Sample records for oxidation processes aops

  1. Induced effects of advanced oxidation processes

    PubMed Central

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-01-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715

  2. Induced effects of advanced oxidation processes.

    PubMed

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-07

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  3. Advanced Oxidation Processes: Process Mechanisms, Affecting Parameters and Landfill Leachate Treatment.

    PubMed

    Su-Huan, Kow; Fahmi, Muhammad Ridwan; Abidin, Che Zulzikrami Azner; Soon-An, Ong

    2016-11-01

      Advanced oxidation processes (AOPs) are of special interest in treating landfill leachate as they are the most promising procedures to degrade recalcitrant compounds and improve the biodegradability of wastewater. This paper aims to refresh the information base of AOPs and to discover the research gaps of AOPs in landfill leachate treatment. A brief overview of mechanisms involving in AOPs including ozone-based AOPs, hydrogen peroxide-based AOPs and persulfate-based AOPs are presented, and the parameters affecting AOPs are elaborated. Particularly, the advancement of AOPs in landfill leachate treatment is compared and discussed. Landfill leachate characterization prior to method selection and method optimization prior to treatment are necessary, as the performance and practicability of AOPs are influenced by leachate matrixes and treatment cost. More studies concerning the scavenging effects of leachate matrixes towards AOPs, as well as the persulfate-based AOPs in landfill leachate treatment, are necessary in the future.

  4. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    PubMed

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. ADVANCED OXIDATION PROCESSES (AOPS) FOR DESTRUCTION OF METHYL TERTIARY BUTYL ETHER (MTBE -AN UNREGULATED CONTAMINANT) IN DRINKING WATER

    EPA Science Inventory

    Advanced oxidation processes (AOPs) provide a promising treatment option for the destruction of MTBE directly in surface and ground waters. An ongoing study is evaluating the ability of three AOPs; hydrogen peroxide/ozone (H2O2/ O3), ultraviolet irradiation/ozone (UV/O3) and ultr...

  6. The Role of Ultrasound on Advanced Oxidation Processes.

    PubMed

    Babu, Sundaram Ganesh; Ashokkumar, Muthupandian; Neppolian, Bernaurdshaw

    2016-10-01

    This chapter describes the use of ultrasound in remediation of wastewater contaminated with organic pollutants in the absence and presence of other advanced oxidation processes (AOPs) such as sonolysis, sono-ozone process, sonophotocatalysis, sonoFenton systems and sonophoto-Fenton methods in detail. All these methods are explained with the suitable literature illustrations. In most of the cases, hybrid AOPs (combination of ultrasound with one or more AOPs) resulted in superior efficacy to that of individual AOP. The advantageous effects such as additive and synergistic effects obtained by operating the hybrid AOPs are highlighted with appropriate examples. It is worth to mention here that the utilization of ultrasound is not only restricted in preparation of modern active catalysts but also extensively used for the wastewater treatment. Interestingly, ultrasound coupled AOPs are operationally simple, efficient, and environmentally benign, and can be readily applied for large scale industrial processes which make them economically viable.

  7. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review.

    PubMed

    Nidheesh, Puthiya Veetil

    2017-12-01

    Advanced oxidation processes (AOPs) received much attention in the field of water and wastewater treatment due to its ability to mineralize persistent organic pollutants from water medium. The addition of graphene-based materials increased the efficiency of all AOPs significantly. The present review analyzes the performance of graphene-based materials that supported AOPs in detail. Recent developments in this field are highlighted. A special focus has been awarded for the performance enhancement mechanism of AOPs in the presence of graphene-based materials.

  8. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants.

    PubMed

    Sichel, C; Garcia, C; Andre, K

    2011-12-01

    UV/chlorine (UV/HOCl and UV/ClO(2)) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H(2)O(2) AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC). UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evolution of molecular weight and fluorescence of effluent organic matter (EfOM) during oxidation processes revealed by advanced spectrographic and chromatographic tools.

    PubMed

    Chen, Zhiqiang; Li, Mo; Wen, Qinxue; Ren, Nanqi

    2017-11-01

    Effluent organic matter (EfOM) is an emerging concern to receiving aquatic environment due to its refractory property. The degradation of EfOM in ozonation and other two advanced oxidation processes (AOPs), UV/H 2 O 2 and UV/persulfate (PS), was investigated in this study. Fluorescence spectra coupled with parallel factor analysis (PARAFAC) and two-dimensional correlation gel permeation chromatography (2D-GPC) were used to track the evolution of EfOM during each oxidation process. Results showed that the degradation of EfOM indicated by dissolved organic carbon (DOC), UV 254 and fluorescence components, fitted well with pseudo-first-order kinetic model during the oxidation processes. Ozonation showed higher degradation efficiency than AOPs, while UV/PS was more effective than UV/H 2 O 2 with equimolar oxidants dosage. Ozone and SO· 4 - were more reactive with terrestrial humic-like substances, while hydroxyl radical preferentially reacted with protein-like substances. Organic molecules with higher molecular weight (MW) were susceptible to ozone or radicals. Ozonation could transform higher MW (MW of 3510 and 575) organic matters into lower MW organic matters (MW of 294), while reductions of all the organics were observed in both AOPs. Due to the higher reaction rates between ozone and EfOM, ozonation maybe serve as a pre-treatment for AOPs to reduce the radical and energy consumption and improve mineralization of EfOM by AOPs. The decline in DOC, UV 254 , fluorescence and reduction in oxidants increased with the increase of oxidants dosage, and linear correlations among them were found during the ozonation and AOPs. Copyright © 2017. Published by Elsevier Ltd.

  11. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes.

    PubMed

    Tokumura, Masahiro; Sugawara, Asato; Raknuzzaman, Mohammad; Habibullah-Al-Mamun, Md; Masunaga, Shigeki

    2016-09-01

    Simple semi-theoretical models were developed to estimate the performance of three different kinds of advanced oxidation processes (AOPs) in the degradation of pharmaceuticals. The AOPs included the photo-Fenton process as an example of a liquid-liquid reaction, the TiO2 photocatalytic oxidation process as a solid-liquid reaction, and the combined ozone and hydrogen peroxide oxidation process as a gas-liquid reaction; the effects of the aqueous matrices (CESs: co-existing substances) of actual wastewater on the removal of pharmaceuticals (carbamazepine and diclofenac) was taken into account. By comparing the characteristic parameters of the models, obtained from the experiments using pure water and actual wastewater, the effects of CESs on the respective removal mechanisms could be separately and quantitatively evaluated. As a general tendency, the AOPs proceeded less effectively (were inhibited) in the matrices containing CESs, as observed with the use of a lower initial concentration of pharmaceuticals. The inhibition mechanisms differed for the three types of AOPs. In the photo-Fenton process, the Fenton reaction was improved by the incorporation of CESs, while the photo-reduction reaction was significantly inhibited. In the TiO2 photocatalytic oxidation process, competition between the pharmaceuticals and CESs for adsorption on the catalyst surface was a less significant inhibitory factor than the scavenger effects of the CESs. The combined ozone and hydrogen peroxide oxidation process was most strongly inhibited by CESs among the AOPs investigated in this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. DESTRUCTION OF PAHS AND PCBS IN WATER USING SULFATE RADICAL-BASED CATALYTIC ADVANCED OXIDATION PROCESSES

    EPA Science Inventory

    A new class of advanced oxidation processes (AOPs) based on sulfate radicals is being tested for the degradation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aqueous solution. These AOPs are based on the generation of sulfate radicals through...

  13. Environmental assessment of different advanced oxidation processes applied to a bleaching Kraft mill effluent.

    PubMed

    Muñoz, Iván; Rieradevall, Joan; Torrades, Francesc; Peral, José; Domènech, Xavier

    2006-01-01

    Different advanced oxidation processes (AOPs) have been applied to remove the organic carbon content of a paper mill effluent originating from the Kraft pulp bleaching process. The considered AOPs were: TiO(2)-mediated heterogeneous photocatalysis, TiO(2)-mediated heterogeneous photocatalysis assisted with H(2)O(2), TiO(2)-mediated heterogeneous photocatalysis coupled with Fenton, photo-Fenton, ozonation and ozonation with UV-A light irradiation. The application of the selected AOPs all resulted in a considerable decrease in dissolved organic carbon (DOC) content with variable treatment efficiencies depending upon the nature/type of the applied AOP. A Life Cycle Assessment (LCA) study was used as a tool to compare the different AOPs in terms of their environmental impact. Heterogeneous photocatalysis coupled with the Fenton's reagent proved to have the lowest environmental impact accompanied with a moderate-to-high DOC removal rate. On the other hand, heterogeneous photocatalysis appeared to be the worst AOP both in terms of DOC abatement rate and environmental impact. For the studied AOPs, LCA has indicated that the environmental impact was attributable to the high electrical energy (power) consumption necessary to run a UV-A lamp or to produce ozone.

  14. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Identification of mutagenic transformation products generated during oxidation of 3-methyl-4-nitrophenol solutions by orbitrap tandem mass spectrometry and quantitative structure-activity relationship analyses.

    PubMed

    Matsushita, Taku; Honda, Shiho; Kuriyama, Taisuke; Fujita, Yuki; Kondo, Takashi; Matsui, Yoshihiko; Shirasaki, Nobutaka; Takanashi, Hirokazu; Kameya, Takashi

    2018-02-01

    We used Ames assays to investigate the effects of ozonation (designated O 3 ), ozonation followed by chlorination (O 3 /Cl), an advanced oxidation process (AOP, UV/H 2 O 2 ), and AOP followed by chlorination (AOP/Cl) on the mutagenicity of solutions of 3-methyl-4-nitrophenol (3M4NP), a major environmental degradation product of the organophosphorus insecticide fenitrothion. Whereas O 3 did not induce mutagenicity, O 3 /Cl, AOP, and AOP/Cl converted 3M4NP into mutagenic transformation products (TPs). Using liquid chromatography-mass spectrometry, we detected a total of 138 peaks in the solutions subjected to O 3 /Cl, AOP, and AOP/Cl. To elucidate the TPs responsible for the observed mutagenicity, we performed simple regression analyses of the relationship between the area of each peak and the observed mutagenicity of samples withdrawn periodically during each oxidation process. The area of each of 10 peaks was found to be positively correlated (r 2  ≥ 0.8) with the observed mutagenicity, suggesting that the TPs corresponding to these peaks contributed to the mutagenicity. After taking into account the consistency of mutagenicity induction by the oxidation processes and analyzing the peaks by tandem mass spectrometry, we identified 3 TPs, corresponding to 6 peaks, as candidate mutagens. These TPs were assessed by means of 4 quantitative structure-activity relationship (QSAR) models, and all 3 were predicted to be mutagenic by at least one model. This result was consistent with our assumption that these TPs were mutagens. Ames assays of an authentic sample of one of the 3 TPs revealed that it did not contribute to the mutagenicity. This left 3-methoxy-4-nitrophenol and 2-[(E)-[(2,5-dihydroxyphenyl) methylidene]amino]-5-dihydroxybenzaldehyde on the list of mutagens suspected of contributing to the mutagenicity induced by AOP. No TPs were identified as candidate mutagens responsible for the mutagenicity induced by O 3 /Cl and AOP/Cl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Theoretical insight into reaction mechanisms of 2,4-dinitroanisole with hydroxyl radicals for advanced oxidation processes.

    PubMed

    Zhou, Yang; Liu, Xiaoqiang; Jiang, Weidong; Shu, Yuanjie

    2018-01-24

    The detailed degradation mechanism of an insensitive explosive, 2,4-dinitroanisole (DNAN), in advanced oxidation processes (AOPs) was investigated computationally at the M06-2X/6-311 + G(d,p)/SMD level of theory. Results obtained show that the addition-elimination reaction is the dominant mechanism. The phenol products formed can continue to be oxidized to benzoquinone radicals that are often detected by experiments and may be the initial reactants of ring-opening reactions. The H-abstraction reaction is an unavoidable competing mechanism; the intermediate generated can also undergo the process of addition-elimination reaction. The nitro departure reaction involves not only hydroxyl radical (•OH), but also other active substances (such as •H). More importantly, we found that AOP technology can easily degrade DNAN, similar to TNT and DNT. Thus, this method is worth trying in experiments. The conclusions of this work provide theoretical support for such experimental research. Graphical abstract Possible pathways of degradation by •OH radicals in advanced oxidation processes (AOPs) of the typical insensitive explosive 2,4-dinitroanisole (DNAN) were investigated by density functional theory (DFT) methods. Based on the Gibbs free energy barriers and intermediates, the dominant reaction mechanism was determined. The conclusions will be helpful in utilizing AOP technology to remove DNAN pollution.

  17. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review.

    PubMed

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu

    2018-02-15

    Natural organic matter (NOM), a key component in aquatic environments, is a complex matrix of organic substances characterized by its fluctuating amounts in water and variable molecular and chemical properties, leading to various interaction schemes with the biogeosphere and hydrologic cycle. These factors, along with the increasing amounts of NOM in surface and ground waters, make the effort of removing naturally-occurring organics from drinking water supplies, and also from municipal wastewater effluents, a challenging task requiring the development of highly efficient and versatile water treatment technologies. Advanced oxidation processes (AOPs) received an increasing amount of attention from researchers around the world, especially during the last decade. The related processes were frequently reported to be among the most suitable water treatment technologies to remove NOM from drinking water supplies and mitigate the formation of disinfection by products (DBPs). Thus, the present work overviews recent research and development studies conducted on the application of AOPs to degrade NOM including UV and/or ozone-based applications, different Fenton processes and various heterogeneous catalytic and photocatalytic oxidative processes. Other non-conventional AOPs such as ultrasonication, ionizing radiation and plasma technologies were also reported. Furthermore, since AOPs are unlikely to achieve complete oxidation of NOM, integration schemes with other water treatment technologies were presented including membrane filtration, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of the relationship between bulk organic precursors and disinfection byproduct formation for advanced oxidation processes.

    PubMed

    Mayer, Brooke K; Daugherty, Erin; Abbaszadegan, Morteza

    2015-02-01

    Advanced oxidation processes (AOPs) are gaining traction as they offer mineralization potential rather than transferring contaminants between media. However, AOPs operated with limited energy and/or chemical inputs can exacerbate disinfection byproduct (DBP) formation, even as precursors such as dissolved organic carbon, UV254, and specific UV absorbance (SUVA) decrease. This study examined the relationship between DBP precursors and formation using TiO2 photocatalysis experiments, external AOP and non-AOP data, and predictive DBP models. The top-performing indicator, SUVA, generally correlated positively with trihalomethanes and haloacetic acids, but limited-energy photocatalysis yielded contrasting negative correlations. The accuracy of predicted DBP values from models based on bulk parameters was generally poor, regardless of use and extent of AOP treatment and type of source water. Though performance improved for scenarios bounded by conditions used in model development, only 0.5% of the model/dataset pairings satisfied all measured parameter boundary conditions, thereby introducing skepticism toward model usefulness. Study findings suggest that caution should be employed when using bulk indicators and/or models as a metric for AOP mitigation of DBP formation potential, particularly for limited-energy/chemical inputs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review.

    PubMed

    Kanakaraju, Devagi; Glass, Beverley D; Oelgemöller, Michael

    2018-08-01

    Pharmaceuticals, which are frequently detected in natural and wastewater bodies as well as drinking water have attracted considerable attention, because they do not readily biodegrade and may persist and remain toxic. As a result, pharmaceutical residues pose on-going and potential health and environmental risks. To tackle these emerging contaminants, advanced oxidation processes (AOPs) such as photo-Fenton, sonolysis, electrochemical oxidation, radiation and ozonation etc. have been applied to remove pharmaceuticals. These processes utilize the high reactivity of hydroxyl radicals to progressively oxidize organic compounds to innocuous products. This review provides an overview of the findings from recent studies, which have applied AOPs to degrade pharmaceutical compounds. Included is a discussion that links various factors of TiO 2 -mediated photocatalytic treatment to its effectiveness in degrading pharmaceutical residues. This review furthermore highlights the success of AOPs in the removal of pharmaceuticals from different water matrices and recommendations for future studies are outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.

    PubMed

    Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor

    2005-01-01

    An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.

  1. Iohexol degradation in wastewater and urine by UV-based Advanced Oxidation Processes (AOPs): Process modeling and by-products identification.

    PubMed

    Giannakis, Stefanos; Jovic, Milica; Gasilova, Natalia; Pastor Gelabert, Miquel; Schindelholz, Simon; Furbringer, Jean-Marie; Girault, Hubert; Pulgarin, César

    2017-06-15

    In this work, an Iodinated Contrast Medium (ICM), Iohexol, was subjected to treatment by 3 Advanced Oxidation Processes (AOPs) (UV, UV/H 2 O 2 , UV/H 2 O 2 /Fe 2+ ). Water, wastewater and urine were spiked with Iohexol, in order to investigate the treatment efficiency of AOPs. A tri-level approach has been deployed to assess the UV-based AOPs efficacy. The treatment was heavily influenced by the UV transmittance and the organics content of the matrix, as dilution and acidification improved the degradation but iron/H 2 O 2 increase only moderately. Furthermore, optimization of the treatment conditions, as well as modeling of the degradation was performed, by step-wise constructed quadratic or product models, and determination of the optimal operational regions was achieved through desirability functions. Finally, global chemical parameters (COD, TOC and UV-Vis absorbance) were followed in parallel with specific analyses to elucidate the degradation process of Iohexol by UV-based AOPs. Through HPLC/MS analysis the degradation pathway and the effects the operational parameters were monitored, thus attributing the pathways the respective modifications. The addition of iron in the UV/H 2 O 2 process inflicted additional pathways beneficial for both Iohexol and organics removal from the matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Surface XPS characterization of NiTi shape memory alloy after advanced oxidation processes in UV/H 2O 2 photocatalytic system

    NASA Astrophysics Data System (ADS)

    Wang, R. M.; Chu, C. L.; Hu, T.; Dong, Y. S.; Guo, C.; Sheng, X. B.; Lin, P. H.; Chung, C. Y.; Chu, P. K.

    2007-08-01

    Surface structure of NiTi shape memory alloy (SMA) was modified by advanced oxidation processes (AOP) in an ultraviolet (UV)/H 2O 2 photocatalytic system, and then systematically characterized with x-ray photoelectron spectroscopy (XPS). It is found that the AOP in UV/H 2O 2 photocatalytic system leads to formation of titanium oxides film on NiTi substrate. Depth profiles of O, Ni and Ti show such a film possesses a graded interface structure to NiTi substrate and there is no intermediate Ni-rich layer like that produced in conventional high temperature oxidation. Except TiO 2 phase, some titanium suboxides (TiO, Ti 2O 3) may also exist in the titanium oxides film. Oxygen mainly presents in metal oxides and some chemisorbed water and OH - are found in titanium oxides film. Ni nearly reaches zero on the upper surface and relatively depleted in the whole titanium oxides film. The work indicates the AOP in UV/H 2O 2 photocatalytic system is a promising way to favor the widespread application of biomedical NiTi SMA by improving its biocompatibility.

  3. Evaluation of advanced oxidation processes for water and wastewater treatment - A critical review.

    PubMed

    Miklos, David B; Remy, Christian; Jekel, Martin; Linden, Karl G; Drewes, Jörg E; Hübner, Uwe

    2018-03-22

    This study provides an overview of established processes as well as recent progress in emerging technologies for advanced oxidation processes (AOPs). In addition to a discussion of major reaction mechanisms and formation of by-products, data on energy efficiency were collected in an extensive analysis of studies reported in the peer-reviewed literature enabling a critical comparison of various established and emerging AOPs based on electrical energy per order (E EO ) values. Despite strong variations within reviewed E EO values, significant differences could be observed between three groups of AOPs: (1) O 3 (often considered as AOP-like process), O 3 /H 2 O 2 , O 3 /UV, UV/H 2 O 2 , UV/persulfate, UV/chlorine, and electron beam represent median E EO values of <1 kWh/m 3 , while median energy consumption by (2) photo-Fenton, plasma, and electrolytic AOPs were significantly higher (E EO values in the range of 1-100 kWh/m 3 ). (3) UV-based photocatalysis, ultrasound, and microwave-based AOPs are characterized by median values of >100 kWh/m 3 and were therefore considered as not (yet) energy efficient AOPs. Specific evaluation of 147 data points for the UV/H 2 O 2 process revealed strong effects of operational conditions on reported E EO values. Besides water type and quality, a major influence was observed for process capacity (lab-vs. pilot-vs. full-scale applications) and, in case of UV-based processes, of the lamp type. However, due to the contribution of other factors, correlation of E EO values with specific water quality parameters such as UV absorbance and dissolved organic carbon were not substantial. Also, correlations between E EO and compound reactivity with OH-radicals were not significant (photolytically active compounds were not considered). Based on these findings, recommendations regarding the use of the E EO concept, including the upscaling of laboratory results, were derived. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process.

    PubMed

    Bragg, Stefanie A; Armstrong, Kristie C; Xue, Zi-Ling

    2012-08-15

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H(2)O(2) and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high C(H(2)O(2),t=0), the reaction is zeroth order with respect to C(H(2)O(2)) and first order with respect to C(blood). The rate limiting process is photon flux from the UV lamp. Degradation of whole blood has been compared with that of pure hemoglobin samples. The AOP pretreatment of the blood samples has led to the subsequent determination of chromium and zinc concentrations in the samples using electrochemical methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles

    2015-01-01

    The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale.

  6. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.

    2017-06-01

    Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.

  7. Evaluation of potential for reuse of industrial wastewater using metal-immobilized catalysts and reverse osmosis.

    PubMed

    Choi, Jeongyun; Chung, Jinwook

    2015-04-01

    This report describes a novel technology of reusing the wastewater discharged from the display manufacturing industry through an advanced oxidation process (AOP) with a metal-immobilized catalyst and reverse osmosis (RO) in the pilot scale. The reclaimed water generated from the etching and cleaning processes in display manufacturing facilities was low-strength organic wastewater and was required to be recycled to secure a water source. For the reuse of reclaimed water to ultrapure water (UPW), a combination of solid-phase AOP and RO was implemented. The removal efficiency of TOC by solid-phase AOP and RO was 92%. Specifically, the optimal acid, pH, and H2O2 concentrations in the solid-phase AOP were determined. With regard to water quality and operating costs, the combination of solid-phase AOP and RO was superior to activated carbon/RO and ultraviolet AOP/anion polisher/coal carbon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H2O2/UV)

    PubMed Central

    Guimarães, José Roberto; Franco, Regina Maura Bueno; Guadagnini, Regiane Aparecida; dos Santos, Luciana Urbano

    2014-01-01

    This study evaluated the effect of peroxidation assisted by ultraviolet radiation (H2O2/UV), which is an advanced oxidation process (AOP), on Giardia duodenalis cysts. The cysts were inoculated in synthetic and surface water using a concentration of 12 g H2O2 L−1 and a UV dose (λ = 254 nm) of 5,480 mJcm−2. The aqueous solutions were concentrated using membrane filtration, and the organisms were observed using a direct immunofluorescence assay (IFA). The AOP was effective in reducing the number of G. duodenalis cysts in synthetic and surface water and was most effective in reducing the fluorescence of the cyst walls that were present in the surface water. The AOP showed a higher deleterious potential for G. duodenalis cysts than either peroxidation (H2O2) or photolysis (UV) processes alone. PMID:27379301

  9. Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment.

    PubMed

    Vallejo, Marta; Fresnedo San Román, M; Ortiz, Inmaculada; Irabien, Angel

    2015-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are a family of unintentionally produced persistent organic pollutants (POPs) that have received considerable public and scientific attention due to the toxicity of some of their congeners, more specifically those with chlorine substitution in the 2,3,7,8 positions. The environmental management and control of PCDD/Fs is addressed at a global level through the Stockholm Convention that establishes that POPs should be destroyed or irreversibly transformed in order to reduce or eliminate their release to the environment. Several technologies, including advanced oxidation processes (AOPs) such as photolysis, photocatalysis and Fenton oxidation, have been considered as effective methods for destroying PCDD/Fs in polluted waters. Nevertheless, during the remediation of wastewaters it is critical that the treatment technologies applied do not lead to the formation of by-products that are themselves POPs, especially if PCDD/Fs precursors or chlorine are present in the reaction medium. Despite the high effectiveness of AOPs in the oxidation of major contaminants, scarce references deal with the monitoring of PCDD/Fs in the course of the oxidation process, revealing that a detailed assessment of non-combustion technologies with respect to PCDD/Fs formation is still lacking. This study reports a review of the state of the art related to the potential remediation and/or formation of PCDD/Fs as a result of the application of AOPs for the treatment of polluted waters, warning on the correct selection of the operating conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Advanced Oxidation Process sanitization of hatching eggs reduces Salmonella in broiler chicks.

    PubMed

    Rehkopf, A C; Byrd, J A; Coufal, C D; Duong, T

    2017-10-01

    The microbial quality of eggs entering the hatchery is an important critical control point for biosecurity, pathogen reduction, and food safety programs in poultry production. Developing interventions to reduce Salmonella contamination of eggs is important to improving the microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet light (UV) Advanced Oxidation Process (AOP) has been previously demonstrated to be effective in reducing Salmonella on the surface of experimentally contaminated eggs. The objective of this study was to evaluate the effect of treating eggs with an egg-sanitizing apparatus using the H2O2/UV AOP on Salmonella contamination during incubation, hatching, and in broiler chicks during grow-out. Experimentally contaminated eggs were treated using the automated H2O2/UV AOP egg sanitizer and incubated for 21 d. AOP sanitization reduced Salmonella up to 7 log10 cfu egg-1 (P < 0.05) from the surface of experimentally contaminated eggs and reduced the number of Salmonella positive eggs by up to 75% (P < 0.05) when treated 1 h post-inoculation. AOP treatment also reduced the number of Salmonella-positive eggs during incubation. Additionally, Salmonella was recovered from more chicks hatched from untreated eggs than from eggs treated using the H2O2/UV AOP egg sanitizer (P < 0.05) through 14 d posthatch. These data suggest reduction of Salmonella contamination on the surface of eggs using the H2O2/UV AOP egg sanitizer prior to incubation may reduce the gastrointestinal colonization of chicks by Salmonella. © 2017 Poultry Science Association Inc.

  11. Comparison of different advanced degradation processes for the removal of the pharmaceutical compounds diclofenac and carbamazepine from liquid solutions.

    PubMed

    Capodaglio, Andrea G; Bojanowska-Czajka, Anna; Trojanowicz, Marek

    2018-04-18

    Carbamazepine and diclofenac are two examples of drugs with widespread geographical and environmental media proliferation that are poorly removed by traditional wastewater treatment processes. Advanced oxidation processes (AOPs) have been proposed as alternative methods to remove these compounds in solution. AOPs are based on a wide class of powerful technologies, including UV radiation, ozone, hydrogen peroxide, Fenton process, catalytic wet peroxide oxidation, heterogeneous photocatalysis, electrochemical oxidation and their combinations, sonolysis, and microwaves applicable to both water and wastewater. Moreover, processes rely on the production of oxidizing radicals (•OH and others) in a solution to decompose present pollutants. Water radiolysis-based processes, which are an alternative to the former, involve the use of concentrated energy (beams of accelerated electrons or γ-rays) to split water molecules, generating strong oxidants and reductants (radicals) at the same time. In this paper, the degradation of carbamazepine and diclofenac by means of all these processes is discussed and compared. Energy and byproduct generation issues are also addressed.

  12. Comparison of different advanced oxidation process to reduce toxicity and mineralisation of tannery wastewater.

    PubMed

    Schrank, S G; José, H J; Moreira, R F P M; Schröder, H Fr

    2004-01-01

    Many organic compounds contained in wastewater are resistant to conventional chemical and/or biological treatment. Because of this reason different degradation techniques are studied as an alternative to biological and classical physico-chemical processes. Advanced Oxidation Processes (AOPs) probably have developed to become the best options in the near future. AOP while making use of different reaction systems, are all characterised by the same chemical feature: production of OH radicals (*OH). The versatility of AOPs is also enhanced by the fact that they offer different possibilities for OH radical production, thus allowing them to conform to specific treatment requirements. The main problem with AOPs is their high cost. The application of solar technologies to these processes could help to diminish that problem by reducing the energy consumption required for generating UV radiation. In this work, different AOPs (O3, TiO2/UV, Fenton and H2O2/UV) were examined to treat tannery wastewater or as a pre-treatment step for improving the biodegradation of tannery wastewater, at different pH and dosage of the chemicals. Under certain circumstances retardation in biodegradation and/or an increase in toxicity may be observed within these treatment steps. Two different bioassays (Daphnia magna and Vibrio fischeri) have been used for testing the progress of toxicity during the treatment. In parallel other objectives were to analyse and identify organic compounds present in the untreated wastewater and arising degradation products in AOP treated wastewater samples. For this purpose substance specific techniques, e.g., gas chromatography-mass spectrometry (GC-MS) in positive electron impact (El(+)) mode and atmospheric pressure ionisation (API) in combination with flow injection analysis (FIA) or liquid chromatography-mass and tandem mass spectrometry (LC-MS or LC-MS-MS) were performed.

  13. Assessment of nitrification in groundwater filters for drinking water production by qPCR and activity measurement.

    PubMed

    de Vet, W W J M; Kleerebezem, R; van der Wielen, P W J J; Rietveld, L C; van Loosdrecht, M C M

    2011-07-01

    In groundwater treatment for drinking water production, the causes of nitrification problems and the effectiveness of process optimization in rapid sand filters are often not clear. To assess both issues, the performance of a full-scale groundwater filter with nitrification problems and another filter with complete nitrification and pretreatment by subsurface aeration was monitored over nine months. Quantitative real-time polymerase chain reaction (qPCR) targeting the amoA gene of bacteria and archaea and activity measurements of ammonia oxidation were used to regularly evaluate water and filter sand samples. Results demonstrated that subsurface aeration stimulated the growth of ammonia-oxidizing prokaryotes (AOP) in the aquifer. Cell balances, using qPCR counts of AOP for each filter, showed that the inoculated AOP numbers from the aquifer were marginal compared with AOP numbers detected in the filter. Excessive washout of AOP was not observed and did not cause the nitrification problems. Ammonia-oxidizing archaea grew in both filters, but only in low numbers compared to bacteria. The cell-specific nitrification rate in the sand and backwash water samples was high for the subsurface aerated filter, but systematically much lower for the filter with nitrification problems. From this, we conclude that incomplete nitrification was caused by nutrient limitation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. New perspectives for Advanced Oxidation Processes.

    PubMed

    Dewil, Raf; Mantzavinos, Dionissios; Poulios, Ioannis; Rodrigo, Manuel A

    2017-06-15

    Advanced Oxidation Processes (AOPs) are called to fill the gap between the treatability attained by conventional physico-chemical and biological treatments and the day-to-day more exigent limits fixed by environmental regulations. They are particularly important for the removal of anthropogenic pollutants and for this reason, they have been widely investigated in the last decades and even applied in the treatment of many industrial wastewater flows. However, despite the great development reached, AOPs cannot be considered mature yet and there are many new fields worthy of research. Some of them are going to be briefly introduced in this paper, including hybrid processes, heterogeneous semiconductor photocatalysis, sulphate-radical oxidation and electrochemical advanced oxidation for water/wastewater treatment. Moreover, the use of photoelectrochemical processes for energy production is discussed. The work ends with some perspectives that can be of interest for the ongoing and future research. Copyright © 2017. Published by Elsevier Ltd.

  15. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process.

    PubMed

    Badmus, Kassim Olasunkanmi; Tijani, Jimoh Oladejo; Massima, Emile; Petrik, Leslie

    2018-03-01

    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.

  16. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H2O2 Advanced Oxidation Treatment at Pilot Scale

    PubMed Central

    Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf

    2018-01-01

    Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H2O2 AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m3 (0.4 kW, 1 m3/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H2O2 AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl2), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl2 was needed, resulting in AOX concentrations of up to 520 µg/L. PMID:29735959

  17. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H₂O₂ Advanced Oxidation Treatment at Pilot Scale.

    PubMed

    Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf

    2018-05-07

    Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H₂O₂ AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m³ (0.4 kW, 1 m³/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H₂O₂ AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl₂), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl₂ was needed, resulting in AOX concentrations of up to 520 µg/L.

  18. A comparison of the environmental impact of different AOPs: risk indexes.

    PubMed

    Giménez, Jaime; Bayarri, Bernardí; González, Óscar; Malato, Sixto; Peral, José; Esplugas, Santiago

    2014-12-31

    Today, environmental impact associated with pollution treatment is a matter of great concern. A method is proposed for evaluating environmental risk associated with Advanced Oxidation Processes (AOPs) applied to wastewater treatment. The method is based on the type of pollution (wastewater, solids, air or soil) and on materials and energy consumption. An Environmental Risk Index (E), constructed from numerical criteria provided, is presented for environmental comparison of processes and/or operations. The Operation Environmental Risk Index (EOi) for each of the unit operations involved in the process and the Aspects Environmental Risk Index (EAj) for process conditions were also estimated. Relative indexes were calculated to evaluate the risk of each operation (E/NOP) or aspect (E/NAS) involved in the process, and the percentage of the maximum achievable for each operation and aspect was found. A practical application of the method is presented for two AOPs: photo-Fenton and heterogeneous photocatalysis with suspended TiO2 in Solarbox. The results report the environmental risks associated with each process, so that AOPs tested and the operations involved with them can be compared.

  19. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    PubMed

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. RELATIVE REACTIVITY OF CONTAMINANT CANDIDATE LIST PESTICIDES TO OH RADICAL OXIDATION

    EPA Science Inventory

    Advanced oxidation processes (AOPs) represent those technologies that bring about enhanced oxidative degradation of pollutants in aqueous solution by the generation of hydroxyl radical (•OH). US Environmental Protection Agency (EPA) published, in February 2005, the second Contam...

  1. Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products.

    PubMed

    Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Xu, Zi-Bin; Lee, Min-Yong; Hu, Hong-Ying

    2018-05-15

    UV based advanced oxidation processes (UV-AOPs) that efficiently eliminate organic pollutants during water treatment have been the subject of numerous investigations. Most organic pollutants are not completely mineralized during UV-AOPs but are partially oxidized into transformation products (TPs), thereby adding complexity to the treated water and posing risks to humans, ecological systems, and the environment. While the degradation kinetics and mechanisms of pollutants have been widely documented, there is little information about the risks associated with TPs. In this review, we have collated recent knowledge about the harmful TPs that are generated in UV/H 2 O 2 and UV photocatalysis, two UV-AOPs that have been studied extensively. Toxic and assimilable TPs were ubiquitously observed in more than 80% of UV-AOPs of organic pollutants, of which the toxicity and assimilability levels changed with variations in the reaction conditions, such as the UV fluence and oxidant dosage. Previous studies and modeling assessments showed that toxic and assimilable TPs may be generated during hydroxylation, dealkylation, decarboxylation, and deamination. Among various reactions, TPs generated from dealkylation and decarboxylation were generally less and more toxic than the parent pollutants, respectively; TPs generated from decarboxylation and deamination were generally less and more assimilable than the parent pollutants, respectively. There is also potential concern about the sensory-unpleasant TPs generated by oxidations and subsequent metabolism of microorganisms. In this overview, we stress the need to include both the concentrations of organic pollutants and the evaluations of the risks from TPs for the quality assessments of the water treated by UV-AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. RELATIVE REACTIVITY OF CONTAMINANT CANDIDATE LIST PESTICIDES TO OH RADICAL OXIDATION ABSTRACT

    EPA Science Inventory

    Advanced oxidation processes (AOPs) represent those technologies that bring about enhanced oxidative degradation of pollutants in aqueous solution by the generation of hydroxyl radical (•OH). US Environmental Protection Agency (EPA) published, in February 2005, the second Contami...

  3. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants.

    PubMed

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-08-14

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

  4. Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant.

    PubMed

    Oller, I; Malato, S; Sánchez-Pérez, J A; Maldonado, M I; Gernjak, W; Pérez-Estrada, L A

    2007-01-01

    Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mgL(-1)) containing a biorecalcitrant compound, alpha-methylphenylglycine (MPG), at a concentration of 500 mgL(-1). Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m(-3). Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mgL(-1) of Fe2+ and the H2O2 concentration was kept in the range of 200-500mgL(-1). Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn-Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mgL(-1).

  5. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.

    PubMed

    Xiang, Yingying; Fang, Jingyun; Shang, Chii

    2016-03-01

    The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. SULFATE RADICAL-BASED FERROUS-PEROXYMONOSULFATE OXIDATIVE SYSTEM FOR PCBs DEGRADATION IN AQUEOUS AND SEDIMENT SYSTEMS

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs) in the environment pose long-term risk to public health because of their persistent and toxic nature. This study investigates the degradation of PCBs using sulfate radical-based advanced oxidation processes (SR-AOPs). These processes are based o...

  7. Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects.

    PubMed

    Mestankova, Hana; Parker, Austa M; Bramaz, Nadine; Canonica, Silvio; Schirmer, Kristin; von Gunten, Urs; Linden, Karl G

    2016-04-15

    The removal of emerging contaminants during water treatment is a current issue and various technologies are being explored. These include UV- and ozone-based advanced oxidation processes (AOPs). In this study, AOPs were explored for their degradation capabilities of 25 chemical contaminants on the US Environmental Protection Agency's Contaminant Candidate List 3 (CCL3) in drinking water. Twenty-three of these were found to be amenable to hydroxyl radical-based treatment, with second-order rate constants for their reactions with hydroxyl radicals (OH) in the range of 3-8 × 10(9) M(-1) s(-1). The development of biological activity of the contaminants, focusing on mutagenicity and estrogenicity, was followed in parallel with their degradation using the Ames and YES bioassays to detect potential changes in biological effects during oxidative treatment. The majority of treatment cases resulted in a loss of biological activity upon oxidation of the parent compounds without generation of any form of estrogenicity or mutagenicity. However, an increase in mutagenic activity was detected by oxidative transformation of the following CCL3 parent compounds: nitrobenzene (OH, UV photolysis), quinoline (OH, ozone), methamidophos (OH), N-nitrosopyrolidine (OH), N-nitrosodi-n-propylamine (OH), aniline (UV photolysis), and N-nitrosodiphenylamine (UV photolysis). Only one case of formation of estrogenic activity was observed, namely, for the oxidation of quinoline by OH. Overall, this study provides fundamental and practical information on AOP-based treatment of specific compounds of concern and represents a framework for evaluating the performance of transformation-based treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review.

    PubMed

    Sharma, Virender K; Feng, Mingbao

    2017-09-28

    This paper presents a review on the environmental applications of metal-organic frameworks (MOFs), which are inorganic-organic hybrid highly porous crystalline materials, prepared from metal ion/clusters and multidentate organic ligands. The emphases are made on the enhancement of the performance of advanced oxidation processes (AOPs) (photocatalysis, Fenton reaction methods, and sulfate radical (SO 4 - )-mediated oxidations) using MOFs materials. MOFs act as adsorption and light absorbers, leading to superior performance of photocatalytic processes. More recent examples of photocatalytic degradation of dyes are presented. Additionally, it is commonly shown that Fe-based MOFs exhibited excellent catalytic performance on the Fenton-based and SO 4 •- -mediated oxidations of organic pollutants (e.g., dyes, phenol and pharmaceuticals). The significantly enhanced generation of reactive species such as OH and/or SO 4 - by both homogeneous and heterogeneous catalysis was proposed as the possible mechanism for water depollution. Based on the existing literature, the challenge and future perspectives in MOF-based AOPs are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    NASA Astrophysics Data System (ADS)

    Bogdan, Janusz; Zarzyńska, Joanna; Pławińska-Czarnak, Joanna

    2015-08-01

    Nanotechnology contributes towards a more effective eradication of pathogens that have emerged in hospitals, veterinary clinics, and food processing plants and that are resistant to traditional drugs or disinfectants. Since new methods of pathogens eradication must be invented and implemented, nanotechnology seems to have become the response to that acute need. A remarkable achievement in this field of science was the creation of self-disinfecting surfaces that base on advanced oxidation processes (AOPs). Thus, the phenomenon of photocatalysis was practically applied. Among the AOPs that have been most studied in respect of their ability to eradicate viruses, prions, bacteria, yeasts, and molds, there are the processes of TiO2/UV and ZnO/UV. Titanium dioxide (TiO2) and zinc oxide (ZnO) act as photocatalysts, after they have been powdered to nanoparticles. Ultraviolet (UV) radiation is an agent that determines their excitation. Methods using photocatalytic properties of nanosized TiO2 and ZnO prove to be highly efficient in inactivation of infectious agents. Therefore, they are being applied on a growing scale. AOP-based disinfection is regarded as a very promising tool that might help overcome problems in food hygiene and public health protection. The susceptibility of infectious agents to photocatalylic processes can be generally arranged in the following order: viruses > prions > Gram-negative bacteria > Gram-positive bacteria > yeasts > molds.

  10. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    PubMed Central

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222

  11. Oxidation of winery wastewater by sulphate radicals: catalytic and solar photocatalytic activations.

    PubMed

    Rodríguez-Chueca, Jorge; Amor, Carlos; Mota, Joana; Lucas, Marco S; Peres, José A

    2017-10-01

    The treatment of winery effluents through sulphate radical-based advanced oxidation processes (SR-AOPs) driven by solar radiation is reported in this study. Photolytic and catalytic activations of peroxymonosulphate (PMS) and persulphate (KPS and SPS) at different pH values (4.5 and 7) were studied in the degradation of organic matter. Portugal is one of the largest wine producers in Europe. The wine making activities generate huge volume of effluents characterized by a variable volume and organic load, being their seasonal nature one of the most important drawbacks. Recently, SR-AOPs are gradually attracting attention as in situ chemical oxidation technologies, instead of hydroxyl radical AOPs (HR-AOPs). The studied concentrations are suitable to obtain notable values of organic matter degradation, with TOC removal around 50%. In general terms, no notable differences were observed between treatments at pH values 4.5 and 7. Photolytic activation of SPS with solar radiation treatments obtained the highest efficiency (28 and 40% of TOC removal with 1 and 50 mM, respectively, at pH 4.5) in comparison to KPS and PMS. The addition of a transition metal as catalyst, such as Fe(II) or Co(II), increased considerably the TOC removal efficiency higher than 50%, but not in all cases. For instance, the combination KPS or PMS with Co(II) at pH 4.5 did not allow to obtain better results than photolytic activation of these persulphate salts. In summary, the use of SR-AOPs could be a serious alternative as tertiary treatment for winery wastewaters.

  12. Ultrasound-assisted advanced oxidation processes for water decontamination.

    PubMed

    Ince, Nilsun H

    2018-01-01

    The study reflects a part of my experience in sonochemistry and ultrasound-assisted advanced oxidation processes (AOPs) acquired during the last fifteen years with my research team. The data discussed were selected from studies with azo dyes, endocrine disrupting compounds and analgesic/anti-inflammatory pharmaceuticals, which are all classified as "hazardous" or "emerging" contaminants. The research focused on their treatability by ultrasound (US) and AOPs with emphasis on the mineralization of organic carbon. Some of the highlights as pointed out in the manuscript are: i) ultrasound is capable of partially or completely oxidizing the above contaminant groups if the operating conditions are properly selected and optimized, but incapable of mineralizing them; ii) the mechanism of degradation in homogeneous solutions is OH-mediated oxidation in the bulk solution or at the bubble-liquid interface, depending on the molecular properties of the contaminant, the applied frequency and pH; iii) US-assisted AOPs such as ozonation, UV/peroxide, Fenton and UV/Fenton are substantially more effective than ultrasound alone, particularly for the mineralization process; iv) catalytic processes involving TiO 2 , alumina and zero-valent iron and assisted by ultrasound are promising options not only for the destruction of the parent compounds, but also for the mineralization of their oxidation byproducts. The degradation reactions in heterogeneous solutions take place mostly at the catalyst surface despite the high-water solubility of the compounds; v) sonolytic modification of the above catalysts to reduce their particle size (to nano-levels) or to decorate the surface with metallic nanoparticles increases the catalytic activity under sonolysis, photolysis and both, and improves the stability of the catalyst. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Photolysis of Mono- and Dichloramines in UV/Hydrogen Peroxide: Effects on 1,4-Dioxane Removal and Relevance in Water Reuse.

    PubMed

    Patton, Samuel; Romano, Mariano; Naddeo, Vincenzo; Ishida, Kenneth P; Liu, Haizhou

    2018-06-05

    Growing demands and increasing scarcity of fresh water resources necessitate potable water reuse, which has been implemented with the aid of UV-based advanced oxidation processes (UV/AOPs) that remove potentially hazardous trace organic contaminants from reclaimed water. During the potable reuse treatment process, chloramines are added to prevent membrane fouling that are carried over to the UV/AOP, where hydrogen peroxide (H 2 O 2 ) is commonly added. However, the impact of chloramines on the photolysis of H 2 O 2 and the overall performance of the UV/AOP remains unknown. This study investigated the impacts of the photochemistry of monochloramine (NH 2 Cl) and dichloramine (NHCl 2 ) associated with the photolysis of H 2 O 2 on the degradation of 1,4-dioxane (1,4-D), a trace organic contaminant ubiquitous in recycled water. Results indicated that NH 2 Cl and NHCl 2 alone functioned as oxidants upon UV photolysis, which produced HO • and Cl 2 •- as the two primary oxidative radicals. The speciation of chloramines did not have a significant impact on the degradation kinetics. The inclusion of monochloramine in UV/H 2 O 2 greatly decreased 1,4-D removal efficiency. HO • was the major radical in the mixed H 2 O 2 /chloramine system. Results from this study suggest that recognizing the existence of chloramines in UV/H 2 O 2 systems is important for predicting UV/AOP performance in the treatment train of potable reuse.

  14. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water.

    PubMed

    Čehovin, Matej; Medic, Alojz; Scheideler, Jens; Mielcke, Jörg; Ried, Achim; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2017-07-01

    Natural organic matter in drinking water is causing concern especially due to the formation of disinfection by-products (DBPs) by chlorine, as these are proven to have adverse health effects on consumers. In this research, humic acid was used as a source of dissolved organic carbon (DOC) in drinking water (up to 3mgL -1 ). The efficiency of DOC removal was studied by applying O 3 , H 2 O 2 /O 3 , H 2 O 2 /UV and O 3 /UV advanced oxidation processes (AOPs) alone and combined with hybrid hydrodynamic cavitation (HC), generated by an orifice plate, as this technology recently shows promising potential for the treatment of water, containing recalcitrant organic substances. It was observed that the combined treatment by HC could significantly affect the performance of the applied AOPs, with as little as 3-9 passes through the cavitation generators. For O 3 and H 2 O 2 dosages up to 2 and 4mgL -1 , respectively, and UV dosage up to 300mJcm -2 , HC enhanced DOC removal by 5-15% in all combinations, except for O 3 /UV AOPs. Overall, the potential benefits of HC for DOC removal were emphasized for low ratio between applied oxidants to DOC and high UV absorbance of the sample. Investigated DBPs formation potentials require special attention for H 2 O 2 /UV AOPs and combinations with HC. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Assessment of the UV/Cl2 advanced oxidation process for the degradation of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in water systems.

    PubMed

    Javier Benitez, F; Real, Francisco J; Acero, Juan L; Casas, Francisco

    2017-10-01

    Three emerging contaminants (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) frequently found in wastewaters were selected to be individually degraded in ultra-pure water by the advanced oxidation process (AOP) constituted by the combination of UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: AH > MS > PE. A later kinetic study was carried out focused on the evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water was also performed by the same combination UV/Cl 2 . The efficiency of this combined system UV/Cl 2 was compared to other oxidants such as the UV/[Formula: see text] and UV/H 2 O 2 AOPs, and the influence of the operating variables was discussed. Results confirmed that the UV/Cl 2 system provides higher elimination efficiencies among the AOPs tested. The presence of dissolved organic matter and bicarbonate ions in the water matrix caused a decrease in the treatment efficiency.

  16. The performance and decolourization kinetics of O3/H2O2 oxidation of reactive green 19 dye in wastewater

    NASA Astrophysics Data System (ADS)

    Sabri, S. N.; Abidin, C. Z. A.; Fahmi; Kow, S. H.; Razali, N. A.

    2018-03-01

    The degradations characteristic of azo dye Reactive Green 19 (RG19) was investigated using advanced oxidation process (AOPs). It was evaluated based on colour and chemical oxygen demand (COD) removal. The effect of operational parameters such as initial dye concentration, initial dosage of hydrogen peroxide (H2O2), contact time, and pH was also being studied. The samples were treated by ozonation (O3) and peroxone O3/H2O2 process. Advanced oxidation processes (AOPs) involve two stages of oxidation; firstly is the formation of strong oxidant and secondly the reaction of organic contaminants in water. In addition, the term advanced oxidation is referring to the processes in which oxidation of organic contaminants occurs primarily through reactions with hydroxyl radicals. There are several analyses that use to determine the efficiency of the treatment process, which are UV-Vis absorption spectra, COD, Fourier Transform Infrared (FT-IR), and pH. The results demonstrated that the ozone oxidation was efficient in decolourization and good in mineralization, based on the reduction of colour and COD. Additionally, results indicate that H2O2 is able to perform better than ozonation in order to decolourize the dye wastewater with 0.5 mL H2O2/L dye dosage of H2O2 at different initial concentration, initial pH, with contact time.

  17. Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions.

    PubMed

    Gągol, Michał; Przyjazny, Andrzej; Boczkaj, Grzegorz

    2018-07-01

    Cavitation has become on the most often applied methods in a number of industrial technologies. In the case of oxidation of organic pollutants occurring in the aqueous medium, cavitation forms the basis of numerous advanced oxidation processes (AOPs). This paper presents the results of investigations on the efficiency of oxidation of the following groups of organic compounds: organosulfur, nitro derivatives of benzene, BTEX, and phenol and its derivatives in a basic model effluent using hydrodynamic and acoustic cavitation combined with external oxidants, i.e., hydrogen peroxide, ozone and peroxone. The studies revealed that the combination of cavitation with additional oxidants allows 100% oxidation of the investigated model compounds. However, individual treatments differed with respect to the rate of degradation. Hydrodynamic cavitation aided by peroxone was found to be the most effective treatment (100% oxidation of all the investigated compounds in 60 min). When using hydrodynamic and acoustic cavitation alone, the effectiveness of oxidation was diversified. Under these conditions, nitro derivatives of benzene and phenol and its derivatives were found to be resistant to oxidation. In addition, hydrodynamic cavitation was found to be more effective in degradation of model compounds than acoustic cavitation. The results of investigations presented in this paper compare favorably with the investigations on degradation of organic contaminants using AOPs under conditions of basic pH published thus far. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes.

    PubMed

    Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke

    2018-05-15

    Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Efficiency, costs and benefits of AOPs for removal of pharmaceuticals from the water cycle.

    PubMed

    Tuerk, J; Sayder, B; Boergers, A; Vitz, H; Kiffmeyer, T K; Kabasci, S

    2010-01-01

    Different advanced oxidation processes (AOP) were developed for the treatment of highly loaded wastewater streams. Optimisation of removal and improvement of efficiency were carried out on a laboratory, semiworks and pilot plant scale. The persistent cytostatic drug cyclophosphamide was selected as a reference substance regarding elimination and evaluation of the various oxidation processes because of its low degradability rate. The investigated processes are cost-efficient and suitable regarding the treatment of wastewater streams since they lead to efficient elimination of antibiotics and antineoplastics. A total reduction of toxicity was proven by means of the umuC-test. However, in order to reduce pharmaceuticals from the water cycle, it must be considered that the input of more than 80 % of the pharmaceuticals entering wastewater treatment systems results from private households. Therefore, advanced technologies should also be installed at wastewater treatment plants.

  20. Identification of organic compounds in landfill leachate treated by advanced oxidation processes.

    PubMed

    Scandelai, Ana Paula Jambers; Sloboda Rigobello, Eliane; Oliveira, Beatriz Lopes Corso de; Tavares, Célia Regina Granhen

    2017-11-27

    Landfill leachates are considered to be complex effluents of a variable composition containing many biorecalcitrant and highly toxic compounds. Considering the shortage of studies concerning the treatment of landfill leachates using ozone, as well as its combination with catalysts, the aim of this paper was to identify the organic compounds in this effluent treated with advanced oxidation processes (AOPs) of ozonation (O 3 ), and heterogeneous catalytic ozonation with TiO 2 (O 3 /TiO 2 ) and with ZnO (O 3 /ZnO). In addition, this study sought to assess the efficiency of the removal of the organic matter present in the leachate. For the pre- and post-AOPs, the leachate was characterized through physicochemical parameters and identification of organic compounds using gas chromatography coupled to the mass spectrometry (GC-MS). The three processes studied (O 3 , O 3 /TiO 2 , and O 3 /ZnO) presented color removal, turbidity, BOD above 95%, and lower COD removals (19%, 24%, and 33%, respectively). All AOPs studied promoted a similar reduction of organic compounds from leachate, some of which with toxic and carcinogenic potential, such as p-cresol, bisphenol A, atrazine, and hexazinone. In addition, upon the removal of organic matter and organic compounds, the heterogeneous catalytic ozonation processes proved more efficient than the process carried out only with ozone.

  1. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water.

    PubMed

    Toor, Ramn; Mohseni, Madjid

    2007-02-01

    The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0-3500 mJ cm(-2)) and hydrogen peroxide concentration (0-23 mg l(-1)) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm(-2) and initial H2O2 concentrations of about or greater than 23 mg l(-1). However, the combined AOP-BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively.

  2. Light-Assisted Advanced Oxidation Processes for the Elimination of Chemical and Microbiological Pollution of Wastewaters in Developed and Developing Countries.

    PubMed

    Giannakis, Stefanos; Rtimi, Sami; Pulgarin, Cesar

    2017-06-26

    In this work, the issue of hospital and urban wastewater treatment is studied in two different contexts, in Switzerland and in developing countries (Ivory Coast and Colombia). For this purpose, the treatment of municipal wastewater effluents is studied, simulating the developed countries' context, while cheap and sustainable solutions are proposed for the developing countries, to form a barrier between effluents and receiving water bodies. In order to propose proper methods for each case, the characteristics of the matrices and the targets are described here in detail. In both contexts, the use of Advanced Oxidation Processes (AOPs) is implemented, focusing on UV-based and solar-supported ones, in the respective target areas. A list of emerging contaminants and bacteria are firstly studied to provide operational and engineering details on their removal by AOPs. Fundamental mechanistic insights are also provided on the degradation of the effluent wastewater organic matter. The use of viruses and yeasts as potential model pathogens is also accounted for, treated by the photo-Fenton process. In addition, two pharmaceutically active compound (PhAC) models of hospital and/or industrial origin are studied in wastewater and urine, treated by all accounted AOPs, as a proposed method to effectively control concentrated point-source pollution from hospital wastewaters. Their elimination was modeled and the degradation pathway was elucidated by the use of state-of-the-art analytical techniques. In conclusion, the use of light-supported AOPs was proven to be effective in degrading the respective target and further insights were provided by each application, which could facilitate their divulgation and potential application in the field.

  3. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments.

    PubMed

    Wenhai, Chu; Tengfei, Chu; Erdeng, Du; Deng, Yang; Yingqing, Guo; Naiyun, Gao

    2016-02-01

    Ultraviolet/persulfate (UV/PS) has been widely used to generate sulfate radicals for degradation of water organic pollutants in previous studies. However, its impacts on disinfection byproduct formation during post-chlorination of degraded compounds is unclear. The objective of this study was to evaluate the impacts of UV irradiation, PS oxidation, and the combined UV/PS advanced oxidation process (AOP) pre-treatments on halomethane formation during the following chlorination of chloramphenicol (CAP), a model antibiotic commonly found in wastewater-impacted water. Results showed that CAP could be transformed to more trichloromethane (TCM) than monochloromethane (MCM) and dichloromethane (DCM) in the presence of excess chlorine. UV photolysis, PS oxidation and UV/PS AOP all directly decomposed CAP to produce halomethanes (HMs) before post-chlorination. Moreover, UV and UV/PS pre-treatments both enhanced the formation of all the HMs in the subsequent chlorination. PS pre-oxidation decreased the TCM formation during post-chlorination, but increased the yields of MCM, DCM and total HMs. UV pre-irradiation significantly increased the bromide utilization of HMs, whereas UV/PS pre-oxidation decreased the bromine incorporation and utilization of HMs from the chlorination of CAP in a low-bromide water. UV irradiation, PS oxidation, and UV/PS AOP can inactivate pathogens and degrade organic pollutants, but this benefit should be weighed against a potential risk of the increased halomethane formation from degraded organic pollutants with and without post-chlorination. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects.

    PubMed

    Cullen, Laurence G; Tilston, Emma L; Mitchell, Geoff R; Collins, Chris D; Shaw, Liz J

    2011-03-01

    The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg g⁻¹ soil) apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVI-enhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation-reduction reactions, potential confounding effects of the test particles on assay conditions should be considered. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Sequential ozone advanced oxidation and biological oxidation processes to remove selected pharmaceutical contaminants from an urban wastewater.

    PubMed

    Espejo, Azahara; Aguinaco, Almudena; García-Araya, J F; Beltrán, Fernando J

    2014-01-01

    Sequential treatments consisting in a chemical process followed by a conventional biological treatment, have been applied to remove mixtures of nine contaminants of pharmaceutical type spiked in a primary sedimentation effluent of a municipal wastewater. Combinations of ozone, UVA black light (BL) and Fe(III) or Fe₃O₄ catalysts constituted the chemical systems. Regardless of the Advanced Oxidation Process (AOP), the removal of pharmaceutical compounds was achieved in 1 h of reaction, while total organic carbon (TOC) only diminished between 3.4 and 6%. Among selected ozonation systems to be implemented before the biological treatment, the application of ozone alone in the pre-treatment stage is recommended due to the increase of the biodegradability observed. The application of ozone followed by the conventional biological treatment leads high TOC and COD removal rates, 60 and 61%, respectively, and allows the subsequent biological treatment works with shorter hydraulic residence time (HRT). Moreover, the influence of the application of AOPs before and after a conventional biological process was compared, concluding that the decision to take depends on the characterization of the initial wastewater with pharmaceutical compounds.

  6. Degradation of estrone in water and wastewater by various advanced oxidation processes.

    PubMed

    Sarkar, Shubhajit; Ali, Sura; Rehmann, Lars; Nakhla, George; Ray, Madhumita B

    2014-08-15

    A comprehensive study was conducted to determine the relative efficacy of various advanced oxidation processes such as O3, H2O2, UV, and combinations of UV/O3, UV/H2O2 for the removal of estrone (E1) from pure water and secondary effluent. In addition to the parent compound (E1) removal, performance of the advanced oxidation processes was characterized using removal of total organic carbon (TOC), and estrogenicity of the effluent. Although E1 removal was high for all the AOPs, intermediates formed were more difficult to degrade leading to slow TOC removal. Energy calculations and cost analysis indicated that, although UV processes have low electricity cost, ozonation is the least cost option ($ 0.34/1000 gallons) when both capital and operating costs were taken into account. Ozonation also is superior to the other tested AOPs due to higher removal of TOC and estrogenicity. The rate of E1 removal decreased linearly with the background TOC in water, however, E1 degradation in the secondary effluent from a local wastewater treatment plant was not affected significantly due to the low COD values in the effluent. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Removal of natural organic matter from drinking water by advanced oxidation processes.

    PubMed

    Matilainen, Anu; Sillanpää, Mika

    2010-06-01

    Over the past 10-20years the amount of the natural organic matter (NOM) has been increased in raw water supplies on several areas. The presence of NOM causes many problems in drinking water treatment processes, including: (i) negative effect on water quality by colour, taste and odor problems, (ii) increased coagulant and disinfectant dose requirements (which in turn results increased sludge and potential harmful disinfection by-product formation), (iii) promoted biological growth in distribution system, and (iv) increased levels of complexed heavy metals and adsorbed organic pollutants. Thus, more efficient methods for the removal of NOM have emerged. Among these are advanced oxidation processes (AOPs). These include O(3)/H(2)O(2), O(3)/UV, UV/H(2)O(2), TiO(2)/UV, H(2)O(2)/catalyst, Fenton and photo-Fenton prosesses as well as ultrasound. In the present work, an overview of the recent research studies dealing with AOP methods for the removal of NOM and related compounds from drinking water is presented.

  8. Integration of membrane separation and Fenton processes for sanitary landfill leachate treatment.

    PubMed

    Santos, Amanda Vitória; Andrade, Laura Hamdan de; Amaral, Míriam Cristina Santos; Lange, Liséte Celina

    2018-04-06

    The appropriate treatment of sanitary landfill leachate is one of the greatest challenges nowadays due to the large volumes of solid waste generated. Thus, the aim of this study is to evaluate the performance of different routes involving the integration of advanced oxidation processes based on Fenton's reagents (AOP-Fenton) and microfiltration (MF) and nanofiltration (NF) membrane processes for the treatment of landfill leachate. MF module configuration (submerged or sidestream) and MF and NF recovery rate were evaluated. The combination of AOP-Fenton, MF and NF proved to be an effective treatment for landfill leachate. High removal efficiencies of chemical oxidation demand (94-96%) and colour (96-99%) were obtained. The configuration named route 3, composed of MF of raw landfill leachate (MF1), POA-Fenton-MF2 of the MF1 concentrate and NF of both MF1 and MF2 permeates, showed a higher global water recovery and was responsible for lower waste generation. It was considered the best one in terms of environmental, technical and economical aspects.

