DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Jinichiro; Bennett, James P.; Nakano, Anna
Embodiments relate to systems and methods for regenerating and recirculating a CO, H.sub.2 or combinations thereof utilized for metal oxide reduction in a reduction furnace. The reduction furnace receives the reducing agent, reduces the metal oxide, and generates an exhaust of the oxidized product. The oxidized product is transferred to a mixing vessel, where the oxidized product, a calcium oxide, and a vanadium oxide interact to regenerate the reducing agent from the oxidized product. The regenerated reducing agent is transferred back to the reduction furnace for continued metal oxide reductions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, T.; Griffin, A. M.; Gorski, C. A.
Dissimilatory microbial reduction of solid-phase Fe(III)-oxides and Fe(III)-bearing phyllosilicates (Fe(III)-phyllosilicates) is an important process in anoxic soils, sediments, and subsurface materials. Although various studies have documented the relative extent of microbial reduction of single-phase Fe(III)-oxides and Fe(III)-phyllosilicates, detailed information is not available on interaction between these two processes in situations where both phases are available for microbial reduction. The goal of this research was to use the model dissimilatory iron-reducing bacterium (DIRB) Geobacter sulfurreducens to study Fe(III)-oxide vs. Fe(III)-phyllosilicate reduction in a range of subsurface materials and Fe(III)-oxide stripped versions of the materials. Low temperature (12K) Mossbauer spectroscopy was usedmore » to infer changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate). A Fe partitioning model was employed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicates. The results showed that in most cases Fe(III)- oxide utilization dominated (70-100 %) bulk Fe(III) reduction activity, and that electron transfer from oxide-derived Fe(II) played only a minor role (ca. 10-20 %) in Fe partitioning. In addition, the extent of Fe(III)-oxide reduction was positively correlated to surface area-normalized cation exchange capacity and the phyllosilicate-Fe(III)/total Fe(III) ratio, which suggests that the phyllosilicates in the natural sediments promoted Fe(III)-oxide reduction by binding of oxide-derived Fe(II), thereby enhancing Fe(III)-oxide reduction by reducing or delaying the inhibitory effect that Fe(II) accumulation on oxide and DIRB cell surfaces has on Fe(III)-oxide reduction. In general our results suggest that although Fe(III)-oxide reduction is likely to dominate bulk Fe(III) reduction in most subsurface sediments, Fe(II) binding by phyllosilicates is likely to play a key role in controlling the long-term kinetics of Fe(III)-oxide reduction.« less
Nox control for high nitric oxide concentration flows through combustion-driven reduction
Yeh, James T.; Ekmann, James M.; Pennline, Henry W.; Drummond, Charles J.
1989-01-01
An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.
Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics
NASA Astrophysics Data System (ADS)
Roden, Eric E.
2004-08-01
Data from studies of dissimilatory bacterial (10 8 cells mL -1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L -1) were analyzed in relation to a generalized rate law for mineral dissolution (J t/m 0 = k'(m/m 0) γ, where J t is the rate of dissolution and/or reduction at time t, m 0 is the initial mass of oxide, and m/m 0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to predict long-term patterns of reactivity toward enzymatic reduction at circumneutral pH.
Lithium metal reduction of plutonium oxide to produce plutonium metal
Coops, Melvin S.
1992-01-01
A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, S.D.; Gese, N.J.; Wurth, L.A.
