oxidized by-products from degradation of Ciprofloxacin (CIP) using hybrid AHP-PROMETHEE, Response Surface Methodology (RSM) and High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MS). At the first step, an assessment was made for performances of two catalysts (FeSO 4 ·7H 2 O and FeCl 2 ·4H 2 O) based on hybrid AHP-PROMETHEE decision making method. Then, RSM was utilized to examine and optimize the influence of different variables including initial CIP concentration, Fe 2+ concentration, [H 2 O 2 ]/[ Fe 2+ ] mole ratio and initial pH as independent variables on CIP removal, COD removal, and sludge to iron (SIR) as the response functions in a reaction time of 25 min. Weights of the mentioned responses as well as cost criteria were determined by AHP model based on pairwise comparison and then used as inputs to PROMETHEE method to develop hybrid AHP-PROMETHEE. Based on net flow results of this hybrid model, FeCl 2 ·4H 2 O was more efficient because of its less environmental stability as well as lower SIR production. Then, optimization of experiments using Central Composite Design (CCD) under RSM was performed with the FeCl 2 ·4H 2 O catalyst. Biodegradability of wastewater was determined in terms of BOD 5 /COD ratio, showing that HFO process is able to improve wastewater biodegradability from zero to 0.42. Finally, the main intermediaries of degradation and degradation pathways of CIP were investigated with (HPLC-MS). Major degradation pathways from hydroxylation of both piperazine and quinolonic rings, oxidation and cleavage of the piperazine ring, and defluorination (OH/F substitution) were suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Genmao; Duan, Lian; Zhao, Yunlong; Zhang, Yunge; Dong, Guifang; Zhang, Deqiang; Qiu, Yong
2016-11-01
Thin-film transistors (TFTs) with high mobility and good uniformity are attractive for next-generation flat panel displays. In this work, solution-processed polycrystalline zinc tin oxide (ZTO) thin film with well-ordered microstructure is prepared, thanks to the synergistic effect of water addition and step heating. The step heating treatment other than direct annealing induces crystallization, while adequate water added to precursor solution further facilitates alloying and densification process. The optimal polycrystalline ZTO film is free of hierarchical sublayers, and featured with an increased amount of ternary phases, as well as a decreased fraction of oxygen vacancies and hydroxides. TFT devices based on such an active layer exhibit a remarkable field-effect mobility of 52.5 cm2 V-1 s-1, a current on/off ratio of 2 × 105, a threshold voltage of 2.32 V, and a subthreshold swing of 0.36 V dec-1. Our work offers a facile method towards high-performance solution-processed polycrystalline metal oxide TFTs.
Influence of surface defects on the tensile strength of carbon fibers
NASA Astrophysics Data System (ADS)
Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.
2014-12-01
The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.
Dominguez, Carmen M; Oturan, Nihal; Romero, Arturo; Santos, Aurora; Oturan, Mehmet A
2018-05-15
This study focuses on the effect of electrode materials on abatement of lindane (an organochlorine pesticide) by electrooxidation process. Comparative performances of different anodic (platinum (Pt), dimensionally stable anode (DSA) and boron-doped diamond (BDD)) and cathodic (carbon sponge (CS), carbon felt (CF) and stainless steel (SS)) materials on lindane electrooxidation and mineralization were investigated. Special attention was paid to determine the role of chlorine active species during the electrooxidation process. The results showed that better performances were obtained when using a BDD anode and CF cathode cell. The influence of the current density was assessed to optimize the oxidation of lindane and the mineralization of its aqueous solution. A quick (10 min) and complete oxidation of 10 mg L -1 lindane solution and relatively high mineralization degree (80% TOC removal) at 4 h electrolysis were achieved at 8.33 mA cm -2 current density. Lindane was quickly oxidized by in-situ generated hydroxyl radicals, (M( • OH)), formed from oxidation of water on the anode (M) surface following pseudo first-order reaction kinetics. Formation of chlorinated and hydroxylated intermediates and carboxylic acids during the treatment were identified and a plausible mineralization pathway of lindane by hydroxyl radicals was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation
Wang, Yiran; He, Qingliang; Wei, Huige; Guo, Jiang; Ding, Keqiang; Wang, Qiang; Wang, Zhe; Wei, Suying; Guo, Zhanhu
2017-01-01
The operating conditions such as composition of electrolyte and temperature can greatly influence the formic acid (HCOOH) oxidation reaction (FAOR). Palladium decorated multi-walled carbon nanotubes (Pd/MWNTs) were successfully synthesized and employed as nanocatalysts to explore the effects of formic acid, sulfuric acid (H2SO4) concentration and temperature on FAOR. Both the hydrogen adsorption in low potential range and the oxidation of poisoning species during the high potential range in cyclic voltammetry were demonstrated to contribute to the enhanced electroactivity of Pd/MWNTs. The as-synthesized Pd/MWNTs gave the best performance under a condition with balanced adsorptions of HCOOH and H2SO4 molecules. The dominant dehydrogenation pathway on Pd/MWNTs can be largely depressed by the increased dehydration pathway, leading to an increased charge transfer resistance (Rct). Increasing HCOOH concentration could directly increase the dehydration process proportion and cause the production of COads species. H2SO4 as donor of H+ greatly facilitated the onset oxidation of HCOOH in the beginning process but it largely depressed the HCOOH oxidation with excess amount of H+. Enhanced ion mobility with increasing the temperature was mainly responsible for the increased current densities, improved tolerance stabilities and reduced Rct values, while dehydration process was also increased simultaneously. PMID:29622817
Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili
2016-04-15
This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe(2+)/H2O2) and UV/H2O2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H2O2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H2O2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe(2+)/H2O2 had a molar ratio of 0.1 and a H2O2 concentration of 0.01molL(-1) with a pH of 3.0 and reaction time of 2h, 2.58-3.79 logs of target genes were removed. Under the initial effluent pH condition (pH=7.0), the removal was 2.26-3.35 logs. For the UV/H2O2 process, when the pH was 3.5 with a H2O2 concentration of 0.01molL(-1) accompanied by 30min of UV irradiation, all ARGs could achieve a reduction of 2.8-3.5 logs, and 1.55-2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H2O2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe(2+)/H2O2 molar ratios, H2O2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. Copyright © 2016 Elsevier B.V. All rights reserved.
Mortadi, A; El Melouky, A; Chahid, E; Nasrellah, H; Bakasse, M; Zradba, A; Cherkaoui, O; El Moznine, R
2018-01-01
Analyses of rheological properties and electrical conductivity (σ dc ) at direct current have been employed in order to investigate the effects of calcium oxide on the coagulation process during sludge treatment in the textile industry. In this context, rheological and electrical measurements were performed on five samples - one that contained raw sludge and the other four that were prepared from the raw sludge and different amounts of calcium oxide: 2, 3, 4, 5% (w/w). Rheological behavior of these samples was analyzed using the Herschel-Bulkley modified model. The influence of calcium oxide content on the rheological parameters such as infinite viscosity, the yield stress, the consistency coefficient, and the consistency index, are presented and discussed. The impact of the calcium oxide content on pH and conductivity were also examined. Similar behaviors have been seen in the evolution of conductivity and infinite viscosity as a function of the calcium oxide content. These latter characteristics were modeled by an equation using two power laws. This equation was able to fit very well the evolution of electrical conductivity and also the viscosity versus the percentage of calcium oxide to predict the optimal amount of calcium oxide (3%) to achieve the coagulation step during sludge treatment.
Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock.
Mello, Paola de A; Duarte, Fábio A; Nunes, Matheus A G; Alencar, Mauricio S; Moreira, Elizabeth M; Korn, Mauro; Dressler, Valderi L; Flores, Erico M M
2009-08-01
A procedure using ultrasonic irradiation is proposed for sulfur removal of a petroleum product feedstock. The procedure involves the combination of a peroxyacid and ultrasound-assisted treatment in order to comply with the required sulfur content recommended by the current regulations for fuels. The ultrasound-assisted oxidative desulfurization (UAOD) process was applied to a petroleum product feedstock using dibenzothiophene as a model sulfur compound. The influence of ultrasonic irradiation time, oxidizing reagents amount, kind of solvent for the extraction step and kind of organic acid were investigated. The use of ultrasonic irradiation allowed higher efficiency for sulfur removal in comparison to experiments performed without its application, under the same reactional conditions. Using the optimized conditions for UAOD, the sulfur removal was about 95% after 9min of ultrasonic irradiation (20kHz, 750W, run at 40%), using hydrogen peroxide and acetic acid, followed by extraction with methanol.
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian
2017-01-01
Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.
Application of Fenton oxidation to cosmetic wastewaters treatment.
Bautista, P; Mohedano, A F; Gilarranz, M A; Casas, J A; Rodriguez, J J
2007-05-08
The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.
Giannakis, Stefanos; Jovic, Milica; Gasilova, Natalia; Pastor Gelabert, Miquel; Schindelholz, Simon; Furbringer, Jean-Marie; Girault, Hubert; Pulgarin, César
2017-06-15
In this work, an Iodinated Contrast Medium (ICM), Iohexol, was subjected to treatment by 3 Advanced Oxidation Processes (AOPs) (UV, UV/H 2 O 2 , UV/H 2 O 2 /Fe 2+ ). Water, wastewater and urine were spiked with Iohexol, in order to investigate the treatment efficiency of AOPs. A tri-level approach has been deployed to assess the UV-based AOPs efficacy. The treatment was heavily influenced by the UV transmittance and the organics content of the matrix, as dilution and acidification improved the degradation but iron/H 2 O 2 increase only moderately. Furthermore, optimization of the treatment conditions, as well as modeling of the degradation was performed, by step-wise constructed quadratic or product models, and determination of the optimal operational regions was achieved through desirability functions. Finally, global chemical parameters (COD, TOC and UV-Vis absorbance) were followed in parallel with specific analyses to elucidate the degradation process of Iohexol by UV-based AOPs. Through HPLC/MS analysis the degradation pathway and the effects the operational parameters were monitored, thus attributing the pathways the respective modifications. The addition of iron in the UV/H 2 O 2 process inflicted additional pathways beneficial for both Iohexol and organics removal from the matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oxidation-induced contraction and strengthening of boron fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Wagner, T. C.
1981-01-01
An investigation of the physical and mechanical effects of thermal treatment in a controlled oxygen-argon atmosphere on boron fibers is reported, with attention to the optimization of such treatment as a secondary processing method for improvement of fiber strength. The strengthening mechanism is comprised of an oxidation-induced axial contraction of the fiber, accompanied by axial compression of strength-limiting flaws within the fiber's tungsten boride core. It was found that after an oxidation contraction of 0.3% near 900 C, and a slight surface etch near 100 C, the average tensile strength of 203-micron fibers increased from 500 to 800 ksi. Various physical observations are used to develop mechanistic models of oxidation, contraction, and the formation of new flaws in the boron sheath at contractions greater than 0.3%.
Kloust, Hauke; Schmidtke, Christian; Feld, Artur; Schotten, Theo; Eggers, Robin; Fittschen, Ursula E A; Schulz, Florian; Pöselt, Elmar; Ostermann, Johannes; Bastús, Neus G; Weller, Horst
2013-04-16
Herein we demonstrate that seeded emulsion polymerization is a powerful tool to produce multiply functionalized PEO coated iron oxide nanocrystals. Advantageously, by simple addition of functional surfactants, functional monomers, or functional polymerizable linkers-solely or in combinations thereof-during the seeded emulsion polymerization process, a broad range of in situ functionalized polymer-coated iron oxide nanocrystals were obtained. This was demonstrated by purposeful modulation of the zeta potential of encapsulated iron oxide nanocrystals and conjugation of a dyestuff. Successful functionalization was unequivocally proven by TXRF. Furthermore, the spatial position of the functional groups can be controlled by choosing the appropriate spacers. In conclusion, this methodology is highly amenable for combinatorial strategies and will spur rapid expedited synthesis and purposeful optimization of a broad scope of nanocrystals.
Du, Yangyang; Cai, Hongkun; Wen, Hongbin; Wu, Yuxiang; Huang, Like; Ni, Jian; Li, Juan; Zhang, Jianjun
2016-05-25
In this work, a facile and low temperature processed anodic oxidation approach is proposed for fabricating compact and homogeneous titanium dioxide film (AO-TiO2). In order to realize morphology and thickness control of AO-TiO2, the theory concerning anodic oxidation (AO) is unveiled and the influence of relevant parameters during the process of AO such as electrolyte ingredient and oxidation voltage on AO-TiO2 formation is observed as well. Meanwhile, we demonstrate that the planar perovskite solar cells (p-PSCs) fabricated in ambient air and utilizing optimized AO-TiO2 as electron transport layer (ETL) can deliver repeatable power conversion efficiency (PCE) over 13%, which possess superior open-circuit voltage (Voc) and higher fill factor (FF) compared to its counterpart utilizing conventional high temperature processed compact TiO2 (c-TiO2) as ETL. Through a further comparative study, it is indicated that the improvement of device performance should be attributed to more effective electron collection from perovskite layer to AO-TiO2 and the decrease of device series resistance. Furthermore, hysteresis effect about current density-voltage (J-V) curves in TiO2-based p-PSCs is also unveiled.
Mortadi, A; Chahid, El G; Nasrellah, H; Cherkaoui, O; El Moznine, R
2017-09-28
The analysis of the complex permittivity, electrical complex modulus and the hopping conductivity have been employed in order to investigate the impacts of calcium oxide during sludge treatment in textile such as coagulation process. In this context, impedance measurement was performed on five samples, including raw sludge and four compositions containing different amounts of calcium oxide: 2%, 3%, 4% and 5% (w/w). The dielectric spectra of each composition were described by the summation of a power law and a Cole-Cole relaxation model. The relaxation time and the magnitude of the dielectric relaxation obtained from the analysis of dielectric properties showed an increase up to 3% of these parameters with the addition of calcium oxide. Above this critical value, both parameters showed a very small change, suggesting that the aggregation became more stable. In addition, the evolution of the hopping conductivity reached a minimum value at this critical amount (3%). This evolution was well described by a double power law, which allowed us to estimate the optimal amount of the calcium oxide to achieve coagulation process. The analysis of the dielectric properties was found useful in monitoring aggregation processes that occur during the coagulation mechanism in textile sludge.
Oxygen scrubbing and sensing in plant growth chambers using solid oxide electrolyzers
NASA Technical Reports Server (NTRS)
Sridhar, K. R.; MacElroy, Robert D.
1997-01-01
The maintenance of optimal levels of oxygen in the gaseous environment of a plant growth chamber during light and dark periods is an essential criterion for the correct growth of plants. The use of solid oxide electrolyzers to control the oxygen levels by removing the excess gaseous oxygen during periods of illumination and full-scale photosynthesis is described. A part of the oxygen removed can be stored and supplied back to the plants during dark periods. The excess oxygen can be used by the crew. The electrolizer can be additionally used in its open circuit mode, to sense the oxygen concentrations in the plant chamber. The solid oxide electrolysis process is described.
NASA Astrophysics Data System (ADS)
Porwal, Harshit; Tatarko, Peter; Grasso, Salvatore; Hu, Chunfeng; Boccaccini, Aldo R.; Dlouhý, Ivo; Reece, Mike J.
2013-10-01
The processing conditions for preparing well dispersed silica-graphene nanoplatelets and silica-graphene oxide nanoplatelets (GONP) composites were optimized using powder and colloidal processing routes. Fully dense silica-GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering. The GONP aligned perpendicularly to the applied pressure during sintering. The fracture toughness of the composites increased linearly with increasing concentration of GONP and reached a value of ˜0.9 MPa m1/2 for 2.5 vol% loading. Various toughening mechanisms including GONP necking, GONP pull-out, crack bridging, crack deflection and crack branching were observed. GONP decreased the hardness and brittleness index (BI) of the composites by ˜30 and ˜50% respectively. The decrease in BI makes silica-GONP composites machinable compared to pure silica. When compared to silica-Carbon nanotube composites, silica-GONP composites show better process-ability and enhanced mechanical properties.
Porwal, Harshit; Tatarko, Peter; Grasso, Salvatore; Hu, Chunfeng; Boccaccini, Aldo R; Dlouhý, Ivo; Reece, Mike J
2013-01-01
The processing conditions for preparing well dispersed silica–graphene nanoplatelets and silica–graphene oxide nanoplatelets (GONP) composites were optimized using powder and colloidal processing routes. Fully dense silica–GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering. The GONP aligned perpendicularly to the applied pressure during sintering. The fracture toughness of the composites increased linearly with increasing concentration of GONP and reached a value of ∼0.9 MPa m1/2 for 2.5 vol% loading. Various toughening mechanisms including GONP necking, GONP pull-out, crack bridging, crack deflection and crack branching were observed. GONP decreased the hardness and brittleness index (BI) of the composites by ∼30 and ∼50% respectively. The decrease in BI makes silica–GONP composites machinable compared to pure silica. When compared to silica–Carbon nanotube composites, silica–GONP composites show better process-ability and enhanced mechanical properties. PMID:27877614
Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 2: Reduction Studies
NASA Astrophysics Data System (ADS)
Elliott, R.; Coley, K.; Mostaghel, S.; Barati, M.
2018-02-01
Production of ultrahigh-manganese steels is expected to result in significant increase in demand for low-carbon (LC) ferromanganese (FeMn) and silicomanganese (SiMn). Current manganese processing techniques are energy intensive and typically yield a high-carbon product. The present work therefore reviews available literature regarding carbothermic reduction of Mn oxides and ores, with the objective of identifying opportunities for future process development to mitigate the cost of LC FeMn and SiMn. In general, there is consensus that carbothermic reduction of Mn oxides and ores is limited by gasification of carbon. Conditions which enhance or bypass this step (e.g., by application of CH4) show higher rates of reduction at lower temperatures. This phenomenon has potential application in solid-state reduction of Mn ore. Other avenues for process development include optimization of the prereduction step in conventional FeMn production and metallothermic reduction as a secondary reduction step.
Ozgur, Cihan; Coskun, Sezen; Akcil, Ata; Beyhan, Mehmet; Üncü, Ismail Serkan; Civelekoglu, Gokhan
2016-11-01
In this paper, oxidative leaching and electrowinnig processes were performed to recovery of mercury from spent tubular fluorescent lamps. Hypochlorite was found to be effectively used for the leaching of mercury to the solution. Mercury could be leached with an efficiency of 96% using 0.5M/0.2M NaOCl/NaCl reagents at 50°C and pH 7.5 for 2-h. Electrowinning process was conducted on the filtered leaching solutions and over the 81% of mercury was recovered at the graphite electrode using citric acid as a reducing agent. The optimal process conditions were observed as a 6A current intensity, 30g/L of reducing agent concentration, 120min. electrolysis time and pH of 7 at the room temperature. It was found that current intensity and citric acid amount had positive effect for mercury reduction. Recovery of mercury in its elemental form was confirmed by SEM/EDX. Oxidative leaching with NaOCl/NaCl reagent was followed by electrowinning process can be effectively used for the recovery of mercury from spent fluorescent lamps. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tungsten oxide--fly ash oxide composites in adsorption and photocatalysis.
Visa, Maria; Bogatu, Cristina; Duta, Anca
2015-05-30
A novel composite based on tungsten oxide and fly ash was hydrothermally synthetized to be used as substrate in the advanced treatment of wastewaters with complex load resulted from the textile industry. The proposed treatment consists of one single step process combining photocatalysis and adsorption. The composite's crystalline structure was investigated by X-ray diffraction and FTIR, while atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to analyze the morphology. The adsorption capacity and photocatalytic properties of the material were tested on mono- and multi-pollutants systems containing two dyes (Bemacid Blau - BB and Bemacid Rot - BR) and one heavy metal ion-Cu(2+), and the optimized process conditions were identified. The results indicate better removal efficiencies using the novel composite material in the combined adsorption and photocatalysis, as compared to the separated processes. Dyes removal was significantly enhanced in the photocatalytic process by adding hydrogen peroxide and the mechanism was presented and discussed. The pseudo second order kinetics model best fitted the experimental data, both in the adsorption and in the combined processes. The kinetic parameters were calculated and correlated with the properties of the composite substrate. Copyright © 2015 Elsevier B.V. All rights reserved.
18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.
Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong
2016-05-11
We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.
Feng, Xianchao; Li, Chenyi; Jia, Xu; Guo, Yan; Lei, Na; Hackman, Robert M; Chen, Lin; Zhou, Guanghong
2016-06-01
The influence of NaNO2 content on protein oxidation and nitrosation was investigated in cooked sausages at different concentrations (0, 50, 100, 200 and 400 mg NaNO2/kg). Dependent on concentration, NaNO2 had both anti- and pro-oxidant effects on protein oxidation. The antioxidant effects of NaNO2 on the protein oxidation were evidenced by significantly lower carbonyl contents, higher free amines and lower surface hydrophobicities. The pro-oxidant effects of NaNO2 on protein oxidation resulted in a decrease of sulfhydryls and an increase of disulfide bonds. NaNO2 also improved the protein nitrosation inducing the formation of 3-nitrotyrosine (3-NT). Moreover, 3-NT had significant correlations with parameters of protein oxidation, indicating that 3-NT may be a possible marker for protein oxidation. Results of this study contribute to an understanding of the impact of NaNO2 on food quality and help to identify optimal formulations of cured meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Braun, Robert Joseph
The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell-stack sizing and operating strategy (base-load or load-following and cogeneration or electric-only) are also presented.
NASA Astrophysics Data System (ADS)
Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab
2015-02-01
A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface area nano-substrate which can be used for subsequent efficient bioconjugation applications.
2014-05-01
propagations CoCs Contaminants of concern GC Gas chromatography DNAPL Dense nonaqueous phase liquid ISCO In situ chemical oxidation HCA...used for the design and scale-up of air strippers, ion exchange systems, precipitation reactors , and many other treatment processes. Such treatability...studies provide definitive data on system dimensions and reagent dosages using linear or non -linear scale-up. Designing these processes without the
NASA Astrophysics Data System (ADS)
Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.
2017-08-01
The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.
NASA Astrophysics Data System (ADS)
Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng
2014-12-01
Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.
Bagal, Manisha V; Gogate, Parag R
2014-01-01
Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vogler, Marcel; Horiuchi, Michio; Bessler, Wolfgang G.
A detailed computational model of a direct-flame solid oxide fuel cell (DFFC) is presented. The DFFC is based on a fuel-rich methane-air flame stabilized on a flat-flame burner and coupled to a solid oxide fuel cell (SOFC). The model consists of an elementary kinetic description of the premixed methane-air flame, a stagnation-point flow description of the coupled heat and mass transport within the gas phase, an elementary kinetic description of the electrochemistry, as well as heat, mass and charge transport within the SOFC. Simulated current-voltage characteristics show excellent agreement with experimental data published earlier (Kronemayer et al., 2007 [10]). The model-based analysis of loss processes reveals that ohmic resistance in the current collection wires dominates polarization losses, while electronic loss currents in the mixed conducting electrolyte have only little influence on the polarized cell. The model was used to propose an optimized cell design. Based on this analysis, power densities of above 200 mW cm -2 can be expected.
David, Charles; Arivazhagan, M; Tuvakara, Fazaludeen
2015-11-01
In this study, laboratory scale experiments were performed to degrade highly concentrated organic matter in the form of color in the distillery spent wash through batch oxidative methods such as electrocoagulation (EC), electrofenton (EF) and Fenton process. The effect of corresponding operating parameters, namely initial pH: 2-10; current intensity: 1-5A; electrolysis time: 0.5-4h; agitation speed: 100-500rpm; inter-electrode distance: 0.5-4cm and Fenton's reagent dosage: 5-40mg/L was employed for optimizing the process of spent wash color removal. The performance of all the three processes was compared and assessed in terms of percentage color removal. For EC, 79% color removal was achieved using iron electrodes arranged with 0.5cm of inter-electrode space and at optimum conditions of pH 7, 5A current intensity, 300rpm agitation speed and in 2h of electrolysis time. In EF, 44% spent wash decolorization was observed using carbon (graphite) electrodes with an optimum conditions of 0.5cm inter-electrode distance, pH 3, 4A current intensity, 20mg/L FeSO4 and agitation speed of 400rpm for 3h of electrolysis time. By Fenton process, 66% decolorization was attained by Fenton process at optimized conditions of pH 3, 40mg/L of Fenton's reagent and at 500rpm of agitation speed for 4h of treatment time. Copyright © 2015 Elsevier Inc. All rights reserved.
Tian, Mingliang; Xu, Shengyong; Wang, Jinguo; Kumar, Nitesh; Wertz, Eric; Li, Qi; Campbell, Paul M; Chan, Moses H W; Mallouk, Thomas E
2005-04-01
A simple method for penetrating the barrier layer of an anodic aluminum oxide (AAO) film and for detaching the AAO film from residual Al foil was developed by reversing the bias voltage in situ after the anodization process is completed. With this technique, we have been able to obtain large pieces of free-standing AAO membranes with regular pore sizes of sub-10 nm. By combining Ar ion milling and wetting enhancement processes, Au nanowires were grown in the sub-10 nm pores of the AAO films. Further scaling down of the pore size and extension to the deposition of nanowires and nanotubes of materials other than Au should be possible by further optimizing this procedure.
Development of Pangasius steaks by improved sous-vide technology and its process optimization.
Kumari, Namita; Singh, Chongtham Baru; Kumar, Raushan; Martin Xavier, K A; Lekshmi, Manjusha; Venkateshwarlu, Gudipati; Balange, Amjad K
2016-11-01
The present study embarked on the objective of optimizing improved sous - vide processing condition for development of ready-to-cook Pangasius steaks with extended shelf-life using response surface methodology. For the development of improved sous - vide cooked product, Pangasius steaks were treated with additional hurdles in various combinations for optimization. Based on the study, suitable combination of chitosan and spices was selected which enhanced antimicrobial and oxidative stability of the product. The Box-Behnken experimental design with 15 trials per model was adopted for designing the experiment to know the effect of independent variables, namely chitosan concentration (X 1 ), cooking time (X 2 ) and cooking temperature (X 3 ) on dependent variable i.e. TBARS value (Y 1 ). From RSM generated model, the optimum condition for sous - vide processing of Pangasius steaks were 1.08% chitosan concentration, 70.93 °C of cooking temperature and 16.48 min for cooking time and predicted minimum value of multiple response optimal condition was Y = 0.855 mg MDA/Kg of fish. The high correlation coefficient (R 2 = 0.975) between the model and the experimental data showed that the model was able to efficiently predict processing condition for development of sous - vide processed Pangasius steaks. This research may help the processing industries and Pangasius fish farmer as it provides an alternative low cost technology for the proper utilization of Pangasius .
Wu, Ruiqin; Wu, Haobo; Jiang, Xinbai; Shen, Jinyou; Faheem, Muhammad; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; Wang, Lianjun; Liu, Xiaodong
2017-04-01
The secondary effluent from biological treatment process in chemical industrial plant often contains refractory organic matter, which deserves to be further treated in order to meet the increasingly stringent environmental regulations. In this study, the key role of biogenic manganese oxides (BioMnOx) in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater was investigated. BioMnOx production by acclimated manganese-oxidizing bacterium (MOB) consortium was confirmed through scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. Pseudomonas and Bacillus were found to be the most predominant species in acclimated MOB consortium. Mn 2+ could be oxidized optimally at neutral pH and initial Mn 2+ concentration below 33 mg L -1 . However, 1,2,4-triazole removal by BioMnOx produced occurred optimally at slightly acidic pH. High dosage of both Mn 2+ and 1,2,4-triazole resulted in decreased 1,2,4-triazole removal. In a biological aerated filter (BAF) coupled with manganese oxidation, 1,2,4-triazole and total organic carbon removal could be significantly enhanced compared to the control system without the participation of manganese oxidation, confirming the key role of BioMnOx in the removal of highly recalcitrant 1,2,4-triazole. This study demonstrated that the biosystem coupled with manganese oxidation had a potential for the removal of various recalcitrant contaminants from bio-treated chemical industrial wastewater.
Surface Modification of Porous Titanium Granules for Improving Bioactivity.
Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab
The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.
NASA Astrophysics Data System (ADS)
Rostuntsova, I. A.; Novichkov, S. V.; Zakharov, O. V.; Kochetkov, A. V.
2017-11-01
The analysis of the trial-industrial research of the effectiveness of burning water fuel mixtures in steam boilers of medium and high pressure at the combustion of natural gas and fuel oil is carried out. As a result of a research decrease in nitrogen oxide concentration is depending on the amount of moisture pumped to the boilers and type of the incinerated fuel. The theoretical model of the formation of nitrogen oxides in the furnace of the boiler in order to optimize the combustion process with the introduction of moisture, whereby to determine the concentrations of nitrogen oxides formed in the combustion process of the method of expansion of the exponential is received. The dependences of the maximal temperature of a torch, reaction rate of formation of nitrogen oxides, the conditional time of reaction, theoretical concentration of nitrogen oxides taking into account input of moisture in a fire chamber of a copper and coefficient of an exit of nitrogen oxides are defined at combustion of fuel taking into account moisture input. The divergence between the experimental and the theoretical value of the NOx concentration does not exceed 3.8%. The methodical provisions of the economic assessment of concentrations of pollutants reduction when entering the water are drafted. The rate the net present value (NPV) is applied. The optimal water-fuel ratio is selected based on the maximum value of the net present value (NPV). The evaluation of the application of environmental protection measures carried out taking into account the fact that by reducing the emission values in the implementation of this activity will decrease the amount of payment for emissions of polluting substances, which are collected from the profits of the enterprise. The cost estimate for the implementation of environmental activities carried out on the basis of lump-sum costs and current costs in environmental technology (increased fuel and water consumption).
Wachter, Naihara; Aquino, José M; Denadai, Marina; Barreiro, Juliana C; Silva, Adilson J; Cass, Quezia B; Rocha-Filho, Romeu C; Bocchi, Nerilso
2018-06-06
The electrochemical degradation of ciprofloxacin-CIP (50 mg L -1 in 0.10 mol L -1 Na 2 SO 4 ) was investigated using a double-sided Ti-Pt/β-PbO 2 anode in a filter-press flow reactor, with identification of oxidation intermediates and follow-up of antimicrobial activity against Escherichia coli. The effect of solution pH, flow rate, current density, and temperature on the CIP removal rate was evaluated. All of these parameters did affect the CIP removal performance; thus, optimized electrolysis conditions were further explored: pH = 10, q V = 6.5 L min -1 , j = 30 mA cm -2 , and θ = 25 °C. Therefore, CIP was removed within 2 h, whereas ~75% of the total organic carbon concentration (TOC) was removed after 5 h and then, the solution no longer presented antimicrobial activity. When the electrochemical degradation of CIP was investigated using a single-sided boron-doped diamond (BDD) anode, its performance in TOC removal was similar to that of the Ti-Pt/β-PbO 2 anode; considering the higher oxidation power of BDD, the surprisingly good comparative performance of the Ti-Pt/β-PbO 2 anode was ascribed to significantly better hydrodynamic conditions attained in the filter-press reactor used with this electrode. Five initial oxidation intermediates were identified by LC-MS/MS and completely removed after 4 h of electrolysis; since they have also been determined in other degradation processes, there must be similarities in the involved oxidation mechanisms. Five terminal oxidation intermediates (acetic, formic, oxamic, propionic, and succinic acids) were identified by LC-UV and all of them (except acetic acid) were removed after 10 h of electrolysis.
Metal oxide resistive random access memory based synaptic devices for brain-inspired computing
NASA Astrophysics Data System (ADS)
Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan
2016-04-01
The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.
Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process
NASA Astrophysics Data System (ADS)
Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.
2018-04-01
Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.
Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution
NASA Astrophysics Data System (ADS)
Nishimura, S.; Ogino, T.; Takemura, Y.; Shirakashi, J.
2008-03-01
Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution is investigated by optimizing the applied bias voltage (V), scanning speed (S) and the oscillation amplitude of the cantilever (A). We fabricated Si oxide wires with an average width of 9.8 nm (V = 17.5 V, S = 250 nm/s, A = 292 nm). In SPM local oxidation with tapping mode operation, it is possible to decrease the size of the water meniscus by enhancing the oscillation amplitude of cantilever. Hence, it seems that the water meniscus with sub-10 nm dimensions could be formed by precisely optimizing the oxidation conditions. Moreover, we quantitatively explain the size (width and height) of Si oxide wires with a model based on the oxidation ratio, which is defined as the oxidation time divided by the period of the cantilever oscillation. The model allows us to understand the mechanism of local oxidation in tapping mode operation with amplitude modulation. The results imply that the sub-10 nm resolution could be achieved using tapping mode SPM local oxidation technique with the optimization of the cantilever dynamics.
Eslami, Hadi; Ehrampoush, Mohammad Hassan; Esmaeili, Abbas; Ebrahimi, Ali Asghar; Salmani, Mohammad Hossein; Ghaneian, Mohammad Taghi; Falahzadeh, Hossein
2018-09-01
The efficiency of photocatalytic oxidation process in arsenite (As(III)) removal from contaminated water by a new Fe 2 O 3 -Mn 2 O 3 nanocomposite under UV A radiation was investigated. The effect of nanocomposite dosage, pH and initial As(III) concentration on the photocatalytic oxidation of As(III) were studied by experimental design. The synthesized nanocomposite had a uniform and spherical morphological structure and contained 49.83% of Fe 2 O 3 and 29.36% of Mn 2 O 3 . Based on the experimental design model, in photocatalytic oxidation process, the effect of pH was higher than other parameters. At nanocomposite concentrations of more than 12 mg L -1 , pH 4 to 6 and oxidation time of 30 min, photocatalytic oxidation efficiency was more than 95% for initial As(III) concentration of less than 500 μg L -1 . By decreasing pH and increasing the nanocomposite concentration, the photocatalytic oxidation efficiency was increased. Furthermore, by increasing the oxidation time from 10 to 240 min, in addition to oxidation of As(III) to arsenate (As(V)), the residual As(V) was adsorbed on the Fe 2 O 3 -Mn 2 O 3 nanocomposite and total As concentration was decreased. Therefore, Fe 2 O 3 -Mn 2 O 3 nanocomposite as a bimetal oxide, at low doses and short time, can enhance and improve the efficiency of the photocatalytic oxidation and adsorption of As(III) from contaminated water resources. Furthermore, the energy and material costs of the UV A /Fe 2 O 3 -Mn 2 O 3 system for photocatalytic oxidation of 1 mg L -1 As(III) in the 1 L laboratory scale reactor was 0.0051 €. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.
2016-02-01
A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.
NASA Astrophysics Data System (ADS)
Shen, Xinmin; Tu, Qunzhang; Deng, Hui; Jiang, Guoliang; Yamamura, Kazuya
2015-05-01
Reaction-sintered silicon carbide (RS-SiC), which is considered as a promising mirror material for space telescope systems, requires a high surface property. An ultrasmooth surface with a Ra surface roughness of 0.480 nm was obtained after water vapor plasma oxidation for 90 min followed by ceria slurry polishing for 40 min. The oxidation process of RS-SiC by water vapor plasma was analyzed based on the Deal-Grove model, and the theoretical calculation results are consistent with the measured data obtained by scanning white light interferometer (SWLI), scanning electron microscopy/energy-dispersive x-ray, and atomic force microscope. The polishing process of oxidized RS-SiC by ceria slurry was investigated according to the Preston equation, which would theoretically forecast the evolutions of RS-SiC surfaces along with the increasing of polishing time, and it was experimentally verified by comparing the surface roughnesses obtained by SWLI and the surface morphologies obtained by SEM. The mechanism analysis on the finishing of RS-SiC would be effective for the optimization of water vapor plasma oxidation parameters and ceria slurry polishing parameters, which will promote the application of RS-SiC substrates by improving the surface property obtained by the oxidation-assisted polishing method.
NASA Astrophysics Data System (ADS)
Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri
2011-01-01
Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.
Manganese oxide-based materials as electrochemical supercapacitor electrodes.
Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G
2011-03-01
Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).