  9. Degradation Mechanism of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl Radicals in Homogeneous UV/H2O2 Process

    EPA Science Inventory

    The degradation of cylindrospermopsin (CYN), a widely distributed and highly toxic cyanobacterial toxin (cyanotoxin), remains poorly elucidated. In this study, the mechanism of CYN destruction by UV-254 nm/H2O2 advanced oxidation process (AOP) was investigated by mass spectrometr...

  10. Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants.

    PubMed

    Boczkaj, Grzegorz; Gągol, Michał; Klein, Marek; Przyjazny, Andrzej

    2018-01-01

    Utilization of cavitation in advanced oxidation processes (AOPs) is a promising trend in research on treatment of industrial effluents. The paper presents the results of investigations on the use of hydrodynamic cavitation aided by additional oxidation processes (O 3 /H 2 O 2 /Peroxone) to reduce the total pollution load in the effluent from the production of bitumens. A detailed analysis of changes in content of volatile organic compounds (VOCs) for all processes studied was also performed. The studies revealed that the most effective treatment process involves hydrodynamic cavitation aided by ozonation (40% COD reduction and 50% BOD reduction). The other processes investigated (hydrodynamic cavitation+H 2 O 2 , hydrodynamic cavitation+Peroxone and hydrodynamic cavitation alone) ensure reduction of COD by 20, 25 and 13% and reduction of BOD by 49, 32 and 18%, respectively. The results of this research revealed that most of the VOCs studied are effectively degraded. The formation of byproducts is one of the aspects that must be considered in evaluation of the AOPs studied. This work confirmed that furfural is one of the byproducts whose concentration increased during treatment by hydrodynamic cavitation alone as well as hydrodynamic cavitation aided by H 2 O 2 as an external oxidant and it should be controlled during treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Reaction mechanisms of DNT with hydroxyl radicals for advanced oxidation processes-a DFT study.

    PubMed

    Zhou, Yang; Yang, Zhilin; Yang, Hong; Zhang, Chaoyang; Liu, Xiaoqiang

    2017-04-01

    In advanced oxidation processes (AOPs), the detailed degradation mechanisms of a typical explosive of 2,4-dinitrotoluene (DNT) can be investigated by the density function theory (DFT) method at the SMD/M062X/6-311+G(d) level. Several possible degradation routes for DNT were explored in the current study. The results show that, for oxidation of the methyl group, the dominant degradation mechanism of DNT by hydroxyl radicals (•OH) is a series of sequential H-abstraction reactions, and the intermediates obtained are in good agreement with experimental findings. The highest activation energy barrier is less than 20 kcal mol -1 . Other routes are dominated by an addition-elimination mechanism, which is also found in 2,4,6-trinitrotoluene, although the experiment did not find the corresponding products. In addition, we also eliminate several impossible mechanisms, such as dehydration, HNO 3 elimination, the simultaneous addition of two •OH radials, and so on. The information gained about these degradation pathways is helpful in elucidating the detailed reaction mechanism between nitroaromatic explosives and hydroxyl radicals for AOPs. Graphical Abstract The degradation mechanism of an important explosive, 2,6-dinitrotoluene (DNT), by the hydroxyl radical for advanced oxidation progresses.

  12. Adverse Outcome Pathway (AOP) Network Development for ...

    EPA Pesticide Factsheets

    Adverse outcome pathways (AOPs) are descriptive biological sequences that start from a molecular initiating event (MIE) and end with an adverse health outcome. AOPs provide biological context for high throughput chemical testing and further prioritize environmental health risk research. According to the Organization for Economic Co-operation and Development guidelines, AOPs are pathways with one MIE anchored to an adverse outcome (AO) by key events (KEs) and key event relationships (KERs). However, this approach does not always capture the cumulative impacts of multiple MIEs on the AO. For example, hepatic lipid flux due to chemical-induced toxicity initiates from multiple ligand-activated receptors and signaling pathways that cascade across biology to converge upon a common fatty liver (FL, also known as steatosis) outcome. To capture this complexity, a top-down strategy was used to develop a FL AOP network (AOPnet). Literature was queried based on the terms steatosis, fatty liver, cirrhosis, and hepatocellular carcinoma. Search results were analyzed for physiological and pathophysiological organ level, cellular and molecular processes, as well as pathway intermediates, to identify potential KEs and MIEs that are key for hepatic lipid metabolism, maintenance, and dysregulation. The analysis identified four apical KE nodes (hepatic fatty acid uptake, de novo fatty acid and lipid synthesis, fatty acid oxidation, and lipid efflux) juxtaposed to the FL AO. The apic

  13. Chemical instability of graphene oxide following exposure to highly reactive radicals in advanced oxidation processes.

    PubMed

    Wang, Zhaohui; Sun, Linyan; Lou, Xiaoyi; Yang, Fei; Feng, Min; Liu, Jianshe

    2017-12-01

    The rapidly increasing and widespread use of graphene oxide (GO) as catalyst supports, requires further understanding of its chemical stability in advanced oxidation processes (AOPs). In this study, UV/H 2 O 2 and UV/persulfate (UV/PS) processes were selected to test the chemical instability of GO in terms of their performance in producing highly reactive hydroxyl radicals (OH) and sulfate radicals (SO 4 - ), respectively. The degradation intermediates were characterized using UV-visible absorption spectra (UV-vis), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Experimental data indicate that UV/PS process was more effective in enhancing GO degradation than the UV/H 2 O 2 system. The overall oxygen-containing functionalities (e.g. CO, CO and OCO groups) dramatically declined. After radical attack, sheet-like GO was destructed into lots of flakes and some low-molecular-weight molecules were detected. The results suggest GO is most vulnerable against SO 4 - radical attack, which deserves special attention while GO acts as a catalyst support or even as a catalyst itself. Therefore, stability of GO and its derivatives should be carefully assessed before they are applied to SO 4 - -based AOPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Removing Fats, Oils and Greases from Grease Trap by Hybrid AOPs (Ozonation and Sonication)

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Michal Piotr; Satoh, Saburoh; Yamabe, Chobei; Ihara, Satoshi; Nieda, Masanori

    The purpose of this study was to investigate the electrical energy for the environmental applications using AOPs (advanced oxidation processes) combined with ozonation and sonication to remove the FOG (fats, oils and greases) from wastewater of the sewage system. This study focused on FOG removal from a grease trap using the hybrid AOPs. Fatty acids (linoleic, oleic, stearic and palmitic acids) were used as representative standards of FOG. The studies were conducted experimentally in a glass reactor under various operational conditions. The oxidation efficiency using the combination of the ozonation and sonication was determined by the KI dosimetry method and the calorimetry method. Fatty acids concentration were measured by GC/MS. The local reaction field of the high temperature and high pressure, so-called hot spot, was generated by the quasi-adiabatic collapse of bubbles produced in the water under sonication, which is called cavitation phenomenon. Mixing the ozone bubbles into the water under acoustic cavitation, the formation of OH radicals increased. The mechanical effect of acoustic cavitation such as microstreaming and shock waves have an influence on the probability of reactions of ozone and radicals with fatty acids.

  15. QSPR prediction of the hydroxyl radical rate constant of water contaminants.

    PubMed

    Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun

    2016-07-01

    In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    PubMed

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    PubMed

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  18. Analytical tools employed to determine pharmaceutical compounds in wastewaters after application of advanced oxidation processes.

    PubMed

    Afonso-Olivares, Cristina; Montesdeoca-Esponda, Sarah; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2016-12-01

    Today, the presence of contaminants in the environment is a topic of interest for society in general and for the scientific community in particular. A very large amount of different chemical substances reaches the environment after passing through wastewater treatment plants without being eliminated. This is due to the inefficiency of conventional removal processes and the lack of government regulations. The list of compounds entering treatment plants is gradually becoming longer and more varied because most of these compounds come from pharmaceuticals, hormones or personal care products, which are increasingly used by modern society. As a result of this increase in compound variety, to address these emerging pollutants, the development of new and more efficient removal technologies is needed. Different advanced oxidation processes (AOPs), especially photochemical AOPs, have been proposed as supplements to traditional treatments for the elimination of pollutants, showing significant advantages over the use of conventional methods alone. This work aims to review the analytical methodologies employed for the analysis of pharmaceutical compounds from wastewater in studies in which advanced oxidation processes are applied. Due to the low concentrations of these substances in wastewater, mass spectrometry detectors are usually chosen to meet the low detection limits and identification power required. Specifically, time-of-flight detectors are required to analyse the by-products.

  19. Rapid Selective Circumneutral Degradation of Phenolic Pollutants Using Peroxymonosulfate-Iodide Metal-Free Oxidation: Role of Iodine Atoms.

    PubMed

    Feng, Yong; Lee, Po-Heng; Wu, Deli; Shih, Kaimin

    2017-02-21

    The development of environmentally friendly, oxidation-selective advanced oxidation processes (AOPs) for water decontamination is important for resource recovery, carbon dioxide abatement, and cost savings. In this study, we developed an innovative AOP using a combination of peroxymonosulfate (PMS) and iodide ions (I - ) for the selective removal of phenolic pollutants from aqueous solutions. The results showed that nearly 100% degradation of phenol, bisphenol A, and hydroquinone was achieved after reaction for 4 min in the presence of 65 μM PMS and 50 μM I - . PMS-I - oxidation had a wide effective pH range, with the best performance achieved under circumneutral conditions. The ratio between [PMS] and [I - ] influenced the degradation, and the optimal ratio was approximately 1.00 for the degradation of the phenols. Neither sulfate nor hydroxyl radicals were found to be the active species in PMS-I - oxidation. Instead, we found evidence that iodide atoms were the dominant oxidants. In addition, both Cl - and Br - also promoted the degradation of phenol in PMS solution. The results of this work may promote the application of reactive halogen species in water treatment.

  20. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals.

    PubMed

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2008-05-01

    Pulp mill effluent was treated by different advanced oxidation processes (AOPs) consisting of UV, UV/H2O2, TiO2-assisted photo-catalysis (UV/TiO2) and UV/H2O2/TiO2 in lab-scale reactors for total organic carbon (TOC) and toxicity removals. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC and toxicity removals were investigated. Almost every method resulted in some degree of TOC and toxicity removal from the pulp mill effluent. However, the TiO2-assisted photo-catalysis (UV/TiO2) resulted in the highest TOC and toxicity removals under alkaline conditions when compared with the other AOPs tested. Approximately, 79.6% TOC and 94% toxicity removals were obtained by the TiO2-assisted photo-catalysis (UV/TiO2) with a titanium dioxide concentration of 0.75gl(-1) at pH 11 within 60min.

  1. A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)

    EPA Science Inventory

    A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...

  2. Intrinsic Chemiluminescence Generation during Advanced Oxidation of Persistent Halogenated Aromatic Carcinogens.

    PubMed

    Mao, Li; Liu, Yu-Xiang; Huang, Chun-Hua; Gao, Hui-Ying; Kalyanaraman, Balaraman; Zhu, Ben-Zhan

    2015-07-07

    The ubiquitous distribution coupled with their carcinogenicity has raised public concerns on the potential risks to both human health and the ecosystem posed by the halogenated aromatic compounds (XAr). Recently, advanced oxidation processes (AOPs) have been increasingly favored as an "environmentally-green" technology for the remediation of such recalcitrant and highly toxic XAr. Here, we show that AOPs-mediated degradation of the priority pollutant pentachlorophenol and all other XAr produces an intrinsic chemiluminescence that directly depends on the generation of the extremely reactive hydroxyl radicals. We propose that the hydroxyl radical-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual chemiluminescence production. A rapid, sensitive, simple, and effective chemiluminescence method was developed to quantify trace amounts of XAr and monitor their real-time degradation kinetics. These findings may have broad biological and environmental implications for future research on this important class of halogenated persistent organic pollutants.

  3. Characteristics and fate of natural organic matter during UV oxidation processes.

    PubMed

    Ahn, Yongtae; Lee, Doorae; Kwon, Minhwan; Choi, Il-Hwan; Nam, Seong-Nam; Kang, Joon-Wun

    2017-10-01

    Advanced oxidation processes (AOPs) are widely used in water treatments. During oxidation processes, natural organic matter (NOM) is modified and broken down into smaller compounds that affect the characteristics of the oxidized NOM by AOPs. In this study, NOM was characterized and monitored in the UV/hydrogen peroxide (H 2 O 2 ) and UV/persulfate (PS) processes using a liquid chromatography-organic carbon detector (LC-OCD) technique, and a combination of excitation-emission matrices (EEM) and parallel factor analysis (PARAFAC). The percentages of mineralization of NOM in the UV/H 2 O 2 and UV/PS processes were 20.5 and 83.3%, respectively, with a 10 mM oxidant dose and a contact time of 174 s (UV dose: approximately 30,000 mJ). Low-pressure, Hg UV lamp (254 nm) was applied in this experiment. The steady-state concentration of SO 4 - was 38-fold higher than that of OH at an oxidant dose of 10 mM. With para-chlorobenzoic acid (pCBA) as a radical probe compound, we experimentally determined the rate constants of Suwannee River NOM (SRNOM) with OH (k OH/NOM  = 3.3 × 10 8  M -1 s -1 ) and SO 4 - (k SO4-/NOM  = 4.55 × 10 6  M -1 s -1 ). The hydroxyl radical and sulfate radical showed different mineralization pathways of NOM, which have been verified by the use of LC-OCD and EEM/PARAFAC. Consequently, higher steady-state concentrations of SO 4 - , and different reaction preferences of OH and SO 4 - with the NOM constituent had an effect on the mineralization efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of different advanced oxidation processes for the degradation of two fluoroquinolone antibiotics in aqueous solutions.

    PubMed

    Bobu, Maria; Yediler, Ayfer; Siminiceanu, Ilie; Zhang, Feifang; Schulte-Hostede, Sigurd

    2013-01-01

    In this study a comparative assessment using various advanced oxidation processes (UV/H(2)O(2), UV/H(2)O(2)/Fe(II), O(3), O(3)/UV, O(3)/UV/H(2)O(2) and O(3)/UV/H(2)O(2)/Fe(II)) was attempted to degrade efficiently two fluoroquinolone drugs ENR [enrofloxacin (1-Cyclopropyl-7-(4-ethyl-1-piperazinyl)-6-fluoro-1,4-dihydro-4-oxo-3-quinolonecarboxylic acid)] and CIP [ciprofloxacin (1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-quinoline-3-carboxylic acid)] in aqueous solutions at a concentrations of 0.15 mM for each drug. The efficiency of the applied oxidation processes (AOPs) has been estimated by the conversion of the original substrate (X(ENR) and X(CIP)) and the reduction of chemical oxygen demand (COD), total organic carbon (TOC). Special emphasis was laid on the effect of varying reaction pH as well as of the applied oxidant doses on the observed reaction kinetics for each advanced oxidation processes. High degradation efficiencies, particularly in terms of rates of TOC and COD abatement, were obtained for photo-Fenton assisted ozonation [O(3)/UV/H(2)O(2)/Fe(II)], compared to other advanced oxidation processes. At pH 3 and 25°C best results for the degradation of both investigated drugs were achieved when 10 mM H(2)O(2), 0.5 mM Fe(II) and an initial dose of 8.5 mg L(-1) ozone were applied. In addition, the evolution of toxicity of the reaction mixtures for different AOPs has been studied by the bioluminescence test (LUMIStox 300).

  5. Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes.

    PubMed

    Rodríguez-Chueca, J; Laski, E; García-Cañibano, C; Martín de Vidales, M J; Encinas, Á; Kuch, B; Marugán, J

    2018-07-15

    The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H 2 O 2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H 2 O 2 /UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H 2 O 2 /UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m 3 ·order). Even H 2 O 2 /UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H 2 O 2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts

    NASA Astrophysics Data System (ADS)

    Liang, Robert; Hu, Anming; Li, Wenjuan; Zhou, Y. Norman

    2013-10-01

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO2, have potential for wastewater treatment. In this study, TiO2 anatase phase nanobelts (30-100 nm in width and 10 μm in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products—naproxen, carbamazepine, and theophylline—that are difficult to oxidize without AOP processes. TiO2 nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species—hydroxyl radial (OH·), positive holes (h+), and hydrogen peroxide (H2O2)—involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO2 nanobelt membranes, including those harnessing sunlight for water treatment.

  7. Performance of electrochemical oxidation and photocatalysis in terms of kinetics and energy consumption. New insights into the p-cresol degradation.

    PubMed

    Escudero, Carlos J; Iglesias, Olalla; Dominguez, Sara; Rivero, Maria J; Ortiz, Inmaculada

    2017-06-15

    This work reports the comparative performance of two Advanced Oxidation Processes (AOPs), electrochemical oxidation and photocatalysis, as individual technological alternatives for the treatment of effluents containing p-cresol. First, the influence of operating parameters in the oxidation and mineralization yield was carried out together with kinetic analysis. Boron Doped Diamond (BDD), RuO 2 and Pt as anodic materials, Na 2 SO 4 and NaCl as supporting electrolytes and different current densities were evaluated in electrochemical oxidation whereas the effect of TiO 2 concentration and radiation was studied in the photocatalytic degradation. Then, the parameter Electrical Energy per Order (E EO ) was calculated to compare the energy consumption in both AOPs, concluding that under the studied conditions the electrochemical treatment with BDD, Na 2 SO 4 and 125 A m -2 showed the best energy efficiency, with an E EO of 5.83 kW h m -3 order -1 for p-cresol and 58.05 kW h m -3 order -1 for DOC removal, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Transformation of polyfluorinated compounds in natural waters by advanced oxidation processes.

    PubMed

    Anumol, Tarun; Dagnino, Sonia; Vandervort, Darcy R; Snyder, Shane A

    2016-02-01

    The presence of perfluorocarboxylic acids (PFCAs) in source and finished drinking waters is a concern with studies showing bioaccumulation and adverse toxicological effects in wildlife and potentially humans. Per/Polyfluoroalkyl substances (PFAS) such as fluorotelomer alcohols have been identified as precursors for PFCAs in biological pathways. In this study, we investigated the fate of 6:2 and 8:2 homologues of the fluorotelomer unsaturated carboxylic acids (FTUCAs) during advanced oxidation process (AOPs). Results showed 6:2 FTUCA and 8:2 FTUCA transformed into 6-C PFCA (PFHxA) and 8-C PFCA (PFOA) respectively with very little other PFCA formation for all AOPs. The degradation of 6:2 FTUCA and 8:2 FTUCA was greater in the GW compared to SW for the ozone processes but similar for UV/H2O2. The formation of n-C PFCA followed O3>O3/H2O2 at same dose and UV/H2O2 had much lower formation at the doses tested. Non-targeted analysis with the LC-MS-qTOF indicated the production of other PFCAs which contribute to the total mass balance, although no intermediate product was discovered indicating a rapid and direct transformation from the FTUCAs to the PFCAs and/or significant volatilization of intermediates. With the use of AOPs essential to water reuse treatment schemes, this work raises concerns over the risk of potential formation of PFCAs in the treatment and their adverse health effects in finished drinking water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Can Erythrocytes Transmit Oxidative Stress Beyond the Lungs? An Adverse Outcome Pathway for the Cardiovascular Effects of Air Pollution.

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are systems biology roadmaps with potential utility in xenobiotic exposure risk assessment. AOPs connect molecular initiating events (MIEs) to population-level adverse outcomes (AOs) via cellular, organ, and organism key events (KE) and KE relatio...

  10. The decolorization and mineralization of acid orange 6 azo dye in aqueous solution by advanced oxidation processes: a comparative study.

    PubMed

    Hsing, Hao-Jan; Chiang, Pen-Chi; Chang, E-E; Chen, Mei-Yin

    2007-03-06

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO(2), O(3), O(3)/UV, O(3)/UV/TiO(2), Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O(3)/UV and O(3)/UV/TiO(2) processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O(3) dose=45mg/L; (2) the optimum pH and ratio of [H(2)O(2)]/[Fe(2+)] found for the Fenton process, are pH 4 and [H(2)O(2)]/[Fe(2+)]=6.58. The optimum [H(2)O(2)] and [Fe(2+)] under the same HF value are 58.82 and 8.93mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O(3)

  11. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes.

    PubMed

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe(2+)/H2O2) and UV/H2O2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H2O2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H2O2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe(2+)/H2O2 had a molar ratio of 0.1 and a H2O2 concentration of 0.01molL(-1) with a pH of 3.0 and reaction time of 2h, 2.58-3.79 logs of target genes were removed. Under the initial effluent pH condition (pH=7.0), the removal was 2.26-3.35 logs. For the UV/H2O2 process, when the pH was 3.5 with a H2O2 concentration of 0.01molL(-1) accompanied by 30min of UV irradiation, all ARGs could achieve a reduction of 2.8-3.5 logs, and 1.55-2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H2O2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe(2+)/H2O2 molar ratios, H2O2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Decomposition of 1,4-dioxane by advanced oxidation and biochemical process.

    PubMed

    Kim, Chang-Gyun; Seo, Hyung-Joon; Lee, Byung-Ryul

    2006-01-01

    This study was undertaken to determine the optimal decomposition conditions when 1,4-dioxane was degraded using either the AOPs (Advanced Oxidation Processes) or the BAC-TERRA microbial complex. The advanced oxidation was operated with H2O2, in the range 4.7 to 51 mM, under 254 nm (25 W lamp) illumination, while varying the reaction parameters, such as the air flow rate and reaction time. The greatest oxidation rate (96%) of 1,4-dioxane was achieved with H2O2 concentration of 17 mM after a 2-hr reaction. As a result of this reaction, organic acid intermediates were formed, such as acetic, propionic and butyric acids. Furthermore, the study revealed that suspended particles, i.e., bio-flocs, kaolin and pozzolan, in the reaction were able to have an impact on the extent of 1,4-dioxane decomposition. The decomposition of 1,4-dioxane in the presence of bio-flocs was significantly declined due to hindered UV penetration through the solution as a result of the consistent dispersion of bio-particles. In contrast, dosing with pozzolan decomposed up to 98.8% of the 1,4-dioxane after 2 hr of reaction. Two actual wastewaters, from polyester manufacturing, containing 1,4-dioxane in the range 370 to 450 mg/L were able to be oxidized by as high as 100% within 15 min with the introduction of 100:200 (mg/L) Fe(II):H202 under UV illumination. Aerobic biological decomposition, employing BAC-TERRA, was able to remove up to 90% of 1,4-dioxane after 15 days of incubation. In the meantime, the by-products (i.e., acetic, propionic and valeric acid) generated were similar to those formed during the AOPs investigation. According to kinetic studies, both photo-decomposition and biodegradation of 1,4-dioxane followed pseudo first-order reaction kinetics, with k = 5 x 10(-4) s(-1) and 2.38 x 10(-6) s(-1), respectively. It was concluded that 1,4-dioxane could be readily degraded by both AOPs and BAC-TERRA, and that the actual polyester wastewater containing 1,4-dioxane could be successfully decomposed under the conditions of photo-Fenton oxidation.

  13. EVALUATION OF A PILOT-SCALE ULTRAVIOLET (UV) LIGHT AND OZONE TREATMENT SYSTEM FOR REMOVAL OF MTBE FROM DRINKING WATER SOURCES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is currently evaluating package plant advanced oxidation process (AOP) systems to treat methyl tertiary butyl ether (MTBE) in drinking water supplies (e.g., surface water, groundwater). MTBE has been identified as a potential carcin...

  14. The synthetic activities of TiO2-moringa oleifera seed powder in the treatment of the wastewater of the coal mining industry

    NASA Astrophysics Data System (ADS)

    Marhaini; Legiso; Trilestari

    2018-04-01

    To process the coal wastewater, the combination of chemical based technology of Advanced Oxidation Process (AOP) of a strong oxidizer using TiO2 photocatalyst and biological treatment of moringa seed powder (Moringa oleifera) is used in the composite form. AOP can be used as an alternative treatment of coal wastewater which is quite economical and environmentally friendly. The XRD results of TiO2 powder and the synthesis of TiO2 - is moringa seed powder in the form of tetragonal crystals. The degradation results of the quality of the coal wastewater using TiO2 powder reached a decrease of (TSS, Fe, Mn, Zn, Hg, Cu, Co, Cr, Al and Ni) by an average of 70% and the increase of pH value of 7 at 200 minute stirring time. The decrease of the wastewater quality using the synthesis of TiO2- moringa seed powder by using sunlight and without sunlight is detected negative (-) at 200 minute stirring time.

  15. Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol.

    PubMed

    Saritha, P; Aparna, C; Himabindu, V; Anjaneyulu, Y

    2007-11-19

    In the present study an attempt is made efficiently to degrade USEPA listed 4-chloro-2-nitrophenol (4C-2-NP), widely available in bulk drug and pesticide wastes using various advanced oxidation processes (AOPs). A comparative assessment using various AOPs (UV, H(2)O(2,) UV/H(2)O(2), Fenton, UV/Fenton and UV/TiO(2)) was attempted after initial optimization studies, viz., varying pH, peroxide concentration, iron concentration, and TiO(2) loading. The degradation of the study compound was estimated using chemical oxygen demand (COD) reduction and compound reduction using spectrophotometric methods and further validated with high performance liquid chromatography (HPLC). The degradation trends followed the order: UV/Fenton > UV/TiO(2) > UV/H(2)O(2) > Fenton > H(2)O(2) > UV(.) It can be inferred from the studies that UV/Fenton was the most effective in partial mineralization of 4C-2-NP. However, lower costs were obtained with H(2)O(2). Kinetic constants were evaluated using first order equations to determine the rate constant K.

  16. Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect.

    PubMed

    Wohlmuth da Silva, Salatiel; Arenhart Heberle, Alan Nelson; Pereira Santos, Alexia; Siqueira Rodrigues, Marco Antônio; Pérez-Herranz, Valentín; Moura Bernardes, Andréa

    2018-05-29

    Antibiotics are not efficiently removed in conventional wastewater treatments. In fact, different advanced oxidation process (AOPs), including ozone, peroxide, UV radiation, among others, are being investigated in the elimination of microcontaminants. Most of AOPs proved to be efficient on the degradation of antibiotics, but the mineralization is on the one hand not evaluated or on the other hand not high. At this work, the UV-based hybrid process, namely Photo-assisted electrochemical oxidation (PEO), was applied, aiming the mineralization of microcontaminants such as the antibiotics Amoxicillin (AMX), Norfloxacin (NOR) and Azithromycin (AZI). The influence of the individual contributions of electrochemical oxidation (EO) and the UV-base processes on the hybrid process (PEO) was analysed. Results showed that AMX and NOR presented higher mineralization rate under direct photolysis than AZI due to the high absorption of UV radiation. For the EO processes, a low mineralization was found for all antibiotics, what was associated to a mass-transport limitation related to the low concentration of contaminants (200 µg/L). Besides that, an increase in mineralization was found, when heterogeneous photocatalysis and EO are compared, due to the influence of UV radiation, which overcomes the mass-transport limitations. Although the UV-based processes control the reaction pathway that leads to mineralization, the best results to mineralize the antibiotics were achieved by PEO hybrid process. This can be explained by the synergistic effect of the processes that constitute them. A higher mineralization was achieved, which is an important and useful finding to avoid the discharge of microcontaminants in the environment.

  17. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.

    PubMed

    Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peñuela, Gustavo A

    2014-04-15

    Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Zooplankton sensitivity and phytoplankton regrowth for ballast water treatment with advanced oxidation processes.

    PubMed

    García-Garay, Juan; Franco-Herrera, Andrés; Machuca-Martinez, Fiderman

    2018-05-26

    The ballasting and de-ballasting of ships are two necessary operations with ballast water that provide stability for safe navigation. Empty ships must ballast tanks with water, which contains living organisms and subsequently carries them away from their original distribution. De-ballasting represents an input of still viable zooplankton, phytoplankton, and microorganisms in the destination port, leading to the introduction of alien species, and consequently, the introduction of organisms will alter the local biodiversity. Ballast water treatment is necessary to comply with the International Maritime Organization (IMO) for the maximum viable organisms permitted. It is known that UVC eliminates microorganisms, but there are few studies on the other taxonomical groups, such as phytoplankton and zooplankton. The advance oxidation processes (AOPs) with UV-C can be a good alternative to manage the problem of ballast water, primarily for microorganisms. However, for larger organisms, there is more resistance, and, a stage with filtration (by physical filtration or hydrocyclone) is usually required. The filter can fail, or certain zooplankton organisms can escape across the filter and go to the AOPs or UVC reactor. According to the taxonomic group, there can be a different sensitivity to the treatment, and one could survive and generate a risk. The AOPs tested were natural solar radiation (RAD), UV/H 2 O 2 , UV/TiO 2 , UV/TiO 2 /H 2 O 2 , and UV/TiO 2 /H 2 O 2 /RAD. Natural sea water was pumped and treated with the AOPs. The vital zooplankton organisms counted were polychaetes, cladocerans, ostracods, nauplii and calanoid, cyclopoid, and harpacticoid copepods. For the phytoplankton, the abundance was estimated, and the photosystem II efficiency was determined. To evaluate the phytoplankton regrowth after the treatments, the treated water was stored and populations counted for 20 days. The most effective treatment for the zooplankton groups was UVC/H 2 O 2 . Regarding the sensitivity, the cyclopoid copepods were the most resistant. The nauplii and polychaetes were more likely to be killed by the AOPs, greatly decreasing the risk from nauplii due to their abundance and ease of passing through the filters with their smaller size. Phytoplankton regrowth was observed in all treatments, and it even reached abundance values higher than in the intake water. For instance, additional dark conditions and retreatment on days 3 or 5 are suggested for any treatment.

  19. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2014-02-01

    Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS. © 2013 Elsevier B.V. All rights reserved.

  20. The Enhancement of H2O2/UV AOPs for the Removal of Selected Organic Pollutants from Drinking Water with Hydrodynamic Cavitation.

    PubMed

    Čehovin, Matej; Medic, Alojz; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2016-12-01

    Drinking water contains organic matter that occasionally needs to be treated to assure its sufficient quality and safety for the consumers. H2O2 and UV advanced oxidation processes (H2O2/UV AOPs) were combined with hydrodynamic cavitation (HC) to assess the effects on the removal of selected organic pollutants. Water samples containing humic acid, methylene blue dye and micropollutants (metaldehyde, diatrizoic acid, iohexol) were treated first by H2O2 (dosages from 1 to 12 mg L-1) and UV (dosages from 300 to 2800 mJ cm-2) AOPs alone and later in combination with HC, generated by nozzles and orifice plates (4, 8, 18 orifices). Using HC, the removal of humic acid was enhanced by 5-15%, methylene blue by 5-20% and metaldehyde by approx. 10%. Under favouring conditions, i.e. high UV absorbance of the matrix (more than 0.050 cm-1 at a wavelength of 254 nm) and a high pollutant to oxidants ratio, HC was found to improve the hydrodynamic conditions in the photolytic reactor, to improve the subjection of the H2O2 to the UV fluence rate distribution and to enhance the removal of the tested organic pollutants, thus showing promising potential of further research in this field.

  1. Effect of matrix components on UV/H2O2 and UV/S2O8(2-) advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities.

    PubMed

    Yang, Yi; Pignatello, Joseph J; Ma, Jun; Mitch, William A

    2016-02-01

    When reverse osmosis brines from potable wastewater reuse plants are discharged to poorly-flushed estuaries, the concentrated organic contaminants are a concern for receiving water ecosystems. UV/hydrogen peroxide (UV/H2O2) and UV/persulfate (UV/S2O8(2-)) advanced oxidation processes (AOPs) may reduce contaminant burdens prior to discharge, but the effects of the high levels of halide, carbonate and effluent organic matter (EfOM) normally present in these brines are unclear. On the one hand, these substances may reduce process efficiency by scavenging reactive oxygen species (ROS), hydroxyl (OH) and sulfate (SO4(-) radicals. On the other, the daughter radicals generated by halide and carbonate scavenging may themselves degrade organics, offsetting the effect of ROS scavenging. UV/H2O2 and UV/S2O8(2-) AOPs were compared for degradation of five pharmaceuticals spiked into brines obtained from two reuse facilities and the RO influent from one of them. For UV/H2O2, EfOM scavenged ∼75% of the OH, reducing the degradation efficiency of the target contaminants to a similar extent; halide and carbonate scavenging and the reactivities of associated daughter radicals were less important. For UV/S2O8(2-), anions (mostly Cl(-)) scavenged ∼93% of the SO4(-). Because daughter radicals of Cl(-) contributed to contaminant degradation, the reduction in contaminant degradation efficiency was only ∼75-80%, with the reduction driven by daughter radical scavenging by EfOM. Conversion of SO4(-) to more selective halogen and carbonate radicals resulted in a wider range of degradation efficiencies among the contaminants. For both AOPs, 250 mJ/cm(2) average fluence achieved significant removal of four pharmaceuticals, with significantly better performance by UV/S2O8(2-) treatment for some constituents. Accounting for the lower brine flowrates, the energy output to achieve this fluence in brines is comparable to that often applied to RO permeates. However, much higher fluence was required for the least reactive pharmaceutical. Comparing AOP application to the RO influent or brine, equal or greater removal was achieved for brine treatment for comparable energy input. AOP treatment of brines could be applied to reduce, but not eliminate, contaminant burdens prior to discharge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Gene expression in Pseudomonas aeruginosa exposed to hydroxyl-radicals.

    PubMed

    Aharoni, Noa; Mamane, Hadas; Biran, Dvora; Lakretz, Anat; Ron, Eliora Z

    2018-05-01

    Recent studies have shown the efficiency of hydroxyl radicals generated via ultraviolet (UV)-based advanced oxidation processes (AOPs) combined with hydrogen peroxide (UV/H 2 O 2 ) as a treatment process in water. The effects of AOP treatments on bacterial gene expression was examined using Pseudomonas aeruginosa strain PAO1 as a model-organism bacterium. Many bacterial genes are not expressed all the time, but their expression is regulated. The regulation is at the beginning of the gene, in a genetic region called "promoter" and affects the level of transcription (synthesis of messenger RNA) and translation (synthesis of protein). The level of expression of the regulated genes can change as a function of environmental conditions, and they can be expressed more (induced, upregulated) or less (downregulated). Exposure of strain PAO1 to UV/H 2 O 2 treatment resulted in a major change in gene expression, including elevated expression of several genes. One interesting gene is PA3237, which was significantly upregulated under UV/H 2 O 2 as compared to UV or H 2 O 2 treatments alone. The induction of this gene is probably due to formation of radicals, as it is abolished in the presence of the radical scavenger tert-butanol (TBA) and is seen even when the bacteria are added after the treatment (post-treatment exposure). Upregulation of the PA3237 promoter could also be detected using a reporter gene, suggesting the use of such genetic constructs to develop biosensors for monitoring AOPs in water-treatment plants. Currently biosensors for AOPs do not exist, consequently impairing the ability to monitor these processes on-line according to radical exposure in natural waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Decontamination of soil washing wastewater using solar driven advanced oxidation processes.

    PubMed

    Bandala, Erick R; Velasco, Yuridia; Torres, Luis G

    2008-12-30

    Decontamination of soil washing wastewater was performed using two different solar driven advanced oxidation processes (AOPs): the photo-Fenton reaction and the cobalt/peroxymonosulfate/ultraviolet (Co/PMS/UV) process. Complete sodium dodecyl sulphate (SDS), the surfactant agent used to enhance soil washing process, degradation was achieved when the Co/PMS/UV process was used. In the case of photo-Fenton reaction, almost complete SDS degradation was achieved after the use of almost four times the actual energy amount required by the Co/PMS/UV process. Initial reaction rate in the first 15min (IR15) was determined for each process in order to compare them. Highest IR15 value was determined for the Co/PMS/UV process (0.011mmol/min) followed by the photo-Fenton reaction (0.0072mmol/min) and the dark Co/PMS and Fenton processes (IR15=0.002mmol/min in both cases). Organic matter depletion in the wastewater, as the sum of surfactant and total petroleum hydrocarbons present (measured as chemical oxygen demand, COD), was also determined for both solar driven processes. It was found that, for the case of COD, the highest removal (69%) was achieved when photo-Fenton reaction was used whereas Co/PMS/UV process yielded a slightly lower removal (51%). In both cases, organic matter removal achieved was over 50%, which can be consider proper for the coupling of the tested AOPs with conventional wastewater treatment processes such as biodegradation.

  4. The antioxidant capacity of erythrocyte concentrates is increased during the first week of storage and correlated with the uric acid level.

    PubMed

    Bardyn, M; Maye, S; Lesch, A; Delobel, J; Tissot, J-D; Cortés-Salazar, F; Tacchini, P; Lion, N; Girault, H H; Prudent, M

    2017-10-01

    Red blood cells (RBCs) suffer from lesions during cold storage, depending in part on their ability to counterbalance oxidative stress by activating their antioxidant defence. The aim of this study was to monitor the antioxidant power (AOP) in erythrocyte concentrates (ECs) during cold storage. Six ECs were prepared in saline-adenine-glucose-mannitol (SAGM) additive solution and followed during 43 days. The AOP was quantified electrochemically using disposable electrode strips and compared with results obtained from a colorimetric assay. Haematological data, data on haemolysis and the extracellular concentration of uric acid were also recorded. Additionally, a kinetic model was developed to extract quantitative kinetic data on the AOP behaviour. The AOP of total ECs and their extracellular samples attained a maximum after 1 week of storage prior to decaying and reaching a plateau, as shown by the electrochemical measurements. The observed trend was confirmed with a colorimetric assay. Uric acid had a major contribution to the extracellular AOP. Interestingly, the AOP and uric acid levels were linked to the sex of the donors. The marked increase in AOP during the first week of storage suggests that RBCs are impacted early by the modification of their environment. The AOP behaviour reflects the changes in metabolism activity following the adjustment of the extracellular uric acid level. Knowing the origin, interdonor variability and the effects of the AOP on the RBCs could be beneficial for the storage quality, which will have to be further studied. © 2017 International Society of Blood Transfusion.

  5. Solar energy for wastewater treatment: review of international technologies and their applicability in Brazil.

    PubMed

    Marcelino, R B P; Queiroz, M T A; Amorim, C C; Leão, M M D; Brites-Nóbrega, F F

    2015-01-01

    Several studies have reported the adverse effects of recalcitrant compounds and emerging contaminants present in industrial effluents, which are not degradable by ordinary biological treatment. Many of these compounds are likely to accumulate in living organisms through the lipid layer. At concentrations above the limits of biological tolerance, these compounds can be harmful to the ecosystem and may even reach humans through food chain biomagnification. In this regard, advanced oxidation processes (AOPs) represent an effective alternative for the removal of the pollutants. This study focused on the AOP involving the use of ultraviolet radiation in homogeneous and heterogeneous systems. Based on the literature review, comparisons between natural and artificial light were established, approaching photoreactors constructive and operational characteristics. We concluded that the high availability of solar power in Brazil would make the implementation of the AOP using natural solar radiation for the decontamination of effluents feasible, thereby contributing to clean production and biodiversity conservation. This will serve as an important tool for the enforcement of environmental responsibility among public and private institutions.

  6. Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: a comparative assessment.

    PubMed

    Köhler, C; Venditti, S; Igos, E; Klepiszewski, K; Benetto, E; Cornelissen, A

    2012-11-15

    UV irradiation technology as a membrane bioreactor (MBR) post-treatment was investigated and assessed. Both UV low pressure (LP) and medium pressure (MP) lamps were examined. The technology was installed in a pilot plant treating hospital wastewater to provide the study with adequate field data. The effect of the UV irradiation was enhanced with varying dosages of H2O2 to establish an advanced oxidation process (AOP). The efficiency of the pharmaceutical removal process was assessed by examining 14 micropollutants (antibiotics, analgesics, anticonvulsants, beta-blockers, cytostatics and X-ray contrast media) which are typically released by hospitals and detected with liquid chromatography coupled tandem mass spectrometry (LC-MS/MS). While the MBR treatment generally showed only a low degradation capacity for persistent pharmaceuticals, much better degradation was obtained by applying UV irradiation and H2O2 as AOP. The "conventional" cost-benefit analysis of the different technology options taking into account both electrical energy consumption and pharmaceutical removal efficiency, revealed clearly better performance of low pressure UV lamps as AOP. However, a holistic comparison between the different scenarios was carried out by evaluating their environmental impacts using the life cycle assessment (LCA) methodology. Decisive advantages were highlighted to include this approach in the decision making process. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study.

    PubMed

    Shah, Noor S; He, Xuexiang; Khan, Hasan M; Khan, Javed Ali; O'Shea, Kevin E; Boccelli, Dominic L; Dionysiou, Dionysios D

    2013-12-15

    This study explored the efficiency of UV-C-based advanced oxidation processes (AOPs), i.e., UV/S2O8(2-), UV/HSO5(-), and UV/H2O2 for the degradation of endosulfan, an organochlorine insecticide and an emerging water pollutant. A significant removal, 91%, 86%, and 64%, of endosulfan, at an initial concentration of 2.45 μM and UV fluence of 480 mJ/cm(2), was achieved by UV/S2O8(2-), UV/HSO5(-), and UV/H2O2 processes, respectively, at a [peroxide]0/[endosulfan]0 molar ratio of 20. The efficiency of these processes was, however, inhibited in the presence of radical scavengers, such as alcohols (e.g., tertiary butyl alcohol and isopropyl alcohol) and natural organic matter (NOM). The inhibition was also influenced by common inorganic anions in the order of nitrite > bicarbonate > chloride > nitrate ≈ sulfate. The observed pseudo-first-order rate constant decreased while the degradation rate increased with increasing initial concentration of the target contaminant. The degradation mechanism of endosulfan by the AOPs was evaluated revealing the main by-product as endosulfan ether. Results of this study suggest that UV-C-based AOPs are potential methods for the removal of pesticides, such as endosulfan and its by-products, from contaminated water. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Evaluation of Treatment Technologies for Wastewater from Insensitive Munitions Production. Phase 1: Technology Down-Selection

    DTIC Science & Technology

    2013-11-01

    the AOP reactor according to the target process formulation. Gases were vented to a GAC vessel. ERDC/EL TR-13-20 94 10.2.2 Results and Discussion...destructive and filtration methods such as biological treatment (destructive), chemical reduction (destructive), reverse osmosis (RO)/nano- filtration ... filtration ), and advanced oxidation processes (destructive). A comprehensive evaluation of alternatives relies on a detailed list of criteria, allowing for

  9. Accelerating Adverse Outcome Pathway Development Using ...

    EPA Pesticide Factsheets

    The adverse outcome pathway (AOP) concept links molecular perturbations with organism and population-level outcomes to support high-throughput toxicity testing. International efforts are underway to define AOPs and store the information supporting these AOPs in a central knowledgebase, however, this process is currently labor-intensive and time-consuming. Publicly available data sources provide a wealth of information that could be used to define computationally-predicted AOPs (cpAOPs), which could serve as a basis for creating expert-derived AOPs in a much more efficient way. Computational tools for mining large datasets provide the means for extracting and organizing the information captured in these public data sources. Using cpAOPs as a starting point for expert-derived AOPs should accelerate AOP development. Coupling this with tools to coordinate and facilitate the expert development efforts will increase the number and quality of AOPs produced, which should play a key role in advancing the adoption of twenty-first century toxicity testing strategies. This review article describes how effective knowledge management and automated approaches to AOP development can enhance and accelerate the development and use of AOPs. As the principles documented in this review are put into practice, we anticipate that the quality and quantity of AOPs available will increase substantially. This, in turn, will aid in the interpretation of ToxCast and other high-throughput tox

  10. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU.

    PubMed

    Ribeiro, Ana R; Nunes, Olga C; Pereira, Manuel F R; Silva, Adrián M T

    2015-02-01

    Environmental pollution is a recognized issue of major concern since a wide range of contaminants has been found in aquatic environment at ngL(-1) to μgL(-1) levels. In the year 2000, a strategy was defined to identify the priority substances concerning aquatic ecosystems, followed by the definition of environmental quality standards (EQS) in 2008. Recently it was launched the Directive 2013/39/EU that updates the water framework policy highlighting the need to develop new water treatment technologies to deal with such problem. This review summarizes the data published in the last decade regarding the application of advanced oxidation processes (AOPs) to treat priority compounds and certain other pollutants defined in this Directive, excluding the inorganic species (cadmium, lead, mercury, nickel and their derivatives). The Directive 2013/39/EU includes several pesticides (aldrin, dichlorodiphenyltrichloroethane, dicofol, dieldrin, endrin, endosulfan, isodrin, heptachlor, lindane, pentachlorophenol, chlorpyrifos, chlorfenvinphos, dichlorvos, atrazine, simazine, terbutryn, diuron, isoproturon, trifluralin, cypermethrin, alachlor), solvents (dichloromethane, dichloroethane, trichloromethane and carbon tetrachloride), perfluorooctane sulfonic acid and its derivatives (PFOS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenol and octylphenol, as well as the three compounds included in the recommendation for the first watch list of substances (diclofenac, 17-alpha-ethinylestradiol (EE2) and 17-beta-estradiol (E2)). Some particular pesticides (aclonifen, bifenox, cybutryne, quinoxyfen), organotin compounds (tributyltin), dioxins and dioxin-like compounds, brominated diphenylethers, hexabromocyclododecanes and di(2-ethylhexyl)phthalate are also defined in this Directive, but studies dealing with AOPs are missing. AOPs are recognized tools to destroy recalcitrant compounds or, at least, to transform them into biodegradable species. Diuron (a phenylurea herbicide) and atrazine (from the triazine chemical class) are the most studied pesticides from Directive 2013/39/EU. Fenton-based processes are the most frequently applied to treat priority compounds in water and their efficiency typically increases with the operating temperature as well as under UV or solar light. Heterogeneous photocatalysis is the second most used treatment to destroy pollutants defined in the Directive. Ozone alone promotes the partial oxidation of pollutants, and an increase in the effluent biodegradability, but complete mineralization of pollutants is difficult. To overcome this drawback, ozonation has been combined with heterogeneous catalysts, addition of H2O2, other AOPs (such as photocatalysis) or membrane technologies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Reverse Osmosis Shifts Chloramine Speciation Causing Re-Formation of NDMA during Potable Reuse of Wastewater.

    PubMed

    McCurry, Daniel L; Ishida, Kenneth P; Oelker, Gregg L; Mitch, William A

    2017-08-01

    UV-based advanced oxidation processes (AOPs) effectively degrade N-nitrosodimethylamine (NDMA) passing through reverse osmosis (RO) units within advanced treatment trains for the potable reuse of municipal wastewater. However, certain utilities have observed the re-formation of NDMA after the AOP from reactions between residual chloramines and NDMA precursors in the AOP product water. Using kinetic modeling and bench-scale RO experiments, we demonstrate that the low pH in the RO permeate (∼5.5) coupled with the effective rejection of NH 4 + promotes conversion of the residual monochloramine (NH 2 Cl) in the permeate to dichloramine (NHCl 2 ) via the reaction: 2 NH 2 Cl + H + ↔ NHCl 2 + NH 4 + . Dichloramine is the chloramine species known to react with NDMA precursors to form NDMA. After UV/AOP, utilities generally use lime or other techniques to increase the pH of the finished water to prevent distribution system corrosion. Modeling indicated that, while the increase in pH halts dichloramine formation, it converts amine-based NDMA precursors to their more reactive, neutral forms. With modeling, and experiments at both bench-scale and field-scale, we demonstrate that reducing the time interval between RO treatment and final pH adjustment can significantly reduce NDMA re-formation by minimizing the amount of dichloramine formed prior to reaching the final target pH.

  12. Catalytic Wastewater Treatment Using Pillared Clays

    NASA Astrophysics Data System (ADS)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  13. Spectroscopic methods for aqueous cyclodextrin inclusion complex binding measurement for 1,4-dioxane, chlorinated co-contaminants, and ozone

    NASA Astrophysics Data System (ADS)

    Khan, Naima A.; Johnson, Michael D.; Carroll, Kenneth C.

    2018-03-01

    Recalcitrant organic contaminants, such as 1,4-dioxane, typically require advanced oxidation process (AOP) oxidants, such as ozone (O3), for their complete mineralization during water treatment. Unfortunately, the use of AOPs can be limited by these oxidants' relatively high reactivities and short half-lives. These drawbacks can be minimized by partial encapsulation of the oxidants within a cyclodextrin cavity to form inclusion complexes. We determined the inclusion complexes of O3 and three common co-contaminants (trichloroethene, 1,1,1-trichloroethane, and 1,4-dioxane) as guest compounds within hydroxypropyl-β-cyclodextrin. Both direct (ultraviolet or UV) and competitive (fluorescence changes with 6-p-toluidine-2-naphthalenesulfonic acid as the probe) methods were used, which gave comparable results for the inclusion constants of these species. Impacts of changing pH and NaCl concentrations were also assessed. Binding constants increased with pH and with ionic strength, which was attributed to variations in guest compound solubility. The results illustrate the versatility of cyclodextrins for inclusion complexation with various types of compounds, binding measurement methods are applicable to a wide range of applications, and have implications for both extraction of contaminants and delivery of reagents for treatment of contaminants in wastewater or contaminated groundwater.

  14. Mussel-inspired approach to constructing robust cobalt-embedded N-doped carbon nanosheet toward enhanced sulphate radical-based oxidation

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Zhang, Haiyan; He, Zhiqiao; Chen, Jianmeng; Song, Shuang

    2016-09-01

    Heterogeneous sulphate radical based advanced oxidation processes (SR-AOPs) have lately been raised as a promising candidate for water treatment. Despite the progress made, either the stability or the performance of the current catalysts is still far from satisfactory for practical applications. Herein, using polydopamine-cobalt ion complex that inspired by mussel proteins as medium, we facilely fabricate a robust SR-AOPs catalyst with cobalt nanoparticles (NPs) embedded in nitrogen-doped reduced graphene oxide matrix (NRGO@Co). The NRGO scaffold with high porosity and surface area not only stabilizes the NPs but also greatly facilitates the accessibility and adsorption of substrates to the active sites. With the synergistic effect arising from the NRGO and Co NPs, the NRGO@Co hybrid catalyst exhibits enhanced catalytic activity for activation of peroxymonosulfate (PMS) to degrade organic pollutants in water. Furthermore, taking advantage of the favorable magnetic properties, the catalyst can be easily recycled and reused for at least 4 runs with negligible loss of activity. Coupled with systematic investigation in terms of influential factors, mineralization, and radicals identification, make the catalyst hold significant potential for application in remediation of organic pollutants in water.

  15. Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices.

    PubMed

    Feng, Yiping; Song, Qingyun; Lv, Wenying; Liu, Guoguang

    2017-12-01

    Ketoprofen (KET) is a mostly used nonsteroidal anti-inflammatory drug that has been frequently detected in wastewater effluents and surface waters. In this study, we investigated the degradation of KET by sulfate radical (SO 4 - ) based advanced oxidation processes (SR-AOPs) in aqueous solution. The degradation kinetics, mechanisms, and effects of natural water matrices on thermally activated persulfate (TAP) oxidation of KET were systematically investigated. Increasing the temperature and persulfate (PS) concentrations greatly enhanced the degradation of KET. KET degradation is pH-dependent with an optimum pH of 5.0. Reactions in the presence of radical quenchers revealed the dominant role of SO 4 - in oxidizing KET. Water matrix significantly influenced the degradation of KET. The common inorganic anions present in natural waters exhibited inhibitory effect on KET degradation, and the inhibition followed the order of Cl -  > CO 3 2-  > HCO 3 -  > NO 3 - ; however, no significant inhibition of KET degradation was observed in the presence of Ca 2+ and Mg 2+ cations. The presence of natural organic matter (NOM) suppressed KET degradation, and the suppression increased as NOM concentration increase. Products identification and mineralization experiments revealed that KET and its degradation intermediates were finally transformed into CO 2 and H 2 O. The results of this study indicated that applying SR-AOPs for the remediation of KET contaminated water matrix is technically possible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Advanced oxidation of iodinated X-ray contrast media in reverse osmosis brines: the influence of quenching.

    PubMed

    Azerrad, Sara P; Gur-Reznik, Shirra; Heller-Grossman, Lilly; Dosoretz, Carlos G

    2014-10-01

    Among the main restrictions for the implementation of advanced oxidation processes (AOPs) for removal of micropollutants present in reverse osmosis (RO) brines of secondary effluents account the quenching performed by background organic and inorganic constituents. Natural organic matter (NOM) and soluble microbial products (SMP) are the main effluent organic matter constituents. The inorganic fraction is largely constituted by chlorides and bicarbonate alkalinity with sodium and calcium as main counterions. The quenching influence of these components, separately and their mixture, in the transformation of model compounds by UVA/TiO2 was studied applying synthetic brines solutions mimicking 2-fold concentrated RO secondary effluents brines. The results were validated using fresh RO brines. Diatrizoate (DTZ) and iopromide (IOPr) were used as model compound. They have been found to exhibit relative high resistance to oxidation process and therefore represent good markers for AOPs techniques. Under the conditions applied, oxidization of DTZ in the background of RO brines was strongly affected by quenching effects. The major contribution to quenching resulted from organic matter (≈70%) followed by bicarbonate alkalinity (≈30%). NOM displayed higher quenching than SMP in spite of its relative lower concentration. Multivalent cations, i.e., Ca(+2), were found to decrease effectiveness of the technique due to agglomeration of the catalyst. However this influence was lowered in presence of NOM. Different patterns of transformation were found for each model compound in which a delayed deiodination was observed for iopromide whereas diatrizoate oxidation paralleled deiodination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Simultaneous removal of NO and SO2 from flue gas by combined heat and Fe2+ activated aqueous persulfate solutions.

    PubMed

    Adewuyi, Yusuf G; Sakyi, Nana Y; Arif Khan, M

    2018-02-01

    The use of advanced oxidation processes (AOPs) to integrate flue gas treatments for SO 2 , NO x and Hg 0 into a single process unit is rapidly gaining research attention. AOPs are processes that rely on the generation of mainly the hydroxyl radical. This work evaluates the effectiveness of the simultaneous removal of NO and SO 2 from flue gas utilizing AOP induced by the combined heat and Fe 2+ activation of aqueous persulfate, and elucidates the reaction pathways. The results indicated that both SO 2 in the flue gas and Fe 2+ in solution improved NO removal, while the SO 2 is almost completely removed. Increased temperature led to increase in NO removal in the absence and presence of both Fe 2+ and SO 2 , and in the absence of either SO 2 or Fe 2+ , but the enhanced NO removal due to the presence of SO 2 alone dominated at all temperatures. The removal of NO increased from 77.5% at 30 °C to 80.5% and 82.3% at 50 °C and 70 °C in the presence of SO 2 alone, and from 35.3% to 62.7% and 81.2%, respectively, in the presence of Fe 2+ alone. However, in the presence of both SO 2 and Fe 2+ , NO conversion is 46.2% at 30 °C, increased only slightly to 48.2% at 50 °C; but sharply increased to 78.7% at 70 °C compared to 63.9% for persulfate-only activation. Results suggest NO removal in the presence of SO 2 is equally effective by heat-only or heat-Fe 2+ activation as the temperature increases. The results should be useful for future developments of advanced oxidation processes for flue gas treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatment: A laboratory batch study.

    PubMed

    Wang, Feifei; van Halem, Doris; Liu, Gang; Lekkerkerker-Teunissen, Karin; van der Hoek, Jan Peter

    2017-10-01

    H 2 O 2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H 2 O 2 residuals influence sand systems with an emphasis on dissolved organic carbon (DOC) removal, microbial activity change and bacterial community evolution. The results from laboratory batch studies showed that 0.25 mg/L H 2 O 2 lowered DOC removal by 10% while higher H 2 O 2 concentrations at 3 and 5 mg/L promoted DOC removal by 8% and 28%. A H 2 O 2 dosage of 0.25 mg/L did not impact microbial activity (as measured by ATP) while high H 2 O 2 dosages, 1, 3 and 5 mg/L, resulted in reduced microbial activity of 23%, 37% and 37% respectively. Therefore, DOC removal was promoted by the increase of H 2 O 2 dosage while microbial activity was reduced. The pyrosequencing results illustrated that bacterial communities were dominated by Proteobacteria. The presence of H 2 O 2 showed clear influence on the diversity and composition of bacterial communities, which became more diverse under 0.25 mg/L H 2 O 2 but conversely less diverse when the dosage increased to 5 mg/L H 2 O 2 . Anaerobic bacteria were found to be most sensitive to H 2 O 2 as their growth in batch reactors was limited by both 0.25 and 5 mg/L H 2 O 2 (17-88% reduction). In conclusion, special attention should be given to effects of AOPs residuals on microbial ecology before introducing AOPs as a pre-treatment to biological (sand) processes. Additionally, the guideline on the maximum allowable H 2 O 2 concentration should be properly evaluated. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  20. Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.12

    DTIC Science & Technology

    2015-09-03

    the Geostationary Ocean Color Imager (GOCI) sensor, aboard the Communication Ocean and Meteorological Satellite (COMS) satellite. Additionally, this...this capability works in conjunction with AOPS • Improvements to the AOPS mosaicking capability • Prepare the NRT Geostationary Ocean Color Imager...Warfare (EXW) Geostationary Ocean Color Imager (GOCI) Gulf of Mexico (GOM) Hierarchical Data Format (HDF) Integrated Data Processing System (IDPS

  1. Accelerating Adverse Outcome Pathway (AOP) development ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. However, the conventional process for assembly of these AOPs is time and resource intensive, and has been a rate limiting step for AOP use and development. Therefore computational approaches to accelerate the process need to be developed. We previously developed a method for generating computationally predicted AOPs (cpAOPs) by association mining and integration of data from publicly available databases. In this work, a cpAOP network of ~21,000 associations was established between 105 phenotypes from TG-GATEs rat liver data from different time points (including microarray, pathological effects and clinical chemistry data), 994 REACTOME pathways, 688 High-throughput assays from ToxCast and 194 chemicals. A second network of 128,536 associations was generated by connecting 255 biological target genes from ToxCast to 4,980 diseases from CTD using either HT screening activity from ToxCast for 286 chemicals or CTD gene expression changes in response to 2,330 chemicals. Both networks were separately evaluated through manual extraction of disease-specific cpAOPs and comparison with expert curation of the relevant literature. By employing data integration strategies that involve the weighting of n

  2. Dynamics of Chemical Degradation in Water Using Photocatalytic Reactions in an Ultraviolet Light Emitting Diode Reactor

    DTIC Science & Technology

    2017-09-14

    one such study, AOPs were investigated for the removal of organophosphorus pesticides in wastewater by selecting and optimizing oxidation processes...micropollutants (primarily pharmaceuticals, personal care products, and pesticides ) in four 64 different river water sources (Colorado River, Passaic...the National Institutes of Health PubChem data repository (National Institutes of Health 2016). Additional chemical properties were also selected for

  3. The Use of Ultra-Violet (UV) Light Emitting Diodes (LEDS) in an Advanced Oxidation Process (AOP) with Brilliant Blue FCF as an Indicator

    DTIC Science & Technology

    2015-03-26

    by low, direct current voltage, which are consistent with portable power sources such as batteries or photovoltaic cells (Crystal IS 2013...of Methylene Blue Adsorption on Power Output .................23 vii UV LED Quartz Lens Adsorption Experiment...29 Effect of Methylene Blue Adsorption on Power Output ............................................29 Figure 5 - Percent reduction of

  4. Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.

    PubMed

    Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie

    2016-03-01

    Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality.

  5. Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes.

    PubMed

    Serna-Galvis, Efraim A; Silva-Agredo, Javier; Giraldo, Ana L; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2016-01-15

    Synthetic pharmaceutical effluents loaded with the β-lactam antibiotic oxacillin were treated using advanced oxidation processes (the photo-Fenton system and TiO2 photocatalysis) and chloride mediated electrochemical oxidation (with Ti/IrO2 anodes). Combinations of the antibiotic with excipients (mannitol or tartaric acid), an active ingredient (calcium carbonate, i.e. bicarbonate ions due to the pH) and a cleaning agent (sodium lauryl ether sulfate) were considered. Additionally, urban wastewater that had undergone biological treatment was doped with oxacillin and treated with the tested systems. The evolution of antimicrobial activity was monitored as a parameter of processes efficiency. Although the two advanced oxidation processes (AOPs) differ only in the way they produce OH, marked differences were observed between them. There were also differences between the AOPs and the electrochemical system. Interestingly, each additive had a different effect on each treatment. For water loaded with mannitol, electrochemical treatment was the most suitable option because the additive did not significantly affect the efficiency of the system. Due to the formation of a complex with Fe(3+), tartaric acid accelerated the elimination of antibiotic activity during the photo-Fenton process. For TiO2 photocatalysis, the presence of bicarbonate ions contributed to antibiotic activity elimination through the possible formation of carbonate and bicarbonate radicals. Sodium lauryl ether sulfate negatively affected all of the processes. However, due to the higher selectivity of HOCl compared with OH, electrochemical oxidation showed the least inhibited efficiency. For the urban wastewater doped with oxacillin, TiO2 photocatalysis was the most efficient process. These results will help select the most suitable technology for the treatment of water polluted with β-lactam antibiotics. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A comparative study of different tests for biodegradability enhancement determination during AOP treatment of recalcitrant toxic aqueous solutions.