An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide.more » In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.« less
Effects of Borax on the Reduction of Pre-oxidized Panzhihua Ilmenite
NASA Astrophysics Data System (ADS)
Guo, Yufeng; Zheng, Fuqiang; Jiang, Tao; Chen, Feng; Wang, Shuai; Qiu, Guanzhou
2018-01-01
The effects of borax (sodium borate) on the enhancement reduction of pre-oxidized Panzhihua ilmenite were investigated. The effects of borax on the mineral phase transformation, microstructures, crystal cell parameter, melting point and Mg distribution were studied to reveal the mechanism of enhancement reduction. Under the constant reduction conditions, the borax could reduce the reduction activation energy of pre-oxidized ilmenite. The reduction kinetics analysis indicated that the reduction rate was controlled by interfacial chemical reaction. The reduction activation energy of the pre-oxidized ilmenite with 4% borax was 80.263 kJ/mol, which was 28.585 kJ/mol less than that of the pre-oxidized ilmenite without borax. Borax could eliminate the migration of Mg into the reduced particle center. The crystal cell parameter of the reduced product was increased by adding borax. Borax could improve the growth of dendritic crystals in the pre-oxidized ilmenite.
NASA Technical Reports Server (NTRS)
Canfield, Donald E.; Thamdrup, BO; Hansen, Jens W.
1993-01-01
A combination of porewater and solid phase analysis as well as a series of sediment incubations are used to quantify organic carbon oxidation by dissimilatory Fe reduction, Mn reduction, and sulfate reduction, in sediments from the Skagerrak (located off the northeast coast of Jutland, Denmark). Solid phase data are integrated with incubation results to define the zones of the various oxidation processes. At S(9), surface Mn enrichments of up to 3.5 wt pct were found, and with such a ready source of Mn, dissimilatory Mn reduction was the only significant anaerobic process of carbon oxidation in the surface 10 cm of the sediment. At S(4) and S(6), active Mn reduction occurred; however, most of the Mn reduction may have resulted from the oxidation of acid volatile sulfides and Fe(2+) rather than by a dissimilatory sulfate. Dissolved Mn(2+) was found to completely adsorb onto sediment containing fully oxidized Mn oxides.
OXIDATION-REDUCTION POTENTIAL MEASUREMENTS OF IMPORTANT OXIDANTS IN DRINKING WATER
Oxidation-reduction (redox) reactions are important in drinking water treatment and distribution. Oxidation-reduction potential (ORP) measurements of water reflect the tendency of major constituents in the water to accept or lose electrons. Although ORP measurements are valuable...
RELATIONSHIPS BETWEEN OXIDATION-REDUCTION, OXIDANT, AND PH IN DRINKING WATER
Oxidation and reduction (redox) reactions are very important in drinking water. Oxidation-reduction potential (ORP) measurements reflect the redox state of water. Redox measurements are not widely made by drinking water utilities in part because they are not well understood. The ...
Thorup, Casper; Schramm, Andreas
2017-01-01
ABSTRACT This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. PMID:28720728
RELATIONSHIPS BETWEEN OXIDATION-REDUCTION POTENTIAL, OXIDANT, AND PH IN DRINKING WATER
Oxidation and reduction (redox) reactions are very important in drinking water. Oxidation-reduction potential (ORP) measurements reflect the redox state of water. Redox measurements are not widely made by drinking water utilities in part because they are not well understood. The ...
Thorup, Casper; Schramm, Andreas; Findlay, Alyssa J; Finster, Kai W; Schreiber, Lars
2017-07-18
This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus , with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an exciting model organism in which to study the physiology of this process. Copyright © 2017 Thorup et al.
Thermodynamic Versus Surface Area Control of Microbial Fe(III) Oxide Reduction Kinetics
NASA Astrophysics Data System (ADS)
Roden, E. E.