Ma, Yunjian; Qiu, Keqiang
2015-06-01
Lead sulfate, lead oxides and lead metal are the main component of lead paste in spent lead acid battery. When lead sulfate was desulfurized and transformed into lead carbonate by sodium carbonate, lead metal and lead oxides remained unchanged. Lead carbonate is easily decomposed to lead oxide and carbon dioxide under high temperature. Namely, vacuum thermal process is the reduction reaction of lead oxides. A compatible environmental process consisted of hydrometallurgical desulfurization and vacuum thermal reduction to recycle lead was investigated in this research. Lead paste was firstly desulfurized with sodium carbonate, by which, the content of sulfur declined from 7.87% to 0.26%. Then, the desulfurized lead paste was reduced by charcoal under vacuum. Under the optimized reaction conditions, i.e., vacuum thermal reduction at temperature 850°C under 20 Pa for 45 min, a 22.11×10(-2) g cm(-2) min(-1) reduction rate, and a 98.13% direct recovery ratio of fine lead (99.77%) had been achieved, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rear-side picosecond laser ablation of indium tin oxide micro-grooves
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Wenjun; Mei, Xuesong; Liu, Bin; Zhao, Wanqin
2015-06-01
A comparative study of the fabrication of micro-grooves in indium tin oxide films by picosecond laser ablation for application in thin film solar cells is presented, evaluating the variation of different process parameters. Compared with traditional front-side ablation, rear-side ablation results in thinner grooves with varying laser power at a certain scan speed. In particular, and in contrast to front-side ablation, the width of the micro-grooves remains unchanged when the scan speed was changed. Thus, the micro-groove quality can be optimized by adjusting the scan speed while the groove width would not be affected. Furthermore, high-quality micro-grooves with ripple free surfaces and steep sidewalls could only be achieved when applying rear-side ablation. Finally, the formation mechanism of micro-cracks on the groove rims during rear-side ablation is analyzed and the cracks can be almost entirely eliminated by an optimization of the scan speed.
Haïdopoulos, M; Turgeon, S; Sarra-Bournet, C; Laroche, G; Mantovani, D
2006-07-01
Metallic endovascular stents are used as medical devices to scaffold biological lumen, most often diseased arteries, after balloon angioplasty. They are commonly made of 316L stainless steel or Nitinol, two alloys containing nickel, an element classified as potentially toxic and carcinogenic by the International Agency for Research on Cancer. Although they are largely implanted, the long-term safety of such metallic elements is still controversial, since the corrosion processes may lead to the release of several metallic ions, including nickel ions in diverse oxidation states. To avoid metallic ion release in the body, the strategy behind this work was to develop a process aiming the complete isolation of the stainless steel device from the body fluids by a thin, cohesive and strongly adherent coating of RF-plasma-polymerized fluoropolymer. Nevertheless, prior to the polymer film deposition, an essential aspect was the development of a pre-treatment for the metallic substrate, based on the electrochemical polishing process, aiming the removal of any fragile interlayer, including the native oxide layer and the carbon contaminated layer, in order to obtain a smooth, defect-free surface to optimize the adhesion of the plasma-deposited thin film. In this work, the optimized parameters for electropolishing, such as the duration and the temperature of the electrolysis, and the complementary acid dipping were presented and accurately discussed. Their effects on roughness as well as on the evolution of surface topography were investigated by Atomic Force Microscopy, stylus profilometry and Scanning Electron Microscopy. The modifications induced on the surface atomic concentrations were studied by X-ray Photoelectron Spectroscopy. The improvements in terms of the surface morphology after the pre-treatment were also emphasized, as well as the influence of the original stainless steel surface finish.
Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.
Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G
2004-12-01
A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.
Ruan, Wenqian; Hu, Jiwei; Qi, Jimei; Hou, Yu; Cao, Rensheng; Wei, Xionghui
2018-05-22
Reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles were synthesized in this study for the removal of crystal violet (CV) dye from aqueous solutions. This material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), Raman spectroscopy, N₂-sorption, and X-ray photoelectron spectroscopy (XPS). The influence of independent parameters (namely, initial dye concentration, initial pH, contact time, and temperature) on the removal efficiency were investigated via Box⁻Behnken design (BBD). Artificial intelligence (i.e., artificial neural network, genetic algorithm, and particle swarm optimization) was used to optimize and predict the optimum conditions and obtain the maximum removal efficiency. The zero point of charge (pH ZPC ) of rGO/Fe/Ni composites was determined by using the salt addition method. The experimental equilibrium data were fitted well to the Freundlich model for the evaluation of the actual behavior of CV adsorption, and the maximum adsorption capacity was estimated as 2000.00 mg/g. The kinetic study discloses that the adsorption processes can be satisfactorily described by the pseudo-second-order model. The values of Gibbs free energy change (Δ G ⁰), entropy change (Δ S ⁰), and enthalpy change (Δ H ⁰) demonstrate the spontaneous and endothermic nature of the adsorption of CV onto rGO/Fe/Ni composites.
Song, Ziyu; Zhou, Xuemei; Li, Yuguang; Yang, Maohua; Xing, Jianmin
2013-01-01
For amine-based carbon dioxide capture, nitrogen oxides and sulfur oxides were the main pollutants that had a negative effect on the regeneration of solvent. Before carbon dioxide capture, the sulfur oxides in flue gas should be removed by the method of calcium salt, and then washed by alkaline solution to eliminate the residual nitrogen oxides and sulfur oxides. The washing wastewater containing sulfate and nitrate needs to be treated. In this study, a novel anaerobic-anoxic process was built up for the treatment of this washing wastewater. Nitrate was reduced to nitrogen by denitrifying bacteria. Sulfate was firstly reduced to sulfide by sulfate reducing bacteria, and then selectively oxidized to element sulfur by sulfide oxidizing bacteria. The treated liquid could be reused as absorption after the adjustment of pH value. The performances of this bioprocess were investigated under various pH values and S/N ratios. It was found that the optimal pH value of influent was 6.0, the percentages of denitrification and sulfate reducing could reach 90 and 89%, respectively. Seventy-six percent of sulfate was transformed into element sulfur. Nitrate significantly had a negative effect on sulfate reduction above 10 mM. As 20 mM nitrate, the sulfate reducing percentage would drop to 67%. These results showed that the anaerobic-anoxic process was feasible for the treatment of flue gas washing wastewater. It would be prospectively applied to other wastewater with the higher ratio of SO4(2-)/NO3(-).
NASA Astrophysics Data System (ADS)
Jiang, K. Y.; Fan, Q.; Zhao, Z. J.; Mao, L. S.; Yang, X. L.
2006-01-01
Iron oxide catalyst with spinel structure used for dehydrogenation of ethylbenzene is one kind of important catalyst in petrochemical industry. In this work several series of industrial catalyst were prepared with different components and different manufacturing processes. Mössbauer Spectroscopy has been used to determine the optimal components and the better manufacturing process for spinel structure formation. The results may prove useful for producing the industrial dehydrogenation catalyst with better catalytic property.
NASA Astrophysics Data System (ADS)
Jiang, K. Y.; Fan, Q.; Zhao, Z. J.; Mao, L. S.; Yang, X. L.
Iron oxide catalyst with spinel structure used for dehydrogenation of ethylbenzene is one kind of importantcatalyst in petrochemical industry. In this work several series of industrial catalyst were prepared with differentcomponents and differentmanufacturing processes. Mössbauer Spectroscopy has been used to determine the optimal components and the better manufacturing process for spinel structure formation. The results may prove useful for producing the industrial dehydrogenation catalyst with better catalytic property.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki
1999-02-01
In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.
Antón, Ricardo López; González, Juan A.; Andrés, Juan P.; Normile, Peter S.; Canales-Vázquez, Jesús; Muñiz, Pablo; Riveiro, José M.; De Toro, José A.
2017-01-01
Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved. PMID:28336895
Antón, Ricardo López; González, Juan A; Andrés, Juan P; Normile, Peter S; Canales-Vázquez, Jesús; Muñiz, Pablo; Riveiro, José M; De Toro, José A
2017-03-11
Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved.
Chen, Po-Chiang; Shen, Guozhen; Shi, Yi; Chen, Haitian; Zhou, Chongwu
2010-08-24
In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 25.5 Wh/kg, and columbic efficiency of approximately 90%. In addition, our ASCs exhibited a power density of 50.3 kW/kg, which is 10-fold higher than obtained in early reported ASC work. The high-performance hybrid nanostructured ASCs can find applications in conformal electrics, portable electronics, and electrical vehicles.
Huynh, Mioy T.; Mora, S. Jimena; Villalba, Matias; ...
2017-05-09
Nature employs a TyrZ-His pair as a redox relay that couples proton transfer to the redox process between P680 and the water oxidizing catalyst in photosystem II. Artificial redox relays composed of different benzimidazole–phenol dyads (benzimidazole models His and phenol models Tyr) with substituents designed to simulate the hydrogen bond network surrounding the TyrZ-His pair have been prepared. Furthermore, when the benzimidazole substituents are strong proton acceptors such as primary or tertiary amines, theory predicts that a concerted two proton transfer process associated with the electrochemical oxidation of the phenol will take place. Furthermore, theory predicts a decrease in themore » redox potential of the phenol by ~300 mV and a small kinetic isotope effect (KIE). Indeed, electrochemical, spectroelectrochemical, and KIE experimental data are consistent with these predictions. Our results were obtained by using theory to guide the rational design of artificial systems and have implications for managing proton activity to optimize efficiency at energy conversion sites involving water oxidation and reduction.« less
NASA Astrophysics Data System (ADS)
Kirner, S. V.; Slachciak, N.; Elert, A. M.; Griepentrog, M.; Fischer, D.; Hertwig, A.; Sahre, M.; Dörfel, I.; Sturm, H.; Pentzien, S.; Koter, R.; Spaltmann, D.; Krüger, J.; Bonse, J.
2018-04-01
Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms.
Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating
NASA Astrophysics Data System (ADS)
Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.
2018-03-01
Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.
40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... analyzer to optimize performance. (2) Zero the oxides of nitrogen analyzer with zero grade air or zero... samples. Proceed as follows: (1) Adjust analyzer to optimize performance. (2) Zero the oxides of nitrogen analyzer with zero grade air or zero grade nitrogen. (3) Calibrate on each normally used operating range...
238Pu recovery and salt disposition from the molten salt oxidation process
NASA Astrophysics Data System (ADS)
Remerowski, M. L.; Stimmel, Jay J.; Wong, Amy S.; Ramsey, Kevin B.
2000-07-01
We have begun designing and optimizing our recovery and recycling processes by experimenting with samples of "spent salt" produced by MSO treatment of surrogate waste in the reaction vessel at the Naval Surface Warfare Center-Indian Head. One salt was produced by treating surrogate waste containing pyrolysis ash spiked with cerium. The other salt contains residues from MSO treatment of materials similar to those used in 238Pu processing, e.g., Tygon tubing, PVC bagout bags, HDPE bottles. Using these two salt samples, we will present results from our investigations.
Dimensional optimization of nanowire--complementary metal oxide--semiconductor inverter.
Hashim, Yasir; Sidek, Othman
2013-01-01
This study is the first to demonstrate dimensional optimization of nanowire-complementary metal-oxide-semiconductor inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on both dimensions ratio and digital voltage level (Vdd). Diameter optimization reveals that when Vdd increases, the optimized value of (Dp/Dn) decreases. Channel length optimization results show that when Vdd increases, the optimized value of Ln decreases and that of (Lp/Ln) increases. Dimension ratio optimization reveals that when Vdd increases, the optimized value of Kp/Kn decreases, and silicon nanowire transistor with suitable dimensions (higher Dp and Ln with lower Lp and Dn) can be fabricated.
Evaluation of (+)-sparteine-like diamines for asymmetric synthesis.
Dearden, Michael J; McGrath, Matthew J; O'Brien, Peter
2004-08-20
Three new (+)-sparteine-like diamines were prepared from (-)-cytisine and evaluated as sparteine surrogates in the alpha-lithiation rearrangement of cyclooctene oxide and the palladium(II)/diamine catalyzed oxidative kinetic resolution of 1-indanol. The new diamines exhibited opposite enantioselectivity to that observed with (-)-sparteine but increasing the steric hindrance of the N-alkyl group beyond N-Et had a detrimental effect on enantioselectivity. The optimal N-Me diamine was evaluated with much success in five other (-)-sparteine-mediated processes involving different metals (lithium, magnesium, and copper) and different types of reaction mechanisms. Copyright 2004 American Chemical Society
Chen, Yuan; Lin, Jiajiang; Chen, Zuliang
2017-09-01
The treatment of a synthetically prepared wastewater containing diesel oil has been investigated using combined treatment schemes based on the biological treatment followed by an advanced oxidation process. 78% of diesel oil was degraded by Acinetobacter venetianus in 96 h, while the removal efficiency of chemical oxygen demand (COD) in the aqueous phase was only 56.8%, indicating that degraded metabolites existed in solution. To solve this problem, a Fenton-like system consisting of nanoscale zero-valent iron (nZVI) and hydrogen peroxide was used for further oxidation of the metabolites after biodegradation. Results showed that the total COD removal increased from 56.8% to 89% under the optimal condition. In addition, effects of initial pH (2.0-9.0), ZVI dosage (0-2.0 g L-1), hydrogen peroxide (H 2 O 2 ) dosage concentration (0-15 mmol L-1) and temperature (298-308 K) on the treatment efficiency of the combined process were studied. Scanning electron microscopy (SEM) demonstrated that changes to the surface of nZVI occurred. GC-MS revealed that the degraded metabolites were mineralized practically by nZVI/H 2 O 2 system. The results points towards the potential of Fenton-like oxidation as a short post-treatment after a biological process for the treatment of organic pollutants in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Su-Huan, Kow; Fahmi, Muhammad Ridwan; Abidin, Che Zulzikrami Azner; Soon-An, Ong
2016-11-01
Advanced oxidation processes (AOPs) are of special interest in treating landfill leachate as they are the most promising procedures to degrade recalcitrant compounds and improve the biodegradability of wastewater. This paper aims to refresh the information base of AOPs and to discover the research gaps of AOPs in landfill leachate treatment. A brief overview of mechanisms involving in AOPs including ozone-based AOPs, hydrogen peroxide-based AOPs and persulfate-based AOPs are presented, and the parameters affecting AOPs are elaborated. Particularly, the advancement of AOPs in landfill leachate treatment is compared and discussed. Landfill leachate characterization prior to method selection and method optimization prior to treatment are necessary, as the performance and practicability of AOPs are influenced by leachate matrixes and treatment cost. More studies concerning the scavenging effects of leachate matrixes towards AOPs, as well as the persulfate-based AOPs in landfill leachate treatment, are necessary in the future.
SERS-active silver nanoparticle aggregates produced in high-iron float glass by ion exchange process
NASA Astrophysics Data System (ADS)
Karvonen, L.; Chen, Y.; Säynätjoki, A.; Taiviola, K.; Tervonen, A.; Honkanen, S.
2011-11-01
Silver nanoparticles were produced in iron containing float glasses by silver-sodium ion exchange and post-annealing. In particular, the effect of the concentration and the oxidation state of iron in the host glass on the nanoparticle formation was studied. After the nanoparticle fabrication process, the samples were characterized by optical absorption measurements. The samples were etched to expose nanoparticle aggregates on the surface, which were studied by optical microscopy and scanning electron microscopy. The SERS-activity of these glass samples was demonstrated and compared using a dye molecule Rhodamine 6G (R6G) as an analyte. The importance of the iron oxidation level for reduction process is discussed. The glass with high concentration of Fe 2+ ions was found to be superior in SERS applications of silver nanoparticles. The optimal surface features in terms of SERS enhancement are also discussed.
Qin, Yanyan; Cui, Yanping; Tian, Zhen; Wu, Yangling; Li, Yilian
2017-12-01
Ag@AgCl core-shell nanowires were synthesized by oxidation of Ag nanowires with moderate FeCl 3 , which exhibited excellent photocatalytic activity for As(III) oxidation under visible light. It was proved that the photocatalytic oxidation efficiency was significantly dependent on the mole ratio of Ag:AgCl. The oxidation rate of As(III) over Ag@AgCl core-shell nanowires first increased with the decrease of Ag 0 percentage, up until the optimized synthesis mole ratio of Ag nanowires:FeCl 3 was 2.32:2.20, with 0.023 mg L -1 min -1 As(III) oxidation rate; subsequently, the oxidation rate dropped with the further decrease of Ag 0 percentage. Effects of the pH, ionic strength, and concentration of humic acid on Ag@AgCl photocatalytic ability were also studied. Trapping experiments using radical scavengers confirmed that h + and ·O 2 - acted as the main active species during the visible-light-driven photocatalytic process for As(III) oxidation. The recycling experiments validated that Ag@AgCl core-shell nanowires were a kind of efficient and stable photocatalyst for As(III) oxidation under visible-light irradiation.
Padoley, K V; Tembhekar, P D; Saratchandra, T; Pandit, A B; Pandey, R A; Mudliar, S N
2012-09-01
This study looks at the possibility of wet air oxidation (WAO) based pretreatment of complex effluent to selectively enhance the biodegradability (without substantial COD destruction) and facilitate biogas generation potential. A lab-scale wet air oxidation reactor with biomethanated distillery wastewater (B-DWW) as a model complex effluent (COD 40,000 mg L(-1)) was used to demonstrate the proof-of-concept. The studies were conducted using a designed set of experiments and reaction temperature (150-200°C), air pressure (6-12 bar) and reaction time (15-120 min) were the main process variables of concern for WAO process optimization. WAO pretreatment of B-DWW enhanced the biodegradability of the complex wastewater by the virtue of enhancing its biodegradability index (BI) from 0.2 to 0.88, which indicate favorable Biochemical Methane Potential (BMP) for biogas generation. The kinetics of COD destruction and BI enhancement has also been reported. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dehzangi, Arash; Larki, Farhad; Hutagalung, Sabar D.; Goodarz Naseri, Mahmood; Majlis, Burhanuddin Y.; Navasery, Manizheh; Hamid, Norihan Abdul; Noor, Mimiwaty Mohd
2013-01-01
In this letter, we investigate the fabrication of Silicon nanostructure patterned on lightly doped (1015 cm−3) p-type silicon-on-insulator by atomic force microscope nanolithography technique. The local anodic oxidation followed by two wet etching steps, potassium hydroxide etching for silicon removal and hydrofluoric etching for oxide removal, are implemented to reach the structures. The impact of contributing parameters in oxidation such as tip materials, applying voltage on the tip, relative humidity and exposure time are studied. The effect of the etchant concentration (10% to 30% wt) of potassium hydroxide and its mixture with isopropyl alcohol (10%vol. IPA ) at different temperatures on silicon surface are expressed. For different KOH concentrations, the effect of etching with the IPA admixture and the effect of the immersing time in the etching process on the structure are investigated. The etching processes are accurately optimized by 30%wt. KOH +10%vol. IPA in appropriate time, temperature, and humidity. PMID:23776479
Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp
2017-01-01
All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.
Low Cost High Performance Nanostructured Spectrally Selective Coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Sungho
2017-04-05
Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guidedmore » by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.« less
Synthesis and Characterization of Thermoelectric Oxides at Macro- and Nano-scales
NASA Astrophysics Data System (ADS)
Ma, Feiyue
Thermoelectric materials can directly convert a temperature difference into electrical voltage and vice versa. Due to this unique property, thermoelectric materials are widely used in industry and scientific laboratories for temperature sensing and thermal management applications. Waste heat harvesting, another potential application of thermoelectric materials, has long been limited by the low conversion efficiency of the materials. Potential high temperature applications, such as power plant waste heat harvesting and combustion engine exhaust heat recovery, make thermoelectric oxides a very promising class of thermoelectric materials. In this thesis, the synthesis and characterization of thermoelectric oxide materials are explored. In the first part of this thesis, the measurement methodologies and instrumentation processes employed to investigate different thermoelectric properties, such as the Seebeck coefficient and carrier concentration at the bulk scale and the thermal conductivity at the nanoscale, are detailed. Existing scientific and engineering challenges associated with these measurements are also reviewed. To overcome such problems, original parts and methodologies have been designed. Three fully functional systems were ultimately developed for the characterization of macroscale thermoelectric properties as well as localized thermal conductivity. In the second part of the thesis, the synthesis of NaxCo 2O4, a thermoelectric oxide material, is discussed. Modification of both composition and structure were carried out so as to optimize the thermoelectric performance of NaxCo2O4. Nanostructuring methods, such as ball milling, electrospinning, auto-combustion synthesis, and core-shell structure fabrication, have been developed to refine the grain size of NaxCo2O4 in order to reduce its thermal conductivity. However, the structure of the nanostructured materials is very unstable at high temperature and limited improvement on thermoelectric performance is observed. Therefore, another technique was adopted to address this issue. A texturing process was also explored to optimize the NaxCo 2O4 structure. It was found that a highly textured structure can be obtained using a combined process of combustion synthesis, chemical demixing, and a flux method.
Carlos, Emanuel; Kiazadeh, Asal; Deuermeier, Jonas; Branquinho, Rita; Martins, Rodrigo; Fortunato, Elvira
2018-08-24
Lately, resistive switching memories (ReRAM) have been attracting a lot of attention due to their possibilities of fast operation, lower power consumption and simple fabrication process and they can also be scaled to very small dimensions. However, most of these ReRAM are produced by physical methods and nowadays the industry demands more simplicity, typically associated with low cost manufacturing. As such, ReRAMs in this work are developed from a solution-based aluminum oxide (Al 2 O 3 ) using a simple combustion synthesis process. The device performance is optimized by two-stage deposition of the Al 2 O 3 film. The resistive switching properties of the bilayer devices are reproducible with a yield of 100%. The ReRAM devices show unipolar resistive switching behavior with good endurance and retention time up to 10 5 s at 85 °C. The devices can be programmed in a multi-level cell operation mode by application of different reset voltages. Temperature analysis of various resistance states reveals a filamentary nature based on the oxygen vacancies. The optimized film was stacked between ITO and indium zinc oxide, targeting a fully transparent device for applications on transparent system-on-panel technology.
Gowda, Avinash; Sharma, Vivek; Goyal, Ankit; Singh, A K; Arora, Sumit
2018-05-01
Microencapsulated flaxseed oil powder (MFOP) was supplemented for the fortification of α-linolenic acid (ALA, ω-3 fatty acid) in ice cream. Processing parameters were optimized in terms of the stage of homogenization of ice-cream mix, level of fortification (3, 4 and 5%) and flavors (vanilla, butter scotch and strawberry). Data revealed that free fatty acids increased significantly during first 15 days in all the samples and then remained constant. Peroxide value and thiobarbituric acid value first increased up to 30 and 45 days, respectively; and then decreased followed by a gradual increase up to 120 days. Fatty acids profile showed 18.74-21.38% decrease in ALA content in fortified ice creams after 120 days. A serving of 100 g of freshly prepared functional ice cream was able to meet ~ 45% of the RDA (1.4 g ALA/day), which reduced to 35.37-36.56% on the end of storage i.e. 120 days. Overall, it can be concluded that MFOP was oxidative stable in ice-cream throughout the storage, which could be fortified successfully at 4% (w/w) level.
Di Nardo, Giovanna; Gilardi, Gianfranco
2012-01-01
Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported. PMID:23443101
Nitric oxide signaling: systems integration of oxygen balance in defense of cell integrity.
Gong, Li; Pitari, Giovanni M; Schulz, Stephanie; Waldman, Scott A
2004-01-01
Nitric oxide has emerged as a ubiquitous signaling molecule subserving diverse pathophysiologic processes, including cardiovascular homeostasis and its decompensation in atherogenesis. Recent insights into molecular mechanisms regulating nitric oxide generation and the rich diversity of mechanisms by which it propagates signals reveal the role of this simple gas as a principle mediator of systems integration of oxygen balance. The molecular lexicon by which nitric oxide propagates signals encompasses the elements of posttranslational modification of proteins by redox-based nitrosylation of transition metal centers and free thiols. Spatial and temporal precision and specificity of signal initiation, amplification, and propagation are orchestrated by dynamic assembly of supramolecular complexes coupling nitric oxide production to upstream and downstream components in specific subcellular compartments. The concept of local paracrine signaling by nitric oxide over subcellular distances for short durations has expanded to include endocrine-like effects over anatomic spatial and temporal scales. From these insights emerges a role for nitric oxide in integrating system responses controlling oxygen supply and demand to defend cell integrity in the face of ischemic challenge. In this context, nitric oxide coordinates the respiratory cycle to acquire and deliver oxygen to target tissues by regulating hemoglobin function and vascular smooth muscle contractility and matches energy supply and demand by down-regulating energy-requiring functions while shifting metabolism to optimize energy production. Insights into mechanisms regulating nitric oxide production and signaling and their integration into responses mediating homeostasis place into specific relief the role of those processes in pathophysiology. Indeed, endothelial dysfunction associated with altered production of nitric oxide regulating tissue integrity contributes to the pathogenesis underlying atherogenesis. Moreover, this central role in pathophysiology identifies nitric oxide signaling as a key target for novel therapeutic interventions to minimize irreversible tissue damage associated with ischemic cardiovascular disease.
Inkjet-printed p-type nickel oxide thin-film transistor
NASA Astrophysics Data System (ADS)
Hu, Hailong; Zhu, Jingguang; Chen, Maosheng; Guo, Tailiang; Li, Fushan
2018-05-01
High-performance inkjet-printed nickel oxide thin-film transistors (TFTs) with Al2O3 high-k dielectric have been fabricated using a sol-gel precursor ink. The "coffee ring" effect during the printing process was facilely restrained by modifying the viscosity of the ink to control the outward capillary flow. The impacts on the device performance was studied in detail in consideration of annealing temperature of the nickel oxide film and the properties of dielectric layer. The optimized switching ability of the device were achieved at an annealing temperature of 280 °C on a 50-nm-thick Al2O3 dielectric layer, with a hole mobility of 0.78 cm2/V·s, threshold voltage of -0.6 V and on/off current ratio of 5.3 × 104. The as-printed p-type oxide TFTs show potential application in low-cost, large-area complementary electronic devices.
Restorative effect of oxygen annealing on device performance in HfIZO thin-film transistors
NASA Astrophysics Data System (ADS)
Ha, Tae-Jun
2015-03-01
Metal-oxide based thin-film transistors (oxide-TFTs) are very promising for use in next generation electronics such as transparent displays requiring high switching and driving performance. In this study, we demonstrate an optimized process to secure excellent device performance with a favorable shift of the threshold voltage toward 0V in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs by using post-treatment with oxygen annealing. This enhancement results from the improved interfacial characteristics between gate dielectric and semiconductor layers due to the reduction in the density of interfacial states related to oxygen vacancies afforded by oxygen annealing. The device statistics confirm the improvement in the device-to-device and run-to-run uniformity. We also report on the photo-induced stability in such oxide-TFTs against long-term UV irradiation, which is significant for transparent displays.
NASA Astrophysics Data System (ADS)
Sheng, Jiazhen; Han, Ki-Lim; Hong, TaeHyun; Choi, Wan-Ho; Park, Jin-Seong
2018-01-01
The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields. Project supported by the National Research Foundation of Korea (NRF) (No. NRF-2017R1D1A1B03034035), the Ministry of Trade, Industry & Energy (No. #10051403), and the Korea Semiconductor Research Consortium.
Jung, Chanil; Deng, Yang; Zhao, Renzun; Torrens, Kevin
2017-01-01
UV-quenching substance (UVQS), as an emerging municipal solid waste (MSW)-derived leachate contaminant, has a potential to interfere with UV disinfection when leachate is disposed of at publicly owned treatment works (POTWs). The objective of this study was to evaluate and compare two chemical oxidation processes under different operational conditions, i.e. Fenton process and ozonation, for alleviation of UV 254 absorbance of a biologically pre-treated landfill leachate. Results showed that leachate UV 254 absorbance was reduced due to the UVQS decomposition by hydroxyl radicals (·OH) during Fenton treatment, or by ozone (O 3 ) and ·OH during ozonation. Fenton process exhibited a better treatment performance than ozonation under their respective optimal conditions, because ·OH could effectively decompose both hydrophobic and hydrophilic dissolved organic matter (DOM), but O 3 tended to selectively oxidize hydrophobic compounds alone. Different analytical techniques, including molecular weight (MW) fractionation, hydrophobic/hydrophilic isolation, UV spectra scanning, parallel factor (PARAFAC) analysis, and fluorescence excitation-emission matrix spectrophotometry, were used to characterize UVQS. After either oxidation treatment, residual UVQS was more hydrophilic with a higher fraction of low MW molecules. It should be noted that the removed UV 254 absorbance (ΔUV 254 ) was directly proportional to the removed COD (ΔCOD) for the both treatments (Fenton process: ΔUV 254 = 0.011ΔCOD; ozonation: ΔUV 254 = 0.016ΔCOD). A greater ΔUV 254 /ΔCOD was observed for ozonation, suggesting that oxidant was more efficiently utilized during ozonation than in Fenton treatment for mitigation of the UV absorbance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hest, Marinus F; Moore, David; Klein, Talysa
Standard layer-by-layer solution processing methods constrain lead-halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet-visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer.more » Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.« less
Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors
NASA Astrophysics Data System (ADS)
Marrs, Michael
A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.
NASA Astrophysics Data System (ADS)
Kabo, K. S.; Yacob, A. R.; Bakar, W. A. W. A.; Buang, N. A.; Bello, A. M.; Ruskam, A.
2016-07-01
Environmentally benign zinc oxide (ZnO) was modified with 0-15% (wt.) potassium through wet impregnation and used in transesterification of rice bran oil (RBO) to form biodiesel. The catalyst was characterized by X-Ray powder Diffraction (XRD), its basic sites determined by back titration and Response Surface Methodology (RSM) Box-Behnken Design (BBD) was used to optimize the modification process variables on the basic sites of the catalyst. The transesterification product, biodiesel was analyzed by Nuclear Magnetic Resonance (NMR) spectroscopy. The result reveals K-modified ZnO with highly increased basic sites. Quadratic model with high regression R2 = 0.9995 was obtained from the ANOVA of modification process, optimization at maximum basic sites criterion gave optimum modification conditions of K-loading = 8.5% (wt.), calcination temperature = 480 oC and time = 4 hours with response and basic sites = 8.14 mmol/g which is in close agreement with the experimental value of 7.64 mmol/g. The catalyst was used and a value of 95.53% biodiesel conversion was obtained and effect of potassium leaching was not significant in the process
Benwadih, M; Coppard, R; Bonrad, K; Klyszcz, A; Vuillaume, D
2016-12-21
Amorphous, sol-gel processed, indium gallium zinc oxide (IGZO) transistors on plastic substrate with a printable gate dielectric and an electron mobility of 4.5 cm 2 /(V s), as well as a mobility of 7 cm 2 /(V s) on solid substrate (Si/SiO 2 ) are reported. These performances are obtained using a low temperature pulsed light annealing technique. Ultraviolet (UV) pulsed light system is an innovative technique compared to conventional (furnace or hot-plate) annealing process that we successfully implemented on sol-gel IGZO thin film transistors (TFTs) made on plastic substrate. The photonic annealing treatment has been optimized to obtain IGZO TFTs with significant electrical properties. Organic gate dielectric layers deposited on this pulsed UV light annealed films have also been optimized. This technique is very promising for the development of amorphous IGZO TFTs on plastic substrates.
Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri
2013-01-01
This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201
NASA Astrophysics Data System (ADS)
Deng, Chengxiang; Pan, Heping; Luo, Miao
2017-12-01
The Chinese Continental Scientific Drilling (CCSD) main hole is located in the Sulu ultrahigh-pressure metamorphic (UHPM) belt, providing significant opportunities for studying the metamorphic strata structure, kinetics process and tectonic evolution. Lithology identification is the primary and crucial stage for above geoscientific researches. To release the burden of log analyst and improve the efficiency of lithology interpretation, many algorithms have been developed to automate the process of lithology prediction. While traditional statistical techniques, such as discriminant analysis and K-nearest neighbors classifier, are incompetent in extracting nonlinear features of metamorphic rocks from complex geophysical log data; artificial intelligence algorithms are capable of solving nonlinear problems, but most of the algorithms suffer from tuning parameters to be global optimum to establish model rather than local optimum, and also encounter challenges in making the balance between training accuracy and generalization ability. Optimization methods have been applied extensively in the inversion of reservoir parameters of sedimentary formations using well logs. However, it is difficult to obtain accurate solution from the logging response equations of optimization method because of the strong overlapping of nonstationary log signals when applied in metamorphic formations. As oxide contents of each kinds of metamorphic rocks are relatively less overlapping, this study explores an approach, set in a metamorphic formation model and using the Broyden Fletcher Goldfarb Shanno (BFGS) optimization algorithm to identify lithology from oxide data. We first incorporate 11 geophysical logs and lab-collected geochemical data of 47 core samples to construct oxide profile of CCSD main hole by using backwards stepwise multiple regression method, which eliminates irrelevant input logs step by step for higher statistical significance and accuracy. Then we establish oxide response equations in accordance with the metamorphic formation model and employ BFGS algorithm to minimize the objective function. Finally, we identify lithology according to the composition content which accounts for the largest proportion. The results show that lithology identified by the method of this paper is consistent with core description. Moreover, this method demonstrates the benefits of using oxide content as an adhesive to connect logging data with lithology, can make the metamorphic formation model more understandable and accurate, and avoid selecting complex formation model and building nonlinear logging response equations.
Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxides
NASA Astrophysics Data System (ADS)
Jiang, Yihong
The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry. Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during SOM electrolysis. After electrolysis, upon cooling, silicon crystals precipitated out from the Si-Sn liquid alloy. The presence of high-purity silicon crystals in the liquid tin cathode was confirmed by SEM/EDS. The fluoride based flux was also optimized to improve YSZ membrane stability for long-term use.
Facile synthesis of PdSx/C porous nanospheres and their applications for ethanol oxidation reaction
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhang, Fuhua; Ma, Xuemei; Zheng, Yiqun; Hou, Shifeng
2016-12-01
We report a facile approach for the synthesis of carbon-supported palladium polysulphide porous nanospheres (PdSx/C) and their applications for ethanol oxidation reaction. Typical synthesis started with generation of palladium/poly (3,4-ethylenedioxythiophene)(Pd/PEDOT) nanospheres, followed by a calcination process at an optimized temperature to form PdSx/C, with an average size of 2.47 ± 0.60 and 50 nm of PdSx nanoparticles and carbon porous nanospheres, respectively. Various techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were performed to characterize their morphologies, compositions and structures. In contrary to most Pd-based electrochemical catalysts that could be easily poised with trace sulfur during the catalytic oxidation process, the as-prepared PdSx/C porous nanospheres exhibited high electrocatalytic activities and stabilities for the electrochemical catalytic oxidation of ethanol in alkaline medium. In particular, the forward peak current intensity achieved 162.1 mA mg-1 and still maintained at 46.7 mA mg-1 even after 1000 cycles. This current work not only offers a novel type of fuel-cell catalyst for ethanol oxidation reaction, but also provides a possible route for solving the sulfur-poisoning problem in catalysis.
Salazar, Claudio; Contreras, Nicole; Mansilla, Héctor D; Yáñez, Jorge; Salazar, Ricardo
2016-12-05
In this work the electrochemical oxidation of losartan, an emerging pharmaceutical pollutant, was studied. Electrochemical oxidation was carried out in batch mode, in an open and undivided cell of 100cm(3) using a boron-doped diamond (BDD)/stainless steel system. With Cl(-) medium 56% of mineralization was registered, while with the trials containing SO4(2-) as supporting electrolyte a higher mineralization yield of 67% was reached, even obtaining a total removal of losartan potassium at 80mAcm(-2) and 180min of reaction time at pH 7.0. Higher losartan potassium concentrations enhanced the mineralization degree and the efficiency of the electrochemical oxidation process. During the mineralization up to 4 aromatic intermediates were identified by ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Moreover, short-linear carboxylic acids, like oxalic, succinic and oxamic were detected and quantified by ion-exclusion HPLC. Finally, the ability of the electrochemical oxidation process to mineralize dissolved commercial tablets containing losartan was achieved, obtaining TOC removal up to 71% under optimized conditions (10mAcm(-2), 0.05M Na2SO4, pH 7.0 and 25°C and 360min of electrolysis). Copyright © 2016 Elsevier B.V. All rights reserved.