    PubMed

    Ballesteros Martín, M M; Casas López, J L; Oller, I; Malato, S; Sánchez Pérez, J A

    2010-09-01

    Four biodegradability tests (Pseudomonas putida bioassay, Zahn-Wellens test, BOD5/COD ratio and respirometry assay) have been used to determine the biodegradability enhancement during the treatment of wastewater containing 200 mg L(-1) of dissolved organic carbon (DOC) of a five commercial pesticides mixture (Vydate, Metomur, Couraze, Ditumur and Scala) by an advanced oxidation process (AOP). A comparative study was carried out taking into account repeatability and precision of each biodegradability test. Solar photo-Fenton was the AOP selected for pesticide degradation up to three levels of mineralization: 20%, 40% and 60% of initial DOC. Intra- and interday precisions were evaluated conducting each biodegradability test by triplicate and they were applied three times on different dates over a period of three months. Fisher's least significant difference method was applied to the means, P. putida and Zahn-Wellens tests giving higher repeatability and precision. The P. putida test requires a shorter time to obtain reliable results using a standardized inoculum and constitutes a worthwhile alternative to estimate biodegradability in contrast to other less accurate or more time consuming methods. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. The use of artificial neural network (ANN) for the prediction and simulation of oil degradation in wastewater by AOP.

    PubMed

    Mustafa, Yasmen A; Jaid, Ghydaa M; Alwared, Abeer I; Ebrahim, Mothana

    2014-06-01

    The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe(+2)) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe(+2), pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2 = 400 mg/L, Fe(+2) = 40 mg/L, pH = 3, irradiation time = 150 min, and temperature = 30 °C) for 1,000 mg/L oil load was found to be 72%. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R (2) = 0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe(+2), pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6%.

  8. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes - A review.

    PubMed

    Mirzaei, Amir; Chen, Zhi; Haghighat, Fariborz; Yerushalmi, Laleh

    2017-05-01

    The presence of emerging contaminants such as pharmaceuticals in natural waters has raised increasing concern due to their frequent appearance and persistence in the aquatic ecosystem and the threat to health and safety of aquatic life, even at trace concentrations. Conventional water treatment processes are known to be generally inadequate for the elimination of these persistent contaminants. Therefore, the use of advanced oxidation processes (AOPs) which are able to efficiently oxidize organic pollutants has attracted a great amount of attention. The main limitation of AOPs lies in their high operating costs associated with the consumption of energy and chemicals. Fenton-based processes, which utilize nontoxic and common reagents and potentially can exploit solar energy, will considerably reduce the removal cost of recalcitrant contaminants. The disadvantages of homogeneous Fenton processes, such as the generation of high amounts of iron-containing sludge and limited operational range of pH, have prompted much attention to the use of heterogeneous Fenton processes. In this review, the impacts of some controlling parameters including the H 2 O 2 and catalyst dosage, solution pH, initial contaminants concentrations, temperature, type of catalyst, intensity of irradiation, reaction time and feeding mode on the removal efficiencies of hetero/homogeneous Fenton processes are discussed. In addition, the combination of Fenton-type processes with biological systems as the pre/post treatment stages in pilot-scale operations is considered. The reported experimental results obtained by using Fenton and photo-Fenton processes for the elimination of pharmaceutical contaminants are also compiled and evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism.

    PubMed

    Liu, Yiqing; He, Xuexiang; Duan, Xiaodi; Fu, Yongsheng; Fatta-Kassinos, Despo; Dionysiou, Dionysios D

    2016-05-15

    Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Kinetics and mechanisms of cylindrospermopsin destruction by sulfate radical-based advanced oxidation processes.

    PubMed

    He, Xuexiang; de la Cruz, Armah A; O'Shea, Kevin E; Dionysiou, Dionysios D

    2014-10-15

    Cylindrospermopsin (CYN) is a potent cyanobacterial toxin frequently found in water bodies worldwide raising concerns over the safety of drinking and recreational waters. A number of technologies have been investigated to remove and/or degrade cyanotoxins with advanced oxidation processes (AOPs) being among the most promising and effective for water detoxification. In this study, the degradation of CYN by sulfate radical-based UV-254 nm-AOPs was evaluated. The UV/S2O8(2-) (UV/peroxydisulfate) was more efficient than UV/HSO5(-) (UV/peroxysulfate) and UV/H2O2 (UV/hydrogen peroxide) processes when natural water samples were used as reaction matrices. The observed UV fluence based pseudo-first-order rate constants followed the expected order of radical quantum yields. The presence of 200 μM natural organic matter (NOM) as carbon slightly inhibited the destruction of CYN; 1.24 mg L(-1)NO3(-) (nitrate) had no significant influence on the removal efficiency and 50 μg L(-1) Fe(2+) [iron (2+)] or Cu(2+) [copper (2+)] improved the performance of UV/S2O8(2-). The addition of tert-butyl alcohol (t-BuOH; hydroxyl radical scavenger) in the reaction yielded byproducts that indicated specific sites in CYN preferentially attacked by sulfate radicals (SRs). The predominant CYN degradation byproduct was P448 consistent with fragmentation of the C5C6 bond of the uracil ring. The subsequent formation of P420 and P392 through a stepwise loss of carbonyl group(s) further supported the fragmentation pathway at C5C6. The byproduct P432 was identified exclusively as mono-hydroxylation of CYN at tricyclic guanidine ring, whereas P414 was detected as dehydrogenation at the tricyclic ring. The elimination of sulfate group and the opening of tricyclic ring were also observed. The possible degradation pathways of CYN by SR-AOP were presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone.

    PubMed

    Ibáñez, M; Gracia-Lor, E; Bijlsma, L; Morales, E; Pastor, L; Hernández, F

    2013-09-15

    Advanced oxidation processes (AOP) based on ozone treatments, assisted by ultrasounds, have been investigated at a pilot-plant scale in order to evaluate the removal of emerging contaminants in sewage water. Around 60 emerging contaminants, mainly pharmaceuticals from different therapeutically classes and drugs of abuse, have been determined in urban wastewater samples (treated and untreated) by LC-MS/MS. In a first step, the removal efficiency of these contaminants in conventional sewage water treatment plants was evaluated. Our results indicate that most of the compounds were totally or partially removed during the treatment process of influent wastewater. Up to 30 contaminants were quantified in the influent and effluent samples analysed, being antibiotics, anti-inflammatories, cholesterol lowering statin drugs and angiotensin II receptor antagonists the most frequently detected. Regarding drugs of abuse, cocaine and its metabolite benzoylecgonine were the most frequent. In a second step, the effectiveness of AOP in the removal of emerging contaminants remaining in the effluent was evaluated. Ozone treatments have been proven to be highly efficient in the removal, notably decreasing the concentrations for most of the emerging contaminants present in the water samples. The use of ultrasounds, alone or assisting ozone treatments, has been shown less effective, being practically unnecessary. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Effects of irradiation intensity and pH on nutrients release and solids destruction of waste activated sludge using the microwave-enhanced advanced oxidation process.

    PubMed

    Chan, W I; Liao, P H; Lo, K V

    2010-11-01

    Using the microwave-enhanced advanced oxidation process (MW/H2O2-AOP), the pH and irradiation intensity on waste activated sludge samples were investigated to provide insight to the athermal effects on nutrients release, solids destruction, particle size distribution and dewaterability, and to demonstrate their interrelationships. Carbonaceous matters and nutrients released into solution depended on the irradiation intensity and time. Higher irradiation levels tended to be more effective in the solubilization of nutrients and had more pronounced effects in the dewaterability of sludge. In terms of particle size distribution, detectable particles increased in size for treatments in acidic conditions, while the dewaterability of treated sludge was improved. In treatments under neutral and alkaline conditions, the particle size range increased, with more small particles formed, thereby significantly deteriorating the dewaterability of sludge treated in alkaline conditions. The best results for the solubilization of nutrients were in alkaline conditions with high irradiation power, but dewaterability of the sludge was compromised. Sludge treatment with the MW/H2O2-AOP in acidic conditions with high irradiation power yielded the best dewaterable sludge and significant nutrient solubilization; therefore, it is the recommended treatment condition for activated sludge.

  13. Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: Effects of pH, chemical nature of additives and pollutant concentration.

    PubMed

    Villegas-Guzman, Paola; Silva-Agredo, Javier; Florez, Oscar; Giraldo-Aguirre, Ana L; Pulgarin, Cesar; Torres-Palma, Ricardo A

    2017-04-01

    To provide new insights toward the selection of the most suitable AOP for isoxazolyl penicillins elimination, the degradation of dicloxacillin, a isoxazolyl penicillin model, was studied using different advanced oxidation processes (AOPs): ultrasound (US), photo-Fenton (UV/H 2 O 2 /Fe 2+ ) and TiO 2 photocatalysis (UV/TiO 2 ). Although all processes achieved total removal of the antibiotic and antimicrobial activity, and increased the biodegradability level of the solutions, significant differences concerning the mineralization extend, the pH of the solution, the pollutant concentration and the chemical nature of additives were found. UV/TiO 2 reached almost complete mineralization; while ∼10% mineralization was obtained for UV/H 2 O 2 /Fe 2+ and practically zero for US. Effect of initial pH, mineral natural water and the presence of organic (glucose, 2-propanol and oxalic acid) were then investigated. UV/H 2 O 2 /Fe 2+ and US processes were improved in acidic media, while natural pH favored UV/TiO 2 system. According to both the nature of the added organic compound and the process, inhibition, no effect or enhancement of the degradation rate was observed. The degradation in natural mineral water showed contrasting results according to the antibiotic concentration: US process was enhanced at low concentration of dicloxacillin followed by detrimental effects at high substrate concentrations. A contrary effect was observed during photo-Fenton, while UV/TiO 2 was inhibited in all of cases. Finally, a schema illustrating the enhancement or inhibiting effects of water matrix is proposed as a tool for selecting the best process for isoxazolyl penicillins degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Microwave treatment of dairy manure for resource recovery: Reaction kinetics and energy analysis.

    PubMed

    Srinivasan, Asha; Liao, Ping H; Lo, Kwang V

    2016-12-01

    A newly designed continuous-flow 915 MHz microwave wastewater treatment system was used to demonstrate the effectiveness of the microwave enhanced advanced oxidation process (MW/H 2 O 2 -AOP) for treating dairy manure. After the treatment, about 84% of total phosphorus and 45% of total chemical oxygen demand were solubilized with the highest H 2 O 2 dosage (0.4% H 2 O 2 per %TS). The reaction kinetics of soluble chemical oxygen demand revealed activation energy to be in the range of 5-22 kJ mole -1 . The energy required by the processes was approximately 0.16 kWh per liter of dairy manure heated. A higher H 2 O 2 dosage used in the system had a better process performance in terms of solids solubilization, reaction kinetics, and energy consumption. Cost-benefit analysis for a farm-scale MW/H 2 O 2 -AOP treatment system was also presented. The results obtained from this study would provide the basic knowledge for designing an effective farm-scale dairy manure treatment system.

  15. The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: A theoretical study.

    PubMed

    Zhang, Rui; Wang, Xiaoxiang; Zhou, Lei; Liu, Zhu; Crump, Doug

    2018-05-15

    Sulfate radical (SO 4 .- )-induced oxidation is an important technology in advanced oxidation processes (AOPs) for the removal of pollutants. To date, few studies have assessed the effects of dissolved oxygen (DO) on the SO 4 .- -induced oxidation of organic micro-pollutants. In the present work, a quantum chemical calculation was used to investigate the influence of the external oxygen molecule on the Gibbs free energy (G pollutant ) and HOMO-LUMO gap (ΔE) of 15 organic micro-pollutants representing four chemical categories. Several thermodynamic and statistical models were combined with the data from the quantum chemical calculation to illustrate the impact of DO on the oxidation of organic micro-pollutants by SO 4 .- . Results indicated that the external oxygen molecule increased G pollutant of all studied chemicals, which implies DO has the potential to decrease the energy barrier of the SO 4 .- -induced oxidation and shift the chemical equilibrium of the reaction towards the side of products. From the perspective of kinetics, DO can accelerate the oxidation by decreasing ΔE of organic micro-pollutants. In addition, changes of G pollutant and ΔE of the SO 4 .- -induced oxidation were both significantly different between open-chain and aromatic chemicals, and these differences were partially attributed to the difference of polarizability of these two types of chemicals. Furthermore, we revealed that all changes of G pollutant and ΔE induced by DO were dependent on the DO content. Our study emphasizes the significance of DO on the oxidation of organic micro-pollutants by SO 4 .- , and also provides a theoretical method to study the effect of components in wastewater on removal of organic pollutants in AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. UV Photolysis of Chloramine and Persulfate for 1,4-Dioxane Removal in Reverse-Osmosis Permeate for Potable Water Reuse.

    PubMed

    Li, Wei; Patton, Samuel; Gleason, Jamie M; Mezyk, Stephen P; Ishida, Kenneth P; Liu, Haizhou

    2018-06-05

    A sequential combination of membrane treatment and UV-based advanced oxidation processes (UV/AOP) has become the industry standard for potable water reuse. Chloramines are used as membrane antifouling agents and therefore carried over into the UV/AOP. In addition, persulfate (S 2 O 8 2- ) is an emerging oxidant that can be added into a UV/AOP, thus creating radicals generated from both chloramines and persulfate for water treatment. This study investigated the simultaneous photolysis of S 2 O 8 2- and monochloramine (NH 2 Cl) on the removal of 1,4-dioxane (1,4-D) for potable-water reuse. The dual oxidant effects of NH 2 Cl and S 2 O 8 2- on 1,4-D degradation were examined at various levels of oxidant dosage, chloride, and solution pH. Results showed that a NH 2 Cl-to-S 2 O 8 2- molar ratio of 0.1 was optimal, beyond which the scavenging by NH 2 Cl of HO • , SO 4 •- , and Cl 2 •- radicals decreased the 1,4-D degradation rate. At the optimal ratio, the degradation rate of 1,4-D increased linearly with the total oxidant dose up to 6 mM. The combined photolysis of NH 2 Cl and S 2 O 8 2- was sensitive to the solution pH due to a disproportionation of NH 2 Cl at pH lower than 6 into less-photoreactive dichloramine (NHCl 2 ) and radical scavenging by NH 4 + . The presence of chloride transformed HO • and SO 4 •- to Cl 2 •- that is less-reactive with 1,4-D, while the presence of dissolved O 2 promoted gaseous nitrogen production. Results from this study suggest that the presence of chloramines can be beneficial to persulfate photolysis in the removal of 1,4-D; however, the treatment efficiency depends on a careful control of an optimal NH 2 Cl dosage and a minimal chloride residue.

  17. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2014-06-30

    Iron-catalyzed hydrogen peroxide decomposition for in situ generation of hydroxyl radicals (HO(•)) has been extensively developed as advanced oxidation processes (AOPs) for environmental applications. A variety of catalytic iron species constituting metal salts (in Fe(2+) or Fe(3+) form), metal oxides (e.g., Fe2O3, Fe3O4), and zero-valent metal (Fe(0)) have been exploited for chemical (classical Fenton), photochemical (photo-Fenton) and electrochemical (electro-Fenton) degradation pathways. However, the requirement of strict acidic conditions to prevent iron precipitation still remains the bottleneck for iron-based AOPs. In this article, we present a thorough review of alternative non-iron Fenton catalysts and their reactivity towards hydrogen peroxide activation. Elements with multiple redox states (like chromium, cerium, copper, cobalt, manganese and ruthenium) all directly decompose H2O2 into HO(•) through conventional Fenton-like pathways. The in situ formation of H2O2 and decomposition into HO(•) can be also achieved using electron transfer mechanism in zero-valent aluminum/O2 system. Although these Fenton systems (except aluminum) work efficiently even at neutral pH, the H2O2 activation mechanism is very specific to the nature of the catalyst and critically depends on its composition. This review describes in detail the complex mechanisms and emphasizes on practical limitations influencing their environmental applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Advanced oxidative processes and membrane separation for micropollutant removal from biotreated domestic wastewater.

    PubMed

    Silva, Larissa L S; Sales, Julio C S; Campos, Juacyara C; Bila, Daniele M; Fonseca, Fabiana V

    2017-03-01

    The presence of micropollutants in sewage is already widely known, as well as the effects caused by natural and synthetic hormones. Thus, it is necessary to apply treatments to remove them from water systems, such as advanced oxidation processes (AOPs) and membrane separation processes, which can oxidize and remove high concentrations of organic compounds. This work investigated the removal of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and estriol (E3) from biotreated sewage. Reverse osmosis processes were conducted at three recoveries (50, 60, and 70 %). For E2 and EE2, the removals were affected by the recovery. The best results for RO were as follows: the E2 compound removal was 89 % for 60 % recovery and the EE2 compound removal was 57 % for 50 % recovery. The RO recovery did not impact the E3 removal. It was concluded that the interaction between the evaluated estrogens, and the membrane was the major factor for the hormone separation. The AOP treatment using H 2 O 2 /UV was carried out in two sampling campaigns. First, we evaluated the variation of UV doses (24.48, 73.44, 122.4, and 244.8 kJ m -2 ) with 18.8 mg L -1 of H 2 O 2 in the reaction. EE2 showed considerable removals (around 70 %). In order to optimize the results, an experimental design was applied. The best result was obtained with higher UV dose (122.4 kJ m -2 ) and lower H 2 O 2 concentration (4 mg L -1 ), achieving removal of 91 % for E3 and 100 % for E2 and EE2.

  19. A pilot scale comparison of advanced oxidation processes for estrogenic hormone removal from municipal wastewater effluent.

    PubMed

    Pešoutová, Radka; Stříteský, Luboš; Hlavínek, Petr

    2014-01-01

    This study investigates the oxidation of selected endocrine disrupting compounds (estrone, 17β-estradiol, estriol and 17α-ethinylestradiol) during ozonation and advanced oxidation of biologically treated municipal wastewater effluents in a pilot scale. Selected estrogenic substances were spiked in the treated wastewater at levels ranging from 1.65 to 3.59 μg · L(-1). All estrogens were removed by ozonation by more than 99% at ozone doses ≥1.8 mg · L(-1). At a dose of 4.4 · mg L(-1) ozonation reduced concentrations of estrone, 17β-estradiol, estriol and 17α-ethinylestradiol by 99.8, 99.7, 99.9 and 99.7%, respectively. All tested advanced oxidation processes (AOPs) achieved high removal rates but they were slightly lower compared to ozonation. The lower removal rates for all tested advanced oxidation processes are caused by the presence of naturally occurring hydroxyl radical scavengers - carbonates and bicarbonates.

  20. Microwave enhanced oxidation treatment of organic fertilizers.

    PubMed

    More, Abhilasha; Srinivasan, Asha; Liao, Ping Huang; Lo, Kwang Victor

    2017-08-01

    Liquid organic fertilizers (LOFs) are relatively easier to degrade than those of solid organic fertilizers, and the nutrients are readily available for plant uptake. Microwave enhanced advanced oxidation treatment (MW/H 2 O 2 -AOP) was used to convert solid organic fertilizers (insoluble blood meal, bone meal, feather meal, sunflower ash and a mixture) into LOF. After the MW/H 2 O 2 -AOP treatment, high soluble nitrogen (11-29%), soluble phosphorus (64%) and potassium (92%), as well as low total suspended solids content could be obtained. The resulting LOF would make the nutrients more bioavailable, and would provide some of them for the plant uptake immediately. Temperature and hydrogen peroxide dosage were found to be significant factors affecting nitrogen release from blood meal and feather meal, while temperature and pH were found to be significant factors for solubilizing phosphorus and potassium from bone meal and ash, respectively. The MW/H 2 O 2 -AOP reduced suspended solids, and released nutrients into solution; therefore, it was an effective treatment method to make LOFs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Linking Adverse Outcome Pathways to Dynamic Energy Budgets: A Conceptual Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Cheryl; Nisbet, Roger; Antczak, Philipp

    Ecological risk assessment quantifies the likelihood of undesirable impacts of stressors, primarily at high levels of biological organization. Data used to inform ecological risk assessments come primarily from tests on individual organisms or from suborganismal studies, indicating a disconnect between primary data and protection goals. We know how to relate individual responses to population dynamics using individual-based models, and there are emerging ideas on how to make connections to ecosystem services. However, there is no established methodology to connect effects seen at higher levels of biological organization with suborganismal dynamics, despite progress made in identifying Adverse Outcome Pathways (AOPs) thatmore » link molecular initiating events to ecologically relevant key events. This chapter is a product of a working group at the National Center for Mathematical and Biological Synthesis (NIMBioS) that assessed the feasibility of using dynamic energy budget (DEB) models of individual organisms as a “pivot” connecting suborganismal processes to higher level ecological processes. AOP models quantify explicit molecular, cellular or organ-level processes, but do not offer a route to linking sub-organismal damage to adverse effects on individual growth, reproduction, and survival, which can be propagated to the population level through individual-based models. DEB models describe these processes, but use abstract variables with undetermined connections to suborganismal biology. We propose linking DEB and quantitative AOP models by interpreting AOP key events as measures of damage-inducing processes in a DEB model. Here, we present a conceptual model for linking AOPs to DEB models and review existing modeling tools available for both AOP and DEB.« less

  2. Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases.

    PubMed

    Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz

    2013-01-01

    The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.

  3. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review.

    PubMed

    Matafonova, Galina; Batoev, Valeriy

    2018-04-01

    Over the last decade, ultraviolet light-emitting diodes (UV LEDs) have attracted considerable attention as alternative mercury-free UV sources for water treatment purposes. This review is a comprehensive analysis of data reported in recent years (mostly, post 2014) on the application of UV LED-induced advanced oxidation processes (AOPs) to degrade organic pollutants, primarily dyes, phenols, pharmaceuticals, insecticides, estrogens and cyanotoxins, in aqueous media. Heterogeneous TiO 2 -based photocatalysis in lab grade water using UVA LEDs is the most frequently applied method for treating organic contaminants. The effects of controlled periodic illumination, different TiO 2 -based nanostructures and reactor types on degradation kinetics and mineralization are discussed. UVB and UVC LEDs have been used for photo-Fenton, photo-Fenton-like and UV/H 2 O 2 treatment of pollutants, primarily, in model aqueous solutions. Notably, UV LED-activated persulfate/peroxymonosulfate processes were capable of providing degradation in DOC-containing waters. Wall-plug efficiency, energy-efficiency of UV LEDs and the energy requirements in terms of Electrical Energy per Order (E EO ) are discussed and compared. Despite the overall high degradation efficiency of the UV LED-based AOPs, practical implementation is still limited and at lab scale. More research on real water matrices at more environmentally relevant concentrations, as well as an estimation of energy requirements providing fluence-based kinetic data are required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Can sample treatments based on advanced oxidation processes assisted by high-intensity focused ultrasound be used for toxic arsenic determination in human urine by flow-injection hydride-generation atomic absorption spectrometry?

    PubMed

    Correia, A; Galesio, M; Santos, H; Rial-Otero, R; Lodeiro, C; Oehmen, A; Conceição, Antonio C L; Capelo, J L

    2007-05-15

    Two advanced oxidation processes (AOPs), based on high-intensity focused ultrasound (HIFU), namely, KMnO(4)/HCl/HIFU and H(2)O(2)/HCl/HIFU are studied and compared for the determination of toxic arsenic in human urine [As(III)+As(V)+MMA+DMA] by flow-injection hydride-generation atomic absorption spectrometry (FI-HG-AAS). The KMnO(4)/HCl/HIFU procedure was found to be adequate for organic matter degradation in human urine. l-cysteine (letra minuscula) was used for As reduction to the trivalent state. The new procedure was assessed with seven urines certified in different As species. Results revealed that with KMnO(4)/HCl/HIFU plus l-cysteine the toxic arsenic can be accurately measured in human urine whilst the H(2)O(2)/HCl/HIFU procedure underestimates toxic As. DMA and MMA degradation in urine were observed, due to the effects of the ultrasonic field. Recoveries for As(III), As(V), MMA and DMA were within the certified ranges. Arsenobetaine was not degraded by the AOPs. The new procedure adheres well to the principles of analytical minimalism: (i) low reagent consumption, (ii) low reagent concentration, (iii) low waste production and (iv) low amount of time required for sample preparation and analysis.

  5. On the kinetics of organic pollutant degradation with Co2+/peroxymonosulfate process: When ammonium meets chloride.

    PubMed

    Huang, Ying; Yang, Fei; Ai, Luoyan; Feng, Min; Wang, Chi; Wang, Zhaohui; Liu, Jianshe

    2017-07-01

    A large amount of chloride and ammonium ions were produced and released from industrial processes with non-biodegradable organic pollutants to affect efficiencies of advanced oxidation processes (AOPs). Here, the influences of chloride and ammonium ions on Co/peroxymonosulfate (Co/PMS) reaction system, a widely used AOPs to produce sulfate radicals, were investigated by examining the degradation efficiency of an azo dye (Acid Orange 7, AO7). The experimental results showed that a significant decrease in the degradation rate of AO7 was observed in the presence of NH 4 + , while a dual effect of chloride on AO7 bleaching appeared. The presence of NH 4 Cl was unfavorable for AO7 degradation at low concentration (<20 mM), whereas further addition of NH 4 Cl (>20 mM) apparently accelerated AO7 discoloration rate. The apparent effects of the two co-existing inorganic ions were determined by roles of the dominating ions at varied molar ratio of [NH 4 + ]/[Cl - ]. The present study may have technical implications for the treatment of industrial wastewater containing diverse ions in practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Structure-reactivity relationship of naphthenic acids in the photocatalytic degradation process.

    PubMed

    de Oliveira Livera, Diogo; Leshuk, Tim; Peru, Kerry M; Headley, John V; Gu, Frank

    2018-06-01

    Bitumen extraction in Canada's oil sands generates oil sands process-affected water (OSPW) as a toxic by-product. Naphthenic acids (NAs) contribute to the water's toxicity, and treatment methods may need to be implemented to enable safe discharge. Heterogeneous photocatalysis is a promising advanced oxidation process (AOP) for OSPW remediation, however, its successful implementation requires understanding of the complicated relationship between structure and reactivity of NAs. This work aimed to study the effect of various structural properties of model compounds on the photocatalytic degradation kinetics via high resolution mass spectrometry (HRMS), including diamondoid structures, heteroatomic species, and degree of unsaturation. The rate of photocatalytic treatment increased significantly with greater structural complexity, namely with carbon number, aromaticity and degree of cyclicity, properties that render particular NAs recalcitrant to biodegradation. It is hypothesized that a superoxide radical-mediated pathway explains these observations and offers additional benefits over traditional hydroxyl radical-based AOPs. Detailed structure-reactivity investigations of NAs in photocatalysis have not previously been undertaken, and the results described herein illustrate the potential benefit of combining photocatalysis and biodegradation as a complete OSPW remediation technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.10

    DTIC Science & Technology

    2015-08-25

    Geostationary Ocean Color Imager (GOCI) sensors. AOPS enables exploitation of multiple space-borne ocean color satellite sensors to provide optical...package as well as from the Geostationary Ocean Color Imager (GOCI) sensor aboard the Communication Ocean and Meteorological Satellite (COMS) satellite... GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission and provided to NRL courtesy of Mike Ondrusek and Zhongping Lee. AOP and IOP data were

  8. Integrative data mining of high-throughput in vitro screens, in vivo data, and disease information to identify Adverse Outcome Pathway (AOP) signatures:ToxCast high-throughput screening data and Comparative Toxicogenomics Database (CTD) as a case study.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework provides a systematic way to describe linkages between molecular and cellular processes and organism or population level effects. The current AOP assembly methods however, are inefficient. Our goal is to generate computationally-pr...

  9. Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes.

    PubMed

    Marcinowski, Piotr P; Bogacki, Jan P; Naumczyk, Jeremi H

    2014-01-01

    Advanced Oxidation Processes (AOPs), such as the Fenton, photo-Fenton and H2O2/UV processes, have been investigated for the treatment of cosmetic wastewaters that were previously coagulated by FeCl3. The Photo-Fenton process at pH 3.0 with 1000/100 mg L(-1) H2O2/Fe(2+) was the most effective (74.0% Chemical Oxygen Demand (COD) removal). The Fenton process with 1200/500 mg L(-1) H2O2/Fe(2+) achieved a COD removal of 72.0%, and the H2O2/UV process achieved a COD removal of 47.0%. Spreading the H2O2 doses over time to obtain optimal conditions did not improve COD removal. The kinetics of the Fenton and photo-Fenton processes may be described by the following equation: d[COD]/dt = -a[COD] t(m) (t represents time and a and m are constants). The rate of COD removal by the H2O2/UV process may be described by a second-order reaction equation. Head Space, Solid-Phase MicroExtraction, Gas Chromatography and Mass Spectrometry (HS-SPME-GC-MS) were used to identify 48 substances in precoagulated wastewater. Among these substances, 26 were fragrances. Under optimal AOP conditions, over 99% of the identified substances were removed in 120 min.

  10. Adverse Outcome Pathways – Organizing Toxicological ...

    EPA Pesticide Factsheets

    The number of chemicals for which environmental regulatory decisions are required far exceeds the current capacity for toxicity testing. High throughput screening (HTS) commonly used for drug discovery has the potential to increase this capacity. The adverse outcome pathway (AOP) concept has emerged as a natural framework for connecting high throughput toxicity testing (HTT) results to potential impacts on humans and wildlife populations. An AOP consists of two main components that describe the biological mechanisms driving toxicity. Key events represent biological processes essential for causing the adverse outcome that are also measurable experimentally. Key event relationships capture the biological processes connecting the key events. Evidence documented for each KER based on measurements of the KEs can provide the confidence needed for extrapolating HTT from early key events to overt toxicity represented by later key events based on the AOP. The IPCS mode of action (MOA) framework incorporates information required for making a chemical-specific toxicity determination. Given the close relationship between the AOP and MOA frameworks, it is possible to assemble an MOA by incorporating HTT results, chemical properties including absorption, distribution, metabolism, and excretion (ADME), and an AOP describing the biological basis of toxicity thereby streamlining the process. While current applications focus on the assessment of risk for environmental chemicals,

  11. Original Experimental Approach for Assessing Transport Fuel Stability.

    PubMed

    Bacha, Kenza; Ben Amara, Arij; Alves Fortunato, Maira; Wund, Perrine; Veyrat, Benjamin; Hayrault, Pascal; Vannier, Axel; Nardin, Michel; Starck, Laurie

    2016-10-21

    The study of fuel oxidation stability is an important issue for the development of future fuels. Diesel and kerosene fuel systems have undergone several technological changes to fulfill environmental and economic requirements. These developments have resulted in increasingly severe operating conditions whose suitability for conventional and alternative fuels needs to be addressed. For example, fatty acid methyl esters (FAMEs) introduced as biodiesel are more prone to oxidation and may lead to deposit formation. Although several methods exist to evaluate fuel stability (induction period, peroxides, acids, and insolubles), no technique allows one to monitor the real-time oxidation mechanism and to measure the formation of oxidation intermediates that may lead to deposit formation. In this article, we developed an advanced oxidation procedure (AOP) based on two existing reactors. This procedure allows the simulation of different oxidation conditions and the monitoring of the oxidation progress by the means of macroscopic parameters, such as total acid number (TAN) and advanced analytical methods like gas chromatography coupled to mass spectrometry (GC-MS) and Fourier Transform Infrared - Attenuated Total Reflection (FTIR-ATR). We successfully applied AOP to gain an in-depth understanding of the oxidation kinetics of a model molecule (methyl oleate) and commercial diesel and biodiesel fuels. These developments represent a key strategy for fuel quality monitoring during logistics and on-board utilization.

  12. Incorporating biodegradation and advanced oxidation processes in the treatment of spent metalworking fluids.

    PubMed

    MacAdam, Jitka; Ozgencil, Haci; Autin, Olivier; Pidou, Marc; Temple, Clive; Parsons, Simon; Jefferson, Bruce

    2012-12-01

    The treatment of spent metalworking fluids (MWFs) is difficult due to their complex and variable composition. Small businesses often struggle to meet increasingly stringent legislation and rising costs as they need to treat this wastewater on site annually over a short period. Larger businesses that treat their wastewater continuously can benefit from the use of biological processes, although new MWFs designed to resist biological activity represent a challenge. A three-stage treatment is generally applied, with the oil phase being removed first, followed by a reduction in COD loading and then polishing of the effluent's quality in the final stage. The performance of advanced oxidation processes (AOPs), which could be of benefit to both types of businesses was studied. After assessing the biodegradability of spent MFW, different AOPs were used (UV/H2O2, photo-Fenton and UV/TiO2) to establish the treatability of this wastewater by hydroxyl radicals (*OH). The interactions of both the chemical and biological treatments were also investigated. The wastewater was found to be readily biodegradable in the Zahn-Wellens test with 69% COD and 74% DOC removal. The UV/TiO2 reactor was found to be the cheapest option achieving a very good COD removal (82% at 20 min retention time and 10 L min(-1) aeration rate). The photo-Fenton process was found to be efficient in terms of degradation rate, achieving 84% COD removal (1 M Fe2+, 40 M H2O2, 20.7 J cm(-2), pH 3) and also improving the wastewater's biodegradability. The UV/H202 process was the most effective in removing recalcitrant COD in the post-biological treatment stage.

  13. Surface water disinfection by chlorination and advanced oxidation processes: Inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation.

    PubMed

    Miranda, Andreza Costa; Lepretti, Marilena; Rizzo, Luigi; Caputo, Ivana; Vaiano, Vincenzo; Sacco, Olga; Lopes, Wilton Silva; Sannino, Diana

    2016-06-01

    The release of antibiotics into the environment can result in antibiotic resistance (AR) spread, which in turn can seriously affect human health. Antibiotic resistant bacteria have been detected in different aquatic environments used as drinking water source. Water disinfection may be a possible solution to minimize AR spread but conventional processes, such as chlorination, result in the formation of dangerous disinfection by-products. In this study advanced oxidation processes (AOPs), namely H2O2/UV, TiO2/UV and N-TiO2/UV, have been compared with chlorination in the inactivation of an AR Escherichia coli (E. coli) strain in surface water. TiO2 P25 and nitrogen doped TiO2 (N-TiO2), prepared by sol-gel method at two different synthesis temperatures (0 and -20°C), were investigated in heterogeneous photocatalysis experiments. Under the investigated conditions, chlorination (1.0 mg L(-1)) was the faster process (2.5 min) to achieve total inactivation (6 Log). Among AOPs, H2O2/UV resulted in the best inactivation rate: total inactivation (6 Log) was achieved in 45 min treatment. Total inactivation was not observed (4.5 Log), also after 120 min treatment, only for N-doped TiO2 synthesized at 0°C. Moreover, H2O2/UV and chlorination processes were evaluated in terms of cytotoxicity potential by means of 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenylte-trazolium colorimetric test on a human-derived cell line and they similarly affected HepG2 cells viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water.

    PubMed

    Wang, Ding; Bolton, James R; Hofmann, Ron

    2012-10-01

    The effectiveness of ultraviolet (UV) combined with chlorine as a novel advanced oxidation process (AOP) for drinking water treatment was evaluated in a bench scale study by comparing the rate of trichloroethylene (TCE) decay when using UV/chlorine to the rates of decay by UV alone and UV/hydrogen peroxide (H₂O₂) at various pH values. A medium pressure mercury UV lamp was used. The UV/chlorine process was more efficient than the UV/H₂O₂ process at pH 5, but in the neutral and alkaline pH range, the UV/H₂O₂ process became more efficient. The pH effect was probably controlled by the increasing concentration of OCl⁻ at higher pH values. A mechanistic kinetic model of the UV/chlorine treatment of TCE showed good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Hydroxyl radical production by a heterogeneous Fenton reaction supported in insoluble tannin from bark of Pinus radiata.

    PubMed

    Romero, Romina; Contreras, David; Segura, Cristina; Schwederski, Brigitte; Kaim, Wolfgang

    2017-03-01

    Fenton reactions driven by dihydroxybenzenes (DHBs) have been used for pollutant removal via advanced oxidation processes (AOPs), but such systems have the disadvantage of DHB release into the aqueous phase. In this work, insoluble tannins from bark can be used to drive Fenton reactions and as a heterogeneous support. This avoids the release of DHBs into the aqueous phase and can be used for AOPs. The production of ·OH was investigated using a spin-trapping electron paramagnetic resonance technique (5-dimethyl-1-pyrroline-N-oxide/·OH) in the first minute of the reaction and a high-performance liquid chromatography-fluorescence technique (coumarin/7-hydroxycoumarin) for 20 min. The ·OH yield achieved using insoluble tannins from Pinus radiata bark was higher than that achieved using catechin to drive the Fenton reaction. The Fenton-like system driven by insoluble tannins achieved 92.6 ± 0.3 % degradation of atrazine in 30 min. The degradation kinetics of atrazine was linearly correlated with ·OH production. The increased reactivity in ·OH production and insolubility of the ligand are promising for the development of a new technique for degradation of pollutants in wastewater using heterogeneous Fenton systems.

  16. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application ofmore » TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  17. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE PAGES

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    2014-01-01

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application ofmore » TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  18. Rhodamine B in dissolved and nano-bound forms: Indicators for light-based advanced oxidation processes.

    PubMed

    Shabat-Hadas, Efrat; Mamane, Hadas; Gitis, Vitaly

    2017-10-01

    Rhodamine B (RhB) is a water-soluble fluorescent dye that is often used to determine flux and flow direction in biotechnological and environmental applications. In the current research, RhB in soluble (termed free) and virus-bound (termed nano-bound) forms was used as an efficiency indicator for three environmental processes. The degradation of free and nano-bound RhB by (i) direct UV photolysis and (ii) UV/H 2 O 2 advanced oxidation process (AOP) was studied in a collimated beam apparatus equipped with medium-pressure mercury vapor lamp. The degradation by (iii) solar light-induced photocatalysis was studied in a solar simulator with titanium dioxide and bismuth photocatalysts. Results showed negligible RhB degradation by direct UV and solar light, and its nearly linear degradation by UV/H 2 O 2 and photocatalysis/photosensitization in the presence of a solid catalyst. Considerable adsorption of free RhB on bismuth-based catalyst vs. no adsorption of nano-bound RhB on this catalyst or of any form of the dye on titanium dioxide produced two important conclusions. First, the better degradation of free RhB by the bismuth catalyst suggests that close proximity of a catalyst hole and the decomposing molecule significantly influences degradation. Second, the soluble form of the dye might not be the best option for its use as an indicator. Nano-bound RhB showed high potential as an AOP indicator, featuring possible separation from water after the analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation.

    PubMed

    Pérez, J F; Llanos, J; Sáez, C; López, C; Cañizares, P; Rodrigo, M A

    2017-06-15

    Wastewater produced in pharmaceutical manufacturing plants (PMPs), especially the one coming from organic-synthesis facilities, is characterized by its large variability due to the wide range of solvents and chemical reagents used in the different stages of the production of medicines. Normally, the toxicity of the organic compounds prevent the utilization of biological processes and more powerful treatments are needed becoming advanced oxidation processes (AOPs) a valid alternative. In this work, the efficiency in abatement of pollution by Fenton oxidation (FO) and conductive-diamond electro-oxidation (CDEO) are compared in the treatment of 60 real effluents coming from different processes carried out in a pharmaceutical facility, using standardized tests. In 80% of the samples, CDEO was found to be more efficient than FO and in the remaining 20%, coagulation was found to exhibit a great significance in the COD abatement mechanism during FO, pointing out the effectiveness of the oxidation promoted by the electrochemical technology. Mean oxidation state of carbon was found to be a relevant parameter to understand the behavior of the oxidation technologies. It varied inversely proportional to efficiency in FO and it showed practically no influence in the case of CDEO. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Impact of some herbicides on the biomass activity in biological treatment plants and biodegradability enhancement by a photo-Fenton process.

    PubMed

    Benzaquén, T B; Benzzo, M T; Isla, M A; Alfano, O M

    2013-01-01

    In recent years, the use of agrochemicals has increased because they are essential for profitable agricultural production. Herbicides are heavily demanded compounds and among these, the most marketed are 2,4-D, atrazine and acetochlor. They have characteristics that can cause problems to humans and the environment. Therefore, it is necessary to design systems that can reduce these compounds to harmless molecules. This work aims at evaluating the possibility of incorporating these herbicides into degradable effluents in a biological treatment system, without reducing its efficiency. For this purpose, studies of organic matter degradability in the presence of these agrochemicals were performed. A synthetic effluent based on glucose and mineral salts was inoculated with microorganisms. Glucose consumption and biomass concentration were assessed. Subsequently, preliminary studies were performed to test the viability of degradation of the most harmful compound with an advanced oxidation process (AOP). The results showed that the incorporation of these herbicides into degradable effluents in a biological treatment system has a negative impact on microorganisms. Therefore, the application of an AOP, such as the Fenton or photo-Fenton processes, prior to a biological treatment was found to degrade these substances to simpler and less toxic molecules.

  1. Putative adverse outcome pathways relevant to neurotoxicity

    PubMed Central

    Bal-Price, Anna; Crofton, Kevin M.; Sachana, Magdalini; Shafer, Timothy J.; Behl, Mamta; Forsby, Anna; Hargreaves, Alan; Landesmann, Brigitte; Lein, Pamela J.; Louisse, Jochem; Monnet-Tschudi, Florianne; Paini, Alicia; Rolaki, Alexandra; Schrattenholz, André; Suñol, Cristina; van Thriel, Christoph; Whelan, Maurice; Fritsche, Ellen

    2016-01-01

    The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways. PMID:25605028

  2. Proteomics for Adverse Outcome Pathway Discovery using Human Kidney Cells?

    EPA Science Inventory

    An Adverse Outcome Pathway (AOP) is a conceptual framework that applies molecular-based data for use in risk assessment and regulatory decision support. AOP development is based on effects data of chemicals on biological processes (i.e., molecular initiating events, key intermedi...

  3. The 2010 AOP Workshop Summary Report

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.; Morrow, John H.; Brown, James W.; Firestone, Elaine R.

    2011-01-01

    The rationale behind the current workshop, which was hosted by Biospherical Instruments Inc. (BSI), was to update the community and get community input with respect to the following: topics not addressed during the first workshop, specifically the processing of above-water apparent optical property (AOP data) within the Processing of Radiometric Observations of Seawater using Information Technologies (PROSIT) architecture; PROSIT data processing issues that have developed or tasks that have been completed, since the first workshop; and NASA instrumentation developments, both above- and in-water, that are relevant to both workshops and next generation mission planning. The workshop emphasized presentations on new AOP instrumentation, desired and required features for processing above-water measurements of the AOPs of seawater, working group discussions, and a community update for the in-water data processing already present in PROSIT. The six working groups were organized as follows: a) data ingest and data products; b) required and desired features for optically shallow and optically deep waters; c) contamination rejection (clouds), corrections, and data filtering; d) sun photometry and polarimetry; e) instrumentation networks; and f) hyperspectral versus fixed-wavelength sensors. The instrumentation networks working group was intended to provide more detailed information about desired and required features of autonomous sampling systems. Plenary discussions produced a number of recommendations for evolving and documenting PROSIT.

  4. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    NASA Astrophysics Data System (ADS)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research-grade counterparts. Accelerated aging studies indicate that MWCNTs maintain surface reactivity for an extended period during ozonation treatment. Further, *OH generation is essentially unaffected in complex water matrices containing known radical scavengers, and is effective for degradation of the ozone-recalcitrant herbicide atrazine. A proof-of-concept study verified that results from batch systems can be replicated in a flow-through reactor utilizing MWCNTs immobilized on a ceramic membrane support. Collective, results suggest that CNT-enhanced ozonation may provide a viable treatment alternative for emerging organic micropollutants.

  5. International STakeholder NETwork (ISTNET): Creating a ...

    EPA Pesticide Factsheets

    A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test sys-tems and methods on the other hand. Alignment of academically and industrially-driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISNET) in DNT testing. The first meeting of ISTNET was held in Zur-ich on 23-24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems develop-ment according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a roadmap towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and address-ing the transit

  6. Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: application to disinfection and pharmaceutical oxidation.

    PubMed

    Buffle, Marc-Olivier; Schumacher, Jochen; Salhi, Elisabeth; Jekel, Martin; von Gunten, Urs

    2006-05-01

    Due to a lack of adequate experimental techniques, the kinetics of the first 20s of ozone decomposition in natural water and wastewater is still poorly understood. Introducing a continuous quench-flow system (CQFS), measurements starting 350 ms after ozone addition are presented for the first time. Very high HO. to O3 exposures ratios (Rct=integralHO.dt/integralO3dt) reveal that the first 20s of ozonation present oxidation conditions that are similar to ozone-based advanced oxidation processes (AOP). The oxidation of carbamazepine could be accurately modeled using O3 and HO. exposures measured with CQFS during wastewater ozonation. These results demonstrate the applicability of bench scale determined second-order rate constants for wastewater ozonation. Important degrees of pharmaceutical oxidation and microbial inactivation are predicted, indicating that a significant oxidation potential is available during wastewater ozonation, even when ozone is entirely decomposed in the first 20s.

  7. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.

    PubMed

    Zhang, Ying; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Gamal El-Din, Mohamed

    2017-07-01

    Naphthenic acids (NAs) are a highly complex mixture of organic compounds naturally present in bitumen and identified as the primary toxic constituent of oil sands process-affected water (OSPW). This work investigated the degradation of cyclohexanoic acid (CHA), a model NA compound, and natural occurring NAs during the UV photolysis of Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton processes. The results indicated that in the UV-Fe(III)NTA process at pH 8, the CHA removal increased with increasing NTA dose (0.18, 0.36 and 0.72 mM), while it was independent of the Fe(III) dose (0.09, 0.18 and 0.36 mM). Moreover, the three Fe concentrations had no influence on the photolysis of the Fe(III)NTA complex. The main responsible species for the CHA degradation was hydroxyl radical (OH), and the role of dissolved O 2 in the OH generation was found to be negligible. Real OSPW was treated with the UV-Fe(III)NTA and UV-NTA-Fenton advanced oxidation processes (AOPs). The removals of classical NAs (O 2 -NAs), oxidized NAs with one additional oxygen atom (O 3 -NAs) and with two additional oxygen atoms (O 4 -NAs) were 44.5%, 21.3%, and 25.2% in the UV-Fe(III)NTA process, respectively, and 98.4%, 86.0%, and 81.0% in the UV-NTA-Fenton process, respectively. There was no influence of O 2 on the NA removal in these two processes. The results also confirmed the high reactivity of the O 2 -NA species with more carbons and increasing number of rings or double bond equivalents. This work opens a new window for the possible treatment of OSPW at natural pH using these AOPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    PubMed

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of chlorpyrifos and TCP on human kidney cells using toxicity testing and proteomics

    EPA Science Inventory

    An Adverse Outcome Pathway (AOP) is a conceptual framework to apply molecular pathway-based data for use in risk assessment and regulatory decision support. The development of AOPs requires data on the effects of chemicals on biological processes (i.e., molecular initiating event...

  10. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments.

    PubMed

    Cortez, Susana; Teixeira, Pilar; Oliveira, Rosário; Mota, Manuel

    2011-03-01

    Fenton treatment (Fe(2+)/H(2)O(2)) and different ozone-based Advanced Oxidation Processes (AOPs) (O(3), O(3)/OH(-) and O(3)/H(2)O(2)) were evaluated as pre-treatment of a mature landfill leachate, in order to improve the biodegradability of its recalcitrant organic matter for subsequent biological treatment. With a two-fold diluted leachate, at optimised experimental conditions (initial pH 3, H(2)O(2) to Fe(2+) molar ratio of 3, Fe(2+) dosage of 4 mmol L(-1), and reaction time of 40 min) Fenton treatment removed about 46% of chemical oxygen demand (COD) and increased the five-day biochemical oxygen demand (BOD(5)) to COD ratio (BOD(5)/COD) from 0.01 to 0.15. The highest removal efficiency and biodegradability was achieved by ozone at higher pH values, solely or combined with H(2)O(2). These results confirm the enhanced production of hydroxyl radical under such conditions. After the application for 60 min of ozone at 5.6 g O(3)h(-1), initial pH 7, and 400 mg L(-1) of hydrogen peroxide, COD removal efficiency was 72% and BOD(5)/COD increased from 0.01 to 0.24. An estimation of the operating costs of the AOPs processes investigated revealed that Fe(2+)/H(2)O(2) was the most economical system (8.2 € m(-3)g(-1) of COD removed) to treat the landfill leachate. This economic study, however, should be treated with caution since it does not consider the initial investment, prices at plant scale, maintenance and labour costs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. OH-initiated transformation and hydrolysis of aspirin in AOPs system: DFT and experimental studies.

    PubMed

    He, Lin; Sun, Xiaomin; Zhu, Fanping; Ren, Shaojie; Wang, Shuguang

    2017-08-15

    Advanced oxidation processes (AOPs) are widely used in wastewater treatment of pharmaceutical and personal care products (PPCPs). In this work, the OH-initiated transformation as well as the hydrolysis of a typical PPCPs, aspirin, was investigated using density functional theory (DFT) calculations and laboratory experiments. For DFT calculations, the frontier electron densities and bond dissociation energies were analyzed. Profiles of the potential energy surface were constructed, and all the possible pathways were discussed. Additionally, rate constants for each pathway were calculated with transition state theory (TST) method. UV/H 2 O 2 experiments of aspirin were performed and degradation intermediates were identified by UPLC-MS-MS analysis. Different findings from previous experimental works were reported that the H-abstraction pathways at methyl position were dominated and OH-addition pathways on benzene ring were also favored. Meantime, hydroxyl ASA was confirmed as the main stable intermediate. Moreover, it was the first time to use DFT method to investigate the hydrolysis mechanisms of organic ester compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  13. Use of a Pro-Fibrogenic Mechanisms-Based Predictive Toxicological Approach for Tiered Testing and Decision Analysis of Carbonaceous Nanomaterials

    PubMed Central

    Wang, Xiang; Duch, Matthew C.; Mansukhani, Nikhita; Ji, Zhaoxia; Liao, Yu-Pei; Wang, Meiying; Zhang, Haiyuan; Sun, Bingbing; Chang, Chong Hyun; Li, Ruibin; Lin, Sijie; Meng, Huan; Xia, Tian; Hersam, Mark C.; Nel, André E.

    2015-01-01

    Engineered carbonaceous nanomaterials (ECNs), including single-wall carbon nanotubes (SWCNTs), multi-wall carbon nanotubes (MWCNTs), graphene and graphene oxide (GO), are potentially hazardous to the lung. With incremental experience in the use of predictive toxicological approaches, seeking to relate ECN physicochemical properties to adverse outcome pathways (AOPs), it is logical to explore the existence of a common AOP that allows comparative analysis of broad ECN categories. We established an ECN library comprised of three different types of SWCNTs, graphene and graphene oxide (two sizes) for comparative analysis according to a cell-based AOP that also plays a role in the pathogenesis of pulmonary fibrosis. SWCNTs synthesized by Hipco, arc discharge and Co-Mo catalyst (CoMoCAT®) methods were obtained in their as-prepared (AP) state, following which they were further purified (PD) or coated with Pluronic (PF108) or bovine serum albumin (BSA) to improve dispersal and colloidal stability. Graphene oxide (GO) was prepared as two sizes, GO-small (S) and GO-large (L), while the graphene samples were coated with BSA and PF108 to enable dispersion in aqueous solution. In vitro screening showed that AP- and PD-SWCNTs, irrespective of the method of synthesis, as well as graphene (BSA) and GO (S and L) could trigger interleukin 1β (IL-1β) and transforming growth factor (TGF-β1) production in myeloid (THP-1) and epithelial (BEAS-2B) cell lines, respectively. Oropharyngeal aspiration in mice confirmed that AP-Hipco tubes, graphene (BSA), GO-S and GO-L could induce IL-1β and TGF-β1 production in the lung in parallel with lung fibrosis. Notably, GO-L was the most pro-fibrogenic material based on rapid kinetics of pulmonary injury. In contrast, PF108-dispersed SWCNTs and -graphene failed to exert fibrogenic effects. Collectively, these data indicate that the dispersal state and surface reactivity of ECNs play key roles in triggering a pro-fibrogenic AOP, which could prove helpful for hazard ranking and a proposed tiered testing approach for large ECN categories. PMID:25646681

  14. International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes.

    PubMed

    Bal-Price, Anna; Crofton, Kevin M; Leist, Marcel; Allen, Sandra; Arand, Michael; Buetler, Timo; Delrue, Nathalie; FitzGerald, Rex E; Hartung, Thomas; Heinonen, Tuula; Hogberg, Helena; Bennekou, Susanne Hougaard; Lichtensteiger, Walter; Oggier, Daniela; Paparella, Martin; Axelstad, Marta; Piersma, Aldert; Rached, Eva; Schilter, Benoît; Schmuck, Gabriele; Stoppini, Luc; Tongiorgi, Enrico; Tiramani, Manuela; Monnet-Tschudi, Florianne; Wilks, Martin F; Ylikomi, Timo; Fritsche, Ellen

    2015-02-01

    A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISTNET) in DNT testing. The first meeting of ISTNET was held in Zurich on 23-24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems development according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a road map towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and addressing the transition from qualitative descriptions to quantitative network modelling.

  15. The adverse outcome pathway knowledge base

    EPA Science Inventory

    The rapid advancement of the Adverse Outcome Pathway (AOP) framework has been paralleled by the development of tools to store, analyse, and explore AOPs. The AOP Knowledge Base (AOP-KB) project has brought three independently developed platforms (Effectopedia, AOP-Wiki, and AOP-X...

  16. Solar-chemical treatment of groundwater contaminated with petroleum at gas station sites: ex situ remediation using solar/TiO(2) photocatalysis and Solar Photo-Fenton.

    PubMed

    Cho, Ii-Hyoung; Kim, Young-Gyu; Yang, Jae-Kyu; Lee, Nae-Hyun; Lee, Seung-Mok

    2006-01-01

    Groundwater samples contaminated by BTEX (benzene, toluene, ethylbenzene, xylene isomers and TPHs (total petroleum hydrocarbons) were treated with advanced oxidation processes (AOPs), such as TiO(2) photocatalysis and Fe(2+)/H(2)O(2) exposed to solar light (37 degrees N and 128 degrees E) with an average intensity of 1.7 mW/cm(2) at 365 nm. These AOP processes showed feasibility in the treatment of groundwater contaminated with BTEX, TPH and TOC (Total Organic Carbon). Outdoor field tests showed that the degradation efficiency of each contaminant was higher in the Fe(2+)/H(2)O(2) system without solar light compared to the TiO(2)/solar light and H(2)O(2)/solar light systems. However, the TiO(2)/solar light and the Fe(2+)/H(2)O(2)/solar light systems showed significantly enhanced efficiencies in the degradation of BTEX, TPH and TOC with the additional use of H(2)O(2). Near complete degradation of BTEX and TPH was observed within 2 and 4 hrs, respectively, however, that of TOC was slower. Without pretreatment of the groundwater, fouling of the TiO(2), due to the ionic species present, was observed within 1 hr of operation, which resulted in the inhibition of further BTEX, TPH and TOC destruction. The degradation rate of n-alkanes with carbon numbers ranging from C10 to C15 was relatively greater than that of n-alknaes with carbon numbers ranging from C16 to C20. From this work, the AOP process (Fe(2+)/H(2)O(2)/solar light and TiO(2)/H(2)O(2)/solar light) illuminated with solar light was identified as an effective ex situ technique in the remediation of groundwater contaminated with petroleum.

  17. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO₃-δ metal oxide.

    PubMed

    Leiw, Ming Yian; Guai, Guan Hong; Wang, Xiaoping; Tse, Man Siu; Ng, Chee Mang; Tan, Ooi Kiang

    2013-09-15

    Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water.

    PubMed

    Leshuk, Tim; Wong, Timothy; Linley, Stuart; Peru, Kerry M; Headley, John V; Gu, Frank

    2016-02-01

    Bitumen mining in the Canadian oil sands creates large volumes of oil sands process-affected water (OSPW), the toxicity of which is due in part to naphthenic acids (NAs) and other acid extractable organics (AEO). The objective of this work was to evaluate the potential of solar photocatalysis over TiO2 to remove AEO from OSPW. One day of photocatalytic treatment under natural sunlight (25 MJ/m(2) over ∼14 h daylight) eradicated AEO from raw OSPW, and acute toxicity of the OSPW toward Vibrio fischeri was eliminated. Nearly complete mineralization of organic carbon was achieved within 1-7 day equivalents of sunlight exposure, and degradation was shown to proceed through a superoxide-mediated oxidation pathway. High resolution mass spectrometry (HRMS) analysis of oxidized intermediate compounds indicated preferential degradation of the heavier and more cyclic NAs (higher number of double bond equivalents), which are the most environmentally persistent fractions. The photocatalyst was shown to be recyclable for multiple uses, and thus solar photocatalysis may be a promising "green" advanced oxidation process (AOP) for OSPW treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Soler, J; Alpendurada, M F; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2016-11-15

    This study focuses on the degradation of pharmaceuticals from a municipal wastewater after secondary treatment by applying various advanced oxidation processes (AOPs) and electrochemical AOPs (EAOPs) like UVC, H 2 O 2 /UVC, anodic oxidation (AO), AO with electrogenerated H 2 O 2 (AO-H 2 O 2 ), AO-H 2 O 2 /UVC and photoelectro-Fenton (PEF) using either UVC radiation (PEF-UVC) or UVA radiation (PEF-UVA). The municipal wastewater after secondary treatment was spiked with 5.0 mg L -1 of trimethoprim (TMP) antibiotic. The efficiency of processes to remove TMP followed the order UVC < AO-H 2 O 2  < PEF-UVA < AO ≈ PEF-UVC < AO-H 2 O 2 /UVC < PEF-UVA (pH = 2.8) < H 2 O 2 /UVC ≈ PEF-UVC (pH = 2.8), using neutral pH, except when identified. While the UVC radiation alone led to a very low TMP removal, the H 2 O 2 /UVC process promoted a very high TMP degradation due to the production of hydroxyl radicals (OH) by H 2 O 2 cleavage. In the AO-H 2 O 2 /UVC process, the electrogeneration of H 2 O 2 can avoid the risks associated with the transportation, storage and manipulation of this oxidant and, furthermore, OH at the anode surface are also formed. Nevertheless, low contents of H 2 O 2 were detected mainly at the beginning of the reaction, leading to a lower initial reaction rate when compared with the H 2 O 2 /UVC system. In the PEF-UVC, the addition of iron at neutral pH led to the visible formation of insoluble iron oxides that can filter the light. At pH 2.8, the iron remained dissolved, thereby promoting the Fenton's reaction and increasing the organics removal. The UVA-driven processes showed limited efficiency when compared with those using UVC light. For all processes with H 2 O 2 electrogeneration, the active chlorine species can be scavenged by the H 2 O 2 , diminishing the efficiency of the processes. This can explain the lower efficiency of AO-H 2 O 2 when compared with AO. Moreover, the degradation of the MWWTP effluent spiked with 18 pharmaceuticals in μg L -1 during AO process was assessed as well as the influence of the following operational variables on the process efficiency: (i) H 2 O 2 concentration on H 2 O 2 /UVC, (ii) current density on AO, AO-H 2 O 2 , AO-H 2 O 2 /UVC, PEF-UVC and PEF-UVA, and (iii) pH on PEF-UVA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water.

    PubMed

    Huanosta-Gutiérrez, T; Dantas, Renato F; Ramírez-Zamora, R M; Esplugas, S

    2012-04-30

    The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H(2)O(2) (slag/H(2)O(2)) and H(2)O(2)/UV (slag/H(2)O(2)/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H(2)O(2)/UV and slag/H(2)O(2) treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD(5)/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Degradation of cyanotoxins (microcystin) in drinking water using photoelectrooxidation.

    PubMed

    Garcia, A C A; Rodrigues, M A S; Xavier, J L N; Gazulla, V; Meneguzzi, A; Bernardes, A M

    2015-05-01

    The discharge of sewage and industrial effluents containing high concentrations of pollutants in water bodies increases eutrophication. Cyanobacteria, some of the organisms whose growth is promoted by high nutrient concentrations, are resistant and produce several types of toxins, known as cyanotoxins, highly harmful to human beings. Current water treatment systems for the public water supply are not efficient in degradation of toxins. Advanced oxidation processes (AOP) have been tested for the removal of cyanotoxins, and the results have been positive. This study examines the application of photoelectrooxidation in the degradation of cyanotoxins (microcystins). The performance of the oxidative processes involved was evaluated separately: Photocatalysis, Electrolysis and Photoelectrooxidation. Results showed that the electrical current and UV radiation were directly associated with toxin degradation. The PEO system is efficient in removing cyanotoxins, and the reduction rate reached 99%. The final concentration of toxin was less than 1 µg/L of microcystin in the treated solution.

  2. Average output polarization dataset for signifying the temperature influence for QCA designed reversible logic circuits.

    PubMed

    Abdullah-Al-Shafi, Md; Bahar, Ali Newaz; Bhuiyan, Mohammad Maksudur Rahman; Shamim, S M; Ahmed, Kawser

    2018-08-01

    Quantum-dot cellular automata (QCA) as nanotechnology is a pledging contestant that has incredible prospective to substitute complementary metal-oxide-semiconductor (CMOS) because of its superior structures such as intensely high device thickness, minimal power depletion with rapid operation momentum. In this study, the dataset of average output polarization (AOP) for fundamental reversible logic circuits is organized as presented in (Abdullah-Al-Shafi and Bahar, 2017; Bahar et al., 2016; Abdullah-Al-Shafi et al., 2015; Abdullah-Al-Shafi, 2016) [1-4]. QCADesigner version 2.0.3 has been utilized to survey the AOP of reversible circuits at separate temperature point in Kelvin (K) unit.