2003-12-01
Recent experimental studies of synthetic and natural Fe(III) oxide reduction permit development of conceptual and quantitative models of enzymatic Fe(III) oxide reduction at circumneutral pH that can be compared to and contrasted with established models of abiotic mineral dissolution. The findings collectively support a model for controls on enzymatic reduction that differs fundamentally from those applied to abiotic reductive dissolution as a result of two basic phenomena: (1) the relatively minor influence of oxide mineralogical and thermodynamic properties on surface area-normalized rates of enzymatic reduction compared to abiotic reductive dissolution; and (2) the major limitation which sorption and/or surface precipitation of biogenic Fe(II) on residual oxide and Fe(III)-reducing bacterial cell surfaces poses to enzymatic electron transfer in the presence of excess electron donor. Parallel studies with two major Fe(III)-reducing bacteria genera (Shewanella and Geobacter) lead to common conclusions regarding the importance of these phenomena in regulating the rate and long-term extent of Fe(III) oxide reduction. Although the extent to which these phenomena can be traced to underlying kinetic vs. thermodynamic effects cannot be resolved with current information, models in which rates of enzymatic reduction are limited kinetically by the abundance of "available" oxide surface sites (as controlled by oxide surface area and the abundance of surface-bound Fe(II)) provide an adequate macroscopic description of controls on the initial rate and long-term extent of oxide reduction. In some instances, thermodynamic limitation posed by the accumulation of aqueous reaction end-products (i.e. Fe(II) and alkalinity) must also be invoked to explain observed long-term patterns of reduction. In addition, the abundance of Fe(III)-reducing microorganisms plays an important role in governing rates of reduction and needs to be considered in models of Fe(III) reduction in nonsteady-state systems, e.g. subsurface environments in which Fe(III) reduction is stimulated by contamination with organics or for the purposes of metal/radionuclide bioremediation.
Two component-three dimensional catalysis
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2002-01-01
This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
Oxidation-reduction catalyst and its process of use
NASA Technical Reports Server (NTRS)
Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor); Jordan, Jeffrey D. (Inventor); Watkins, Anthony Neal (Inventor)
2008-01-01
This invention relates generally to a ruthenium stabilized oxidation-reduction catalyst useful for oxidizing carbon monoxide, and volatile organic compounds, and reducing nitrogen oxide species in oxidizing environments, substantially without the formation of toxic and volatile ruthenium oxide species upon said oxidizing environment being at high temperatures.
Panner Selvam, M K; Henkel, R; Sharma, R; Agarwal, A
2018-03-01
Oxidation-reduction potential describes the balance between the oxidants and antioxidants in fluids including semen. Various artificial culture media are used in andrology and IVF laboratories for sperm preparation and to support the development of fertilized oocytes under in vitro conditions. The composition and conditions of these media are vital for optimal functioning of the gametes. Currently, there are no data on the status of redox potential of sperm processing and assisted reproduction media. The purpose of this study was to compare the oxidation-reduction potential values of the different media and to calibrate the oxidation-reduction potential values of the sperm wash medium using oxidative stress inducer cumene hydroperoxide and antioxidant ascorbic acid. Redox potential was measured in 10 different media ranging from sperm wash media, freezing media and assisted reproductive technology one-step medium to sequential media. Oxidation-reduction potential values of the sequential culture medium and one-step culture medium were lower and significantly different (p < 0.05) from the sperm wash media. Calibration of the sperm wash media using the oxidant cumene hydroperoxide and antioxidant ascorbic acid demonstrated that oxidation-reduction potential and the concentration of oxidant or antioxidant are logarithmically dependent. This study highlights the importance of calibrating the oxidation-reduction potential levels of the sperm wash media in order to utilize it as a reference value to identify the physiological range of oxidation-reduction potential that does not have any adverse effect on normal physiological sperm function. © 2017 American Society of Andrology and European Academy of Andrology.
Pathways of organic carbon oxidation in three continental margin sediments
NASA Technical Reports Server (NTRS)
Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.
1993-01-01
We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.
In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes
2010-12-28
DATES COVERED (From - To) 1/29/10-9/30/10 4. TITLE AND SUBTITLE In situ optical studies of oxidation/reduction kinetics on SOFC cermet anodes 5a...0572 In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Department of Chemistry and Biochemistry Montana State University...of Research In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Principal Investigator Robert Walker Organization
Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.
2009-01-01
Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.