The Obtaining of Nano Oxide Systems SiO2-REE with Alkoxide Technology
NASA Astrophysics Data System (ADS)
Amelina, Anna; Grinberg, Evgenii
A lot of oxides systems with REE as dopants are used in catalytic processes in organic synthesis. They are very perspectives as thermostable coating in aerospace technics. These systems are usually based on silicon or aluminium oxides and doped with rare-earth elements. This systems can be produced by different methods. One of the most perspective of them is “sol-gel”-method with silicium, aluminium and rare-earth alkoxides as a precursor of doped silica and alumina, or their derivatives. Thus the obtaining of composite SiO _{2} - REE oxide materials by the hydrolysis doped with rare-earth elements was suggested. Some of alcoholate derivatives such as El(OR)n were used in this processes. The SiO _{2}- REE oxides were precipitated during the sol-gel process, where tetraethoxysilane (TEOS) as used as SiO _{2} sources. Also it is known that alkoxides of alkali metals, including lithium alkoxides, are widely used in industry and synthetic chemistry, as well as a source of lithium in various mixed oxide compositions, such as lithium niobate, lithium tantalate or lithium silicate. Therefore, we attempted to obtain the lithium silicate, which is also doped with rare-earth elements. Lithium silicate was obtained by alkaline hydrolysis of tetraethoxysilane with lithium alkoxide. Lithium alkoxide were synthesized by dissolving at metal in the corresponding alcohol are examined. The dependence of the rate of dissolving of the metal on the method of mixing of the reaction mixture and the degree of metal dispersion was investigated. The mathematical model of the process was composed and also optimization of process was carried out. Some oxide SiO _{2}, Al _{2}O _{3} and rare-earth nanostructured systems were obtained by sol-gel-method. The size of particle was determined by electron and X-ray spectroscopy and was in the range of 5 - 15 nm. Purity of this oxide examples for contaminating of heavy metals consists n.(1E-4...1E-5) wt%. Sols obtained by this method may be used for producing of thin coats on ceramics and metallic surfaces.
Yabalak, Erdal
2018-05-18
This study was performed to investigate the mineralization of ticarcillin in the artificially prepared aqueous solution presenting ticarcillin contaminated waters, which constitute a serious problem for human health. 81.99% of total organic carbon removal, 79.65% of chemical oxygen demand removal, and 94.35% of ticarcillin removal were achieved by using eco-friendly, time-saving, powerful and easy-applying, subcritical water oxidation method in the presence of a safe-to-use oxidizing agent, hydrogen peroxide. Central composite design, which belongs to the response surface methodology, was applied to design the degradation experiments, to optimize the methods, to evaluate the effects of the system variables, namely, temperature, hydrogen peroxide concentration, and treatment time, on the responses. In addition, theoretical equations were proposed in each removal processes. ANOVA tests were utilized to evaluate the reliability of the performed models. F values of 245.79, 88.74, and 48.22 were found for total organic carbon removal, chemical oxygen demand removal, and ticarcillin removal, respectively. Moreover, artificial neural network modeling was applied to estimate the response in each case and its prediction and optimizing performance was statistically examined and compared to the performance of central composite design.
Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M
2016-10-01
The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.
Transparent Oxide Thin-Film Transistors: Production, Characterization and Integration
NASA Astrophysics Data System (ADS)
Barquinha, Pedro Miguel Candido
This dissertation is devoted to the study of the emerging area of transparent electronics, summarizing research work regarding the development of n-type thin-film transistors (TFTs) based on sputtered oxide semiconductors. All the materials are produced without intentional substrate heating, with annealing temperatures of only 150-200 °C being used to optimize transistor performance. The work is based on the study and optimization of active semiconductors from the gallium-indium-zinc oxide system, including both the binary compounds Ga2O3, In2O3 and ZnO, as well as ternary and quaternary oxides based on mixtures of those, such as IZO and GIZO with different atomic ratios. Several topics are explored, including the study and optimization of the oxide semiconductor thin films, their application as channel layers on TFTs and finally the implementation of the optimized processes to fabricate active matrix backplanes to be integrated in liquid crystal display (LCD) prototypes. Sputtered amorphous dielectrics with high dielectric constant (high-kappa) based on mixtures of tantalum-silicon or tantalum-aluminum oxides are also studied and used as the dielectric layers on fully transparent TFTs. These devices also include transparent and highly conducting IZO thin films as source, drain and gate electrodes. Given the flexibility of the sputtering technique, oxide semiconductors are analyzed regarding several deposition parameters, such as oxygen partial pressure and deposition pressure, as well as target composition. One of the most interesting features of multicomponent oxides such as IZO and GIZO is that, due to their unique electronic configuration and carrier transport mechanism, they allow to obtain amorphous structures with remarkable electrical properties, such as high hall-effect mobility that exceeds 60 cm2 V -1 s-1 for IZO. These properties can be easily tuned by changing the processing conditions and the atomic ratios of the multicomponent oxides, allowing to have amorphous oxides suitable to be used either as transparent semiconductors or as highly conducting electrodes. The amorphous structure, which is maintained even if the thin films are annealed at 500 °C, brings great advantages concerning interface quality and uniformity in large areas. A complete study comprising different deposition conditions of the semiconductor layer is also made regarding TFT electrical performance. Optimized devices present outstanding electrical performance, such as field-effect mobility (muFE) exceeding 20 cm2 V -1 s-1, turn-on voltage (Von) between -1 and 1 V, subthreshold slope (S) lower than 0.25 V dec-1 and On-Off ratio above 107 . Devices employing amorphous multicomponent oxides present largely improved properties when compared with the ones based on polycrystalline ZnO, mostly in terms of muFE. Within the compositional range where IZO and GIZO films are amorphous, TFT performance can be largely adjusted: for instance, high indium contents favor large mu FE but also highly negative Von, which can be compensated by proper amounts of zinc and gallium. Large oxygen concentrations during oxide semiconductor sputtering are found to be deleterious, decreasing muFE, shifting Von towards high values and turning the devices electrically unstable. It is also shown that semiconductor thickness (ds) has a very important role: for instance, by reducing ds to 10 nm it is possible to produce TFTs with Von≈0 V even using deposition conditions and/or target compositions that normally yield highly conducting films. Given the low ds of the films, this behavior is mostly related with surface states existent at the oxide semiconductor air-exposed back-surface, where depletion layers that can extend towards the dielectric/semiconductor interface are created due to the interaction with atmospheric oxygen. Different passivation layers on top of this air-exposed surface are studied, with SU-8 revealing to be to most effective one. Other important topics are source-drain contact resistance assessment and the effect of different annealing temperatures ( TA), being the properties of the TFTs dominated by TA rather than by the deposition conditions as TA increases. Fully transparent TFTs employing sputtered amorphous multicomponent dielectrics produced without intentional substrate heating present excellent electrical properties, that approach those exhibited by devices using PECVD SiO2 produced at 400 °C. Gate leakage current can be greatly reduced by using tantalum-silicon or tantalum-aluminum oxides rather than Ta2O5. A section of this dissertation is also devoted to the analysis of current stress stability and aging effects of the TFTs, being found that optimal devices exhibit recoverable threshold voltage shifts lower than 0.50 V after 24 h stress with constant drain current of 10 muA, as well as negligible aging effects during 18 months. The research work of this dissertation culminates in the fabrication of a backplane employing transparent TFTs and subsequent integration with a LCD frontplane by Hewlett-Packard. The successful operation of this initial 2.8h prototype with 128x128 pixels provides a solid demonstration that oxide semiconductor-based TFTs have the potential to largely contribute to a novel electronics era, where semiconductor materials away from conventional silicon are used to create fascinating applications, such as transparent electronic products.
Removal of Fluorides and Chlorides from Zinc Oxide Fumes by Microwave Sulfating Roasting
NASA Astrophysics Data System (ADS)
Li, Zhiqiang; Zhang, Libo; Chen, Guo; Peng, Jinhui; Zhou, Liexing; Yin, Shaohua; Liu, Chenhui
2015-10-01
Dechlorination and defluorination from zinc oxide dust by microwave sulfating roasting was investigated in this study. According to proposed reactions in the process, detailed experiments were systematically conducted to study the effect of roasting temperature, holding time, air and steam flow rates on the efficiency of the removal of F and Cl. The results show that 92.3% of F and 90.5% of Cl in the fume could be purified when the condition of the roasting temperature of 650 °C, holding time at 60 min, air flow of 300 L/h and steam flow of 8 ml/min was optimized. Our investigation indicates that microwave sulfating roasting could be a promising new way for the dechlorination and defluorination from zinc oxide dust.
V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase.
Peys, Nick; Ling, Yun; Dewulf, Daan; Gielis, Sven; De Dobbelaere, Christopher; Cuypers, Daniel; Adriaensens, Peter; Van Doorslaer, Sabine; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K
2013-01-28
An aqueous deposition process for V(6)O(13) films is developed whereby the vanadium oxidation state is continuously controlled throughout the entire process. In the precursor stage, a controlled wet chemical reduction of the vanadium(V) source with oxalic acid is achieved and monitored by (51)Vanadium Nuclear Magnetic Resonance ((51)V-NMR) and Ultraviolet-Visible (UV-Vis) spectroscopy. The resulting vanadium(IV) species in the aqueous solution are identified as mononuclear citrato-oxovanadate(IV) complexes by Electron Paramagnetic Resonance (EPR) and Fourier Transform Infra-Red (FTIR) spectroscopy. This precursor is successfully employed for the deposition of uniform, thin films. The optimal deposition and annealing conditions for the formation of crystalline V(6)O(13), including the control of the vanadium oxidation state, are determined through an elaborate study of processing temperature and O(2) partial pressure. To ensure a sub 100 nm adjustable film thickness, a non-oxidative intermediate thermal treatment is carried out at the end of each deposition cycle, allowing maximal precursor decomposition while still avoiding V(IV) oxidation. The resulting surface hydrophilicity, indispensable for the homogeneous deposition of the next layer, is explained by an increased surface roughness and the increased availability of surface vanadyl groups. Crystalline V(6)O(13) with a preferential (002) orientation is obtained after a post deposition annealing in a 0.1% O(2) ambient for thin films with a thickness of 20 nm.
Gergondey, Rachel; Garcia, Camille; Marchand, Christophe H; Lemaire, Stephane D; Camadro, Jean-Michel; Auchère, Françoise
2017-03-15
The potential biological consequences of oxidative stress and changes in glutathione levels include the oxidation of susceptible protein thiols and reversible covalent binding of glutathione to the -SH groups of proteins by S-glutathionylation. Mitochondria are central to the response to oxidative stress and redox signaling. It is therefore crucial to explore the adaptive response to changes in thiol-dependent redox status in these organelles. We optimized the purification protocol of glutathionylated proteins in the yeast Saccharomyces cerevisiae and present a detailed proteomic analysis of the targets of protein glutathionylation in cells undergoing constitutive metabolism and after exposure to various stress conditions. This work establishes the physiological importance of the glutathionylation process in S. cerevisiae under basal conditions and provides evidence for an atypical and unexpected cellular distribution of the process between the cytosol and mitochondria. In addition, our data indicate that each oxidative condition (diamide, GSSG, H 2 O 2 , or the presence of iron) elicits an adaptive metabolic response affecting specific mitochondrial metabolic pathways, mainly involved in the energetic maintenance of the cells. The correlation of protein modifications with intracellular glutathione levels suggests that protein deglutathionylation may play a role in protecting mitochondria from oxidative stress. This work provides further insights into the diversity of proteins undergoing glutathionylation and the role of this post-translational modification as a regulatory process in the adaptive response of the cell. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
[Ecological security of wastewater treatment processes: a review].
Yang, Sai; Hua, Tao
2013-05-01
Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.
Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar
2014-02-15
The objective of this study is to evaluate the operating costs of treating slaughterhouse wastewater (SWW) using combined biological and advanced oxidation processes (AOPs). This study compares the performance and the treatment capability of an anaerobic baffled reactor (ABR), an aerated completely mixed activated sludge reactor (AS), and a UV/H2O2 process, as well as their combination for the removal of the total organic carbon (TOC). Overall efficiencies are found to be up to 75.22, 89.47, 94.53, 96.10, 96.36, and 99.98% for the UV/H2O2, ABR, AS, combined AS-ABR, combined ABR-AS, and combined ABR-AS-UV/H2O2 processes, respectively. Due to the consumption of electrical energy and reagents, operating costs are calculated at optimal conditions of each process. A cost-effectiveness analysis (CEA) is performed at optimal conditions for the SWW treatment by optimizing the total electricity cost, H2O2 consumption, and hydraulic retention time (HRT). The combined ABR-AS-UV/H2O2 processes have an optimal TOC removal of 92.46% at an HRT of 41 h, a cost of $1.25/kg of TOC removed, and $11.60/m(3) of treated SWW. This process reaches a maximum TOC removal of 99% in 76.5 h with an estimated cost of $2.19/kg TOC removal and $21.65/m(3) treated SWW, equivalent to $6.79/m(3) day. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ruan, Wenqian; Qi, Jimei; Hou, Yu; Cao, Rensheng; Wei, Xionghui
2018-01-01
Reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles were synthesized in this study for the removal of crystal violet (CV) dye from aqueous solutions. This material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS). The influence of independent parameters (namely, initial dye concentration, initial pH, contact time, and temperature) on the removal efficiency were investigated via Box–Behnken design (BBD). Artificial intelligence (i.e., artificial neural network, genetic algorithm, and particle swarm optimization) was used to optimize and predict the optimum conditions and obtain the maximum removal efficiency. The zero point of charge (pHZPC) of rGO/Fe/Ni composites was determined by using the salt addition method. The experimental equilibrium data were fitted well to the Freundlich model for the evaluation of the actual behavior of CV adsorption, and the maximum adsorption capacity was estimated as 2000.00 mg/g. The kinetic study discloses that the adsorption processes can be satisfactorily described by the pseudo-second-order model. The values of Gibbs free energy change (ΔG0), entropy change (ΔS0), and enthalpy change (ΔH0) demonstrate the spontaneous and endothermic nature of the adsorption of CV onto rGO/Fe/Ni composites. PMID:29789483
Bordoloi, Shreemoyee; Nath, Suresh K; Gogoi, Sweety; Dutta, Robin K
2013-09-15
A three-step treatment process involving (i) mild alkaline pH-conditioning by NaHCO₃; (ii) oxidation of arsenite and ferrous ions by KMnO₄, itself precipitating as insoluble MnO₂ under the pH condition; and (iii) coagulation by FeCl₃ has been used for simultaneous removal of arsenic and iron ions from water. The treated water is filtered after a residence time of 1-2 h. Laboratory batch experiments were performed to optimize the doses. A field trial was performed with an optimized recipe at 30 households and 5 schools at some highly arsenic affected villages in Assam, India. Simultaneous removals of arsenic from initial 0.1-0.5 mg/L to about 5 μg/L and iron from initial 0.3-5.0 mg/L to less than 0.1 mg/L have been achieved along with final pH between 7.0 and 7.5 after residence time of 1h. The process also removes other heavy elements, if present, without leaving any additional toxic residue. The small quantity of solid sludge containing mainly ferrihydrite with adsorbed arsenate passes the toxicity characteristic leaching procedure (TCLP) test. The estimated recurring cost is approximately USD 0.16 per/m(3) of purified water. A high efficiency, an extremely low cost, safety, non-requirement of power and simplicity of operation make the technique potential for rural application. Copyright © 2013 Elsevier B.V. All rights reserved.
Daghrir, Rimeh; Drogui, Patrick; Tshibangu, Joel; Delegan, Nazar; El Khakani, My Ali
2014-05-01
The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.
McKee, Rodney A.; Walker, Frederick J.
2003-11-25
A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.
Carbohydrate and exercise performance: the role of multiple transportable carbohydrates.
Jeukendrup, Asker E
2010-07-01
Carbohydrate feeding has been shown to be ergogenic, but recently substantial advances have been made in optimizing the guidelines for carbohydrate intake during prolonged exercise. It was found that limitations to carbohydrate oxidation were in the absorptive process most likely because of a saturation of carbohydrate transporters. By using a combination of carbohydrates that use different intestinal transporters for absorption it was shown that carbohydrate delivery and oxidation could be increased. Studies demonstrated increases in exogenous carbohydrate oxidation rates of up to 65% of glucose: fructose compared with glucose only. Exogenous carbohydrate oxidation rates reach values of 1.75 g/min whereas previously it was thought that 1 g/min was the absolute maximum. The increased carbohydrate oxidation with multiple transportable carbohydrates was accompanied by increased fluid delivery and improved oxidation efficiency, and thus the likelihood of gastrointestinal distress may be diminished. Studies also demonstrated reduced fatigue and improved exercise performance with multiple transportable carbohydrates compared with a single carbohydrate. Multiple transportable carbohydrates, ingested at high rates, can be beneficial during endurance sports in which the duration of exercise is 3 h or more.
Control of the Pore Texture in Nanoporous Silicon via Chemical Dissolution.
Secret, Emilie; Wu, Chia-Chen; Chaix, Arnaud; Galarneau, Anne; Gonzalez, Philippe; Cot, Didier; Sailor, Michael J; Jestin, Jacques; Zanotti, Jean-Marc; Cunin, Frédérique; Coasne, Benoit
2015-07-28
The surface and textural properties of porous silicon (pSi) control many of its physical properties essential to its performance in key applications such as optoelectronics, energy storage, luminescence, sensing, and drug delivery. Here, we combine experimental and theoretical tools to demonstrate that the surface roughness at the nanometer scale of pSi can be tuned in a controlled fashion using partial thermal oxidation followed by removal of the resulting silicon oxide layer with hydrofluoric acid (HF) solution. Such a process is shown to smooth the pSi surface by means of nitrogen adsorption, electron microscopy, and small-angle X-ray and neutron scattering. Statistical mechanics Monte Carlo simulations, which are consistent with the experimental data, support the interpretation that the pore surface is initially rough and that the oxidation/oxide removal procedure diminishes the surface roughness while increasing the pore diameter. As a specific example considered in this work, the initial roughness ξ ∼ 3.2 nm of pSi pores having a diameter of 7.6 nm can be decreased to 1.0 nm following the simple procedure above. This study allows envisioning the design of pSi samples with optimal surface properties toward a specific process.
Deng, Xiaohui; Öztürk, Secil; Weidenthaler, Claudia; Tüysüz, Harun
2017-06-28
Herein, ordered mesoporous nickel cobalt oxides prepared by the nanocasting route are reported as highly active oxygen evolution reaction (OER) catalysts. By using the ordered mesoporous structure as a model system and afterward elevating the optimal catalysts composition, it is shown that, with a simple electrochemical activation step, the performance of nickel cobalt oxide can be significantly enhanced. The electrochemical impedance spectroscopy results indicated that charge transfer resistance increases for Co 3 O 4 spinel after an activation process, while this value drops for NiO and especially for CoNi mixed oxide significantly, which confirms the improvement of oxygen evolution kinetics. The catalyst with the optimal composition (Co/Ni 4/1) reaches a current density of 10 mA/cm 2 with an overpotential of a mere 336 mV and a Tafel slope of 36 mV/dec, outperforming benchmarked and other reported Ni/Co-based OER electrocatalysts. The catalyst also demonstrates outstanding durability for 14 h and maintained the ordered mesoporous structure. The cyclic voltammograms along with the electrochemical measurements in Fe-free KOH electrolyte suggest that the activity boost is attributed to the generation of surface Ni(OH) 2 species that incorporate Fe impurities from the electrolyte. The incorporation of Fe into the structure is also confirmed by inductively coupled plasma optical emission spectrometry.
Optimizing the withdrawal speed using dip coating for optical sensor
NASA Astrophysics Data System (ADS)
Samat, S. F. A.; Sarah, M. S. P.; Idros, M. Faizol Md; Rusop, M.
2018-05-01
The processing route of sol-gel has been used for many productions of thin film using metal oxide such as titanium dioxide, zinc oxide, carbon dioxide and so on. For this research the thin film phase was studied has high transmittance using dip coating technique with different withdrawal speed for optical sensing. The result obtained from optical transmittance spectra that transmits at 30nm and bend at 350nm to 800nm was in the visible light wavelength range. From the data, the withdrawal speed was low at 5s and 10s could give the highest transmittance which were 90.41% and 87.91% respectively.
Recent Advances in the Development of Thick-Section Melt-Infiltrated C/SiC Composites
NASA Technical Reports Server (NTRS)
Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.
2004-01-01
Using a pressureless melt infiltration and in situ reaction process to form the silicon carbide (SiC) matrix, Ultramet has been developing a means to rapidly fabricate ceramic matrix composites (CMCs) targeting thicker sections. The process also employs a unique route for the application of oxide fiber interface coatings designed to protect the fiber and impart fiber-matrix debond. Working toward a 12 inch diameter, 2.5 inch thick demonstrator component, the effect of various processing parameters on room temperature flexure strength is being studied with plans for more extensive elevated temperature mechanical strength evaluation to follow this initial optimization process.
Reactive Molecular Dynamics Investigations of Alkoxysilane Sol-Gel and Surface Coating Processes
NASA Astrophysics Data System (ADS)
Deetz, Joshua David
The ability to generate nanostructured materials with tailored morphology or chemistry is of great technological interest. One proven method of generating metal-oxide materials, and chemically modifying metal-oxide surfaces is through the reactions of molecular building blocks known as alkoxysilanes. Alkoxysilanes are a class of chemicals which contain one or more organic alkoxy groups bonded to silicon atoms. Alkoxysilane (Si-O-R) chemical groups can undergo reactions to form bridges (Si-O-M) with metal oxides. Due to their ability to "attach" to metal-oxides through condensation reactions, alkoxysilanes have a number of interesting applications, such as: the generation of synthetic siloxane materials through the sol-gel process, and the formation of functionalized surface coatings on metal-oxide surfaces. Despite widespread study of sol-gel and surface coatings processes, it is difficult to predict the morphology of the final products due to the large number of process variables involved, such as precursor molecule structure, solvent effects, solution composition, temperature, and pH. To determine the influence of these variables on the products of sol-gel and coatings processes reactive molecular dynamics simulations are used. A reactive force field was used (ReaxFF) to allow the chemical bonds in simulation to dynamically form and break. The force field parameters were optimized using a parallel optimization scheme with a combination of experimental information, and density functional theory calculations. Polycondensation of alkoxysilanes in mixtures of alcohol and water were studied. Steric effects were observed to influence the rates of hydrolysis and condensation in solutions containing different precursor monomers. By restricting the access of nucleophiles to the central silicon atom, the nucleation rate of siloxanes can be controlled. The influence of solution precursor, water, and methanol composition on reaction rates was explored. It was determined that the rate of alkoxysilane hydrolysis is strongly dependent on the concentration of water. The dynamics of siloxane cluster formation are revealed, which provides insight for experimentalists. The silanization of hydroxylated silica surfaces by alkoxysilanes was modeled in pseudo-infinite liquid solution. Butyl-, octyl-, or dodecylsilanes were exposed to hydroxylated silica surfaces in order to observe the influence of silyl headgroup size on the morphology and formation kinetics of silane films on silica substrates. The radius of gyration and order parameter of the hydrocarbon silyl groups were found to increase with grafting density. This was the first simulation study of the dynamic grafting of alkoxysilanes to a substrate.
Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Xiong, Kangning; Wei, Xionghui
2017-12-21
Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) magnetic nanocomposites were prepared and then applied in the Cu(II) removal from aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and superconduction quantum interference device magnetometer were performed to characterize the nZVI/rGO nanocomposites. In order to reduce the number of experiments and the economic cost, response surface methodology (RSM) combined with artificial intelligence (AI) techniques, such as artificial neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), has been utilized as a major tool that can model and optimize the removal processes, because a tremendous advance has recently been made on AI that may result in extensive applications. Based on RSM, ANN-GA and ANN-PSO were employed to model the Cu(II) removal process and optimize the operating parameters, e.g., operating temperature, initial pH, initial concentration and contact time. The ANN-PSO model was proven to be an effective tool for modeling and optimizing the Cu(II) removal with a low absolute error and a high removal efficiency. Furthermore, the isotherm, kinetic, thermodynamic studies and the XPS analysis were performed to explore the mechanisms of Cu(II) removal process.
2017-09-14
one such study, AOPs were investigated for the removal of organophosphorus pesticides in wastewater by selecting and optimizing oxidation processes...micropollutants (primarily pharmaceuticals, personal care products, and pesticides ) in four 64 different river water sources (Colorado River, Passaic...the National Institutes of Health PubChem data repository (National Institutes of Health 2016). Additional chemical properties were also selected for
An environmentally compliant cerium-based conversion coating for aluminum protection
NASA Astrophysics Data System (ADS)
Lin, Xuan
Chromate conversion coatings have been extensively used in the aircraft industry for the corrosion protection of aluminum alloys. Unfortunately, hexavalent chromium, which is a primary component in the chromating process, is a confirmed carcinogen. Because of rising remediation and disposal costs caused by increasingly strict regulations, the replacement of the traditional chromate conversion process is becoming a top priority in the metal finishing industry. This research focused on the electrodeposition of cerium-based coatings on 7075-T6 aluminum alloy in an electrolyte containing a cerium salt, an oxidizing agent and an organic solvent. The cerium-rich deposits were characterized by phase composition, oxidation state, coating thickness, surface morphology, deposition mechanism and polarization behavior. Chemical and electrochemical tests were utilized to compare the corrosion resistance between cerium-based coatings and chromate conversion coatings. To characterize and simulate the deposition process, a variety of approaches were utilized to study the oxidation states of cerium in various soluble and precipitated forms as a function of hydrogen peroxide and electrolyte pH. The pH ranges where the oxidation and reduction reactions dominate were determined. Further studies were performed to optimize the corrosion performance of cerium-based coatings and to understand the effects of electrolyte constituents and deposition parameters. The optimum levels for these variables were identified. A patent disclosure on the cerium-based coating process was made to the University of Missouri-Rolla and has now been officially filed with the U.S. Patent Office.
NASA Astrophysics Data System (ADS)
Navarro, M. V.; López, J. M.; García, T.; Grasa, G.; Murillo, R.
2017-09-01
The operational limits of a commercial nickel-based catalyst under the conditions of a sorption-enhanced steam-methane reforming process coupled to a Ca/Cu chemical loop are investigated for high-purity H2 production in a cyclic operation. The performance of the reforming catalyst is tested by means of a high number of oxidation-reduction-reforming cycles. After 100 oxidation-reduction cycles, this catalyst retains its exceptional reforming activity. The methane conversion values are close to the thermodynamic equilibrium under very demanding conditions: temperature between 500 °C - 700 °C and mass hourly space velocity of 8.8 kgCH4 h-1 kgcat-1. After 200 cycles, the sample shows reduction in its reforming activity in line with a lower dispersion of the Ni species. Sintering of Ni nanocrystals is evidenced during the oxidation-reduction multi-cycles. The performance of the catalyst after 200 oxidation-reduction cycles mixed with a CaO-based CO2 sorbent is studied under optimal conditions calculated for the sorption-enhanced reforming process coupled to a Ca/Cu cycle (temperature of 650 °C, steam/methane ratio of 4, sorbent/catalyst ratio of 4 and space velocity of 0.75 kgCH4 h-1 kgcat-1). Remarkably, an equilibrium value over 92 vol.% H2 concentration is achieved, highlighting this catalyst as a promising candidate for the next steps of the process development.
Pallier, Virginie; Feuillade-Cathalifaud, Geneviève; Serpaud, Bernard
2011-03-01
The aim of this study is to evaluate and understand the electrocoagulation/flocculation (ECF) process to remove arsenic from both model and natural waters with low mineral content and to compare its performances to the coagulation/flocculation (CF) process already optimized. Experiments were thus conducted with iron electrodes in the same specific treatment conditions (4≤current density (mAcm(-2))≤33) to study the influence of organic matter on arsenic removal in conditions avoiding the oxidation step usually required to improve As(III) removal. The process performance was evaluated by combining quantification of arsenic residual concentrations and speciation and dissolved organic carbon residual concentrations with zeta potential and turbidity measurements. When compared to CF, ECF presented several disadvantages: (i) lower As(V) removal yield because of the ferrous iron dissolved from the anode and the subsequent negative zeta potential of the colloidal suspension, (ii) higher residual DOC concentrations because of the fractionation of high molecular weight compounds during the treatment leading to compounds less prone to coagulate and (iii) higher residual turbidities because of the charge neutralization mechanisms involved. However, during this process, As(III) was oxidized to As(V) improving considerably its removal whatever the matrix conditions. ECF thus allowed to improve As(III) removal without applying an oxidation step that could potentially lead to the formation of toxic oxidation by-products. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhang, Yanyu; Wang, Aimin; Tian, Xiujun; Wen, Zhenjun; Lv, Hanjiao; Li, Desheng; Li, Jiuyi
2016-11-15
In this study, a novel self-sustainable solar assisted photoelectro-Fenton (SPEF) system driven by a solar photovoltaic cell was developed for the efficient mineralization of antibiotic trimethoprim (TMP) in water. A comparative degradation of 200mgL(-1) TMP by RuO2/Ti anodic oxidation (AO), anodic oxidation with H2O2 electrogeneration (AO-H2O2), electro-Fenton (EF) and SPEF was investigated. SPEF was proved to exhibit the highest oxidation power, i.e., more than 80% TOC was removed after 360min SPEF treatment of 200mgL(-1) of TMP under optimal conditions at pH 3.0, 1.0mM Fe(2+) and 18mAcm(-2). Influences of current density, pH, initial Fe(2+) and initial TMP concentration on SPEF process were also studied. Ten aromatic intermediates generated from hydroxylation, carbonylation and demethylation reactions were identified using UPLC-QTOF-MS/MS system during the SPEF treatment, together with three carboxylic acids (oxamic, oxalic and formic acids) and two inorganic ions (NH4(+) and NO3(-)) measured. Therefore, a reasonable pathway of TMP degradation in SPEF process was proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Anceno, Alfredo J; Rouseau, Pierre; Béline, Fabrice; Shipin, Oleg V; Dabert, Patrick
2009-07-01
Animal wastes have been successfully employed in anaerobic biogas production, viewed as a pragmatic approach to rationalize energy costs in animal farms. Effluents resulting from that process however are still high in nitrogen such that attempts were made to couple biological nitrogen removal (BNR) with anaerobic digestion (AD). The demand for organic substrate in such system is partitioned between the anaerobic metabolism in AD and the heterotrophic denitrification cascade following the autotrophic nitrification in BNR. Investigation of underlying N-converting taxa with respect to process conditions is therefore critical in optimizing N-removal in such treatment system. In this study, a pilot-scale intermittently aerated BNR bioreactor was started up either independently or in series with the AD bioreactor to treat high-strength swine waste slurry. The compositions of NH(3)-oxidizing bacteria (AOB), NO(2)(-)-oxidizing bacteria (NOB) and denitrifiers (nosZ gene) were profiled by polymerase chain reaction-capillary electrophoresis/single strand conformation polymorphism (PCR-CE/SSCP) technique and clone library analysis. Performance data suggested that these two process configurations significantly differ in the modes of biological N-removal. PCR-CE/SSCP based profiling of the underlying nitrifying bacteria also revealed the selection of distinct taxa between process configurations. Under the investigated process conditions, correlation of performance data and composition of underlying nitrifiers suggest that the stand-alone BNR bioreactor tended to favor N-removal via NO(3)(-) whereas the coupled bioreactors could be optimized to achieve the same via a NO(2)(-) shortcut.
Wang, Ying; Liang, Mingxing; Fang, Jiasheng; Fu, Jun; Chen, Xiaochun
2017-09-01
In this study, α-FeOOH on reduced graphene oxide (rGO-α-FeOOH) supported on an Al-doped MCM-41 catalyst (RFAM) was optimized for the visible-light photo-Fenton oxidation of phenol at neutral pH. The stability of the catalysts, effect of bubbling aeration, and degradation intermediates were investigated. Results indicated that RFAM with a large Brunauer-Emmett-Teller (BET) area and mesoporous structure displayed excellent catalytic activity for the visible-light-driven (VLD) photo-Fenton process. Phenol degradation was well described by a pseudo-first-order reaction kinetics model. Raman analysis demonstrated that an rGO-α-FeOOH (RF) composite is formed during the ferrous-ion-induced self-assembly process. Al-MCM-41 could uniformly disperse RF nanosheets and promote the mobility and diffusion of matter. The activity of the main catalyst α-FeOOH was enhanced after the incorporation of rGO nanosheets. The α-FeOOH crystal in RFAM showed catalytic activity superior to those of Fe 3 O 4 and Fe 2 O 3 . The RFAM catalyst, with an optimal GO-Fe 2+ mass ratio of 2.33, exhibited a larger BET area, pore size, and pore volume, and thus exhibited high performance and energy utilization efficiency in the VLD photo-Fenton reaction with remarkable stability. Bubbling N 2 inhibited catalytic performance, while bubbling O 2 or air only slightly accelerated the phenol degradation. Visible light played an important role in accelerating the formation of reactive oxygen species (·OH) for the highly efficient phenol degradation. Analysis of degradation intermediates indicated a high phenol mineralization level and the formation of low-molecular-weight organic acids. This work would be helpful in providing an insight into a new type of catalyst assembly and a possible route to a promising heterogeneous catalyst applicable in the visible light photo-Fenton process for effective wastewater remediation at neutral pH. Copyright © 2017. Published by Elsevier Ltd.
Kang, Byung Ha; Kim, Won-Gi; Chung, Jusung; Lee, Jin Hyeok; Kim, Hyun Jae
2018-02-28
A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 10 6 , and a detectivity of 6.93 × 10 11 Jones under 635 nm light illumination.
Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate.
Alzate, Andrea; López, Maria Esperanza; Serna, Claudia
2016-11-01
This paper presents a novel methodology to recover gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate ((NH 4 ) 2 S 2 O 8 ). Gold was recovered as a fine coating using substrate oxidation without shredding or grinding process. The WEEE sample was characterized giving values of Au: 1.05g/kg, Fe: 86.00g/kg, Ni: 73.64g/kg, Cu: 26.65g/kg. The effect of (NH 4 ) 2 S 2 O 8 concentration (0.22-1.10M), oxygen (0.0-1.4L/min) and L/S ratio (10-30mL/g) on the main responses (substrate oxidation and Au recovery) was investigated implementing response surface methodology with numerical optimization. A quadratic model was developed and quantities greater than 98% of Au were recovered. The findings presented suggest that, optimized quantities of ammonium persulfate in aqueous highly oxygenated media could be used to extract superficial gold from WEEE. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimizing the electrical excitation of an atmospheric pressure plasma advanced oxidation process.
Olszewski, P; Li, J F; Liu, D X; Walsh, J L
2014-08-30
The impact of pulse-modulated generation of atmospheric pressure plasma on the efficiency of organic dye degradation has been investigated. Aqueous samples of methyl orange were exposed to low temperature air plasma and the degradation efficiency was determined by absorbance spectroscopy. The plasma was driven at a constant frequency of 35kHz with a duty cycle of 25%, 50%, 75% and 100%. Relative concentrations of dissolved nitrogen oxides, pH, conductivity and the time evolution of gas phase ozone were measured to identify key parameters responsible for the changes observed in degradation efficiency. The results indicate that pulse modulation significantly improved dye degradation efficiency, with a plasma pulsed at 25% duty showing a two-fold enhancement. Additionally, pulse modulation led to a reduction in the amount of nitrate contamination added to the solution by the plasma. The results clearly demonstrate that optimization of the electrical excitation of the plasma can enhance both degradation efficiency and the final water quality. Copyright © 2014 Elsevier B.V. All rights reserved.
Empirical simulations of materials
NASA Astrophysics Data System (ADS)
Jogireddy, Vasantha
2011-12-01
Molecular dynamics is a specialized discipline of molecular modelling and computer techniques. In this work, first we presented simulation results from a study carried out on silicon nanowires. In the second part of the work, we presented an electrostatic screened coulomb potential developed for studying metal alloys and metal oxides. In particular, we have studied aluminum-copper alloys, aluminum oxides and copper oxides. Parameter optimization for the potential is done using multiobjective optimization algorithms.
Schubert, M; Fey, A; Ihssen, J; Civardi, C; Schwarze, F W M R; Mourad, S
2015-01-10
An artificial neural network (ANN) and genetic algorithm (GA) were applied to improve the laccase-mediated oxidation of iodide (I(-)) to elemental iodine (I2). Biosynthesis of iodine (I2) was studied with a 5-level-4-factor central composite design (CCD). The generated ANN network was mathematically evaluated by several statistical indices and revealed better results than a classical quadratic response surface (RS) model. Determination of the relative significance of model input parameters, ranking the process parameters in order of importance (pH>laccase>mediator>iodide), was performed by sensitivity analysis. ANN-GA methodology was used to optimize the input space of the neural network model to find optimal settings for the laccase-mediated synthesis of iodine. ANN-GA optimized parameters resulted in a 9.9% increase in the conversion rate. Copyright © 2014 Elsevier B.V. All rights reserved.