  3. Current Status and Future Plans of the NEON Airborne Observation Platform (AOP): Data Products, Observatory Requirements and Opportunities for the Community

    NASA Astrophysics Data System (ADS)

    Petroy, S. B.; Leisso, N.; Goulden, T.; Gulbransen, T.

    2016-12-01

    The National Ecological Observatory Network (NEON) is a continental-scale ecological observation platform designed to collect and disseminate data that contributes to understanding and forecasting the impacts of climate change, land use change, and invasive species on ecology. NEON will collect in-situ and airborne data over 81 sites across the US, including Alaska, Hawaii, and Puerto Rico. The Airborne Observation Platform (AOP) group within the NEON project operates a payload suite that includes a waveform LiDAR, imaging spectrometer (NIS) and high resolution RGB camera. Data from this sensor suite will be collected annually over each site and processed into a set of standard data products, generally following the processing levels used by NASA (Level 1 through Level 3). We will present a summary of the first operational flight campaign (2016), where AOP flew 42 of the 81 planned NEON sites, our operational plans for 2017, and how we will ramp up to full operations by 2018. We will also describe the final set of AOP data products to be delivered as part of NEON construction and those field (observational) data products collected concurrently on the ground, that may be used to support validation efforts of algorithms for deriving vegetation characteristics from airborne data (e.g. Plant foliar physical/chemical properties, Digital Hemispherical Photos, Plant Diversity, etc.). Opportunities for future enhancements to data products or algorithms will be facilitated via NEON's cyberinfrastructure, which is designed to support wrapping/integration of externally-developed code. And finally, we will present NEON's plans for the third AOP Sensor Suite as an assignable asset and the intent of NSF to provide research opportunities to the community for developing higher level AOP data products that were removed from the NEON project in 2015.

  4. Degradation of the cytostatic 5-Fluorouracil in water by Fenton and photo-assisted oxidation processes.

    PubMed

    Governo, Mariana; Santos, Mónica S F; Alves, Arminda; Madeira, Luís M

    2017-01-01

    Cytostatics are part of the forefront research topics due to their high prescription, high toxicity, and the lack of effective solutions to stop their entrance and spread in the environment. Among them, 5-Fluorouracil (5-Fu) has received particular attention because is one of the most prescribed active substances in chemotherapy worldwide. The degradation of 5-Fu by advanced oxidation processes (AOPs) is a poorly addressed topic, and this work brings valuable inputs concerning this matter. Herein, the efficacy of Fenton's process in the degradation of 5-Fu is explored for the first time; the study of the main variables and its successful application to the treatment of real wastewaters is demonstrated. Moreover, hydrogen peroxide-based and photo-assisted techniques (direct photolysis, photodegradation with H 2 O 2 and photo-Fenton) are also investigated for purposes of comparison. Under the best operation conditions obtained (T = 30 °C, [Fe 2+ ] 0  = 0.5 mM; [H 2 O 2 ] 0  = 240 mM and pH = 3 for [5-Fu] 0  = 0.38 mM), 5-Fu was completely eliminated after 2 h of Fenton's reaction and about 50 % of mineralization was reached after 8 h. The best performance was obtained by the photo-Fenton process, with 5-Fu mineralization level as high as 67 %, using an iron dose within the legal limits required for direct water discharge. Toxicity (towards Vibrio fischeri) of the effluents that resulted from the application of the above-mentioned AOPs was also evaluated; it was found that the degradation products generated from the photo-assisted processes are less toxic than the parent compound, putting into evidence the relevance of such technologies for degradation of cytostatics like 5-Fu.

  5. Adverse Outcome Pathways can drive non-animal approaches for safety assessment

    PubMed Central

    Burden, Natalie; Sewell, Fiona; Andersen, Melvin E; Boobis, Alan; Chipman, J Kevin; Cronin, Mark T D; Hutchinson, Thomas H; Kimber, Ian; Whelan, Maurice

    2015-01-01

    Adverse Outcome Pathways (AOPs) provide an opportunity to develop new and more accurate safety assessment processes for drugs and other chemicals, and may ultimately play an important role in regulatory decision making. Not only can the development and application of AOPs pave the way for the development of improved evidence-based approaches for hazard and risk assessment, there is also the promise of a significant impact on animal welfare, with a reduced reliance on animal-based methods. The establishment of a useable and coherent knowledge framework under which AOPs will be developed and applied has been a first critical step towards realizing this opportunity. This article explores how the development of AOPs under this framework, and their application in practice, could benefit the science and practice of safety assessment, while in parallel stimulating a move away from traditional methods towards an increased acceptance of non-animal approaches. We discuss here the key areas where current, and future initiatives should be focused to enable the translation of AOPs into routine chemical safety assessment, and lasting 3Rs benefits. © 2015 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd. This article explores how the development and application of Adverse Outcome Pathways (AOPs) could benefit the science and practice of chemical safety assessment, with a particular focus on how their use in practice could reduce reliance on traditional animal toxicity tests. This includes discussion of the key areas where current and future initiatives should be focused to enable the translation of AOPs into routine chemical safety assessment, and lasting 3Rs benefits. PMID:25943792

  6. Inhibition of Human Vascular NADPH Oxidase by Apocynin Derived Oligophenols

    PubMed Central

    Mora-Pale, Mauricio; Weïwer, Michel; Yu, Jingjing; Linhardt, Robert J.; Dordick, Jonathan S.

    2009-01-01

    Enzymatic oxidation of apocynin, which may mimic in vivo metabolism, affords a large number of oligomers (apocynin oxidation products, AOP) that inhibit vascular NADPH oxidase. In vitro studies of NADPH oxidase activity were performed to identify active inhibitors, resulting in a trimer hydroxylated quinone (IIIHyQ) that inhibited NADPH oxidase with an IC50 = 31 nM. Apocynin itself possessed minimal inhibitory activity. NADPH oxidase is believed to be inhibited through prevention of the interaction between two NADPH oxidase subunits, p47phox and p22phox. To that end, while apocynin was unable to block the interaction of his-tagged p47phox with a surface immobilized biotinalyted p22phox peptide, the IIIHyQ product strongly interfered with this interaction (apparent IC50 = 1.6 μM). These results provide evidence that peroxidase-catalyzed AOP, which consist of oligomeric phenols and quinones, inhibit critical interactions that are involved in the assembly and activation of human vascular NADPH oxidase. PMID:19523836

  7. THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK ...

    EPA Pesticide Factsheets

    An Adverse Outcome Pathway (AOP) represents the organization of current and newly acquired knowledge of biological pathways. These pathways contain a series of nodes (Key Events, KEs) that when sufficiently altered influence the next node on the pathway, beginning from an Molecular Initiating Event (MIE), through intermediate KEs, ending in an Adverse Outcome (AO) which may be used as a basis for decision making. A KE is a measurable biological change, and is linked with other KEs via Key Event Relationships (KERs). A given KE may be involved in several AOPs, leading to a plausible network of biological changes that are involved in an organism’s response to an external stressor. When describing an AOP, five guiding principles have been proposed [1]: 1) an AOP is not specific to a single external stressor, 2) AOPs are modular, with KEs and KERs that can be used in several AOPs, 3) a single AOP is the unit of development, 4) most biological responses will be the result of networks of AOPs, and 5) AOPs will be modified as more biological knowledge becomes available. The collaborative development of AOPs is recommended to be performed using the AOP-Wiki (https://aopwiki.org), which is an effort between the European Commission – DG Joint Research Centre (JRC) and U.S. Environmental Protection Agency (EPA). The Wiki is one part of a larger OECD-sponsored AOP Knowledgebase effort, which is a repository for all AOPs developed as part of the Organization for Economic

  8. Fate and abundance of classical and heteroatomic naphthenic acid species after advanced oxidation processes: Insights and indicators of transformation and degradation.

    PubMed

    Meshref, Mohamed N A; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2017-11-15

    The toxicological effects from all components in oil sands process-affected water (OSPW) are not known. Alternatively, monitoring the variations and abundance of different classes and compounds after treatments might be a useful approach in OSPW remediation. In this study, the variations in the compositions of classical and heteroatomic naphthenic acids (NAs) after treatment using advanced oxidation processes (AOPs), mainly ozone and peroxone, and two different mass spectrometry methods; ultra-performance liquid chromatography time-of-flight (UPLC-TOFMS) and Fourier transform ion cyclotron resonance (FTICR-MS), were examined. Two markers (O 2 S:O 3 S:O 4 S and O 2 :O 4 ratios) were used to reveal changes and similarities of the treated water characteristics with those in natural waters. Both ratios decreased after all treatments, from 2.7:4.8:2.1 and 3.59 in raw OSPW to 0:1.4:0.5 and 0.7, respectively, in peroxone (1:2), becoming close to the reported ratios in natural waters. Toxicity toward Vibrio fischeri showed residual toxic effects after AOPs, suggesting that part of OSPW toxicity may be caused by specific compounds of NAs (i.e., similar reduction (50%) was achieved in both toxicity and abundance in O 2 species with carbon 15-26) and/or generated by-products (e.g., O 3 S classes at double bond equivalent (DBE) = 4 and C 9 H 12 O 2 at DBE = 4). Although by-products were generated, the best biodegradability enhancement and chemical oxygen demand reduction were achieved in peroxone (1:2) compared to ozone, suggesting the possibility of using combined OSPW remediation approaches (i.e., peroxone coupled with biological process). The recommended indicators can assist in evaluating the treatments' performance and in examining the best removal levels to accomplish significant toxicity reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. On-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processes.

    PubMed

    Guo, Xin; Minakata, Daisuke; Crittenden, John

    2015-08-04

    We have developed an on-the-fly kinetic Monte Carlo (KMC) model to predict the degradation mechanisms and fates of intermediates and byproducts that are produced during aqueous-phase advanced oxidation processes (AOPs). The on-the-fly KMC model is composed of a reaction pathway generator, a reaction rate constant estimator, a mechanistic reduction module, and a KMC solver. The novelty of this work is that we develop the pathway as we march forward in time rather than developing the pathway before we use the KMC method to solve the equations. As a result, we have fewer reactions to consider, and we have greater computational efficiency. We have verified this on-the-fly KMC model for the degradation of polyacrylamide (PAM) using UV light and titanium dioxide (i.e., UV/TiO2). Using the on-the-fly KMC model, we were able to predict the time-dependent profiles of the average molecular weight for PAM. The model provided detailed and quantitative insights into the time evolution of the molecular weight distribution and reaction mechanism. We also verified our on-the-fly KMC model for the destruction of (1) acetone, (2) trichloroethylene (TCE), and (3) polyethylene glycol (PEG) for the ultraviolet light and hydrogen peroxide AOP. We demonstrated that the on-the-fly KMC model can achieve the same accuracy as the computer-based first-principles KMC (CF-KMC) model, which has already been validated in our earlier work. The on-the-fly KMC is particularly suitable for molecules with large molecular weights (e.g., polymers) because the degradation mechanisms for large molecules can result in hundreds of thousands to even millions of reactions. The ordinary differential equations (ODEs) that describe the degradation pathways cannot be solved using traditional numerical methods, but the KMC can solve these equations.

  10. AOP-DB Frontend: A user interface for the Adverse Outcome Pathways Database.

    EPA Science Inventory

    The EPA Adverse Outcome Pathway Database (AOP-DB) is a database resource that aggregates association relationships between AOPs, genes, chemicals, diseases, pathways, species orthology information, ontologies. The AOP-DB frontend is a simple yet powerful AOP-DB user interface in...

  11. Oxidative stress responses of Daphnia magna exposed to effluents spiked with emerging contaminants under ozonation and advanced oxidation processes.

    PubMed

    Oropesa, Ana Lourdes; Novais, Sara C; Lemos, Marco F L; Espejo, Azahara; Gravato, Carlos; Beltrán, Fernando

    2017-01-01

    Integration of conventional wastewater treatments with advanced oxidation processes (AOPs) has become of great interest to remove pharmaceuticals and their metabolites from wastewater. However, application of these technologies generates reactive oxygen species (ROS) that may reach superficial waters through effluents from sewage treatment plants. The main objective of the present study was to elucidate if ROS present in real effluents after biological and then chemical (single ozonation, solar photolytic ozonation, solar photocatalytic ozonation (TiO 2 , Fe 3 O 4 ) and solar photocatalytic oxidation (TiO 2 )) treatments induce oxidative stress in Daphnia magna. For this, the activity of two antioxidant enzymes (superoxide dismutase and catalase) and the level of lipid peroxidation were determined in Daphnia. The results of oxidative stress biomarkers studied suggest that D. magna is able to cope with the superoxide ion radical (O 2 · - ) present in the treated effluent due to single ozonation by mainly inducing the antioxidant activity superoxide dismutase, thus preventing lipid peroxidation. Lethal effects (measured in terms of immobility) were not observed in these organisms after exposure to any solution. Therefore, in order to probe the ecological efficiency of urban wastewater treatments, studies on lethal and sublethal effects in D. magna would be advisable.

  12. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A Porphyromonas gingivalis Periplasmic Novel Exopeptidase, Acylpeptidyl Oligopeptidase, Releases N-Acylated Di- and Tripeptides from Oligopeptides*

    PubMed Central

    Nemoto, Takayuki K.; Ohara-Nemoto, Yuko; Bezerra, Gustavo Arruda; Shimoyama, Yu; Kimura, Shigenobu

    2016-01-01

    Exopeptidases, including dipeptidyl- and tripeptidylpeptidase, are crucial for the growth of Porphyromonas gingivalis, a periodontopathic asaccharolytic bacterium that incorporates amino acids mainly as di- and tripeptides. In this study, we identified a novel exopeptidase, designated acylpeptidyl oligopeptidase (AOP), composed of 759 amino acid residues with active Ser615 and encoded by PGN_1349 in P. gingivalis ATCC 33277. AOP is currently listed as an unassigned S9 family peptidase or prolyl oligopeptidase. Recombinant AOP did not hydrolyze a Pro-Xaa bond. In addition, although sequence similarities to human and archaea-type acylaminoacyl peptidase sequences were observed, its enzymatic properties were apparently distinct from those, because AOP scarcely released an N-acyl-amino acid as compared with di- and tripeptides, especially with N-terminal modification. The kcat/Km value against benzyloxycarbonyl-Val-Lys-Met-4-methycoumaryl-7-amide, the most potent substrate, was 123.3 ± 17.3 μm−1 s−1, optimal pH was 7–8.5, and the activity was decreased with increased NaCl concentrations. AOP existed predominantly in the periplasmic fraction as a monomer, whereas equilibrium between monomers and oligomers was observed with a recombinant molecule, suggesting a tendency of oligomerization mediated by the N-terminal region (Met16–Glu101). Three-dimensional modeling revealed the three domain structures (residues Met16–Ala126, which has no similar homologue with known structure; residues Leu127–Met495 (β-propeller domain); and residues Ala496–Phe736 (α/β-hydrolase domain)) and further indicated the hydrophobic S1 site of AOP in accord with its hydrophobic P1 preference. AOP orthologues are widely distributed in bacteria, archaea, and eukaryotes, suggesting its importance for processing of nutritional and/or bioactive oligopeptides. PMID:26733202

  14. Removal efficiency and toxicity reduction of 4-chlorophenol with physical, chemical and biochemical methods.

    PubMed

    Gómez, M; Murcia, M D; Dams, R; Christofi, N; Gómez, E; Gómez, J L

    2012-01-01

    Chlorophenols are well-known priority pollutants and many different treatments have been assessed to facilitate their removal from industrial wastewater. However, an absolute and optimum solution still has to be practically implemented in an industrial setting. In this work, a series ofphysical, chemical and biochemical treatments have been systematically tested for the removal of 4-chlorophenol, and their results have been compared in order to determine the most effective treatment based on removal efficiency and residual by-product formation. Chemical treatments based on advanced oxidation processes (AOP) produced the best results on rate and extent of pollutant removal. The non-chemical technologies showed advantages in terms of complete (in the case of adsorption) or easy (enzymatic treatments) removal of toxic treatment by-products. The AOP methods led to the production of different photoproducts depending on the chosen treatment. Toxic products remained in most cases following treatment, though the toxicity level is significantly reduced with combination treatments. Among the treatments, a photochemical method combining UV, produced with a KrCl excilamp, and hydrogen peroxide achieved total removal of chlorophenol and all by-products and is considered the best treatment for chlorophenol removal.

  15. Optimization of photo-Fenton process for the treatment of prednisolone.

    PubMed

    Díez, Aida María; Ribeiro, Ana Sofia; Sanromán, Maria Angeles; Pazos, Marta

    2018-03-29

    Prednisolone is a widely prescribed synthetic glucocorticoid and stated to be toxic to a number of non-target aquatic organisms. Its extensive consumption generates environmental concern due to its detection in wastewater samples at concentrations ranged from ng/L to μg/L that requests the application of suitable degradation processes. Regarding the actual treatment options, advanced oxidation processes (AOPs) are presented as a viable alternative. In this work, the comparison in terms of pollutant removal and energetic efficiencies, between different AOPs such as Fenton (F), photo-Fenton (UV/F), photolysis (UV), and hydrogen peroxide/photolysis (UV/H 2 O 2 ), was carried out. Light diode emission (LED) was the selected source to provide the UV radiation. The UV/F process revealed the best performance, reaching high levels of both degradation and mineralization with low energy consumption. Its optimization was conducted and the operational parameters were iron and H 2 O 2 concentrations and the working volume. Using the response surface methodology with the Box-Behnken design, the effect of independent variables and their interactions on the process response were effectively evaluated. Different responses were analyzed taking into account the prednisolone removal (TOC and drug abatements) and the energy consumptions associated. The obtained model showed an improvement of the UV/F process when treating smaller volumes and when adding high concentrations of H 2 O 2 and Fe 2+ . The validation of this model was successfully carried out, having only 5% of discrepancy between the model and the experimental results. Finally, the performance of the process when having a real wastewater matrix was also tested, achieving complete mineralization and detoxification after 8 h. In addition, prednisolone degradation products were identified. Finally, the obtained low energy permitted to confirm the viability of the process.

  16. Practical approaches to adverse outcome pathway (AOP) ...

    EPA Pesticide Factsheets

    Adverse Outcome Pathways (AOPs) describe toxicant effects as a sequential chain of causally linked events beginning with a molecular perturbation and culminating in an adverse outcome at an individual or population level. Strategies for developing AOPs are still evolving and depend largely on the intended use or motivation for development. Four ecological AOP case studies, which were developed for different purposes, are described herein. In each situation, creation of the AOP began in a manner determined by the initial motivation for its creation, and expanded either to include additional components of the pathway, or to address the domains of applicability in terms of chemical initiators, susceptible species, life stages, etc. From these case studies, some general strategies can be gleaned which a developer may find useful for supporting an existing AOP or creating a new one. Several web-based tools which can aid in AOP assembly, as well as evaluation of weight of evidence for scientific robustness of AOP components are highlighted. The need for AOP development and greater population of AOPs in the online knowledgebase has been widely recognized (e.g., OECD Project 1.29, Knapen et al 2015, Escher et al 2016; Groh et al 2015), but currently there are few AOP developers. To promote broader development of AOPs, and the inclusion of potential developers across various types of institutes and fields of study, this manuscript outlines strategies for initiating

  17. Reduction of non-Betalactam Antibiotics COD by Combined Coagulation and Advanced Oxidation Processes.

    PubMed

    Yazdanbakhsh, Ahmad Reza; Mohammadi, Amir Sheikh; Alinejad, Abdol Azim; Hassani, Ghasem; Golmohammadi, Sohrab; Mohseni, Seyed Mohsen; Sardar, Mahdieh; Sarsangi, Vali

    2016-11-01

      The present study evaluates the reduction of antibiotic COD from wastewater by combined coagulation and advanced oxidation processes (AOPS). The reduction of Azithromycin COD by combined coagulation and Fenton-like processes reached a maximum 96.9% at a reaction time of 30 min, dosage of ferric chloride 120 mg/L, dosages of Fe0 and H2O2of 0.36mM/L and 0.38 mM/L, respectively. Also, 97.9% of Clarithromycin COD reduction, was achieved at a reaction time of 30 min, dosage of ferric chloride 120 mg/L, dosages of Fe0 and H2O2 of 0.3 mM/L and 0.3mM/L, respectively. The results of kinetic studies were best fitted to the pseudo first order equation. The results showed a higher rate constant value for combined coagulation and Fenton-like processes [(kap = 0.022 min-1 and half-life time of 31.5 min for Azithromycin) and (kap = 0.023 min-1 and half-life time of 30.1 min for Clarithromycin)].

  18. Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical: An experimental and theoretical approach.

    PubMed

    Xiao, Ruiyang; Gao, Lingwei; Wei, Zongsu; Spinney, Richard; Luo, Shuang; Wang, Donghong; Dionysiou, Dionysios D; Tang, Chong-Jian; Yang, Weichun

    2017-12-01

    Advanced oxidation processes (AOPs) based on formation of free radicals at ambient temperature and pressure are effective for treating endocrine disrupting chemicals (EDCs) in waters. In this study, we systematically investigated the degradation kinetics of bisphenol A (BPA), a representative EDC by hydroxyl radical (OH) with a combination of experimental and theoretical approaches. The second-order rate constant (k) of BPA with OH was experimentally determined to be 7.2 ± 0.34 × 10 9  M -1  s -1 at pH 7.55. We also calculated the thermodynamic and kinetic behaviors for the bimolecular reactions by density functional theory (DFT) using the M05-2X method with 6-311++G** basis set and solvation model based on density (SMD). The results revealed that H-abstraction on the phenol group is the most favorable pathway for OH. The theoretical k value corrected by the Collins-Kimball approach was determined to be 1.03 × 10 10  M -1  s -1 , which is in reasonable agreement with the experimental observation. These results are of fundamental and practical importance in understanding the chemical interactions between OH and BPA, and aid further AOPs design in treating EDCs during wastewater treatment processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Occurrence State and Molecular Structure Analysis of Extracellular Proteins with Implications on the Dewaterability of Waste-Activated Sludge.

    PubMed

    Wu, Boran; Ni, Bing-Jie; Horvat, Kristine; Song, Liyan; Chai, Xiaoli; Dai, Xiaohu; Mahajan, Devinder

    2017-08-15

    The occurrence state and molecular structure of extracellular proteins were analyzed to reveal the influencing factors on the water-holding capacities of protein-like substances in waste-activated sludge (WAS). The gelation process of extracellular proteins verified that advanced oxidation processes (AOPs) for WAS dewaterability improvement eliminated the water affinity of extracellular proteins and prevented these macromolecules from forming stable colloidal aggregates. Isobaric tags for relative and absolute quantitation proteomics identified that most of the extracellular proteins were originally derived from the intracellular part and the proteins originally located in the extracellular part were mainly membrane-associated. The main mechanism of extracellular protein transformation during AOPs could be represented by the damage of the membrane or related external encapsulating structure and the release of intracellular substances. For the selected representative extracellular proteins, the strong correlation (R 2 > 0.97, p < 0.03) between the surface hydrophilicity index and α-helix percentages in the secondary structure indicated that the water affinity relied more on the spatial distribution of hydrophilic functional groups rather than the content. Destructing the secondary structure represented by the α-helix and stretching the polypeptide aggregation in the water phase through disulfide bond removal might be the key to eliminating the inhibitory effects of extracellular proteins on the interstitial water removal from WAS.

  20. Application of AOPs for Removal of Stable Cyanide Compounds

    NASA Astrophysics Data System (ADS)

    Tsybikova, B.

    2017-11-01

    The main kinetic regularities of the photochemical oxidation of stable cyanide compounds (exemplified by hexacyanoferrates) by combined treatments involving direct photolysis and persulfate (oxidative system UV/S2O8 2-) and direct photolysis and hydrogen peroxide (oxidative system UV/H2O2) were studied. The possibility to perform oxidation processes within a wide pH range was shown. Based on to the energy efficiency, the rate of reaction and duration of the treatment, the considered oxidative systems can be arranged in the following order: {UV/S2O8 2-}>{UV/H2O2}>{UV}. The enhanced efficiency of hexacyanoferrates’ degradation by the combined system {UV/S2O8 2-} is due to the high oxidative capacity of sulfate anion radicals SO4 -· formed as a result of persulfate photolysis and its further disproportionation by Fe3+ and Fe2+ released through the decomposition of [Fe(CN)6]3-. Furthermore, the formation of ·OH radicals as a result of SO4 -· reacting with water also contributes to the enhanced oxidation efficiency. The combined method of {UV/S2O8 2-} treatment could be applied for the treatment of cyanide-containing wastewater and recycled water of different industries.

  1. 'Getting back to normal': the added value of an art-based programme in promoting 'recovery' for common but chronic mental health problems.

    PubMed

    Makin, Sally; Gask, Linda

    2012-03-01

    OBJECTIVES. The aim of this project was to explore the added value of participation in an Arts on Prescription (AoP) programme to aid the process of recovery in people with common but chronic mental health problems that have already undergone a psychological 'talking'-based therapy. METHODS. The study utilized qualitative in-depth interviews with 15 clients with persistent anxiety and depression who had attended an 'AoP' service and had previously received psychological therapy. RESULTS and discussion. Attending AoP aided the process of recovery, which was perceived by participants as 'returning to normality' through enjoying life again, returning to previous activities, setting goals and stopping dwelling on the past. Most were positive about the benefits they had previously gained from talking therapies. However, these alone were not perceived as having been sufficient to achieve recovery. The AoP offered some specific opportunities in this regard, mediated by the therapeutic and effect of absorption in an activity, the specific creative potential of art, and the social aspects of attending the programme. CONCLUSIONS. For some people who experience persistent or relapsing common mental health problems, participation in an arts-based programme provides 'added value' in aiding recovery in ways not facilitated by talking therapies alone.

  2. Defining a Computational Framework for the Assessment of ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway (AOP) framework describes the effects of environmental stressors across multiple scales of biological organization and function. This includes an evaluation of the potential for each key event to occur across a broad range of species in order to determine the taxonomic applicability of each AOP. Computational tools are needed to facilitate this process. Recently, we developed a tool that uses sequence homology to evaluate the applicability of molecular initiating events across species (Lalone et al., Toxicol. Sci., 2016). To extend our ability to make computational predictions at higher levels of biological organization, we have created the AOPdb. This database links molecular targets identified associated with key events in the AOPwiki to publically available data (e.g. gene-protein, pathway, species orthology, ontology, chemical, disease) including ToxCast assay information. The AOPdb combines different data types in order to characterize the impacts of chemicals to human health and the environment and serves as a decision support tool for case study development in the area of taxonomic applicability. As a proof of concept, the AOPdb allows identification of relevant molecular targets, biological pathways, and chemical and disease associations across species for four AOPs from the AOP-Wiki (https://aopwiki.org): Estrogen receptor antagonism leading to reproductive dysfunction (Aop:30); Aromatase inhibition leading to reproductive d

  3. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents.

    PubMed

    Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua

    2017-03-07

    Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.

  4. Developing putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content data

    EPA Science Inventory

    Developing putative AOPs from high content data Shannon M. Bell1,2, Stephen W. Edwards2 1 Oak Ridge Institute for Science and Education 2 Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development,...

  5. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E.; Subramanian, K.

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include:more » (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing dissolution equilibrium, and then decomposed to {le} 100 Parts per Million (ppm) oxalate. Since AOP technology largely originated on using ultraviolet (UV) light as a primary catalyst, decomposition of the spent oxalic acid, well exposed to a medium pressure mercury vapor light was considered the benchmark. However, with multi-valent metals already contained in the feed, and maintenance of the UV light a concern; testing was conducted to evaluate the impact from removing the UV light. Using current AOP terminology, the test without the UV light would likely be considered an ozone based, dark, ferrioxalate type, decomposition process. Specifically, as part of the testing, the impacts from the following were investigated: (1) Importance of the UV light on the decomposition rates when decomposing 1 wt% spent oxalic acid; (2) Impact of increasing the oxalic acid strength from 1 to 2.5 wt% on the decomposition rates; and (3) For F-area testing, the advantage of increasing the spent oxalic acid flowrate from 40 L/min (liters/minute) to 50 L/min during decomposition of the 2.5 wt% spent oxalic acid. The results showed that removal of the UV light (from 1 wt% testing) slowed the decomposition rates in both the F & H testing. Specifically, for F-Area Strike 1, the time increased from about 6 hours to 8 hours. In H-Area, the impact was not as significant, with the time required for Strike 1 to be decomposed to less than 100 ppm increasing slightly, from 5.4 to 6.4 hours. For the spent 2.5 wt% oxalic acid decomposition tests (all) without the UV light, the F-area decompositions required approx. 10 to 13 hours, while the corresponding required H-Area decompositions times ranged from 10 to 21 hours. For the 2.5 wt% F-Area sludge, the increased availability of iron likely caused the increased decomposition rates compared to the 1 wt% oxalic acid based tests. In addition, for the F-testing, increasing the recirculation flow rates from 40 liter/minute to 50 liter/minute resulted in an increased decomposition rate, suggesting a better use of ozone.« less

  6. Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution.

    PubMed

    Peternel, Igor T; Koprivanac, Natalija; Bozić, Ana M Loncarić; Kusić, Hrvoje M

    2007-09-05

    In this study advanced oxidation processes (AOPs), UV/TiO(2), UV/ZnO and photo-Fenton, were applied in order to degrade C.I. Reactive Red 45 (RR45) dye in aqueous solution. The effects of key operating parameters, such as initial pH, catalyst and hydrogen peroxide dosage as well as the effect of initial dye concentration on decolorization and mineralization extents were studied. Primary objective was to determine the optimal conditions for each of the processes. The influence of added zeolite on the process efficiency was also studied. UV/vis spectrophotometric and total organic carbon (TOC) measurements were performed for determination of decolorization and mineralization extents. It has been found that photo-Fenton process was the most efficient with 74.2% TOC removal and complete color removal achieved after a 1h treatment.

  7. Decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H2O2 and UV/TiO2 oxidation processes.

    PubMed

    Yan, Yingjie; Liao, Qi-Nan; Ji, Feng; Wang, Wei; Yuan, Shoujun; Hu, Zhen-Hu

    2017-02-01

    3,5-Dinitrobenzamide has been widely used as a feed additive to control coccidiosis in poultry, and part of the added 3,5-dinitrobenzamide is excreted into wastewater and surface water. The removal of 3,5-dinitrobenzamide from wastewater and surface water has not been reported in previous studies. Highly reactive hydroxyl radicals from UV/hydrogen peroxide (H 2 O 2 ) and UV/titanium dioxide (TiO 2 ) advanced oxidation processes (AOPs) can decompose organic contaminants efficiently. In this study, the decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H 2 O 2 and UV/TiO 2 oxidation processes was investigated. The decomposition of 3,5-dinitrobenzamide fits well with a fluence-based pseudo-first-order kinetics model. The decomposition in both two oxidation processes was affected by solution pH, and was inhibited under alkaline conditions. Inorganic anions such as NO 3 - , Cl - , SO 4 2- , HCO 3 - , and CO 3 2- inhibited the degradation of 3,5-dinitrobenzamide during the UV/H 2 O 2 and UV/TiO 2 oxidation processes. After complete decomposition in both oxidation processes, approximately 50% of 3,5-dinitrobenzamide was decomposed into organic intermediates, and the rest was mineralized to CO 2 , H 2 O, and other inorganic anions. Ions such as NH 4 + , NO 3 - , and NO 2 - were released into aqueous solution during the degradation. The primary decomposition products of 3,5-dinitrobenzamide were identified using time-of-flight mass spectrometry (LCMS-IT-TOF). Based on these products and ions release, a possible decomposition pathway of 3,5-dinitrobenzamide in both UV/H 2 O 2 and UV/TiO 2 processes was proposed.

  8. Adverse Outcome Pathways – Tailoring Development to Support Use

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) represent an ideal framework for connecting high-throughput screening (HTS) data and other toxicity testing results to adverse outcomes of regulatory importance. The AOP Knowledgebase (AOP-KB) captures AOP information to facilitate the development,...

  9. Advanced oxidation processes on doxycycline degradation: monitoring of antimicrobial activity and toxicity.

    PubMed

    Spina-Cruz, Mylena; Maniero, Milena Guedes; Guimarães, José Roberto

    2018-05-08

    Advanced oxidation processes (AOPs) have been highly efficient in degrading contaminants of emerging concern (CEC). This study investigated the efficiency of photolysis, peroxidation, photoperoxidation, and ozonation at different pH values to degrade doxycycline (DC) in three aqueous matrices: fountain, tap, and ultrapure water. More than 99.6% of DC degradation resulted from the UV/H 2 O 2 and ozonation processes. Also, to evaluate the toxicity of the original solution and throughout the degradation time, antimicrobial activity tests were conducted using Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, and acute toxicity test using the bioluminescent marine bacterium (Vibrio fischeri). Antimicrobial activity reduced as the drug degradation increased in UV/H 2 O 2 and ozonation processes, wherein the first process only 6 min was required to reduce 100% of both bacteria activity. In ozonation, 27.7 mg L -1 of ozone was responsible for reducing 100% of the antimicrobial activity. When applied the photoperoxidation process, an increase in the toxicity occurred as the high levels of degradation were achieved; it means that toxic intermediates were formed. The ozonated solutions did not present toxicity.

  10. Theoretical investigation on the kinetics and mechanisms of hydroxyl radical-induced transformation of parabens and its consequences for toxicity: Influence of alkyl-chain length.

    PubMed

    Gao, Yanpeng; Ji, Yuemeng; Li, Guiying; An, Taicheng

    2016-03-15

    As emerging organic contaminants (EOCs), the ubiquitous presence of preservative parabens in water causes a serious environmental concern. Hydroxyl radical ((•)OH) is a strong oxidant that can degrade EOCs through photochemistry in surface water environments as well as in advanced oxidation processes (AOPs). To better understand the degradation mechanisms, kinetics, and products toxicity of the preservative parabens in aquatic environments and AOPs, the (•)OH-initiated degradation reactions of the four parabens were investigated systematically using a computational approach. The four studied parabens with increase of alkyl-chain length were methylparaben (MPB), ethylparaben (EPB), propylparaben (PPB), and dibutylparaben (BPB). Results showed that the four parabens can be initially attacked by (•)OH through (•)OH-addition and H-abstraction routes. The (•)OH-addition route was more important for the degradation of shorter alkyl-chain parabens like MPB and EPB, while the H-abstraction route was predominant for the degradation of parabens with longer alkyl-chain for example PPB and BPB. In assessing the aquatic toxicity of parabens and their degradation products using the model calculations, the products of the (•)OH-addition route were found to be more toxic to green algae than original parabens. Although all degradation products were less toxic to daphnia and fish than corresponding parental parabens, they could be still harmful to these aquatic organisms. Furthermore, as alkyl-chain length increased, the ecotoxicity of parabens and their degradation products was found to be also increased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Photochemical-biological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone.

    PubMed

    Sarria, V; Parra, S; Invernizzi, M; Peringer, P; Pulgarin, C

    2001-01-01

    5-amino-6-methyl-2-benzimidazolone (AMBI), used in the manufacture of dyes, was characterised as a biorecalcitrant compound by means of different biodegradability tests. In order to enhance the biodegradability of this important pollutant, the application of Advanced Oxidation Process (AOPs) as a pretreatment was explored. Some experiments were addressed to find the most efficient AOP. The systems H2O2/hv, TiO2/H2O2/hv, Fe3+/hv, Fe3+/H2O2 and Fe3+/H2O2/hv were compared. The photo-Fenton system was the most efficient and the optimal conditions (AMBI, Fe3+, H2O2 concentrations) for the degradation of AMBI were found. During the photo-Fenton degradation, experiments were also made to obtain information concerning the evolution of: (a) organic carbon and initial compound concentration; (b) the oxidation state; (c) the toxicity; (d) the biodegradability; and (e) the chemical nature of the intermediates. These analyses show that the solution resulting from the treatment of AMBI is biologically compatible and complete mineralisation can be performed by biological means. A combined photochemical (Fenton) and biological flow reactor for the degradation of AMBI was successfully operated in continuous mode at laboratory scale. 100% of the initial concentration of AMBI and 80.3% of Dissolved Organic Carbon (DOC) were removed in 3.5 hours of total residence time. Finally, some field experiments under direct sunlight carried out at the Plataforma Solar de Almeria, Spain, demonstrated that this solar catalytic system is an effective treatment for this kind of industrial wastewater.

  12. Conventional and advanced oxidation processes used in disinfection of treated urban wastewater.

    PubMed

    Rodríguez-Chueca, J; Ormad, M P; Mosteo, R; Sarasa, J; Ovelleiro, J L

    2015-03-01

    The purpose of the current study is to compare the inactivation of Escherichia coli in wastewater effluents using conventional treatments (chlorination) and advanced oxidation processes (AOPs) such as UV irradiation, hydrogen peroxide (H2O2)/solar irradiation, and photo-Fenton processes. In addition, an analysis of the operational costs of each treatment is carried out taking into account the optimal dosages of chemicals used. Total inactivation of bacteria (7.5 log) was achieved by means of chlorination and UV irradiation. However, bacterial regrowth was observed 6 hours after the completion of UV treatment, obtaining a disinfection value around 3 to 4 log. On the other hand, the combination H2O2/solar irradiation achieved a maximum inactivation of E. coli of 3.30 ± 0.35 log. The photo-Fenton reaction achieved a level of inactivation of 4.87 ± 0.10 log. The order of disinfection, taking into account the reagent/cost ratio of each treatment, is as follows: chlorination > UV irradiation > photo-Fenton > H2O2/sunlight irradiation.

  13. AOP-DB Frontend: A user interface for the Adverse Outcome Pathways Database

    EPA Science Inventory

    The EPA Adverse Outcome Pathway Database (AOP-DB) is a database resource that aggregates association relationships between AOPs, genes, chemicals, diseases, pathways, species orthology information, ontologies. The AOP-DB frontend is a simple yet powerful user interface in the for...

  14. Creating a Structured AOP Knowledgebase via Ontology-Based Annotations

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is increasingly used to integrate data from traditional and emerging toxicity testing paradigms. As the number of AOP descriptions has increased, so has the need to define the AOP in terms that can be interpreted computationally. We wil...

  15. Adverse Outcome Pathways: From Research to Regulation ...

    EPA Pesticide Factsheets

    An adverse outcome pathway (AOP) organizes existing knowledge on chemical mode of action, starting with a molecular initiating event such as receptor binding, continuing through key events, and ending with an adverse outcome such as reproductive impairment. AOPs can help identify knowledge gaps where more research is needed to understand the underlying mechanisms, aid in chemical hazard characterization, and guide the development of new testing approaches that use fewer or no animals. A September 2014 workshop co-sponsored by NICEATM and PCRM considered how the AOP concept could improve regulatory assessments of chemical toxicity. Scientists from 21 countries, representing industry, academia, regulatory agencies, and special interest groups, attended the workshop, titled Adverse Outcome Pathways: From Research to Regulation. Workshop plenary presentations were followed by breakout sessions that considered regulatory acceptance of AOPs and AOP-based tools, criteria for building confidence in an AOP for regulatory use, and requirements to build quantitative AOPs and AOP networks. Discussions during the closing session emphasized a need to increase transparent and inclusive collaboration, especially with disciplines outside of toxicology. Additionally, to increase impact, working groups should be established to systematically prioritize and develop AOPs. Multiple collaborative projects and follow-up activities resulted from the workshop. This manuscript provides a

  16. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes

    PubMed Central

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E.; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F.

    2018-01-01

    This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance. PMID:28236826

  17. Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation.

    PubMed

    Cravotto, Giancarlo; Binello, Arianna; Di Carlo, Stefano; Orio, Laura; Wu, Zhi-Lin; Ondruschka, Bernd

    2010-03-01

    Phenols are the most common pollutants in industrial wastewaters (particularly from oil refineries, resin manufacture, and coal processing). In the last two decades, it has become common knowledge that they can be effectively destroyed by nonconventional techniques such as power ultrasound (US) and/or microwave (MW) irradiation. Both techniques may strongly promote advanced oxidation processes (AOPs). The present study aimed to shed light on the effect and mechanism of US- and MW-promoted oxidative degradation of chlorophenols; 2,4-dichlorophenoxyacetic acid (2,4-D), a pesticide widespread in the environment, was chosen as the model compound. 2,4-D degradation by AOPs was carried out either under US (20 and 300 kHz) in aqueous solutions (with and without the addition of Fenton reagent) or solvent-free under MW with sodium percarbonate (SPC). All these reactions were monitored by gas chromatography-mass spectrometry (GC-MS) analysis and compared with the classical Fenton reaction in water under magnetic stirring. The same set of treatments was also applied to 2,4-dichlorophenol (2,4-DCP) and phenol, the first two products that occur a step down in the degradation sequence. Fenton and Fenton-like reagents were employed at the lowest active concentration. The effects of US and MW irradiation were investigated and compared with those of conventional treatments. Detailed mechanisms of Fenton-type reactions were suggested for 2,4-D, 2,4-DCP, and phenol, underlining the principal degradation products identified. MW-promoted degradation under solvent-free conditions with solid Fenton-like reagents (viz. SPC) is extremely efficient and mainly follows pyrolytic pathways. Power US strongly accelerates the degradation of 2,4-D in water through a rapid generation of highly reactive radicals; it does not lead to the formation of more toxic dimers. We show that US and MW enhance the oxidative degradation of 2,4-D and that a considerable saving of oxidants and cutting down of reaction times is thereby achieved. The results support the interpretation of previously published data and improve the understanding of the factors of direct degradation along different pathways. Oxidative pathways for 2,4-D, 2,4-DCP, and phenol were proposed by a careful monitoring of the reactions and detection of intermediates by GC-MS. The understanding of the factors that affect chlorophenols degradation along different pathways may facilitate the optimization of the treatment. Type of energy source (US or MW), power, and frequency to be applied could be designed in function of the operative scenario (amount of pollutant in soil, water, or oils).

  18. Contribution of the Antibiotic Chloramphenicol and Its Analogues as Precursors of Dichloroacetamide and Other Disinfection Byproducts in Drinking Water.

    PubMed

    Chu, Wenhai; Krasner, Stuart W; Gao, Naiyun; Templeton, Michael R; Yin, Daqiang

    2016-01-05

    Dichloroacetamide (DCAcAm), a disinfection byproduct, has been detected in drinking water. Previous research showed that amino acids may be DCAcAm precursors. However, other precursors may be present. This study explored the contribution of the antibiotic chloramphenicol (CAP) and two of its analogues (thiamphenicol, TAP; florfenicol, FF) (referred to collectively as CAPs), which occur in wastewater-impacted source waters, to the formation of DCAcAm. Their formation yields were compared to free and combined amino acids, and they were investigated in filtered waters from drinking-water-treatment plants, heavily wastewater-impacted natural waters, and secondary effluents from wastewater treatment plants. CAPs had greater DCAcAm formation potential than two representative amino acid precursors. However, in drinking waters with ng/L levels of CAPs, they will not contribute as much to DCAcAm formation as the μg/L levels of amino acids. Also, the effect of advanced oxidation processes (AOPs) on DCAcAm formation from CAPs in real water samples during subsequent chlorination was evaluated. Preoxidation of CAPs with AOPs reduced the formation of DCAcAm during postchlorination. The results of this study suggest that CAPs should be considered as possible precursors of DCAcAm, especially in heavily wastewater-impacted waters.

  19. Microwave discharge electrodeless lamps (MDEL). V. Microwave-assisted photolytic disinfection of Bacillus subtilis in simulated electroplating wash wastewaters.

    PubMed

    Horikoshi, Satoshi; Tsuchida, Akihiro; Abe, Masahiko; Ohba, Naoki; Uchida, Masayoshi; Serpone, Nick

    2010-01-01

    This short article examines the microwave-assisted photolytic disinfection of aqueous solutions contaminated by Bacillus subtilis microorganisms using UV and vacuum-UV radiation emitted from a microwave discharge electrodeless lamp (MDEL), a device containing a Hg/Ar gas-fill that was proposed recently for use in Advanced Oxidation Processes (AOPs). Results of the disinfection are compared with those obtained from UV radiation emitted by a low-pressure electrode Hg lamp and by an excimer lamp. Also examined is the disinfection of B. subtilis aqueous media that contained Au3+ or Ni2+ ions, species often found in the treatment of electroplating wash wastewaters.

  20. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish.

    PubMed

    Groh, Ksenia J; Carvalho, Raquel N; Chipman, James K; Denslow, Nancy D; Halder, Marlies; Murphy, Cheryl A; Roelofs, Dick; Rolaki, Alexandra; Schirmer, Kristin; Watanabe, Karen H

    2015-02-01

    Adverse outcome pathways (AOPs) organize knowledge on the progression of toxicity through levels of biological organization. By determining the linkages between toxicity events at different levels, AOPs lay the foundation for mechanism-based alternative testing approaches to hazard assessment. Here, we focus on growth impairment in fish to illustrate the initial stages in the process of AOP development for chronic toxicity outcomes. Growth is an apical endpoint commonly assessed in chronic toxicity tests for which a replacement is desirable. Based on several criteria, we identified reduction in food intake to be a suitable key event for initiation of middle-out AOP development. To start exploring the upstream and downstream links of this key event, we developed three AOP case studies, for pyrethroids, selective serotonin reuptake inhibitors (SSRIs) and cadmium. Our analysis showed that the effect of pyrethroids and SSRIs on food intake is strongly linked to growth impairment, while cadmium causes a reduction in growth due to increased metabolic demands rather than changes in food intake. Locomotion impairment by pyrethroids is strongly linked to their effects on food intake and growth, while for SSRIs their direct influence on appetite may play a more important role. We further discuss which alternative tests could be used to inform on the predictive key events identified in the case studies. In conclusion, our work demonstrates how the AOP concept can be used in practice to assess critically the knowledge available for specific chronic toxicity cases and to identify existing knowledge gaps and potential alternative tests. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Chemical exposure and infant leukaemia: development of an adverse outcome pathway (AOP) for aetiology and risk assessment research.

    PubMed

    Pelkonen, Olavi; Terron, Andrea; Hernandez, Antonio F; Menendez, Pablo; Bennekou, Susanne Hougaard

    2017-08-01

    Infant leukaemia (<1 year old) is a rare disease of an in utero origin at an early phase of foetal development. Rearrangements of the mixed-lineage leukaemia (MLL) gene producing abnormal fusion proteins are the most frequent genetic/molecular findings in infant B cell-acute lymphoblastic leukaemia. In small epidemiological studies, mother/foetus exposures to some chemicals including pesticides have been associated with infant leukaemia; however, the strength of evidence and power of these studies are weak at best. Experimental in vitro or in vivo models do not sufficiently recapitulate the human disease and regulatory toxicology studies are unlikely to capture this kind of hazard. Here, we develop an adverse outcome pathway (AOP) based substantially on an analogous disease-secondary acute leukaemia caused by the topoisomerase II (topo II) poison etoposide-and on cellular and animal models. The hallmark of the AOP is the formation of MLL gene rearrangements via topo II poisoning, leading to fusion genes and ultimately acute leukaemia by global (epi)genetic dysregulation. The AOP condenses molecular, pathological, regulatory and clinical knowledge in a pragmatic, transparent and weight of evidence-based framework. This facilitates the interpretation and integration of epidemiological studies in the process of risk assessment by defining the biologically plausible causative mechanism(s). The AOP identified important gaps in the knowledge relevant to aetiology and risk assessment, including the specific embryonic target cell during the short and spatially restricted period of susceptibility, and the role of (epi)genetic features modifying the initiation and progression of the disease. Furthermore, the suggested AOP informs on a potential Integrated Approach to Testing and Assessment to address the risk caused by environmental chemicals in the future.

  2. Defining and Modeling Known Adverse Outcome Pathways: Domoic Acid and Neuronal Signaling as a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Karen H.; Andersen, Melvin E.; Basu, Nil

    2011-01-01

    An adverse outcome pathway (AOP) is a sequence of key events from a molecular-level initiating event and an ensuing cascade of steps to an adverse outcome with population level significance. To implement a predictive strategy for ecotoxicology, the multiscale nature of an AOP requires computational models to link salient processes (e.g., in chemical uptake, toxicokinetics, toxicodynamics, and population dynamics). A case study with domoic acid was used to demonstrate strategies and enable generic recommendations for developing computational models in an effort to move toward a toxicity testing paradigm focused on toxicity pathway perturbations applicable to ecological risk assessment. Domoic acid,more » an algal toxin with adverse effects on both wildlife and humans, is a potent agonist for kainate receptors (ionotropic glutamate receptors whose activation leads to the influx of Na+ and Ca2+). Increased Ca2+ concentrations result in neuronal excitotoxicity and cell death primarily in the hippocampus, which produces seizures, impairs learning and memory, and alters behavior in some species. Altered neuronal Ca2+ is a key process in domoic acid toxicity which can be evaluated in vitro. Further, results of these assays would be amenable to mechanistic modeling for identifying domoic acid concentrations and Ca2+ perturbations that are normal, adaptive, or clearly toxic. In vitro assays with outputs amenable to measurement in exposed populations can link in vitro to in vivo conditions, and toxicokinetic information will aid in linking in vitro results to the individual organism. Development of an AOP required an iterative process with three important outcomes: (1) a critically reviewed, stressor-specific AOP; (2) identification of key processes suitable for evaluation with in vitro assays; and (3) strategies for model development.« less

  3. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    PubMed

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Adverse outcome pathway networks II: Network analytics.

    PubMed

    Villeneuve, Daniel L; Angrish, Michelle M; Fortin, Marie C; Katsiadaki, Ioanna; Leonard, Marc; Margiotta-Casaluci, Luigi; Munn, Sharon; O'Brien, Jason M; Pollesch, Nathan L; Smith, L Cody; Zhang, Xiaowei; Knapen, Dries

    2018-06-01

    Toxicological responses to stressors are more complex than the simple one-biological-perturbation to one-adverse-outcome model portrayed by individual adverse outcome pathways (AOPs). Consequently, the AOP framework was designed to facilitate de facto development of AOP networks that can aid in the understanding and prediction of pleiotropic and interactive effects more common to environmentally realistic, complex exposure scenarios. The present study introduces nascent concepts related to the qualitative analysis of AOP networks. First, graph theory-based approaches for identifying important topological features are illustrated using 2 example AOP networks derived from existing AOP descriptions. Second, considerations for identifying the most significant path(s) through an AOP network from either a biological or risk assessment perspective are described. Finally, approaches for identifying interactions among AOPs that may result in additive, synergistic, or antagonistic responses (or previously undefined emergent patterns of response) are introduced. Along with a companion article (part I), these concepts set the stage for the development of tools and case studies that will facilitate more rigorous analysis of AOP networks, and the utility of AOP network-based predictions, for use in research and regulatory decision-making. The present study addresses one of the major themes identified through a Society of Environmental Toxicology and Chemistry Horizon Scanning effort focused on advancing the AOP framework. Environ Toxicol Chem 2018;37:1734-1748. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  5. Quantitative (q)AOP for aromatase inhibition as case study to advance qAOP development practices

    EPA Science Inventory

    Here we describe how “read across” of a quantitative adverse outcome pathway (qAOP) developed with data for one chemical can be used to screen impacts of other chemicals. We developed a qAOP starting with inhibition of CYP19A (aromatase) in fathead minnows (FHM) as th...

  6. Mineralization and defluoridation of 2,2,3,3-tetrafluoro -1-propanol (TFP) by UV oxidation in a novel three-phase fluidized bed reactor (3P-FBR).

    PubMed

    Shih, Yu-Jen; Tsai, Meng-Tso; Huang, Yao-Hui

    2013-05-01

    2,2,3,3-Tetrafluoro-1-propanol (TFP, C3H4F4O, M.W. = 132.06) is extensively used as the solvent in CD-R and DVD-R fabrication. Since it has a fluorinated alky-chain configuration and is non-biodegradable, its treatment by conventional oxidation methods is typically very inefficient. In this work, novel three-phase fluidized bed reactor (3P-FBR, 7.5 cm in diameter, 50 cm high) that combines photo oxidation (UV/H2O2, one of AOPs (Advanced Oxidation Process) and adsorption (BT5 iron oxide as adsorbent) processes is designed for mineralizing and defluorinizing TFP wastewater. The experimental results reveal that TFP can be efficiently mineralized, and the BT5 that is circulated by aeration in the 3P-FBR system can remove the released fluoride ions in the reaction period. Irradiation with 254 nm UV and a 10 mM H2O2 dose yield a TOC removal of TFP (1.39 mM, equivalent to an initial TOC of 50 ppm) of over 99.95% in 2 h, and 99% of fluoride was removed by BT5 with an adsorption capacity of 24.1 mg-F g(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    PubMed

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.

  8. 20170312 - Adverse Outcome Pathway (AOP) framework for ...

    EPA Pesticide Factsheets

    Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signals and environmental factors linked to morphogenesis and microphysiology. Gestational exposure to some chemicals disrupts vascular development leading to adverse outcomes. To broadly assess consequences of gestational toxicant exposure on vascular development, an Adverse Outcome Pathway (AOP) framework was constructed that integrates data from ToxCast high-throughput screening (HTS) assays with pathway-level information from the literature and public databases. The AOP-based model resolved the ToxCast library (1065 compounds) into a matrix based on several dozen molecular functions critical for developmental angiogenesis. A sample of 38 ToxCast chemicals selected across the matrix tested model performance. Putative vascular disrupting chemical (pVDC) bioactivity was assessed by multiple laboratories utilizing diverse angiogenesis assays, including: transgenic zebrafish, complex human cell co-cultures, engineered microscale systems, and human-synthetic models. The ToxCast pVDC signature predicted vascular disruption in a manner that was chemical-specific and assay-dependent. An AOP for developmental vascular toxicity was constructed that focuses on inhibition of VEGF receptor (VEGFR2). Thi

  9. Adverse Outcome Pathway (AOP) framework for embryonic ...

    EPA Pesticide Factsheets

    Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signals and environmental factors linked to morphogenesis and microphysiology. Gestational exposure to some chemicals disrupts vascular development leading to adverse outcomes. To broadly assess consequences of gestational toxicant exposure on vascular development, an Adverse Outcome Pathway (AOP) framework was constructed that integrates data from ToxCast high-throughput screening (HTS) assays with pathway-level information from the literature and public databases. The AOP-based model resolved the ToxCast library (1065 compounds) into a matrix based on several dozen molecular functions critical for developmental angiogenesis. A sample of 38 ToxCast chemicals selected across the matrix tested model performance. Putative vascular disrupting chemical (pVDC) bioactivity was assessed by multiple laboratories utilizing diverse angiogenesis assays, including: transgenic zebrafish, complex human cell co-cultures, engineered microscale systems, and human-synthetic models. The ToxCast pVDC signature predicted vascular disruption in a manner that was chemical-specific and assay-dependent. An AOP for developmental vascular toxicity was constructed that focuses on inhibition of VEGF receptor (VEGFR2). Thi

  10. The adverse outcome pathway concept: a pragmatic tool in toxicology.

    PubMed

    Vinken, Mathieu

    2013-10-04

    Adverse outcome pathways (AOPs) are novel tools in toxicology and human risk assessment with broad potential. AOPs are designed to provide a clear-cut mechanistic representation of critical toxicological effects that span over different layers of biological organization. AOPs share a common structure consisting of a molecular initiating event, a series of intermediate steps and key events, and an adverse outcome. Development of AOPs ideally complies with OECD guidelines. This also holds true for AOP evaluation, which includes consideration of the Bradford Hill criteria for weight-of-evidence assessment and meeting a set of key questions defined by the OECD. Elaborate AOP frameworks have yet been proposed for chemical-induced skin sensitization, cholestasis, liver fibrosis and liver steatosis. These newly postulated AOPs can serve a number of ubiquitous purposes, including the establishment of (quantitative) structure-activity relationships, the development of novel in vitro toxicity screening tests and the elaboration of prioritization strategies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Visible-light-driven photocatalytic activation of peroxymonosulfate by Cu2(OH)PO4 for effective decontamination.

    PubMed

    Liu, Guoshuai; Zhou, Yanan; Teng, Jie; Zhang, Jinna; You, Shijie

    2018-06-01

    The advanced oxidation process (AOP) based on SO 4 - radicals draws an increasing interest in water and wastewater treatment. Producing SO 4 - radicals from the activation of peroxymonosulfate (PMS) by transition metal ions or oxides may be problematic due to high operational cost and potential secondary pollution caused by metal leaching. To address this challenge, the present study reports the efficient production of SO 4 - radicals through visible-light-driven photocatalytic activation (VL-PCA) of PMS by using Cu 2 (OH)PO 4 single crystal for enhanced degradation of a typical recalcitrant organic pollutant, i.e., 2,4-dichlorophenol (2,4-DCP). It took only 7 min to achieve almost 100% removal of 2,4-DCP in the Cu 2 (OH)PO 4 /PMS system under visible-light irradiation and pH-neutral condition. The 2,4-DCP degradation was positively correlated to the amount of Cu 2 (OH)PO 4 and PMS. Both OH and SO 4 - radicals were responsible for enhanced degradation performance, indicated by radical scavenger experiments and electron spin resonance (ESR) measurements. The Cu 2 (OH)PO 4 single crystal exhibited good cyclic stability and negligible metal leaching. According to density functional theory (DFT) calculations, the visible-light-driven transformation of two copper states between trigonal bipyramidal sites and octahedral sites in the crystal structure of Cu 2 (OH)PO 4 facilitates the generation of OH and SO 4 - radicals from the activation of PMS and cleavage of O-O bonds. This study provides the proof-in-concept demonstration of activation of PMS driven by visible light, making the SO 4 - radicals-based AOPs much easier, more economical and more sustainable in engineering applications for water and wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture.

    PubMed

    Shah, Amisha D; Dai, Ning; Mitch, William A

    2013-03-19

    Although amine-based CO(2) absorption is a leading contender for full-scale postcombustion CO(2) capture at power plants, concerns have been raised about the potential release of carcinogenic N-nitrosamines and N-nitramines formed by reaction of exhaust gas NO(x) with the amines. Experiments with a laboratory-scale pilot unit suggested that washwater units meant to scrub contaminants from absorber unit exhaust could potentially serve as a source of N-nitrosamines via reactions of residual NO(x) with amines accumulating in the washwater. Dosage requirements for the continuous treatment of the washwater recycle line with ultraviolet (UV) light for destruction of N-nitrosamines and N-nitramines, and with ozone or hydroxyl radical-based advanced oxidation processes (AOPs) for destruction of amines and aldehydes, were evaluated. Although <1000 mJ/cm(2) UV fluence was generally needed for 90% removal of a series of model N-nitrosamines and N-nitramines, 280-1000 mJ/cm(2) average fluence was needed for 90% removal of total N-nitrosamines in pilot washwaters associated with two different solvents. While AOPs were somewhat more efficient than ozone for acetaldehyde destruction, ozone was more efficient for amine destruction. Ozone achieved 90% amine removal in washwaters at 5-12 molar excess of ozone, indicating transferred dosage levels of ∼100 mg/L for 90% removal in a first-stage washwater unit, but likely only ∼10 mg/L if applied to a second-stage washwater. Accurate dosage and cost estimates would require pilot testing to capture synergies between UV and ozone treatments.

  13. Combining UASB technology and advanced oxidation processes (AOPs) to treat food processing wastewaters.

    PubMed

    Sigge, G O; Britz, J; Fourie, P C; Barnardt, C A; Strydom, R

    2002-01-01

    UASB treatment of fruit cannery and winery effluents was shown to be feasible. However, the treated effluents still have residual COD levels well above the legal limit of 75 mg.l(-1) for direct discharge to a water system and a form of post-treatment is necessary to reduce the COD further. Ozone and ozone/hydrogen peroxide were used in combination with a granular activated carbon contacting column to assess the effectiveness as a post-treatment option for the UASB treated fruit cannery and winery effluent. Colour reduction in the effluents ranged from 66 to 90% and COD reductions of 27-55% were achieved. The combination of ozone and hydrogen peroxide gave better results than ozonation alone. Significant progress was thus made in achieving the legal limit of 75 mg.l(-1).

  14. Increasing Scientific Confidence in Adverse Outcome Pathways: Application of Tailored Bradford-Hill Considerations for Evaluating Weight of Evidence.

    PubMed

    Becker, Richard A; Ankley, Gerald T; Edwards, Stephen W; Kennedy, Sean W; Linkov, Igor; Meek, Bette; Sachana, Magdalini; Segner, Helmut; Van Der Burg, Bart; Villeneuve, Daniel L; Watanabe, Haruna; Barton-Maclaren, Tara S

    2015-08-01

    Systematic consideration of scientific support is a critical element in developing and, ultimately, using adverse outcome pathways (AOPs) for various regulatory applications. Though weight of evidence (WoE) analysis has been proposed as a basis for assessment of the maturity and level of confidence in an AOP, methodologies and tools are still being formalized. The Organization for Economic Co-operation and Development (OECD) Users' Handbook Supplement to the Guidance Document for Developing and Assessing AOPs (OECD 2014a; hereafter referred to as the OECD AOP Handbook) provides tailored Bradford-Hill (BH) considerations for systematic assessment of confidence in a given AOP. These considerations include (1) biological plausibility and (2) empirical support (dose-response, temporality, and incidence) for Key Event Relationships (KERs), and (3) essentiality of key events (KEs). Here, we test the application of these tailored BH considerations and the guidance outlined in the OECD AOP Handbook using a number of case examples to increase experience in more transparently documenting rationales for assigned levels of confidence to KEs and KERs, and to promote consistency in evaluation within and across AOPs. The major lessons learned from experience are documented, and taken together with the case examples, should contribute to better common understanding of the nature and form of documentation required to increase confidence in the application of AOPs for specific uses. Based on the tailored BH considerations and defining questions, a prototype quantitative model for assessing the WoE of an AOP using tools of multi-criteria decision analysis (MCDA) is described. The applicability of the approach is also demonstrated using the case example aromatase inhibition leading to reproductive dysfunction in fish. Following the acquisition of additional experience in the development and assessment of AOPs, further refinement of parameterization of the model through expert elicitation is recommended. Overall, the application of quantitative WoE approaches hold promise to enhance the rigor, transparency and reproducibility for AOP WoE determinations and may play an important role in delineating areas where research would have the greatest impact on improving the overall confidence in the AOP. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  16. Quantitative Adverse Outcome Pathways and Their ...