1. West facade of Plutonium Concentration Facility (Building 233S), ReductionOxidation ...
1. West facade of Plutonium Concentration Facility (Building 233-S), Reduction-Oxidation Building (REDOX-202-S) to the right. Looking east. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA
Persulfate activation by subsurface minerals.
Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J
2010-06-25
Persulfate dynamics in the presence of subsurface minerals was investigated as a basis for understanding persulfate activation for in situ chemical oxidation (ISCO). The mineral-mediated decomposition of persulfate and generation of oxidants and reductants was investigated with four iron and manganese oxides and two clay minerals at both low pH (<7) and high pH (>12). The manganese oxide birnessite was the most effective initiator of persulfate for degrading the oxidant probe nitrobenzene, indicating that oxidants are generated at both low and high pH regimes. The iron oxide goethite was the most effective mineral for degrading the reductant probe hexachloroethane. A natural soil and two soil fractions were used to confirm persulfate activation by synthetic minerals. The soil and soil fractions did not effectively promote the generation of oxidants or reductants. However, soil organic matter was found to promote reductant generation at high pH. The results of this research demonstrate that synthetic iron and manganese oxides can activate persulfate to generate reductants and oxidants; however, iron and manganese oxides in the natural soil studied do not show the same reactivity, most likely due to the lower masses of the metal oxides in the soil relative to the masses studied in isolated mineral systems. 2010. Published by Elsevier B.V.
Decontamination of metals using chemical etching
Lerch, Ronald E.; Partridge, Jerry A.
1980-01-01
The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.
Geochemical controls on microbial nitrate-dependent U(IV) oxidation
Senko, John M.; Suflita, Joseph M.; Krumholz, Lee R.
2005-01-01
After reductive immobilization of uranium, the element may be oxidized and remobilized in the presence of nitrate by the activity of dissimilatory nitrate-reducing bacteria. We examined controls on microbially mediated nitrate-dependent U(IV) oxidation in landfill leachate-impacted subsurface sediments. Nitrate-dependent U(IV)-oxidizing bacteria were at least two orders of magnitude less numerous in these sediments than glucose- or Fe(II)-oxidizing nitrate-reducing bacteria and grew more slowly than the latter organisms, suggesting that U(IV) is ultimately oxidized by Fe(III) produced by nitrate-dependent Fe(II)-oxidizing bacteria or by oxidation of Fe(II) by nitrite that accumulates during organotrophic dissimilatory nitrate reduction. We examined the effect of nitrate and reductant concentration on nitrate-dependent U(IV) oxidation in sediment incubations and used the initial reductive capacity (RDC = [reducing equivalents] - [oxidizing equivalents]) of the incubations as a unified measurement of the nitrate or reductant concentration. When we lowered the RDC with progressively higher nitrate concentrations, we observed a corresponding increase in the extent of U(IV) oxidation, but did not observe this relationship between RDC and U(IV) oxidation rate, especially when RDC > 0, suggesting that nitrate concentration strongly controls the extent, but not the rate of nitrate-dependent U(IV) oxidation. On the other hand, when we raised the RDC in sediment incubations with progressively higher reductant (acetate, sulfide, soluble Fe(II), or FeS) concentrations, we observed progressively lower extents and rates of nitrate-dependent U(IV) oxidation. Acetate was a relatively poor inhibitor of nitrate-dependent U(IV) oxidation, while Fe(II) was the most effective inhibitor. Based on these results, we propose that it may be possible to predict the stability of U(IV) in a bioremediated aquifer based on the geochemical characteristics of that aquifer.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, C. K.; Fox, P. L.
1998-01-01
Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.
Treatment of power utilities exhaust
Koermer, Gerald [Basking Ridge, NJ
2012-05-15
Provided is a process for treating nitrogen oxide-containing exhaust produced by a stationary combustion source by the catalytic reduction of nitrogen oxide in the presence of a reductant comprising hydrogen, followed by ammonia selective catalytic reduction to further reduce the nitrogen oxide level in the exhaust.