Thermodynamic Investigation of the Reduction-Distillation Process for Rare Earth Metals Production
NASA Astrophysics Data System (ADS)
Judge, W. D.; Azimi, G.
2017-10-01
Owing to their high vapor pressure, the four rare earth metals samarium, europium, thulium, and ytterbium are produced by reduction-distillation whereby their oxides are reduced with metallic lanthanum in vacuo, and the produced metal is subsequently vaporized off. Here, we performed a thorough thermodynamic investigation to establish a fundamental understanding of the reduction-distillation process. Thermodynamic functions including vapor pressures, Gibbs free energies, and enthalpies of reaction were calculated and compared with available experimental data. Furthermore, the kinetics of the process was explored and theoretical evaporation rates were calculated from thermodynamic data. The thermodynamic model developed in this work can help optimize processing conditions to maximize the yield and improve the overall process.
2013-01-01
In the present study, solar photocatalytic oxidation has been investigated through laboratory experiments as an alternative to conventional secondary treatment for the organic content reduction of high COD wastewater. Experiments have been performed on synthetic high COD wastewater for solar photocatalytic oxidation using a parabolic trough reactor. Parameters affecting the oxidation of organics have been investigated. The experimental design followed the sequence of dark adsorption studies of organics, followed by photolytic studies (in absence of catalyst) and finally photocatalytic studies in presence and absence of additional oxidant (H2O2). All the experimental studies have been performed at pH values of 2, 4, 6,8,10 and the initial pH value of the wastewater (normal pH). For photocatalytic studies, TiO2 has been used as a photocatalyst. Optimization of catalyst dose, pH and H2O2 concentration has been done. Maximum reduction of organic content was observed at the normal pH value of the wastewater (pH = 6.8). The reaction rate was significantly enhanced in presence of hydrogen peroxide. The optimum pH other than the Normal was in the alkaline range. Acidic pH was not found to be favourable for organic content reduction. pH was found to be a dominant factor affecting reaction rate even in presence of H2O2 as an additional oxidant. Also, the solar detoxification process was effective in treating a waste with a COD level of more than 7500 mg/L, which is a otherwise a difficult waste to treat. It can therefore be used as a treatment step in the high organic wastewater treatment during the primary stage also as it effectively reduces the COD content by 86%. PMID:23369352
Improvement of the GaSb/Al2O3 interface using a thin InAs surface layer
NASA Astrophysics Data System (ADS)
Greene, Andrew; Madisetti, Shailesh; Nagaiah, Padmaja; Yakimov, Michael; Tokranov, Vadim; Moore, Richard; Oktyabrsky, Serge
2012-12-01
The highly reactive GaSb surface was passivated with a thin InAs layer to limit interface trap state density (Dit) at the III-V/high-k oxide interface. This InAs surface was subjected to various cleaning processes to effectively reduce native oxides before atomic layer deposition (ALD). Ammonium sulfide pre-cleaning and trimethylaluminum/water ALD were used in conjunction to provide a clean interface and annealing in forming gas (FG) at 350 °C resulted in an optimized fabrication for n-GaSb/InAs/high-k gate stacks. Interface trap density, Dit ≈ 2-3 × 1012 cm-2eV-1 resided near the n-GaSb conductance band which was extracted and compared with three different methods. Conductance-voltage-frequency plots showed efficient Fermi level movement and a sub-threshold slope of 200 mV/dec. A composite high-k oxide process was also developed using ALD of Al2O3 and HfO2 resulting in a Dit ≈ 6-7 × 1012 cm-2eV-1. Subjecting these samples to a higher (450 °C) processing temperature results in increased oxidation and a thermally unstable interface. p-GaSb displayed very fast minority carrier generation/recombination likely due to a high density of bulk traps in GaSb.
Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.
Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina
2015-01-01
Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need to adopt an individualized diet for each athlete performing a specific sport or in a specific period of training, clinically supervised with inclusion of blood analysis and physiological tests, in a comprehensive nutritional assessment. Copyright © 2015 Elsevier Inc. All rights reserved.
Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando
2007-01-01
The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.
Oxide films state analysis by IR spectroscopy based on the simple oscillator approximation
NASA Astrophysics Data System (ADS)
Volkov, N. V.; Yakutkina, T. V.; Karpova, V. V.
2017-05-01
Stabilization of structure-phase state in a wide temperature range is one of the most important problems of improving properties of oxide compounds. As such, the search of new effective methods for obtaining metal oxides with desired physic-chemical, electro-physical and thermal properties and their control is important and relevant. The aim of this work is identification features state of the oxide films of some metals Be, Al, Fe, Cu, Zr on the metal surface of the polycrystalline samples by infrared spectroscopy. To identify the resonance emission bands the algorithm of IR-spectra processing was developed and realized on the basis of table processor EXCEL-2010, which allow revealing characteristic resonance bands successfully and identification of inorganic chemical compounds. In the frame of simple oscillator model, resonance frequencies of normal vibrations of water and some inorganic compounds: metal oxides - Be, Al, Fe, Cu, Zr were calculated and characteristic frequencies for different states (aggregate, deformation, phase) were specified. By means of IR-spectroscopy fundamental possibility of revealing oxides films on metal substrate features state is shown, that allow development and optimization of the technology for production of the oxide films with desired properties.
Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Liu, W. N.; Sun, X.; Stephens, E.; Khaleel, M. A.
In this paper, we present an integrated experimental and modeling methodology in predicting the life of coated and uncoated metallic interconnect (IC) for solid oxide fuel cell (SOFC) applications. The ultimate goal is to provide cell designer and manufacture with a predictive methodology such that the life of the IC system can be managed and optimized through different coating thickness to meet the overall cell designed life. Crofer 22 APU is used as the example IC material system. The life of coated and uncoated Crofer 22 APU under isothermal cooling was predicted by comparing the predicted interfacial strength and the interfacial stresses induced by the cooling process from the operating temperature to room temperature, together with the measured oxide scale growth kinetics. It was found that the interfacial strength between the oxide scale and the Crofer 22 APU substrate decreases with the growth of the oxide scale, and that the interfacial strength for the oxide scale/spinel coating interface is much higher than that of the oxide scale/Crofer 22 APU substrate interface. As expected, the predicted life of the coated Crofer 22 APU is significantly longer than that of the uncoated Crofer 22 APU.
Hwang, Jeong-Ha; Han, Dong-Woo
2015-01-01
Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process.
Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu
2017-08-25
Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.
Freeze Tape Casting of Functionally Graded Porous Ceramics
NASA Technical Reports Server (NTRS)
Sofie, Stephen W.
2007-01-01
Freeze tape casting is a means of making preforms of ceramic sheets that, upon subsequent completion of fabrication processing, can have anisotropic and/or functionally graded properties that notably include aligned and graded porosity. Freeze tape casting was developed to enable optimization of the microstructures of porous ceramic components for use as solid oxide electrodes in fuel cells: Through alignment and grading of pores, one can tailor surface areas and diffusion channels for flows of gas and liquid species involved in fuel-cell reactions. Freeze tape casting offers similar benefits for fabrication of optimally porous ceramics for use as catalysts, gas sensors, and filters.
NASA Astrophysics Data System (ADS)
Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.
2013-10-01
Magnesium is recovered from partially oxidized scrap alloy by combining refining and solid oxide membrane (SOM) electrolysis. In this combined process, a molten salt eutectic flux (45 wt.% MgF2-55 wt.% CaF2) containing 10 wt.% MgO and 2 wt.% YF3 was used as the medium for magnesium recovery. During refining, magnesium and its oxide are dissolved from the scrap into the molten flux. Forming gas is bubbled through the flux and the dissolved magnesium is removed via the gas phase and condensed in a separate condenser at a lower temperature. The molten flux has a finite solubility for magnesium and acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium recovered has high purity. After refining, SOM electrolysis is performed in the same reactor to enable electrolysis of the dissolved magnesium oxide in the molten flux producing magnesium at the cathode and oxygen at the SOM anode. During SOM electrolysis, it is necessary to decrease the concentration of the dissolved magnesium in the flux to improve the faradaic current efficiency and prevent degradation of the SOM. Thus, for both refining and SOM electrolysis, it is very important to measure and control the magnesium solubility in the molten flux. High magnesium solubility facilitates refining whereas lower solubility benefits the SOM electrolysis process. Computational fluid dynamics modeling was employed to simulate the flow behavior of the flux stirred by the forming gas. Based on the modeling results, an optimized design of the stirring tubes and its placement in the flux are determined for efficiently removing the dissolved magnesium and also increasing the efficiency of the SOM electrolysis process.
Ultrasound-assisted advanced oxidation processes for water decontamination.
Ince, Nilsun H
2018-01-01
The study reflects a part of my experience in sonochemistry and ultrasound-assisted advanced oxidation processes (AOPs) acquired during the last fifteen years with my research team. The data discussed were selected from studies with azo dyes, endocrine disrupting compounds and analgesic/anti-inflammatory pharmaceuticals, which are all classified as "hazardous" or "emerging" contaminants. The research focused on their treatability by ultrasound (US) and AOPs with emphasis on the mineralization of organic carbon. Some of the highlights as pointed out in the manuscript are: i) ultrasound is capable of partially or completely oxidizing the above contaminant groups if the operating conditions are properly selected and optimized, but incapable of mineralizing them; ii) the mechanism of degradation in homogeneous solutions is OH-mediated oxidation in the bulk solution or at the bubble-liquid interface, depending on the molecular properties of the contaminant, the applied frequency and pH; iii) US-assisted AOPs such as ozonation, UV/peroxide, Fenton and UV/Fenton are substantially more effective than ultrasound alone, particularly for the mineralization process; iv) catalytic processes involving TiO 2 , alumina and zero-valent iron and assisted by ultrasound are promising options not only for the destruction of the parent compounds, but also for the mineralization of their oxidation byproducts. The degradation reactions in heterogeneous solutions take place mostly at the catalyst surface despite the high-water solubility of the compounds; v) sonolytic modification of the above catalysts to reduce their particle size (to nano-levels) or to decorate the surface with metallic nanoparticles increases the catalytic activity under sonolysis, photolysis and both, and improves the stability of the catalyst. Copyright © 2017 Elsevier B.V. All rights reserved.
Computational analysis of liquid hypergolic propellant rocket engines
NASA Technical Reports Server (NTRS)
Krishnan, A.; Przekwas, A. J.; Gross, K. W.
1992-01-01
The combustion process in liquid rocket engines depends on a number of complex phenomena such as atomization, vaporization, spray dynamics, mixing, and reaction mechanisms. A computational tool to study their mutual interactions is developed to help analyze these processes with a view of improving existing designs and optimizing future designs of the thrust chamber. The focus of the article is on the analysis of the Variable Thrust Engine for the Orbit Maneuvering Vehicle. This engine uses a hypergolic liquid bipropellant combination of monomethyl hydrazine as fuel and nitrogen tetroxide as oxidizer.
NASA Technical Reports Server (NTRS)
Distefano, S.; Gupta, A.; Ingham, J. D.
1983-01-01
A rhodium-based catalyst was prepared and preliminary experiments were completed where the catalyst appeared to decarboxylate dilute acids at concentrations of 1 to 10 vol%. Electron spin resonance spectroscoy was used to characterize the catalyst as a first step leading toward modeling and optimization of rhodium catalysts. Also, a hybrid chemical/biological process for the production of hydrocarbons has been assessed. These types of catalysts could greatly increase energy efficiency of this process.
Optimization of imprintable nanostructured a-Si solar cells: FDTD study.
Fisker, Christian; Pedersen, Thomas Garm
2013-03-11
We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.
Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen
NASA Astrophysics Data System (ADS)
Luo, Si
Abstract of the Dissertation. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen. by. Si Luo. Doctor of Philosophy. in. Chemistry. Stony Brook University. 2017. The environmental impacts of fossil fuel consumption and the resulting global warming have attracted increasing attention to technologies and fuels that are both sustainable and renewable in the 21st century. To date, hydrogen has been proposed as an encouraging candidate of the next generation of chemical fuels, which meets all demands for carbon free and efficient chemistries that could be produced from a variety of sources. However, despite tremendous efforts, there is a clear need to develop new catalysts for the production of hydrogen through catalytic processes that are sustainable, such as in the photocatalytic splitting of water (PCS: H2O → H2 + 0.5O2) and the water-gas shift process (WGS: CO + H2O → H2 + CO2). This thesis is primarily motivated by this challenge and has focused on the photochemical and thermal production of H2 by the employment of novel TiO2 based catalysts. TiO2 is one of the most widely studied photocatalysts in all history, due to its relatively high activity, robust stability, safety and low cost. In this thesis, several TiO2-based mixed metal oxide nano catalysts (CeOx-TiO2, Ru-TiO2, Ga-TiO2) have been synthesized with carefully controlled morphology/structure and with inclusion of co-catalysts (Pt). These novel materials were comprehensively characterized to better understand their morphology, crystal structure, and electronic properties in an attempt to unravel phenomena responsible for high catalytic performance for the production of H2 from H2O. We have discovered the importance of low-dimensional metal oxide and interfacial stabilized nano-scaled mixed metal oxides for H2 production, while learning how best to tune such structure to optimize both thermal and photochemical conversion. Optimized structure and/or composition have been identified for TiO2 modified in different ways by another metal oxide (CeOx) or with dopants (Ga, Ru). In addition, we have also studied the water gas shift reaction on several TiO2 supported catalysts, where similar concepts can be applied. Advanced In situ characterization enabled the investigation of the catalyst structure, surface chemical intermediates and active species under reaction conditions. The influence of metal-oxide, oxide-oxide interactions has been further revealed for both the water-gas shift and the photocatalytic splitting of water.
Liquid-phase-deposited siloxane-based capping layers for silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja
2015-02-02
We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies ofmore » up to 19.8% on p-type Czochralski silicon.« less
Gas-phase advanced oxidation for effective, efficient in situ control of pollution.
Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka
2014-01-01
In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.
Bauman, Stephen J.; Brawley, Zachary T.; Darweesh, Ahmad A.; Herzog, Joseph B.
2017-01-01
This work investigates a new design for a plasmonic SERS biosensor via computational electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different metallic widths per grating period. These types of plasmonic gratings have shown larger optical enhancement than standard single-width gratings. The new structures have additional increased enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work integrates an oxide layer to improve the enhancement even further by carefully studying the effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters. The combined effects of varying the substrate and the grating geometry are studied to fully optimize the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2 layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a single-width grating and a non-optimal oxide thickness. PMID:28665308
Optimization of the oxidant supply system for combined cycle MHD power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1982-01-01
An in-depth study was conducted to determine what, if any, improvements could be made on the oxidant supply system for combined cycle MHD power plants which could be reflected in higher thermal efficiency and a reduction in the cost of electricity, COE. A systematic analysis of air separation process varitions which showed that the specific energy consumption could be minimized when the product stream oxygen concentration is about 70 mole percent was conducted. The use of advanced air compressors, having variable speed and guide vane position control, results in additional power savings. The study also led to the conceptual design of a new air separation process, sized for a 500 MW sub e MHD plant, referred to a internal compression is discussed. In addition to its lower overall energy consumption, potential capital cost savings were identified for air separation plants using this process when constructed in a single large air separation train rather than multiple parallel trains, typical of conventional practice.
Zhou, Xu; Jin, Wenbiao; Chen, Hongyi; Chen, Chuan; Han, Songfang; Tu, Renjie; Wei, Wei; Gao, Shu-Hong; Xie, Guo-Jun; Wang, Qilin
2017-11-01
The enhancement of sludge dewaterability is of great importance for facilitating the sludge disposal during the operation of wastewater treatment plants. In this study, a novel oxidative conditioning approach was applied to enhance the dewaterability of waste activated sludge by the combination of zero-valent iron (ZVI) and peroxymonosulfate (PMS). It was found that the dewaterability of sludge was significantly improved after the addition of ZVI (0-4 g/g TSS) (TSS: total suspended solids) and PMS (0-1 g/g TSS). The optimal addition amount of ZVI and PMS was 0.25 g/g TSS and 0.1 g/g TSS, respectively, under which the capillary suction time of the sludge was reduced by approximately 50%. The decomposition of sludge flocs could contribute to the improved sludge dewaterability. Economic analysis demonstrated that the proposed conditioning process with ZVI and PMS was more economical than the ZVI + peroxydisulfate and the traditional Fenton conditioning processes.
NASA Astrophysics Data System (ADS)
Retherford, Kurt D.; Bai, Yibin; Ryu, Kevin K.; Gregory, James A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winters, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.
2015-10-01
We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.
Rustioni, Laura; Cola, Gabriele; VanderWeide, Josh; Murad, Patrick; Failla, Osvaldo; Sabbatini, Paolo
2018-09-01
Phenolic ripening represents a major interest for quality wine producers. Nevertheless, climatic or genotypical limitations can often prevent optimal maturation process. During winemaking seeds can be easily separated and technologically processed to improve their quality. Relying on the key role of oxidation for phenolic ripening, a freeze-thaw treatment was proposed to improve the fruit quality for potential use in challenging growing conditions. The experiment was carried on in two distinctive viticultural areas, Michigan and Italy. Five cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot noir and Chambourcin) and six cultivars (Cabernet Sauvignon, Sangiovese, Syrah, Croatina, Barbera and Nebbiolo) were used in Michigan and Italy, respectively. Samples were collected at different phenological stages, to describe the natural ripening process and grape seeds were characterized before and after a freeze-thaw treatment. Colorimetric and spectrophotometric data highlighted similarities among natural and artificial seed ripening promising future applications for the wine industries. Copyright © 2018 Elsevier Ltd. All rights reserved.
Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates.
de Morais, Josmaria Lopes; Zamora, Patricio Peralta
2005-08-31
Two advanced oxidative processes (Fe2+/H2O2/UV and H2O2/UV systems) were used for the pre-treatment of mature landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. At optimized experimental conditions (2000 mgL(-1) of H2O2 and 10 mgL(-1) of Fe2+ for the photo-Fenton system, and 3000 mgL(-1) of H2O2 for the H2O2/UV system), both methods showed suitability for partial removal of chemical oxygen demand (COD), total organic carbon (TOC) and color. The biodegradability was significantly improved (BOD5/COD from 0.13 to 0.37 or 0.42) which allowed an almost total removal of COD and color by a sequential activated sludge process. In addition, gel permeation chromatography (GPC) has showed a substantial agreement on the cleavage of large organic compound into smaller ones.
NASA Astrophysics Data System (ADS)
Lee, Minkyung; Kim, Minho; Jo, Jeong-Wan; Park, Sung Kyu; Kim, Yong-Hoon
2018-01-01
This study offers a combinatorial approach for suppressing the persistent photo-conductance (PPC) characteristic in solution-processed amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) in order to achieve rapid photo-recovery. Various analyses were used to examine the photo-instability of indium-gallium-zinc-oxide (IGZO) TFTs including negative-bias-illumination-stress (NBIS) and transient photo-response behaviors. It was found that the indium ratio in metallic components had a significant impact on their PPC and photo-recovery characteristics. In particular, when the indium ratio was low (51.5%), the PPC characteristic was significantly suppressed and achieving rapid photo-recovery was possible without significantly affecting the electrical performance of AOSs. These results imply that the optimization of the indium composition ratio may allow achieving highly photo-stable and near PPC-free characteristics while maintaining high electrical performance of AOSs. It is considered that the negligible PPC behavior and rapid photo-recovery observed in IGZO TFTs with a lower indium composition are attributed to the less activation energy required for the neutralization of ionized oxygen vacancies.
Performance Assessment of the Exploration Water Recovery System
NASA Technical Reports Server (NTRS)
Carter. D. Layne; Tabb, David; Perry, Jay
2008-01-01
A new water recovery system architecture designed to fulfill the National Aeronautics and Space Administration s (NASA) Space Exploration Policy has been tested at the Marshall Space Flight Center (MSFC). This water recovery system architecture evolved from the current state-of-the-art system developed for the International Space Station (ISS). Through novel integration of proven technologies for air and water purification, this system promises to elevate existing system optimization. The novel aspect of the system is twofold. First, volatile organic compounds (VOC) are removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase. Second, vapor compression distillation (VCD) technology processes the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removing VOCs from the vapor phase is more efficient. Treating the various waste streams by VCD reduces the load on the expendable ion exchange and adsorption media which follows, as well as the aqueous-phase catalytic oxidation process further downstream. This paper documents the results of testing this new architecture.
Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi
2014-07-01
Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemicalmore » approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene.« less
NASA Astrophysics Data System (ADS)
Lo, Yi-Chuan; Lee, Chih-Hsiung; Lin, Hsun-Peng; Peng, Chiou-Shian
1998-06-01
Several continuous splits for wafer alignment target topography conditions to improve epitaxy film alignment were applied. The alignment evaluation among former layer pad oxide thickness (250 angstrom - 500 angstrom), drive oxide thickness (6000 angstrom - 10000 angstrom), nitride film thickness (600 angstrom - 1500 angstrom), initial oxide etch (fully wet etch, fully dry etch and dry plus wet etch) will be split to this experiment. Also various epitaxy deposition recipe such as: epitaxy source (SiHCl2 or SiCHCl3) and growth rate (1.3 micrometer/min approximately 2.0 micrometer/min) will be used to optimize the process window for alignment issue. All the reflectance signal and cross section photography of alignment target during NIKON stepper alignment process will be examined. Experimental results show epitaxy recipe plays an important role to wafer alignment. Low growth rate with good performance conformity epitaxy lead to alignment target avoid washout, pattern shift and distortion. All the results (signal monitor and film character) combined with NIKON's stepper standard laser scanning alignment system will be discussed in this paper.
Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor
Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric
2003-06-24
An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.
NASA Astrophysics Data System (ADS)
Li, Zhigang; Liu, Zhifeng; Wu, Zhibin; Zeng, Guangming; Shao, Binbin; Liu, Yujie; Jiang, Yilin; Zhong, Hua; Liu, Yang
2018-05-01
A novel graphene-based material of tea saponin functionalized reduced graphene oxide (TS-RGO) was synthesized via a facil thermal method, and it was characterized as the absorbent for Cd(II) removal from aqueous solutions. The factors on adsorption process including solution pH, contact time, initial concentration of Cd(II) and background electrolyte cations were studied to optimize the conditions for maximum adsorption at room temperature. The results indicated that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The optimal pH and required equilibrium time was 6.0 and 10 min, respectively. The Cd(II) removal decreased with the presence of background electrolyte cations (Na+ < Ca2+ < Al3+). The adsorption kinetics of Cd(II) followed well with the pseudo-second-order model. The adsorption isotherm fitted well to the Langmuir model, indicating that the adsorption was a monolayer adsorption process occurred on the homogeneous surfaces of TS-RGO. The maximum monolayer adsorption capacity was 127 mg/g at 313 K and pH 6.0. Therefore, the TS-RGO was considered to be a cost-effective and promising material for the removal of Cd(II) from wastewater.
Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine
2015-06-21
In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U 3Si 2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U 3Si 2 has been optimized and high phase purity U 3Si 2 has been successfully produced. Results are presentedmore » from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm 3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less
Ge/IIIV fin field-effect transistor common gate process and numerical simulations
NASA Astrophysics Data System (ADS)
Chen, Bo-Yuan; Chen, Jiann-Lin; Chu, Chun-Lin; Luo, Guang-Li; Lee, Shyong; Chang, Edward Yi
2017-04-01
This study investigates the manufacturing process of thermal atomic layer deposition (ALD) and analyzes its thermal and physical mechanisms. Moreover, experimental observations and computational fluid dynamics (CFD) are both used to investigate the formation and deposition rate of a film for precisely controlling the thickness and structure of the deposited material. First, the design of the TALD system model is analyzed, and then CFD is used to simulate the optimal parameters, such as gas flow and the thermal, pressure, and concentration fields, in the manufacturing process to assist the fabrication of oxide-semiconductors and devices based on them, and to improve their characteristics. In addition, the experiment applies ALD to grow films on Ge and GaAs substrates with three-dimensional (3-D) transistors having high electric performance. The electrical analysis of dielectric properties, leakage current density, and trapped charges for the transistors is conducted by high- and low-frequency measurement instruments to determine the optimal conditions for 3-D device fabrication. It is anticipated that the competitive strength of such devices in the semiconductor industry will be enhanced by the reduction of cost and improvement of device performance through these optimizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine
In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U 3Si 2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U 3Si 2 has been optimized and high phase purity U 3Si 2 has been successfully produced. Results are presentedmore » from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm 3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less
Bakather, Omer Y.; Khraisheh, Majeda; Nasser, Mustafa S.
2017-01-01
The aim of this research was to investigate the potential of raw and iron oxide impregnated carbon nanotubes (CNTs) as adsorbents for the removal of selenium (Se) ions from wastewater. The original and modified CNTs with different loadings of Fe2O3 nanoparticles were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffractometer (XRD), Brunauer, Emmett, and Teller (BET) surface area analyzer, thermogravimetric analysis (TGA), zeta potential, and energy dispersive X-ray spectroscopy (EDS). The adsorption parameters of the selenium ions from water using raw CNTs and iron oxide impregnated carbon nanotubes (CNT-Fe2O3) were optimized. Total removal of 1 ppm Se ions from water was achieved when 25 mg of CNTs impregnated with 20 wt.% of iron oxide nanoparticles is used. Freundlich and Langmuir isotherm models were used to study the nature of the adsorption process. Pseudo-first and pseudo-second-order models were employed to study the kinetics of selenium ions adsorption onto the surface of iron oxide impregnated CNTs. Maximum adsorption capacity of the Fe2O3 impregnated CNTs, predicted by Langmuir isotherm model, was found to be 111 mg/g. This new finding might revolutionize the adsorption treatment process and application by introducing a new type of nanoadsorbent that has super adsorption capacity towards Se ions. PMID:28555093
Krausmann, Jan; Sanctis, Shawn; Engstler, Jörg; Luysberg, Martina; Bruns, Michael; Schneider, Jörg J
2018-06-20
The influence of the composition within multilayered heterostructure oxide semiconductors has a critical impact on the performance of thin-film transistor (TFT) devices. The heterostructures, comprising alternating polycrystalline indium oxide and zinc oxide layers, are fabricated by a facile atomic layer deposition (ALD) process, enabling the tuning of its electrical properties by precisely controlling the thickness of the individual layers. This subsequently results in enhanced TFT performance for the optimized stacked architecture after mild thermal annealing at temperatures as low as 200 °C. Superior transistor characteristics, resulting in an average field-effect mobility (μ sat. ) of 9.3 cm 2 V -1 s -1 ( W/ L = 500), an on/off ratio ( I on / I off ) of 5.3 × 10 9 , and a subthreshold swing of 162 mV dec -1 , combined with excellent long-term and bias stress stability are thus demonstrated. Moreover, the inherent semiconducting mechanism in such multilayered heterostructures can be conveniently tuned by controlling the thickness of the individual layers. Herein, devices comprising a higher In 2 O 3 /ZnO ratio, based on individual layer thicknesses, are predominantly governed by percolation conduction with temperature-independent charge carrier mobility. Careful adjustment of the individual oxide layer thicknesses in devices composed of stacked layers plays a vital role in the reduction of trap states, both interfacial and bulk, which consequently deteriorates the overall device performance. The findings enable an improved understanding of the correlation between TFT performance and the respective thin-film composition in ALD-based heterostructure oxides.
Denora, Nunzio; Lopedota, Angela; Perrone, Mara; Laquintana, Valentino; Iacobazzi, Rosa M; Milella, Antonella; Fanizza, Elisabetta; Depalo, Nicoletta; Cutrignelli, Annalisa; Lopalco, Antonio; Franco, Massimo
2016-10-01
This work describes N-acetylcysteine (NAC)- and glutathione (GSH)-glycol chitosan (GC) polymer conjugates engineered as potential platform useful to formulate micro-(MP) and nano-(NP) particles via spray-drying techniques. These conjugates are mucoadhesive over the range of urine pH, 5.0-7.0, which makes them advantageous for intravesical drug delivery and treatment of local bladder diseases. NAC- and GSH-GC conjugates were generated with a synthetic approach optimizing reaction times and purification in order to minimize the oxidation of thiol groups. In this way, the resulting amount of free thiol groups immobilized per gram of NAC- and GSH-GC conjugates was 6.3 and 3.6mmol, respectively. These polymers were completely characterized by molecular weight, surface sulfur content, solubility at different pH values, substitution and swelling degree. Mucoadhesion properties were evaluated in artificial urine by turbidimetric and zeta (ζ)-potential measurements demonstrating good mucoadhesion properties, in particular for NAC-GC at pH 5.0. Starting from the thiolated polymers, MP and NP were prepared using both the Büchi B-191 and Nano Büchi B-90 spray dryers, respectively. The resulting two formulations were evaluated for yield, size, oxidation of thiol groups and ex-vivo mucoadhesion. The new spray drying technique provided NP of suitable size (<1μm) for catheter administration, low degree of oxidation, and sufficient mucoadhesion property with 9% and 18% of GSH- and NAC-GC based NP retained on pig mucosa bladder after 3h of exposure, respectively. The aim of the present study was first to optimize the synthesis of NAC-GC and GSH-GC, and preserve the oxidation state of the thiol moieties by introducing several optimizations of the already reported synthetic procedures that increase the mucoadhesive properties and avoid pH-dependent aggregation. Second, starting from these optimized thiomers, we studied the feasibility of manufacturing MP and NP by spray-drying techniques. The aim of this second step was to produce mucoadhesive drug delivery systems of adequate size for vesical administration by catheter, and comparable mucoadhesive properties with respect to the processed polymers, avoiding thiolic oxidation during the formulation. MP with acceptable size produced by spray-dryer Büchi B-191 were compared with NP made with the apparatus Nano Büchi B-90. Copyright © 2016 Acta Materialia Inc. All rights reserved.
Mousset, E; Wang, Z; Lefebvre, O
2016-11-01
The removal of micropollutants is an important environmental and health issue. Electro-Fenton offers an electrochemical advanced treatment that is particularly effective for the breakdown of aromatic contaminants. Due to the wide variety of chemicals, it is preferable to analyze model contaminants, such as phenol, when optimizing and assessing the efficacy of a novel treatment process. In this study, we therefore made use of innovative types of electrode material and optimized operating parameters (current density and aeration rate) for the removal of phenol by electro-Fenton, with a view to maximize the energy efficiency of the process. By determining the best current density (1.25 mA cm -2 ), frequency of aeration (continuous) and by using a boron-doped diamond (BDD) anode, it was possible to achieve over 98.5% phenol (1 mM) removal within 1.5 h. BDD further outcompeted platinum as anode material in terms of mineralization rate and yield, and displayed low energy consumption of 0.08 kWh (g-TOC) -1 , about one order of magnitude lower than other advanced oxidation processes, such as UV/TiO 2 and UV/O 3 . Furthermore, a carbon cloth anode proved even more cost-effective than BDD if the end goal is the removal of phenol by electro-Fenton instead of complete mineralization.
Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M
2014-01-01
The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.
Selective reduction of N-oxides to amines: application to drug metabolism.
Kulanthaivel, Palaniappan; Barbuch, Robert J; Davidson, Rita S; Yi, Ping; Rener, Gregory A; Mattiuz, Edward L; Hadden, Chad E; Goodwin, Lawrence A; Ehlhardt, William J
2004-09-01
Phase I oxidative metabolism of nitrogen-containing drug molecules to their corresponding N-oxides is a common occurrence. There are instances where liquid chromatography/tandem mass spectometry techniques are inadequate to distinguish this pathway from other oxidation processes, including C-hydroxylations and other heteroatom oxidations, such as sulfur to sulfoxide. Therefore, the purpose of the present study was to develop and optimize an efficient and practical chemical method to selectively convert N-oxides to their corresponding amines suitable for drug metabolism applications. Our results indicated that efficient conversion of N-oxides to amines could be achieved with TiCl(3) and poly(methylhydrosiloxane). Among them, we found TiCl(3) to be a facile and easy-to-use reagent, specifically applicable to drug metabolism. There are a few reports describing the use of TiCl(3) to reduce N-O bonds in drug metabolism studies, but this methodology has not been widely used. Our results indicated that TiCl(3) is nearly as efficient when the reductions were carried out in the presence of biological matrices, including plasma and urine. Finally, we have shown a number of examples where TiCl(3) can be successfully used to selectively reduce N-oxides in the presence of sulfoxides and other labile groups.
Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate.
Dong, Yuwei; Zhang, Yanqiu; Tu, Baojun
Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
NASA Astrophysics Data System (ADS)
Stefanov, P.; Galanov, D.; Vissokov, G.; Paneva, D.; Kunev, B.; Mitov, I.
2008-06-01
The optimal conditions on the plasma-forming gas flowrate, discharge current and voltage, distance between the plasma-torch nozzle and the metal plate surface for the process of penetration in and vaporization of steel plates by the contracted electric-arc air plasma torch accompanied by water quenching, were determined. The X-ray structural and phase studies as well as Mössbauer and electron microscope studies on the samples treated were performed. It was demonstrated that the vaporized elemental iron was oxidized by the oxygen present in the air plasma jet to form iron oxides (wüstite, magnetite, hematite), which, depending on their mass ratios, determined the color of the iron oxide pigments, namely, beginning from light yellow, through deep yellow, light brown, deep brown, violet, red-violet, to black. A high degree of dispersity of the iron oxides is thus produced, with an averaged diameter of the particles below 500 nm, and their defective crystal structure form the basis of their potential application as components of iron-containing catalysts and pigments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn
2016-04-14
The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximatemore » to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.« less
Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi
2011-01-01
Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.
Avila, Jason R.; DeMarco, Erica J.; Emery, Jonathan D.; ...
2014-07-21
Through in-situ quartz crystal microbalance (QCM) monitoring we resolve the growth of a self-assembled monolayer (SAM) and subsequent metal oxide deposition with high resolution. Here, we introduce the fitting of mass deposited during each atomic layer deposition (ALD) cycle to an analytical island-growth model that enables quantification of growth inhibition, nucleation density, and the uninhibited ALD growth rate. A long-chain alkanethiol was self-assembled as a monolayer on gold-coated quartz crystals in order to investigate its effectiveness as a barrier to ALD. Compared to solution-loading, vapor-loading is observed to produce a SAM with equal or greater inhibition-ability in minutes vs. days.more » The metal oxide growth temperature and the choice of precursor also significantly affect the nucleation density, which ranges from 0.001 to 1 sites/nm 2. Finally, we observe a minimum 100 cycle inhibition of an oxide ALD process, ZnO, under moderately optimized conditions.« less
Largeron, Martine; Fleury, Maurice-Bernard
2015-02-23
The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fusillo, G.; Rosestolato, D.; Scura, F.; Cattarin, S.; Mattarozzi, L.; Guerriero, P.; Gambirasi, A.; Brianese, N.; Staiti, P.; Guerriero, R.; La Sala, G.
2018-03-01
We present the preparation and characterization of pure lead monoxide obtained through recycling of the lead paste recovered from exhausted lead acid batteries. The recycling is based on a hydrometallurgical procedure reported in a STC Patent, that includes simple chemical operations (desulphurisation, leaching, precipitation, filtration) and a final thermal conversion. Materials obtained by treatment at 600 °C consist predominantly of β-PbO. The electrochemical behaviour of Positive Active Mass (PAM) prepared from different materials (or mixtures) is then investigated and compared. An optimized oxide material, obtained by prolonged (8 h) thermal treatment at 600 °C, consists of pure β-PbO and appears suitable for preparation of battery elements, alone or in mixture with a small fraction (10%-30%) of traditional industrial leady oxide. The resulting battery performances are similar to those obtained from pure leady oxide. In comparison with traditional recycling processes, the proposed method guarantees lower energy consumption, limited environmental impact and reduced operating risk for industry workers.
Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating
NASA Technical Reports Server (NTRS)
Sahoo, N. K.; Shapiro, A. P.
1998-01-01
In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.
Visibly transparent polymer solar cells produced by solution processing.