    EPA Pesticide Factsheets

    A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course predictions that can support regulatory decision-making. Herein we describe several facets of qAOPs, including (a) motivation for development, (b) technical considerations, (c) evaluation of confidence, and (d) potential applications. The qAOP used as an illustrative example for these points describes the linkage between inhibition of cytochrome P450 19A aromatase (the MIE) and population-level decreases in the fathead minnow (FHM; Pimephales promelas). The qAOP consists of three linked computational models for the following: (a) the hypothalamic-pitutitary-gonadal axis in female FHMs, where aromatase inhibition decreases the conversion of testosterone to 17β-estradiol (E2), thereby reducing E2-dependent vitellogenin (VTG; egg yolk protein precursor) synthesis, (b) VTG-dependent egg development and spawning (fecundity), and (c) fecundity-dependent population trajectory. While development of the example qAOP was based on experiments with FHMs exposed to the aromatase inhibitor fadrozole, we also show how a toxic equivalence (TEQ) calculation allows use of the qAOP to predict effects of another, untested aromatase inhibitor, iprodione. While qAOP development can be resource-intensive, the quan

  17. Internal exposure dynamics drive the Adverse Outcome Pathways of synthetic glucocorticoids in fish

    NASA Astrophysics Data System (ADS)

    Margiotta-Casaluci, Luigi; Owen, Stewart F.; Huerta, Belinda; Rodríguez-Mozaz, Sara; Kugathas, Subramanian; Barceló, Damià; Rand-Weaver, Mariann; Sumpter, John P.

    2016-02-01

    The Adverse Outcome Pathway (AOP) framework represents a valuable conceptual tool to systematically integrate existing toxicological knowledge from a mechanistic perspective to facilitate predictions of chemical-induced effects across species. However, its application for decision-making requires the transition from qualitative to quantitative AOP (qAOP). Here we used a fish model and the synthetic glucocorticoid beclomethasone dipropionate (BDP) to investigate the role of chemical-specific properties, pharmacokinetics, and internal exposure dynamics in the development of qAOPs. We generated a qAOP network based on drug plasma concentrations and focused on immunodepression, skin androgenisation, disruption of gluconeogenesis and reproductive performance. We showed that internal exposure dynamics and chemical-specific properties influence the development of qAOPs and their predictive power. Comparing the effects of two different glucocorticoids, we highlight how relatively similar in vitro hazard-based indicators can lead to different in vivo risk. This discrepancy can be predicted by their different uptake potential, pharmacokinetic (PK) and pharmacodynamic (PD) profiles. We recommend that the development phase of qAOPs should include the application of species-species uptake and physiologically-based PK/PD models. This integration will significantly enhance the predictive power, enabling a more accurate assessment of the risk and the reliable transferability of qAOPs across chemicals.

  18. AOP description: Acetylcholinesterase inhibition

    EPA Science Inventory

    This adverse outcome pathway (AOP) leverages existing knowledge in the open literature to describe the linkage between inhibition of acetylcholinesterase (AChE) and the subsequent mortality resulting from impacts at cholinergic receptors. The AOP takes a chemical category approa...

  19. Synthesis and photocatalytic property of Zinc Oxide (ZnO) fine particle using flame spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Widiyandari, Hendri; Ayu Ketut Umiati, Ngurah; Dwi Herdianti, Rizki

    2018-05-01

    Advance oxidation process (AOP) using photocatalysis constitute a promising technology for the treatment of wastewaters containing non-easily removable organic compound. Zinc oxide (ZnO) is one of efficient photocatalyst materials. This research reported synthesis of ZnO fine particle from zinc nitrate hexahydrate using Flame Spray Pyrolysis (FSP) method. In this method, oxygen (O2) gas were used as oxidizer and LPG (liquid petroleum gas) were used as fuel. The effect of O2 gas flow rate during ZnO particle fabrication to the microstructure, optical and photocatalytic properties were systematically discussed. The photocatalytic activity of ZnO was tested for the degradation of amaranth dye with initial concentration of 10 ppm under irradiation of solar simulator. The rate of decrease in amaranth concentration was measured using UV-Visible spectrophotometer. The ZnO synthesized using FSP has a hexagonal crystalline structure. Scanning electron microscope images showed that ZnO has a spherical formed which was the mixture of solid and hollow particles. The optimum condition for amaranth degradation was shown by ZnO produced at a flow rate of 1.5 L/min which able to degrade amaranth dye up to 95,3 % at 75 minutes irradiation.

  20. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes

    PubMed Central

    Li, Shaoli; Ren, Yuhang; Fu, Yingying; Gao, Xingsheng; Jiang, Cong; Wu, Gang; Ren, Hongqiang

    2018-01-01

    Five full-scale wastewater treatment plants (WWTPs) in China using typical biodegradation processes (SBR, oxidation ditch, A2/O) were selected to assess the removal of four popular artificial sweeteners (ASs). All four ASs (acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharin (SAC)) were detected, ranging from 0.43 to 27.34μg/L in the influent. Higher concentrations of ASs were measured in winter. ACE could be partly removed by 7.11–50.76% through biodegradation and especially through the denitrifying process. The A2/O process was the most efficient at biodegrading ASs. Adsorption (by granular activated carbon (GAC) and magnetic resin) and ultraviolet radiation-based advanced oxidation processes (UV/AOPs) were evaluated to remove ASs in laboratory-scale tests. The amounts of resin adsorbed were 3.33–18.51 times more than those of GAC except for SUC. The adsorption ability of resin decreased in the order of SAC > ACE > CYC > SUC in accordance with the pKa. Degradation of ASs followed pseudo-first-order kinetics in UV/H2O2 and UV/PDS. When applied to the secondary effluent, ASs could be degraded from 30.87 to 99.93% using UV/PDS in 30 minutes and UV/PDS was more efficient and economic. PMID:29293534

  1. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes.

    PubMed

    Li, Shaoli; Ren, Yuhang; Fu, Yingying; Gao, Xingsheng; Jiang, Cong; Wu, Gang; Ren, Hongqiang; Geng, Jinju

    2018-01-01

    Five full-scale wastewater treatment plants (WWTPs) in China using typical biodegradation processes (SBR, oxidation ditch, A2/O) were selected to assess the removal of four popular artificial sweeteners (ASs). All four ASs (acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharin (SAC)) were detected, ranging from 0.43 to 27.34μg/L in the influent. Higher concentrations of ASs were measured in winter. ACE could be partly removed by 7.11-50.76% through biodegradation and especially through the denitrifying process. The A2/O process was the most efficient at biodegrading ASs. Adsorption (by granular activated carbon (GAC) and magnetic resin) and ultraviolet radiation-based advanced oxidation processes (UV/AOPs) were evaluated to remove ASs in laboratory-scale tests. The amounts of resin adsorbed were 3.33-18.51 times more than those of GAC except for SUC. The adsorption ability of resin decreased in the order of SAC > ACE > CYC > SUC in accordance with the pKa. Degradation of ASs followed pseudo-first-order kinetics in UV/H2O2 and UV/PDS. When applied to the secondary effluent, ASs could be degraded from 30.87 to 99.93% using UV/PDS in 30 minutes and UV/PDS was more efficient and economic.

  2. Framework for computationally-predicted AOPs

    EPA Science Inventory

    Framework for computationally-predicted AOPs Given that there are a vast number of existing and new chemicals in the commercial pipeline, emphasis is placed on developing high throughput screening (HTS) methods for hazard prediction. Adverse Outcome Pathways (AOPs) represent a...

  3. Investigation of the multifunctional gene AOP3 expands the regulatory network fine-tuning glucosinolate production in Arabidopsis

    PubMed Central

    Jensen, Lea M.; Kliebenstein, Daniel J.; Burow, Meike

    2015-01-01

    Quantitative trait loci (QTL) mapping studies enable identification of loci that are part of regulatory networks controlling various phenotypes. Detailed investigations of genes within these loci are required to ultimately understand the function of individual genes and how they interact with other players in the network. In this study, we use transgenic plants in combination with natural variation to investigate the regulatory role of the AOP3 gene found in GS-AOP locus previously suggested to contribute to the regulation of glucosinolate defense compounds. Phenotypic analysis and QTL mapping in F2 populations with different AOP3 transgenes support that the enzymatic function and the AOP3 RNA both play a significant role in controlling glucosinolate accumulation. Furthermore, we find different loci interacting with either the enzymatic activity or the RNA of AOP3 and thereby extend the regulatory network controlling glucosinolate accumulation. PMID:26442075

  4. Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs).

    PubMed

    Liang, Xujun; Guo, Chuling; Liao, Changjun; Liu, Shasha; Wick, Lukas Y; Peng, Dan; Yi, Xiaoyun; Lu, Guining; Yin, Hua; Lin, Zhang; Dang, Zhi

    2017-06-01

    Surfactant-enhanced remediation (SER) is considered as a promising and efficient remediation approach. This review summarizes and discusses main drivers on the application of SER in removing polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and water. The effect of PAH-PAH interactions on SER efficiency is, for the first time, illustrated in an SER review. Interactions between mixed PAHs could enhance, decrease, or have no impact on surfactants' solubilization power towards PAHs, thus affecting the optimal usage of surfactants for SER. Although SER can transfer PAHs from soil/non-aqueous phase liquids to the aqueous phase, the harmful impact of PAHs still exists. To decrease the level of PAHs in SER solutions, a series of SER-based integrated cleanup technologies have been developed including surfactant-enhanced bioremediation (SEBR), surfactant-enhanced phytoremediation (SEPR) and SER-advanced oxidation processes (SER-AOPs). In this review, the general considerations and corresponding applications of the integrated cleanup technologies are summarized and discussed. Compared with SER-AOPs, SEBR and SEPR need less operation cost, yet require more treatment time. To successfully achieve the field application of surfactant-based technologies, massive production of the cost-effective green surfactants (i.e. biosurfactants) and comprehensive evaluation of the drivers and the global cost of SER-based cleanup technologies need to be performed in the future. Copyright © 2017. Published by Elsevier Ltd.

  5. Ecdysone receptor agonism leading to lethal molting ...

    EPA Pesticide Factsheets

    Molting is a key biological process in growth, development, reproduction and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting compounds (EDCs). For example, several classes of pesticides used in agriculture and aquaculture specifically target key endocrine regulators of the molting process. These chemicals may also pose hazards to non-target species by causing molting defects, thus affecting the health of the ecosystems. The present review summarized the available knowledge on molting-related endocrine regulation and disruption in arthropods (with special focus on insects and crustaceans), in order to identify research gaps and develop a toxicity mechanism-based model for environmental hazard and risk assessment. Based on the review, multiple targets in the molting processes that EDCs can interact with were characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and evaluated for weight of evidence using the Evolved Bradford Hill Criteria. This review proposed the first invertebrate endocrine disruption AOP and may serve as a knowledge foundation for future environmental studies and AOP development. Development of high throughput toxicology (HTT) programs (e.g., ToxCast, Tox21) and potential a

  6. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment.

    PubMed

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2017-04-15

    In this study, the industrial textile wastewater was treated using a chemical-based technique (coagulation-flocculation, C-F) sequential with an advanced oxidation process (AOP: Fenton or Photo-Fenton). During the C-F, Al 2 (SO 4 ) 3 was used as coagulant and its optimal dose was determined using the jar test. The following operational conditions of C-F, maximizing the organic matter removal, were determined: 700 mg/L of Al 2 (SO 4 ) 3  at pH = 9.96. Thus, the C-F allowed to remove 98% of turbidity, 48% of Chemical Oxygen Demand (COD), and let to increase in the BOD 5 /COD ratio from 0.137 to 0.212. Subsequently, the C-F effluent was treated using each of AOPs. Their performances were optimized by the Response Surface Methodology (RSM) coupled with a Box-Behnken experimental design (BBD). The following optimal conditions of both Fenton (Fe 2+ /H 2 O 2 ) and Photo-Fenton (Fe 2+ /H 2 O 2 /UV) processes were found: Fe 2+ concentration = 1 mM, H 2 O 2 dose = 2 mL/L (19.6 mM), and pH = 3. The combination of C-F pre-treatment with the Fenton reagent, at optimized conditions, let to remove 74% of COD during 90 min of the process. The C-F sequential with Photo-Fenton process let to reach 87% of COD removal, in the same time. Moreover, the BOD 5 /COD ratio increased from 0.212 to 0.68 and from 0.212 to 0.74 using Fenton and Photo-Fenton processes, respectively. Thus, the enhancement of biodegradability with the physico-chemical treatment was proved. The depletion of H 2 O 2 was monitored during kinetic study. Strategies for improving the reaction efficiency, based on the H 2 O 2 evolution, were also tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A comparative study of ultrasonication, Fenton's oxidation and ferro-sonication treatment for degradation of carbamazepine from wastewater and toxicity test by Yeast Estrogen Screen (YES) assay.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2013-03-01

    A comparative study of ultrasonication (US), Fenton's oxidation (FO) and ferro-sonication (FS) (combination of ultrasonication and Fenton's oxidation) advanced oxidation processes (AOPs) for degradation of carbamazepine (CBZ) from wastewater (WW) is reported for the first time. CBZ is a worldwide used antiepileptic drug, found as a persistent emerging contaminant in many wastewater treatment plants (WWTPs) effluents and other aquatic environments. The oxidation treatments of WW caused an effective removal of the drug. Among the various US, FO and FS pre-treatments carried out, higher soluble chemical oxygen demand (SCOD) and soluble organic carbon (SOC) increment (63 to 86% and 21 to 34%, respectively) was observed during FO pre-treatment process, resulting in higher removal of CBZ (84 to 100%) from WW. Furthermore, analysis of by-products formed during US, FO and FS pre-treatment in WW was carried out by using laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to tandem mass spectrometry (MS/MS). LDTD-APCI-MS/MS analysis indicated formation of two by-products, such as epoxycarbamazepine and hydroxycarbamazepine due to the reaction of hydroxyl radicals (OH) with CBZ during the three types of pre-treatment processes. In addition, the estrogenic activity of US, FO and FS pre-treated sample with CBZ and its by-products was carried out by Yeast Estrogen Screen (YES) assay method. Based upon the YES test results, none of the pre-treated samples showed estrogenic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Desorption of micropollutant from spent carbon filters used for water purifier.

    PubMed

    Kwon, Da-Sol; Tak, So-Yeon; Lee, Jung-Eun; Kim, Moon-Kyung; Lee, Young Hwa; Han, Doo Won; Kang, Sanghyeon; Zoh, Kyung-Duk

    2017-07-01

    In this study, to examine the accumulated micropollutants in the spent carbon filter used in the water purifier, first, the method to desorb micropollutant from the activated carbon was developed and optimized. Then, using this optimized desorption conditions, we examined which micropollutants exist in spent carbon filters collected from houses in different regions in Korea where water purifiers were used. A total of 11 micropollutants (caffeine (CFF), acetaminophen (ACT), sulfamethazine (SMA), sulfamethoxazole (SMZ), metoprolol (MTP), carbamazepine (CBM), naproxen (NPX), bisphenol-A (BPA), ibuprofen (IBU), diclofenac (DCF), and triclocarban (TCB)) were analyzed using LC/MS-MS from the spent carbon filters. CFF, NPX, and DCF had the highest detection frequencies (>60%) in the carbon filters (n = 100), whereas SMA, SMZ, and MTP were only detected in the carbon filters, but not in the tap waters (n = 25), indicating that these micropollutants, which exist less than the detection limit in tap water, were accumulated in the carbon filters. The regional micropollutant detection patterns in the carbon filters showed higher levels of micropollutants, especially NPX, BPA, IBU, and DCF, in carbon filters collected in the Han River and Nakdong River basins where large cities exist. The levels of micropollutants in the carbon filter were generally lower in the regions where advanced oxidation processes (AOPs) were employed at nearby water treatment plants (WTPs), indicating that AOP process in WTP is quite effective in removing micropollutant. Our results suggest that desorption of micropollutant from the carbon filter used can be a tool to identify micropollutants present in tap water with trace amounts or below the detection limit.

  9. Aspect-Oriented Programming is Quantification and Obliviousness

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.; Friedman, Daniel P.; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper proposes that the distinguishing characteristic of Aspect-Oriented Programming (AOP) systems is that they allow programming by making quantified programmatic assertions over programs written by programmers oblivious to such assertions. Thus, AOP systems can be analyzed with respect to three critical dimensions: the kinds of quantifications allowed, the nature of the actions that can be asserted, and the mechanism for combining base-level actions with asserted actions. Consequences of this perspective are the recognition that certain systems are not AOP and that some mechanisms are expressive enough to allow programming an AOP system within them. A corollary is that while AOP can be applied to Object-Oriented Programming, it is an independent concept applicable to other programming styles.

  10. Developing and applying the adverse outcome pathway ...

    EPA Pesticide Factsheets

    To support a paradigm shift in regulatory toxicology testing and risk assessment, the Adverse Outcome Pathway (AOP) concept has recently been proposed. This concept is similar to that for Mode of Action (MOA), describing a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis to predict effects for structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed.A variety of cellular and molecular processes are known to be critical to normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of principles of the description and assessment of MOA and AOPs, examples of adverse out

  11. The chemistry side of AOP: implications for toxicity extrapolation

    EPA Science Inventory

    An adverse outcome pathway (AOP) is a structured representation of the biological events that lead to adverse impacts following a molecular initiating event caused by chemical interaction with a macromolecule. AOPs have been proposed to facilitate toxicity extrapolation across s...

  12. Accelerating Adverse Outcome Pathway (AOP) development via computationally predicted AOP networks

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. Ho...

  13. .Network analytics for adverse outcome pathways

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) organize toxicological knowledge from the molecular level up to the population level, providing evidence-based causal linkages at each step. The AOPWiki serves as a repository of AOPs. With the international adoption of the AOP framework, the AOPw...

  14. Adverse Outcome Pathway (AOP) Network Development for Fatty Liver

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are descriptive biological sequences that start from a molecular initiating event (MIE) and end with an adverse health outcome. AOPs provide biological context for high throughput chemical testing and further prioritize environmental health risk re...

  15. Accelerating Adverse Outcome Pathway Development Using Publicly Available Data Sources

    EPA Science Inventory

    The adverse outcome pathway (AOP) concept links molecular perturbations with organism and population-level outcomes to support high-throughput toxicity testing. International efforts are underway to define AOPs and store the information supporting these AOPs in a central knowledg...

  16. Comparison of AOPs for the removal of natural organic matter: performance and economic assessment.

    PubMed

    Murray, C A; Parsons, S A

    2004-01-01

    Control of disinfection by-products during water treatment is primarily achieved by reducing the levels of organic precursor species prior to chlorination. Many waters contain natural organic matter at levels up to 15 mg L(-1); therefore it is necessary to have a range of control methods to support conventional coagulation. Advanced oxidation processes are such processes and in this paper the Fenton and photo-Fenton processes along with photocatalysis are assessed for their NOM removal potential. The performance of each process is shown to be dependent on pH and chemical dose as well as the initial NOM concentration. Under optimum conditions the processes achieved greater than 90% removal of DOC and UV254 absorbance. This removal led to the THMFP of the source water being reduced from 140 to below 10 microg L(-1), well below UK and US standards. An economic assessment of the processes revealed that currently such processes are not economic. With advances in technology and tightening of water quality standards these processes should become economically feasible options.

  17. Pulsed Ultraviolet Light Emitting Diodes for Advanced Oxidation of Tartrazine

    DTIC Science & Technology

    2015-03-26

    a significantly lower amount of energy while lasting considerably longer than the conventional lamp . Recently, an experiment on AOP with a UV LED ...severe damage to these organs, resulting in death (OSHA, 2012). LEDs are promising alternatives for UV energy sources. Contrarily to mercury lamps ...Table 1 UV Lamp Properties Additionally, because LEDs interrupt the DNA of microorganisms without the introduction of added chemicals, there are

  18. Using Adverse Outcome Pathways to Build Chemical Groups: A Case Study for Hepatic Steatosis

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework systematically documents the mechanisms underlying effects of chemicals. Ideally, the AOP traces the mechanism to the initial interaction of chemicals with the biological system. Thus, AOPs should help inform chemical grouping by identi...

  19. Exposure and Dosimetry Considerations for Adverse Outcome Pathways (AOPs) (NIH-AOP)

    EPA Science Inventory

    Risk is a function of both of hazard and exposure. Toxicokinetic (TK) models can determine whether chemical exposures produce potentially hazardous tissue concentrations. Whether or not the initial molecular event (MIE) in an Adverse Outcome Pathway (AOP) occurs depends on both e...

  20. An evaluation of skylight polarization patterns for navigation.

    PubMed

    Ma, Tao; Hu, Xiaoping; Zhang, Lilian; Lian, Junxiang; He, Xiaofeng; Wang, Yujie; Xian, Zhiwen

    2015-03-10

    Skylight polarization provides a significant navigation cue for certain polarization-sensitive animals. However, the precision of the angle of polarization (AOP) of skylight for vehicle orientation is not clear. An evaluation of AOP must be performed before it is utilized. This paper reports an evaluation of AOP of skylight by measuring the skylight polarization patterns of clear and cloudy skies using a full-sky imaging polarimetry system. AOP measurements of skylight are compared with the pattern calculated by the single-scattering Rayleigh model and these differences are quantified. The relationship between the degree of polarization (DOP) and the deviation of AOP of skylight is thoroughly studied. Based on these, a solar meridian extracted method is presented. The results of experiments reveal that the DOP is a key parameter to indicate the accuracy of AOP measurements, and all the output solar meridian orientations extracted by our method in both clear and cloudy skies can achieve a high accuracy for vehicle orientation.

  1. An Evaluation of Skylight Polarization Patterns for Navigation

    PubMed Central

    Ma, Tao; Hu, Xiaoping; Zhang, Lilian; Lian, Junxiang; He, Xiaofeng; Wang, Yujie; Xian, Zhiwen

    2015-01-01

    Skylight polarization provides a significant navigation cue for certain polarization-sensitive animals. However, the precision of the angle of polarization (AOP) of skylight for vehicle orientation is not clear. An evaluation of AOP must be performed before it is utilized. This paper reports an evaluation of AOP of skylight by measuring the skylight polarization patterns of clear and cloudy skies using a full-sky imaging polarimetry system. AOP measurements of skylight are compared with the pattern calculated by the single-scattering Rayleigh model and these differences are quantified. The relationship between the degree of polarization (DOP) and the deviation of AOP of skylight is thoroughly studied. Based on these, a solar meridian extracted method is presented. The results of experiments reveal that the DOP is a key parameter to indicate the accuracy of AOP measurements, and all the output solar meridian orientations extracted by our method in both clear and cloudy skies can achieve a high accuracy for vehicle orientation. PMID:25763652

  2. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    PubMed

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater. Copyright © 2015. Published by Elsevier B.V.

  3. Empirical testing AOP network-based hazard prediction combined effect of aromatase inhibition & androgen receptor agonism

    EPA Science Inventory

    Adverse outcome pathways (AOPs) describe linkages between a specific molecular perturbation resulting from interaction of a chemical with a biomolecule in an organism and one possible adverse outcome of regulatory significance. While individual AOPs have utility, it is recognized...

  4. Creating a Structured Adverse Outcome Pathway Knowledgebase via Ontology-Based Annotations

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is increasingly used to integrate data based on traditional and emerging toxicity testing paradigms. As the number of AOP descriptions has increased, so has the need to define the AOP in computable terms. Herein, we present a comprehens...

  5. The analysis to understand temporal variation and long-range transport of aerosol over Northeast-Asia Using COMS, MI

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.

    2016-12-01

    Numerous efforts to retrieve aerosol optical properties (AOPs) using satellite measurements have been accumulated for decades, resulted in several qualified data which can be used for the analysis of spatiotemporal characteristics of AOPs. However, the limitation in the instrument lifetime restricts temporal window of the analysis of long-term AOPs variation. In this point of view, single channel algorithm, which uses a single visible channel to retrieve aerosol optical depth (AOD), has an advantage to extent the time domain of the analysis. The Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean and Meteorological Satellite (COMS) includes the single channel Meteorological Imager (MI), which can also be utilized for the retrieval of AOPs. Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs over Northeast Asia, we can analyze the spatiotemporal characteristic of the aerosol using MI observations. In this study, we investigate the trend of AOD and also discuss the impact of long-range transport of aerosol on the temporal variation. Since the year 2010 when the COMS was launched, AODs over Northeast China and Yellow Sea region show 3.02 % and 2.74 % decrease per year, respectively, which are significant trends in spite of only 5-year short period. The decreasing behavior seems associated with the recent decreasing frequency of dust event over the region. But other Northeast Asia regions do not show clear temporal change. The accuracy of retrieved AOD can relates to the uncertainty of this trend analysis. According to the error analysis, cloud contamination and error in bright surface reflectance results in the accuracy of AOD. Therefore, improvements of cloud masking process and surface reflectance estimation in the developed single channel MI algorithm will be required for the future study.

  6. Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: evaluation of operational and kinetic parameters.

    PubMed

    Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D

    2010-10-01

    Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe(2+)/H(2)O(2)) and heterogeneous photocatalysis with titanium dioxide (TiO(2)) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe(2+) and H(2)O(2) were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe(2+) and H(2)O(2) concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO(2) process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Frameworks for organizing exposure and toxicity data - the Aggregate Exposure Pathway (AEP) and the Adverse Outcome Pathway (AOP)

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework organizes existing knowledge regarding a series of biological events, starting with a molecular initiating event (MIE) and ending at an adverse outcome. The AOP framework provides a biological context to interpret in vitro toxicity dat...

  8. AOP-DB: A database resource for the exploration of Adverse Outcome Pathways through integrated association networks.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework describes the progression of a toxicity pathway from molecular perturbation to population-level outcome in a series of measurable, mechanistic responses. The controlled, computer-readable vocabulary that defines an AOP has the ability t...

  9. Transitioning from AOP to IATA - Exploiting mechanistic ...

    EPA Pesticide Factsheets

    Slide presentation at satellite meeting of the QSAR2016 Meeting on How to Transition from AOP to IATA-Exploiting mechanistic insight for practical decision making. . Slide presentation at satellite meeting of the QSAR2016 Meeting on How to Transition from AOP to IATA-Exploiting mechanistic insight for practical decision making. .

  10. A Flight Deck Decision Support Tool for Autonomous Airborne Operations

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin

    2002-01-01

    NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.

  11. Integrating publicly-available data to generate computationally ...

    EPA Pesticide Factsheets

    The adverse outcome pathway (AOP) framework provides a way of organizing knowledge related to the key biological events that result in a particular health outcome. For the majority of environmental chemicals, the availability of curated pathways characterizing potential toxicity is limited. Methods are needed to assimilate large amounts of available molecular data and quickly generate putative AOPs for further testing and use in hazard assessment. A graph-based workflow was used to facilitate the integration of multiple data types to generate computationally-predicted (cp) AOPs. Edges between graph entities were identified through direct experimental or literature information or computationally inferred using frequent itemset mining. Data from the TG-GATEs and ToxCast programs were used to channel large-scale toxicogenomics information into a cpAOP network (cpAOPnet) of over 20,000 relationships describing connections between chemical treatments, phenotypes, and perturbed pathways measured by differential gene expression and high-throughput screening targets. Sub-networks of cpAOPs for a reference chemical (carbon tetrachloride, CCl4) and outcome (hepatic steatosis) were extracted using the network topology. Comparison of the cpAOP subnetworks to published mechanistic descriptions for both CCl4 toxicity and hepatic steatosis demonstrate that computational approaches can be used to replicate manually curated AOPs and identify pathway targets that lack genomic mar

  12. AOPs and Biomarkers: Bridging High Throughput Screening ...

    EPA Pesticide Factsheets

    As high throughput screening (HTS) plays a larger role in toxicity testing, camputational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models designed to quantify potential adverse effects based on HTS data will benefit from additional data sources that connect the magnitude of perturbation from the in vitro system to a level of concern at the organism or population level. The adverse outcome pathway (AOP) concept provides an ideal framework for combining these complementary data. Recent international efforts under the auspices of the Organization for Economic Co-operation and Development (OECD) have resulted in an AOP wiki designed to house formal descriptions of AOPs suitable for use in regulatory decision making. Recent efforts have built upon this to include an ontology describing the AOP with linkages to biological pathways, physiological terminology, and taxonomic applicability domains. Incorporation of an AOP network tool developed by the U.S. Army Corps of Engineers also allows consideration of cumulative risk from chemical and non-chemical stressors. Biomarkers are an important complement to formal AOP descriptions, particularly when dealing with susceptible subpopulations or lifestages in human health risk assessment. To address the issue of nonchemical stressors than may modify effects of criteria air pollutants, a novel method was used to integrate blood gene expression data with hema

  13. Development of Quantitative Adverse Outcome Pathways Using Health-Protective Assumptions to Fill Data Gaps

    EPA Science Inventory

    In an adverse outcome pathway (AOP), the target site dose participates in a molecular initiating event (MIE), which in turn triggers a sequence of key events leading to an adverse outcome (AO). Quantitative AOPs (QAOP) are needed if AOP characterization is to address risk as well...

  14. Application of adverse outcome pathways (AOPs) in human health and ecotoxicology capturing divergent consequences of conserved molecular initiating events via AOP networks

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework was developed to help organize and disseminate existing knowledge concerning the means through which specific perturbations of biological pathways can lead to adverse outcomes considered relevant to risk-based regulatory decision-making...

  15. Application of Adverse Outcome Pathways (AOPs) in Human Health and Ecotoxicology Capturing Divergent Consequences of Conserved Molecular Initiating Events via AOP Networks (Presentation)

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework was developed to help organize and disseminate existing knowledge concerning the means through which specific perturbations of biological pathways can lead to adverse outcomes considered relevant to risk-based regulatory decision-making...

  16. Computationally predicted Adverse Outcome Pathway networks for liver-related diseases using publicly available data sources: Case studies and lessons learned

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework summarizes key information about mechanistic events leading to an adverse health or ecological outcome. In recent years computationally predicted AOPs (cpAOP) making use of publicly available data have been proposed as a means of accele...

  17. The Methodology Applied in DPPH, ABTS and Folin-Ciocalteau Assays Has a Large Influence on the Determined Antioxidant Potential.

    PubMed

    Abramovič, Helena; Grobin, Blaž; Poklar, Nataša; Cigić, Blaž

    2017-06-01

    Antioxidant potential (AOP) is not only the property of the matrix analyzed but also depends greatly on the methodology used. The chromogenic radicals 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and Folin-Ciocalteu (FC) assay were applied to estimate how the method and the composition of the assay solvent influence the AOP determined for coffee, tea, beer, apple juice and dietary supplements. Large differences between the AOP values depending on the reaction medium were observed, with the highest AOP determined mostly in the FC assay. In reactions with chromogenic radicals several fold higher values of AOP were obtained in buffer pH 7.4 than in water or methanol. The type of assay and solvent composition have similar influences on the reactivity of a particular antioxidant, either pure or as part of a complex matrix. The reaction kinetics of radicals with antioxidants in samples reveals that AOP depends strongly on incubation time, yet differently for each sample analyzed and the assay applied.

  18. Optimizing Blasting’s Air Overpressure Prediction Model using Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Air overpressure (AOp) resulting from blasting can cause damage and nuisance to nearby civilians. Thus, it is important to be able to predict AOp accurately. In this study, 8 different Artificial Neural Network (ANN) were developed for the purpose of prediction of AOp. The ANN models were trained using different variants of Particle Swarm Optimization (PSO) algorithm. AOp predictions were also made using an empirical equation, as suggested by United States Bureau of Mines (USBM), to serve as a benchmark. In order to develop the models, 76 blasting operations in Hulu Langat were investigated. All the ANN models were found to outperform the USBM equation in three performance metrics; root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). Using a performance ranking method, MSO-Rand-Mut was determined to be the best prediction model for AOp with a performance metric of RMSE=2.18, MAPE=1.73% and R2=0.97. The result shows that ANN models trained using PSO are capable of predicting AOp with great accuracy.

  19. Adverse outcome pathways | Science Inventory | US EPA

    EPA Pesticide Factsheets

    The Systems Toxicology Unit of the European Commission Joint Research Centre (JRC) is strongly committed to development and uptake of AOPs. In coordination with the OECD, the JRC and EPA have collaborated closely in the development of training and outreach materials related to the development and application of AOPs. The European Food Safety Authority (EFSA) has requested that the JRC provide eight training courses, each 2 days in duration, to EFSA over a 2.5 year period. Given EPA’s expertise in the development of AOPs and the AOP-wiki, as well as EPA’s experience in training others on the AOP concepts and best practices in this rapidly moving arena, the JRC has engaged EPA expertise in this training activity, which reaches groups of 30-40 participants from regulatory authorities and academic institutes across Europe. Not Applicable

  20. Degradation of acrylamide by the UV/chlorine advanced oxidation process.

    PubMed

    Gao, Ze-Chen; Lin, Yi-Li; Xu, Bin; Pan, Yang; Xia, Sheng-Ji; Gao, Nai-Yun; Zhang, Tian-Yang; Chen, Ming

    2017-11-01

    The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 10 9  M -1  s -1 . The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins.

    PubMed

    van Bilsen, Jolanda H M; Sienkiewicz-Szłapka, Edyta; Lozano-Ojalvo, Daniel; Willemsen, Linette E M; Antunes, Celia M; Molina, Elena; Smit, Joost J; Wróblewska, Barbara; Wichers, Harry J; Knol, Edward F; Ladics, Gregory S; Pieters, Raymond H H; Denery-Papini, Sandra; Vissers, Yvonne M; Bavaro, Simona L; Larré, Colette; Verhoeckx, Kitty C M; Roggen, Erwin L

    2017-01-01

    The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.

  2. Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater.

    PubMed

    Aguas, Yelitza; Hincapie, Margarita; Fernández-Ibáñez, Pilar; Polo-López, María Inmaculada

    2017-12-31

    The interest in developing alternative water disinfection methods that increase the access to irrigation water free of pathogens for agricultural purposes is increasing in the last decades. Advanced Oxidation Processes (AOPs) have been demonstrated to be very efficient for the abatement of several kind of pathogens in contaminated water. The purpose of the current study was to evaluate and compare the capability of several solar AOPs for the inactivation of resistant spores of agricultural fungi. Solar photoassisted H 2 O 2 , solar photo-Fenton at acid and near-neutral pH, and solar heterogeneous photocatalysis using TiO 2, with and without H 2 O 2 , have been studied for the inactivation of spores of Curvularia sp., a phytopathogenic fungi worldwide found in soils and crops. Different concentrations of reagents and catalysts were evaluated at bench scale (solar vessel reactors, 200mL) and at pilot plant scale (solar Compound Parabolic Collector-CPC reactor, 20L) under natural solar radiation using distilled water (DW) and real secondary effluents (SE) from a municipal wastewater treatment plant. Inactivation order of Curvularia sp. in distilled water was determined, i.e. TiO 2 /H 2 O 2 /sunlight (100/50mgL -1 )>H 2 O 2 /sunlight (40mgL -1 )>TiO 2 /sunlight (100mgL -1 )>photo-Fenton with 5/10mgL -1 of Fe 2+ /H 2 O 2 at pH3 and near-neutral pH. For the case of SE, at near neutral pH, the most efficient solar process was H 2 O 2 /Solar (60mgL -1 ); nevertheless, the best Curvularia sp. inactivation rate was obtained with photo-Fenton (10/20mgL -1 of Fe 2+ /H 2 O 2 ) requiring a previous water adicification to pH3, within 300 and 210min of solar treatment, respectively. These results show the efficiency of solar AOPs as a feasible option for the inactivation of resistant pathogens in water for crops irrigation, even in the presence of organic matter (average Dissolved Organic Carbon (DOC): 24mgL -1 ), and open a window for future wastewater reclamation and irrigation use. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An integrative data mining approach to identifying adverse outcome pathway signatures.

    PubMed

    Oki, Noffisat O; Edwards, Stephen W

    2016-03-28

    The Adverse Outcome Pathway (AOP) framework is a tool for making biological connections and summarizing key information across different levels of biological organization to connect biological perturbations at the molecular level to adverse outcomes for an individual or population. Computational approaches to explore and determine these connections can accelerate the assembly of AOPs. By leveraging the wealth of publicly available data covering chemical effects on biological systems, computationally-predicted AOPs (cpAOPs) were assembled via data mining of high-throughput screening (HTS) in vitro data, in vivo data and other disease phenotype information. Frequent Itemset Mining (FIM) was used to find associations between the gene targets of ToxCast HTS assays and disease data from Comparative Toxicogenomics Database (CTD) by using the chemicals as the common aggregators between datasets. The method was also used to map gene expression data to disease data from CTD. A cpAOP network was defined by considering genes and diseases as nodes and FIM associations as edges. This network contained 18,283 gene to disease associations for the ToxCast data and 110,253 for CTD gene expression. Two case studies show the value of the cpAOP network by extracting subnetworks focused either on fatty liver disease or the Aryl Hydrocarbon Receptor (AHR). The subnetwork surrounding fatty liver disease included many genes known to play a role in this disease. When querying the cpAOP network with the AHR gene, an interesting subnetwork including glaucoma was identified. While substantial literature exists to support the potential for AHR ligands to elicit glaucoma, it was not explicitly captured in the public annotation information in CTD. The subnetwork from this analysis suggests a cpAOP that includes changes in CYP1B1 expression, which has been previously established in the literature as a primary cause of glaucoma. These case studies highlight the value in integrating multiple data sources when defining cpAOPs for HTS data. Copyright © 2016. Published by Elsevier Ireland Ltd.

  4. Sonocatalytic degradation of malachite green oxalate by a semiconductor metal oxide nanocatalyst.

    PubMed

    Bhavani, R; Sivasamy, A

    2016-12-01

    Advanced Oxidation Process (AOP) technologies are considered to be better technique for the degradation or mineralization of many recalcitrant compounds and pollutants. In the present study heterogeneous sonocatalytic degradation of a model organic compound such as Malachite green oxalate (MGO) was carried out in the aqueous phase. Zinc oxide nanorods were prepared by precipitation method employing zinc acetates as precursors and were characterized by FT-IR, XRD, FE-SEM and EDAX analysis. Degradation of MGO in the aqueous phase was studied in detail under the sonocatalytic process. Effects of pH, dye concentration, oxidant concentration, kinetics and effect of electrolytes on dye degradation were carried out to check the efficiency of the sonocatalyst. Effect of energy input on the degradation processes was also investigated. The degradation of dye molecules were monitored by UV-visible spectrophotometer and Chemical Oxygen demand (COD). The dye molecules were readily degraded at above 90% in the pH range 5.0-7.0 under ultrasound with zinc oxide nanorods. The interference of electrolytes like NaCl, KCl, Na 2 CO 3 , NaHCO 3 and MgSO 4 on the degradation of dye molecules were also studied on the sonocatalytic degradation of MGO. From the kinetic studies it was observed that at lower initial concentration of dye molecules the degradation efficiency was above 90%. The rate of the reaction decreased on increasing the initial dye concentrations of the dye molecules. It was observed that the complete mineralization of dye molecules was achieved without the formation of toxic by-products. The reusability of the catalyst also showed the effective degradation of the dye molecules up to five cycles without loss of the catalytic activities. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water.

    PubMed

    Santos, Aurora; Rodríguez, Sergio; Pardo, Fernando; Romero, Arturo

    2016-09-01

    Perfluorinated compounds (PFCs) are receiving significant attention due to its global distribution, high persistence, and bioaccumulation properties. Among them, perfluorooctanoic acid (PFOA) is one of the most commonly found in the environment. The strong bond C-F in PFOA is extremely difficult to degrade, therefore advanced oxidation processes (AOPs) at room temperature and pressure are not able to oxidize them, as was noticed here using Fenton like reagent (FR) or persulfate (PS) at 25°C. On the contrary, by using persulfate activated by heat (100mM and T=70°C) a complete defluorination of PFOA 0.1mM was noticed after 18h, with a sequential degradation mechanism of losing one CF2 unit from PFOA and its intermediates (perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPA) and perfluorobutanoic acid (PFBA)). Since this thermal treatment is not usually desirable from an economical point of view, alternative process has been tested. For this scope, a hybrid process is proposed in this work, by adding humic acid, HA, (600mgL(-1)) and FR, (165mM in H2O2 and 3mM in Fe(3+)) to the 0.1mM PFOA solution. It was found that the HA was oxidized by FR. PFOA was entrapped quantitatively and irreversibly during HA oxidation, resulting PFOA non-available to the aqueous phase. Oxidized HA with PFOA entrapped precipitates. Both, the leftover Fe(III) acting as a coagulant and neutral pH enhance the separation of this solid phase. The precipitation noticed by adding HA to the PFOA solution in absence of FR was negligible. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2 processes.

    PubMed

    Lutterbeck, Carlos Alexandre; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-02-01

    Anticancer drugs are harmful substances that can have carcinogenic, mutagenic, teratogenic, genotoxic, and cytotoxic effects even at low concentrations. More than 50 years after its introduction, the alkylating agent cyclophosphamide (CP) is still one of the most consumed anticancer drug worldwide. CP has been detected in water bodies in several studies and is known as being persistent in the aquatic environment. As the traditional water and wastewater treatment technologies are not able to remove CP from the water, different treatment options such as advanced oxidation processes (AOPs) are under discussion to eliminate these compounds. The present study investigated the degradation of CP by three different AOPs: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The light source was a Hg medium-pressure lamp. Prescreening tests were carried out and afterwards experiments based on the optimized conditions were performed. The primary elimination of the parent compounds and the detection of transformation products (TPs) were monitored with LC-UV-MS/MS analysis, whereas the degree of mineralization was monitored by measuring the dissolved organic carbon (DOC). Ecotoxicological assays were carried out with the luminescent bacteria Vibrio fischeri. CP was completely degraded in all treatments and UV/Fe(2+)/H2O2 was the fastest process, followed by UV/H2O2 and UV/TiO2. All the reactions obeyed pseudo-first order kinetics. Considering the mineralization UV/Fe(2+)/H2O2 and UV/TiO2 were the most efficient process with mineralization degrees higher than 85%, whereas UV/H2O2 achieved 72.5% of DOC removal. Five transformation products were formed during the reactions and identified. None of them showed significant toxicity against V. fischeri. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Investigating the application of AOP methodology in development of Financial Accounting Software using Eclipse-AJDT Environment

    NASA Astrophysics Data System (ADS)

    Sharma, Amita; Sarangdevot, S. S.

    2010-11-01

    Aspect-Oriented Programming (AOP) methodology has been investigated in development of real world business application software—Financial Accounting Software. Eclipse-AJDT environment has been used as open source enhanced IDE support for programming in AOP language—Aspect J. Crosscutting concerns have been identified and modularized as aspects. This reduces the complexity of the design considerably due to elimination of code scattering and tangling. Improvement in modularity, quality and performance is achieved. The study concludes that AOP methodology in Eclipse-AJDT environment offers powerful support for modular design and implementation of real world quality business software.

  8. The future trajectory of adverse outcome pathways: a commentary.

    PubMed

    Sewell, Fiona; Gellatly, Nichola; Beaumont, Maria; Burden, Natalie; Currie, Richard; de Haan, Lolke; Hutchinson, Thomas H; Jacobs, Miriam; Mahony, Catherine; Malcomber, Ian; Mehta, Jyotigna; Whale, Graham; Kimber, Ian

    2018-04-01

    The advent of adverse outcome pathways (AOPs) has provided a new lexicon for description of mechanistic toxicology, and a renewed enthusiasm for exploring modes of action resulting in adverse health and environmental effects. In addition, AOPs have been used successfully as a framework for the design and development of non-animal approaches to toxicity testing. Although the value of AOPs is widely recognised, there remain challenges and opportunities associated with their use in practise. The purpose of this article is to consider specifically how the future trajectory of AOPs may provide a basis for addressing some of those challenges and opportunities.

  9. Kinetic evaluation of graphene oxide based heterogenous catalytic ozonation for the removal of ibuprofen.

    PubMed

    Jothinathan, Lakshmi; Hu, Jiangyong

    2018-05-01

    In this study, the performance of graphene oxide (GO) in ozonation process was kinetically evaluated using the modified R ct concept since GO may act as initiator, promoter and inhibitor in ozone radical chain reaction. The applicability of the modified R ct concept was demonstrated using different GO suspensions (GO alone, GO/TiO 2 , GO/Fe 3 O 4 , GO/TiO 2 /Fe 3 O 4 ) in ozonation process. Results showed that ozone exposure and •OH exposure were found to be higher for GO/Fe 3 O 4 and GO/TiO 2 /Fe 3 O 4 compared to other GO suspensions, which was almost equivalent to O 3 /H 2 O 2 process. The determined initiation and inhibition rate constants of GO alone, were 1 fold higher than GO/Fe 3 O 4 and GO/TiO 2 /Fe 3 O 4 , since the GO alone suspension possesses higher O 3 decomposition but lower organic degradation because that GO does not yield •OH. Moreover, GO/Fe 3 O 4 suspension, along with natural organic matter (NOM), was proven to be helpful in degrading ibuprofen in ozonation process, but the effect was minimal when compared to O 3 /H 2 O 2 process. These results exhibited that the surface modified GO suspensions could be utilized as future alternative AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. An “ADME Module” in the Adverse Outcome Pathway ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway (AOP) framework has generated intense interest for its utility to organize knowledge on the toxicity mechanisms, starting from a molecular initiating event (MIE) to an adverse outcome across various levels of biological organization. While the AOP framework is designed to be chemical agnostic, it is widely recognized that considering chemicals’ absorption, distribution, metabolism, and excretion (ADME) behaviors is critical in applying the AOP framework in chemical-specific risk assessment. Currently, information being generated as part of the Organisation for Economic Co-operation and Development (OECD) AOP Development Programme is being consolidated into an AOP Knowledgebase (http://aopwiki.org). To enhance the use of this Knowledgebase in risk assessment, an ADME Module has been developed to contain the ADME information needed to connect MIEs and other key events in an AOP for specific chemicals. The conceptual structure of this module characterizes the potential of a chemical to reach the target MIE based on either its structure-based features or relative rates of ADME. The key features of this module include (1) a framework for connecting biology-based AOP to biochemical-based ADME and chemical/human activity-based exposure pathways; (2) links to qualitative tools (e.g., structure-based cheminformatic model) that screen for chemicals that could potentially reach the target MIE; (3) links to quantitative tools (e.g., dose-r

  11. Development of GP and GEP models to estimate an environmental issue induced by blasting operation.

    PubMed

    Faradonbeh, Roohollah Shirani; Hasanipanah, Mahdi; Amnieh, Hassan Bakhshandeh; Armaghani, Danial Jahed; Monjezi, Masoud

    2018-05-21

    Air overpressure (AOp) is one of the most adverse effects induced by blasting in the surface mines and civil projects. So, proper evaluation and estimation of the AOp is important for minimizing the environmental problems resulting from blasting. The main aim of this study is to estimate AOp produced by blasting operation in Miduk copper mine, Iran, developing two artificial intelligence models, i.e., genetic programming (GP) and gene expression programming (GEP). Then, the accuracy of the GP and GEP models has been compared to multiple linear regression (MLR) and three empirical models. For this purpose, 92 blasting events were investigated, and subsequently, the AOp values were carefully measured. Moreover, in each operation, the values of maximum charge per delay and distance from blast points, as two effective parameters on the AOp, were measured. After predicting by the predictive models, their performance prediction was checked in terms of variance account for (VAF), coefficient of determination (CoD), and root mean square error (RMSE). Finally, it was found that the GEP with VAF of 94.12%, CoD of 0.941, and RMSE of 0.06 is a more precise model than other predictive models for the AOp prediction in the Miduk copper mine, and it can be introduced as a new powerful tool for estimating the AOp resulting from blasting.

  12. An Integrative data mining approach to identifying Adverse ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway (AOP) framework is a tool for making biological connections and summarizing key information across different levels of biological organization to connect biological perturbations at the molecular level to adverse outcomes for an individual or population. Computational approaches to explore and determine these connections can accelerate the assembly of AOPs. By leveraging the wealth of publicly available data covering chemical effects on biological systems, computationally-predicted AOPs (cpAOPs) were assembled via data mining of high-throughput screening (HTS) in vitro data, in vivo data and other disease phenotype information. Frequent Itemset Mining (FIM) was used to find associations between the gene targets of ToxCast HTS assays and disease data from Comparative Toxicogenomics Database (CTD) by using the chemicals as the common aggregators between datasets. The method was also used to map gene expression data to disease data from CTD. A cpAOP network was defined by considering genes and diseases as nodes and FIM associations as edges. This network contained 18,283 gene to disease associations for the ToxCast data and 110,253 for CTD gene expression. Two case studies show the value of the cpAOP network by extracting subnetworks focused either on fatty liver disease or the Aryl Hydrocarbon Receptor (AHR). The subnetwork surrounding fatty liver disease included many genes known to play a role in this disease. When querying the cpAOP

  13. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    The National Ecological Observatory Network (NEON) is the continental-scale research platform that will collect information on ecosystems across the United States to advance our understanding and ability to forecast environmental change at the continental scale. One of NEON's observing systems, the Airborne Observation Platform (AOP), will fly an instrument suite consisting of a high-fidelity visible-to-shortwave infrared imaging spectrometer, a full waveform small footprint LiDAR, and a high-resolution digital camera on a low-altitude aircraft platform. NEON AOP is focused on acquiring data on several terrestrial Essential Climate Variables including bioclimate, biodiversity, biogeochemistry, and land use products. These variables are collected throughout a network of 60 sites across the Continental United States, Alaska, Hawaii and Puerto Rico via ground-based and airborne measurements. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON AOP plays the role of bridging the spatial scales from that of individual organisms and stands to the scale of satellite-based remote sensing. NEON is building 3 airborne systems to facilitate the routine coverage of NEON sites and provide the capacity to respond to investigator requests for specific projects. The first NEON imaging spectrometer, a next-generation VSWIR instrument, was recently delivered to NEON by JPL. This instrument has been integrated with a small-footprint waveform LiDAR on the first NEON airborne platform (AOP-1). A series of AOP-1 test flights were conducted during the first year of NEON's construction phase. The goal of these flights was to test out instrument functionality and performance, exercise remote sensing collection protocols, and provide provisional data for algorithm and data product validation. These test flights focused the following questions: What is the optimal remote sensing data collection protocol to meet NEON science requirements? How do aircraft altitude, spatial sampling, spatial resolution, and LiDAR instrument configuration affect data retrievals? What are appropriate algorithms to derive ECVs from AOP data? What methodology should be followed to validate AOP remote sensing products and how should ground truth data be collected? Early test flights were focused on radiometric and geometric calibration as well as processing from raw data to Level-1 products. Subsequent flights were conducted focusing on collecting vegetation chemistry and structure measurements. These test flights that were conducted during 2012 have proved to be extremely valuable for verifying instrument functionality and performance, exercising remote sensing collection protocols, and providing data for algorithm and science product validation. Results from these early flights are presented, including the radiometric and geometric calibration of the AOP instruments. These 2012 flight campaigns are just the first of a series of test flights that will take place over the next several years as part of the NEON observatory construction. Lessons learned from these early campaigns will inform both airborne and ground data collection methodologies for future campaigns as well as guide the AOP sampling strategy before NEON enters full science operations.

  14. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    PubMed

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  15. Adapting biomarker technologies to adverse outcome pathways (AOPs) research: current thoughts on using in vivo discovery for developing in vitro target methods

    EPA Science Inventory

    Adverse outcome pathways (AOP) research is a relatively new concept in human systems biology for assessing the molecular level linkage from an initiating (chemical) event that could lead to a disease state. Although most implementations of AOPs are based on liquids analyses, the...

  16. Quantitative assessment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline.

    PubMed

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-07-01

    In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.

  17. Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Krishnamurthy, Karthik

    2004-01-01

    NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

  18. Aspects, Wrappers and Events

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2003-01-01

    This viewgraph presentation provides information on Object Infrastructure Framework (OIF), an Aspect-Oriented Programming (AOP) system. The presentation begins with an introduction to the difficulties and requirements of distributed computing, including functional and non-functional requirements (ilities). The architecture of Distributed Object Technology includes stubs, proxies for implementation objects, and skeletons, proxies for client applications. The key OIF ideas (injecting behavior, annotated communications, thread contexts, and pragma) are discussed. OIF is an AOP mechanism; AOP is centered on: 1) Separate expression of crosscutting concerns; 2) Mechanisms to weave the separate expressions into a unified system. AOP is software engineering technology for separately expressing systematic properties while nevertheless producing running systems that embody these properties.

  19. Aspect-Oriented Programming is Quantification and Implicit Invocation

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.; Friedman, Daniel P.; Koga, Dennis (Technical Monitor)

    2001-01-01

    We propose that the distinguishing characteristic of Aspect-Oriented Programming (AOP) languages is that they allow programming by making quantified programmatic assertions over programs that lack local notation indicating the invocation of these assertions. This suggests that AOP systems can be analyzed with respect to three critical dimensions: the kinds of quantifications allowed, the nature of the interactions that can be asserted, and the mechanism for combining base-level actions with asserted actions. Consequences of this perspective are the recognition that certain systems are not AOP and that some mechanisms are metabolism: they are sufficiently expressive to allow straightforwardly programming an AOP system within them.

  20. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    PubMed

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.

  1. Consumption of Hibiscus sabdariffa L. aqueous extract and its impact on systemic antioxidant potential in healthy subjects.

    PubMed

    Frank, Thomas; Netzel, Gabriele; Kammerer, Dietmar R; Carle, Reinhold; Kler, Adolf; Kriesl, Erwin; Bitsch, Irmgard; Bitsch, Roland; Netzel, Michael

    2012-08-15

    To evaluate health benefits attributed to Hibiscus sabdariffa L. a randomized, open-label, two-way crossover study was undertaken to compare the impact of an aqueous H. sabdariffa L. extract (HSE) on the systemic antioxidant potential (AOP; assayed by ferric reducing antioxidant power (FRAP)) with a reference treatment (water) in eight healthy volunteers. The biokinetic variables were the areas under the curve (AUC) of plasma FRAP, ascorbic acid and urate that are above the pre-dose concentration, and the amounts excreted into urine within 24 h (Ae(0-24) ) of antioxidants as assayed by FRAP, ascorbic acid, uric acid, malondialdehyde (biomarker for oxidative stress), and hippuric acid (metabolite and potential biomarker for total polyphenol intake). HSE caused significantly higher plasma AUC of FRAP, an increase in Ae(0-24) of FRAP, ascorbic acid and hippuric acid, whereas malondialdehyde excretion was reduced. Furthermore, the main hibiscus anthocyanins as well as one glucuronide conjugate could be quantified in the volunteers' urine (0.02% of the administered dose). The aqueous HSE investigated in this study enhanced the systemic AOP and reduced the oxidative stress in humans. Furthermore, the increased urinary hippuric acid excretion after HSE consumption indicates a high biotransformation of the ingested HSE polyphenols, most likely caused by the colonic microbiota. Copyright © 2012 Society of Chemical Industry.

  2. Integrated Approaches to Testing and Assessment: OECD Activities on the Development and Use of Adverse Outcome Pathways and Case Studies.

    PubMed

    Sakuratani, Yuki; Horie, Masashi; Leinala, Eeva

    2018-01-09

    The Organisation for Economic Co-operation and Development (OECD) works with member countries and other stakeholders to improve and harmonize chemical assessment methods. In 2012, the OECD Adverse Outcome Pathways (AOPs) Development Programme started. The Programme has published six AOPs thus far and more than 60 AOPs are under various stages of development under the Programme. This article reviews recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessments (IATAs). The guidance document for the use of AOPs in developing IATA, published in 2016, provides a framework for developing and using IATA and describes how IATA can be based on an AOP. The guidance document on the reporting of defined approaches to be used within IATA, also published in 2016, provides a set of principles for reporting defined approaches to testing and assessment to facilitate their evaluation. In the guidance documents, the AOP concept plays an important role for building IATA approaches in a science-based and transparent way. In 2015, the IATA Case Studies Project was launched to increase experience with the use of IATA and novel hazard methodologies by developing case studies, which constitute examples of predictions that are fit-for-regulatory use. This activity highlights the importance of international collaboration for harmonizing and improving chemical safety assessment methods. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  3. Adverse Outcome Pathway (AOP) for a Mutagenic Mode of ...

    EPA Pesticide Factsheets

    AOPs provide a framework to describe a sequence of measureable key events (KEs), beginning with a molecular initiating event (MIE), followed by a series of identified KEs linked to one another by KE Relationships (KERs), all anchored by a specific adverse outcome (AO). Each KE/KER is supported by data and evaluated against criteria to assess biological plausibility, weight/strength of evidence, specificity, and confidence. AOPs offer an approach to using toxicological data and predictive modeling to actualize use of mode-of-action (MOA) for such purposes as read-across, integrated approaches to testing & assessment, and risk assessment. Different applications will depend partly on the scientific confidence underpinning each KE/KER and the overall AOP. An OECD program encourages development of AOPs, with a wiki that allows for public review & comment to foster collaborations and broaden understanding & application of AOPs. Developing an AOP for a mutagenic MOA for cancer as a case study in the OECD program lays a path towards determination of such an MOA and its use in chemical assessment programs. Aflatoxin B1 (AFB1), with ubiquitous exposure and a rich database, was selected for this case study. AFB1 has been determined to induce HCC via a DNA-reactive MOA in many species, including humans. The sequential KEs identified for AFB1 are as follows: pre-MIE: Hepatic metabolic activation; MIE: Formation of a pro-mutagenic DNA adduct (N7-AFB1-guanine or AFB1-FAPy); KE

  4. Integrated systems analysis of persistent polar pollutants in the water cycle.

    PubMed

    van der Voet, E; Nikolic, I; Huppes, G; Kleijn, R

    2004-01-01

    Persistent polar pollutants (P3) are difficult to degrade in standard waste water treatment plants. As a result, they end up in the effluent and are emitted to the surface water. In some areas, this problem is aggravated through "closed loop recycling", causing concentrations of P3 in surface water to build up over time. This could cause violation of (future) EU regulations. In the P-THREE project, various alternative waste water treatment techniques are investigated regarding their effectiveness in eliminating these substances, especially membrane bioreactor treatment and advanced oxidation processes, MBR and AOP. The integrated systems analysis which is the subject of this paper assesses these techniques in a broader systems context: (1) the life-cycle of the P3, (2) the life cycle of the WWTPs, and (3) the WWTP life cycle costs.

  5. An experimental investigation of wastewater treatment using electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  6. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  7. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    PubMed Central

    Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  8. INVESTIGATING ALTERNATIVES TO THE FISH EARLY-LIFE STAGE TEST: A STRATEGY FOR DISCOVERING AND ANNOTATING ADVERSE OUTCOME PATHWAYS FOR EARLY FISH DEVELOPMENT

    PubMed Central

    Villeneuve, Daniel; Volz, David C; Embry, Michelle R; Ankley, Gerald T; Belanger, Scott E; Léonard, Marc; Schirmer, Kristin; Tanguay, Robert; Truong, Lisa; Wehmas, Leah

    2014-01-01

    The fish early-life stage (FELS) test (Organisation for Economic Co-operation and Development [OECD] test guideline 210) is the primary test used internationally to estimate chronic fish toxicity in support of ecological risk assessments and chemical management programs. As part of an ongoing effort to develop efficient and cost-effective alternatives to the FELS test, there is a need to identify and describe potential adverse outcome pathways (AOPs) relevant to FELS toxicity. To support this endeavor, the authors outline and illustrate an overall strategy for the discovery and annotation of FELS AOPs. Key events represented by major developmental landmarks were organized into a preliminary conceptual model of fish development. Using swim bladder inflation as an example, a weight-of-evidence–based approach was used to support linkage of key molecular initiating events to adverse phenotypic outcomes and reduced young-of-year survival. Based on an iterative approach, the feasibility of using key events as the foundation for expanding a network of plausible linkages and AOP knowledge was explored and, in the process, important knowledge gaps were identified. Given the scope and scale of the task, prioritization of AOP development was recommended and key research objectives were defined relative to factors such as current animal-use restrictions in the European Union and increased demands for fish toxicity data in chemical management programs globally. The example and strategy described are intended to guide collective efforts to define FELS-related AOPs and develop resource-efficient predictive assays that address the toxicological domain of the OECD 210 test. Environ Toxicol Chem 2014;33:158–169. © 2013 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:24115264

  9. State of the art metrics for aspect oriented programming

    NASA Astrophysics Data System (ADS)

    Ghareb, Mazen Ismaeel; Allen, Gary

    2018-04-01

    The quality evaluation of software, e.g., defect measurement, gains significance with higher use of software applications. Metric measurements are considered as the primary indicator of imperfection prediction and software maintenance in various empirical studies of software products. However, there is no agreement on which metrics are compelling quality indicators for novel development approaches such as Aspect Oriented Programming (AOP). AOP intends to enhance programming quality, by providing new and novel constructs for the development of systems, for example, point cuts, advice and inter-type relationships. Hence, it is not evident if quality pointers for AOP can be derived from direct expansions of traditional OO measurements. Then again, investigations of AOP do regularly depend on established coupling measurements. Notwithstanding the late reception of AOP in empirical studies, coupling measurements have been adopted as useful markers of flaw inclination in this context. In this paper we will investigate the state of the art metrics for measurement of Aspect Oriented systems development.