Oxidation-Reduction Resistance of Advanced Copper Alloys
NASA Technical Reports Server (NTRS)
Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.; Humphrey, D. L.; Setlock, J. A.
2003-01-01
Resistance to oxidation and blanching is a key issue for advanced copper alloys under development for NASA's next generation of reusable launch vehicles. Candidate alloys, including dispersion-strengthened Cu-Cr-Nb, solution-strengthened Cu-Ag-Zr, and ODS Cu-Al2O3, are being evaluated for oxidation resistance by static TGA exposures in low-p(O2) and cyclic oxidation in air, and by cyclic oxidation-reduction exposures (using air for oxidation and CO/CO2 or H2/Ar for reduction) to simulate expected service environments. The test protocol and results are presented.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhao, Xiaozhou; Wang, Shuang; Zeng, Shanghong; Su, Haiquan
2018-05-01
The CuO-CeO2@SiO2 catalyst with flower-sphere morphology was prepared by the impregnation method and then experienced the reduction-oxidation treatment at different temperatures. The multi-technique characterization shows that the reduction-oxidation treatment can remodel CuO, improve textural and surface properties and change Cu+ content and synergistic effect of copper and cerium. The importance of this work lies in the fact that the decrease of Cu+ content and synergistic effect of copper and cerium that occurs in the reduction-oxidation process results in the decrease of catalytic activity over the CuO-CeO2@SiO2 catalyst for preferential CO oxidation. The process of reaction in rich-hydrogen streams is equivalent to a reduction procedure which decreases Cu+ content and synergistic effect of copper and cerium.
Schoutteten, Klaas V K M; Hennebel, Tom; Dheere, Ellen; Bertelkamp, Cheryl; De Ridder, David J; Maes, Synthia; Chys, Michael; Van Hulle, Stijn W H; Vanden Bussche, Julie; Vanhaecke, Lynn; Verliefde, Arne R D
2016-12-01
The combination of ozonation and activated carbon (AC) adsorption is an established technology for removal of trace organic contaminants (TrOCs). In contrast to oxidation, reduction of TrOCs has recently gained attention as well, however less attention has gone to the combination of reduction with AC adsorption. In addition, no literature has compared the removal behavior of reduction vs. ozonation by-products by AC. In this study, the effect of pre-ozonation vs pre-catalytic reduction on the AC adsorption efficiency of five TrOCs and their by-products was compared. All compounds were susceptible to oxidation and reduction, however the catalytic reductive treatment proved to be a slower reaction than ozonation. New oxidation products were identified for dinoseb and new reduction products were identified for carbamazepine, bromoxynil and dinoseb. In terms of compatibility with AC adsorption, the influence of the oxidative and reductive pretreatments proved to be compound dependent. Oxidation products of bromoxynil and diatrizoic acid adsorbed better than their parent TrOCs, but oxidation products of atrazine, carbamazepine and dinoseb showed a decreased adsorption. The reductive pre-treatment showed an enhanced AC adsorption for dinoseb and a major enhancement for diatrizoic acid. For atrazine and bromoxynil, no clear influence on adsorption was noted, while for carbamazepine, the reductive pretreatment resulted in a decreased AC affinity. It may thus be concluded that when targeting mixtures of TrOCs, a trade-off will undoubtedly have to be made towards overall reactivity and removal of the different constituents, since no single treatment proves to be superior to the other. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Yiling; Zhang, Huichun
2013-10-01
Rapid reduction of carbadox (CDX), olaquindox and several other aromatic N-oxides were investigated in aqueous solution containing Fe(II) and tiron. Consistent with previous work, the 1:2 Fe(II)-tiron complex, FeL2(6-), is the dominant reactive species as its concentration linearly correlates with the observed rate constant kobs under various conditions. The N-oxides without any side chains were much less reactive, suggesting direct reduction of the N-oxides is slow. UV-vis spectra suggest FeL2(6-) likely forms 5- or 7-membered rings with CDX and olaquindox through the N and O atoms on the side chain. The formed inner-sphere complexes significantly facilitated electron transfer from FeL2(6-) to the N-oxides. Reduction products of the N-oxides were identified by HPLC/QToF-MS to be the deoxygenated analogs. QSAR analysis indicated neither the first electron transfer nor N-O bond cleavage is the rate-limiting step. Calculations of the atomic spin densities of the anionic N-oxides confirmed the extensive delocalization between the aromatic ring and the side chain, suggesting complex formation can significantly affect the reduction kinetics. Our results suggest the complexation facilitated N-oxide reduction by Fe(II)-tiron involves a free radical mechanism, and the subsequent deoxygenation might also benefit from the weak complexation of Fe(II) with the N-oxide O atom.