Chen, Chun-Chao; Dou, Letian; Zhu, Rui; Chung, Choong-Heui; Song, Tze-Bin; Zheng, Yue Bing; Hawks, Steve; Li, Gang; Weiss, Paul S; Yang, Yang
2012-08-28
Visibly transparent photovoltaic devices can open photovoltaic applications in many areas, such as building-integrated photovoltaics or integrated photovoltaic chargers for portable electronics. We demonstrate high-performance, visibly transparent polymer solar cells fabricated via solution processing. The photoactive layer of these visibly transparent polymer solar cells harvests solar energy from the near-infrared region while being less sensitive to visible photons. The top transparent electrode employs a highly transparent silver nanowire-metal oxide composite conducting film, which is coated through mild solution processes. With this combination, we have achieved 4% power-conversion efficiency for solution-processed and visibly transparent polymer solar cells. The optimized devices have a maximum transparency of 66% at 550 nm.
Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide
Chung, Ren-Jei; Wang, An-Ni; Liao, Qing-Liang; Chuang, Kai-Yu
2017-01-01
Nowadays glucose detection is of great importance in the fields of biological, environmental, and clinical analyzes. In this research, we report a zinc oxide (ZnO) nanorod powder surface-coated with carbon material for non-enzymatic glucose sensor applications through a hydrothermal process and chemical vapor deposition method. A series of tests, including crystallinity analysis, microstructure observation, and electrochemical property investigations were carried out. For the cyclic voltammetric (CV) glucose detection, the low detection limit of 1 mM with a linear range from 0.1 mM to 10 mM was attained. The sensitivity was 2.97 μA/cm2mM, which is the most optimized ever reported. With such good analytical performance from a simple process, it is believed that the nanocomposites composed of ZnO nanorod powder surface-coated with carbon material are promising for the development of cost-effective non-enzymatic electrochemical glucose biosensors with high sensitivity. PMID:28336869
NASA Astrophysics Data System (ADS)
He, Yuchen; Uehara, Satoshi; Takana, Hidemasa; Nishiyama, Hideya
2018-01-01
Advanced oxidation processes using hydroxyl radicals (ṡOH) generated inside bubbles in water has drawn widely interest for the high oxidation potential of OH radical to decompose persistent organic pollutants such as dioxins and humic acid for water purification. In this study, a two-dimensional diffusion model for a nano-pulse discharged bubble in water is established. Based on the experimental results of streamer propagation inside a bubble, the diffusion processes around the bubble interface and reactions of chemical species in liquids are simulated. The simulation results show that OH radicals can diffuse only several micrometers away from the bubble interface in water. Furthermore, the optimal operating voltage and frequency conditions for OH generation is obtained by comparing the OH concentration in water obtained from numerical simulation with that measured by spectroscopy in experiment.
Extraterrestrial materials processing and construction
NASA Technical Reports Server (NTRS)
Criswell, D. R.
1978-01-01
Applications of available terrestrial skills to the gathering of lunar materials and the processing of raw lunar materials into industrial feed stock were investigated. The literature on lunar soils and rocks was reviewed and the chemical processes by which major oxides and chemical elements can be extracted were identified. The gathering of lunar soil by means of excavation equipment was studied in terms of terrestrial experience with strip mining operations on earth. The application of electrostatic benefication techniques was examined for use on the moon to minimize the quantity of materials requiring surface transport and to optimize the stream of raw materials to be transported off the moon for subsequent industrial use.
Naveas, Nelson; Hernandez-Montelongo, Jacobo; Pulido, Ruth; Torres-Costa, Vicente; Villanueva-Guerrero, Raúl; Predestinación García Ruiz, Josefa; Manso-Silván, Miguel
2014-03-01
Nanostructured porous silicon (PSi) elicits as a very attractive material for future biosensing systems due to its high surface area, biocompatibility and well-established fabrication methods. In order to engineer its performance as a biosensor transducer platform, the density of immunoglobulins properly immobilized and oriented onto the surface needs to be optimized. In this work we fabricated and characterized a novel biosensing system focusing on the improvement of the biofunctionalization cascade. The system consists on a chemically oxidized PSi platform derivatized with 3-aminopropyltriethoxysilane (APTS) that is coupled to Staphylococcus protein A (SpA). The chemical oxidation has previously demonstrated to enhance the biofunctionalization process and here "by implementing SpA" a molecularly oriented immunosensor is achieved. The biosensor system is characterized in terms of its chemical composition, wettability and optical reflectance. Finally, this system is successfully exploited to develop a biosensor for detecting asymmetric dimethylarginine (ADMA), an endogenous molecule involved in cardiovascular diseases. Therefore, this work is relevant from the point of view of design and optimization of the biomolecular immobilization cascade on PSi surfaces with the added value of contribution to the development of new assays for detecting ADMA with a view on prevention of cardiovascular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.
Olive oil quality and ripening in super-high-density Arbequina orchard.
Benito, Marta; Lasa, José Manuel; Gracia, Pilar; Oria, Rosa; Abenoza, María; Varona, Luis; Sánchez-Gimeno, Ana Cristina
2013-07-01
The aim of this work was to evaluate the evolution of the quality of extra virgin olive oil obtained from a super-high-density Arbequina orchard, under a drip irrigation system, throughout the ripening process. For this objective, physicochemical, nutritional and sensory parameters were studied. In addition, the oxidative stability, pigment content and colour evolution of olive oil were analysed during the ripening process. Free acidity increased slightly throughout the ripening process, while peroxide value and extinction coefficient decreased. Total phenol content and oxidative stability showed a similar trend, increasing at the beginning of ripening up to a maximum and thereafter decreasing. α-Tocopherol and pigment contents decreased with ripening, leading to changes in colour coordinates. Sensory parameters were correlated with total phenol content, following a similar trend throughout the maturation process. By sampling and monitoring the ripeness index weekly, it would be possible to determine an optimal harvesting time for olives according to the industrial yield and the physicochemical, nutritional and sensory properties of the olive oil. © 2012 Society of Chemical Industry.
Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication.
Rawlings, Colin D; Zientek, Michal; Spieser, Martin; Urbonas, Darius; Stöferle, Thilo; Mahrt, Rainer F; Lisunova, Yuliya; Brugger, Juergen; Duerig, Urs; Knoll, Armin W
2017-11-28
Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching. We demonstrate the fabrication of 3D profiles in silicon and silicon oxide with nanometer scale accuracy of absolute depth levels. An accuracy of less than 1nm standard deviation in t-SPL is achieved by providing an accurate physical model of the writing process to a model-based implementation of a closed-loop lithography process. For transfering the pattern to a target substrate we optimized the etch process and demonstrate linear amplification of grayscale patterns into silicon and silicon oxide with amplification ratios of ∼6 and ∼1, respectively. The performance of the entire process is demonstrated by manufacturing photonic molecules of desired interaction strength. Excellent agreement of fabricated and simulated structures has been achieved.
Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker.
Kim, Choong Sun; Lee, Kyung Eun; Lee, Jung-Min; Kim, Sang Ouk; Cho, Byung Jin; Choi, Jung-Woo
2016-08-31
We built a thermoacoustic loudspeaker employing N-doped three-dimensional reduced graphene oxide aerogel (N-rGOA) based on a simple template-free fabrication method. A two-step fabrication process, which includes freeze-drying and reduction/doping, was used to realize a three-dimensional, freestanding, and porous graphene-based loudspeaker, whose macroscopic structure can be easily modulated. The simplified fabrication process also allows the control of structural properties of the N-rGOAs, including density and area. Taking advantage of the facile fabrication process, we fabricated and analyzed thermoacoustic loudspeakers with different structural properties. The anlayses showed that a N-rGOA with lower density and larger area can produce a higher sound pressure level (SPL). Furthermore, the resistance of the proposed loudspeaker can be easily controlled through heteroatom doping, thereby helping to generate higher SPL per unit driving voltage. Our success in constructing an array of optimized N-rGOAs able to withstand input power as high as 40 W demonstrates that a practical thermoacoustic loudspeaker can be fabricated using the proposed mass-producible solution-based process.
Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.
Hamd, Wael; Cobo, Saioa; Fize, Jennifer; Baldinozzi, Gianguido; Schwartz, Wilfrid; Reymermier, Maryse; Pereira, Alexandre; Fontecave, Marc; Artero, Vincent; Laberty-Robert, Christel; Sanchez, Clement
2012-10-14
This work reports a facile and cost-effective method for synthesizing photoactive α-Fe(2)O(3) films as well as their performances when used as photoanodes for water oxidation. Transparent α-Fe(2)O(3) mesoporous films were fabricated by template-directed sol-gel chemistry coupled with the dip-coating approach, followed by annealing at various temperatures from 350 °C to 750 °C in air. α-Fe(2)O(3) films were characterized by X-ray diffraction, XPS, FE-SEM and electrochemical measurements. The photoelectrochemical performance of α-Fe(2)O(3) photoanodes was characterized and optimized through the deposition of Co-based co-catalysts via different methods (impregnation, electro-deposition and photo-electro-deposition). Interestingly, the resulting hematite films heat-treated at relatively low temperature (500 °C), and therefore devoid of any extrinsic dopant, achieve light-driven water oxidation under near-to-neutral (pH = 8) aqueous conditions after decoration with a Co catalyst. The onset potential is 0.75 V vs. the reversible hydrogen electrode (RHE), thus corresponding to 450 mV light-induced underpotential, although modest photocurrent density values (40 μA cm(-2)) are obtained below 1.23 V vs. RHE. These new materials with a very large interfacial area in contact with the electrolyte and allowing for a high loading of water oxidation catalysts open new avenues for the optimization of photo-electrochemical water splitting.
Hu, Jiang-Ning; Zhang, Bing; Zhu, Xue-Mei; Li, Jing; Fan, Ya-Wei; Liu, Rong; Tang, Liang; Lee, Ki-Teak; Deng, Ze-Yuan
2011-05-11
Medium-chain triacylglycerol (MCT)-enriched oil was extracted by supercritical fluid extraction of carbon dioxide (SFE-CO(2)) from Cinnamomum camphora seeds. The SFE-CO(2) process was optimized using the Box-Behnken design (BBD). The maximum oil yield (42.82%) was obtained under the optimal SFE-CO(2) conditions: extraction pressure, 21.16 MPa; extraction temperature, 45.67 °C; and extraction time, 2.38 h. Subsequently, the physicochemical characteristics, fatty acid composition, triacylglycerol (TAG) composition, tocopherol content, and DSC profile as well as oxidative stabilities of C. camphora seed oil (CCSO) were studied. Results showed that CCSO contained two major medium-chain fatty acids, capric acid (53.27%) and lauric acid (39.93%). The predominant TAG species in CCSO was LaCC/CLaC (ECN 32, 79.29%). Meanwhile, it can be found that CCSO had much higher oxidative stabilities than coconut oil due to the higher content of tocopherols in CCSO (α-tocopherol, 8.67 ± 0.51 mg/100 g; γ-tocopherol, 22.6 ± 1.02 mg/100 g; δ-tocopherol, 8.38 ± 0.47 mg/100 g). Conclusively, CCSO with such a high level of MCTs and high oxidative stabilities could be potentially applied in special food for specific persons such as weak patients and overweight persons because oils enriched in MCTs can be rapidly absorbed into body to provide energy without fat accumulation.
Liu, Kang; Zhang, Zhiyuan; Zhang, Fu-Shen
2016-10-01
This work investigated various supercritical water oxidation (SCWO) systems, i.e. SCWO1 (only water), SCWO2 (water+H2O2) and SCWO3 (water+H2O2/NaOH), for waste printed circuit boards (PCBs) detoxification and recycling. Response surface methodology (RSM) was applied to optimize the operating conditions of the optimal SCWO3 systems. The optimal reaction conditions for debromination were found to be the NaOH of 0.21g, the H2O2 volume of 9.04mL, the time of 39.7min, maximum debromination efficiency of 95.14%. Variance analysis indicated that the factors influencing debromination efficiency was in the sequence of NaOH>H2O2>time. Mechanism studies indicated that the dissociated ions from NaOH in supercritical water promoted the debromination of brominated epoxy resins (BERs) through an elimination reaction and nucleophilic substitution. HO2, produced by H2O2 could induce the oxidation of phenol ring to open (intermediates of BERs), which were thoroughly degraded to form hydrocarbons, CO2, H2O and NaBr. In addition, the alkali-silica reaction between OH(-) and SiO2 induced the phase transformation of glass fibers, which were simultaneously converted into anorthite and albite. Waste PCBs in H2O2/NaOH improved SCWO system were fully degraded into useful products and simultaneously transformed into functional materials. These findings are helpful for efficient recycling of waste PCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.
Li, Hailong; Zhang, Weilin; Wang, Jun; Yang, Zequn; Li, Liqing; Shih, Kaimin
2018-04-01
Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg 0 ) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg 0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg 0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg 0 concentration and a high gas hourly space velocity of 128,000 h -1 . Hydrogen chloride (HCl) was the flue gas component responsible for Hg 0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg 0 in the presence of HCl. It is proposed that the Hg 0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg 0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg 0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heptanuclear CoII5CoIII2 Cluster as Efficient Water Oxidation Catalyst.
Xu, Jia-Heng; Guo, Ling-Yu; Su, Hai-Feng; Gao, Xiang; Wu, Xiao-Fan; Wang, Wen-Guang; Tung, Chen-Ho; Sun, Di
2017-02-06
Inspired by the transition-metal-oxo cubical Mn 4 CaO 5 in photosystem II, we herein report a disc-like heptanuclear mixed-valent cobalt cluster, [Co II 5 Co III 2 (mdea) 4 (N 3 ) 2 (CH 3 CN) 6 (OH) 2 (H 2 O) 2 ·4ClO 4 ] (1, H 2 mdea = N-methyldiethanolamine), for photocatalytic oxygen evolution. The topology of the Co 7 core resembles a small piece of cobaltate protected by terminal H 2 O, N 3 - , CH 3 CN, and multidentate N-methyldiethanolamine at the periphery. Under the optimal photocatalytic conditions, 1 exhibits water oxidation activity with a turnover number (TON) of 210 and a turnover frequency (TOF initial ) of 0.23 s -1 . Importantly, electrospray mass spectrometry (ESI-MS) was used to not only identify the possible main active species in the water oxidation reaction but also monitor the evolutions of oxidation states of cobalt during the photocatalytic reactions. These results shed light on the design concept of new water oxidation catalysts and mechanism-related issues such as the key active intermediate and oxidation state evolution in the oxygen evolution process. The magnetic properties of 1 were also discussed in detail.
Feng, Yong; Lee, Po-Heng; Wu, Deli; Shih, Kaimin
2017-02-21
The development of environmentally friendly, oxidation-selective advanced oxidation processes (AOPs) for water decontamination is important for resource recovery, carbon dioxide abatement, and cost savings. In this study, we developed an innovative AOP using a combination of peroxymonosulfate (PMS) and iodide ions (I - ) for the selective removal of phenolic pollutants from aqueous solutions. The results showed that nearly 100% degradation of phenol, bisphenol A, and hydroquinone was achieved after reaction for 4 min in the presence of 65 μM PMS and 50 μM I - . PMS-I - oxidation had a wide effective pH range, with the best performance achieved under circumneutral conditions. The ratio between [PMS] and [I - ] influenced the degradation, and the optimal ratio was approximately 1.00 for the degradation of the phenols. Neither sulfate nor hydroxyl radicals were found to be the active species in PMS-I - oxidation. Instead, we found evidence that iodide atoms were the dominant oxidants. In addition, both Cl - and Br - also promoted the degradation of phenol in PMS solution. The results of this work may promote the application of reactive halogen species in water treatment.
NASA Astrophysics Data System (ADS)
Huang, Shan; Ruiz, Melany; Jaffe, Peter
2015-04-01
Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and is referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. An Acidimicrobiaceae bacterium named A6, a previously unreported species in the Acidimicrobiaceae family, has been identified as being responsible for the Feammox process(1, 2) Feammox process was noted in riparian wetland soils in New Jersey(1,3), in tropical rainforest soils in Puerto Rico (4) and in paddy soils in China (5). In addition to these published locations, Feammox process was also found in samples collected from a series of local wetland-, upland-, as well as storm-water detention pond-sediments in New Jersey, river sediments from South Carolina, and forested soils near an acid mine drainage (Dabaoshan, Guangdong province) in China. Using primers acm342f - 439r (2), Acidimicrobiaceae bacterium A6 was detected in samples where Feammox was observed, after strictly anaerobic incubations. According to a canonical correspondence analysis with environmental characteristics and soil microbial communities, the species-environment relationship indicated that pH and Fe oxides content were the primary factors controlling Feammox process. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. No correlation was found between the distributions of Feammox bacteria and other NH4+ oxidation bacteria. Pure Acidimicrobiaceae bacterium A6 strain was isolated in an autotrophic medium, from an active Feammox membrane reactor (A6 was enriched to 65.8% of the total bacteria). A 13C labeled CO2 amendment was conducted, and the 13C in cells of A6 increased from 1.80% to 10.3% after 14 days incubation. In a separate incubation, 15NH4Cl was added with a final concentration of 0.5 mmol L-1, and 0.133 mmol L-1 of 15NO2- was detected, while no 15NO3- was produced. In Feammox culture amended with different Fe(III) sources, Feammox reaction proceeded only when Fe oxides (ferrihydrite or goethite) were supplied, whereas samples incubated with ferric chloride or ferric citrate showed no measurable NH4+ oxidation. Acidimicrobiaceae bacterium A6 were then grown in Microbial Electrolysis Cells (MECs). While being gently shaken, with a voltage input of 0.7V and a 10Ω resistance between the anode and cathode, the MECs produce currents, increasing from 0.1μA up to ~35μA while NH4+ was available in the medium. Up to 105 copies of DNA/ml have been detected in liquid medium after 3 weeks of operation. Hence, MECs represent an alternative, iron-free form, for optimized biomass production of pure Acidimicrobiaceae bacterium A6. References 1. Clement J.C., Shrestha J., Ehrenfeld J.G., Jaffé P.R., 2005. Soil Biol Biochem 37:2323-2328. 2. Huang S., and Jaffé P.R., 2014. Biogeosciences Discussions 11, 12295-12321 3. Shrestha J., Rich J., Ehrenfeld J., Jaffé P.R., 2009. Soil Sci. 174:156-164. 4. Yang W.H., Weber K.A., Silver W.L., 2012. Nat Geosc 5: 538-541. 5. Ding L.J., An X.L., Li S., Zhang G.L., Zhu Y.G., 2014. Environ Sci Technol. 48:10641-7
Barba, Francisco José; Criado, María Nieves; Belda-Galbis, Clara Miracle; Esteve, María José; Rodrigo, Dolores
2014-04-01
Response surface methodology was used to evaluate the optimal high pressure processing treatment (300-500 MPa, 5-15 min) combined with Stevia rebaudiana (Stevia) addition (0-2.5% (w/v)) to guarantee food safety while maintaining maximum retention of nutritional properties. A fruit extract matrix was selected and Listeria monocytogenes inactivation was followed from the food safety point of view while polyphenoloxidase (PPO) and peroxidase (POD) activities, total phenolic content (TPC) and antioxidant capacity (TEAC and ORAC) were studied from the food quality point of view. A combination of treatments achieved higher levels of inactivation of L. monocytogenes and of the oxidative enzymes, succeeding in completely inactivating POD and also increasing the levels of TPC, TEAC and ORAC. A treatment of 453 MPa for 5 min with a 2.5% (w/v) of Stevia succeeded in inactivating over 5 log cycles of L. monocytogenes and maximizing inactivation of PPO and POD, with the greatest retention of bioactive components. Copyright © 2013 Elsevier Ltd. All rights reserved.
Algapani, Dalal E; Qiao, Wei; di Pumpo, Francesca; Bianchi, David; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie
2018-01-01
Anaerobic digestion is a well-established technology for treating organic waste, but it is still under challenge for food waste due to process stability problems. In this work, continuous H 2 and CH 4 production from canteen food waste (FW) in a two-stage system were successfully established by optimizing process parameters. The optimal hydraulic retention time was 5d for H 2 and 15d for CH 4 . Overall, around 59% of the total COD in FW was converted into H 2 (4%) and into CH 4 (55%). The fluctuations of FW characteristics did not significantly affect process performance. From the energy point view, the H 2 reactor contributed much less than the methane reactor to total energy balance, but it played a key role in maintaining the stability of anaerobic treatment of food waste. Microbial characterization indicated that methane formation was through syntrophic acetate oxidation combined with hydrogenotrophic methanogenesis pathway. Copyright © 2017. Published by Elsevier Ltd.
Kante, Karifala; Nieto-Delgado, Cesar; Rangel-Mendez, J Rene; Bandosz, Teresa J
2012-01-30
Activated carbons were prepared from spent ground coffee. Zinc chloride was used as an activation agent. The obtained materials were used as a media for separation of hydrogen sulfide from air at ambient conditions. The materials were characterized using adsorption of nitrogen, elemental analysis, SEM, FTIR, and thermal analysis. Surface features of the carbons depend on the amount of an activation agent used. Even though the residual inorganic matter takes part in the H(2)S retention via salt formation, the porous surface of carbons governs the separation process. The chemical activation method chosen resulted in formation of large volume of pores with sizes between 10 and 30Å, optimal for water and hydrogen sulfide adsorption. Even though the activation process can be optimized/changed, the presence of nitrogen in the precursor (caffeine) is a significant asset of that specific organic waste. Nitrogen functional groups play a catalytic role in hydrogen sulfide oxidation. Copyright © 2011 Elsevier B.V. All rights reserved.
Baruah, Ananta Madhab; Mahanta, Pradip Kumar
2003-10-22
Changes in the specific activities of polyphenol oxidase (PPO), peroxidase (POD), and protease and in the relative amounts of flavan-3-ols for eight genetically derived cultivated teas at various stages of leaf maturity and in four succescive seasons were examined. A series of investigations were carried out to study the cross-reactivity of complex polyphenols and PPO-generated orange-yellow theaflavins, as well as of POD oxidized substrates, producing brown so-called thearubigins during fermented tea processing. From the estimation of five major catechins, PPO activities in young shoots, and theaflavin and thearubigin contents of crushed, torn, and curled (CTC) black teas, the superior variety and flavorful flush characteristics were refined. Notable protein hydrolysis by endogenous protease as measured from free amino acids and formation of tannin-protein complex (browning products) was obtained for cultivar character and product quality. Results showed that process optimization with respect to time, temperature, moisture, and pH maximizes PPO-catalyzed desirable theaflavin pigments, whereas POD-mediated chemical reaction produces dull color.
NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Scott; Baca, Georgina; O'Connor, Michael
2015-12-31
Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is onmore » the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.« less
NASA Astrophysics Data System (ADS)
Poperechnikova, O. Yu; Filippov, L. O.; Shumskaya, E. N.; Filippova, I. V.
2017-07-01
The demand of high grade iron ore concentrates is a major issue due to the depletion of rich iron-bearing ores and high competitiveness in the iron ore market. Iron ore production is forced out to upgrade flowsheets to decrease the silica content in the pelettes. Different types of ore have different mineral composition and texture-structural features which require different mineral processing methods and technologies. The paper presents a comparative study of the cationic and anionic flotation routes to process a fine-grain oxidized iron ore. The modified carboxymethyl cellulose was found as the most efficient depressant in reverse cationic flotation. The results of flotation optimization of hematite ores using matrix of second-order center rotatable uniform design allowed to define the collector concentration, impeller rotation speed and air flowrate as the main flotation parameters impacting on the iron ore concentrate quality and iron recovery in a laboratory flotation machine. These parameters have been selected as independent during the experiments.
Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J
2015-01-01
Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.
Combustion synthesis of LaFeO{sub 3} sensing nanomaterial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaza, F., E-mail: fabio.zaza@enea.it; Serra, E.; Pallozzi, V.
2015-06-23
Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of themore » most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO{sub 3}.« less
Influence of silicon oxide on the performance of TiN bottom electrode in phase change memory
NASA Astrophysics Data System (ADS)
Gao, Dan; Liu, Bo; Xu, Zhen; Wang, Heng; Xia, Yangyang; Wang, Lei; Zhu, Nanfei; Li, Ying; Zhan, Yipeng; Song, Zhitang; Feng, Songlin
2016-10-01
The stability of TiN which is the preferred bottom electrode contact (BEC) of phase change memory (PCM) due to its low thermal conductivity and suitable electrical conductivity, is very essential to the reliability of PCM devices. In this work, in order to investigate the effect of high aspect ratio process (HARP) SiO2 on the performance of TiN, both TiN/SiO2, TiN/SiN thin films and TiN BEC device structures are analyzed. By combining transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS), we found that the TiN would be oxidized after the deposition of HARP SiO2 and there exist a thin ( 4 nm) oxidation interfacial layer between TiN and SiO2. Electrical measurements were performed on the 1R PCM test-key die with 7 nm and 10 nm BEC-only cells. The statistical initial resistances of BEC have wide distribution and it is confirmed that the non-uniform oxidation of TiN BEC affects the astringency of the resistance of TiN BEC. The experimental results help to optimize the process of TiN BEC, and SiN is recommended as a better choice as the linear layer.
Combustion synthesis of LaFeO3 sensing nanomaterial
NASA Astrophysics Data System (ADS)
Zaza, F.; Pallozzi, V.; Serra, E.; Pasquali, M.
2015-06-01
Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of the most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO3.
Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D
2010-10-01
Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe(2+)/H(2)O(2)) and heterogeneous photocatalysis with titanium dioxide (TiO(2)) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe(2+) and H(2)O(2) were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe(2+) and H(2)O(2) concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO(2) process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Onnis-Hayden, Annalisa; Majed, Nehreen; Schramm, Andreas; Gu, April Z
2011-07-01
This study investigated the abundance and distribution of key functional microbial populations and their activities in a full-scale integrated fixed film activated sludge-enhanced biological phosphorus removal (IFAS-EBPR) process. Polyphosphate accumulating organisms (PAOs) including Accumulibacter and EBPR activities were predominately associated with the mixed liquor (>90%) whereas nitrifying populations and nitrification activity resided mostly (>70%) on the carrier media. Ammonia oxidizer bacteria (AOB) were members of the Nitrosomonas europaea/eutropha/halophila and the Nitrosomonas oligotropha lineages, while nitrite oxidizer bacteria (NOB) belonged to the Nitrospira genus. Addition of the carrier media in the hybrid activated sludge system increased the nitrification capacity and stability; this effect was much greater in the first IFAS stage than in the second one where the residual ammonia concentration becomes limiting. Our results show that IFAS-EBPR systems enable decoupling of solid residence time (SRT) control for nitrifiers and PAOs that require or prefer conflicting SRT values (e.g. >15 days required for nitrifiers and <5 days preferred for PAOs). Allowing the slow-growing nitrifiers to attach to the carrier media and the faster-growing phosphorus (P)-removing organisms (and other heterotrophs, e.g. denitrifiers) to be in the suspended mixed liquor (ML), the EBPR-IFAS system facilitates separate SRT controls and overall optimization for both N and P removal processes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rasekh, Manoochehr; Ahmad, Zeeshan; Cross, Richard; Hernández-Gil, Javier; Wilton-Ely, James D E T; Miller, Philip W
2017-06-05
Naturally occurring polymers are promising biocompatible materials that have many applications for emerging therapies, drug delivery systems, and diagnostic agents. The handling and processing of such materials still constitutes a major challenge, which can limit the full exploitation of their properties. This study explores an ambient environment processing technique: coaxial electrospray (CO-ES) to encapsulate genistein (an isoflavonoid and model drug), superparamagnetic iron oxide nanoparticles (SPIONs, 10-15 nm), and a fluorophore (BODIPY) into a layered (triglyceride tristearin shell) particulate system, with a view to constructing a theranostic agent. Mode mapping of CO-ES led to an optimized atomization engineering window for stable jetting, leading to encapsulation of SPIONs within particles of diameter 0.65-1.2 μm and drug encapsulation efficiencies of around 92%. Electron microscopy was used to image the encapsulated SPIONs and confirm core-shell triglyceride encapsulation in addition to further physicochemical characterization (AFM, FTIR, DSC, and TGA). Cell viability assays (MTT, HeLa cells) were used to determine optimal SPION loaded particles (∼1 mg/mL), while in vitro release profile experiments (PBS, pH = 7.4) demonstrate a triphasic release profile. Further cell studies confirmed cell uptake and internalization at selected time points (t = 1, 2, and 4 h). The results suggest potential for using the CO-ES technique as an efficient way to encapsulate SPIONs together with sensitive drugs for the development of multimodal particles that have potential application for combined imaging and therapy.
NASA Astrophysics Data System (ADS)
Nath, Sunil
2018-05-01
Metabolic energy obtained from the coupled chemical reactions of oxidative phosphorylation (OX PHOS) is harnessed in the form of ATP by cells. We experimentally measured thermodynamic forces and fluxes during ATP synthesis, and calculated the thermodynamic efficiency, η and the rate of free energy dissipation, Φ. We show that the OX PHOS system is tuned such that the coupled nonequilibrium processes operate at optimal η. This state does not coincide with the state of minimum Φ but is compatible with maximum Φ under the imposed constraints. Conditions that must hold for species concentration in order to satisfy the principle of optimal efficiency are derived analytically and a molecular explanation based on Nath's torsional mechanism of energy transduction and ATP synthesis is suggested. Differences of the proposed principle with Prigogine's principle are discussed.
Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M
2013-02-01
Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically encountered in solid fuel combustion. DyNOR™ measures temperature in small furnace segments and delivers the reducing reagent to the exact location where it is most effective. The DyNOR™ distributor reacts precisely and dynamically to rapid changes in combustion conditions, resulting in very low NO(x) emissions from the stack. Copyright © 2012 Elsevier Ltd. All rights reserved.
Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process.
Meng, You; Liu, Ao; Guo, Zidong; Liu, Guoxia; Shin, Byoungchul; Noh, Yong-Young; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai
2018-05-30
Technical development for thin-film fabrication is essential for emerging metal-oxide (MO) electronics. Although impressive progress has been achieved in fabricating MO thin films, the challenges still remain. Here, we report a versatile and general thermal-induced nanomelting technique for fabricating MO thin films from the fiber networks, briefly called fiber-to-film (FTF) process. The high quality of the FTF-processed MO thin films was confirmed by various investigations. The FTF process is generally applicable to numerous technologically relevant MO thin films, including semiconducting thin films (e.g., In 2 O 3 , InZnO, and InZrZnO), conducting thin films (e.g., InSnO), and insulating thin films (e.g., AlO x ). By optimizing the fabrication process, In 2 O 3 /AlO x thin-film transistors (TFTs) were successfully integrated by fully FTF processes. High-performance TFT was achieved with an average mobility of ∼25 cm 2 /(Vs), an on/off current ratio of ∼10 7 , a threshold voltage of ∼1 V, and a device yield of 100%. As a proof of concept, one-transistor-driven pixel circuit was constructed, which exhibited high controllability over the light-emitting diodes. Logic gates based on fully FTF-processed In 2 O 3 /AlO x TFTs were further realized, which exhibited good dynamic logic responses and voltage amplification by a factor of ∼4. The FTF technique presented here offers great potential in large-area and low-cost manufacturing for flexible oxide electronics.
Non-Contact Technique for Determining the Mechanical Stress in thin Films on Wafers by Profiler
NASA Astrophysics Data System (ADS)
Djuzhev, N. A.; Dedkova, A. A.; E Gusev, E.; Makhiboroda, M. A.; Glagolev, P. Y.
2017-04-01
This paper presents an algorithm for analysis of relief for the purpose of calculating mechanical stresses in a selected direction on the plate in the form of software package Matlab. The method allows for the measurement sample in the local area. It provides a visual representation of the data and allows to get stress distribution on wafer surface. Automated analysis process reduces the likelihood of errors researcher. Achieved time saving during processing results. In carrying out several measurements possible drawing card plate to predict yield crystals. According to this technique done in measurement of mechanical stresses of thermal silicon oxide film on a silicon substrate. Analysis of the results showed objectivity and reliability calculations. This method can be used for selecting the optimal parameters of the material deposition conditions. In software of device-technological simulation TCAD defined process time, temperature and oxidation of the operation of the sample environment for receiving the set value of the dielectric film thickness. Calculated thermal stresses are in the system silicon-silicon oxide. There is a good correlation between numerical simulations and analytical calculation. It is shown that the nature of occurrence of mechanical stress is not limited to the difference of thermal expansion coefficients of materials.
Growth and surface analysis of SiO2 on 4H-SiC for MOS devices
NASA Astrophysics Data System (ADS)
Kodigala, Subba Ramaiah; Chattopadhyay, Somnath; Overton, Charles; Ardoin, Ira; Gordon, B. J.; Johnstone, D.; Roy, D.; Barone, D.
2015-03-01
The SiO2 layers have been grown onto C-face and Si-face 4H-SiC substrates by two different techniques such as wet thermal oxidize process and sputtering. The deposition recipes of these techniques are carefully optimized by trails and error method. The growth effects of SiO2 on the C-face and Si-face 4H-SiC substrates are thoroughly investigated by AFM analysis. The growth mechanism of different species involved in the growth process of SiO2 by wet thermal oxide is now proposed by adopting two body classical projectile scattering. This mechanism drives to determine growth of secondary phases such as α-CH nano-islands in the grown SiO2 layer. The effect of HF etchings on the SiO2 layers grown by both techniques and on both the C-face and Si-face substrates are legitimately studied. The thicknesses of the layers determined by AFM and ellipsometry techniques are widely promulgated. The MOS capacitors are made on the Si-face 4H-SiC wafers by wet oxidation and sputtering processes, which are studied by capacitance versus voltage (CV) technique. From CV measurements, the density of trap states with variation of trap level for MOS devices is estimated.
Ibarra-Taquez, Harold N; GilPavas, Edison; Blatchley, Ernest R; Gómez-García, Miguel-Ángel; Dobrosz-Gómez, Izabela
2017-09-15
Soluble coffee production generates wastewater containing complex mixtures of organic macromolecules. In this work, a sequential Electrocoagulation-Electrooxidation (EC-EO) process, using aluminum and graphite electrodes, was proposed as an alternative way for the treatment of soluble coffee effluent. Process operational parameters were optimized, achieving total decolorization, as well as 74% and 63.5% of COD and TOC removal, respectively. The integrated EC-EO process yielded a highly oxidized (AOS = 1.629) and biocompatible (BOD 5 /COD ≈ 0.6) effluent. The Molecular Weight Distribution (MWD) analysis showed that during the EC-EO process, EC effectively decomposed contaminants with molecular weight in the range of 10-30 kDa. In contrast, EO was quite efficient in mineralization of contaminants with molecular weight higher than 30 kDa. A kinetic analysis allowed determination of the time required to meet Colombian permissible discharge limits. Finally, a comprehensive operational cost analysis was performed. The integrated EC-EO process was demonstrated as an efficient alternative for the treatment of industrial effluents resulting from soluble coffee production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal
2013-06-01
To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries.
Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose
2016-07-28
Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.
Effect of electric signal frequency and form on physical-chemical oxidation of organic wastes
NASA Astrophysics Data System (ADS)
Morozov, Yegor; Tikhomirov, Alexander A.; Trifonov, Sergey V.; Kudenko, D.. Yurii A.
The behavior conditions of physical-chemical reactions securing organic wastes’ oxidation in H _{2}O _{2} aqueous medium aimed at an increase of mass exchange processes in a life support system (LSS) for a space purpose have been under study. The character of dependence of organic wastes oxidation rate in H _{2}O _{2} aqueous medium, activated with alternating current of different frequency and form have been considered. Ways of those parameters optimization for the purpose to efficiently increase the physical-chemical decomposition of organic wastes in LSS have been proposed. Specifically, power consumption and reaction time of wastes mineralization have been determined to reduce more than twice. Involvement ways of mineralized organic wastes received in intrasystem mass exchange have been shown. Application feasibility of the obtained results both for space and terrestrial purpose has been discussed. Key words: life support sustem, mineralization, turnover, frequency, organic wastes
NASA Astrophysics Data System (ADS)
Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu
2017-05-01
Vanadium oxide nanotubes (VOxNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VOxNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C12H27N) and intrinsic low conductivity of VOx. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VOxNTs and simultaneously form polypyrrole coating on VOxNTs, respectively. The resulting polypyrrole/VOxNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.
Development of a Novel Electrochemical Sensor for Determination of Matrine in Sophora flavescens.