  10. Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water.

    PubMed

    Guo, Kaiheng; Wu, Zihao; Shang, Chii; Yao, Bo; Hou, Shaodong; Yang, Xin; Song, Weihua; Fang, Jingyun

    2017-09-19

    The UV/chlorine process is an emerging advanced oxidation process (AOP) used for the degradation of micropollutants. However, the radical chemistry of this AOP is largely unknown for the degradation of numerous structurally diverse micropollutants in water matrices of varying quality. These issues were addressed by grouping 34 pharmaceuticals and personal care products (PPCPs) according to the radical chemistry of their degradation in the UV/chlorine process at practical PPCP concentrations (1 μg L -1 ) and in different water matrices. The contributions of HO • and reactive chlorine species (RCS), including Cl • , Cl 2 •- , and ClO • , to the degradation of different PPCPs were compound specific. RCS showed considerable reactivity with olefins and benzene derivatives, such as phenols, anilines, and alkyl-/alkoxybenzenes. A good linear relationship was found between the RCS reactivity and negative values of the Hammett ∑σ p + constant for aromatic PPCPs, indicating that electron-donating groups promote the attack of benzene derivatives by RCS. The contribution of HO • , but not necessarily RCS, to PPCP removal decreased with increasing pH. ClO • showed high reactivity with some PPCPs, such as carbamazepine, caffeine, and gemfibrozil, with second-order rate constants of 9.2 × 10 7 , 1.03 × 10 8 , and 4.16 × 10 8 M -1 s -1 , respectively, which contributed to their degradation. Natural organic matter (NOM) induced significant scavenging of ClO • and greatly decreased the degradation of PPCPs that was attributable to ClO • , with a second-order rate constant of 4.5 × 10 4 (mg L -1 ) -1 s -1 . Alkalinity inhibited the degradation of PPCPs that was primarily attacked by HO • and Cl • but had negligible effects on the degradation of PPCPs by ClO • . This is the first study on the reactivity of RCS, particularly ClO • , with structurally diverse PPCPs under simulated drinking water condition.

  11. Implementation of UV-based advanced oxidation processes in algal medium recycling.

    PubMed

    Wang, Wenxuan; Sha, Jun; Lu, Zhiying; Shao, Senlin; Sun, Peizhe; Hu, Qiang; Zhang, Xuezhi

    2018-09-01

    Algae show great potential as sustainable feedstock for numerous bioproducts. However, large volume of water consumption during algal biomass production makes that the culture media recycling is a necessity due to economic and environmental concern. To avoid the negative effect of enriched organic matters in the harvested culture media, pre-treatment prior to medium replenishment and reuse is required. In this study, degradation of algenitic organic matters (AOM) in the culture media by UV-based photolysis processes (i.e., direct UV, UV/peroxydisulfate (PDS), UV/H 2 O 2 , and UV/NH 2 Cl) was explored. The results showed that UV, UV/PDS, UV/H 2 O 2 and UV/NH 2 Cl caused a decrease of SUVA for 29.9%, 35.4%, 40.45%, and 22.6%, respectively, though the organic matter was almost not mineralized. Fluorescence excitation-emission matrix combined with parallel factor analysis indicated that UV/PDS and UV/H 2 O 2 degraded 47.26%-56.31% of the fulvic-like and humic-like fractions in AOM. Powder activated carbon absorption and growth evaluation for the AOPs-treated media indicated that UV/PDS and UV/H 2 O 2 processes not only could remove the growth inhibitors in the media, but were also beneficial to the algae growth. These results suggested that UV/PDS and UV/H 2 O 2 could effectively degrade the hydrophobic components in AOM and converted the growth inhibition fraction of AOM in the recycled media into nutrient source for algal growth. Different from the general application of UV-based AOP in the wastewater treatment, this study provided an innovative idea about how to pre-treat AOM in the media recycling: utilization rather than removal, which was a more sustainable and environment-friendly technology. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Adverse outcome pathway (AOP) development and evaluation ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway provides a construct for assembling mechanistic information at different levels of biological organization in a form designed to support regulatory decision making. In particular, it frames the link between molecular and cellular events that can be measured in high throughput toxicity testing and the organism or population-level events that are commonly relevant in defining risk. Recognizing the importance of this emerging framework, the Organisation for Economic Co-operation and Development (OECD) launched a program to support the development, documentation and consideration of AOPs by the international community in 2012 (http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm). In 2014, a handbook (https://aopkb.org/common/AOP_Handbook.pdf) was developed to guide users in the documentation and evaluation of AOPs and their entry into an official knowledgebase. The handbook draws on longstanding experience in consideration of mechanistic data (e.g., mode of action analysis) to inform risk assessment. To further assist users, a training program was developed by members of the OECD Extended Advisory Group to teach users the basic principles of AOP development and the best practices as outlined in the OECD AOP handbook. Training sessions began in early 2015, and this course will provide training for interested SOT scientists. Following this course, all participants will be familiar w

  13. Informatics approaches in the Biological Characterization of ...

    EPA Pesticide Factsheets

    Adverse Outcome Pathways (AOPs) are a conceptual framework to characterize toxicity pathways by a series of mechanistic steps from a molecular initiating event to population outcomes. This framework helps to direct risk assessment research, for example by aiding in computational prioritization of chemicals, genes, and tissues relevant to an adverse health outcome. We have designed and implemented a computational workflow to access a wealth of public data relating genes, chemicals, diseases, pathways, and species, to provide a biological context for putative AOPs. We selected three AOP case studies: ER/Aromatase Antagonism Leading to Reproductive Dysfunction, AHR1 Activation Leading to Cardiotoxicity, and AChE Inhibition Leading to Acute Mortality, and deduced a taxonomic range of applicability for each AOP. We developed computational tools to automatically access and analyze the pathway activity of AOP-relevant protein orthologs, finding broad similarity among vertebrate species for the ER/Aromatase and AHR1 AOPs, and similarity extending to invertebrate animal species for AChE inhibition. Additionally, we used public gene expression data to find groups of highly co-expressed genes, and compared those groups across organisms. To interpret these findings at a higher level of biological organization, we created the AOPdb, a relational database that mines results from sources including NCBI, KEGG, Reactome, CTD, and OMIM. This multi-source database connects genes,

  14. The chemistry side of AOP: implications for toxicity ...

    EPA Pesticide Factsheets

    An adverse outcome pathway (AOP) is a structured representation of the biological events that lead to adverse impacts following a molecular initiating event caused by chemical interaction with a macromolecule. AOPs have been proposed to facilitate toxicity extrapolation across species through understanding of species similarity in the sequence of molecular, cellular, organ and organismal level responses. However, AOPs are non-specific regarding the identity of the chemical initiators, and the range of structures for which an AOP is considered applicable has generally been poorly defined. Applicability domain has been widely understood in the field of QSAR as the response and chemical structure space in which the model makes predictions with a given reliability, and has been traditionally applied to define the similarity of query molecules within the training set. Three dimensional (3D) receptor modeling offers an approach to better define the applicability domain for selected AOPs through determination of the chemical space of the molecular initiating event. Universal 3D-QSAR models were developed for acetylcholinesterase inhibitors and estrogen receptor agonists and antagonists using a combination of fingerprint, molecular docking and structure-based pharmacophore approaches. The models were based on the critical molecular interactions within each receptor ligand binding domain, and included the key amino acid residues responsible for high binding affinity. T

  15. Application of Adverse Outcome Pathways (AOPs) in Human ...

    EPA Pesticide Factsheets

    The adverse outcome pathway (AOP) framework was developed to help organize and disseminate existing knowledge concerning the means through which specific perturbations of biological pathways can lead to adverse outcomes considered relevant to risk-based regulatory decision-making. Because many fundamental molecular and cellular pathways are conserved across taxa, data from assays that screen chemicals for their ability to interact with specific biomolecular targets can often be credibly applied to a broad range of species, even if the apical outcomes of those perturbations may differ. Information concerning the different trajectories of adversity that molecular initiating events may take in different taxa, life stages, and sexes of organisms can be captured in the form of an AOP network. As an example, AOPs documenting divergent consequences of thyroid peroxidase (TPO) and deiodinase (DIO) inhibition in mammals, amphibians, and fish have been developed. These AOPs provide the foundation for using data from common in vitro assays for TPO or DIO activity to inform both human health and ecological risk assessments. They also provide the foundation for an integrated approach to testing and assessment, where available information and biological understanding can be integrated in order to formulate plausible and testable hypotheses which can be used to target in vivo testing on the endpoints of greatest concern. Application of this AOP knowledge in several different r

  16. Application of adverse outcome pathways (AOPs) in human ...

    EPA Pesticide Factsheets

    The adverse outcome pathway (AOP) framework was developed to help organize and disseminate existing knowledge concerning the means through which specific perturbations of biological pathways can lead to adverse outcomes considered relevant to risk-based regulatory decision-making. Because many fundamental molecular and cellular pathways are conserved across taxa, data from assays that screen chemicals for their ability to interact with specific biomolecular targets can often be credibly applied to a broad range of species, even if the apical outcomes of those perturbations may differ. Information concerning the different trajectories of adversity that molecular initiating events may take in different taxa, life stages, and sexes of organisms can be captured in the form of an AOP network. As an example, AOPs documenting divergent consequences of thyroid peroxidase (TPO) and deiodinase (DIO) inhibition in mammals, amphibians, and fish have been developed. These AOPs provide the foundation for using data from common in vitro assays for TPO or DIO activity to inform both human health and ecological risk assessments. They also provide the foundation for an integrated approach to testing and assessment, where available information and biological understanding can be integrated in order to formulate plausible and testable hypotheses which can be used to target in vivo testing on the endpoints of greatest concern. Application of this AOP knowledge in several different r

  17. Advancing the Adverse Outcome Pathway Framework - an ...

    EPA Pesticide Factsheets

    The ability of scientists to conduct whole organism toxicity tests to understand chemical safety has been significantly outpaced by the rapid synthesis of new chemicals. Therefore, to increase efficiencies in chemical risk assessment, scientists are turning to mechanistic-based studies, making greater use of in vitro and in silico methods, to screen for potential environmental and human health hazards. A framework that has gained traction for capturing available knowledge describing the linkage between mechanistic data and apical toxicity endpoints, required for regulatory assessments, is the adverse outcome pathway (AOP). A number of international activities have focused on AOP development and plausible applications to regulatory decision-making. These interactions have prompted dialog between research scientists and regulatory communities to consider how best to use the AOP framework in risk assessment. While expert-facilitated discussions have been instrumental in moving the science of AOPs forward, it was recognized that a survey of the broader scientific community would aid in identifying shortcomings and guiding future initiatives for the AOP framework. To that end, a ?‘Horizon Scanning’ exercise was conducted to solicit questions from the global scientific and regulatory communities concerning the challenges or limitations that must be addressed to realize the full potential of the AOP framework in research and regulatory decision making. The m

  18. A three-tiered approach for linking pharmacokinetic ...

    EPA Pesticide Factsheets

    The power of the adverse outcome pathway (AOP) framework arises from its utilization of pathway-based data to describe the initial interaction of a chemical with a molecular target (molecular initiating event; (MIE), followed by a progression through a series of key events that lead to an adverse outcome relevant for regulatory purposes. The AOP itself is not chemical specific, thus providing the biological context necessary for interpreting high throughput (HT) toxicity screening results. Application of the AOP framework and HT predictions in ecological and human health risk assessment, however, requires the consideration of chemical-specific properties that influence external exposure doses and target tissue doses. To address this requirement, a three-tiered approach was developed to provide a workflow for connecting biology-based AOPs to biochemical-based pharmacokinetic properties (absorption, distribution, metabolism, excretion; ADME), and then to chemical/human activity-based exposure pathways. This approach included: (1) The power of the adverse outcome pathway (AOP) framework arisesfrom its utilization of pathway-based data to describe the initial interaction of a chemical with a molecular target (molecular initiating event; (MIE), followed by a progression through a series of key events that lead to an adverse outcome relevant for regulatory purposes. The AOP itself is not chemical specific, thus providing the biological context necessary for interpreti

  19. The roles of ozone and zeolite on reactive dye degradation in electrical discharge reactors.

    PubMed

    Peternel, L; Kusic, H; Koprivanac, N; Locke, B R

    2006-05-01

    In this study high voltage pulsed corona electrical discharge advanced oxidation processes (AOPs) were applied to bleach and degrade C.I. Reactive Green 8 and C.I. Reactive Red 45 organic dyes in water solutions. Two types of hybrid gas/liquid high voltage electrical discharge (corona) reactors, known as hybrid series and hybrid parallel were studied. The difference between these reactors relates to electrode configuration, which affects the amounts of ozone, hydrogen peroxide and hydroxyl radicals produced. Experiments were conducted using dye concentrations of 20 mgl(-1) and 75 mgl(-1), with and without NH4ZSM5 zeolite addition in order to determine possible effects of added solid particles to total process efficiency. The role of ozone in combination with zeolites was assessed through comparative direct ozonation experiments with ozone supplied by an ozone generator. UV/VIS spectrophotometric measurements and measurements of total organic carbon (TOC) were used for the determination of decolorization and mineralization rates.

  20. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology

    PubMed Central

    Aladjov, Hristo; Ankley, Gerald; Byrne, Hugh J.; de Knecht, Joop; Heinzle, Elmar; Klambauer, Günter; Landesmann, Brigitte; Luijten, Mirjam; MacKay, Cameron; Maxwell, Gavin; Meek, M. E. (Bette); Paini, Alicia; Perkins, Edward; Sobanski, Tomasz; Villeneuve, Dan; Waters, Katrina M.; Whelan, Maurice

    2017-01-01

    Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework provides a systematic approach for organizing knowledge that may support such inference. Likewise, computational models of biological systems at various scales provide another means and platform to integrate current biological understanding to facilitate inference and extrapolation. We argue that the systematic organization of knowledge into AOP frameworks can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment. This concept was explored as part of a workshop on AOP-Informed Predictive Modeling Approaches for Regulatory Toxicology held September 24–25, 2015. Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development is described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment. PMID:27994170

  1. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water.

    PubMed

    Ma, Jie; Yang, Yongqi; Jiang, Xianchenghao; Xie, Zhuoting; Li, Xiaoxuan; Chen, Changzhao; Chen, Hongkun

    2018-01-01

    The present study investigated the impacts of water matrix constituents (CO 3 2- , HCO 3 - , Cl - , Br - , PO 4 3- , HPO 4 2- , H 2 PO 4 - , NO 3 - , SO 4 2- and natural organic matters (NOM) on the oxidation of a mixture of benzene, toluene, ethylbenzene, and xylenes (BTEX) by thermally activated persulfate (PS). In the absence of matrix constituents, the BTEX oxidation rates decreased in the following order: xylenes > toluene ≈ ethylbenzene > benzene. HCO 3 - /CO 3 2- and NOM inhibited the BTEX oxidation and the inhibiting effects became more pronounced as the HCO 3 - /CO 3 2- /NOM concentration increased. SO 4 2- , NO 3 - , PO 4 3- and H 2 PO 4 - did not affect the BTEX oxidation while HPO 4 2- slightly inhibited the reaction. The impacts of Cl - and Br - were complex. Cl - inhibited the benzene oxidation while 100 mM and 500 mM of Cl - promoted the oxidation of m-xylene and p-xylene. Br - completely suppressed the benzene oxidation while 500 mM of Br - strongly promoted the oxidation of xylenes. Detailed explanations on the influence of each matrix constituent were discussed. In addition, various halogenated degradation byproducts were detected in the treatments containing Cl - and Br - . Overall, this study indicates that some matrix constituents such as NOM, HCO 3 - , CO 3 2- , H 2 PO 4 - , Cl - and Br - may reduce the BTEX removal efficiency of sulfate radical-based advanced oxidation process (SR-AOP) and the presence of Cl - and Br - may even lead to the formation of toxic halogenated byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Advanced On-Board Processor (AOP). [for future spacecraft applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Advanced On-board Processor the (AOP) uses large scale integration throughout and is the most advanced space qualified computer of its class in existence today. It was designed to satisfy most spacecraft requirements which are anticipated over the next several years. The AOP design utilizes custom metallized multigate arrays (CMMA) which have been designed specifically for this computer. This approach provides the most efficient use of circuits, reduces volume, weight, assembly costs and provides for a significant increase in reliability by the significant reduction in conventional circuit interconnections. The required 69 CMMA packages are assembled on a single multilayer printed circuit board which together with associated connectors constitutes the complete AOP. This approach also reduces conventional interconnections thus further reducing weight, volume and assembly costs.

  3. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery.

    PubMed

    Valladares Linares, R; Li, Z; Yangali-Quintanilla, V; Ghaffour, N; Amy, G; Leiknes, T; Vrouwenvelder, J S

    2016-01-01

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis - low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor - reverse osmosis - advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m(3) d(-1) of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m(3) produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and water permeability, the total water cost could be further reduced. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Different treatment strategies for highly polluted landfill leachate in developing countries.

    PubMed

    Mahmud, Kashif; Hossain, Md Delwar; Shams, Shahriar

    2012-11-01

    The aim of this research was to determine appropriate treatment technique for effective treatment of heavily polluted landfill leachate. We accomplished several treatment experiments: (i) aerobic biological treatment, (ii) chemical coagulation, (iii) advanced oxidation process (AOP) and (iv) several combined treatment strategies. Efficiency of these treatment procedures were monitored by analysing COD and colour removal. Leachate used for this study was taken from Matuail landfill site at Dhaka city. With extended aeration process which is currently used in Matuail landfill site for leachate treatment, maximum COD and colour removal of 36% and 20%, respectively could be achieved with optimum retention period of 7 days. With optimum aluminium sulphate dose of 15,000 mg/L and pH value of 7.0, maximum COD and colour removals of 34% and 66%, respectively were observed by using chemical coagulation. With optimum pH of 5.0 and optimum dosages of reagents having H(2)O(2)/Fe(2+) molar ratio of 1.3 the highest removal of COD and colour were found 68% and 87%, respectively with sludge production of 55%. Fenton treatment which is an advanced oxidation process was the most successful between these three separate treatment procedures. Among the combined treatment options performed, extended aeration followed by Fenton method was the most suitable one. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology.

    PubMed

    Wittwehr, Clemens; Aladjov, Hristo; Ankley, Gerald; Byrne, Hugh J; de Knecht, Joop; Heinzle, Elmar; Klambauer, Günter; Landesmann, Brigitte; Luijten, Mirjam; MacKay, Cameron; Maxwell, Gavin; Meek, M E Bette; Paini, Alicia; Perkins, Edward; Sobanski, Tomasz; Villeneuve, Dan; Waters, Katrina M; Whelan, Maurice

    2017-02-01

    Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework provides a systematic approach for organizing knowledge that may support such inference. Likewise, computational models of biological systems at various scales provide another means and platform to integrate current biological understanding to facilitate inference and extrapolation. We argue that the systematic organization of knowledge into AOP frameworks can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment. This concept was explored as part of a workshop on AOP-Informed Predictive Modeling Approaches for Regulatory Toxicology held September 24-25, 2015. Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development is described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.

  6. Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity

    PubMed Central

    Bal-Price, Anna; Lein, Pamela J.; Keil, Kimberly P.; Sethi, Sunjay; Shafer, Timothy; Barenys, Marta; Fritsche, Ellen; Sachana, Magdalini; Meek, M.E. (Bette)

    2016-01-01

    The Adverse Outcome Pathway (AOP) concept has recently been proposed to support a paradigm shift in regulatory toxicology testing and risk assessment. This concept is similar to the Mode of Action (MOA), in that it describes a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis for predicting effects of structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed. A variety of cellular and molecular processes are known to be critical for normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of the principles of MOA and AOPs, examples of potential or putative adverse outcome pathways specific for developmental or adult neurotoxicity are summarized and aspects of their assessment considered. Their possible application in developing mechanistically informed Integrated Approaches to Testing and Assessment (IATA) is also discussed. PMID:27212452

  7. Relationship between intrapartum transperineal ultrasound measurement of angle of progression and head-perineum distance with correlation to conventional clinical parameters of labor progress and time to delivery.

    PubMed

    Chan, Ying Tze Viola; Ng, Vivian Kwun Sin; Yung, Wai Kuen; Lo, Tsz Kin; Leung, Wing Cheong; Lau, Wai Lam

    2015-08-01

    To assess whether angle of progression (AOP) and head-perineum distance (HPD) measured by intrapartum transperineal ultrasound (ITU) correlate with clinical fetal head station (station); and whether AOP versus HPD varies during uterine contraction and relaxation. In a subset of primiparous women, whether these ITU parameters correlate with time to normal spontaneous delivery (TD). We evaluated prospectively 100 primiparous and multiparous women at term in active labor. Transabdominal and transperineal ultrasound (sagittal and transverse plane) were used to measure fetal head position and ITU parameters, respectively. Digitally palpated station and cervical dilatation were also noted. The results were compared using regression and correlation coefficients. Station was moderately correlated with AOP (r = 0.579) and HPD (r = -0.497). AOP was highly correlated with HPD during uterine contraction (r = -0.703) and relaxation (r = -0.647). In the subgroup of primiparous women, natural log of TD has the highest correlation with HPD and AOP during uterine contraction (r = 0.742), making prediction of TD similar to that of using cervical dilatation. ITU parameters were moderately correlated with station. There was constant high correlation between AOP and HPD. Prediction of TD in primiparous women using ITU parameters was similar to that of using cervical dilatation.

  8. The adverse outcome pathway for skin sensitisation: Moving closer to replacing animal testing.

    PubMed

    Schultz, Terry W; Dimitrova, Gergana; Dimitrov, Sabcho; Mekenyan, Ovanes G

    2016-10-01

    This article outlines the work of the Organisation for Economic Co-operation and Development (OECD) that led to being jointly awarded the 2015 Lush Black Box Prize. The award-winning work centred on the development of 'The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins'. This Adverse Outcome Pathway (AOP) has provided the mechanistic basis for the integration of skin sensitisation-related information. Recent developments in integrated approaches to testing and assessment, based on the AOP, are summarised. The impact of the AOP on regulatory policy and on the Three Rs are discussed. An overview of the next generation of the skin sensitisation AOP module in the OECD QSAR Toolbox, based on more-recent work at the Laboratory of Mathematical Chemistry, is also presented. 2016 FRAME.

  9. Intensification of UV-C tertiary treatment: Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes.

    PubMed

    Rodríguez-Chueca, J; García-Cañibano, C; Lepistö, R-J; Encinas, Á; Pellinen, J; Marugán, J

    2018-04-21

    This study explores the enhancement of UV-C tertiary treatment by sulfate radical based Advanced Oxidation Processes (SR-AOPs), including photolytic activation of peroxymonosulfate (PMS) and persulfate (PS) and their photocatalytic activation using Fe(II). Their efficiency was assessed both for the inactivation of microorganisms and the removal or micropollutants (MPs) in real wastewater treatment plant effluents. Under the studied experimental range (UV-C dose 5.7-57 J/L; UV-C contact time 3 to 28 s), the photolysis of PMS and PS (0.01 mM) increased up to 25% the bacterial removal regarding to UV-C system. The photolytic activation of PMS led to the total inactivation of bacteria (≈ 5.70 log) with the highest UV-C dose (57 J/L). However, these conditions were insufficient to remove the MPs, being required oxidant's dosages of 5 mM to remove above 90% of carbamazepine, diclofenac, atenolol and triclosan. The best efficiencies were achieved by the combination of PMS or PS with Fe(II), leading to the total removal of the MPs using a low UV-C dosage (19 J/L), UV-C contact time (9 s) and reagent's dosages (0.5 mM). Finally, high mineralization was reached (>50%) with photocatalytic activation of PMS and PS even with low reagent's dosages. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Comparison of flunixin meglumine and meloxicam influence on postoperative and oxidative stress in ovariohysterectomized bitches.

    PubMed

    Yilmaz, O; Korkmaz, M; Jaroszewski, J J; Yazici, E; Ulutas, E; Saritas, Z K

    2014-01-01

    The aim of this study was to compare the effect of flunixin meglumine (FM) and meloxicam (M) on postoperative and oxidative stress in ovariohysterectomized bitches. Twenty four bitches were divided into three groups (n = 8 in each) and treated during premedication as follows: FM (2.2 mg/kg, iv, Fluvil, Vilsan, Turkey), M (0.2 mg/kg, sc, Maxicam, Sanovel, Turkey) or 0.9% saline (1 ml, iv, IE, Turkey)--control (C) group. The concentrations of serum cortisol, nitric oxide (NO), malondialdehyde (MDA), antioxidant potential (AOP) and glutation (GSH) were measured in blood samples collected during incision (0 h), closure of incision line (0.5 h) and 1, 2.5, 12 and 24 hours after incision. It was observed that cortisol level was higher at 0.5, 1 and 2.5 h in group C (p < 0.05), 0.5 h in group FM (p < 0.001), and 1 and 2.5 h in group M (p < 0.01), as compared to that determine at 0 h. Group C showed higher cortisol level during 0.5 h (p < 0.05) than that found in the other groups. Group FM displayed lower levels during 1 h (p < 0.01) and 2.5 h (p < 0.05) as compared to those observed in other groups. Concentrations of MDA, AOP and GSH between all the groups did not show any significant differences. MDA level was higher at 0.5 and 1 h in group M (p < 0.05) than that found in group C and it was the lowest at 2.5 h in group C (p < 0.05). AOP was higher at 2.5 h in group FM and M (p < 0.05) than that observed in group C, and at 12 and 24 h in group M than that found in group C and FM. GSH did not show any significant differences between the groups. NO level in group FM after 12 h was higher (p < 0.05) than that at 0.5, 1 and 24 h. Moreover, NO level was lower at 0.5 (p < 0.01), 1 (p < 0.05) and 24 h (p < 0.05) in group FM than that observed in group C and M. In conclusion, flunixin meglumine decreases cortisol and NO levels more efficiently than meloxicam. Therefore, it is suggested that postoperative stress following ovariohysterectomy may be prevented by flunixin meglumine in bitches.

  11. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology.

    PubMed

    Groh, Ksenia J; Carvalho, Raquel N; Chipman, James K; Denslow, Nancy D; Halder, Marlies; Murphy, Cheryl A; Roelofs, Dick; Rolaki, Alexandra; Schirmer, Kristin; Watanabe, Karen H

    2015-02-01

    To elucidate the effects of chemicals on populations of different species in the environment, efficient testing and modeling approaches are needed that consider multiple stressors and allow reliable extrapolation of responses across species. An adverse outcome pathway (AOP) is a concept that provides a framework for organizing knowledge about the progression of toxicity events across scales of biological organization that lead to adverse outcomes relevant for risk assessment. In this paper, we focus on exploring how the AOP concept can be used to guide research aimed at improving both our understanding of chronic toxicity, including delayed toxicity as well as epigenetic and transgenerational effects of chemicals, and our ability to predict adverse outcomes. A better understanding of the influence of subtle toxicity on individual and population fitness would support a broader integration of sublethal endpoints into risk assessment frameworks. Detailed mechanistic knowledge would facilitate the development of alternative testing methods as well as help prioritize higher tier toxicity testing. We argue that targeted development of AOPs supports both of these aspects by promoting the elucidation of molecular mechanisms and their contribution to relevant toxicity outcomes across biological scales. We further discuss information requirements and challenges in application of AOPs for chemical- and site-specific risk assessment and for extrapolation across species. We provide recommendations for potential extension of the AOP framework to incorporate information on exposure, toxicokinetics and situation-specific ecological contexts, and discuss common interfaces that can be employed to couple AOPs with computational modeling approaches and with evolutionary life history theory. The extended AOP framework can serve as a venue for integration of knowledge derived from various sources, including empirical data as well as molecular, quantitative and evolutionary-based models describing species responses to toxicants. This will allow a more efficient application of AOP knowledge for quantitative chemical- and site-specific risk assessment as well as for extrapolation across species in the future. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models.

    PubMed

    Ran, Shi-Ju

    2016-05-01

    In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising chain and 2D classical Ising model, showing the remarkable efficiency and accuracy of the AOP.

  13. 48 CFR 601.105-3 - Copies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Department's Intranet system at http://aope.a.state.gov, or through the Internet from A/OPE's Acquisition Web site. The Internet address is: http://www.statebuy.state.gov/. [69 FR 19329, Apr. 13, 2004] ...

  14. 48 CFR 601.105-3 - Copies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the Department's Intranet system at http://aope.a.state.gov, or through the Internet from A/OPE's Acquisition Web site. The Internet address is: http://www.statebuy.state.gov/. [69 FR 19329, Apr. 13, 2004] ...

  15. 48 CFR 601.105-3 - Copies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Department's Intranet system at http://aope.a.state.gov, or through the Internet from A/OPE's Acquisition Web site. The Internet address is: http://www.statebuy.state.gov/. [69 FR 19329, Apr. 13, 2004] ...

  16. 48 CFR 601.105-3 - Copies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Department's Intranet system at http://aope.a.state.gov, or through the Internet from A/OPE's Acquisition Web site. The Internet address is: http://www.statebuy.state.gov/. [69 FR 19329, Apr. 13, 2004] ...

  17. 48 CFR 601.105-3 - Copies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Department's Intranet system at http://aope.a.state.gov, or through the Internet from A/OPE's Acquisition Web site. The Internet address is: http://www.statebuy.state.gov/. [69 FR 19329, Apr. 13, 2004] ...

  18. A catalog of putative adverse outcome pathways (AOPs) that ...

    EPA Pesticide Factsheets

    A number of putative AOPs for several distinct MIEs of thyroid disruption have been formulated for amphibian metamorphosis and fish swim bladder inflation. These have been entered into the AOP knowledgebase on the OECD WIKI. The EDSP has been actively advancing high-throughput screening for chemical activity toward estrogen, androgen and thyroid targets. However, it has been recently identified that coverage for thyroid-related targets is lagging behind estrogen and androgen assay coverage. As thyroid-related medium-high throughput assays are actively being developed for inclusion in the ToxCast chemical screening program, a parallel effort is underway to characterize putative adverse outcome pathways (AOPs) specific to these thyroid-related targets. This effort is intended to provide biological and ecological context that will enhance the utility of ToxCast high throughput screening data for hazard identification.

  19. Agent oriented programming: An overview of the framework and summary of recent research

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1993-01-01

    This is a short overview of the agent-oriented programming (AOP) framework. AOP can be viewed as an specialization of object-oriented programming. The state of an agent consists of components called beliefs, choices, capabilities, commitments, and possibly others; for this reason the state of an agent is called its mental state. The mental state of agents is captured formally in an extension of standard epistemic logics: beside temporalizing the knowledge and belief operators, AOP introduces operators for commitment, choice and capability. Agents are controlled by agent programs, which include primitives for communicating with other agents. In the spirit of speech-act theory, each communication primitive is of a certain type: informing, requesting, offering, etc. This document describes these features in more detail and summarizes recent results and ongoing AOP-related work.

  20. Birth weight and obstetric complications determine age at onset in first episode of psychosis.

    PubMed

    Rubio-Abadal, E; Ochoa, S; Barajas, A; Baños, I; Dolz, M; Sanchez, B; Del Cacho, N; Carlson, J; Huerta-Ramos, E; Usall, J

    2015-06-01

    Earlier age at onset of psychosis (AOP) has been associated with poor social adjustment and clinical outcome. Genetic and environmental factors such as obstetric complications, parental history of psychosis, advanced paternal age at time of birth, low birth weight and gestational age, and use of drugs have been described as bringing AOP forward. This study aims to evaluate the relationship between AOP and these factors in a sample of first episode of psychosis (FEP) patients. Clinical and sociodemographic data, age at FEP, age of parents at birth, parental history of psychosis, drug-use habits of the mother during pregnancy and of the patient before psychotic onset, and Lewis and Murray obstetric complication scale were obtained from 90 patients with FEP. Statistical analysis was performed by means of Pearson correlations, Chi-square tests, Student T-test analyses and a linear regression model using SPSS version 22. Pre-eclampsia, need for incubator at birth, use of forceps, parental history of psychosis, and low birth weight were associated with an earlier AOP. Use of forceps and birth weight are the variables which best predict AOP in FEP. Stimulant drugs, which were mostly used together with cannabis and cocaine, were the only substances associated with an earlier AOP. Our findings are consistent with previous study results and underline the role of the prenatal period in the development of psychosis and the importance of careful monitoring of pregnancy and delivery, especially in cases with familial history. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Developing confidence in adverse outcome pathway-based ...

    EPA Pesticide Factsheets

    An adverse outcome pathway (AOP) description linking inhibition of aromatase (cytochrome P450 [cyp] 19) to reproductive dysfunction was reviewed for scientific and technical quality and endorsed by the OECD (https://aopwiki.org/wiki/index.php/Aop:25). An intended application of the AOP framework is to support the use of mechanistic or pathway-based data to infer or predict chemical hazards and apical adverse outcomes. As part of this work, ToxCast high throughput screening data were used to identify a chemicals’ ability to inhibit aromatase activity in vitro. Twenty-four hour in vivo exposures, focused on effects on production and circulating concentrations of 17â-estradiol (E2), key events in the AOP, were conducted to verify in vivo activity. Based on these results, imazalil was selected as a case study chemical to test an AOP-based hazard prediction. A computational model of the fish hypothalamic-pituitary-gonadal-liver axis and a statistically-based model of oocyte growth dynamics were used to predict impacts of different concentrations of imazalil on multiple key events along the AOP, assuming continuous exposure for 21 d. Results of the model simulations were used to select test concentrations and design a fathead minnow reproduction study in which fish were exposed to 20, 60, or 200 µg imazalil/L for durations of 2.5, 10, or 21d. Within 60 h of exposure, female fathead minnows showed significant reductions in ex vivo production of E2, circulating E2 c

  2. Correlation between clinical fetal head station and sonographic angle of progression during the second stage of labor.

    PubMed

    Perlman, Sharon; Kivilevitch, Zvi; Moran, Orit; Katorza, Eldad; Kees, Salim; Achiron, Reuven; Gilboa, Yinon

    2017-08-04

    To investigate the correlation between the angle of progression and the clinical fetal head station (FHS) during the second stage of labor, and to build reference range. A prospective, observational study was conducted. Women carrying singleton term pregnancies were enrolled during the second stage of labor. FHS was assessed manually by a senior obstetrician, while the angle of progression (AOP) was assessed by transperineal ultrasound (TPU). Both examiners were blinded to each others results. The correlation between the sonographic AOP and the clinical FHS was analyzed. Seventy patients comprised the study group. Clinical FHS demonstrated an excellent correlation with the sonographic measurement of AOP (Pearson's Correlation 0.642, p < 0.001). This correlation was best described by a cubic regression according to the formula: 123.800 + 10.290 × FHS -2.889 * FHS +0.910, (r 2  = 0.423, p < .001). After aggregation of the mean AOP per FHS, the relative predicted centiles values and standard deviation were calculated. The mean Z score between measured and predicted values of the AOP for a given FHS was 0.007 (range -0.13 to +0.006). Our results demonstrate a significant correlation between the clinical FHS and the TPU measured AOP. These standardized sonographic values may serve the obstetrician as a reliable, objective auxiliary tool for the evaluation of the FHS during the second stage of labor.

  3. Superiority of solar Fenton oxidation over TiO2 photocatalysis for the degradation of trimethoprim in secondary treated effluents.

    PubMed

    Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D

    2013-01-01

    The overall aim of this work was to examine the degradation of trimethoprim (TMP), which is an antibacterial agent, during the application of two advanced oxidation process (AOP) systems in secondary treated domestic effluents. The homogeneous solar Fenton process (hv/Fe(2+)/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were tested. It was found that the degradation of TMP depends on several parameters such as the amount of iron salt and H2O2, concentration of TiO2, pH of solution, solar irradiation, temperature and initial substrate concentration. The optimum dosages of Fe(2+) and H2O2 for homogeneous ([Fe(2+)] = 5 mg L(-1), [H2O2] = 3.062 mmol L(-1)) and TiO2 ([TiO2] = 3 g L(-1)) for heterogeneous photocatalysis were established. The study indicated that the degradation of TMP during the solar Fenton process is described by a pseudo-first-order reaction and the substrate degradation during the heterogeneous photocatalysis by the Langmuir-Hinshelwood kinetics. The toxicity of the treated samples was evaluated using a Daphnia magna bioassay and was finally decreased by both processes. The results indicated that solar Fenton is more effective than the solar TiO2 process, yielding complete degradation of the examined substrate within 30 min of illumination and dissolved organic carbon (DOC) reduction of about 44% whereas the respective values for the TiO2 process were ∼70% degradation of TMP within 120 min of treatment and 13% DOC removal.

  4. Development and Evaluation of an Airborne Separation Assurance System for Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.

    2004-01-01

    NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.

  5. An Integrative Data Mining Approach to Identify Adverse Outcome Pathway Signatures

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) provide a formal framework for describing the mechanisms underlying the toxicity of chemicals in our environment. This process improves our ability to incorporate high-throughput toxicity testing (HTT) results and biomarker information on early key...

  6. Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)

    EPA Science Inventory

    Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...

  7. Adverse Outcome Pathway (AOP) framework for embryonic vascular disruption and developmental defects (SOT)

    EPA Science Inventory

    Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signal...

  8. The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment.

    PubMed

    Brockmeier, Erica K; Hodges, Geoff; Hutchinson, Thomas H; Butler, Emma; Hecker, Markus; Tollefsen, Knut Erik; Garcia-Reyero, Natalia; Kille, Peter; Becker, Dörthe; Chipman, Kevin; Colbourne, John; Collette, Timothy W; Cossins, Andrew; Cronin, Mark; Graystock, Peter; Gutsell, Steve; Knapen, Dries; Katsiadaki, Ioanna; Lange, Anke; Marshall, Stuart; Owen, Stewart F; Perkins, Edward J; Plaistow, Stewart; Schroeder, Anthony; Taylor, Daisy; Viant, Mark; Ankley, Gerald; Falciani, Francesco

    2017-08-01

    In conjunction with the second International Environmental Omics Symposium (iEOS) conference, held at the University of Liverpool (United Kingdom) in September 2014, a workshop was held to bring together experts in toxicology and regulatory science from academia, government and industry. The purpose of the workshop was to review the specific roles that high-content omics datasets (eg, transcriptomics, metabolomics, lipidomics, and proteomics) can hold within the adverse outcome pathway (AOP) framework for supporting ecological and human health risk assessments. In light of the growing number of examples of the application of omics data in the context of ecological risk assessment, we considered how omics datasets might continue to support the AOP framework. In particular, the role of omics in identifying potential AOP molecular initiating events and providing supportive evidence of key events at different levels of biological organization and across taxonomic groups was discussed. Areas with potential for short and medium-term breakthroughs were also discussed, such as providing mechanistic evidence to support chemical read-across, providing weight of evidence information for mode of action assignment, understanding biological networks, and developing robust extrapolations of species-sensitivity. Key challenges that need to be addressed were considered, including the need for a cohesive approach towards experimental design, the lack of a mutually agreed framework to quantitatively link genes and pathways to key events, and the need for better interpretation of chemically induced changes at the molecular level. This article was developed to provide an overview of ecological risk assessment process and a perspective on how high content molecular-level datasets can support the future of assessment procedures through the AOP framework. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology.

  9. The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment

    PubMed Central

    Brockmeier, Erica K.; Hodges, Geoff; Hutchinson, Thomas H.; Butler, Emma; Hecker, Markus; Tollefsen, Knut Erik; Garcia-Reyero, Natalia; Kille, Peter; Becker, Dörthe; Chipman, Kevin; Colbourne, John; Collette, Timothy W.; Cossins, Andrew; Cronin, Mark; Graystock, Peter; Gutsell, Steve; Knapen, Dries; Katsiadaki, Ioanna; Lange, Anke; Marshall, Stuart; Owen, Stewart F.; Perkins, Edward J.; Plaistow, Stewart; Schroeder, Anthony; Taylor, Daisy; Viant, Mark; Ankley, Gerald; Falciani, Francesco

    2017-01-01

    Abstract In conjunction with the second International Environmental Omics Symposium (iEOS) conference, held at the University of Liverpool (United Kingdom) in September 2014, a workshop was held to bring together experts in toxicology and regulatory science from academia, government and industry. The purpose of the workshop was to review the specific roles that high-content omics datasets (eg, transcriptomics, metabolomics, lipidomics, and proteomics) can hold within the adverse outcome pathway (AOP) framework for supporting ecological and human health risk assessments. In light of the growing number of examples of the application of omics data in the context of ecological risk assessment, we considered how omics datasets might continue to support the AOP framework. In particular, the role of omics in identifying potential AOP molecular initiating events and providing supportive evidence of key events at different levels of biological organization and across taxonomic groups was discussed. Areas with potential for short and medium-term breakthroughs were also discussed, such as providing mechanistic evidence to support chemical read-across, providing weight of evidence information for mode of action assignment, understanding biological networks, and developing robust extrapolations of species-sensitivity. Key challenges that need to be addressed were considered, including the need for a cohesive approach towards experimental design, the lack of a mutually agreed framework to quantitatively link genes and pathways to key events, and the need for better interpretation of chemically induced changes at the molecular level. This article was developed to provide an overview of ecological risk assessment process and a perspective on how high content molecular-level datasets can support the future of assessment procedures through the AOP framework. PMID:28525648

  10. Extended depth of focus contact lenses vs. two commercial multifocals: Part 2. Visual performance after 1 week of lens wear.

    PubMed

    Bakaraju, Ravi C; Tilia, Daniel; Sha, Jennifer; Diec, Jennie; Chung, Jiyoon; Kho, Danny; Delaney, Shona; Munro, Anna; Thomas, Varghese

    To compare the visual performance of prototype contact lenses designed via deliberate manipulation of higher-order spherical aberrations to extend-depth-of-focus with two commercial multifocals, after 1 week of lens wear. In a prospective, participant-masked, cross-over, randomized, 1-week dispensing clinical-trial, 43 presbyopes [age: 42-63 years] each wore AIROPTIX Aqua multifocal (AOMF), ACUVUE OASYS for presbyopia (AOP) and extended-depth-of-focus prototypes (EDOF) appropriate to their add requirements. Measurements comprised high-contrast-visual-acuity (HCVA) at 6m, 70cm, 50cm and 40cm; low-contrast-visual-acuity (LCVA) and contrast-sensitivity (CS) at 6m and stereopsis at 40cm. A self-administered questionnaire on a numeric-rating-scale (1-10) assessed subjective visual performance comprising clarity-of-vision and lack-of-ghosting at various distances during day/night-viewing conditions and overall-vision-satisfaction. EDOF was significantly better than AOMF and AOP for HCVA averaged across distances (p≤0.038); significantly worse than AOMF for LCVA (p=0.021) and significantly worse than AOMF for CS in medium and high add-groups (p=0.006). None of these differences were clinically significant (≤2 letters). EDOF was significantly better than AOMF and AOP for mean stereoacuity (36 and 13 seconds-of-arc, respectively: p≤0.05). For clarity-of-vision, EDOF was significantly better than AOP at all distances and AOMF at intermediate and near (p≤0.028). For lack-of-ghosting averaged across distances, EDOF was significantly better than AOP (p<0.001) but not AOMF (p=0.186). EDOF was significantly better than AOMF and AOP for overall-vision-satisfaction (p≤0.024). EDOF provides better intermediate and near vision performance than either AOMF or AOP with no difference for distance vision after 1 week of lens wear. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  11. Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants

    PubMed Central

    Agócs, Tamás Zoltán; Puskás, István; Varga, Erzsébet; Molnár, Mónika

    2016-01-01

    Advanced oxidation processes (AOPs) are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO2) applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water) and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P) for stabilization of nanoTiO2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water) has been studied using nanoTiO2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP), was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure of the host–guest complex. PMID:28144360

  12. Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants.

    PubMed

    Agócs, Tamás Zoltán; Puskás, István; Varga, Erzsébet; Molnár, Mónika; Fenyvesi, Éva

    2016-01-01

    Advanced oxidation processes (AOPs) are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO 2 ) applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO 2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO 2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO 2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water) and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P) for stabilization of nanoTiO 2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water) has been studied using nanoTiO 2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO 2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP), was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure of the host-guest complex.

  13. Leveraging toxicogenomics data to build predictive biomarkers supporting AOP assessment

    EPA Science Inventory

    Chemicals induce liver cancer in rodents through well characterized adverse outcome pathways (AOPs) that include molecular initiating events (MIEs). In addition to genotoxicity, these include nongenotoxic mechanisms of cytotoxicity and receptor activation (aryl hydrocarbon recept...

  14. Adverse outcome pathway (AOP) development II: Best practices

    EPA Science Inventory

    Organization of existing and emerging toxicological knowledge into adverse outcome pathway (AOP) descriptions can facilitate greater application of mechanistic data, including high throughput in vitro, high content omics and imaging, and biomarkers, in risk-based decision-making....

  15. Autonomous Operations Planner: A Flexible Platform for Research in Flight-Deck Support for Airborne Self-Separation

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; DePascale, Stephen M.; Wing, David J.

    2012-01-01

    The Autonomous Operations Planner (AOP), developed by NASA, is a flexible and powerful prototype of a flight-deck automation system to support self-separation of aircraft. The AOP incorporates a variety of algorithms to detect and resolve conflicts between the trajectories of its own aircraft and traffic aircraft while meeting route constraints such as required times of arrival and avoiding airspace hazards such as convective weather and restricted airspace. This integrated suite of algorithms provides flight crew support for strategic and tactical conflict resolutions and conflict-free trajectory planning while en route. The AOP has supported an extensive set of experiments covering various conditions and variations on the self-separation concept, yielding insight into the system s design and resolving various challenges encountered in the exploration of the concept. The design of the AOP will enable it to continue to evolve and support experimentation as the self-separation concept is refined.

  16. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; Huynh, Brian; Grill, Warren M.

    2015-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, the efficiency and selectivity of DBS can be improved. Our objective was to design electrode geometries that increased the efficiency and selectivity of DBS. Approach. We coupled computational models of electrodes in brain tissue with cable models of axons of passage (AOPs), terminating axons (TAs), and local neurons (LNs); we used engineering optimization to design electrodes for stimulating these neural elements; and the model predictions were tested in vivo. Main results. Compared with the standard electrode used in the Medtronic Model 3387 and 3389 arrays, model-optimized electrodes consumed 45-84% less power. Similar gains in selectivity were evident with the optimized electrodes: 50% of parallel AOPs could be activated while reducing activation of perpendicular AOPs from 44 to 48% with the standard electrode to 0-14% with bipolar designs; 50% of perpendicular AOPs could be activated while reducing activation of parallel AOPs from 53 to 55% with the standard electrode to 1-5% with an array of cathodes; and, 50% of TAs could be activated while reducing activation of AOPs from 43 to 100% with the standard electrode to 2-15% with a distal anode. In vivo, both the geometry and polarity of the electrode had a profound impact on the efficiency and selectivity of stimulation. Significance. Model-based design is a powerful tool that can be used to improve the efficiency and selectivity of DBS electrodes.

  17. Two Young MicroRNAs Originating from Target Duplication Mediate Nitrogen Starvation Adaptation via Regulation of Glucosinolate Synthesis in Arabidopsis thaliana1[W

    PubMed Central

    He, Hua; Liang, Gang; Li, Yang; Wang, Fang; Yu, Diqiu

    2014-01-01

    Nitrogen is an essential macronutrient required for plant growth and development. A number of genes respond to nitrogen starvation conditions. However, the functions of most of these nitrogen starvation-responsive genes are unclear. Our recent survey suggested that many microRNAs (miRNAs) are responsive to nitrogen starvation in Arabidopsis thaliana. Here, we identified a new miRNA (miR5090) from the complementary transcript of the MIR826 gene. Further investigation uncovered that both miRNA genes recently evolved from the inverse duplication of their common target gene, ALKENYL HYDROXALKYL PRODUCING2 (AOP2). Similar to miR826, miR5090 is induced by nitrogen starvation. By contrast, the AOP2 transcript level was negatively correlated with miR826 and miR5090 under nitrogen starvation. GUS-fused AOP2 expression suggested that AOP2 was posttranscriptionally suppressed by miR826 and miR5090. miRNA transgenic plants with significantly low AOP2 expression accumulated fewer Met-derived glucosinolates, phenocopying the aop2 mutants. Most glucosinolate synthesis-associated genes were repressed under nitrogen starvation conditions. Furthermore, miRNA transgenic plants with less glucosinolate displayed enhanced tolerance to nitrogen starvation, including high biomass, more lateral roots, increased chlorophyll, and decreased anthocyanin. Meanwhile, nitrogen starvation-responsive genes were up-regulated in transgenic plants, implying improved nitrogen uptake activity. Our study reveals a mechanism by which Arabidopsis thaliana regulates the synthesis of glucosinolates to adapt to environmental changes in nitrogen availability. PMID:24367020

  18. Towards Building an AOP-based Prenatal Developmental Toxicity Ontology (CEFIC LRI Workshop - Brussels)

    EPA Science Inventory

    Ontologies are a way to formalize domain-specific scientific knowledge. A developmental ontology would help researchers describe the pathways and processes critical to embryonic development and provide a way to link their chemical disruption to adverse outcomes. Designing one for...

  19. Adverse outcome pathway (AOP) development: Guiding principles and best practices

    EPA Science Inventory

    Adverse outcome pathways (AOPs) represent a conceptual framework that can support greater application of mechanistic data in regulatory decision-making. However, in order for the scientific community to collectively address the daunting challenge of describing relevant toxicologi...

  20. Adverse outcome pathway (AOP) development I: Strategies and principles

    EPA Science Inventory

    An adverse outcome pathway (AOP) is a conceptual framework that organizes existing knowledge concerning biologically plausible, and empirically-supported, links between molecular-level perturbation of a biological system and an adverse outcome at a level of biological organizatio...

  1. Computational Approaches for Identifying Adverse Outcome Pathways

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) provide a framework for organizing toxicity information to improve predictions of the potential adverse impact of environment stressors on humans or wildlife populations, but these benefits are currently limited by the small number of AOPs currentl...

  2. Adverse outcome pathways (AOPs) to enhance EDC ...

    EPA Pesticide Factsheets

    Screening and testing for endocrine active chemicals was mandated under 1996 amendments to the Safe Drinking Water Act and Food Quality Protection Act. Efficiencies can be gained in the endocrine disruptor screening program by using available biological and toxicological knowledge to facilitate greater use of high throughput screening data and other data sources to inform endocrine disruptor assessments. Likewise, existing knowledge, when properly organized, can help aid interpretation of test results. The adverse outcome pathway (AOP) framework, which organizes information concerning measureable changes that link initial biological interactions with a chemical to adverse effects that are meaningful to risk assessment and management, can aid this process. This presentation outlines the ways in which the AOP framework has already been employed to support EDSP and how it may further enhance endocrine disruptor assessments in the future. Screening and testing for endocrine active chemicals was mandated under 1996 amendments to the Safe Drinking Water Act and Food Quality Protection Act. Efficiencies can be gained in the endocrine disruptor screening program by using available biological and toxicological knowledge to facilitate greater use of high throughput screening data and other data sources to inform endocrine disruptor assessments. Likewise, existing knowledge, when properly organized, can help aid interpretation of test results. The adverse outcome pathway

  3. Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.8

    DTIC Science & Technology

    2013-06-28

    be familiar with UNIX; BASH shell programming; and remote sensing, particularly regarding computer processing of satellite data. The system memory ...and storage requirements are difficult to gauge. The amount of memory needed is dependent upon the amount and type of satellite data you wish to...process; the larger the area, the larger the memory requirement. For example, the entire Atlantic Ocean will require more processing power than the

  4. Photocatalytic degradation kinetics of naphthenic acids in oil sands process-affected water: Multifactorial determination of significant factors.

    PubMed

    Leshuk, Tim; de Oliveira Livera, Diogo; Peru, Kerry M; Headley, John V; Vijayaraghavan, Sucharita; Wong, Timothy; Gu, Frank

    2016-12-01

    Oil sands process-affected water (OSPW) is generated as a byproduct of bitumen extraction in Canada's oil sands. Due to the water's toxicity, associated with dissolved acid extractable organics (AEO), especially naphthenic acids (NAs), along with base-neutral organics, OSPW may require treatment to enable safe discharge to the environment. Heterogeneous photocatalysis is a promising advanced oxidation process (AOP) for OSPW remediation, however, predicting treatment efficacy can be challenging due to the unique water chemistry of OSPW from different tailings ponds. The objective of this work was to study various factors affecting the kinetics of photocatalytic AEO degradation in OSPW. The rate of photocatalytic treatment varied significantly in two different OSPW sources, which could not be accounted for by differences in AEO composition, as studied by high resolution mass spectrometry (HRMS). The effects of inorganic water constituents were investigated using factorial and response surface experiments, which revealed that hydroxyl (HO) radical scavenging by iron (Fe 3+ ) and bicarbonate (HCO 3 - ) inhibited the NA degradation rate. The effects of NA concentration and temperature on the treatment kinetics were also evaluated in terms of Langmuir-Hinshelwood and Arrhenius models; pH and temperature were identified as weak factors, while dissolved oxygen (DO) was critical to the photo-oxidation reaction. Accounting for all of these variables, a general empirical kinetic expression is proposed, enabling prediction of photocatalytic treatment performance in diverse sources of OSPW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process.

    PubMed

    Natarajan, Subramanian; Bajaj, Hari C; Tayade, Rajesh J

    2018-03-01

    The problem of textile dye pollution has been addressed by various methods, mainly physical, chemical, biological, and acoustical. These methods mainly separate and/or remove the dye present in water. Recently, advanced oxidation processes (AOP) have been focused for removal of dye from waste water due to their advantages such as ecofriendly, economic and capable to degrade many dyes or organic pollutant present in water. Photocatalysis is one of the advance oxidation processes, mainly carried out under irradiation of light and suitable photocatalytic materials. The photocatalytic activity of the photocatalytic materials mainly depends on the band gap, surface area, and generation of electron-hole pair for degradation dyes present in water. It has been observed that the surface area plays a major role in photocatalytic degradation of dyes, by providing higher surface area, which leads to the higher adsorption of dye molecule on the surface of photocatalyst and enhances the photocatalytic activity. This present review discusses the synergic effect of adsorption of dyes on the photocatalytic efficiency of various nanostructured high surface area photocatalysts. In addition, it also provides the properties of the water polluting dyes, their mechanism and various photocatalytic materials; and their morphology used for the dye degradation under irradiation of light along with the future prospects of highly adsorptive photocatalytic material and their application in photocatalytic removal of dye from waste water. Copyright © 2017. Published by Elsevier B.V.

  6. UV/H2O2 and UV/PDS Treatment of Trimethoprim and Sulfamethoxazole in Synthetic Human Urine: Transformation Products and Toxicity.

    PubMed

    Zhang, Ruochun; Yang, Yongkui; Huang, Ching-Hua; Li, Na; Liu, Hang; Zhao, Lin; Sun, Peizhe

    2016-03-01

    Elimination of pharmaceuticals in source-separated human urine is a promising approach to minimize the pharmaceuticals in the environment. Although the degradation kinetics of pharmaceuticals by UV/H2O2 and UV/peroxydisulfate (PDS) processes has been investigated in synthetic fresh and hydrolyzed urine, comprehensive evaluation of the advanced oxidation processes (AOPs), such as product identification and toxicity testing, has not yet been performed. This study identified the transformation products of two commonly used antibiotics, trimethoprim (TMP) and sulfamethoxazole (SMX), by UV/H2O2 and UV/PDS in synthetic urine matrices. The effects of reactive species, including •OH, SO4(•-), CO3(•-), and reactive nitrogen species, on product generation were investigated. Multiple isomeric transformation products of TMP and SMX were observed, especially in the reaction with hydroxyl radical. SO4(•-) and CO3(•-) reacted with pharmaceuticals by electron transfer, thus producing similar major products. The main reactive species deduced on the basis of product generation are in good agreement with kinetic simulation of the advanced oxidation processes. A strain identified as a polyphosphate-accumulating organism was used to investigate the antimicrobial activity of the pharmaceuticals and their products. No antimicrobial property was detected for the transformation products of either TMP or SMX. Acute toxicity employing luminescent bacterium Vibrio qinghaiensis indicated 20-40% higher inhibitory effect of TMP and SMX after treatment. Ecotoxicity was estimated by quantitative structure-activity relationship analysis using ECOSAR.

  7. Adverse Outcome Pathway Network Analyses: Techniques and benchmarking the AOPwiki

    EPA Science Inventory

    Abstract: As the community of toxicological researchers, risk assessors, and risk managers adopt the adverse outcome pathway (AOP) paradigm for organizing toxicological knowledge, the number and diversity of adverse outcome pathways and AOP networks are continuing to grow. This ...

  8. Pilot Preference, Compliance, and Performance With an Airborne Conflict Management Toolset

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    A human-in-the-loop experiment was conducted at the NASA Ames and Langley Research Centers, investigating the En Route Free Maneuvering component of a future air traffic management concept termed Distributed Air/Ground Traffic Management (DAG-TM). NASA Langley test subject pilots used the Autonomous Operations Planner (AOP) airborne toolset to detect and resolve traffic conflicts, interacting with subject pilots and air traffic controllers at NASA Ames. Experimental results are presented, focusing on conflict resolution maneuver choices, AOP resolution guidance acceptability, and performance metrics. Based on these results, suggestions are made to further improve the AOP interface and functionality.

  9. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittwehr, Clemens; Aladjov, Hristo; Ankley, Gerald

    Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework has emerged as a systematic approach for organizing knowledge that supports such inference. We argue that this systematic organization of knowledge can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment.more » Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment.« less

  10. Advancing the adverse outcome pathway framework and its ...

    EPA Pesticide Factsheets

    Regulatory agencies worldwide are confronted with the challenging task of assessing the risks of thousands of chemicals to protect both human health and the environment. Traditional toxicity testing largely relies on apical endpoints from whole animal studies, which, in addition to ethical concerns, is costly and time prohibitive. As a result, the utility of mechanism-based in silico, in vitro, and in vivo approaches to support chemical safety evaluations have increasingly been explored. An approach that has gained traction for capturing available knowledge describing the linkage between mechanistic data and apical toxicity endpoints, required for regulatory assessments, is the adverse outcome pathway (AOP) framework. A number of international workshops and expert meetings have been held over the past years focusing on the AOP framework and its applications to chemical risk assessment. Although, these interactions have illustrated the necessity of expert guidance in moving the science of AOPs and their applications forward, there is also the recognition that a broader survey of the scientific community could be useful in guiding future initiatives in the AOP arena. To that end, a Horizon Scanning exercise was conducted to solicit questions from the global scientific community concerning the challenges or limitations that must be addressed in order to realize the full potential of the AOP framework in research and regulatory decision making. Over a 4 month ques

  11. How adverse outcome pathways can aid the development and ...

    EPA Pesticide Factsheets

    Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework has emerged as a systematic approach for organizing knowledge that supports such inference. We argue that this systematic organization of knowledge can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment. Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment. The present manuscript reports on expert opinion and case studies that came out of a European Commission, Joint Research Centre-sponsored work

  12. The fate of H2O2 during managed aquifer recharge: A residual from advanced oxidation processes for drinking water production.

    PubMed

    Wang, F; van Halem, D; van der Hoek, J P

    2016-04-01

    The fate of H2O2 residual from advanced oxidation process (AOP) preceding managed aquifer recharge (MAR) is of concern because H2O2 could lead to undesired effects on organisms in the MAR aquatic and soil ecosystem. The objective of this study was to distinguish between factors affecting H2O2 decomposition in MAR systems, simulated in batch reactors with synthetic MAR water and slow sand filter sand. The results showed that pure sand and soil organic matter had no considerable effect on H2O2 decomposition, whereas naturally occurring inorganic substances on the surface of sand grains and microbial biomass are the two main factors accelerating H2O2 decomposition in MAR systems. Additionally, the results showed that the H2O2 decompositions with different initial concentrations fitted first-order kinetics in 2-6 h in a mixture of slow sand filter sand (as a substitute for sand from a MAR system) and synthetic MAR water with high bacterial population. An estimation indicated that low concentrations of H2O2 (<3 mg/L) could decompose to the provisional standard of 0.25 mg/L in the first centimeters of MAR systems with the influent water containing high microbial biomass 38 ng ATP/mL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods.