Magnesiothermic reduction for direct synthesis of Ti-Nb alloy at 1073 K (800 °C)
NASA Astrophysics Data System (ADS)
Choi, Kyunsuk; Lee, Kwang Hee; Ali, Basit; Choi, Sang-Hoon; Park, Kyoung-Tae; Sohn, Il
2017-09-01
Direct fabrication of titanium (Ti) and niobium (Nb) alloys by direct magnesiothermic reduction from the respective initial metal oxides and complex oxides has been studied. TiO2, Nb2O5, and complex TiNb2O7 oxides were used as raw materials with Mg used as a reductant. To ensure a high chemical potential of the reactants to drive the spontaneous magnesiothermic reduction of the oxide mixtures, excess Mg five times higher than the required stoichiometric molar ratio was added. Samples were heated in a glove box under recycled and purified Ar atmosphere at 1073 K (800 °C) for 10 h. After the reduction of TiO2, intermediate oxide phases of Ti6O could still be observed, but reduction of Nb2O5 and TiNb2O7 showed metallic Nb and Ti-Nb to be present with negligible oxides according to the scanning electron microscope-energy dispersive spectroscopy and x ray diffraction analysis. This indicated that direct fabrication of Ti-Nb alloys through a complex TiNb2O7 oxide is possible and can be more efficient than alloying pure metallic elements of Ti and Nb.
NASA Astrophysics Data System (ADS)
Adetoro, Ajala Adewole; Sun, Haoyan; He, Shengyi; Zhu, Qingshan; Li, Hongzhong
2018-04-01
With respect to high efficient utilization of low-grade iron ore resource, the behavior of low-temperature "973 K to 1123 K (700 °C to 850 °C)" oxidation, on the phase transition of SA TTM ore (South African titanomagnetite), and its effect on subsequent reduction was investigated. The results showed that hematite and rutile are the oxidation product below 1048 K (775 °C), while pseudobrookite is the stable phase above 1073 K (800 °C). With the increase in temperature and oxidation time, there is a competitive relationship between the amount of hematite and pseudobrookite generated. The reduction efficiency of SA TTM was significantly improved by oxidation pretreatment, primarily due to the dissociation of titania-ferrous oxides to more easily reducible hematite. But the generation of pseudobrookite phase decreases the amount of free hematite available for reduction, which weakens the improvement effect of pre-oxidation. The equilibrium relationship between the metallization degree and the gas reduction potential for TTM ore with pre-oxidation treatment has been built. Finally, the reduction metallization degree for the first and second step can be improved averagely by 16.67 and 3.45 pct, respectively, for sample pre-oxidized at 1098 K (825 °C) for 15 and 90 minutes, while 26.96 and 7.4 pct, improvement is achieved for sample pre-oxidized at a lower temperature of 1048 K (775 °C) for 120 minutes.
Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride
Squires, Leah N.; Lessing, Paul
2016-01-13
A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can easily removed upon cooling. Furthermore, the direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.
Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps
Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...
2014-09-22
Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. D. Herrmann; L. A. Wurth; N. J. Gese
An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimentalmore » study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.« less
White, A.F.; Peterson, M.L.