Zhang, Junping; Wang, Yanchun; Zheng, Wei
2017-04-01
A simple and sensitive electrochemical sensor fabricated with graphene nanosheets (GNs) and a hydroxyapatite (HA) nanocomposite-modified glassy carbon electrode (GCE) was developed for the determination of matrine (MT). The as-prepared electrode (GNs/HA/GCE) was verified to outperform bare a GCE and GNs-modified electrode with increased oxidation peak currents and the decreased over-potential in the redox process of MT, indicating the great enhancement of electrocatalytic activity toward the oxidation of MT by the composite of GNs and HA. Under the optimized conditions, the oxidation peak currents were related linearly with the concentration of MT, ranging from 2 μM to 3 mM, and the detection limit (S/N = 3) was 1.2 μM. In addition, the proposed electrochemical sensor can be successfully applied in the quantitative determination of MT in Sophora flavescens extract.
Surface treatment process of Al-Mg alloy powder by BTSPS
NASA Astrophysics Data System (ADS)
Zhao, Ran; Gao, Xinbao; Lu, Yanling; Du, Fengzhen; Zhang, Li; Liu, Dazhi; Chen, Xuefang
2018-04-01
The surface of Al-Mg alloy powder was treated by BTSPS(bis(triethoxysilylpropyl)tetrasulfide) in order to avoid easy oxidation in air. The pH value, reaction temperature, reaction time, and reaction concentration were used as test conditions. The results show that the BTSPS can form a protected film on the surface of Al-Mg alloy powder. Select the best test solution by orthogonal test. The study found that the reaction time and reaction temperature have the biggest influence on the two indexes of the orthogonal test (melting enthalpy of heat and enthalpy of oxidation). The optimal conditions were as follows: pH value is 8, reaction concentration is 2%, reaction temperature is 25 °C, reaction time is 2 h. The oxidation weight gain of the alloy reached 74.45% and the decomposition temperature of silane film is 181.8 °C.
Synthesis of nano-sized lithium cobalt oxide via a sol-gel method
NASA Astrophysics Data System (ADS)
Li, Guangfen; Zhang, Jing
2012-07-01
In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.
Fluxless eutectic bonding of GaAs-on-Si by using Ag/Sn solder
NASA Astrophysics Data System (ADS)
Eo, Sung-Hwa; Kim, Dae-Seon; Jeong, Ho-Jung; Jang, Jae-Hyung
2013-11-01
Fluxless GaAs-on-Si wafer bonding using Ag/Sn solder was investigated to realize uniform and void-free heterogeneous material integration. The effects of the diffusion barrier, Ag/Sn thickness, and Ar plasma treatment were studied to achieve the optimal fluxless bonding process. Pt on a GaAs wafer and Mo on a Si wafer act as diffusion barriers by preventing the flow of Ag/Sn solder into both the wafers. The bonding strength is closely related to the Ag/Sn thickness and Ar plasma treatment. A shear strength test was carried out to investigate the bonding strength. Under identical bonding conditions, the Ag/Sn thickness was optimized to achieve higher bonding strength and to avoid the formation of voids due to thermal stress. An Ar plasma pretreatment process improved the bonding strength because the Ar plasma removed carbon contaminants and metal-oxide bonds from the metal surface.
Hao, Runlong; Zhao, Yi; Yuan, Bo; Zhou, Sihan; Yang, Shuo
2016-11-15
SO2 and NO have caused serious haze in China. For coping with the terrible problem, this paper proposed a novel advanced oxidation process of ultraviolet (UV) catalyzing vaporized H2O2 for simultaneous removal of SO2 and NO. Effects of various factors on simultaneous removal of SO2 and NO were investigated, such as the mass concentration of H2O2, the UV energy density, the UV wavelength, the H2O2 pH, the temperatures of H2O2 vaporization and UV-catalysis, the flue gas residence time, the concentrations of SO2, NO and O2, and radical scavenger. The removal efficiencies of 100% for SO2 and 87.8% for NO were obtained under the optimal conditions. The proposed approach has some superiorities, i.e. less dosage and high utilization of oxidant, short flue gas residence time and inhibiting the competition between SO2 and NO for oxidants. The results indicated that the desulfurization process was dominated by the absorption by HA-Na, whereas the denitrification was primarily affected by the H2O2 dosage, UV energy density and H2O2 pH. Interestingly, an appropriate amount of SO2 was beneficial for NO removal. The reaction mechanism was speculated based on the characterizations of removal products by XRD, FT-IR and IC. Copyright © 2016. Published by Elsevier B.V.
Grigor'eva, N V; Tsaplina, I A; Paniushkina, A E; Kondrat'eva, T F
2014-01-01
Biooxidation of refractory gold-bearing pyrite-arsenopyrite flotation concentrate was optimized and aburidance of predominant groups in the community ofthermophilic acidophilic chemolithotrophic microorganisms at various stages ofbioleaching was determined. The optimal parameters for growth and leaching/oxidation of the mineral components of the concentrate were pSH 1.4, 1.6-1.8; 47.5 degrees C; and the following salt concentrations in the liquid phase (g/L): K2HPO4.3H2O, 0.53; (NH4)2SO4, 1.6 and MgSO4.7H2O, 2.5 (or (NH4)2SO4, 1.23; ammophos, 0.41; KOH, 0.1) with 0.03% yeast extract. The optimal conditions resulted in high growth rate, high levels of iron andarsenic leaching, of Fe2+ and S(2-)/S0 oxidation, and predominance of Acidithiobacillus caldus, Sulfobacillus spp., and Ferroplasma spp. in the community.
Redox Control of Asthma: Molecular Mechanisms and Therapeutic Opportunities
Erzurum, Serpil C.
2010-01-01
Abstract An imbalance in reducing and oxidizing (redox) systems favoring a more oxidative environment is present in asthma and linked to the pathophysiology of the defining symptoms and signs including airflow limitation, hyper-reactivity, and airway remodeling. High levels of hydrogen peroxide, nitric oxide (•NO), and 15-F2t-isoprostane in exhaled breath, and excessive oxidative protein products in lung epithelial lining fluid, peripheral blood, and urine provide abundant evidence for pathologic oxidizing processes in asthma. Parallel studies document loss of reducing potential by nonenzymatic and enzymatic antioxidants. The essential first line antioxidant enzymes superoxide dismutases (SOD) and catalase are reduced in asthma as compared to healthy individuals, with lowest levels in those patients with the most severe asthma. Loss of SOD and catalase activity is related to oxidative modifications of the enzymes, while other antioxidant gene polymorphisms are linked to susceptibility to develop asthma. Monitoring of exhaled •NO has entered clinical practice because it is useful to optimize asthma care, and a wide array of other biochemical oxidative and nitrative biomarkers are currently being evaluated for asthma monitoring and phenotyping. Novel therapeutic strategies that target correction of redox abnormalities show promise for the treatment of asthma. Antioxid. Redox Signal. 12, 93–124. PMID:19634987
Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham
2007-10-01
Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.
Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability.
Liu, Changgeng; Zhang, Panyue; Zeng, Chenghua; Zeng, Guangming; Xu, Guoyin; Huang, Yi
2015-02-01
A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45×10(10) to 2.07×10(10) s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43×10(8) s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Li, Yunlong; Suhard, Samuel; Van Huylenbroeck, Stefaan; Meersschaut, Johan; Van Besien, Els; Stucchi, Michele; Croes, Kristof; Beyer, Gerald; Beyne, Eric
2017-12-01
A Through Silicon Via (TSV) is a key component for 3D integrated circuit stacking technology, and the diameter of a TSV keeps scaling down to reduce the footprint in silicon. The TSV aspect ratio, defined as the TSV depth/diameter, tends to increase consequently. Starting from the aspect ratio of 10, to improve the TSV sidewall coverage and reduce the process thermal budget, the TSV dielectric liner deposition process has evolved from sub-atmospheric chemical vapour deposition to plasma-enhanced atomic layer deposition (PE-ALD). However, with this change, a strong negative shift in the flatband voltage is observed in the capacitance-voltage characteristic of the vertical metal-oxide-semiconductor (MOS) parasitic capacitor formed between the TSV copper metal and the p-Si substrate. And, no shift is present in planar MOS capacitors manufactured with the same PE-ALD oxide. By comparing the integration process of these two MOS capacitor structures, and by using Elastic Recoil Detection to study the elemental composition of our films, it is found that the origin of the negative flatband voltage shift is the positive charge trapping at the Si/SiO2 interface, due to the positive PE-ALD reactants confined to the narrow cavity of high aspect ratio TSVs. This interface charge trapping effect can be effectively mitigated by high temperature annealing. However, this is limited in the real process due to the high thermal budget. Further investigation on liner oxide process optimization is needed.
Zhang, Qian; Xia, Yu-Feng; Hong, Jun-Ming
2016-09-01
As widely used disinfectants, the pollution caused by benzalkonium chloride (BAC) has attracted a lot of attention in recent years. Since it is not suitable for biodegradation, BAC was degraded firstly by Fenton advanced oxidation technologies (AOTs) in this research to enhance the biodegradability of the pollutions. The result revealed that the optimal molar ratio of H2O2/Fe(2+) for BAC degradation was 10:1, and the COD removal rate was 32 %. To clarify the pathway of degradation, the technique of GC-MS was implemented herein to identify intermediates and the toxicity of those BAC intermediates were also novelty tested through microbial fuel cells (MFC). The findings indicated that ten transformation products including benzyl dimethyl amine and dodecane were formed during the H2O2/Fe(2+) processes, which means the degradation pathway of BAC was initiated both on the hydrophobic (alkyl chain) and hydrophilic (benzyl and ammonium moiety) region of the surfactant. The toxicity of BAC before and after treated by Fenton process was monitored through MFC system. The electricity generation was improved 337 % after BAC was treated by H2O2/Fe(2+) oxidation processes which indicated that the toxicity of those intermediates were much lower than BAC. The mechanism and toxicity research in this paper could provide the in-depth understanding to the pathway of BAC degradation and proved the possibility of AOTs for the pretreatment of a biodegradation process.
Lim, Kiwon; Choi, Pyungho; Kim, Sangsub; Kim, Hyunki; Kim, Minsoo; Lee, Jeonghyun; Hyeon, Younghwan; Koo, Kwangjun; Choi, Byoungdeog
2018-09-01
Double stacked indium-zinc oxide (IZO)/zinc-tin oxide (ZTO) active layers were employed in amorphous-oxide-semiconductor thin-film transistors (AOS TFTs). Channel layers of the TFTs were optimized by varying the molarity of ZTO back channel layers (0.05, 0.1, 0.2, 0.3 M) and the electrical properties of IZO/ZTO double stacked TFTs were compared to single IZO and ZTO TFTs with varying the molarity and molar ratio. On the basis of the results, IZO/ZTO (0.1 M) TFTs showed the excellent electrical properties of saturation mobility (13.6 cm2/V·s), on-off ratio (7×106), and subthreshold swing (0.223 V/decade) compared to ZTO (0.1 M) of 0.73 cm2/V · s, 1 × 107, 0.416 V/decade and IZO (0.04 M) of 0.10 cm2/V · s, 5 × 106, 0.60 V/decade, respectively. This may be attributed to diffusing Sn into front layer during annealing process. In addition, with varying molarity of ZTO back channel layer, from 0.1 M to 0.3 M ZTO back channel TFTs, electrical properties and positive bias stability deteriorated with increasing molarity of back channel layer because of increasing total trap states. On the other hand, 0.05 M ZTO back channel TFT had inferior electrical properties than that of 0.1 M ZTO back channel TFT. It was related to back channel effect because of having thin thickness of channel layer. Among these devices, 0.1 M ZTO back channel TFT had a lowest total trap density, outstanding electrical properties and stability. Therefore, we recommended IZO/ZTO (0.1 M) TFT as a promising channel structure for advanced display applications.
Nominé, Alexandre; Martin, Julien; Noël, Cédric; Henrion, Gérard; Belmonte, Thierry; Bardin, Ilya V; Lukeš, Petr
2016-02-09
Controlling microdischarges in plasma electrolytic oxidation is of great importance in order to optimize coating quality. The present study highlights the relationship between the polarity at which breakdown occurs and the electrolyte pH as compared with the isoelectric point (IEP). It is found that working at a pH higher than the IEP of the grown oxide prevents the buildup of detrimental cathodic discharges. The addition of phosphates results in a shift in the IEP to a lower value and therefore promotes anodic discharges at the expense of cathodic ones.
Apparatus for decoupled thermo-photocatalytic pollution control
Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric
2003-04-22
A new method for design and scale-up of photocatalytic and thermocatalytic processes is disclosed. The method is based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to photo-thermocatalytic reactor design and scale-up. At low irradiance levels, the method is based on the implementation of low pressure drop biopolymeric and synthetic polymeric support for titanium dioxide and other band-gap media. At high irradiance levels, the method utilizes multifunctional metal oxide aerogels and other media within a novel rotating fluidized particle bed reactor.
Method and system for controlling a gasification or partial oxidation process
Rozelle, Peter L; Der, Victor K
2015-02-10
A method and system for controlling a fuel gasification system includes optimizing a conversion of solid components in the fuel to gaseous fuel components, controlling the flux of solids entrained in the product gas through equipment downstream of the gasifier, and maximizing the overall efficiencies of processes utilizing gasification. A combination of models, when utilized together, can be integrated with existing plant control systems and operating procedures and employed to develop new control systems and operating procedures. Such an approach is further applicable to gasification systems that utilize both dry feed and slurry feed.
Process for hydrogenating coal and coal solvents
Tarrer, Arthur R.; Shridharani, Ketan G.
1983-01-01
A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.
Li, Wei; Patton, Samuel; Gleason, Jamie M; Mezyk, Stephen P; Ishida, Kenneth P; Liu, Haizhou
2018-06-05
A sequential combination of membrane treatment and UV-based advanced oxidation processes (UV/AOP) has become the industry standard for potable water reuse. Chloramines are used as membrane antifouling agents and therefore carried over into the UV/AOP. In addition, persulfate (S 2 O 8 2- ) is an emerging oxidant that can be added into a UV/AOP, thus creating radicals generated from both chloramines and persulfate for water treatment. This study investigated the simultaneous photolysis of S 2 O 8 2- and monochloramine (NH 2 Cl) on the removal of 1,4-dioxane (1,4-D) for potable-water reuse. The dual oxidant effects of NH 2 Cl and S 2 O 8 2- on 1,4-D degradation were examined at various levels of oxidant dosage, chloride, and solution pH. Results showed that a NH 2 Cl-to-S 2 O 8 2- molar ratio of 0.1 was optimal, beyond which the scavenging by NH 2 Cl of HO • , SO 4 •- , and Cl 2 •- radicals decreased the 1,4-D degradation rate. At the optimal ratio, the degradation rate of 1,4-D increased linearly with the total oxidant dose up to 6 mM. The combined photolysis of NH 2 Cl and S 2 O 8 2- was sensitive to the solution pH due to a disproportionation of NH 2 Cl at pH lower than 6 into less-photoreactive dichloramine (NHCl 2 ) and radical scavenging by NH 4 + . The presence of chloride transformed HO • and SO 4 •- to Cl 2 •- that is less-reactive with 1,4-D, while the presence of dissolved O 2 promoted gaseous nitrogen production. Results from this study suggest that the presence of chloramines can be beneficial to persulfate photolysis in the removal of 1,4-D; however, the treatment efficiency depends on a careful control of an optimal NH 2 Cl dosage and a minimal chloride residue.
Huan, Zhiguang; Fratila-Apachitei, Lidy E; Apachitei, Iulian; Duszczyk, Jurek
2013-07-01
In this study, a porous oxide layer was formed on the surface of nickel-titanium alloy (NiTi) by plasma electrolytic oxidation (PEO) with the aim to produce a polymer-free drug carrier for drug eluting stent (DES) applications. The oxidation was performed galvanostatically in concentrated phosphoric acid electrolyte at low temperature. It was found that the response of NiTi substrate during the PEO process was different from that of bulk Ti, since the presence of large amount of Ni delayed the initial formation of a compact oxide layer that is essential for the PEO to take place. Under optimized PEO conditions, the resultant surface showed porosity, pore density and oxide layer thickness of 14.11%, 2.40 × 10⁵ pores/mm² and 0.8 μm, respectively. It was additionally noted that surface roughness after PEO did not significantly increase as compared with that of original NiTi substrate and the EDS analyses revealed a decrease in Ni/Ti ratio on the surface after PEO. The cross-section morphology showed no discontinuity between the PEO layer and the NiTi substrate. Furthermore, wettability and surface free energy of the NiTi substrate increased significantly after PEO treatment. The PEO process could be successfully translated to NiTi stent configuration proving for the first time its feasibility for such a medical device and offering potential for development of alternative, polymer-free drug carriers for NiTi DES. Copyright © 2013 Wiley Periodicals, Inc.
2012-01-01
We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process. PMID:22221400
Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Ranjbar, Mansoureh
2017-12-15
A novel Zn(II) imprinted polymer was synthesized via a co-precipitation method using graphene oxide/magnetic chitosan nanocomposite as supporting material. The synthesized imprinted polymer was characterized by Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM) and applied as a sorbent for selective magnetic solid phase extraction of zinc followed by its determination by flame atomic absorption spectrometry. The kinetic and isothermal adsorption experiments were carried out and all parameters affecting the extraction process was optimized. Under the optimal experimental conditions, the developed procedure exhibits a linear dynamic range of 0.5-5.0µgL -1 with a detection limit of 0.09µgL -1 and quantification limit of 0.3µgL -1 . The maximum sorption capacity of the sorbent was found to be 71.4mgg -1 . The developed procedure was successfully applied to the selective extraction and determination of zinc in various samples including well water, drinking water, black tea, rice, and milk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jin, Chang Hyun; Park, Han Chul; So, Yangkang; Nam, Bomi; Han, Sung Nim; Kim, Jin-Baek
2017-02-17
In this study, we aimed to compare supercritical carbon dioxide extraction and ethanol extraction for isoegomaketone (IK) content in perilla leaf extracts and to identify the optimal method. We measured the IK concentration using HPLC and inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells from the extracts. The IK concentration was 10-fold higher in perilla leaf extracts by supercritical carbon dioxide extraction (SFE) compared with that in perilla leaf extracts by ethanol extraction (EE). When the extracts were treated in LPS-induced RAW 264.7 cells at 25 μg/mL, the SFE inhibited the expression of inflammatory mediators such as nitric oxide (NO), monocyte chemoattractant protein-1 (MCP-1), interleutkin-6 (IL-6), interferon-β (IFN-β), and inducible nitric oxide synthase (iNOS) to a much greater extent compared with EE. Taken together, supercritical carbon dioxide extraction is considered the optimal process for obtaining high IK content and anti-inflammatory activities in leaf extracts from the P. frutescens Britt. radiation mutant.
Poortavasoly, Hajar; Montazer, Majid; Harifi, Tina
2016-01-01
This research concerned the simultaneous polyester surface modification and synthesis of zinc oxide nano-reactors to develop durable photo-bio-active fabric with variable hydrophobicity/hydrophilicity under sunlight. For this purpose, triethanolamine (TEA) was applied as a stabilizer and pH adjusting chemical for the aminolysis of polyester surface and enhancing the surface reactivity along with synthesis and deposition of ZnO nanoparticles on the fabric. Therefore, TEA played a crucial role in providing the alkaline condition for the preparation of zinc oxide nanoparticles and acting as stabilizer controlling the size of the prepared nanoparticles. The stain-photodegradability regarded as self-cleaning efficiency, wettability and weight change under the process was optimized based on zinc acetate and TEA concentrations, using central composite design (CCD). Findings also suggested the potential of the prepared fabric in inhibiting Staphylococcus aureus and Escherichia coli bacteria growth with greater than 99.99% antibacterial efficiency. Besides, the proposed treatment had no detrimental effect on tensile strength and hand feeling of the polyester fabric. Copyright © 2015 Elsevier B.V. All rights reserved.
Raber, McKenzie; Brady, Matthew David; Troian-Gautier, Ludovic; Dickenson, John; Marquard, Seth L; Hyde, Jacob; Lopez, Santiago; Meyer, Gerald J; Meyer, Thomas J; Harrison, Daniel P
2018-06-08
A series of 18 ruthenium(II) polypyridyl complexes were synthesized and evaluated under electrochemically oxidative conditions, which generates the Ru(III) oxidation state and mimics the harsh conditions experienced during the kinetically-limited regime that can occur in dye-sensitized solar cells (DSSCs) and dye-sensitized photoelectrosynthesis cells (DSPECs), to further develop fundamental insights into the factors governing molecular sensitizer surface stability in aqueous 0.1 M HClO4 (aq). Both desorption and oxidatively induced ligand substitution were observed on planar fluorine doped tin oxide, FTO, electrodes, with a dependence on the E1/2 Ru(III/II) redox potential dictating the comparative ratios of the processes. Complexes such as RuP4OMe (E1/2 = 0.91 vs Ag/AgCl) displayed virtually only desorption, while complexes such as RuPbpz (E1/2 > 1.62 V vs Ag/AgCl) displayed only chemical decomposition. Comparing isomers of 4,4'- and 5,5-disubstituted-2,2'-bipyridine ancillary polypyridyl ligands, a dramatic increase in the rate of desorption of the Ru(III) complexes was observed for the 5,5'-ligands. Nanoscopic indium doped tin oxide thin films, nanoITO, were also sensitized and analyzed with cyclic voltammetry, UV-Vis absorption spectroscopy, and XPS, allowing for further distinction of desorption versus ligand substitution processes. Desorption loss to bulk solution associated with the planar surface of FTO is essentially non-existent on nanoITO, where both desorption and ligand substitution are shut down with RuP4OMe. These results revealed that minimizing time spent in the oxidized form, incorporating electron donating groups, maximizing hydrophobicity, and minimizing molecular bulk near the adsorbed ligand are critical to optimizing the performance of ruthenium(II) polypyridyl complexes in dye-sensitized solar cell devices.
Swarm intelligence for multi-objective optimization of synthesis gas production
NASA Astrophysics Data System (ADS)
Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati
2012-11-01
In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.
Huang, Shang-Ming; Li, Hsin-Ju; Liu, Yung-Chuan; Kuo, Chia-Hung; Shieh, Chwen-Jen
2017-11-15
Although retinol is an important nutrient, retinol is highly sensitive to oxidation. At present, some ester forms of retinol are generally used in nutritional supplements because of its stability and bioavailability. However, such esters are commonly synthesized by chemical procedures which are harmful to the environment. Thus, this study utilized a green method using lipase as a catalyst with sonication assistance to produce a retinol derivative named retinyl laurate. Moreover, the process was optimized by an artificial neural network (ANN). First, a three-level-four-factor central composite design (CCD) was employed to design 27 experiments, which the highest relative conversion was 82.64%. Further, the optimal architecture of the CCD-employing ANN was developed, including the learning Levenberg-Marquardt algorithm, the transfer function (hyperbolic tangent), iterations (10,000), and the nodes of the hidden layer (6). The best performance of the ANN was evaluated by the root mean squared error (RMSE) and the coefficient of determination ( R ²) from predicting and observed data, which displayed a good data-fitting property. Finally, the process performed with optimal parameters actually obtained a relative conversion of 88.31% without long-term reactions, and the lipase showed great reusability for biosynthesis. Thus, this study utilizes green technology to efficiently produce retinyl laurate, and the bioprocess is well established by ANN-mediated modeling and optimization.
NASA Astrophysics Data System (ADS)
Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline
2015-04-01
Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been compared to mineralogical data from purely biotic (microaerophilic) and abiotic iron mineral formation processes.
ASRM process development in aqueous cleaning
NASA Technical Reports Server (NTRS)
Swisher, Bill
1992-01-01
Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A
2016-08-25
There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purvine, Emilie AH; Monson, Kyle E.; Jurrus, Elizabeth R.
There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of maximum flow-minimum cut graph analysis. The interaction energy graph, a graph in which verticesmore » (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.« less
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A.
2016-01-01
There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of “maximum flow-minimum cut” graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered. PMID:27089174
Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M; Mora, Diego; Compagno, Concetta
2016-08-01
The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Weibel, Gisela; Eggenberger, Urs; Schlumberger, Stefan; Mäder, Urs K
2017-04-01
This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu 0 -alloy-phase and to a minor degree due to secondary precipitation (PbCl 2 ). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis
Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego
2016-01-01
ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432
Bartlett, K; Hovik, R; Eaton, S; Watmough, N J; Osmundsen, H
1990-01-01
1. 14C-labelled fatty acyl-CoA esters resulting from beta-oxidation of [U-14C]hexadecanoate by peroxisomal fractions isolated from rats treated with clofibrate showed the presence of the full range of saturated intermediates down to acetyl-CoA. 2. The pattern of intermediates generated was fairly constant. At low concentrations of [U-14C]hexadecanoate (50 microM), decanoyl-CoA was present in lowest amounts. At higher concentrations of [U-14C]hexadecanoate (greater than 100 microM), all intermediates of chain length shorter than 12 carbon atoms (except acetyl-CoA) were present at similar low concentrations; the process of beta-oxidation now resembling chain-shortening of hexadecanoate by two cycles of beta-oxidation. 3. In the absence of an NAD(+)-regenerating system [pyruvate and lactate dehydrogenase (EC 1.1.1.28)] 2-enoyl- and 3-hydroxyacyl-CoA esters were generated, suggesting that re-oxidation of NADH is essential for optimal rates of peroxisomal beta-oxidation in vitro. 4. At high concentrations of [U-14C]hexadecanoate (greater than 100 microM), 3-oxohexadecanoyl-CoA was produced, suggesting that thiolase (acetyl-CoA acetyltransferase; EC 2.3.1.9) can become rate-limiting for peroxisomal beta-oxidation. Images Fig. 2. Fig. 3. Fig. 4. PMID:2396977
NASA Astrophysics Data System (ADS)
Rubio, Ernesto Javier
Currently, there is enormous interest in research, development and optimization of the combustion processes for energy harvesting. Recent statistical and economic analyses estimated that by improving the coal-based firing/combustion processes in the power plants, savings up to $450-500 million yearly can be achieved. Advanced sensors and controls capable of withstanding extreme environments such as high temperatures, highly corrosive atmospheres, and high pressures are critical to such efficiency enhancement and cost savings. For instance, optimization of the combustion processes in power generation systems can be achieved by sensing, monitoring and control of oxygen, which is a measure of the completeness of the process and can lead to enhanced efficiency and reduced greenhouse gas emissions. However, despite the fact that there exists a very high demand for advanced sensors, the existing technologies suffer from poor 'response and recovery times' and 'long-term stability.' Motivated by the aforementioned technological challenges, the present work was focused on high-temperature (≥700 °C) oxygen sensors for application in power generation systems. The objective of the present work is to investigate nanostructured gallium oxide (2O3) based sensors for oxygen sensing, where we propose to conduct in-depth exploration of the role of refractory metal (tungsten, W, in this case) doping into 2O 3 to enhance the sensitivity, selectivity, stability ("3S" criteria) and reliability of such sensors while keeping cost economical. Tungsten (W) doped gallium oxide (2O3) thin films were deposited via rf-magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying the sputtering power applied to the W-target in order to achieve variable W content into 2O3 films while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-grown and post-annealed W-doped 2O3 films were evaluated as a function of W-content. The structural analyses indicate the formation of monoclinic beta-phase 2O3 in as-grown W-doped 2O3 films for all W-content. Thermally induced secondary phase (W-oxide) formation was observed after the annealing process. Chemical analysis demonstrates the increasing W atomic percentage in the films with increasing sputtering power, whereas the main metallic ionic species for the films are W6+ and Ga3+. Evidence of W interdiffusion due to the annealing process is presented, and the mechanism of diffusion is discussed. Surface morphology of the films is also discussed, and the transition to mesoporous surface is observed after annealing. Finally, the oxygen sensor performance evaluation demonstrated that the W-incorporated 2O3 exhibits improved response time compared to intrinsic 2O3 based oxygen sensors.
Chromium cycling in soils and water: links, gaps, and methods.
Bartlett, R J
1991-05-01
The major links in the cycling of chromium in soils and in natural waters are between chromium(III) and chromium (VI). Between the larger links are lesser links involving processes of mobilization and oxidation of CrIII and reduction of CrVI. The gaps are mainly in our understanding of the factors that control these processes. If soluble CrIII is added to an "average" soil, a portion of it will become immediately oxidized by manganese oxides to CrVI. The rest of the CrIII may remain reduced for long periods of time, even in the presence of electron-accepting manganese oxides. However, this less available CrIII can be mobilized by low molecular weight organic complexers and then oxidized where redox conditions are optimal. Usually part of any CrVI added to a soil or sediment will be reduced instantly, especially under acid conditions. On the other hand, high concentrations of polluting CrVI may quickly exhaust the readily available reducing power of the matrix material and excess CrVI, the thermodynamically stable form in air, may persist for years in soils or lagoons without reduction. Cleanup of chromium pollution must involve the surrounding of both CrIII and CrVI with excesses of slowly available reducing substances and sealing them permanently from inputs of atmospheric oxygen. Monitoring the effectiveness of the measures is mandatory, but fortunately the chemical testing for CrVI in soil and water is simple and problem free compared with most colorimetric determinations.
Gomathi Devi, L; Girish Kumar, S; Mohan Reddy, K; Munikrishnappa, C
2009-05-30
Advanced Fenton process (AFP) using zero valent metallic iron (ZVMI) is studied as a potential technique to degrade the azo dye in the aqueous medium. The influence of various reaction parameters like effect of iron dosage, concentration of H(2)O(2)/ammonium per sulfate (APS), initial dye concentration, effect of pH and the influence of radical scavenger are studied and optimum conditions are reported. The degradation rate decreased at higher iron dosages and also at higher oxidant concentrations due to the surface precipitation which deactivates the iron surface. The rate constant for the processes Fe(0)/UV and Fe(0)/APS/UV is twice compared to their respective Fe(0)/dark and Fe(0)/APS/dark processes. The rate constant for Fe(0)/H(2)O(2)/UV process is four times higher than Fe(0)/H(2)O(2)/dark process. The increase in the efficiency of Fe(0)/UV process is attributed to the cleavage of stable iron complexes which produces Fe(2+) ions that participates in cyclic Fenton mechanism for the generation of hydroxyl radicals. The increase in the efficiency of Fe(0)/APS/UV or H(2)O(2) compared to dark process is due to continuous generation of hydroxyl radicals and also due to the frequent photo reduction of Fe(3+) ions to Fe(2+) ions. Though H(2)O(2) is a better oxidant than APS in all respects, but it is more susceptible to deactivation by hydroxyl radical scavengers. The decrease in the rate constant in the presence of hydroxyl radical scavenger is more for H(2)O(2) than APS. Iron powder retains its recycling efficiency better in the presence of H(2)O(2) than APS. The decrease in the degradation rate in the presence of APS as an oxidant is due to the fact that generation of free radicals on iron surface is slower compared to H(2)O(2). Also, the excess acidity provided by APS retards the degradation rate as excess H(+) ions acts as hydroxyl radical scavenger. The degradation of Methyl Orange (MO) using Fe(0) is an acid driven process shows higher efficiency at pH 3. The efficiency of various processes for the de colorization of MO dye is of the following order: Fe(0)/H(2)O(2)/UV>Fe(0)/H(2)O(2)/dark>Fe(0)/APS/UV>Fe(0)/UV>Fe(0)/APS/dark>H(2)O(2)/UV approximately Fe(0)/dark>APS/UV. Dye resisted to degradation in the presence of oxidizing agent in dark. The degradation process was followed by UV-vis and GC-MS spectroscopic techniques. Based on the intermediates obtained probable degradation mechanism has been proposed. The result suggests that complete degradation of the dye was achieved in the presence of oxidizing agent when the system was amended with iron powder under UV light illumination. The concentration of Fe(2+) ions leached at the end of the optimized degradation experiment is found to be 2.78 x 10(-3)M. With optimization, the degradation using Fe(0) can be effective way to treat azo dyes in aqueous solution.
NASA Astrophysics Data System (ADS)
Mohanapriya, S.; Renuka devi, R.; Raj, V.
2018-02-01
Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.
High-efficiency indium tin oxide/indium phosphide solar cells
NASA Technical Reports Server (NTRS)
Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.
1989-01-01
Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.
NASA Astrophysics Data System (ADS)
Anikin, A. E.; Galevsky, G. V.; Nozdrin, E. V.; Rudneva, V. V.; Galevsky, S. G.
2016-09-01
The research of the metallization process of the roll scale and sludge after gas treatment in the BOF production with the use of brown coal semicoke mined in Berezovsky field of the Kansk-Achinsk Basin was carried out. A flow diagram of “cold” briquetting using a water-soluble binder was offered. The reduction of iron from its oxide Fe2O3 with brown coal semicoke in the laboratory electric-tube furnace in the argon atmosphere was studied. The mathematical models of dependence of the metallization degree on variable factors were developed. The optimal values of technological factors and essential characteristics of the obtained metallized products were revealed.
On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, Mark D.; Sopko, J.F.; Houf, William G.
2006-11-01
Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accuratemore » data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.« less
NASA Astrophysics Data System (ADS)
Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar
2018-07-01
The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.
NASA Astrophysics Data System (ADS)
Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar
2018-02-01
The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.
Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao
2017-11-02
Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.
Ceruloplasmin and cardiovascular disease
NASA Technical Reports Server (NTRS)
Fox, P. L.; Mazumder, B.; Ehrenwald, E.; Mukhopadhyay, C. K.
2000-01-01
Transition metal ion-mediated oxidation is a commonly used model system for studies of the chemical, structural, and functional modifications of low-density lipoprotein (LDL). The physiological relevance of studies using free metal ions is unclear and has led to an exploration of free metal ion-independent mechanisms of oxidation. We and others have investigated the role of human ceruloplasmin (Cp) in oxidative processes because it the principal copper-containing protein in serum. There is an abundance of epidemiological data that suggests that serum Cp may be an important risk factor predicting myocardial infarction and cardiovascular disease. Biochemical studies have shown that Cp is a potent catalyst of LDL oxidation in vitro. The pro-oxidant activity of Cp requires an intact structure, and a single copper atom at the surface of the protein, near His(426), is required for LDL oxidation. Under conditions where inhibitory protein (such as albumin) is present, LDL oxidation by Cp is optimal in the presence of superoxide, which reduces the surface copper atom of Cp. Cultured vascular endothelial and smooth muscle cells also oxidize LDL in the presence of Cp. Superoxide release by these cells is a critical factor regulating the rate of oxidation. Cultured monocytic cells, when activated by zymosan, can oxidize LDL, but these cells are unique in their secretion of Cp. Inhibitor studies using Cp-specific antibodies and antisense oligonucleotides show that Cp is a major contributor to LDL oxidation by these cells. The role of Cp in lipoprotein oxidation and atherosclerotic lesion progression in vivo has not been directly assessed and is an important area for future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogarasi, Szabolcs; Imre-Lucaci, Florica; Egedy, Attila
2015-06-15
Highlights: • We developed an ecofriendly mediated electrochemical process for copper recovery. • The recovery of copper was achieved without mechanical pretreatment of the samples. • We identified the optimal flow rate for the leaching and electrowinning of copper. • The copper content of the obtained cathodic deposits was over 99.9%. - Abstract: The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe{sup 3+} combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in anmore » original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%.« less
Kwon, Jeong Hyun; Park, Junhong; Lee, Myung Keun; Park, Jeong Woo; Jeon, Yongmin; Shin, Jeong Bin; Nam, Minwoo; Kim, Choong-Ki; Choi, Yang-Kyu; Choi, Kyung Cheol
2018-05-09
The lack of reliable, transparent, and flexible electrodes and insulators for applications in thin-film transistors (TFTs) makes it difficult to commercialize transparent, flexible TFTs (TF-TFTs). More specifically, conventional high process temperatures and the brittleness of these elements have been hurdles in developing flexible substrates vulnerable to heat. Here, we propose electrode and insulator fabrication techniques considering process temperature, transmittance, flexibility, and environmental stability. A transparent and flexible indium tin oxide (ITO)/Ag/ITO (IAI) electrode and an Al 2 O 3 /MgO (AM)-laminated insulator were optimized at the low temperature of 70 °C for the fabrication of TF-TFTs on a polyethylene terephthalate (PET) substrate. The optimized IAI electrode with a sheet resistance of 7 Ω/sq exhibited the luminous transmittance of 85.17% and maintained its electrical conductivity after exposure to damp heat conditions because of an environmentally stable ITO capping layer. In addition, the electrical conductivity of IAI was maintained after 10 000 bending cycles with a tensile strain of 3% because of the ductile Ag film. In the metal/insulator/metal structure, the insulating and mechanical properties of the optimized AM-laminated film deposited at 70 °C were significantly improved because of the highly dense nanolaminate system, compared to those of the Al 2 O 3 film deposited at 70 °C. In addition, the amorphous indium-gallium-zinc oxide (a-IGZO) was used as the active channel for TF-TFTs because of its excellent chemical stability. In the environmental stability test, the ITO, a-IGZO, and AM-laminated films showed the excellent environmental stability. Therefore, our IGZO-based TFT with IAI electrodes and the 70 °C AM-laminated insulator was fabricated to evaluate robustness, transparency, flexibility, and process temperature, resulting in transfer characteristics comparable to those of an IGZO-based TFT with a 150 °C Al 2 O 3 insulator.