    PubMed

    Giannakis, Stefanos; Gamarra Vives, Franco Alejandro; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2015-11-01

    In this study, wastewater from the output of three different secondary treatment facilities (Activated Sludge, Moving Bed Bioreactor and Coagulation-Flocculation) present in the municipal wastewater treatment plant of Vidy, Lausanne (Switzerland), was further treated with various oxidation processes (UV, UV/H2O2, solar irradiation, Fenton, solar photo-Fenton), at laboratory scale. For this assessment, 6 organic micropollutants in agreement with the new environmental legislation requirements in Switzerland were selected (Carbamazepine, Clarithromycin, Diclofenac, Metoprolol, Benzotriazole, Mecoprop) and monitored throughout the treatment. Also, the overall removal of the organic load was assessed. After each secondary treatment, the efficiency of the AOPs increased in the following order: Coagulation-Flocculation < Activated Sludge < Moving Bed Bioreactor, in almost all cases. From the different combinations tested, municipal wastewater subjected to biological treatment followed by UV/H2O2 resulted in the highest elimination levels. Wastewater previously treated by physicochemical treatment demonstrated considerably inhibited micropollutant degradation rates. The degradation kinetics were determined, yielding: k (UV) < k (UV/H2O2) and k (Fenton) < k (solar irradiation) < k (photo-Fenton). Finally, the evolution of global pollution parameters (COD & TOC elimination) was followed and the degradation pathways for the effluent organic matter are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

    PubMed Central

    Losa-Adams, Elisabeth; F.-Dávila, Alfonso; Gago-Duport, Luis

    2014-01-01

    Summary The Fenton reaction is the most widely used advanced oxidation process (AOP) for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc) as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2) particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe3+ into Fe2+ and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm) with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L) and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites. PMID:24991522

  15. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants.

    PubMed

    Gil-Lozano, Carolina; Losa-Adams, Elisabeth; F-Dávila, Alfonso; Gago-Duport, Luis

    2014-01-01

    The Fenton reaction is the most widely used advanced oxidation process (AOP) for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc) as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2) particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe(3+) into Fe(2+) and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm) with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L) and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites.

  16. An Integrative data mining approach to identifying Adverse Outcome Pathway (AOP) Signatures

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is a tool for making biological connections and summarizing key information across different levels of biological organization to connect biological perturbations at the molecular level to adverse outcomes for an individual or populatio...

  17. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    EPA Science Inventory

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  18. AOP Knowledge Base/Wiki Tool Set

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin Is...

  19. The Effect of AOP on Software Engineering, with Particular Attention to OIF and Event Quantification

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Filman, Robert; Korsmeyer, David (Technical Monitor)

    2003-01-01

    We consider the impact of Aspect-Oriented Programming on Software Engineering, and, in particular, analyze two AOP systems, one of which does component wrapping and the other, quantification over events, for their software engineering effects.

  20. Realizing the promise of AOPs: A stakeholder-driven roadmap to the future

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework was developed to serve as a knowledge assembly and communication tool to facilitate translation of mechanistic (e.g., molecular, biochemical, histological) data into adverse apical outcomes meaningful to chemical risk assessment. Althou...

  1. An “ADME Module” in the Adverse Outcome Pathway Knowledgebase

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework has generated intense interest for its utility to organize knowledge on the toxicity mechanisms, starting from a molecular initiating event (MIE) to an adverse outcome across various levels of biological organization. While the AOP fra...

  2. Adverse Outcome Pathways: From Research to Regulation - Scientific Workshop Report

    EPA Science Inventory

    An adverse outcome pathway (AOP) organizes existing knowledge on chemical mode of action, starting with a molecular initiating event such as receptor binding, continuing through key events, and ending with an adverse outcome such as reproductive impairment. AOPs can help identify...

  3. Use of Putative Adverse Outcome Pathways for Chemical Hazard Identification

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework provides a knowledge infrastructure for evaluating health effects of environmental chemicals. In this work we are examining proof-of-concept issues in the development and prospective application of AOPs in chemical safety. Key outputs i...

  4. Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology

    EPA Science Inventory

    A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course p...

  5. Establishing Adverse Outcome Pathways of Thyroid Hormone Disruption in an Amphibian Model

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) provides a framework for understanding the relevance of toxicology data in ecotoxicological hazard assessments. The AOP concept can be applied to many toxicological pathways including thyroid hormone disruption. Thyroid hormones play a critical r...

  6. Adverse Outcome Pathways for Regulatory Applications: Examination of Four Case Studies With Different Degrees of Completeness and Scientific Confidence.

    PubMed

    Perkins, Edward J; Antczak, Philipp; Burgoon, Lyle; Falciani, Francesco; Garcia-Reyero, Natàlia; Gutsell, Steve; Hodges, Geoff; Kienzler, Aude; Knapen, Dries; McBride, Mary; Willett, Catherine

    2015-11-01

    Adverse outcome pathways (AOPs) offer a pathway-based toxicological framework to support hazard assessment and regulatory decision-making. However, little has been discussed about the scientific confidence needed, or how complete a pathway should be, before use in a specific regulatory application. Here we review four case studies to explore the degree of scientific confidence and extent of completeness (in terms of causal events) that is required for an AOP to be useful for a specific purpose in a regulatory application: (i) Membrane disruption (Narcosis) leading to respiratory failure (low confidence), (ii) Hepatocellular proliferation leading to cancer (partial pathway, moderate confidence), (iii) Covalent binding to proteins leading to skin sensitization (high confidence), and (iv) Aromatase inhibition leading to reproductive dysfunction in fish (high confidence). Partially complete AOPs with unknown molecular initiating events, such as 'Hepatocellular proliferation leading to cancer', were found to be valuable. We demonstrate that scientific confidence in these pathways can be increased though the use of unconventional information (eg, computational identification of potential initiators). AOPs at all levels of confidence can contribute to specific uses. A significant statistical or quantitative relationship between events and/or the adverse outcome relationships is a common characteristic of AOPs, both incomplete and complete, that have specific regulatory uses. For AOPs to be useful in a regulatory context they must be at least as useful as the tools that regulators currently possess, or the techniques currently employed by regulators. Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.

  7. Fate and hazard of the electrochemical oxidation of triclosan. Evaluation of polychlorodibenzo‑p‑dioxins and polychlorodibenzofurans (PCDD/Fs) formation.

    PubMed

    Solá-Gutiérrez, Claudia; San Román, M Fresnedo; Ortiz, Inmaculada

    2018-06-01

    Triclosan (TCS) is widely used as antiseptic or preservative in many personal care products (PCPs), such as cosmetics, hand wash, toothpaste and deodorant soaps, among others. It is characterized by acute toxicity, resistance to biodegradation, environmental persistence and relatively high lipophilicity. In order to protect the environment and natural resources from the negative effects of the discharge of polluted wastewater with TCS, the application of efficient remediation technologies able to degrade the pollutant to harmless levels becomes crucial. Electrochemical oxidation, among all advanced oxidation processes (AOPs), has been reported as very effective in the complete degradation of a number of persistent pollutants; therefore, its performance using boron-doped diamond (BDD) anodes, and response to operation variables, has been studied in this work. As expected, complete degradation of TCS was achieved in all the studied conditions; however, going a step further and knowing that TCS is a precursor of polychlorinated dibenzo‑p‑dioxins and dibenzofurans (PCDD/Fs), their quantitative presence in the oxidation media has been assessed. Results showed the dominance of dichlorinated (DCDD) and trichlorinated (TrCDD/Fs) in the homologue profile of total PCDD/Fs, reaching values up to 1.48 × 10 5  pg L -1 in samples with initial concentration of TCS of 100 mg L -1 and NaCl as electrolyte. Under these conditions, the International Toxicity Equivalency Factor (I-TEF) achieved values up to 2.76 × 10 2  pg L -1 . Nevertheless, the presence of copper in the oxidation medium tends to reduce I-TEF values. Finally, considering the information reported in literature, a mechanism describing the formation of low chlorinated PCDD/Fs from TCS oxidation reactions is proposed. Copyright © 2018. Published by Elsevier B.V.

  8. Generation of computationally predicted Adverse Outcome Pathway networks through integration of publicly available in vivo, in vitro, phenotype, and biological pathway data.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is becoming a widely used tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse ecological and human health outcomes. However, the conventional process...

  9. Fish early life stage: Developing AOPs to support targeted reduction and replacement

    EPA Science Inventory

    There is an interest in developing alternatives to the fish early-life stage (FELS) test (OECD test guideline 210), for predicting adverse chronic toxicity outcomes (e.g., impacts on growth and survival). Development and characterization of adverse outcome pathways (AOPs) related...

  10. AOP-driven Predictive Models for Carcinogenicity: an exercise in interoperable data application.

    EPA Science Inventory

    Traditional methods and data sources for risk assessment are resource-intensive, retrospective, and not a feasible approach to address the tremendous regulatory burden of unclassified chemicals. As a result, the adverse outcome pathway (AOP) concept was developed to facilitate a ...

  11. Constructing, Quantifying, and Validating an Adverse Outcome Pathway for Vascular Developmental Toxicity

    EPA Science Inventory

    Constructing, Quantifying, and Validating an Adverse Outcome Pathway for Vascular Developmental Toxicity The adverse outcome pathway (AOP) for embryonic vascular disruption1 leading to a range of adverse prenatal outcomes was recently entered into the AOP wiki and accepted as par...

  12. Use of Adverse Outcome Pathways to Inform Decisions on Chemical Innovation, Regulation & Stewardship

    EPA Science Inventory

    An invited group of scientists participated in a SETAC Pellston WorkshopTM, “Advancing the Adverse Outcome Pathway (AOP) Concept – An International Horizon Scanning Approach,” in April 2017. The workshop addressed key challenges or limitations of AOP constructs...

  13. Tipping the Balance: Hepatotoxicity and the Four Apical Key Events of Hepatic Steatosis

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are descriptive biological sequences that start from a molecular initiating event (MIE) and end with an adverse health outcome. AOPs provide biological context for high throughput chemical testing and further prioritize environmental health risk r...

  14. Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Ordóñez, Ruth; Blanco, Angeles

    2012-06-01

    According to current environmental legislation concerned with water scarcity, paper industry is being forced to adopt a zero liquid effluent policy. In consequence, reverse osmosis (RO) systems are being assessed as the final step of effluent treatment trains aiming to recover final wastewater and reuse it as process water. One of the most important drawbacks of these treatments is the production of a retentated stream, which is usually highly loaded with biorecalcitrant organic matter and inorganics; and this effluent must meet current legislation stringent constraints before being ultimately disposed. The treatment of biorefractory RO retentate from a paper mill by several promising advanced oxidation processes (AOPs) - conventional Fenton, photo-Fenton and photocatalysis - was optimized considering the effect and interaction of reaction parameters; particularly using response surface methodology (RSM) when appropriate (Fenton processes). The economical cost of these treatments was also comparatively assessed. Photo-Fenton process was able to totally remove the COD of the retentate, and resulted even operatively cheaper at high COD removal levels than conventional Fenton, which achieved an 80% reduction of the COD at best. In addition, although these optimal results were produced at pH=2.8, it was also tested that Fenton processes are able to achieve good COD reduction efficiencies (>60%) without adjusting the initial pH value, provided the natural pH of this wastewater was close to neutral. Finally, although TiO(2)-photocatalysis showed the least efficient and most expensive figures, it improved the biodegradability of the retentate, so its combination with a final biological step almost achieved the total removal of the COD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Prediction of time to delivery by transperineal ultrasound in second stage of labor.

    PubMed

    Yonetani, N; Yamamoto, R; Murata, M; Nakajima, E; Taguchi, T; Ishii, K; Mitsuda, N

    2017-02-01

    To investigate whether the transperineal sonographic (TPS) parameters angle of progression (AoP) and midline angle (MLA) can predict the time remaining in the second stage of labor. We evaluated prospectively women with a singleton pregnancy in cephalic presentation at term between October 2013 and September 2014. TPS volumes were obtained immediately after confirmation by digital vaginal examination of a fully dilated cervix. AoP and MLA were measured offline by analyzing the ultrasound volumes. Progression of labor was evaluated every hour during the second stage. The associations of AoP and MLA with the interval between TPS assessment and delivery were evaluated using multivariable Cox proportional hazards analyses in nulliparous and parous women separately. A total of 557 women were evaluated. An AoP ≥ 160° (adjusted hazard ratio (aHR), 2.52 (95% CI, 1.98-3.19)) and MLA ≤ 10° (aHR, 1.79 (95% CI, 1.35-2.34)) in nulliparous women and an AoP ≥ 150° (aHR, 1.86 (95% CI, 1.34-2.57)) and MLA ≤ 20° (aHR, 1.69 (95% CI, 1.21-2.34)) in parous women were significantly associated with the remaining time in labor. The positive/negative likelihood ratios of AoP, MLA, clinical station (fetal head descent as observed by digital examination) and clinical rotation (fetal head rotation as observed by digital examination) at these cut-off points were 3.6/0.6, 2.0/0.6, 1.6/0.6 and 1.6/0.8, respectively, in nulliparous women, and 2.4/0.6, 1.3/0.7, 7.6/0.5 and 5.2/0.7, respectively, in parous women. TPS assessment of AoP and MLA in the second stage of labor was useful for predicting the time remaining in labor and had higher predictive value than did digital vaginal examination in nulliparous women. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  16. The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater.

    PubMed

    Michael-Kordatou, I; Karaolia, P; Fatta-Kassinos, D

    2018-02-01

    An upsurge in the study of antibiotic resistance in the environment has been observed in the last decade. Nowadays, it is becoming increasingly clear that urban wastewater is a key source of antibiotic resistance determinants, i.e. antibiotic-resistant bacteria and antibiotic resistance genes (ARB&ARGs). Urban wastewater reuse has arisen as an important component of water resources management in the European Union and worldwide to address prolonged water scarcity issues. Especially, biological wastewater treatment processes (i.e. conventional activated sludge), which are widely applied in urban wastewater treatment plants, have been shown to provide an ideal environment for the evolution and spread of antibiotic resistance. The ability of advanced chemical oxidation processes (AOPs), e.g. light-driven oxidation in the presence of H 2 O 2 , ozonation, homogeneous and heterogeneous photocatalysis, to inactivate ARB and remove ARGs in wastewater effluents has not been yet evaluated through a systematic and integrated approach. Consequently, this review seeks to provide an extensive and critical appraisal on the assessment of the efficiency of these processes in inactivating ARB and removing ARGs in wastewater effluents, based on recent available scientific literature. It tries to elucidate how the key operating conditions may affect the process efficiency, while pinpointing potential areas for further research and major knowledge gaps which need to be addressed. Also, this review aims at shedding light on the main oxidative damage pathways involved in the inactivation of ARB and removal of ARGs by these processes. In general, the lack and/or heterogeneity of the available scientific data, as well as the different methodological approaches applied in the various studies, make difficult the accurate evaluation of the efficiency of the processes applied. Besides the operating conditions, the variable behavior observed by the various examined genetic constituents of the microbial community, may be directed by the process distinct oxidative damage mechanisms in place during the application of each treatment technology. For example, it was shown in various studies that the majority of cellular damage by advanced chemical oxidation may be on cell wall and membrane structures of the targeted bacteria, leaving the internal components of the cells relatively intact/able to repair damage. As a result, further in-depth mechanistic studies are required, to establish the optimum operating conditions under which oxidative mechanisms target internal cell components such as genetic material and ribosomal structures more intensively, thus conferring permanent damage and/or death and preventing potential post-treatment re-growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Defining Adverse Outcome Pathways for Effects of the Fungicide Propiconazole of Fish Reproduction

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are used to describe the linkage of chemical interactions in terms of molecular initiating events to whole organism responses suitable for risk assessment. This study was conducted to develop AOPs for the model fungicide propiconazole relative to r...

  18. Identifying Key Events in AOPs for Embryonic Disruption using Computational Toxicology (European Teratology Society - AOP symp.)

    EPA Science Inventory

    Addressing safety aspects of drugs and environmental chemicals relies extensively on animal testing; however, the quantity of chemicals needing assessment and challenges of species extrapolation require alternative approaches to traditional animal studies. Newer in vitro and in s...

  19. The potential of AOP networks for reproductive and developmental toxicity assay development

    EPA Science Inventory

    Historically, the prediction of reproductive and early developmental toxicity has largely relied on the use of animals. The Adverse Outcome Pathway (AOP) framework forms a basis for the development of new non-animal test methods. It also provides biological context for mechanisti...

  20. AOP Wiki: A new tool for developing and documenting adverse outcome pathways

    EPA Science Inventory

    An initial version of an IT system to support OECD AOP activities recently was completed through collaborative efforts and contributions of the European Commission's Joint Research Centre (EU JRC), the Office of Research and Development (ORD) of the United States Environmental Pr...

  1. AOP Wiki Version 2.0

    EPA Science Inventory

    Version 2.0 of the AOP-Wiki was released on December 4, 2016. This was a major upgrade and should provide a better user experience. It fixes a number of bugs with the previous version, provides a more streamlined user interface, and sets the stage for providing more programmatic...

  2. Influence of Ammonium Ions, Organic Load and Flow Rate on the UV/Chlorine AOP Applied to Effluent of a Wastewater Treatment Plant at Pilot Scale.

    PubMed

    Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Minke, Ralf

    2018-06-16

    This work investigates the influence of ammonium ions and the organic load (chemical oxygen demand (COD)) on the UV/chlorine AOP regarding the maintenance of free available chlorine (FAC) and elimination of 16 emerging contaminants (ECs) from wastewater treatment plant effluent (WWTE) at pilot scale (UV chamber at 0.4 kW). COD inhibited the FAC maintenance in the UV chamber influent at a ratio of 0.16 mg FAC per mg COD ( k HOCl⁻COD = 182 M −1 s −1 ). An increase in ammonium ion concentration led to a stoichiometric decrease of the FAC concentration in the UV chamber influent. Especially in cold seasons due to insufficient nitrification, the ammonium ion concentration in WWTE can become so high that it becomes impossible to achieve sufficiently high FAC concentrations in the UV chamber influent. For all ECs, the elimination effect by the UV/combined Cl₂ AOP (UV/CC) was not significantly higher than that by sole UV treatment. Accordingly, the UV/chlorine AOP is very sensitive and loses its effectiveness drastically as soon as there is no FAC but only CC in the UV chamber influent. Therefore, within the electrical energy consumption range tested (0.13⁻1 kWh/m³), a stable EC elimination performance of the UV/chlorine AOP cannot be maintained throughout the year.

  3. Photo-fenton degradation of diclofenac: identification of main intermediates and degradation pathway.

    PubMed

    Pérez-Estrada, Leónidas A; Malato, Sixto; Gernjak, Wolfgang; Agüera, Ana; Thurman, E Michael; Ferrer, Imma; Fernández-Alba, Amadeo R

    2005-11-01

    In recent years, the presence of pharmaceuticals in the aquatic environment has been of growing interest. These new contaminants are important because many of them are not degraded under the typical biological treatments applied in the wastewater treatment plants and represent a continuous input into the environment. Thus, compounds such as diclofenac are present in surface waters in all Europe and a crucial need for more enhanced technologies that can reduce its presence in the environment has become evident. In this sense, advanced oxidation processes (AOPs) represent a good choice for the treatment of hazardous nonbiodegradable pollutants. This work deals with the solar photodegradation of diclofenac, an antiinflammatory drug, in aqueous solutions by photo-Fenton reaction. A pilot-scale facility using a compound parabolic collector (CPC) reactor was used for this study. Results obtained show rapid and complete oxidation of diclofenac after 60 min, and total mineralization (disappearance of dissolved organic carbon, DOC) after 100 min of exposure to sunlight. Although diclofenac precipitates during the process at low pH, its degradation takes place in the homogeneous phase governed by a precipitation-redissolution-degradation process. Establishment of the reaction pathway was made possible by a thorough analysis of the reaction mixture identifying the main intermediate products generated. Gas chromatography-mass spectrometry (GC/ MS) and liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOF-MS) were used to identify 18 intermediates, in two tentative degradation routes. The main one was based on the initial hydroxylation of the phenylacetic acid moiety in the C-4 position and subsequent formation of a quinone imine derivative that was the starting point for further multistep degradation involving hydroxylation, decarboxylation, and oxidation reactions. An alternative route was based on the transient preservation of the biphenyl amino moiety that underwent a similar oxidative process of C-N bond cleavage. The proposed degradation route differs from those previously reported involving alternative degradation processes (ozonization, UV/H2O2, or photolysis), indicating that diclofenac degradation follows different pathways, depending on the treatment applied.

  4. Discovering and annotating fish early life-stage (FELS) adverse outcome pathways: Putting the research strategy into practice

    EPA Science Inventory

    In May 2012, a HESI-sponsored expert workshop yielded a proposed research strategy for systematically discovering, characterizing, and annotating fish early life-stage (FELS) adverse outcome pathways (AOPs) as well as prioritizing AOP development in light of current restrictions ...

  5. Quantitative AOP-based predictions for two aromatase inhibitors evaluating the influence of bioaccumulation on prediction accuracy

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework can be used to support the use of mechanistic toxicology data as a basis for risk assessment. For certain risk contexts this includes defining, quantitative linkages between the molecular initiating event (MIE) and subsequent key events...

  6. Practical approaches to adverse outcome pathway development and weight‐of‐evidence evaluation as illustrated by ecotoxicological case studies

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) describe toxicant effects as a sequential chain of causally linked events beginning with a molecular perturbation and culminating in an adverse outcome at an individual or population level. Strategies for developing AOPs are still evolving and dep...

  7. Modeling a molecular initiating event to population effects: A case study of aromatase inhibition in fathead minnows

    EPA Science Inventory

    An adverse outcome pathway (AOP) conceptually links a molecular initiating event with measureable key events at higher levels of biological organization that ultimately result in an adverse outcome. Development of an AOP requires experimental data and scientific expertise to ide...

  8. Integration of chemical-specific exposure and pharmacokinetic information with the chemical-agnostic AOP framework to support high throughput risk assessment

    EPA Science Inventory

    Application of the Adverse Outcome Pathway (AOP) framework and high throughput toxicity testing in chemical-specific risk assessment requires reconciliation of chemical concentrations sufficient to trigger a molecular initiating event measured in vitro and at the relevant target ...

  9. Abstract of operations - boats automated reporting system 1.0 : installation and maintenance guide version 1.0 January 1995

    DOT National Transportation Integrated Search

    1995-01-01

    The AOPS Boats system was developed to assist you in compiling your quarterly AOPS data and sending it to Headquarters. An additional component was designed solely to field use to help the station track certification dates by training activities on l...

  10. A Workflow to Investigate Exposure and Pharmacokinetic Influences on High-Throughput in Vitro Chemical Screening Based on Adverse Outcome Pathways

    EPA Science Inventory

    Background: Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowled...

  11. Use of 2D chemical structure and bioactivity profiles to generate chemical categories within an Adverse Outcome Pathway network

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework has emerged to capitalise on the vast quantity of mechanistic data generated by alternative techniques, as well as advances in systems biology, cheminformatics, and bioinformatics. AOPs provide a scaffold onto which mechanistic data can...

  12. Quantitative AOP linking aromatase inhibition to impaired reproduction: A case study in predictive ecotoxicology

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework is intended to help support greater use of mechanistic toxicology data as a basis for risk assessment and/or regulatory decision-making. While there have been clear advances in the ability to rapidly generate mechanistically-oriented da...

  13. THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK: A FRAMEWORK FOR ORGANIZING BIOLOGICAL KNOWLEDGE LEADING TO HEALTH RISKS.

    EPA Science Inventory

    An Adverse Outcome Pathway (AOP) represents the organization of current and newly acquired knowledge of biological pathways. These pathways contain a series of nodes (Key Events, KEs) that when sufficiently altered influence the next node on the pathway, beginning from an Molecul...

  14. Tiered Approaches to Incorporate the Adverse Outcome Pathway Framework into Chemical-Specific Risk-Based Decision Making

    EPA Science Inventory

    The concept of Adverse Outcome Pathways (AOPs) arose as a means of addressing the challenges associated with establishing relationships between high-throughout (HT) in vitro dose response data and in vivo biological outcomes. However, AOP development has also been met with challe...

  15. PUTATIVE ADVERSE OUTCOME PATHWAY FOR INHIBITON OF BRAIN AROMATASE IN FISH LEADING TO REPRODUCTIVE IMPAIRMENT

    EPA Science Inventory

    The adverse outcome pathway (AOP) provides a framework for organizing knowledge to define links between a molecular initiating event (MIE) and an adverse outcome (AO) occurring at a higher level of biological organization, such as the individual or population. The AOP framework p...

  16. Gas Phase Probe Molecules for Assessing In vitro Metabolism to Infer an In vivo Response

    EPA Science Inventory

    Efficient and accurate in vitro high-throughput screening (HTS) methods use cellular and molecular based adverse outcome pathways (AOPs) as central elements for exposure assessment and chemical prioritization. However, not all AOPs are based on human or animal systems biology, bu...

  17. Degradation of black liquor from bioethanol process using coagulation and Fenton-like methods

    NASA Astrophysics Data System (ADS)

    Muryanto, Muryanto; Sari, Ajeng Arum; Abimanyu, Haznan

    2017-01-01

    Black liquor is one of the main by-products of the pretreatment process in bioethanol production from oil palm empty fruit bunches. Black liquor wastewater releases black coloured effluent with high chemical oxygen demand (COD) and low dissolved oxygen (DO). It had a distinctive dark coloration, high alkalinity (pH=13), high organic content (COD > 50,000 ppm) and a high solid content (TSS > 5,000 ppm). Lignin destruction can be done by using high oxidation from OH radical system such as advanced oxidation processes (AOPs). Thereafter, the high concentration of COD, color, and TSS can be removed. The general aim of the present investigation was to determine degradation of black liquor wastewater by using a combined coagulation and Fenton-like methods. In this research, we use Poly Aluminum Chloride (PAC) as a coagulant and FeCl3.6H2O and H2O2 for Fenton-like's reagent. The process was conducted in jar test at 200 rpm for 30 minutes and after that slowly mixed for 2 hours and left for sedimentation 24 hours. 50 ml black liquor was added with variation dose of 1-5% PAC, and 10 % Fenton-like reagent. Hydroxyl radical was generated by the Fenton-like's reagent (ratio FeCl3.6H2O : H2O2 was varied). The highest decolorization of black liquor 70 % was obtained under 5% PAC coagulant. The pH of the wastewater was reduced from 13.00 to 8.07 after the addition of the coagulant. The decolorization of original black liquor was approximately 58% through the Fenton-like process. The combination of PAC and Fenton-like reagent has able to enhance the decolorization of black liquor up to 97%.

  18. Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio

    2008-01-01

    Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and processing of seawater samples for biogeochemical (pigments, DOC and POC) and optical (CDOM and POM absorption coefficients) analyses to enhance our understanding of the linkages between in-water optical measurements (IOPs and AOPs) and biogeochemical constituents and to provide a more comprehensive suite of validation products.

  19. Development of computationally predicted Adverse Outcome Pathway (AOP) networks through data mining and integration of publicly available in vivo, in vitro, phenotype, and biological pathway data

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. Ho...

  20. Differentiating high priority pathway-based toxicity from non-specific effects in high throughput toxicity data: A foundation for prioritizing AOP development.

    EPA Science Inventory

    The ToxCast chemical screening approach enables the rapid assessment of large numbers of chemicals for biological effects, primarily at the molecular level. Adverse outcome pathways (AOPs) offer a means to link biomolecular effects with potential adverse outcomes at the level of...

  1. Evaluating a Skin Sensitization Model and Examining Common Assumptions of Skin Sensitizers (ASCCT meeting)

    EPA Science Inventory

    Skin sensitization is an adverse outcome that has been well studied over many decades. It was summarized using the adverse outcome pathway (AOP) framework as part of the OECD work programme (OECD, 2012). Currently there is a strong focus on how AOPs can be applied for different r...

  2. Developing confidence in adverse outcome pathway-based toxicity predictions effects of the fungicide imazalil on fathead minnow reproduction

    EPA Science Inventory

    An adverse outcome pathway (AOP) description linking inhibition of aromatase (cytochrome P450 [cyp] 19) to reproductive dysfunction was reviewed for scientific and technical quality and endorsed by the OECD (https://aopwiki.org/wiki/index.php/Aop:25). An intended application of t...

  3. Developing confidence in adverse outcome pathway-based toxicity predictions effects of the fungicide imazalil on fathead minnow reproduction (Poster)

    EPA Science Inventory

    An adverse outcome pathway (AOP) description linking inhibition of aromatase (cytochrome P450 [cyp] 19) to reproductive dysfunction was reviewed for scientific and technical quality and endorsed by the OECD. An intended application of the AOP framework is to support the use of me...

  4. Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES).

    PubMed

    Ling, Ting; Huang, Bin; Zhao, Mingxing; Yan, Qun; Shen, Wei

    2016-03-01

    Composite Fe2O3/ACF electrode facilitated methyl orange (MO) oxidative degradation using bio-electro-Fenton in bioelectrochemical system (BES) was investigated. Characterized by both XPS and FT-IR techniques, it was found that the composite Fe2O3/ACF electrode with highest Fe loading capacity of 11.02% could be prepared after the carbon felt was oxidized with nitric acid. Moreover, hydrogen peroxide production reached steadily at 88.63 μmol/L with the external resistance as 100 Ω, cathodic aeration rate at 750 mL/min, and the pH of the bio-electro-Fenton system adjusted to 2. Significantly, not only the electrochemical profiles of the BES reactor as electrochemical impedance spectroscopy (EIS) was bettered, but the MO oxidative degradation could be accomplished for eight repeated batches, with the MO removal efficiency varied slightly from 73.9% to 86.7%. It indicated that the bio-electro-Fenton might be a promising eco-friendly AOP method for Azo-dye wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Prescription stimulant use is associated with earlier onset of psychosis.

    PubMed

    Moran, Lauren V; Masters, Grace A; Pingali, Samira; Cohen, Bruce M; Liebson, Elizabeth; Rajarethinam, R P; Ongur, Dost

    2015-12-01

    A childhood history of attention deficit hyperactivity disorder (ADHD) is common in psychotic disorders, yet prescription stimulants may interact adversely with the physiology of these disorders. Specifically, exposure to stimulants leads to long-term increases in dopamine release. We therefore hypothesized that individuals with psychotic disorders previously exposed to prescription stimulants will have an earlier onset of psychosis. Age of onset of psychosis (AOP) was compared in individuals with and without prior exposure to prescription stimulants while controlling for potential confounding factors. In a sample of 205 patients recruited from an inpatient psychiatric unit, 40% (n = 82) reported use of stimulants prior to the onset of psychosis. Most participants were prescribed stimulants during childhood or adolescence for a diagnosis of ADHD. AOP was significantly earlier in those exposed to stimulants (20.5 vs. 24.6 years stimulants vs. no stimulants, p < 0.001). After controlling for gender, IQ, educational attainment, lifetime history of a cannabis use disorder or other drugs of abuse, and family history of a first-degree relative with psychosis, the association between stimulant exposure and earlier AOP remained significant. There was a significant gender × stimulant interaction with a greater reduction in AOP for females, whereas the smaller effect of stimulant use on AOP in males did not reach statistical significance. In conclusion, individuals with psychotic disorders exposed to prescription stimulants had an earlier onset of psychosis, and this relationship did not appear to be mediated by IQ or cannabis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Developing confidence in adverse outcome pathway-based ...

    EPA Pesticide Factsheets

    An adverse outcome pathway (AOP) description linking inhibition of aromatase (cytochrome P450 [cyp] 19) to reproductive dysfunction was reviewed for scientific and technical quality and endorsed by the OECD. An intended application of the AOP framework is to support the use of mechanistic or pathway-based data to infer or predict chemical hazards and apical adverse outcomes. As part of this work, ToxCast high throughput screening data were used to identify a chemicals’ ability to inhibit aromatase activity in vitro. Twenty-four hour in vivo exposures, focused on effects on production and circulating concentrations of 17β-estradiol (E2), key events in the AOP, were conducted to verify in vivo activity. Based on these results, imazalil was selected as a case study chemical to test an AOP-based hazard prediction. A computational model of the fish hypothalamic-pituitary-gonadal-liver axis and a statistically-based model of oocyte growth dynamics were used to predict impacts of different concentrations of imazalil on multiple key events along the AOP, assuming continuous exposure for 21 d. Results of the model simulations were used to select test concentrations and design a fathead minnow reproduction study in which fish were exposed to 20, 60, or 200 µg imazalil/L for durations of 2.5, 10, or 21d. Within 60 h of exposure, female fathead minnows showed significant reductions in ex vivo production of E2, circulating E2 concentrations, and significant increases in

  7. Adverse Outcome Pathway (AOP) for a Mutagenic Mode of Action for Cancer: AFB1 and Hepatocellular Carcinoma (HCC)

    EPA Science Inventory

    AOPs provide a framework to describe a sequence of measureable key events (KEs), beginning with a molecular initiating event (MIE), followed by a series of identified KEs linked to one another by KE Relationships (KERs), all anchored by a specific adverse outcome (AO). Each KE/KE...

  8. Case Study: AOP, Alliance Organizing Project. Strong Neighborhoods, Strong Schools. The Indicators Project on Education Organizing.

    ERIC Educational Resources Information Center

    Gold, Eva; Pickron-Davis, Marcine; Brown, Chris

    This report describes Philadelphia, Pennsylvania's, Alliance Organizing Project (AOP), which organized parents and families of Philadelphia's public school students to become full partners in Philadelphia school reform. It is one of five case studies in the Indicators Project on Education Organizing, which identified eight indicators of the impact…

  9. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways, OpenTox USA 2015 Poster

    EPA Science Inventory

    Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption,...

  10. A Network of AOPs for reduced thyroid hormone synthesis derived from inhibition of Thyroperoxidase - A common Molecular Initiating Event Leading to Species-Specific Indices of Adversity.

    EPA Science Inventory

    This collection of 3 AOPs describe varying outcomes of adversity dependent upon species in response to inhibition of thyroperoxidase (TPO) during development. Chemical inhibition of TPO, the molecular-initiating event (MIE), results in decreased thyroid hormone (TH) synthesis, a...

  11. Probe molecules (PrM) approach in adverse outcome pathway (AOP) based high throughput screening (HTS): in vivo discovery for developing in vitro target methods

    EPA Science Inventory

    Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...

  12. Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater.

    PubMed

    Manenti, Diego R; Soares, Petrick A; Silva, Tânia F C V; Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    The performance of different solar-driven advanced oxidation processes (AOPs), such as TiO2/UV, TiO2/H2O2/UV, and Fe(2+)/H2O2/UV-visible in the treatment of a real textile effluent using a pilot plant with compound parabolic collectors (CPCs), was investigated. The influence of the main photo-Fenton reaction variables such as iron concentration (20-100 mg Fe(2+) L(-1)), pH (2.4-4.5), temperature (10-50 °C), and irradiance (22-68 WUV m(-2)) was evaluated in a lab-scale prototype using artificial solar radiation. The real textile wastewater presented a beige color, with a maximum absorbance peak at 641 nm, alkaline pH (8.1), moderate organic content (dissolved organic carbon (DOC) = 129 mg C L(-1) and chemical oxygen demand (COD) = 496 mg O2 L(-1)), and high conductivity mainly associated to the high concentration of chloride (1.1 g Cl(-) L(-1)), sulfate (0.4 g SO 4 (2 -) L(- 1)), and sodium (1.2 g Na(+) L(-1)) ions. Although all the processes tested contributed to complete decolorization and effective mineralization, the most efficient process was the solar photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 70 % mineralization (DOCfinal = 41 mg C L(-1); CODfinal < 150 mg O2 L(-1)) at pH 3.6, requiring a UV energy dose of 3.5 kJUV L(-1) (t 30 W = 22.4 min; [Formula: see text]; [Formula: see text]) and consuming 18.5 mM of H2O2.

  13. The degradation mechanism of phenol induced by ozone in wastes system.

    PubMed

    Youmin, Sun; Xiaohua, Ren; Zhaojie, Cui; Guiqin, Zhang

    2012-08-01

    A distinct understanding for the degradation mechanism of phenol induced by ozone is very essential because the ozonation process, one of the advanced oxidation processes (AOPs), is attractive and popular in wastewater treatment. In the present work, the detailed reactions of ozone and phenol are investigated employing the density functional theory B3LYP method with the 6-311++G (d, p) basis set. The profiles of the potential energy surface are constructed and the possible reaction pathways are indicated. These detailed calculation results suggest two degradation reaction mechanisms. One is phenolic H atom abstraction mechanism, and the other is cyclo-addition and ring-opening mechanism. Considering the effect of solvent water, the calculated energy barriers and reaction enthalpies for the reaction of O3 and phenol in water phase are both lower than those in gas phase, though the degradation mechanisms are not changed. This reveals that these degradation reactions are more favorable in the water solvent. The main reaction products are C(6)H(5)OO· radical, a crucial precursor for forming PCDD/Fs and one ring-opening product, which are in good agreement with the experimental observations.

  14. Lethal and sub-lethal evaluation of Indigo Carmine dye and byproducts after TiO2 photocatalysis in the immune system of Eisenia andrei earthworms.

    PubMed

    Genázio Pereira, Patrícia Christina; Reimão, Roberta Valoura; Pavesi, Thelma; Saggioro, Enrico Mendes; Moreira, Josino Costa; Veríssimo Correia, Fábio

    2017-09-01

    The Indigo carmine (IC) dye has been widely used in textile industries, even though it has been considered toxic for rats, pigs and humans. Owing to its toxicity, wastes containing this compound should be treated to minimize or eliminate their toxic effects on the biota. As an alternative to wastewater treatment, advanced oxidative processes (AOPs) have been highlighted due to their high capacity to destruct organic molecules. In this context, this study aimed to evaluate Indigo Carmine toxicity to soil organisms using the earthworm Eisenia andrei as a model-organism and also verify the efficiency of AOP in reducing its toxicity to these organisms. To this end, lethal (mortality) and sub-lethal (loss or gain of biomass, reproduction, behavior, morphological changes and immune system cells) effects caused by this substance and its degradation products in these annelids were evaluated. Morphological changes were observed even in organisms exposed to low concentrations, while mortality was the major effect observed in individuals exposed to high levels of indigo carmine dye. The organisms exposed to the IC during the contact test showed mortality after 72h of exposure (LC 50 = 75.79mgcm - 2 ), while those exposed to photoproducts showed mortality after 48h (LC 50 = 243min). In the chronic study, the organisms displayed a mortality rate of 14%, while those exposed to the photoproduct reached up to 32.7%. A negative influence of the dye on the reproduction rate was observed, while by-products affected juvenile survival. A loss of viability and alterations in the cellular proportion was verified during the chronic test. However, the compounds did not alter the behavior of the annelids in the leak test (RL ranged from 20% to 30%). Although photocatalysis has been presented as an alternative technology for the treatment of waste containing the indigo carmine dye, this process produced byproducts even more toxic than the original compounds to E. andrei. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review.

    PubMed

    Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B

    2014-03-01

    This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Development of non-thermal plasma jet and its potential application for color degradation of organic pollutant in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Pirdo Kasih, Tota; Kharisma, Angel; Perdana, Muhammad Kevin; Murphiyanto, Richard Dimas Julian

    2017-12-01

    This paper presents the development of non-thermal plasma-based AOPs for color degradation in wastewater treatment. The plasma itself was generated by an in-house high voltage power supply (HVPS). Instead of gas-phase plasma system, we applied plasma jet system underwater during wastewater treatment without additional any chemicals (chemical-free processing). The method is thought to maximize the energy transfer and increase the efficient interaction between plasma and solution during the process. Our plasma jet system could proceed either by using helium (He), argon (Ar) and air as the medium in an open air atmosphere. Exploring the developed plasma to be applied in organic wastewater treatment, we demonstrated that the plasma jet could be generated underwater and yields in color degradation of methylene blue (MB) wastewater model. When using Ar gas as a medium, the color degradation of MB could be achieved within 90 minutes. Whereas, by using Ar with an admixing of oxygen (O2) gas, the similar result could be accomplished within 60 minutes. Additional O2 gas in the latter might produce more hydroxyl radicals and oxygen-based species which speed up the oxidative reaction with organic pollutants, and hence accelerate the process of color degradation.

  17. Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals.

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...

  18. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach.

    PubMed

    Gupta, Shikha; Basant, Nikita

    2017-11-01

    Designing of advanced oxidation process (AOP) requires knowledge of the aqueous phase hydroxyl radical ( ● OH) reactions rate constants (k OH ), which are strictly dependent upon the pH and temperature of the medium. In this study, pH- and temperature-dependent quantitative structure-property relationship (QSPR) models based on the decision tree boost (DTB) approach were developed for the prediction of k OH of diverse organic contaminants following the OECD guidelines. Experimental datasets (n = 958) pertaining to the k OH values of aqueous phase reactions at different pH (n = 470; 1.4 × 10 6 to 3.8 × 10 10  M -1  s -1 ) and temperature (n = 171; 1.0 × 10 7 to 2.6 × 10 10  M -1  s -1 ) were considered and molecular descriptors of the compounds were derived. The Sanderson scale electronegativity, topological polar surface area, number of double bonds, and halogen atoms in the molecule, in addition to the pH and temperature, were found to be the relevant predictors. The models were validated and their external predictivity was evaluated in terms of most stringent criteria parameters derived on the test data. High values of the coefficient of determination (R 2 ) and small root mean squared error (RMSE) in respective training (> 0.972, ≤ 0.12) and test (≥ 0.936, ≤ 0.16) sets indicated high generalization and predictivity of the developed QSPR model. Other statistical parameters derived from the training and test data also supported the robustness of the models and their suitability for screening new chemicals within the defined chemical space. The developed QSPR models provide a valuable tool for predicting the ● OH reaction rate constants of emerging new water contaminants for their susceptibility to AOPs.

  19. In vitro bioassays to evaluate complex chemical mixtures in recycled water

    PubMed Central

    Jia, Ai; Escher, Beate I.; Leusch, Frederic D.L.; Tang, Janet Y.M.; Prochazka, Erik; Dong, Bingfeng; Snyder, Erin M.; Snyder, Shane A.

    2016-01-01

    With burgeoning population and diminishing availability of freshwater resources, the world continues to expand the use of alternative water resources for drinking, and the quality of these sources has been a great concern for the public as well as public health professionals. In vitro bioassays are increasingly being used to enable rapid, relatively inexpensive toxicity screening that can be used in conjunction with analytical chemistry data to evaluate water quality and the effectiveness of water treatment. In this study, a comprehensive bioassay battery consisting of 36 bioassays covering 18 biological endpoints was applied to screen the bioactivity of waters of varying qualities with parallel treatments. Samples include wastewater effluent, ultraviolet light (UV) and/or ozone advanced oxidation processed (AOP) recycled water, and infiltrated recycled groundwater. Based on assay sensitivity and detection frequency in the samples, several endpoints were highlighted in the battery, including assays for genotoxicity, mutagenicity, estrogenic activity, glucocorticoid activity, aryl hydrocarbon receptor activity, oxidative stress response, and cytotoxicity. Attenuation of bioactivity was found to be dependent on the treatment process and bioassay endpoint. For instance, ozone technology significantly removed oxidative stress activity, while UV based technologies were most efficient for the attenuation of glucocorticoid activity. Chlorination partially attenuated genotoxicity and greatly decreased herbicidal activity, while groundwater infiltration efficiently attenuated most of the evaluated bioactivity with the exception of genotoxicity. In some cases, bioactivity (e.g., mutagenicity, genotoxicity, and arylhydrocarbon receptor) increased following water treatment, indicating that transformation products of water treatment may be a concern. Furthermore, several types of bioassays with the same endpoint were compared in this study, which could help guide the selection of optimized methods in future studies. Overall, this research indicates that a battery of bioassays can be used to support decision-making on the application of advanced water treatment processes for removal of bioactivity. PMID:25989591

  20. In vitro bioassays to evaluate complex chemical mixtures in recycled water.

    PubMed

    Jia, Ai; Escher, Beate I; Leusch, Frederic D L; Tang, Janet Y M; Prochazka, Erik; Dong, Bingfeng; Snyder, Erin M; Snyder, Shane A

    2015-09-01

    With burgeoning population and diminishing availability of freshwater resources, the world continues to expand the use of alternative water resources for drinking, and the quality of these sources has been a great concern for the public as well as public health professionals. In vitro bioassays are increasingly being used to enable rapid, relatively inexpensive toxicity screening that can be used in conjunction with analytical chemistry data to evaluate water quality and the effectiveness of water treatment. In this study, a comprehensive bioassay battery consisting of 36 bioassays covering 18 biological endpoints was applied to screen the bioactivity of waters of varying qualities with parallel treatments. Samples include wastewater effluent, ultraviolet light (UV) and/or ozone advanced oxidation processed (AOP) recycled water, and infiltrated recycled groundwater. Based on assay sensitivity and detection frequency in the samples, several endpoints were highlighted in the battery, including assays for genotoxicity, mutagenicity, estrogenic activity, glucocorticoid activity, arylhydrocarbon receptor activity, oxidative stress response, and cytotoxicity. Attenuation of bioactivity was found to be dependent on the treatment process and bioassay endpoint. For instance, ozone technology significantly removed oxidative stress activity, while UV based technologies were most efficient for the attenuation of glucocorticoid activity. Chlorination partially attenuated genotoxicity and greatly decreased herbicidal activity, while groundwater infiltration efficiently attenuated most of the evaluated bioactivity with the exception of genotoxicity. In some cases, bioactivity (e.g., mutagenicity, genotoxicity, and arylhydrocarbon receptor) increased following water treatment, indicating that transformation products of water treatment may be a concern. Furthermore, several types of bioassays with the same endpoint were compared in this study, which could help guide the selection of optimized methods in future studies. Overall, this research indicates that a battery of bioassays can be used to support decision-making on the application of advanced water treatment processes for removal of bioactivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms.

    PubMed

    He, Xuexiang; de la Cruz, Armah A; Hiskia, Anastasia; Kaloudis, Triantafyllos; O'Shea, Kevin; Dionysiou, Dionysios D

    2015-05-01

    Hepatotoxic microcystins (MCs) are the most frequently detected group of cyanobacterial toxins. This study investigated the degradation of common MC variants in water, MC-LR, MC-RR, MC-YR and MC-LA, by UV-254 nm-based processes, UV only, UV/H2O2, UV/S2O8(2-) and UV/HSO5(-). Limited direct photolysis of MCs was observed, while the addition of an oxidant significantly improved the degradation efficiency with an order of UV/S2O8(2-) > UV/HSO5(-) > UV/H2O2 at the same initial molar concentration of the oxidant. The removal of MC-LR by UV/H2O2 appeared to be faster than another cyanotoxin, cylindrospermopsin, at either the same initial molar concentration or the same initial organic carbon concentration of the toxin. It suggested a faster reaction of MC-LR with hydroxyl radical, which was further supported by the determined second-order rate constant of MCs with hydroxyl radical. Both isomerization and photohydration byproducts were observed in UV only process for all four MCs; while in UV/H2O2, hydroxylation and diene-Adda double bond cleavage byproducts were detected. The presence of a tyrosine in the structure of MC-YR significantly promoted the formation of monohydroxylation byproduct m/z 1061; while the presence of a second arginine in MC-RR led to the elimination of a guanidine group and the absence of double bond cleavage byproducts. It was therefore demonstrated in this study that the variable amino acids in the structure of MCs influenced not only the degradation kinetics but also the preferable reaction mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Respiratory ATP cost and benefit of arbuscular mycorrhizal symbiosis with Nicotiana tabacum at different growth stages and under salinity.

    PubMed

    Del-Saz, Néstor Fernández; Romero-Munar, Antonia; Alonso, David; Aroca, Ricardo; Baraza, Elena; Flexas, Jaume; Ribas-Carbo, Miquel

    2017-11-01

    Growth and maintenance partly depend on both respiration and ATP production during oxidative phosphorylation in leaves. Under stress, ATP is needed to maintain the accumulated biomass. ATP production mostly proceeds from the cytochrome oxidase pathway (COP), while respiration via the alternative oxidase pathway (AOP) may decrease the production of ATP per oxygen consumed, especially under phosphorus (P) limitation and salinity conditions. Symbiosis with arbuscular mycorrhizal (AM) fungi is reputed by their positive effect on plant growth under stress at mature stages of colonization; however, fungal colonization may decrease plant growth at early stages. Thus, the present research is based on the hypothesis that AM fungus colonization will increase both foliar respiration and ATP production at mature stages of plant growth while decreasing them both at early stages. We used the oxygen-isotope-fractionation technique to study the in vivo respiratory activities and ATP production of the COP and AOP in AM and non-AM (NM) tobacco plants grown under P-limiting and saline conditions in sand at different growth stages (14, 28 and 49days). Our results suggest that AM symbiosis represents an ATP cost detrimental for shoot growth at early stages, whilst it represents a benefit on ATP allowing for faster rates of growth at mature stages, even under salinity conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Integrated processes for produced water polishing: Enhanced flotation/sedimentation combined with advanced oxidation processes.

    PubMed

    Jiménez, Silvia; Micó, María M; Arnaldos, Marina; Ferrero, Enrique; Malfeito, Jorge J; Medina, Francisco; Contreras, Sandra

    2017-02-01

    In this study, bench scale dissolved air flotation (DAF) and settling processes have been studied and compared to a novel flotation technology based on the use of glass microspheres of limited buoyancy and its combination with conventional DAF, (Enhanced DAF or E-DAF). They were evaluated as pretreatments for advanced oxidation processes (AOPs) to polish produced water (PW) for reuse purposes. Settling and E-DAF without air injection showed adequate turbidity and oil and grease (O&G) removals, with eliminations higher than 87% and 90% respectively, employing 70 mg L -1 of FeCl 3 and 83 min of settling time, and 57.9 mg L -1 of FeCl 3 , 300 mg L -1 of microspheres and a flocculation rate of 40 rpm in the E-DAF process. A linear correlation was observed between final O&G concentration and turbidity after E-DAF. In order to polish the O&G content of the effluent even further, to remove soluble compounds as phenol and to take advantage of residual iron after these treatments, Fenton and photo-Fenton reactions were essayed. After 6 h of the Fenton reaction at pH 3, the addition of 1660 mg L -1 of H 2 O 2 and 133 mg L -1 of iron showed a maximum O&G elimination of 57.6% and a phenol removal up to 80%. Photo-Fenton process showed better results after 3 h, adding 600 mg L -1 of H 2 O 2 and 300 mg L -1 of iron, at pH 3, with a higher fraction of elimination of the O&G content (73.7%) and phenol (95%) compared to the conventional Fenton process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Use of Non-Apical Assay Data in an Integrated Approach to Testing and Assessment of Chemical Mixtures in the Environment: the Advent of Adverse Outcome Pathway Footprinting

    EPA Science Inventory

    This speaker abstract is part of a session proposal for the 2018 Society of Toxicology annual meeting. I am proposing to speak about the use of new approach methods and data, such as AOPs, in mixtures risk assessment. I have developed an innovative approach called AOP footprint...

  5. SeaWiFS technical report series. Volume 26: Results of the SeaWiFS Data Analysis Round-Robin, July 1994 (DARR-1994)

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Siegel, David A.; Obrien, Margaret C.; Sorensen, Jen C.; Konnoff, Daniel A.; Brody, Eric A.; Mueller, James L.; Davis, Curtiss O.; Rhea, W. Joseph

    1995-01-01

    The accurate determination of upper ocean apparent optical properties (AOP's) is essential for the vicarious calibration of the sea-viewing wide field-of-view sensor (SeaWiFS) instrument and the validation of the derived data products. To evaluate the role that data analysis methods have upon values of derived AOP's, the first Data Analysis Round-Robin (DARR-94) workshop was sponsored by the SeaWiFS Project during 21-23 July, 1994. The focus of this intercomparison study was the estimation of the downwelling irradiance spectrum just beneath the sea surface, E(sub d)(0(sup -), lambda); the upwelling nadir radiance just beneath the sea surface, L(sub u)(0(sup -), lambda); and the vertical profile of the diffuse attenuation coefficient spectrum, K(sub d)(z, lambda). In the results reported here, different methodologies from four research groups were applied to an identical set of 10 spectroradiometry casts in order to evaluate the degree to which data analysis methods influence AOP estimation, and whether any general improvements can be made. The overall results of DARR-94 are presented in Chapter 1 and the individual methods of the four groups are presented in Chapters 2-5. The DARR-94 results do not show a clear winner among data analysis methods evaluated. It is apparent, however, that some degree of outlier rejection is required in order to accurately estimate L(sub u)(0(sup -), lambda) or E(sub d)(0(sup -), lambda). Furthermore, the calculation, evaluation and exploitation of confidence intervals for the AOP determinations needs to be explored. That is, the SeaWiFS calibration and validation problem should be recast in statistical terms where the in situ AOP values are statistical estimates with known confidence intervals.

  6. Estimating Whether Replacing Time in Active Outdoor Play and Sedentary Video Games With Active Video Games Influences Youth's Mental Health.

    PubMed

    Janssen, Ian

    2016-11-01

    The primary objective was to use isotemporal substitution models to estimate whether replacing time spent in sedentary video games (SVGs) and active outdoor play (AOP) with active video games (AVGs) would be associated with changes in youth's mental health. A representative sample of 20,122 Canadian youth in Grades 6-10 was studied. The exposure variables were average hours/day spent playing AVGs, SVGs, and AOP. The outcomes consisted of a negative and internalizing mental health indicator (emotional problems), a positive and internalizing mental health indicator (life satisfaction), and a positive and externalizing mental health indicator (prosocial behavior). Isotemporal substitution models estimated the extent to which replacing time spent in SVGs and AOP with an equivalent amount of time in AVGs had on the mental health indicators. Replacing 1 hour/day of SVGs with 1 hour/day of AVGs was associated with a 6% (95% confidence interval: 3%-9%) reduced probability of high emotional problems, a 4% (2%-7%) increased probability of high life satisfaction, and a 13% (9%-16%) increased probability of high prosocial behavior. Replacing 1 hour/day of AOP with 1 hour/day of AVGs was associated with a 7% (3%-11%) increased probability of high emotional problems, a 3% (1%-5%) reduced probability of high life satisfaction, and a 6% (2%-9%) reduced probability of high prosocial behavior. Replacing SVGs with AVGs was associated with more preferable mental health indicators. Conversely, replacing AOP with AVGs was associated with more deleterious mental health indicators. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  7. Differentiating Pathway-Specific From Nonspecific Effects in High-Throughput Toxicity Data: A Foundation for Prioritizing Adverse Outcome Pathway Development.

    PubMed

    Fay, Kellie A; Villeneuve, Daniel L; Swintek, Joe; Edwards, Stephen W; Nelms, Mark D; Blackwell, Brett R; Ankley, Gerald T

    2018-06-01

    The U.S. Environmental Protection Agency's ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with potential apical effects relevant to risk assessors. Thus, efforts are underway to develop AOPs relevant to pathway-specific perturbations detected in ToxCast assays. Previous work identified a "cytotoxic burst" (CTB) phenomenon wherein large numbers of the ToxCast assays begin to respond at or near test chemical concentrations that elicit cytotoxicity, and a statistical approach to defining the bounds of the CTB was developed. To focus AOP development on the molecular targets corresponding to ToxCast assays indicating pathway-specific effects, we conducted a meta-analysis to identify which assays most frequently respond at concentrations below the CTB. A preliminary list of potentially important, target-specific assays was determined by ranking assays by the fraction of chemical hits below the CTB compared with the number of chemicals tested. Additional priority assays were identified using a diagnostic-odds-ratio approach which gives greater ranking to assays with high specificity but low responsivity. Combined, the two prioritization methods identified several novel targets (e.g., peripheral benzodiazepine and progesterone receptors) to prioritize for AOP development, and affirmed the importance of a number of existing AOPs aligned with ToxCast targets (e.g., thyroperoxidase, estrogen receptor, aromatase). The prioritization approaches did not appear to be influenced by inter-assay differences in chemical bioavailability. Furthermore, the outcomes were robust based on a variety of different parameters used to define the CTB.

  8. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.

    PubMed

    Gore, Mohan M; Saharan, Virendra Kumar; Pinjari, Dipak V; Chavan, Prakash V; Pandit, Aniruddha B

    2014-05-01

    In the present work, degradation of reactive orange 4 dye (RO4) has been investigated using hydrodynamic cavitation (HC) and in combination with other AOP's. In the hybrid techniques, combination of hydrodynamic cavitation and other oxidizing agents such as H2O2 and ozone have been used to get the enhanced degradation efficiency through HC device. The hydrodynamic cavitation was first optimized in terms of different operating parameters such as operating inlet pressure, cavitation number and pH of the operating medium to get the maximum degradation of RO4. Following the optimization of HC parameters, the degradation of RO4 was carried out using the combination of HC with H2O2 and ozone. It has been found that the efficiency of the HC can be improved significantly by combining it with H2O2 and ozone. The mineralization rate of RO4 increases considerably with 14.67% mineralization taking place using HC alone increases to 31.90% by combining it with H2O2 and further increases to 76.25% through the combination of HC and ozone. The synergetic coefficient of greater than one for the hybrid processes of HC+H2O2 and HC+Ozone has suggested that the combination of HC with other oxidizing agents is better than the individual processes for the degradation of dye effluent containing RO4. The combination of HC with ozone proves to be the most energy efficient method for the degradation of RO4 as compared to HC alone and the hybrid process of HC and H2O2. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems.

    PubMed

    Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E

    2007-08-17

    This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.

  10. A new bioseed for determination of wastewater biodegradability: analysis of the experimental procedure.

    PubMed

    Ballesteros Martín, M M; Esteban García, B; Ortega-Gómez, E; Sánchez Pérez, J A

    2014-01-01

    A new bioassay proposed in the patent P201300029 was applied to a pre-treated wastewater containing a mixture of commercial pesticides to simulate a recalcitrant industrial wastewater in order to determine its biodegradability. The test uses a mixture of standardized inoculum of the lyophilized bacteria Pseudomonas putida with the proper proportion of salts and minerals. The results highlight that biodegradation efficiency can be calculated using a gross parameter (chemical oxygen demand (COD)) which facilitates the biodegradability determination for routine water biodegradability analysis. The same trend was observed throughout the assay with the dehydrated and fresh inoculums, and only a difference of 5% in biodegradation efficiency (E f) was observed. The obtained results showed that the P. putida biodegradability assay can be used as a commercial test with a lyophilized inoculum in order to monitor the ready biodegradability of an organic pollutant or a WWTP influent. Moreover, a combination of the BOD5/COD ratio and the P. putida biodegradability test is an attractive alternative in order to evaluate the biodegradability enhancement in water pre-treated with advanced oxidation processes (AOPs).

  11. Risk Assessment in the 21st Century | Science Inventory | US ...

    EPA Pesticide Factsheets

    For the past ~50 years, risk assessment depended almost exclusively on animal testing for hazard identification and dose-response assessment. Originally sound and effective, with increasing dependence on chemical tools and the number of chemicals in commerce, this traditional approach is no longer adequate. This presentation provides an update on current progress in achieving the goals outlined in the NAS report on Toxicology Testing in the 21st Century, highlighting many of the advances lead by the EPA. Topics covered include the evolution of the mode of action framework into a chemically agnostic, adverse outcome pathway (AOP), a systems-based data framework that facilitates integration of modifiable factors (e.g., genetic variation, life stages), and an understanding of networks, and mixtures. Further, the EDSP pivot is used to illustrate how AOPs drive development of predictive models for risk assessment based on assembly of high throughput assays representing AOP key elements. The birth of computational exposure science, capable of large-scale predictive exposure models, is reviewed. Although still in its infancy, development of non-targeted analysis to begin addressing exposome also is presented. Finally, the systems-based AEP is described that integrates exposure, toxicokinetics and AOPs into a comprehensive framework. For the past ~50 years, risk assessment depended almost exclusively on animal testing for hazard identification and dose-response as

  12. Differentiating high priority pathway-based toxicity from non ...

    EPA Pesticide Factsheets

    The ToxCast chemical screening approach enables the rapid assessment of large numbers of chemicals for biological effects, primarily at the molecular level. Adverse outcome pathways (AOPs) offer a means to link biomolecular effects with potential adverse outcomes at the level of the individual or population, thus enhancing the utility of the ToxCast effort for hazard assessment. Thus, efforts are underway to develop AOPs relevant to the pathway perturbations detected in ToxCast assays. However, activity (?‘hits’) determined for chemical-assay pairs may reflect target-specific activity relevant to a molecular initiating event of an AOP, or more generalized cell stress and cytotoxicity-mediated effects. Previous work identified a ?‘cytotoxic burst’ phenomenon wherein large numbers of assays begin to respond at or near concentrations that elicit cytotoxicity. The concentration range at which the “burst” occurs is definable, statistically. Consequently, in order to focus AOP development on the ToxCast assay targetswhich are most sensitive and relevant to pathway-specific effects, we conducted a meta-analysis to identify which assays were frequently responding at concentrations well below the cytotoxic burst. Assays were ranked by the fraction of chemical hits below the burst concentration range compared to the number of chemicals tested, resulting in a preliminary list of potentially important, target-specific assays. After eliminating cytotoxicity a

  13. Cross-species assay validation using the AOP “deiodinase ...

    EPA Pesticide Factsheets

    High throughput screening assays able to detect chemical interactions with specific biological targets are increasingly being used to identify chemicals that could be hazardous to humans or wildlife. Most of these assays examine interaction with mammalian proteins. The present work demonstrates that mammalian-based assays designed to screen for interactions of chemicals with deiodinase, an enzyme important to thyroid hormone signaling provides results that are generally consistent with those obtained when a fish-specific deiodinase assay was employed. This gives confidence, that in most cases, a mammalian-based screening assay should detect chemicals that could act as thyroid disrupting chemicals (through this particular mode of action) in fish as well as mammals. Thus, this work helps support implementation of more efficient and cost effective approaches to chemical safety assessment.Abstract: The Adverse Outcome Pathway (AOP) concept is increasingly being recognized as a promising conceptual framework for describing toxicity pathways, which contains information that is sufficient to predict an adverse outcome of regulatory importance. Previously, we assessed the feasibility of developing an alternative, mechanistically informative testing strategy to replace the chronic Fish Early-Life Stage test (FELS, OECD TG 210), using an AOP-based approach. We developed an AOP encompassing deiodinase (DIO) inhibition resulting in decreased T3 concentrations leading to im

  14. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA).