1998-01-01
The reduction of aqueous transition metal species at the surfaces of Fe(II)- containing oxides has important ramifications in predicting the transport behavior in ground water aquifers. Experimental studies using mineral suspensions and electrodes demonstrate that structural Fe(II) heterogeneously reduces aqueous ferric, cupric, vanadate and chromate ions on magnetite and ilmenite surfaces. The rates of metal reduction on natural oxides is strongly dependent on the extent of surface passivation and redox conditions in the weathering environment. Synchrotron studies show that surface oxidation of Fe(II)-containing oxide minerals decreases their capacity for Cr(VI) reduction at hazardous waste disposal sites.
Gardner, Timothy J.; Lott, Stephen E.; Lockwood, Steven J.; McLaughlin, Linda I.
1998-01-01
A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.
ERIC Educational Resources Information Center
Crumbie, Robyn L.
2006-01-01
The reactions use recyclable Magtrieve as the oxidant in a simple reaction sequence illustrating the reciprocity of oxidation and reduction processes. The reciprocity of oxidation and reduction reactions are explored while undertaking the reactions in an environmentally friendly manner.
Jin, Yulong; Huang, Yanyan; Xie, Yunfeng; Hu, Wenbing; Wang, Fuyi; Liu, Guoquan; Zhao, Rui
2012-01-30
The cyclic oxidation and reduction of methionine (Met) containing peptides and proteins play important roles in biological system. This work was contributed to analysis the cyclic oxidation and reduction processes of a methionine containing peptide which is very likely to relate in the cell signal transduction pathways. To mimic the biological oxidation condition, hydrogen peroxide was used as the reactive oxygen species to oxidize the peptide. Reversed-phase high-performance liquid chromatography and mass spectrometry were employed to monitor the reactions and characterize the structural changes of the products. A rapid reduction procedure was developed by simply using KI as the reductant, which is green and highly efficient. By investigation of the cyclic oxidation and reduction process, our work provides a new perspective to study the function and mechanism of Met containing peptides and proteins during cell signaling processes as well as diseases. Copyright © 2011 Elsevier B.V. All rights reserved.
Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.
1989-01-01
The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.
Kaspar, H F; Tiedje, J M
1981-03-01
15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JE Szecsody; JS Fruchter; DS Sklarew
2000-03-21
Pacific Northwest National Laboratory (PNNL) conducted a bench-scale study to determine how effective chemically treated Ft. Lewis sediments can degrade trichloroethylene (TCE). The objectives of this experimental study were to quantify: (1) sediment reduction and oxidation reactions, (2) TCE degradation reactions, and (3) other significant geochemical changes that occurred. Sediment reduction and oxidation were investigated to determine the mass of reducible iron in the Ft. Lewis sediments and the rate of this reduction and subsequent oxidation at different temperatures. The temperature dependence was needed to be able to predict field-scale reduction in the relatively cold ({approximately}11 C) Ft. Lewis aquifer.more » Results of these experiments were used in conjunction with other geochemical and hydraulic characterization to design the field-scale injection experiment and predict barrier longevity. For example, the sediment reduction rate controls the amount of time required for the dithionite solution to fully react with sediments. Sediment oxidation experiments were additionally conducted to determine the oxidation rate and provide a separate measure of the mass of reduced iron. Laboratory experiments that were used to meet these objectives included: (1) sediment reduction in batch (static) systems, (2) sediment reduction in 1-D columns, and (3) sediment oxidation in 1-D columns. Multiple reaction modeling was conducted to quantify the reactant masses and reaction rates.« less
Dissimilatory Fe(III) and Mn(IV) reduction.
Lovley, D R
1991-01-01
The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process. PMID:1886521
2015-01-01
Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NOx species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. PMID:27162977
Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment
Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Louise Meyer, Rikke; Peter Revsbech, Niels; Schramm, Andreas; Peter Nielsen, Lars; Risgaard-Petersen, Nils
2014-01-01
Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4–6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed. PMID:24577351
Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species
NASA Astrophysics Data System (ADS)
Eitel, Eryn M.; Taillefert, Martial
2017-10-01
Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.