Optimization of GaN Nanorod Growth Conditions for Coalescence Overgrowth
2016-02-04
GaN core and QW deposition, an NR LED array can be implemented by covering the NRs with a transparent conductor . It has been demonstrated that the...with a transparent conductor . It has been demonstrated that the optical and electrical performances of an NR LED array can be comparable to those of a...a process of buffered oxide etching for removing this SiNx layer on the sidewalls is required before sidewall QW deposition. Nevertheless, the
NASA Astrophysics Data System (ADS)
Ciambelli, P.; Arurault, L.; Sarno, M.; Fontorbes, S.; Leone, C.; Datas, L.; Sannino, D.; Lenormand, P.; Le Blond Du Plouy, S.
2011-07-01
Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.
Ciambelli, P; Arurault, L; Sarno, M; Fontorbes, S; Leone, C; Datas, L; Sannino, D; Lenormand, P; Du Plouy, S Le Blond
2011-07-01
Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.
Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO 2-x
Lee, Hwasoo; Han, Su Jung; Seshadri, Ramachandran Chidambaram; ...
2016-11-04
The thermoelectric properties of sub-stoichiometric TiO 2-x deposits produced by cascaded-plasma spray process are investigated from room-temperature to 750 K. Sub-stoichiometric TiO 2-x deposits are formed through in-situ reaction of the TiO 1.9 within the high temperature plasma flame and manipulated through introduction of varying amounts of hydrogen in the plasma. Although the TiO 2-x particles experience reduction within plasma, it can also re-oxidize through interaction with the surrounding ambient atmosphere, resulting in a complex interplay between process conditions and stoichiometry. The deposits predominantly contain rutile phase with presence of Magneli phases especially under significantly reducing plasma conditions. The resultantmore » deposits show sensitivity to thermoelectric properties and under certain optimal conditions repeatedly show Seebeck coefficients reaching values of -230 μV K -1 at temperatures of 750 K while providing an electrical conductivity of 5.48 × 10 3 S m -1, relatively low thermal conductivity in the range of 1.5 to 2 W m -1 K -1 resulting in power factor of 2.9 μW cm -1 K -2. The resultant maximum thermoelectric figure of merit value reached 0.132 under these optimal conditions. Lastly, the results point to a potential pathway for a large-scale fabrication of low-cost oxide based thermoelectric with potential applicability at moderate to high temperatures.« less
Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO 2-x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hwasoo; Han, Su Jung; Seshadri, Ramachandran Chidambaram
The thermoelectric properties of sub-stoichiometric TiO 2-x deposits produced by cascaded-plasma spray process are investigated from room-temperature to 750 K. Sub-stoichiometric TiO 2-x deposits are formed through in-situ reaction of the TiO 1.9 within the high temperature plasma flame and manipulated through introduction of varying amounts of hydrogen in the plasma. Although the TiO 2-x particles experience reduction within plasma, it can also re-oxidize through interaction with the surrounding ambient atmosphere, resulting in a complex interplay between process conditions and stoichiometry. The deposits predominantly contain rutile phase with presence of Magneli phases especially under significantly reducing plasma conditions. The resultantmore » deposits show sensitivity to thermoelectric properties and under certain optimal conditions repeatedly show Seebeck coefficients reaching values of -230 μV K -1 at temperatures of 750 K while providing an electrical conductivity of 5.48 × 10 3 S m -1, relatively low thermal conductivity in the range of 1.5 to 2 W m -1 K -1 resulting in power factor of 2.9 μW cm -1 K -2. The resultant maximum thermoelectric figure of merit value reached 0.132 under these optimal conditions. Lastly, the results point to a potential pathway for a large-scale fabrication of low-cost oxide based thermoelectric with potential applicability at moderate to high temperatures.« less
Maleknia, Laleh; Dilamian, Mandana; Pilehrood, Mohammad Kazemi; Sadeghi-Aliabadi, Hojjat; Hekmati, Amir Houshang
2018-06-01
In this paper, polyurethane (PU), chitosan (Cs)/polyethylene oxide (PEO), and core-shell PU/Cs nanofibers were produced at the optimal processing conditions using electrospinning technique. Several methods including SEM, TEM, FTIR, XRD, DSC, TGA and image analysis were utilized to characterize these nanofibrous structures. SEM images exhibited that the core-shell PU/Cs nanofibers were spun without any structural imperfections at the optimized processing conditions. TEM image confirmed the PU/Cs core-shell nanofibers were formed apparently. It that seems the inclusion of Cs/PEO to the shell, did not induce the significant variations in the crystallinity in the core-shell nanofibers. DSC analysis showed that the inclusion of Cs/PEO led to the glass temperature of the composition increased significantly compared to those of neat PU nanofibers. The thermal degradation of core-shell PU/Cs was similar to PU nanofibers degradation due to the higher PU concentration compared to other components. It was hypothesized that the core-shell PU/Cs nanofibers can be used as a potential platform for the bioactive scaffolds in tissue engineering. Further biological tests should be conducted to evaluate this platform as a three dimensional scaffold with the capabilities of releasing the bioactive molecules in a sustained manner.
NASA Astrophysics Data System (ADS)
Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong
2015-05-01
M2(PcAN)2 (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M2(PcAN)2-W-HZSM-5) or the M2(PcTN)2 doping W-HZSM-5 (M2(PcTN)2/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu2(PcAN)2-W-HZSM-5 and Cu2(PcTN)2/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV-Vis and calcination temperature was obtained by TG-DSC for Cu2(PcTN)2/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N2 adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. The reaction process of ultra-deep desulfurization.
NASA Astrophysics Data System (ADS)
Gupta, Sanju; Carrizosa, Sara B.
2016-12-01
Nanostructured cobalt oxide polymorphs (CoO and Co3O4) deposited via electrodeposition allowed optimal loading on supercapacitive graphene nanosheets producing a set of graphene-based hybrids namely, CoO/GO, CoO/ErGO, Co3O4/GO, Co3O4/rGO, and Co3O4/ErGO, as pseudocapacitive electrochemical electrodes. We gained fundamental insights into the complex physicochemical interfacial processes at electrode surfaces and electrode/electrolyte (or solid/liquid) interfaces by scanning electrochemical microscopy operating in the feedback probe approach and imaging modes while monitoring and mapping the redox probe (re)activity behavior. We determined the various experimental descriptors including diffusion coefficient, electron transfer rate, and electroactive site distribution on electrodes. We emphasize the interplay of (1) heterogeneous basal and edge plane active sites, (2) graphene surface functional moieties (conducting/semiconducting), and (3) crystalline spinel cobalt oxides (semiconducting/insulating) coated graphene, reinforcing the available electron density of states in the vicinity of the Fermi level contributing to higher electroactivity, faster interfacial diffusion, and shorter distances for electron transfer, facilitated through molecular and chemical bridges obtained by electrodeposition as compared with the physical deposition.
Synthesis of potassium ferrate using residual ferrous sulfate as iron bearing material
NASA Astrophysics Data System (ADS)
Kanari, N.; Filippov, L.; Diot, F.; Mochón, J.; Ruiz-Bustinza, I.; Allain, E.; Yvon, J.
2013-03-01
This paper summarizes the results obtained during potassium ferrate (K2FeVIO4) synthesis which is a high added value material. This compound that contains iron in the rare hexavalent state is becoming a substance of growing importance for the water and effluent treatment industries. This is due to its multi-functional nature (oxidation, flocculation, elimination of heavy metals, decomposition of organic matter, etc.). The most well known synthesis methods for potassium ferrate synthesis are those involving the chemical and/or electrochemical oxidation of iron (II) and (III) from aqueous solutions having a high alkali concentration. These methods are generally characterized by a low FeVI efficiency due to the reaction of the potassium ferrate with water, leading to the reduction of FeVI into FeIII. Concerning the work pertinent to this paper, the synthesis of K2FeVIO4 was achieved by a simultaneous reaction of two solids (iron sulfate and KOH) and one gaseous oxidant (chlorine). The synthesis process is performed in a rotary reactor at room temperature and the global synthesis reaction is exothermic. The effects of different experimental parameters on the potassium ferrate synthesis are investigated to determine the optimal conditions for the process.
Dau, Holger; Zaharieva, Ivelina
2009-12-21
Photosynthesis in plants and cyanobacteria involves two protein-cofactor complexes which are denoted as photosystems (PS), PSII and PSI. These solar-energy converters have powered life on earth for approximately 3 billion years. They facilitate light-driven carbohydrate formation from H(2)O and CO(2), by oxidizing the former and reducing the latter. PSII splits water in a process driven by light. Because all attractive technologies for fuel production driven by solar energy involve water oxidation, recent interest in this process carried out by PSII has increased. In this Account, we describe and apply a rationale for estimating the solar-energy conversion efficiency (eta(SOLAR)) of PSII: the fraction of the incident solar energy absorbed by the antenna pigments and eventually stored in form of chemical products. For PSII at high concentrations, approximately 34% of the incident solar energy is used for creation of the photochemistry-driving excited state, P680*, with an excited-state energy of 1.83 eV. Subsequent electron transfer results in the reduction of a bound quinone (Q(A)) and oxidation of the Tyr(Z) within 1 micros. This radical-pair state is stable against recombination losses for approximately 1 ms. At this level, the maximal eta(SOLAR) is 23%. After the essentially irreversible steps of quinone reduction and water oxidation (the final steps catalyzed by the PSII complex), a maximum of 50% of the excited-state energy is stored in chemical form; eta(SOLAR) can be as high as 16%. Extending our considerations to a photosynthetic organism optimized to use PSII and PSI to drive H(2) production, the theoretical maximum of the solar-energy conversion efficiency would be as high as 10.5%, if all electrons and protons derived from water oxidation were used for H(2) formation. The above performance figures are impressive, but they represent theoretical maxima and do not account for processes in an intact organism that lower these yields, such as light saturation, photoinhibitory, protective, and repair processes. The overpotential for catalysis of water oxidation at the Mn(4)Ca complex of PSII may be as low as 0.3 V. To address the specific energetics of water oxidation at the Mn complex of PSII, we propose a new conceptual framework that will facilitate quantitative considerations on the basis of oxidation potentials and pK values. In conclusion, photosynthetic water oxidation works at high efficiency and thus can serve as both an inspiring model and a benchmark in the development of future technologies for production of solar fuels.
[Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].
Li, Hai-Tao; Li, Yu-Ping; Zhang, An-Yang; Cao, Hong-Bin; Li, Xin-Gang; Zhang, Yi
2011-01-01
A novel electro-catalytic reactor, with oxygen-reduction cathode (PAQ/GF), dimensionally stable anode (IrO2-RuO2 -TiO2/ Ti) and heterogeneous catalysts, is developed for advanced treatment of coking wastewater after biological process, integrating cathodic and anodic simultaneous oxidation processes. A PAQ/GF electrode was synthesized by the electro-polymerization of 2-ethyl anthraquinone on graphite felt, which was characterized with cyclic voltametry measurements; the results indicated that the PAQ/GF electrode showed high reversibility for oxidation-reduction reaction of anthraquinone and catalytic activity for O2 reduction to H2O2; 13.5 mmol/L H2O2 was obtained after electrolysis for 6 h at -0.7 V (vs. SCE) and pH 6 with a current efficiency of 50% in a membrane reactor. Fe-Cu/Y350 catalysts, prepared by impregnation method, could catalyze the production of hydroxyl radicals (*OH) from H2O2, which was confirmed both by fading reaction of crystal violet and oxidation of *OH-probe compound (p-chlorobenzoic acid); Fe-Cu/Y350 also showed high catalytic-activity for the oxidation of organics by hypochlorous sodium, because COD removal of coking wastewater reached 26% in the catalytic process while only 11% of COD removal was obtained in the absence of Fe-Cu/Y350. COD removal of coking wastewater reached 49.4% (26.0% and 23.4% in cathodic system and anodic system, respectively) in the developed electrolytic-reactor, which was higher than that of conventional cathodic-anodic-oxidation process (29.8%). At optimal reaction condition of initial COD = 192 mg/L, I = 10A x m(-2) and pH 4-5, more than 50% COD were removed after electrolysis for 1 h. The mechanism might be as follows: in cathodic system, H2O2 is generated from reduction of O2 on PAQ/GF cathode, and catalyzed by Fe-Cu/Y350 for production of *OH, which causes mineralization and degradation of organic pollutants; in anodic system, Cl2 and HClO are generated from Cl- oxidation on IrO2-RuO2-TiO2/Ti anode and the organic pollutants are oxidized by Cl2, and HClO with Fe-Cu/Y350 catalysts or by direct anodic oxidation.
NASA Astrophysics Data System (ADS)
Wang, Wei; Ruiz, Isaac; Lee, Ilkeun; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S.
2015-04-01
Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability.Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06795a
NASA Astrophysics Data System (ADS)
Paterakis, Georgios; Raptis, Dimitrios; Ploumistos, Alexandros; Belekoukia, Meltiani; Sygellou, Lamprini; Ramasamy, Madeshwaran Sekkarapatti; Lianos, Panagiotis; Tasis, Dimitrios
2017-11-01
A composite film was obtained by layer deposition of N-doped graphene and poly(3,4-ethylenedioxythiophene) (PEDOT) and was used as Pt-free counter electrode for dye-sensitized solar cells. N-doping of graphene was achieved by annealing mixtures of graphene oxide with urea. Various parameters concerning the treatment of graphene oxide-urea mixtures were monitored in order to optimize the electrocatalytic activity in the final solar cell device. These include the mass ratio of components, the annealing temperature, the starting concentration of the mixture in aqueous solution and the spinning rate for film formation. PEDOT was applied by electrodeposition. The homogeneity of PEDOT coverage onto either untreated or thermally annealed graphene oxide-urea film was assessed by imaging (AFM/SEM) and surface techniques (XPS). It was found that PEDOT was deposited in the form of island structures onto untreated graphene oxide-urea film. On the contrary, the annealed film was homogeneously covered by the polymer, acquiring morphology of decreased roughness. An apparent chemical interaction between PEDOT and N-doped graphene flakes was revealed by XPS data, involving potential grafting of PEDOT chains onto graphitic lattice through Csbnd C bonding. In addition, diffusion of nitrogen-containing fragments within the PEDOT layer was found to take place during electrodeposition process, resulting in enhanced interfacial interactions between components. The solar cell with the optimized N-doped graphene/PEDOT composite counter electrode exhibited a power conversion efficiency (η) of 7.1%, comparable within experimental error to that obtained by using a reference Pt counter electrode, which showed a value of 7.0%.
Lin, Meiqing; Ning, Xun-an; An, Taicheng; Zhang, Jianhao; Chen, Changmin; Ke, Yaowei; Wang, Yujie; Zhang, Yaping; Sun, Jian; Liu, Jingyong
2016-04-15
To establish an efficient oxidation process for the degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge, the effects of various operating parameters were optimized during the ultrasound process, Fenton process and the combined ultrasound-Fenton process. The results showed that the ultrasonic density of 1.80w/cm(3), both H2O2 and Fe(2+) dosages of 140mmol/L and pH 3 were favorable conditions for the degradation of PAHs. The degradation efficiency of high molecular weight PAHs was close to or even higher than that of light molecular weight PAHs. The highest degradation efficiencies of Σ16 PAHs were obtained within 30min in the order of: Fenton (83.5%) >ultrasound-Fenton (75.5%) >ultrasound (45.5%), then the efficiencies were decreased in the other of: ultrasound-Fenton (73.0%) >Fenton (70.3%) >ultrasound (41.4%) in 60min. The extra PAHs were released from the intracellular substances and the cavities of sludge due to the disruption of sludge during the oxidation process. Also, the degradation of PAHs could be inhibited by the other organic matter in the sludge. The combined ultrasound-Fenton process showed more efficient than both ultrasound process and Fenton process not only in the surface of sludge but also in the sludge interior. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Su Jung; Pala, Zdenek; Sampath, Sanjay
2016-02-01
Manganese cobalt spinel (Mn1.5Co1.5O4, MCO) coatings are prepared by the air plasma spray (APS) process to examine their efficacy in serving as protective coatings from Cr-poisoning of the cathode side in intermediate temperature-solid oxide fuel cells (IT-SOFCs). These complex oxides are susceptible to process induced stoichiometric and phase changes which affect their functional performance. To critically examine these effects, MCO coatings are produced with deliberate modifications to the spray process parameters to explore relationship among process conditions, microstructure and functional properties. The resultant interplay among particle thermal and kinetic energies are captured through process maps, which serve to characterize the parametric effects on properties. The results show significant changes to the chemistry and phase composition of the deposited material resulting from preferential evaporation of oxygen. Post deposition annealing recovers oxygen in the coatings and allows partial recovery of the spinel phase, which is confirmed through thermo-gravimetric analysis (TGA)/differential scanning calorimetry (DSC), X-ray Diffraction (XRD), and magnetic hysteresis measurements. In addition, coatings with high density after sintering show excellent electrical conductivity of 40 S cm-1 at 800 °C while simultaneously providing requisite protection characteristics against Cr-poisoning. This study provides a framework for optimal evaluation of MCO coatings in intermediate temperature SOFCs.
NASA Astrophysics Data System (ADS)
Okada, Yukimasa; Ono, Kouichi; Eriguchi, Koji
2017-06-01
Aggressive shrinkage and geometrical transition to three-dimensional structures in metal-oxide-semiconductor field-effect transistors (MOSFETs) lead to potentially serious problems regarding plasma processing such as plasma-induced physical damage (PPD). For the precise control of material processing and future device designs, it is extremely important to clarify the depth and energy profiles of PPD. Conventional methods to estimate the PPD profile (e.g., wet etching) are time-consuming. In this study, we propose an advanced method using a simple capacitance-voltage (C-V) measurement. The method first assumes the depth and energy profiles of defects in Si substrates, and then optimizes the C-V curves. We applied this methodology to evaluate the defect generation in (100), (111), and (110) Si substrates. No orientation dependence was found regarding the surface-oxide layers, whereas a large number of defects was assigned in the case of (110). The damaged layer thickness and areal density were estimated. This method provides the highly sensitive PPD prediction indispensable for designing future low-damage plasma processes.
Conventional and advanced oxidation processes used in disinfection of treated urban wastewater.
Rodríguez-Chueca, J; Ormad, M P; Mosteo, R; Sarasa, J; Ovelleiro, J L
2015-03-01
The purpose of the current study is to compare the inactivation of Escherichia coli in wastewater effluents using conventional treatments (chlorination) and advanced oxidation processes (AOPs) such as UV irradiation, hydrogen peroxide (H2O2)/solar irradiation, and photo-Fenton processes. In addition, an analysis of the operational costs of each treatment is carried out taking into account the optimal dosages of chemicals used. Total inactivation of bacteria (7.5 log) was achieved by means of chlorination and UV irradiation. However, bacterial regrowth was observed 6 hours after the completion of UV treatment, obtaining a disinfection value around 3 to 4 log. On the other hand, the combination H2O2/solar irradiation achieved a maximum inactivation of E. coli of 3.30 ± 0.35 log. The photo-Fenton reaction achieved a level of inactivation of 4.87 ± 0.10 log. The order of disinfection, taking into account the reagent/cost ratio of each treatment, is as follows: chlorination > UV irradiation > photo-Fenton > H2O2/sunlight irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Thu Ha Thi, E-mail: ptntd2004@yahoo.fr; Tran, Thanh Thuy Thi, E-mail: tranthithanhthuygl@gmail.com; Le, Hong Ngan Thi
2016-01-15
Highlights: • Pt/rGO catalysts were successfully synthesized using either NaBH{sub 4} or ethylene glycol. • Synthesis using NaBH{sub 4} could improve electrocatalytic towards methanol oxidation of Pt/rGO catalyst. • 40%Pt/rGO synthesized using NaBH{sub 4} showed the best electrocatalytic performance. - Abstract: The synthesis processes of Platinum (Pt) on reduced graphene oxide (rGO) catalysts from graphene oxide (GO) using two reducing agents including sodium borohydride and ethylene glycol is reported. Structure and morphology of Pt/rGO catalysts are characterized by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrocatalytic methanol oxidation properties of these catalysts are evaluated bymore » cyclic voltammetry and chronoamperometry. The results show that catalyst synthesized using sodium borohydride has a higher metallic Pt content and an improved catalytic performance in comparison to catalyst synthesized using ethylene glycol. Moreover, effect of Pt loading amount on electrocatalytic methanol oxidation performance of catalysts synthesized using sodium borohydride is systematically investigated. The optimal Pt loading amount on graphene is determined to be 40%.« less
Nordschild, Simon; Auner, Norbert
2008-01-01
A series of technically and economically important element chlorides-such as SiCl4, BCl3, AlCl3, FeCl2, PCl3 and TiCl4-was synthesized through reactions between hydrogen chloride and the corresponding element oxides in the presence of different carbon sources with microwave assistance. This process route was optimized for demonstration purposes for tetrachlorosilane formation and successfully demonstrates the broad applicability of various silicon oxide-containing minerals and materials for carbohydrochlorination. The chlorination reaction occurs at lower temperatures than with conventional heating in a tubular oven, with substantially shorter reaction times and in better yields: quantitatively in the case of tetrachlorosilane, based on the silicon content of the starting material. The experimental procedure is very simple and provides basic information about the suitability of element compounds, especially element oxides, for carbohydrochlorination. According to the general reaction sequence element oxide-->element-->element chloride used in today's technology, this one-step carbohydrochlorination with hydrogen chloride is considerably more efficient, particularly in terms of energy input and reaction times, avoiding the isolation of the pure elements required for chlorination to give the element chlorides with use of the more corrosive and toxic chlorine gas.
Poly(2-aminothiazole)-silica nanocomposite particles: Synthesis and morphology control
NASA Astrophysics Data System (ADS)
Zou, Hua; Wu, Di; Sun, Hao; Chen, Suwu; Wang, Xia
2018-04-01
Synthesis of conducting polymer-silica colloidal nanocomposites has been recognized as an effective method to overcome the poor processability of heterocyclic conducting polymers prepared by chemical oxidative method. However, the morphology control of such conducting polymer-silica nanocomposites was seldomly reported in the literature. Novel poly(2-aminothiazole)(PAT)-silica nanocomposite particles can be conveniently prepared by chemical oxidative polymerization of 2-aminothiazole using CuCl2 oxidant in the presence of ∼20 nm silica nanoparticles. The effects of varying the oxidant/monomer ratio and silica sol concentration on the morphology and size of the resulting PAT-silica nanocmposites have been studied. Optimization of the oxidant/monomer molar ratio and initial silica sol concentration allows relatively round spherical particles of 150-350 nm in diameter to be achieved. The nanocomposite particles have a well-defined raspberry-like morphology with a silica-rich surface, but a significant fraction of PAT component still exists on the surface and, which is beneficial for its applications. Furthermore, the surface compositions of the colloidal nanocomposites could be regulated to some extent. Based on the above results, a possible formation mechanism of the spherical nanocomposite particles is proposed.
Zhu, Linli; Xu, Hui
2014-09-01
Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Galvez, Óscar; Gomez, Pedro C.; Gomez-Martin, Juan C.; Saiz-Lopez, Alfonso; Pacios, Luis F.
2013-04-01
Atmospheric iodine has received considerable attention in the past two decades due to both its potential role in the catalytic destruction of ozone (1) and its contribution to the formation of ultrafine particles (2). Seaweeds, marine phytoplankton, and abiotic processes release iodocarbons and I2 to the atmosphere, which are photo-oxidized giving iodine oxides that polymerize to finally form iodine oxide particles (IOPs). In the last years, some laboratory studies have been carried out to investigate this process (see e.g. (3)), however the complete mechanism of formation of such particles and the role of water, and other condensable vapors, in this process have not yet been elucidated. In this context, quantum calculations could help to unravel essential steps of these processes and to evaluate relevant physicochemical properties that can be incorporated into atmospheric models. In this contribution, we show results of a theoretical study on different reactions that iodine oxides, in the presence of water, can undergo to form IOPs. Thermodynamic and kinetic properties of these reactions have been obtained at high level ab initio correlated calculations that included relativistic corrections. In these calculations, we have used a relativistic effective potential (REP) and REP-optimized basis sets for iodine atom developed in our group, which have previously been employed in a theoretical study about several iodinated species (4). (1) Saiz-Lopez, A.; Mahajan, A.S.; Salmon, R.A.; Bauguitte, J.B.; Jones, A.E.; Roscoe, H.K.; Plane, J.M.C. Science 2007, 317, 348-351 (2) O'Dowd, C.D.; Jimenez, J.L.; Bahreini, R.; Flagan, R.C.; Seinfeld, J.H.; Hämeri, K.; Pirjola, L.; Kulmala, M.; Jennings, S.G.; Hoffmann, T. Nature, 2002, 417, 632-636. (3) Saunders, R.W.; Kumar, R.; Gómez Martin, J.C.; Mahajan, A.S.; Murray, B.J.; Plane, J.M.C. Z. Phys. Chem. 2010, 224, 1095-1117. (4) Pacios, L.F.; Gálvez, O. J. Chem. Theory Comput., 2010, 6, 1738-1752.
Particulate emissions from diesel engines: correlation between engine technology and emissions.
Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian
2014-03-07
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission.
Particulate emissions from diesel engines: correlation between engine technology and emissions
2014-01-01
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission. PMID:24606725
Naceradska, Jana; Pivokonsky, Martin; Pivokonska, Lenka; Baresova, Magdalena; Henderson, Rita K; Zamyadi, Arash; Janda, Vaclav
2017-05-01
The study investigates the effect of permanganate pre-oxidation on the coagulation of peptides/proteins of Microcystis aeruginosa which comprise a major proportion of the organic matter during cyanobacterial bloom decay. Four different permanganate dosages (0.1, 0.2, 0.4 and 0.6 mg KMnO 4 mg -1 DOC) were applied prior to coagulation by ferric sulphate. Moreover, changes in sample characteristics, such as UV 254 , DOC content and molecular weight distribution, after pre-oxidation were monitored. The results showed that permanganate pre-oxidation led to a reduction in coagulant dose, increased organic matter removals by coagulation (by 5-12% depending on permanganate dose), microcystin removal (with reductions of 91-96%) and a shift of the optimum pH range from 4.3 to 6 without to 5.5-7.3 with pre-oxidation. Degradation of organic matter into inorganic carbon and adsorption of organic matter onto hydrous MnO 2 are suggested as the main processes responsible for coagulation improvement. Moreover, permanganate prevented the formation of Fe-peptide/protein complexes that inhibit coagulation at pH about 6.2 without pre-oxidation. The study showed that carefully optimized dosing of permanganate improves cyanobacterial peptide/protein removal, with the benefit of microcystin elimination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Zhu, Dongming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.
2004-03-01
Ceramic thermal barrier coatings (TBCs) will play an increasingly important role in advanced gas turbine engines due to their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency, and improved reliability goals. Advanced multicomponent zirconia (ZrO2)-based TBCs are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high-temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed ZrO2-based defect cluster TBCs was investigated at 1163°C using 45 min hot-time cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with x-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.
Numerical Study of the Simultaneous Oxidation of NO and SO2 by Ozone
Li, Bo; Zhao, Jinyang; Lu, Junfu
2015-01-01
This study used two kinetic mechanisms to evaluate the oxidation processes of NO and SO2 by ozone. The performance of the two models was assessed by comparisons with experimental results from previous studies. The first kinetic mechanism was a combined model developed by the author that consisted of 50 species and 172 reactions. The second mechanism consisted of 23 species and 63 reactions. Simulation results of both of the two models show under predictions compared with experimental data. The results showed that the optimized reaction temperature for NO with O3 ranged from 100~200 °C. At higher temperatures, O3 decomposed to O2 and O, which resulted in a decrease of the NO conversion rate. When the mole ratio of O3/NO was greater than 1, products with a higher oxidation state (such as NO3, N2O5) were formed. The reactions between O3 and SO2 were weak; as such, it was difficult for O3 to oxidize SO2. PMID:25642689
Srinivas, Keerthi; de Carvalho Oliveira, Fernanda; Teller, Philip Johan; Gonҫalves, Adilson Roberto; Helms, Gregory L; Ahring, Birgitte Kaer
2016-12-01
Harvested forest residues are usually considered a fire hazards and used as "hog-fuel" which results in air pollution. In this study, the biorefinery lignin stream obtained after wet explosion pretreatment and enzymatic hydrolysis of forestry residues of Douglas Fir (FS-10) was characterized and further wet oxidized under alkaline conditions. The studies indicated that at 10% solids, 11.7wt% alkali and 15min residence time, maximum yields were obtained for glucose (12.9wt%), vanillin (0.4wt%) at 230°C; formic acid (11.6wt%) at 250°C; acetic acid (10.7wt%), hydroxybenzaldehyde (0.2wt%), syringaldehyde (0.13wt%) at 280°C; and lactic acid (12.4wt%) at 300°C. FTIR analysis of the solid residue after wet oxidation showed that the aromatic skeletal vibrations relating to lignin compounds increased with temperature indicating that higher severity could result in increased lignin oxidation products. The results obtained, as part of the study, is significant for understanding and optimizing processes for producing high-value bioproducts from forestry residues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.
Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W
2013-12-23
Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.
Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.
2004-01-01
Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.
NASA Astrophysics Data System (ADS)
Ma, Jinfu; Yuan, Shenghua; Yang, Shaolin; Lu, Hui; Li, Yingtao
2018-05-01
A facile, low cost, easy-controllable method to prepare Poly(3,4-ethylenedioxythiophene) (PEDOT)/reduced graphene oxide (rGO) composites by electrochemical deposition onto fluorinated tin oxide (FTO) as counter electrodes (CEs) in high performance dye-sensitized solar cells (DSSCs) is reported. The electro-deposition process was accomplished by electro-polymerization of graphene oxide (GO)/PEDOT composites onto FTO substrates followed by electrochemical reduction of the GO component. Electrochemical measurements show that the I-/I3- catalytic activity of the as-prepared PEDOT/rGO CE is improved compared with that of the pure PEDOT and PEDOT/GO electrode. Through the analysis of photoelectric properties, the performance of the electrodes fabricated with different polymerization times are compared, and the optimal preparation condition is determined. The photoelectric conversion efficiency (PCE) of the DSSC assembled with PEDOT/rGO electrode reaches 7.79%, close to 8.33% of the cell with Platinum (Pt) electrode, and increases by 13.2% compared with 6.88% of the device with the PEDOT electrode.
Xu, Qiao; Wei, Fang; Wang, Zhan; Yang, Qin; Zhao, Yuan-Di; Chen, Hong
2010-01-01
Since the mechanism of Cd(2+) stress for plants is not clear, an in vivo method to monitor Cd(2+) stress for plants is necessary. However, oxidative burst (OB) is a signal messenger in the process of Cd(2+) stress for plants. To establish an electrochemical method with poly-o-phenylenediamine and Pt microparticle modified Pt electrode (POPD-Pt-MP-Pt) as a microbiosensor for the in vivo detection of oxidative burst induced by Cd(2+) stress in oilseed rape (Brassica napus L.). The optimal fabrication of POPD-Pt-MP-Pt biosensor was achieved. Electrochemical signal was collected by amperometry. After oilseed rape was exposed to 84.9 mM CdCl(2) stress, three oxidative bursts were observed in oilseed rape by amperometry at 3.3 h, 8.4 h and 13.2 h, respectively. However, there was no obvious signal observed in the controlled assay. This contribution presents the in vivo monitoring of the OB process induced by Cd(2+) stress in oilseed rape by POPD-Pt-MP-Pt microbiosensor in real-time. The novel electrochemical microbiosensor not only facilitates the real-time study in plant self-defence response to the adverse environment such as Cd(2+) stress, but also provides an effective tool for probing the self-defence mechanism in plants.
Chen, Fu; Luo, Zhanbin; Liu, Gangjun; Yang, Yongjun; Zhang, Shaoliang; Ma, Jing
2017-12-15
Laboratory experiments were conducted to investigate the efficiency of a simultaneous chemical extraction and oxidation for removing persistent organic pollutants (POPs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), citric acid (CA) and sodium persulfate (SP) were applied synchronously with Fe 2+ activated oxidation to enhance the co-removal of both types of pollutants. It is found that the addition of HPCD can enhance POPs removal through solubilization of POPs and iron chelation; while the CA-chelated Fe 2+ activation process is effective for extracting metals and degrading residual POPs. Under the optimized reagent conditions, 69.4% Cu, 78.1% Pb, 74.6% Ni, 97.1% polychlorinated biphenyls, 93.8% polycyclic aromatic hydrocarbons, and 96.4% polybrominated diphenylethers were removed after the sequential application of SP-HPCD-Fe 2+ and SP-CA-Fe 2+ processes with a duration of 180 and 240 min, respectively. A high dehalogenation efficiency (84.8% bromine and 86.2% chlorine) is observed, suggesting the low accumulation of halogen-containing organic intermediates. The remediated soil can satisfy the national soil quality standard of China. Collectively, co-contaminated soil can be remediated with reasonable time and capital costs through simultaneous application of persulfate oxidation and chemical extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental characterization of enhanced SNCR process with carbonaceous gas additives.
Yao, Ting; Duan, Yufeng; Yang, Zhizhong; Li, Yuan; Wang, Linwei; Zhu, Chun; Zhou, Qiang; Zhang, Jun; She, Min; Liu, Meng
2017-06-01
Carbonaceous gases such as CO and alkanes are commonly used as additives to enhance the selective non-catalytic reduction (SNCR) performance due to their high reducibility. This study compared the effect of CO and CH 4 on NO reduction in a tubular reactor with simulated flue gas. The enhancement of C 3 H 8 on SNCR process was tested at extremely low temperature, i.e. 650 °C. Experimental results suggested that reactions between NH 3 and SO 2 were favored at low temperatures and the competition for NH 3 between SO 2 and NO was influenced by gas additives. A maximum downward shift of 25 °C and 100 °C in temperature window for 50% NO reduction efficiency was obtained with the addition of CO and CH 4 , respectively. Considerable CO emission was observed with addition of CH 4 . The addition of CH 4 contributed to the formation of a self-accelerating reaction route within NO/O 2 /NH 3 SNCR reaction system. NO 2 produced from NO accelerates the oxidation of CH 4 to CO, while the oxidation of CH 4 returns to enhance the NO reduction globally. Optimal NO reduction of 44% was achieved with addition of C 3 H 8 at 650 °C. Substantial portion of C 3 H 8 was partially oxidized to CO and the remaining was converted into C 2 H 4 and C 3 H 6 during the SNCR process. Oxidative dehydrogenation of C 3 H 8 was involved. High reactivity of C 3 H 6 and C 2 H 4 favored the further oxidation and cracking to produce CO. These differences in oxidation behavior significantly influence the promotion capacities of CO, CH 4 and C 3 H 8 for NO reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jiang, Xiaofei; Chang, Ming; Jin, Qingzhe; Wang, Xingguo
2015-06-01
In present study, phospholipase C (PLC) was applied in camellia oil degumming and the response surface method (RSM) was used to determine the optimum degumming conditions (reaction time, reaction temperature and enzyme dosage) for this enzyme. The optimum conditions for the minimum residual phosphorus content (15.14 mg/kg) and maximum yield of camellia oil (98.2 %) were obtained at reaction temperature 53 ºC, reaction time 2.2 h, PLC dosage 400 mg/kg and pH 5.4. The application of phospholipase A (PLA) - assisted degumming process could further reduce the residual phosphorus content of camellia oil (6.84 mg/kg) to make the oil suitable for physical refining while maintaining the maximal oil yield (98.2 %). These results indicate that PLC degumming process in combination with PLA treatment can be a commercially viable alternative for traditional degumming process. Study on the quality changes of degummed oils showed that the oxidative stability of camellia oil was slightly deceased after the enzymatic treatment, thus more attention should be paid to the oxidative stability in the further application.
Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly.
Gall, Oren Z; Zhong, Xiahua; Schulman, Daniel S; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S
2017-06-30
Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO 2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.
Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly
NASA Astrophysics Data System (ADS)
Gall, Oren Z.; Zhong, Xiahua; Schulman, Daniel S.; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S.
2017-06-01
Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.
Microstructural Influence on Mechanical Properties in Plasma Microwelding of Ti6Al4V Alloy
NASA Astrophysics Data System (ADS)
Baruah, M.; Bag, S.
2016-11-01
The complexity of joining Ti6Al4V alloy enhances with reduction in sheet thickness. The present work puts emphasis on microplasma arc welding (MPAW) of 500-μm-thick Ti6Al4V alloy in butt joint configuration. Using controlled and regulated arc current, the MPAW process is specifically designed to use in joining of thin sheet components over a wide range of process parameters. The weld quality is assessed by carefully controlling the process parameters and by reducing the formation of oxides. The combined effect of welding speed and current on the weld joint properties is evaluated for joining of Ti6Al4V alloy. The macro- and microstructural characterizations of the weldment by optical microscopy as well as the analysis of mechanical properties by microtensile and microhardness test have been performed. The weld joint quality is affected by specifically designed fixture that controls the oxidation of the joint and introduces high cooling rate. Hence, the solidified microstructure of welded specimen influences the mechanical properties of the joint. The butt joint of titanium alloy by MPAW at optimal process parameters is of very high quality, without any internal defects and with minimum residual distortion.
Kinetic phase evolution of spinel cobalt oxide during lithiation
Li, Jing; He, Kai; Meng, Qingping; ...
2016-09-15
Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less
Kinetic phase evolution of spinel cobalt oxide during lithiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; He, Kai; Meng, Qingping
Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less
NASA Astrophysics Data System (ADS)
Solihin, Indriani, Mubarok, M. Zaki
2018-05-01
Dolomite is one of carbonate minerals that contain magnesium. Magnesium is important element used in many aspects of life such as cofactor of many enzymes in human body, nutrient for plants, and raw material in automotive industry. Dolomite can be processed through low temperature process to obtain magnesium and calcium oxide that is needed in important applications such as base material for making drugs, raw material in the synthesize slow release fertilizer, materials for fire retardant, component for catalyst, etc. One of the important step of this low temperature process is dissolution of dolomite. Optimizing the dissolution process determines the % extraction of magnesium and calcium oxide from dolomite. The dissolution of dolomite from Gresik, East Java Provence Indonesia, in chloric acid solution has been conducted. Chloric acid concentration and pulp density are the variables that were observed. The dissolution of magnesium and calcium from Gresik dolomite was found to be very fast. The stable stage of dissolution can be reached for 5-10 seconds. The % extraction is mainly determined by the molar ratio of chloric acid / dolomite. At molar ratio of chloric acid / dolomite equal or above stoichiometric of dolomite dissolution, % extraction of magnesium is almost 100 %.
NASA Astrophysics Data System (ADS)
Seitz, O.; Caillard, L.; Nguyen, H. M.; Chiles, C.; Chabal, Y. J.; Malko, A. V.
2012-01-01
To optimize colloidal nanocrystals/Si hybrid structures, nanopillars are prepared and organized via microparticle patterning and Si etching. A monolayer of CdSe nanocrystals is then grafted on the passivated oxide-free nanopillar surfaces, functionalized with carboxy-alkyl chain linkers. This process results to a negligible number of non-radiative surface state defects with a tightly controlled separation between the nanocrystals and Si. Steady-state and time-resolved photoluminescence measurements confirm the close-packing nanocrystal arrangement and the dominance of non-radiative energy transfer from nanocrystals to Si. We suggest that radially doped p-n junction devices based on energy transfer offer a viable approach for thin film photovoltaic devices.
NASA Astrophysics Data System (ADS)
Ehfaed, Nuri. A. K. H.; Bathmanathan, Shillan A. L.; Dhahi, Th S.; Adam, Tijjani; Hashim, Uda; Noriman, N. Z.
2017-09-01
The study proposed characterization and optimization of silicon nanosensor for specific detection of heavy metal. The sensor was fabricated in-house and conventional photolithography coupled with size reduction via dry etching process in an oxidation furnace. Prior to heavy metal heavy metal detection, the capability to aqueous sample was determined utilizing serial DI water at various. The sensor surface was surface modified with Organofunctional alkoxysilanes (3-aminopropyl) triethoxysilane (APTES) to create molecular binding chemistry. This has allowed interaction between heavy metals being measured and the sensor component resulting in increasing the current being measured. Due to its, excellent detection capabilities, this sensor was able to identify different group heavy metal species. The device was further integrated with sub-50 µm for chemical delivery.
Processing and optimization of functional ceramic coatings and inorganic nanomaterials
NASA Astrophysics Data System (ADS)
Nyutu, Edward Kennedy G.
Processing of functional inorganic materials including zero (0-D) dimensional (e.g. nanoparticles), 1-D (nanorods, nanofibers), and 2-D (films/coating) structures is of fundamental and technological interest. This research will have two major sections. The first part of section one focuses on the deposition of silicon dioxide onto a pre-deposited molybdenum disilicide coating on molybdenum substrates for both high (>1000 °C) and moderate (500-600 °C) temperature oxidation protection. Chemical vapor deposition (CVD/MOCVD) techniques will be utilized to deposit the metal suicide and oxide coatings. The focus of this study will be to establish optimum deposition conditions and evaluate the metal oxide coating as oxidation - thermal barriers for Mo substrates under both isothermal (static) and cyclic oxidation conditions. The second part of this section will involve a systematic evaluation of a boron nitride (BN) interface coating prepared by chemical vapor deposition. Ceramic matrix composites (CMCs) are prospective candidates for high (>1000 °C) temperature applications and fiber- matrix interfaces are the dominant design parameters in ceramic matrix composites (CMCs). An important goal of the study is to determine a set of process parameters, which would define a boron nitride (BN) interface coating by a chemical vapor deposition (CVD) process with respect to coating. In the first part of the second section, we will investigate a new approach to synthesize ultrafine metal oxides that combines microwave heating and an in-situ ultrasonic mixing of two or more liquid precursors with a tubular flow reactor. Different metal oxides such as nickel ferrite and zinc aluminate spinels will be studied. The synthesis of metal oxides were investigated in order to study the effects of the nozzle and microwave (INM process) on the purity, composition, and particle size of the resulting powders. The second part of this research section involves a study of microwave frequency effects on the synthesis of nanocrystalline tetragonal barium titanate. The effects of microwave frequency (fixed and variable), microwave bandwidths sweep time, and aging time on the microstructure, particle sizes, phase purity, surface areas, and porosities of the as-prepared BaTiO3 were systematically investigated. The final part of the research involves a new rapid and facile synthetic route to prepare size-tunable, ultranarrow, high surface area OMS-2 nanomaterials via open-vessel microwave-assisted refluxing preparations without employing templates or surfactants. The particle size control is achieved by varying the concentration or type of non-aqueous co-solvent. The structural, textural, and catalytic application properties of the prepared nanomaterials are investigated.
In situ metrology to characterize water vapor delivery during atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmido, Tariq, E-mail: tariq.ahmido@nist.gov; Kimes, William A.; Sperling, Brent A.
Water is often employed as the oxygen source in metal oxide atomic layer deposition (ALD) processes. It has been reported that variations in the amount of water delivered during metal oxide ALD can impact the oxide film properties. Hence, one contribution to optimizing metal oxide ALD processes would be to identify methods to better control water dose. The development of rapid, quantitative techniques for in situ water vapor measurements during ALD processes would be beneficial to achieve this goal. In this report, the performance of an in situ tunable diode laser absorption spectroscopy (TDLAS) scheme for performing rapid, quantitative watermore » partial pressure measurements in a representative quarter-inch ALD delivery line is described. This implementation of TDLAS, which utilizes a near-infrared distributed-feedback diode laser and wavelength modulation spectroscopy, provides measurements of water partial pressure on a timescale comparable to or shorter than the timescale of the gas dynamics in typical ALD systems. Depending on the degree of signal averaging, this TDLAS system was capable of measuring the water partial pressure with a detection limit in the range of ∼0.80 to ∼0.08 Pa. The utility of this TDLAS scheme was demonstrated by using it to identify characteristics of a representative water delivery system that otherwise would have been difficult to predict. Those characteristics include (1) the magnitude and time dependence of the pressure transient that can occur during water injection, and (2) the dependence of the steady-state water partial pressure on the carrier gas flow rate and the setting of the water ampoule flow restriction.« less
NASA Astrophysics Data System (ADS)
Yang, Jian-Guang; He, De-Wen; Tang, Chao-Bo; Chen, Yong-Ming; Sun, Ya-Hui; Tang, Mo-Tang
2011-08-01
The main purpose of this study is to characterize and separate bismuth from a bismuth glance concentrate through a low-temperature, sulfur-fixing smelting process. This article reports on a study conducted on the optimization of process parameters, such as Na2CO3 and zinc oxide wt pct in charging, smelting temperature, smelting duration on the bismuth yield, resultant crude bismuth grade, and sulfur-fixing rate. A maximum bismuth recovery of 97.31 pct, crude bismuth grade of 96.93 pct, and 98.23 pct sulfur-fixing rate are obtained when a charge (containing 63.50 wt pct of Na2CO3 and 22.50 wt pct of bismuth glance, as well as 5 pct in excess of the stoichiometric requirement of zinc oxide dosage) is smelted at 1000 K (727 °C) for 150 minutes. This smelting operation is free from atmospheric pollution because zinc oxide is used as the sulfur-fixing agent, which can capture sulfur from bismuth sulfide and form the more thermodynamic-stable compound, zinc sulfide. The solid residue is subjected to a mineral dressing operation to obtain suspension, which is filtered to produce a cake, representing the solid particles of zinc sulfide. Based on the results of the chemical content analysis of the as-resultant zinc sulfide, more than 93 pct zinc sulfide can be recovered, and the recovered zinc sulfide grade can reach 60.20 pct. This material can be sold as zinc sulfide concentrate or roasted to be regenerated as zinc oxide.
Solar High Temperature Water-Splitting Cycle with Quantum Boost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Robin; Davenport, Roger; Talbot, Jan
A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle formore » reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are proposed for future activities. Electrolysis membranes that permit higher temperatures and lower voltages are attainable. The oxygen half cycle will need further development and improvement.« less
Oxidative degradation of alkylphenols by horseradish peroxidase.
Sakuyama, Hisae; Endo, Yasushi; Fujimoto, Kenshiro; Hatana, Yasuhiko
2003-01-01
Alkylphenols such as bisphenol A (2,2-bis(4-hydroxyphenyl)propane; BPA), p-nonylphenol (p-NP), and p-octylphenol (p-OP) that are known as endocrine disrupters were oxidized by horseradish (Armoracia rusticana) peroxidase (HRP) with H2O2. The optimal pHs for BPA, p-NP, and p-OP were 8.0, 7.0, and 5.0, respectively. The optimal temperature for BPA was 20 degrees C. Although BPA was rapidly degraded by HRP, its degradation depended on the concentration of HRP. Most of the oxidation products of BPA were polymers, although some 4-isopropenylphenol was produced. When male Japanese medaka (Oryzias latipes) were exposed to BPA, vitellogenin in the blood increased. However, no increased vitellogenin was observed in medaka exposed to HRP-oxidized BPA. The enzymatic oxidation of BPA using HRP was able to eliminate its estrogen-like activity.
Chemical Looping Combustion Reactions and Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarofim, Adel; Lighty, JoAnn; Smith, Philip
2014-03-01
Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) themore » exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.« less
Lin, Kun-Yi Andrew; Chang, Hsuan-Ang; Chen, Ru-Chieh
2015-07-01
Metal Organic Frameworks (MOFs) represents one of the most interesting and versatile materials nowadays. As interests to explore MOFs' functionality and potential continue to grow, using MOFs as a platform/template to develop other functional materials has received a great attention recently. Among these MOF-derived materials, MOF-derived carbonaceous materials are particularly attractive owing to its simple preparation and dual characteristics from carbon and metals. Herein, we propose to prepare a cobalt-based magnetic carbonaceous nanocomposite (MCN) by one-step carbonization of the cobalt-containing MOF, ZIF-67. Because of cobalt oxide (i.e., Co3O4) in MCN, MCN not only exhibits magnetic controllability but also catalytic activity to activate Oxone. To investigate and optimize this MCN-activated Oxone process, the decolorization of a cationic dye, Rhodamine B (Rh.B) in water is selected as a model reaction. This MCN-activated Oxone process was found to be the most effective when the ratio of Oxone/MCN was 5/1. While the high temperatures significantly improved the decolorization efficiency, the high initial pH was unfavorable for the Rh.B decolorization by this catalytic Oxone process. UV irradiation and ultrasonication were both found to enhance this MCN-activated Oxone process. The recyclability test revealed that MCN can be continuously used with constant and effective catalytic activity. These features enable MCN to be a promising and interesting catalyst for the wet chemical oxidation such as the Oxone oxidation process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Xin; Wu, Hao; Guo, Baolin; Dong, Ruonan; Qiu, Yusheng; Ma, Peter X
2017-04-01
Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cao, Rensheng; Ruan, Wenqian; Wu, Xianliang; Wei, Xionghui
2018-01-01
Highly promising artificial intelligence tools, including neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), were applied in the present study to develop an approach for the evaluation of Se(IV) removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Both GA and PSO were used to optimize the parameters of ANN. The effect of operational parameters (i.e., initial pH, temperature, contact time and initial Se(IV) concentration) on the removal efficiency was examined using response surface methodology (RSM), which was also utilized to obtain a dataset for the ANN training. The ANN-GA model results (with a prediction error of 2.88%) showed a better agreement with the experimental data than the ANN-PSO model results (with a prediction error of 4.63%) and the RSM model results (with a prediction error of 5.56%), thus the ANN-GA model was an ideal choice for modeling and optimizing the Se(IV) removal by the nZVI/rGO composites due to its low prediction error. The analysis of the experimental data illustrates that the removal process of Se(IV) obeyed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the Se 3d and 3p peaks found in XPS spectra for the nZVI/rGO composites after removing treatment illustrates that the removal of Se(IV) was mainly through the adsorption and reduction mechanisms. PMID:29543753
Cao, Rensheng; Fan, Mingyi; Hu, Jiwei; Ruan, Wenqian; Wu, Xianliang; Wei, Xionghui
2018-03-15
Highly promising artificial intelligence tools, including neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), were applied in the present study to develop an approach for the evaluation of Se(IV) removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Both GA and PSO were used to optimize the parameters of ANN. The effect of operational parameters (i.e., initial pH, temperature, contact time and initial Se(IV) concentration) on the removal efficiency was examined using response surface methodology (RSM), which was also utilized to obtain a dataset for the ANN training. The ANN-GA model results (with a prediction error of 2.88%) showed a better agreement with the experimental data than the ANN-PSO model results (with a prediction error of 4.63%) and the RSM model results (with a prediction error of 5.56%), thus the ANN-GA model was an ideal choice for modeling and optimizing the Se(IV) removal by the nZVI/rGO composites due to its low prediction error. The analysis of the experimental data illustrates that the removal process of Se(IV) obeyed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the Se 3d and 3p peaks found in XPS spectra for the nZVI/rGO composites after removing treatment illustrates that the removal of Se(IV) was mainly through the adsorption and reduction mechanisms.
Removal of sulfur compounds from diesel using ArF laser and oxygen.
Gondal, M A; Siddiqui, M N; Al-Hooshani, K
2013-01-01
A laser-based technique for deep desulfurization of diesel and other hydrocarbon fuels by removal of dimethyldibenzothiophene (DMDBT), a persistent sulfur contaminant in fuel oils has been developed. We report a selective laser excitation of DMDBT in diesel and model compounds such as n-hexane in a reaction chamber under oxygen environment where oxidative reactions can take place. ArF laser emitting at 193 nm was employed for excitation of oxygen and DMDBT, while for process optimization, the laser energy was varied from 50 to 200 mJ/cm(2). The laser-irradiated DMDBT solution under continuous oxygen flow was analyzed by UV absorption spectrometer to determine the photochemical oxidative degradation of DMDBT. In just 5 min of laser irradiation time, almost 95% DMDBT was depleted in a diesel containing 200 ppm of DMDBT. This article provides a new method for the removal of sulfur compounds from diesel by laser based photochemical process.
Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.
Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles
2017-10-15
The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.
Eco-friendly copper recovery process from waste printed circuit boards using Fe³⁺/Fe²⁺ redox system.
Fogarasi, Szabolcs; Imre-Lucaci, Florica; Egedy, Attila; Imre-Lucaci, Árpád; Ilea, Petru
2015-06-01
The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe(3+) combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Chen, Xuliang; Wang, Zhou
2017-09-01
The spot continual induction hardening (SCIH) process, which is a modified induction hardening, can be assembled to a five-axis cooperating computer numerical control machine tool to strengthen more than one small area or relatively large area on complicated component surface. In this study, a response surface method was presented to optimize phase transformation region after the SCIH process. The effects of five process parameters including feed velocity, input power, gap, curvature and flow rate on temperature, microstructure, microhardness and phase transformation geometry were investigated. Central composition design, a second-order response surface design, was employed to systematically estimate the empirical models of temperature and phase transformation geometry. The analysis results indicated that feed velocity has a dominant effect on the uniformity of microstructure and microhardness, domain size, oxidized track width, phase transformation width and height in the SCIH process while curvature has the largest effect on center temperature in the design space. The optimum operating conditions with 0.817, 0.845 and 0.773 of desirability values are expected to be able to minimize ratio (tempering region) and maximize phase transformation width for concave, flat and convex surface workpieces, respectively. The verification result indicated that the process parameters obtained by the model were reliable.
Sludge stabilization through aerobic digestion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, R.B.; Smith, D.G.; Bennett, E.R.
1979-10-01
The aerobic digestion process with certain modifications is evaluated as an alternative for sludge processing capable of developing a product with characteristics required for land application. Environmental conditions, including temperature, solids concentration, and digestion time, that affect the aerobic digestion of a mixed primary sludge-trickling filter humus are investigated. Variations in these parameters that influence the characteristics of digested sludge are determined, and the parameters are optimized to: provide the maximum rate of volatile solids reduction; develop a stable, nonodorous product sludge; and provide the maximum rate of oxidation of the nitrogenous material present in the feed sludge. (3 diagrams,more » 9 graphs, 15 references, 3 tables)« less
Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal
2013-01-01
Objective To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. Methods The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. Results It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. Conclusions It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries. PMID:23730555
Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.).
Petigny, Loïc; Périno-Issartier, Sandrine; Wajsman, Joël; Chemat, Farid
2013-03-12
Vegetal extracts are widely used as primary ingredients for various products from creams to perfumes in the pharmaceutical, nutraceutic and cosmetic industries. Having concentrated and active extract is essential, as the process must extract as much soluble material as possible in a minimum time, using the least possible volume of solvent. The boldo leaves extract is of great interest for the industry as it holds a great anti-oxidant activity due to high levels of flavonoids and alkaloids such as boldine. Ultrasound Assisted Extraction (UAE) has been used to improve the efficiency of the plant extraction, reducing extraction time, increasing the concentration of the extract with the same amount of solvent and plant material. After a preliminary study, a response surface method has been used to optimize the extraction of soluble material from the plant. The results provided by the statistical analysis revealed that the optimized conditions were: sonication power 23 W/cm2 for 40 min and a temperature of 36 °C. The optimized parameters of the UAE provide a better extraction compared to a conventional maceration in terms of process time (30 min instead of 120 min), higher yield, more energy saving, cleanliness, safety and product quality.
Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.)
Petigny, Loïc; Périno-Issartier, Sandrine; Wajsman, Joël; Chemat, Farid
2013-01-01
Vegetal extracts are widely used as primary ingredients for various products from creams to perfumes in the pharmaceutical, nutraceutic and cosmetic industries. Having concentrated and active extract is essential, as the process must extract as much soluble material as possible in a minimum time, using the least possible volume of solvent. The boldo leaves extract is of great interest for the industry as it holds a great anti-oxidant activity due to high levels of flavonoids and alkaloids such as boldine. Ultrasound Assisted Extraction (UAE) has been used to improve the efficiency of the plant extraction, reducing extraction time, increasing the concentration of the extract with the same amount of solvent and plant material. After a preliminary study, a response surface method has been used to optimize the extraction of soluble material from the plant. The results provided by the statistical analysis revealed that the optimized conditions were: sonication power 23 W/cm2 for 40 min and a temperature of 36 °C. The optimized parameters of the UAE provide a better extraction compared to a conventional maceration in terms of process time (30 min instead of 120 min), higher yield, more energy saving, cleanliness, safety and product quality. PMID:23481637
NASA Astrophysics Data System (ADS)
Asplund, Erik; Klüner, Thorsten
2012-03-01
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)], 10.1063/1.473950. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998), 10.1063/1.475576; Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)], 10.1063/1.1650297. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = me = e = a0 = 1, have been used unless otherwise stated.
Oliveira, Edna M S; Silva, Francisco R; Morais, Crislânia C O; Oliveira, Thiago Mielle B F; Martínez-Huitle, Carlos A; Motheo, Artur J; Albuquerque, Cynthia C; Castro, Suely S L
2018-06-01
This study investigated the anodic oxidation of phenolic wastewater generated by cashew-nut processing industry (CNPI) using active (Ti/RuO 2 -TiO 2 ) and inactive (boron doped diamond, BDD) anodes. During electrochemical treatment, various operating parameters were investigated, such as current density, chemical oxygen demand (COD), total phenols, O 2 production, temperature, pH, as well as current efficiency and energy consumption. After electrolysis under optimized working conditions, samples were evaluated by chromatography and toxicological tests against L. sativa. When both electrode materials were compared under the same operating conditions, higher COD removal efficiency was achieved for BDD anode; achieving lower energy requirements when compared with the values estimated for Ti/RuO 2 -TiO 2 . The presence of Cl - in the wastewater promoted the electrogeneration of strong oxidant species as chlorine, hypochlorite and mainly hypochlorous acid, increasing the efficiency of degradation process. Regarding the temperature effect, BDD showed slower performances than those achieved for Ti/RuO 2 -TiO 2 . Chromatographic and phytotoxicity studies indicated formation of some by-products after electrolytic process, regardless of the anode evaluated, and phytotoxic action of the effluent. Results encourage the applicability of the electrochemical method as wastewater treatment process for the CNPI, reducing depuration time. Copyright © 2018. Published by Elsevier Ltd.
Wang, Aimin; Zhang, Yanyu; Zhong, Huihui; Chen, Yu; Tian, Xiujun; Li, Desheng; Li, Jiuyi
2018-01-15
In this study, a novel photoelectro-Fenton (PEF) process using microwave discharge electrodeless lamp (MDEL) as a UV irradiation source was developed for the removal of antibiotic ciprofloxacin (CIP) in water. Comparative degradation of 200mgL -1 CIP was studied by direct MDEL photolysis, anodic oxidation (AO), AO in presence of electrogenerated H 2 O 2 (AO-H 2 O 2 ), AO-H 2 O 2 under MDEL irradiation (MDEL-AO-H 2 O 2 ), electro-Fenton (EF) and MDEL-PEF processes. Higher oxidation power was found in the sequence: MDEL photolysis < AO < AO-H 2 O 2 < MDEL-AO-H 2 O 2 < EF < MDEL-PEF. Effects of current density, pH, initial Fe 2+ concentration and initial CIP concentration on TOC removal in MDEL-PEF process were examined, and the optimal conditions were ascertained. The releases of three inorganic ions (F - , NH 4 + and NO 3 - ) and two carboxylic acids (oxalic and formic acids) were qualified. Seven aromatic intermediates mainly generated from hydroxylation, dealkylation and defluorination of CIP were detected by UPLC-QTOF-MS/MS technology. Therefore, plausible degradation sequences for CIP degradation in MDEL-PEF process including all detected products were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Xu; Zhang, Baofeng; Liu, Huijuan; Chen, Fayuan; Li, Angzhen; Qu, Jiuhui
2012-05-01
The treatment of the plugboard wastewater was performed by an optimal electrocoagulation and electro-Fenton. The organic components with suspended fractions accounting for 30% COD were preferably removed via electrocoagulation at initial 5 min. In contrast, the removal efficiency was increased to 76% with the addition of H(2)O(2). The electrogenerated Fe(2+) reacts with H(2)O(2) and leads to the generation of (·)OH, which is responsible for the higher COD removal. However, overdosage H(2)O(2) will consume (·)OH generated in the electro-Fenton process and lead to the low COD removal. The COD removal efficiency decreased with the increased pH. The concentration of Fe(2+) ions was dependent on the solution pH, H(2)O(2) dosage and current density. The changes of organic characteristics in coagulation and oxidation process were differenced and evaluated using gel permeation chromatography, fluorescence excitation-emission scans and Fourier transform infrared spectroscopy. The fraction of the wastewater with aromatic structure and large molecular weight was decomposed into aliphatic structure and small molecular weight fraction in the electro-Fenton process. Copyright © 2012. Published by Elsevier Ltd.
Vertical Isolation for Photodiodes in CMOS Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata
2008-01-01
In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.
Panner Selvam, M K; Henkel, R; Sharma, R; Agarwal, A
2018-03-01
Oxidation-reduction potential describes the balance between the oxidants and antioxidants in fluids including semen. Various artificial culture media are used in andrology and IVF laboratories for sperm preparation and to support the development of fertilized oocytes under in vitro conditions. The composition and conditions of these media are vital for optimal functioning of the gametes. Currently, there are no data on the status of redox potential of sperm processing and assisted reproduction media. The purpose of this study was to compare the oxidation-reduction potential values of the different media and to calibrate the oxidation-reduction potential values of the sperm wash medium using oxidative stress inducer cumene hydroperoxide and antioxidant ascorbic acid. Redox potential was measured in 10 different media ranging from sperm wash media, freezing media and assisted reproductive technology one-step medium to sequential media. Oxidation-reduction potential values of the sequential culture medium and one-step culture medium were lower and significantly different (p < 0.05) from the sperm wash media. Calibration of the sperm wash media using the oxidant cumene hydroperoxide and antioxidant ascorbic acid demonstrated that oxidation-reduction potential and the concentration of oxidant or antioxidant are logarithmically dependent. This study highlights the importance of calibrating the oxidation-reduction potential levels of the sperm wash media in order to utilize it as a reference value to identify the physiological range of oxidation-reduction potential that does not have any adverse effect on normal physiological sperm function. © 2017 American Society of Andrology and European Academy of Andrology.
NASA Astrophysics Data System (ADS)
Kim, U.; Parker, J.; Borden, R. C.
2015-12-01
In situ chemical oxidation (ISCO) is a popular remediation technology that involves injection of chemical oxidant into groundwater to destroy dissolved and non-aqueous liquid phase contaminants. Depending on site conditions, oxidant can be injected into the contaminated subsurface periodically (intermittently) or continuously. A common approach is to intermittently inject oxidant into a network of wells over a period long enough to emplace oxidant over a target treatment volume (referred to ISCO-int). The injection phase is followed by a passive phase when the oxidant is allowed to react with contaminants and natural oxygen demand (NOD) and to migrate under natural hydraulic gradients. This process may be repeated multiple times until termination criteria are met. Recently, some practitioners have adopted an alternative approach in which oxidant is injected continuously with extraction wells recovering unreacted oxidant to recycle with additional makeup oxidant to maintain its constant concentration (referred to ISCO-cont). Each method has certain advantages and disadvantages. This study numerically evaluates those two ISCO practices in terms of remediation costs and performance based on multiple equi-probable parameter sets. Stochastic cost optimization toolbox (SCOToolkit) is used for this purpose. SCOToolkit is an integrated semi-analytical model for contaminant transport and remediation (e.g., thermal source treatment, ISCO, electron donor injections, permeable reactive barriers) enabling inverse solution and Monte Carlo simulations. Four different aquifer settings, slow and fast Darcy velocities combined with low and high NOD conditions, are used for the evaluation. Preliminary results showed that ISCO-cont is effective for a full scale application without large investment while ISCO-int is more efficient to utilize oxidant in well-characterized sites. Pros and cons of each approach are discussed for the practical use of ISCO for various site conditions.
Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.
Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung
2016-02-19
Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tinguely, Jean-Claude; Solarska, Renata; Braun, Artur; Graule, Thomas
2011-04-01
A new approach for the large-scale production of flexible photoelectrodes for dye-sensitized solar cells (DSSCs) is presented by roll-to-roll coating of a titanium dioxide nanodispersion containing the block copolymer 'Pluronic®' (PEOx-PPOy-PEOx, PEO: poly(ethylene oxide), PPO: poly(propylene oxide)). Functional DSSCs were assembled and the different coating procedures compared with respect to their solar power conversion efficiency. It is shown that the binder 'Pluronic' can be removed at processing temperatures as low as 140 °C, thus aiding achievement of sufficient adhesion to the ITO-PET support, higher porosity of the TiO2 layer and decreased crack appearance. Further optimization of this method is particularly promising when combined with other known low-temperature methods.
Pedraza, F; Mahadik, S A; Bouchaud, B
2015-12-21
In this work, superhydrophobic cerium oxide coating surface (111) with dual scale texture on Ni20Cr substrate is obtained by combination of electropolishing the substrate and subsequent cathodic electrodeposition and long-term UVH surface relaxation. To form hierarchical structures of CeO2 is controllable by varying the substrate roughness, and electropolishing period. The results indicated that at the optimal condition, the surface of the cerium oxide coating showed a superhydrophobicity with a great water contact angle (151.0 ± 1.4°) with Gecko state. An interface model for electropolishing of substrate surface in cerium nitrate medium is proposed. We expect that this facile process can be readily and widely adopted for the design of superhydrophobic coating on engineering materials.
NASA Astrophysics Data System (ADS)
Greene, Brian Joseph
Thin film silicon on insulator fabrication is an increasingly important technology requirement for improving performance in future generation devices and circuits. One process for SOI fabrication that has recently been generating renewed interest is Lateral Solid Phase Epitaxy (LSPE) of silicon over oxide. This process involves annealing amorphous silicon that has been deposited on oxide patterned Si wafers. The (001) Si substrate forms the crystalline seed for epitaxial growth, permitting the generation of Si films that are both single crystal, and oriented to the substrate. This method is particularly attractive to fabrication that requires low temperature processing, because the Si films are deposited in the amorphous phase at temperatures near 525°C, and crystallized at temperatures near 570°C. It is also attractive for applications requiring three dimensional stacking of active silicon device layers, due to the relatively low temperatures involved. For sub-50 nm gate length MOSFET fabrication, an SOI thickness on the order of 10 nm will be required. One limitation of the LSPE process has been the need for thick films (0.5--2 mum) and/or heavy P doping (10 19--1020 cm-3) to increase the maximum achievable lateral growth distance, and therefore minimize the area on the substrate occupied by seed holes. This dissertation discusses the characterization and optimization of process conditions for large area LSPE silicon film growth, as well as efforts to adapt the traditional LSPE process to achieve ultra-thin SOI layers (Tsilicon ≤ 25 nm) while avoiding the use of heavy active doping layers. MOSFETs fabricated in these films that exhibit electron mobility comparable to the Universal Si MOS Mobility are described.
Shu, Zengquan; Li, Chao; Belosevic, Miodrag; Bolton, James R; El-Din, Mohamed Gamal
2014-08-19
The solar UV/chlorine process has emerged as a novel advanced oxidation process for industrial and municipal wastewaters. Currently, its practical application to oil sands process-affected water (OSPW) remediation has been studied to treat fresh OSPW retained in large tailings ponds, which can cause significant adverse environmental impacts on ground and surface waters in Northern Alberta, Canada. Degradation of naphthenic acids (NAs) and fluorophore organic compounds in OSPW was investigated. In a laboratory-scale UV/chlorine treatment, the NAs degradation was clearly structure-dependent and hydroxyl radical-based. In terms of the NAs degradation rate, the raw OSPW (pH ∼ 8.3) rates were higher than those at an alkaline condition (pH = 10). Under actual sunlight, direct solar photolysis partially degraded fluorophore organic compounds, as indicated by the qualitative synchronous fluorescence spectra (SFS) of the OSPW, but did not impact NAs degradation. The solar/chlorine process effectively removed NAs (75-84% removal) and fluorophore organic compounds in OSPW in the presence of 200 or 300 mg L(-1) OCl(-). The acute toxicity of OSPW toward Vibrio fischeri was reduced after the solar/chlorine treatment. However, the OSPW toxicity toward goldfish primary kidney macrophages after solar/chlorine treatment showed no obvious toxicity reduction versus that of untreated OSPW, which warrants further study for process optimization.
Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment.
Rodríguez, Eva; Majado, María E; Meriluoto, Jussi; Acero, Juan L
2007-01-01
A few genera of cyanobacteria produce toxins which contaminate drinking water resources. Microcystins (MC), widely reported cyanotoxins, cause acute and chronic toxicity effects in living beings including humans and warrant removal from drinking water. In the present study, unknown second-order rate constants for the reactions of microcystin-LR (MC-LR), -RR and -YR with potassium permanganate were determined at pH 6.2-8.2 and temperature 10-25 degrees C. The reaction of permanganate with MCs is second-order overall and first-order with respect to both permanganate and toxin. The second-order rate constant for the reaction of MC-LR with permanganate at pH 7 and 20 degrees C was 357.2+/-17.5M(-1)s(-1). The influence of pH on the oxidation process was not appreciable and the activation energy was 28.8 kJ mol(-1). Slightly higher reactivity with permanganate was found for MC-RR (418.0M(-1)s(-1)) and MC-YR (405.9M(-1)s(-1)). According to the results obtained, permanganate likely attacks the Adda moiety of the MC molecule. The oxidation of MCs in a natural surface water was also investigated. A permanganate dose of 1-1.25mgL(-1) was enough to reduce MCs concentration below the guideline value of 1microgL(-1). Permanganate oxidation is therefore a feasible option for microcystin removal during preoxidation processes. However, the oxidant dose must be carefully optimized in order to remove extracellular MCs without causing cell lysis (due to chemical stress) and further release of MCs.
Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes.
Marcinowski, Piotr P; Bogacki, Jan P; Naumczyk, Jeremi H
2014-01-01
Advanced Oxidation Processes (AOPs), such as the Fenton, photo-Fenton and H2O2/UV processes, have been investigated for the treatment of cosmetic wastewaters that were previously coagulated by FeCl3. The Photo-Fenton process at pH 3.0 with 1000/100 mg L(-1) H2O2/Fe(2+) was the most effective (74.0% Chemical Oxygen Demand (COD) removal). The Fenton process with 1200/500 mg L(-1) H2O2/Fe(2+) achieved a COD removal of 72.0%, and the H2O2/UV process achieved a COD removal of 47.0%. Spreading the H2O2 doses over time to obtain optimal conditions did not improve COD removal. The kinetics of the Fenton and photo-Fenton processes may be described by the following equation: d[COD]/dt = -a[COD] t(m) (t represents time and a and m are constants). The rate of COD removal by the H2O2/UV process may be described by a second-order reaction equation. Head Space, Solid-Phase MicroExtraction, Gas Chromatography and Mass Spectrometry (HS-SPME-GC-MS) were used to identify 48 substances in precoagulated wastewater. Among these substances, 26 were fragrances. Under optimal AOP conditions, over 99% of the identified substances were removed in 120 min.
Sample environment for in situ synchrotron corrosion studies of materials in extreme environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Motta, Arthur T.
A new in situ sample environment has been designed and developed to study the interfacial interactions of nuclear cladding alloys with high temperature steam. The sample environment is particularly optimized for synchrotron X-ray diffraction (XRD) studies for in situ structural analysis. The sample environment is highly corrosion resistant and can be readily adapted for steam environments. The in situ sample environment design complies with G2 ASTM standards for studying corrosion in zirconium and its alloys and offers remote temperature and pressure monitoring during the in situ data collection. The use of the in situ sample environment is exemplified by monitoringmore » the oxidation of metallic zirconium during exposure to steam at 350°C. Finally, the in situ sample environment provides a powerful tool for fundamental understanding of corrosion mechanisms by elucidating the substoichiometric oxide phases formed during early stages of corrosion, which can provide a better understanding the oxidation process.« less