    PubMed

    Tollefsen, Knut Erik; Scholz, Stefan; Cronin, Mark T; Edwards, Stephen W; de Knecht, Joop; Crofton, Kevin; Garcia-Reyero, Natalia; Hartung, Thomas; Worth, Andrew; Patlewicz, Grace

    2014-12-01

    Chemical regulation is challenged by the large number of chemicals requiring assessment for potential human health and environmental impacts. Current approaches are too resource intensive in terms of time, money and animal use to evaluate all chemicals under development or already on the market. The need for timely and robust decision making demands that regulatory toxicity testing becomes more cost-effective and efficient. One way to realize this goal is by being more strategic in directing testing resources; focusing on chemicals of highest concern, limiting testing to the most probable hazards, or targeting the most vulnerable species. Hypothesis driven Integrated Approaches to Testing and Assessment (IATA) have been proposed as practical solutions to such strategic testing. In parallel, the development of the Adverse Outcome Pathway (AOP) framework, which provides information on the causal links between a molecular initiating event (MIE), intermediate key events (KEs) and an adverse outcome (AO) of regulatory concern, offers the biological context to facilitate development of IATA for regulatory decision making. This manuscript summarizes discussions at the Workshop entitled "Advancing AOPs for Integrated Toxicology and Regulatory Applications" with particular focus on the role AOPs play in informing the development of IATA for different regulatory purposes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Extracellular degradation of tetrabromobisphenol A via biogenic reactive oxygen species by a marine Pseudoalteromonas sp.

    PubMed

    Gu, Chen; Wang, Jing; Guo, Mengfan; Sui, Meng; Lu, Hong; Liu, Guangfei

    2018-06-07

    Tetrabromobisphenol A (TBBPA) has attracted considerable attention due to its ubiquitous presence in different environmental compartments worldwide. However, information on its aerobic biodegradability in coastal environments remains unknown. Here, the aerobic biodegradation of TBBPA using a Pseudoalteromonas species commonly found in the marine environment was investigated. We found that extracellular biogenic siderophore, superoxide anion radical (O 2 •- ), hydrogen peroxide (H 2 O 2 ), and hydroxyl radical ( • OH) were involved in TBBPA degradation. Upregulation of genes (nqrA and lodA) encoding Na + -translocating NADH-quinone oxidoreductase and l-lysine-ε-oxidase supported the extracellular O 2 •- and H 2 O 2 production. The underlying mechanism of TBBPA biodegradation presumably involves both O 2 •- reduction and • OH-based advanced oxidation process (AOP). Furthermore, TBBPA intermediates of tribromobisphenol A, 4-isopropylene-2,6-dibromophenol, 4-(2-hydroxyisopropyl)-2,6-dibromophenol, 2,4,6-tribromophenol (TBP), 4-hydroxybenzoic acid, and 2-bromobenzoic acid were detected in the culture medium. Debromination and β-scission pathways of TBBPA biodegradation were proposed. Additionally, membrane integrity assays revealed that the increase of intracellular catalase (CAT) activity and the extracellular polymeric substances (EPS) might account for the alleviation of oxidative damage. These findings could deepen understanding of the biodegradation mechanism of TBBPA and other related organic pollutants in coastal and artificial bioremediation systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Use of oxalic acid as inducer in photocatalytic oxidation of cresol red in aqueous solution under natural and artificial light.

    PubMed

    Seraghni, N; Ghoul, I; Lemmize, I; Reguig, A; Debbache, N; Sehili, T

    2017-08-30

    This work was carried out in the field of water treatment using advanced oxidation processes (AOPs), especially photolysis of carboxylic acid that leads to the formation in situ of hydroxyl radical (·OH). Cresol red (CR) degradation induced by organic acids/UV system was investigated in aqueous solution. The preliminary study of CR-organic acid mixture in the dark and at room temperature allowed confirming the absence of interaction under our experimental conditions. However, upon irradiation at 365 nm, the proportion of elimination of CR was 89% after 5 h of irradiation. Indeed, the CR degradation efficiency depends on the acid concentration and the pH of the medium. The concentration of acid is optimized to the 5 × 10 -3 M. pH 2.39 was the optimal one when C 2 HO - 4 was the most important species at this pH. The use of i-PrOH as · OH confirmed the involvement of · OH in photodegradation of CR induced by Ox. The addition of metal ions including Zn 2+ and Cu 2+ to the CR-organic acid mixture slowed the CR degradation unlike Fe 2+ , hence an improvement of its disappearance was observed. The results showed a faster degradation of the pollutant under excitation by sunlight. This environmentally friendly method appears to be very effective in the treatment of wastewater.

  17. Influence of dosage, pH and contact time in stabilized landfill leachate treatment using ozone/zirconium tetrachloride catalytic oxidation

    NASA Astrophysics Data System (ADS)

    Zakaria, Siti Nor Farhana; Aziz, Hamidi Abdul

    2017-10-01

    Leachate is a critical problem of sanitary landfills because it contains high organic matter and hazardous compounds that can generate negative environmental effects. The high chemical oxygen demand (COD) and color of the leachate necessitates its treatment before it can be released to the water body. Thus, an investigation into the performance of advanced oxidation processes (AOPs) was conducted using a combination of ozone (O3) with zirconium tetrachloride (ZrCl4) as catalyst in stabilized landfill leachate treatment. Such leachate was collected from the Alor Pongsu Landfill site (APLS), Perak, Malaysia. COD and color parameter were used as indicators to examine the effect of O3/ZrCl4 dosage, pH, and contact time. The experiment was run under gas flow rate of 1,000 mL/min±10% and temperature below 15 °C. The maximum removal obtained for COD and color were 88% and 100%, respectively. This outcome was achieved at 27 g/m3 ozone dosage, pH 6, 90 min reaction time, and dosage ratio of 1:2 (COD g: ZrCl4 g). The reaction rate constant (k) was 0.2364 min-1 and followed pseudo first order. Thus, given the efficiency of the O3/ZrCl4 mixture for the remediation of stabilized landfill leachate, a new alternative method in leachate industrial treatment was identified.

  18. The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARγ dysregulation.

    PubMed

    Al Sharif, Merilin; Tsakovska, Ivanka; Pajeva, Ilza; Alov, Petko; Fioravanzo, Elena; Bassan, Arianna; Kovarich, Simona; Yang, Chihae; Mostrag-Szlichtyng, Aleksandra; Vitcheva, Vessela; Worth, Andrew P; Richarz, Andrea-N; Cronin, Mark T D

    2017-12-01

    The aim of this paper was to provide a proof of concept demonstrating that molecular modelling methodologies can be employed as a part of an integrated strategy to support toxicity prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken in which molecular modelling methodologies were employed to predict the activation of the peroxisome proliferator-activated nuclear receptor γ (PPARγ) as a potential molecular initiating event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches (virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was developed to screen for PPARγ full agonists and to predict their transactivation activity (EC 50 ). The performance metrics of the classification model to predict PPARγ full agonists were balanced accuracy=81%, sensitivity=85% and specificity=76%. The 3D QSAR model developed to predict EC 50 of PPARγ full agonists had the following statistical parameters: q 2 cv =0.610, N opt =7, SEP cv =0.505, r 2 pr =0.552. To support the linkage of PPARγ agonism predictions to prosteatotic potential, molecular modelling was combined with independently performed mechanistic mining of available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Re-engineering an artificial sweetener: transforming sucralose residuals in water via advanced oxidation.

    PubMed

    Keen, Olya S; Linden, Karl G

    2013-07-02

    Sucralose is an artificial sweetener persistently present in wastewater treatment plant effluents and aquatic environments impacted by human activity. It has a potential to accumulate in the water cycle due to its resistance to common water and wastewater treatment processes. This study examined UV/H2O2 advanced oxidation and found that hydroxyl substitution of the chlorine atoms on the sucralose molecule can form a carbohydrate consisting of fructose and sugar alcohol, very similar to environmentally benign sucrose. The second-order reaction rate constant for loss of parent molecule via reaction with hydroxyl radical was determined to be (1.56 ± 0.03)·10(9) M(-1)s(-1). The degradation pathway involves substitution of a single chlorine by a hydroxyl group, with cyclic moiety being a preferential site for initial dechlorination. Further reaction leads to full dechlorination of the molecule, presumably via hydroxyl group substitution as well. No direct photolysis by UV wavelengths above 200 nm was observed. Because of its photostability when exposed to UV wavelengths ≥200 nm, known stability with ozone, limits of quantification by mass spectrometry close to or below environmental concentrations (<5 μg/L) without preconcentration, and otherwise stable nature, sucralose can be used as an in situ hydroxyl radical probe for UV-based and ozone-based AOP processes. As a compound safe for human consumption, sucralose makes a suitable full scale hydroxyl radical probe fit even for drinking water treatment plant applications. Its main drawback as a probe is lack of UV detection and as a result a need for mass spectrometry analysis.

  20. Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.12

    DTIC Science & Technology

    2015-09-03

    NPP) with the VIIRS sensor package as well as data from the Geostationary Ocean Color Imager (GOCI) sensor, aboard the Communication Ocean and...capability • Prepare the NRT Geostationary Ocean Color Imager (GOCI) data stream for integration into operations. • Improvements in sensor...Navy (DON) Environmental Data Records (EDRs) Expeditionary Warfare (EXW) Geostationary Ocean Color Imager (GOCI) Gulf of Mexico (GOM) Hierarchical

  1. Solar physics in Potsdam. (German Title: Sonnenphysik in Potsdam)

    NASA Astrophysics Data System (ADS)

    Staude, Jürgen

    Solar research initiated the establishment of the Astrophysical Observatory Potsdam (AOP) in 1874. The present contribution outlines the development of solar physics in Potsdam from the early history of the AOP to this day. The main topics are the work of Karl Schwarzschild, the investigations related to the general theory of relativity, the foundation of the Einstein tower, Walter Grotrian's founding of modern coronal physics, and the investigations of sunspot magnetic fields.

  2. Automated 3D ultrasound measurement of the angle of progression in labor.

    PubMed

    Montaguti, Elisa; Rizzo, Nicola; Pilu, Gianluigi; Youssef, Aly

    2018-01-01

    To assess the feasibility and reliability of an automated technique for the assessment of the angle of progression (AoP) in labor by using three-dimensional (3D) ultrasound. AoP was assessed by using 3D transperineal ultrasound by two operators in 52 women in active labor to evaluate intra- and interobserver reproducibility. Furthermore, intermethod agreement between automated and manual techniques on 3D images, and between automated technique on 3D vs 2D images were evaluated. Automated measurements were feasible in all cases. Automated measurements were considered acceptable in 141 (90.4%) out of the 156 on the first assessments and in all 156 after repeating measurements for unacceptable evaluations. The automated technique on 3D images demonstrated good intra- and interobserver reproducibility. The 3D-automated technique showed a very good agreement with the 3D manual technique. Notably, AoP calculated with the 3D automated technique were significantly wider in comparison with those measured manually on 3D images (133 ± 17° vs 118 ± 21°, p = 0.013). The assessment of the angle of progression through 3D ultrasound is highly reproducible. However, automated software leads to a systematic overestimation of AoP in comparison with the standard manual technique thus hindering its use in clinical practice in its present form.

  3. Risk Assessment in the 21st Century - Conference Abstract ...

    EPA Pesticide Factsheets

    For the past ~50 years, risk assessment depended almost exclusively on animal testing for hazard identification and dose-response assessment. Originally sound and effective, with increasing dependence on chemical tools and the number of chemicals in commerce, this traditional approach is no longer sufficient. This presentation provides an update on current progress in achieving the goals outlined in the NAS reports: “Toxicology Testing in the 21st Century”, “Exposure Science in the 21st Century”, and most recently, “Using 21st Century Science to Improve Risk-Related Evaluations.” The presentation highlights many of the advances lead by the EPA. Topics covered include the evolution of the mode of action concept into the chemically agnostic, adverse outcome pathway (AOP), a systems-based data framework that facilitates integration of modifiable factors (e.g., genetic variation, life stages), and an understanding of networks, and mixtures. Further, the EDSP pivot is used to illustrate how AOPs drive development of predictive models for risk assessment based on assembly of high throughput assays representing AOP key elements. The birth of computational exposure science, capable of large-scale predictive exposure models, is reviewed. Although still in its infancy, development of non-targeted analysis to begin addressing the exposome is presented, as is the systems-based AEP that integrates exposure, toxicokinetics and AOPs into a comprehensive framework

  4. Handling Trajectory Uncertainties for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  5. PUTATIVE ADVERSE OUTCOME PATHWAY FOR INHIBITON ...

    EPA Pesticide Factsheets

    The adverse outcome pathway (AOP) provides a framework for organizing knowledge to define links between a molecular initiating event (MIE) and an adverse outcome (AO) occurring at a higher level of biological organization, such as the individual or population. The AOP framework proceeds from a general (e.g., not chemical specific) molecular mode of action, designated as a MIE, through stepwise changes in biological status, defined as key events (KEs), to a final AO that can be used in risk assessment. Because aromatase-inhibiting pharmaceuticals are widely used to treat breast cancer patients, we explored the unintended consequences that might occur in fish exposed to these chemicals through wastewater discharge into the aquatic environment. Unlike mammals, fish have two isoforms of aromatase, one that predominates in the ovary (cyp19a1a) and a second (cyp19a1b) that prevails in the brain. Aromatase activity in fish brain can be 100 to 1000 times that in mammals and is associated with reproduction. We have developed a putative AOP for inhibition of brain aromatase in fish leading to reproductive dysfunction based on review of relevant literature and reproductive experiments with the marine fish cunner (Tautogolabrus adspersus) exposed to aromatase-inhibiting pharmaceuticals in the laboratory. The first KE in this AOP is a decrease in brain aromatase activity due to exposure to an aromatase inhibitor. KEs then progress through subsequent steps including decreas

  6. Toxicogenomic assessment of 6-OH-BDE47 induced ...

    EPA Pesticide Factsheets

    Hydroxylated and methoxylated polybrominated diphenyl ethers (OH-/MeO-PBDEs) are analogs of PBDEs with hundreds of possible structures and many of them can activate aryl hydrocarbon receptor (AhR), however, the in vivo evidence on the toxicity of OH-/MeO-PBDEs are still very limited. 6-OH-BDE47 is a relatively potent AhR activator and a predominant congener of OH-PBDEs detected in the environment. Here the developmental toxicity of 6-OH-BDE47 in chicken embryos was assessed using a toxicogenomic approach. Fertilized chicken eggs were dosed via in ovo administration of 0.006 to 0.474 nmol 6-OH-BDE47/g egg followed by 18-days incubation. Significant embryo mortality (LD50=0.294 pmol/g egg) and increased hepatic somatic index (HSI) were caused by 6-OH-BDE47 exposure. The functional enrichment of differentially expressed genes (DEGs) associated with oxidative phosphorylation, generation of precursor metabolites and energy, and electron transport chain suggest that 6-OH-BDE47 exposure may disrupt the embryo development by altering the function of energy production in mitochondrion. Moreover, AhR mediated responses including up-regulation of CYP1A4 was observed in the livers of embryos exposed to 6-OH-BDE47. Overall, this study confirmed the prediction of embryo lethality by 6-OH-BDE47 consistent with an adverse outcome pathway (AOP) linking AhR activation to embryo lethality. The results provide an example of application of AOP in the hazard and ecological risk asse

  7. Cost-effectiveness analysis of TOC removal from slaughterhouse wastewater using combined anaerobic-aerobic and UV/H2O2 processes.

    PubMed

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar

    2014-02-15

    The objective of this study is to evaluate the operating costs of treating slaughterhouse wastewater (SWW) using combined biological and advanced oxidation processes (AOPs). This study compares the performance and the treatment capability of an anaerobic baffled reactor (ABR), an aerated completely mixed activated sludge reactor (AS), and a UV/H2O2 process, as well as their combination for the removal of the total organic carbon (TOC). Overall efficiencies are found to be up to 75.22, 89.47, 94.53, 96.10, 96.36, and 99.98% for the UV/H2O2, ABR, AS, combined AS-ABR, combined ABR-AS, and combined ABR-AS-UV/H2O2 processes, respectively. Due to the consumption of electrical energy and reagents, operating costs are calculated at optimal conditions of each process. A cost-effectiveness analysis (CEA) is performed at optimal conditions for the SWW treatment by optimizing the total electricity cost, H2O2 consumption, and hydraulic retention time (HRT). The combined ABR-AS-UV/H2O2 processes have an optimal TOC removal of 92.46% at an HRT of 41 h, a cost of $1.25/kg of TOC removed, and $11.60/m(3) of treated SWW. This process reaches a maximum TOC removal of 99% in 76.5 h with an estimated cost of $2.19/kg TOC removal and $21.65/m(3) treated SWW, equivalent to $6.79/m(3) day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish.

    PubMed

    McDonald, M Danielle

    2017-07-01

    Pharmaceuticals and personal care products (PPCPs) are found in measureable quantities within the aquatic environment. Selective serotonin reuptake inhibitor (SSRI) antidepressants are one class of pharmaceutical compound that has received a lot of attention. Consistent with most PPCPs, the pharmacokinetics and physiological impacts of SSRI treatment have been well-studied in small mammals and humans and this, combined with the evolutionary conservation of the serotonergic system across vertebrates, allows for the read-across of known SSRI effects in mammals to potential SSRI impacts on aquatic organisms. Using an Adverse Outcome Pathway (AOP) framework, this review examines the similarities and differences between the mammalian and teleost fish SSRI target, the serotonin transporter (SERT; SLC6A4), and the downstream impacts of elevated extracellular serotonin (5-HT; 5-hydroxytryptamine), the consequence of SERT inhibition, on organ systems and physiological processes within teleost fish. This review also intends to reveal potentially understudied endpoints for SSRI toxicity based on what is known to be controlled by 5-HT in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Air Force Dynamic Mechanical Analysis of NATO Round Robin Propellant Testing for Development of AOP-4717

    DTIC Science & Technology

    2015-09-23

    Round Robin Propellant Testing for Development of AOP-4717 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 0 Air Force Dynamic Mechanical Analysis of NATO Round Robin ...the clamps are tight at the coldest temperature. • Long tests such as the frequency sweep sequences prescribed in this round robin may be

  10. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes.

    PubMed

    Thanekar, Pooja; Panda, Mihir; Gogate, Parag R

    2018-01-01

    Degradation of carbamazepine (CBZ), a widely detected recalcitrant pharmaceutical in sewage treatment plant (STP) effluent, has been studied in the present work using combination of hydrodynamic cavitation (HC) and advanced oxidation processes (AOPs). Due to its recalcitrant nature, it cannot be removed effectively by the conventional wastewater treatment plants (WWTPs) which make CBZ a pharmaceutical of very high environmental relevance and impact as well as stressing the need for developing new treatment schemes. In the present study, the effect of inlet pressure (3-5bar) and operating pH (3-11) on the extent of degradation have been initially studied with an objective of maximizing the degradation using HC alone. The established optimum conditions as pressure of 4bar and pH of 4 resulted in maximum degradation of CBZ as 38.7%. The combined approaches of HC with ultraviolet irradiation (HC+UV), hydrogen peroxide (HC+H 2 O 2 ), ozone (HC+O 3 ) as well as combination of HC, H 2 O 2 and O 3 (HC+H 2 O 2 +O 3 ) have been investigated under optimized pressure and operating pH. It was observed that a significant increase in the extent of degradation is obtained for the combined operations of HC+H 2 O 2 +O 3 , HC+O 3 , HC+H 2 O 2 , and HC+UV with the actual extent of degradation being 100%, 91.4%, 58.3% and 52.9% respectively. Kinetic analysis revealed that degradation of CBZ fitted into first order kinetics model for all the approaches. The processes were also compared on the basis of cavitational yield and also in terms of total treatment cost. Overall, it has been demonstrated that combined process of HC, H 2 O 2 and O 3 can be effectively used for treatment of wastewater containing CBZ. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Extraction and Characterization of Highly Gelling Low Methoxy Pectin from Cashew Apple Pomace

    PubMed Central

    Yapo, Beda M.; Koffi, Kouassi L.

    2013-01-01

    Investigation on the pectic substances of cashew (Anacardium occidentale L.) apple under different acid-extraction conditions (pH 1.0, 1.5, and 2.0) showed that more than 10%–25% of A. occidentale pectins (AOP) could be extracted, depending on the extractant strength. The extracted AOP contained high amounts of galacturonic acid (GalA: 69.9%–84.5%) with some neutral sugars of which rhamnose (Rha: 1.3%–2.5%), arabinose (Ara: 2.6%–5.4%), and galactose (Gal: 4.7%–8.6%) were the main constituents. The degree of methoxylation (DM) was in the range of 28%–46% and was only slightly affected by the extractant strength, thereby indicating isolation of naturally low methoxy pectins (LMP). In terms of gelling capability, AOP yielded firmer Ca2+-mediated LMP gels than commercial citrus LMP with comparable DM. Cashew apple pomace, therefore, appears to be a potentially viable source for possible production of “non-chemically or enzymatically-tailored” LMP. PMID:28234301

  12. An automated technique to identify potential inappropriate traditional Chinese medicine (TCM) prescriptions.

    PubMed

    Yang, Hsuan-Chia; Iqbal, Usman; Nguyen, Phung Anh; Lin, Shen-Hsien; Huang, Chih-Wei; Jian, Wen-Shan; Li, Yu-Chuan

    2016-04-01

    Medication errors such as potential inappropriate prescriptions would induce serious adverse drug events to patients. Information technology has the ability to prevent medication errors; however, the pharmacology of traditional Chinese medicine (TCM) is not as clear as in western medicine. The aim of this study was to apply the appropriateness of prescription (AOP) model to identify potential inappropriate TCM prescriptions. We used the association rule of mining techniques to analyze 14.5 million prescriptions from the Taiwan National Health Insurance Research Database. The disease and TCM (DTCM) and traditional Chinese medicine-traditional Chinese medicine (TCMM) associations are computed by their co-occurrence, and the associations' strength was measured as Q-values, which often referred to as interestingness or life values. By considering the number of Q-values, the AOP model was applied to identify the inappropriate prescriptions. Afterwards, three traditional Chinese physicians evaluated 1920 prescriptions and validated the detected outcomes from the AOP model. Out of 1920 prescriptions, 97.1% of positive predictive value and 19.5% of negative predictive value were shown by the system as compared with those by experts. The sensitivity analysis indicated that the negative predictive value could improve up to 27.5% when the model's threshold changed to 0.4. We successfully applied the AOP model to automatically identify potential inappropriate TCM prescriptions. This model could be a potential TCM clinical decision support system in order to improve drug safety and quality of care. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O3/H2O2 and UV/H2O2).

    PubMed

    Lee, Minju; Merle, Tony; Rentsch, Daniel; Canonica, Silvio; von Gunten, Urs

    2017-01-03

    The abatement of 9 polychloro-1,3-butadienes (CBDs) in aqueous solution by ozone, UV-C(254 nm) photolysis, and the corresponding advanced oxidation processes (AOPs) (i.e., O 3 /H 2 O 2 and UV/H 2 O 2 ) was investigated. The following parameters were determined for 9 CBDs: second-order rate constants for the reactions of CBDs with ozone (k O 3 ) (<0.1-7.9 × 10 3 M -1 s -1 ) or with hydroxyl radicals (k • OH ) (0.9 × 10 9 - 6.5 × 10 9 M -1 s -1 ), photon fluence-based rate constants (k') (210-2730 m 2 einstein -1 ), and quantum yields (Φ) (0.03-0.95 mol einstein -1 ). During ozonation of CBDs in a natural groundwater, appreciable abatements (>50% at specific ozone doses of 0.5 gO 3 /gDOC to ∼100% at ≥1.0 gO 3 /gDOC) were achieved for tetra-CBDs followed by (Z)-1,1,2,3,4-penta-CBD and hexa-CBD. This is consistent with the magnitude of the determined k O 3 and k • OH . The formation of bromate, a potentially carcinogenic ozonation byproduct, could be significantly reduced by addition of H 2 O 2 . For a typical UV disinfection dose (400 J/m 2 ), various extents of phototransformations (10-90%) could be achieved. However, the efficient formation of photoisomers from CBDs with E/Z configuration must be taken into account because of their potential residual toxicity. Under UV-C(254 nm) photolysis conditions, no significant effect of H 2 O 2 addition on CBDs abatement was observed due to an efficient direct phototransformation of CBDs.

  14. Intrinsic chemiluminescence production from the degradation of haloaromatic pollutants during environmentally-friendly advanced oxidation processes: Mechanism, structure-activity relationship and potential applications.

    PubMed

    Zhu, Benzhan; Shen, Chen; Gao, Huiying; Zhu, Liya; Shao, Jie; Mao, Li

    2017-12-01

    The ubiquitous distribution of halogenated aromatic compounds (XAr) coupled with their carcinogenicity has raised public concerns on their potential risks to both human health and the ecosystem. Recently, advanced oxidation processes (AOPs) have been considered as an "environmentally-friendly" technology for the remediation and destruction of such recalcitrant and highly toxic XAr. During our study on the mechanism of metal-independent production of hydroxyl radicals (OH) by halogenated quinones and H 2 O 2 , we found, unexpectedly, that an unprecedented OH-dependent two-step intrinsic chemiluminescene (CL) can be produced by H 2 O 2 and tetrachloro-p-benzoquinone, the major carcinogenic metabolite of the widely used wood preservative pentachlorophenol. Further investigations showed that, in all OH-generating systems, CL can also be produced not only by pentachlorophenol and all other halogenated phenols, but also by all XAr tested. A systematic structure-activity relationship study for all 19 chlorophenolic congeners showed that the CL increased with an increasing number of Cl-substitution in general. More importantly, a relatively good correlation was observed between the formation of quinoid/semiquinone radical intermediates and CL generation. Based on these results, we propose that OH-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual CL production; and a rapid, sensitive, simple, and effective CL method was developed not only to detect and quantify trace amount of XAr, but also to provide useful information for predicting the toxicity or monitoring real-time degradation kinetics of XAr. These findings may have broad chemical, environmental and biological implications for future studies on halogenated aromatic persistent organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  15. Mutagenicity and cytotoxicity evaluation of photo-catalytically treated petroleum refinery wastewater using an array of bioassays.

    PubMed

    Iqbal, Munawar; Nisar, Jan; Adil, Muhammad; Abbas, Mazhar; Riaz, Muhammad; Tahir, M Asif; Younus, Muhammad; Shahid, Muhammad

    2017-02-01

    Degradation and detoxification of petroleum refinery wastewater (PRW) was carried out by advanced oxidation processes (UV/TiO 2 /H 2 O 2 and gamma radiation/H 2 O 2 ). Response surface methodology (RSM) was used to optimize the independent variables. The cytotoxicity was evaluated using Allium cepa, brime shrimp and haemolytic assays; whereas mutagenicity was tested by Ames tests (TA98 and TA100 strains). Maximum reductions in COD and BOD were recorded as 78% and 87% for UV/TiO 2 /H 2 O 2 and 77% and 86% for gamma ray/H 2 O 2 , respectively. Treatments with both methods at optimized conditions reduced the cytotoxicity and mutagenicity of PRW, however, UV/TiO 2 /H 2 O 2 system was found slightly efficient as compared to gamma ray/H 2 O 2 . From the results, it can be concluded that AOP's can successfully be utilized for the degradation of toxic pollutants in petroleum refinery wastewater. Moreover, the bioassays used in this study offered a good reliability for checking the detoxification of treated and un-treated PRW wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Status of hormones and painkillers in wastewater effluents across several European states-considerations for the EU watch list concerning estradiols and diclofenac.

    PubMed

    Schröder, P; Helmreich, B; Škrbić, B; Carballa, M; Papa, M; Pastore, C; Emre, Z; Oehmen, A; Langenhoff, A; Molinos, M; Dvarioniene, J; Huber, C; Tsagarakis, K P; Martinez-Lopez, E; Pagano, S Meric; Vogelsang, C; Mascolo, G

    2016-07-01

    Present technologies for wastewater treatment do not sufficiently address the increasing pollution situation of receiving water bodies, especially with the growing use of personal care products and pharmaceuticals (PPCP) in the private household and health sector. The relevance of addressing this problem of organic pollutants was taken into account by the Directive 2013/39/EU that introduced (i) the quality evaluation of aquatic compartments, (ii) the polluter pays principle, (iii) the need for innovative and affordable wastewater treatment technologies, and (iv) the identification of pollution causes including a list of principal compounds to be monitored. In addition, a watch list of 10 other substances was recently defined by Decision 2015/495 on March 20, 2015. This list contains, among several recalcitrant chemicals, the painkiller diclofenac and the hormones 17β-estradiol and 17α-ethinylestradiol. Although some modern approaches for their removal exist, such as advanced oxidation processes (AOPs), retrofitting most wastewater treatment plants with AOPs will not be acceptable as consistent investment at reasonable operational cost. Additionally, by-product and transformation product formation has to be considered. The same is true for membrane-based technologies (nanofiltration, reversed osmosis) despite of the incredible progress that has been made during recent years, because these systems lead to higher operation costs (mainly due to higher energy consumption) so that the majority of communities will not easily accept them. Advanced technologies in wastewater treatment like membrane bioreactors (MBR) that integrate biological degradation of organic matter with membrane filtration have proven a more complete elimination of emerging pollutants in a rather cost- and labor-intensive technology. Still, most of the presently applied methods are incapable of removing critical compounds completely. In this opinion paper, the state of the art of European WWTPs is reflected, and capacities of single methods are described. Furthermore, the need for analytical standards, risk assessment, and economic planning is stressed. The survey results in the conclusion that combinations of different conventional and advanced technologies including biological and plant-based strategies seem to be most promising to solve the burning problem of polluting our environment with hazardous emerging xenobiotics.

  17. Degradation of anti-inflammatory drugs in municipal wastewater by heterogeneous photocatalysis and electro-Fenton process.

    PubMed

    Villanueva-Rodríguez, Minerva; Bello-Mendoza, Ricardo; Hernández-Ramírez, Aracely; Ruiz-Ruiz, Edgar J

    2018-03-01

    Non-steroidal anti-inflammatory drugs (NSAID) are compounds frequently found in municipal wastewater and their degradation by conventional wastewater treatment plants (WWTP) is generally incomplete. This study compared the efficiency of two advanced oxidation processes (AOP), namely heterogeneous photocatalysis (HP) and electro-Fenton (EF), in the degradation of a mixture of common NSAID (diclofenac, ibuprofen and naproxen) dissolved in either deionized water or effluent from a WWTP. Both processes were effective in degrading the NSAID mixture and the trend of degradation was as follows, diclofenac > naproxen > ibuprofen. EF with a current density of 40 mA cm -2 and 0.3 mmol Fe 2+  L -1 was the most efficient process to mineralize the organic compounds, achieving up to 92% TOC removal in deionized water and 90% in the WWTP effluent after 3 h of reaction. HP with 1.4 g TiO 2  L -1 at pH 7 under sunlight, produced 85% TOC removal in deionized water and 39% in WWTP effluent also after 3 h treatment. The lower TOC removal efficiency shown by HP with the WWTP effluent was attributed mainly to the scavenging of reactive species by background organic matter in the wastewater. On the contrary, inorganic ions in the wastewater may produce oxidazing species during the EF process, which contributes to a higher degradation efficiency. EF is a promising option for the treatment of anti-inflammatory pharmaceuticals in municipal WWTP at competitive electrical energy efficiencies.

  18. Cycloartanes from Oxyanthus pallidus and derivatives with analgesic activities.

    PubMed

    Piegang, Basile Nganmegne; Tigoufack, Ignas Bertrand Nzedong; Ngnokam, David; Achounna, Angèle Sorel; Watcho, Pierre; Greffrath, Wolfgang; Treede, Rolf-Detlef; Nguelefack, Télesphore Benoît

    2016-03-09

    The leaves of Oxyanthus pallidus Hiern (Rubiaceae) are extensively used in the west region of Cameroon as analgesic. These leaves are rich in cycloartanes, a subclass of triterpenes known to possess analgesic and anti-inflammatory properties. The present study aimed at evaluating the analgesic properties of three cycloartanes isolated from Oxyanthus pallidus leaves as well as their aglycones and acetylated derivatives. Three cycloartanes OP3, OP5 and OP6 obtained by successive chromatography of the crude methanol extract of the leaves were hydrolysed to yield respective aglycone AOP1, AOP2, AOP3 and acetylated to HOP1, HOP2 and HOP3 respectively. Formalin-induced pain model was used to evaluate the acute anti-nociceptive properties of these cycloartanes (5 mg/kg, p.o) in mice and to determine the structure-activity relationship. Acute (24 h) and chronic (10 days) anti-hyperalgesic and anti-inflammatory activities of OP5 were evaluated at the doses of 2.5 and 5 mg/kg/day administered orally. OP6 was also evaluated in acute experiments. The antioxidant and hepato-protective activities of OP5 were evaluated at the end of the chronic treatment. The mixture and the individual isolated cycloartanes significantly inhibited both phases of formalin-induced pain with percentage inhibition ranging from 13 to 78%. Acid hydrolysis did not significantly affect their antinociceptive activities while acetylation significantly reduced the effects of these compounds during the second phase of pain. OP5 and OP6 induced acute anti-hyperalgesic activity in formalin-induced mechanical hyperalgesia but not an anti-inflammatory effect. Repeated administration of OP5 for 10 days did not induce any anti-hyperalgesic effect. The evaluation of in vivo antioxidant properties showed that OP5 significantly reduced malondialdehyde and increased superoxide dismutase levels in liver without significantly affecting other oxidative stress and hepatotoxic parameters. Chronic administration of OP5 did not cause gastric ulceration. Cycloartanes isolated from Oxyanthus pallidus possess analgesic effects but lack anti-inflammatory activities. This analgesic effect especially on inflammatory pain may be due to the presence of hydroxyl group in front of the plane. OP5 is devoid of ulcerogenic effect and possess antioxidant properties that might be of benefit to its analgesic properties.

  19. Mobilization Protocols for Hybrid Sensors for Environmental AOP Sampling (HySEAS) Observations

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.

    2014-01-01

    The protocols presented here enable the proper mobilization of the latest-generation instruments for measuring the apparent optical properties (AOPs) of aquatic ecosystems. The protocols are designed for the Hybrid Sensors for Environmental AOP Sampling (HySEAS) class of instruments, but are applicable to the community of practice for AOP measurements. The protocols are organized into eleven sections beyond an introductory overview: a) cables and connectors, b) HySEAS instruments, c) platform preparation, d) instrument installation, e) cable installation, f) test deployment, g) test recovery, h) maintenance, i) shipping, j) storage, and k) smallboat operations. Each section concentrates on documenting how to prevent the most likely faults, remedy them should they occur, and accomplishing both with the proper application of a modest set of useful tools. Within the twelve sections, there are Socratic exercises to stimulate thought, and the answers to these exercises appear in Appendix A. Frequently asked questions (FAQs) are summarized in a separate section after the answers to the exercises in Appendix B. For practitioners unfamiliar with the nautical terms used throughout this document plus others likely encountered at sea, an abbreviated dictionary of nautical terms appears in Appendix C. An abbreviated dictionary of radiotelephone terms is presented in Appendix D. To ensure familiarity with many of the tools that are presented, Appendix E provides a description of the tools alongside a thumbnail picture. Abbreviated deployment checklists and cable diagrams are provided in Appendix F. The document concludes with an acknowledgments section, a glossary of acronyms, a definition of symbols, and a list of references.

  20. Doxapram Treatment for Apnea of Prematurity: A Systematic Review.

    PubMed

    Vliegenthart, Roseanne J S; Ten Hove, Christine H; Onland, Wes; van Kaam, Anton H L C

    2017-01-01

    Apnea of prematurity (AOP) is a common complication of preterm birth, for which caffeine is the first treatment of choice. In case of persistent AOP, doxapram has been advocated as an additional therapy. To identify and appraise all existing evidence regarding efficacy and safety of doxapram use for AOP in infants born before 34 weeks of gestational age. All studies reporting on doxapram use for AOP were identified by searching electronic databases, references from relevant studies, and abstracts from the Societies for Pediatric Research. Two reviewers independently assessed study eligibility and quality, and extracted data on study design, patient characteristics, efficacy and safety outcomes. The randomized controlled trials showed less apnea during doxapram treatment when compared to placebo, but no difference in treatment effect when compared to theophylline. No serious adverse effects were reported. We identified 28 observational studies consisting mainly of cohort studies and case series (n = 1,994). There was considerable heterogeneity in study design and quality. Most studies reported a positive effect of doxapram on apnea rate. A few studies reported on long-term outcomes with conflicting results. A range of possible doxapram-related short-term adverse effects were reported, sometimes associated with the use of higher doses. Based on the limited number of studies and level of evidence, no firm conclusions on the efficacy and safety of doxapram in preterm infants can be drawn. For this reason, routine use cannot be recommended. A large multicenter randomized controlled trial is urgently needed to provide more conclusive evidence. © 2016 The Author(s) Published by S. Karger AG, Basel.

  1. Digital all-sky polarization imaging of partly cloudy skies.

    PubMed

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  2. Artery of Percheron: an unusual stroke presentation.

    PubMed

    Pitts-Tucker, Toby; Small, Jeremy

    2018-03-28

    An 86-year-old woman was admitted with multiple episodes of transient loss of consciousness. She was initially treated for seizures, and stroke was not considered likely. MRI on the same day of admission showed acute bilateral medial thalamic infarcts in keeping with the Artery of Percheron (AOP) territory infarcts. Investigation for polycythaemia and thrombocytosis showed JAK2 positive myeloproliferative neoplasm.A diagnosis of AOP infarction is often missed or delayed because it is rare and presents with variable neurological symptoms. Initial imaging in the form of CT is often negative, and some report that initial MRI findings may also be normal.An awareness of a wide range of differential diagnoses alongside a multi-modality imaging approach is required to reach a diagnosis.Although there are several other case reports of AOP infarction in the literature, this is the first to present with transient symptoms initially mistaken for seizure activity. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H2O2.

    PubMed

    Ferro, Giovanna; Polo-López, María I; Martínez-Piernas, Ana B; Fernández-Ibáñez, Pilar; Agüera, Ana; Rizzo, Luigi

    2015-09-15

    The sunlight/H2O2 process has recently been considered as a sustainable alternative option compared to other solar driven advanced oxidation processes (AOPs) in advanced treatment of municipal wastewater (WW) to be reused for crop irrigation. Accordingly, in this study sunlight/H2O2 was used as disinfection/oxidation treatment for urban WW treatment plant effluent in a compound parabolic collector photoreactor to assess subsequent cross-contamination of lettuce and soil by contaminants of emerging concern (CECs) (determined by QuEChERS extraction and LC-QqLIT-MS/MS analysis) and antibiotic resistant (AR) bacteria after irrigation with treated WW. Three CECs (carbamazepine (CBZ), flumequine (FLU), and thiabendazole (TBZ) at 100 μg L(-1)) and two AR bacterial strains (E. coli and E. faecalis, at 10(5) CFU mL(-1)) were spiked in real WW. A detection limit (DL) of 2 CFU mL(-1) was reached after 120 min of solar exposure for AR E. coli, while AR E. faecalis was more resistant to the disinfection process (240 min to reach DL). CBZ and TBZ were poorly removed after 90 min (12% and 50%, respectively) compared to FLU (94%). Lettuce was irrigated with treated WW for 5 weeks. CBZ and TBZ were accumulated in soil up to 472 ng g(-1) and 256 ng g(-1) and up-taken by lettuce up to 109 and 18 ng g(-1), respectively, when 90 min treated WW was used for irrigation; whereas no bacteria contamination was observed when the bacterial density in treated WW was below the DL. A proper treatment time (>90 min) should be guaranteed in order to avoid the transfer of pathogens from disinfected WW to irrigated crops and soil.

  4. Evaluation of the scientific underpinnings for identifying ...

    EPA Pesticide Factsheets

    A major challenge in chemical risk assessment is extrapolation of toxicity data from tested to untested species. Successful cross-species extrapolation involves understanding similarities and differences in toxicokinetic and toxicodynamic processes among species. Herein we consider the toxicodynamic challenge, and propose a hierarchal framework, based on the adverse outcome pathway (AOP) concept, to transparently and systematically assess cross-species conservation of biological pathways that could be perturbed by toxic chemicals. The approach features consideration of computational, in vitro and in vivo evidence to assess molecular initiating and intermediate key events of an AOP in a systematic, comparative manner. To demonstrate practical application of the framework, we consider an assessment question arising from the legislatively-mandated USEPA endocrine disruptor screening program, which involves the degree to which data generated using mammalian systems can be translated to non-mammalian species. Specifically, there is a need to define cross-species conservation of pathways controlled by activation of estrogen receptor-á (ERá), as a basis for using mammalian (primarily human) high-throughput (HTP) in vitro data to prioritize subsequent testing to assess human health and ecological risks of estrogenic chemicals. The initial phase of our analysis revealed good structural conservation the ERá across vertebrate species in terms of amino acid sequence

  5. Computational and Organotypic Modeling of Microcephaly ...

    EPA Pesticide Factsheets

    Microcephaly is associated with reduced cortical surface area and ventricular dilations. Many genetic and environmental factors precipitate this malformation, including prenatal alcohol exposure and maternal Zika infection. This complexity motivates the engineering of computational and experimental models to probe the underlying molecular targets, cellular consequences, and biological processes. We describe an Adverse Outcome Pathway (AOP) framework for microcephaly derived from literature on all gene-, chemical-, or viral- effects and brain development. Overlap with NTDs is likely, although the AOP connections identified here focused on microcephaly as the adverse outcome. A query of the Mammalian Phenotype Browser database for ‘microcephaly’ (MP:0000433) returned 85 gene associations; several function in microtubule assembly and centrosome cycle regulated by (microcephalin, MCPH1), a gene for primary microcephaly in humans. The developing ventricular zone is the likely target. In this zone, neuroprogenitor cells (NPCs) self-replicate during the 1st trimester setting brain size, followed by neural differentiation of the neocortex. Recent studies with human NPCs confirmed infectivity with Zika virions invoking critical cell loss (apoptosis) of precursor NPCs; similar findings have been shown with fetal alcohol or methylmercury exposure in rodent studies, leading to mathematical models of NPC dynamics in size determination of the ventricular zone. A key event

  6. Identifying Candidate Chemical-Disease Linkages ...

    EPA Pesticide Factsheets

    Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment. Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment.

  7. Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes.

    PubMed

    Fiorentino, Antonino; Ferro, Giovanna; Alferez, María Castro; Polo-López, Maria Inmaculada; Fernández-Ibañez, Pilar; Rizzo, Luigi

    2015-07-01

    Solar disinfection and solar-driven advanced oxidation processes (AOPs) (namely H2O2/sunlight, TiO2/sunlight, H2O2/TiO2/sunlight, solar photo-Fenton) were evaluated in the inactivation of indigenous antibiotic-resistant bacteria (ARB) in real urban wastewater. A multidrug resistant (MDR) Escherichia coli strain isolated from the effluent of the biological process of an urban wastewater treatment plant was the target ARB. The higher inactivation rates (residual density under detection limit, 2 CFUm L(-1)) were achieved with H2O2/TiO2/sunlight (cumulative energy per unit of volume (QUV) in the range 3-5 kJ L(-1), depending on H2O2/TiO2 ratio) and H2O2/sunlight (QUV of 8 kJ L(-1)) processes. All investigated processes did not affect antibiotic resistance of survived colonies. Moreover, H2O2/sunlight was compared with conventional chlorination process to evaluate bacterial regrowth potential and particularly the proportion of indigenous MDR E. coli with respect to total indigenous E. coli population. Chlorination (1.0 mg Cl2 L(-1)) was more effective than H2O2/sunlight (50 mg H2O2 L(-1)) to achieve total inactivation of MDR E. coli (15 min Vs 90 min) but less effective in controlling their regrowth (24 h Vs 48 h). Interestingly, the percentage of MDR E. coli in H2O2/sunlight treated samples decreased as incubation time increased; the opposite was observed for chlorinated samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The "postcode lottery" for the surgical correction of gynaecomastia in NHS England.

    PubMed

    Stevens, Roger J G; Stevens, Samantha G; Rusby, Jennifer E

    2015-10-01

    Action On Plastic Surgery (AOPS) criteria for funding of gynaecomastia surgery are: the patient should be post-pubertal, have a BMI ≤ 25 kg/m(2), endocrine and drug causes and breast cancer should be excluded and the patient should demonstrate psychological distress. We evaluated how NHS funding for gynaecomastia surgery varies between Clinical Commissioning Groups (CCGs) in England and whether there is a "postcode lottery". The gynaecomastia surgery policies for 211 CCGs in NHS England were reviewed against the AOPS criteria and grouped according to their funding policies: group 1 (if criteria met, funding approved); group 2, (if criteria met, prior approval required); group 3 (no criteria, individual funding request only) and group 4 (no funding). Policies were available for all CCGs. Fifty-nine (28.0%) CCGs were in group 1, 87 (41.2%) in group 2, 44 (20.9%) in group 3 and 21 (10.0%) in group 4. Of those in groups 1 and 2, five (3.4%) CCGs used all six AOPS criteria. Approximately 70% CCGs with criteria (in groups 1 and 2) stipulated that the patient should be post-pubertal, have a BMI ≤ 25 kg/m(2) and endocrine and drug causes should be excluded. Breast cancer should be excluded in 51.4% and the patient should show psychological distress in 13.7% CCGs. Of those in groups 1 and 2, 118 (80.8%) CCGs specified additional criteria. CCGs do not use the AOPS criteria uniformly and restrict surgery according to their own criteria. Overall, there is a "postcode lottery" for gynaecomastia surgery within NHS England. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  9. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    NASA Astrophysics Data System (ADS)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER algorithm more, particularly retrieval for the dust particle over the bright surface in East Asia.

  10. Persistent anterograde amnesia due to the artery of Percheron occlusion: a case report.

    PubMed

    Ince, Birsen; Asan, Furkan

    2018-04-01

    Bilateral thalamic infarction involving the artery of Percheron (AOP) can cause diagnostic difficulties due to the varying clinical presentations. AOP infarcts presented with isolated memory impairment are not common and the factors affecting the persistence of memory disorders are still unknown. A 41-year-old male patient was hospitalized with acute unconsciousness. MRI disclosed bilateral paramedian thalamic infarction The patient had isolated memory deficit and his anterograde amnesia continued without any change in the past decade. More cases might answer the questions concerning the intra- and extra-thalamic structures responsible for the amnesic syndrome and the factors affecting the persistence of the symptoms.

  11. Sorption and selective chromatographic properties of isomer-selective composite sorbent based on a eutectic mixture of nematic liquid crystals and perbenzoylated β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Onuchak, L. A.; Kapralova, T. S.; Kuraeva, Yu. G.; Belousova, Z. P.; Stepanova, R. F.

    2015-12-01

    Mesomorphic, sorption, and selective properties of a three-component sorbent based on a mixture of nematic ( N) liquid crystals of 4-methoxy-4'-ethoxyazoxybenzene (MEAB) and 4,4'-diethoxyazoxybenzene (azoxyphenetol, AOP) of an eutectic composition and heptakis-(2,3,6-tri- O-benzoyl)-β-cyclodextrin (Bz-β-CD) are studied. For 30 organic compounds of different classes with linear and cyclic molecular structures, including optical isomers of limonene, pinene, camphene, and butanediol-2,3, thermodynamic functions are determined for their gas-phase sorption using a three-component MEAB-AOP-Bz-β- CD sorbent (62: 28: 10 wt %). It is found that the investigated sorbent possesses high structural selectivity (αp/m = 1.128-1.059, 100-130°C, N) and moderate enantioselectivity (1.07-1.02) within a broad temperature range (95-170°C) including both mesomorphic and isotropic phases of the sorbent. It is shown that the enantioselectivity of the sorbent is apparent under conditions of both increasing retention when a chiral Bz-β-CD additive is introduced into the MEAB-AOP system (limonenes, pinenes, camphenes) and decreasing retention (butanediols-2,3).

  12. Combined approaches using adverse outcome pathways and big data to find potential diseases associated with humidifier disinfectant

    PubMed Central

    2017-01-01

    According to previous survey, about two million of people were expected to suffer from toxic effects due to humidifier disinfectant (HD), regardless of healing or not. Extremely small group are recognized as HDs’ victims. Up to now, previous research tried to focus on interstitial fibrosis on terminal bronchiole because it is specific finding, compared with other diseases. To figure out overall effects from HDs, we recommend adverse outcome pathways (AOPs) as new approach. Reactive oxygen species (ROS) generation, decreased T-cell and pro-inflammatory cytokine release from macrophage could be key events between the exposure to HDs and diseases. ROS generation, decreased cell and pro-inflammatory cytokine release from macrophage could be cause of interstitial fibrosis, pneumonia and many other diseases such as asthma, allergic rhinitis, allergic dermatitis, fetal death, premature baby, autoimmune disease, hepatic toxicity, renal toxicity, cancer, and so on. We predict potential disease candidate by AOPs. We can validate the real risk of the adverse outcome by epidemiologic and toxicologic study using big data such as National Health Insurance data and AOPs knowledge base. Application of these kinds of new methods can find the potential disease list from the exposure to HD. PMID:28111421

  13. Combined approaches using adverse outcome pathways and big data to find potential diseases associated with humidifier disinfectant.

    PubMed

    Leem, Jong-Han; Chung, Kyu Hyuck

    2016-01-01

    According to previous survey, about two million of people were expected to suffer from toxic effects due to humidifier disinfectant (HD), regardless of healing or not. Extremely small group are recognized as HDs' victims. Up to now, previous research tried to focus on interstitial fibrosis on terminal bronchiole because it is specific finding, compared with other diseases. To figure out overall effects from HDs, we recommend adverse outcome pathways (AOPs) as new approach. Reactive oxygen species (ROS) generation, decreased T-cell and pro-inflammatory cytokine release from macrophage could be key events between the exposure to HDs and diseases. ROS generation, decreased cell and pro-inflammatory cytokine release from macrophage could be cause of interstitial fibrosis, pneumonia and many other diseases such as asthma, allergic rhinitis, allergic dermatitis, fetal death, premature baby, autoimmune disease, hepatic toxicity, renal toxicity, cancer, and so on. We predict potential disease candidate by AOPs. We can validate the real risk of the adverse outcome by epidemiologic and toxicologic study using big data such as National Health Insurance data and AOPs knowledge base. Application of these kinds of new methods can find the potential disease list from the exposure to HD.

  14. Intra and interobserver variability of intrapartum transperineal ultrasound measurements with contraction and pushing.

    PubMed

    Sainz, José A; Fernández-Palacín, Ana; Borrero, Carlota; Aquise, Adriana; Ramos, Zenaida; García-Mejido, José A

    2018-04-01

    The aim of this study was to evaluate the inter- and intraobserver correlation of the different intrapartum-transperineal-ultrasound-parameters(ITU) (angle of progression (AoP), progression-distance (PD), head-direction (HD), midline-angle (MLA) and head-perineum distance (HPD)) with contraction and pushing. We evaluated 28 nulliparous women at full dilatation under epidural analgesia. We performed a transperineal ultrasound evaluating AoP and PD in the longitudinal plane, and MLA and HPD in the transverse plane. Interclass correlation coefficients (ICC) with 95% CIs and Bland-Altman analysis were used to assess intra- and interobserver measurement's repeatability. The ICC of the ITU for the same observer was adequate for all the parameters (p < .005) AoP 0.98 (95%CI, 0.96-0.99), PD 0.98 (95%CI, 0.97-0.99), MLA 0.99 (95%CI, 0.97-0.99), HPD 0.96 (95%CI, 0.88-0.99). The ICC of the ITU for interobserver was: AoP 0.93 (95%CI, 0.79-0.98), PD 0.92 (95%CI, 0.76-0.97), MLA 0.77 (95%CI, 0.42-0.92), HPD 0.47 (95%CI, -0.12-0.8). The HD had an interobserver correlation of 0.53 (95%CI, 0.1-0.9) (Kappa C). The mean difference of the AoP was 2.42°, of the PD 1 mm and 0.28° MLA (Bland-Altman test). ITU has an adequate intra- and interobserver correlation for its use with contraction and pushing under epidural analgesia. Impact statement What is already known on this subject: The intrapartum transperineal ultrasound parameters can be used with contraction and pushing under epidural analgesia. What the results of this study add to what we know: ITU may be used to evaluate the difficulty of instrumental delivery/to evaluate the difficulty of instrumentation in vaginal operative deliveries and this study concludes that ITU is reproducible during uterine contraction with pushing. What the implications are of these findings for clinical practice and/or further research: Therefore, ITU could be used without difficulty with an adequate intra- and interobserver correlation for the prediction of instrumentation difficulty in operative vaginal deliveries.

  15. Photodegradation applied to the treatment of phenol and derived substances catalyzed by TiO2/BiPO4 and biological toxicity analysis.

    PubMed

    Zaidan, Léa Elias Mendes Carneiro; de Lima Sales, Renata Vitória; de Almeida Salgado, Júlia Barbosa; da Silva, Ana Maria Ribeiro Bastos; Napoleão, Daniella Carla; Rodríguez-Díaz, Joan Manuel; Marques, Olga Martins; Benachour, Mohand; da Silva, Valdinete Lins

    2017-03-01

    For this work, a phenol solution model was treated by an advanced oxidation process (AOPs), using the heterogeneous catalyst TiO 2 /BiPO 4 and hydrogen peroxide combined with UVA for 240 min. An annular reactor containing a UVA lamp (80 W) was employed. A central composite rotacional design was developed employing a TiO 2 /BiPO 4 concentration of 87 mg L -1 and a hydrogen peroxide concentration of 1800 mg L -1 , being evaluated by the degradation percentage and phenol mineralization percentage as responses; 94.30 and 67.00 % were obtained for the phenol degradation and total organic carbon (TOC) conversion, respectively. The lumped kinetic model (LKM) was applied and a satisfactory profile of the residual fractions of the organic compounds present in the liquid phase as a time function with a determination coefficient (R 2  = 0.9945). The toxicity tests employing microbiological species indicated that the organisms tested for the evaluation of the toxic compounds present in the contaminated samples presented a practical low cost test, rapid execution, and high sensibility as an indicator of the presence of toxic substances in liquid effluents.

  16. Derivation and evaluation of putative adverse outcome ...

    EPA Pesticide Factsheets

    Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions including reproduction. High content (transcriptomic) empirical data and publicly available high throughput toxicity data (actor.epa.gov) were utilized to develop putative adverse outcome pathways (AOPs) for molecular initiating event (MIE) of COX inhibition. Effects of a waterborne, 96h exposure to indomethacin (IN; 100 µg/L), ibuprofen (IB; 200 µg/L) and celecoxib (CX; 20 µg/L) on liver metabolome and ovarian gene expression (using oligonucleotide microarrays) in sexually mature fathead minnows (n=8) were examined. Metabolomic profiles of IN, IB and CX were not significantly different from control or one another. Exposure to IB and CX resulted in differential expression of comparable numbers of genes (IB = 433, CX= 545). In contrast, 2558 genes were differentially expressed in IN-treated fish. Functional analyses (canonical pathway and gene set enrichment) indicated extensive effects of IN on prostaglandin synthesis pathway, oocyte meiosis and several other processes consistent with physiological roles of prostaglandins. Transcriptomic data was congruent with apical endpoint data - IN reduced plasma prostaglandin F2 alpha concentrations, and ovarian COX activity, whereas IB and CX did not. Putative AOPs pathways for

  17. Prime Contract Awards by Service Category and Federal Supply Classification, Fiscal Years 1974, 1975, 1976, 1977.

    DTIC Science & Technology

    1978-02-10

    9.40 3?..9 7672 lOP CENTRAL PROCESSING UNIT. HYBRID 7 .. 32 9490 2.603T2S 4 AOP INPUT/OUTPUT + STORAGE DEVICES %.66s 32.395. 19.S. 4.7,10 7031 LOP AD...PASSENGER OTOR VEICLES 1S: 1.8 3.119 8,999 !133 TRUCKS AND TRUCK TRACTORS 30o.1s6 196.36 Z3S.SAS 361.3t6 336 NRLES It 29.%13 23.020 S1.481 s8,1 Mel

  18. N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS.

    PubMed

    Plumlee, Megan H; López-Mesas, Montserrat; Heidlberger, Andy; Ishida, Kenneth P; Reinhard, Martin

    2008-01-01

    N-nitrosodimethylamine (NDMA) is a probable human carcinogen found in ng/l concentrations in chlorinated and chloraminated water. A method was developed for the determination of ng/l levels of NDMA using liquid chromatography-tandem mass spectrometry (LC-MS/MS) preceded by sample concentration via solid-phase extraction with activated charcoal. Recoveries were greater than 90% and allowed a method reporting limit as low as 2ng/l. Using this method, the removal of NDMA was determined for the Interim Water Purification Facility (IWPF), an advanced wastewater treatment facility operated by the Orange County Water District (OCWD) in Southern California. The facility treats effluent from an activated sludge treatment plant with microfiltration (MF), reverse osmosis (RO), and an ultraviolet-hydrogen peroxide advanced oxidation process (UV-AOP). Six nitrosamines were surveyed: NDMA, N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr). Only NDMA was detected and at all treatment steps in the IWPF, with influent concentrations ranging from 20 to 59 ng/l. Removals for RO and UV ranged from 24% to 56% and 43% to 66%, respectively. Overall, 69+/-7% of the original NDMA concentration was removed from the product water across the advanced treatment process and, in combination with blending, the final concentration did not exceed the California drinking water notification level of 10 ng/l. NDMA removal data are consistent with findings reviewed for other advanced treatment facilities and laboratory studies.

  19. A comparative study of HO•- and SO4•--based AOPs for the degradation of non-ionic surfactant Brij30.

    PubMed

    Kabdaşlı, Işık; Ecer, Çisem; Olmez-Hanci, Tugba; Tünay, Olcay

    2015-01-01

    In the present study aqueous solutions of Brij30, an alcohol ethoxylate surfactant, were photocatalytically and photochemically treated by employing the TiO2/UV-A, H2O2/UV-C and persulfate (PS)/UV-C processes. During TiO2/UV-A treatment, even in short reaction periods (10 minutes), high rates of Brij30 removals were achieved; however, longer experiment periods (240-480 minutes) were needed in order to obtain notable total organic carbon (TOC) removals. Increasing the TiO2 dosage exhibited a positive effect on treatment efficiencies. For initial pH value of 3.0, increasing the TiO2 dosage from 1.0 to 1.5 g/L resulted in an improvement in Brij30 removal from 64% to 79% after 10 minutes whereas 68 and 88% TOC removals were observed after 480 minutes, respectively. Brij30 removal was very fast and complete via both H2O2/UV-C and PS/UV-C treatments, accompanied with significant mineralization rates ranging between 74 and 80%. Toxicity assessed by Vibrio fischeri, was found to be similar to that of the original Brij30 solution during H2O2/UV-C treatment, while in the PS/UV-C process, the relative inhibition of Brij30 towards V. fischeri fluctuated throughout the treatment and eventually non-toxic products were formed by the oxidation of SO4•- radicals.

  20. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process.

    PubMed

    Wu, Zihao; Guo, Kaiheng; Fang, Jingyun; Yang, Xueqin; Xiao, Hong; Hou, Shaodong; Kong, Xiujuan; Shang, Chii; Yang, Xin; Meng, Fangang; Chen, Liwei

    2017-12-01

    The UV/chlorine process is an emerging advanced oxidation process (AOP) that produces various reactive species, such as hydroxyl radicals (HO) and reactive chlorine species (RCS). The effects of the treatment conditions, such as chlorine dosage and pH, and the water matrix components of natural organic matter (NOM), alkalinity, ammonia and halides, on the kinetics and reactive species in the degradation of four micropollutants, metronidazole (MDZ), nalidixic acid (NDA), diethyltoluamide (DEET) and caffeine (CAF), by the UV/chlorine process were investigated. The degradation of MDZ and CAF was primarily attributable to HO and ClO, respectively, while that of NDA was primarily attributable to both ClO and CO 3 - . HO, Cl and CO 3 - are important for the degradation of DEET. The second-order rate constants for ClO with CAF and CO 3 - with NDA were determined to be 5.1 (±0.2) × 10 7  M -1 s -1 and 1.4 (±0.1) × 10 7  M -1 s -1 , respectively. Increasing chlorine dosage slightly changed the contribution of HO but linearly increased that of ClO to micropollutant degradation. Increasing pH decreased the contribution of either HO or Cl but not that of ClO. Both NOM and bicarbonate decreased the contributions of HO and Cl, whereas NOM but not bicarbonate significantly decreased that of ClO. The contribution of either HO or Cl first rose and then fell as the molar ratio of ammonia to chlorine increased from 0 to 1:1, while that of ClO decreased. The co-presence of high concentrations of Cl - and Br - enhanced the contribution of ClBr - and BrCl. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top