Oxidation and reduction behaviors of a prototypic MgO-PuO2-x inert matrix fuel
NASA Astrophysics Data System (ADS)
Miwa, Shuhei; Osaka, Masahiko
2017-04-01
Oxidation and reduction behaviors of prototypic MgO-based inert matrix fuels (IMFs) containing PuO2-x were experimentally investigated by means of thermogravimetry. The oxidation and reduction kinetics of the MgO-PuO2-x specimen were determined. The oxidation and reduction rates of the MgO-PuO2-x were found to be low compared with those of PuO2-x. It is note that the changes in O/Pu ratios of MgO-PuO2-x from stoichiometry were smaller than those of PuO2-x at high oxygen partial pressure.
Direct electrochemical reduction of solid uranium oxide in molten fluoride salts
NASA Astrophysics Data System (ADS)
Gibilaro, Mathieu; Cassayre, Laurent; Lemoine, Olivier; Massot, Laurent; Dugne, Olivier; Malmbeck, Rikard; Chamelot, Pierre
2011-07-01
The direct electrochemical reduction of UO 2 solid pellets was carried out in LiF-CaF 2 (+2 mass.% Li 2O) at 850 °C. An inert gold anode was used instead of the usual reactive sacrificial carbon anode. In this case, oxidation of oxide ions present in the melt yields O 2 gas evolution on the anode. Electrochemical characterisations of UO 2 pellets were performed by linear sweep voltammetry at 10 mV/s and reduction waves associated to oxide direct reduction were observed at a potential 150 mV more positive in comparison to the solvent reduction. Subsequent, galvanostatic electrolyses runs were carried out and products were characterised by SEM-EDX, EPMA/WDS, XRD and microhardness measurements. In one of the runs, uranium oxide was partially reduced and three phases were observed: nonreduced UO 2 in the centre, pure metallic uranium on the external layer and an intermediate phase representing the initial stage of reduction taking place at the grain boundaries. In another run, the UO 2 sample was fully reduced. Due to oxygen removal, the U matrix had a typical coral-like structure which is characteristic of the pattern observed after the electroreduction of solid oxides.
NASA Astrophysics Data System (ADS)
Ruebush, Shane S.; Icopini, Gary A.; Brantley, Susan L.; Tien, Ming
2006-01-01
This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite reduction. The Michaelis-Menten Km values of 71 ± 22 m 2/L for hematite and 50 ± 16 m 2/L for goethite were calculated as a function of surface area of the two insoluble minerals. Vmax was determined to be 123 ± 14 and 156 ± 13 nmol Fe(II)/min/mg of TM protein for hematite and goethite, respectively. These values are consistent with in vivo rates of reduction reported in the literature. These observations are consistent with our conclusion that the enzymatic reduction of mineral oxides is an effective probe that will allow elucidation of molecular chemistry of the membrane-mineral interface where electron transfer occurs.
Lee, Ying Ping; Fujii, Manabu; Kikuchi, Tetsuro; Terao, Koumei; Yoshimura, Chihiro
2017-01-01
Oxidation and reduction kinetics of iron (Fe) and proportion of steady-state Fe(II) concentration relative to total dissolved Fe (steady-state Fe(II) fraction) were investigated in the presence of various types of standard humic substances (HS) with particular emphasis on the photochemical and thermal reduction of Fe(III) and oxidation of Fe(II) by dissolved oxygen (O2) and hydrogen peroxide (H2O2) at circumneutral pH (pH 7-8). Rates of Fe(III) reduction were spectrophotometrically determined by a ferrozine method under the simulated sunlight and dark conditions, whereas rates of Fe(II) oxidation were examined in air-saturated solution using luminol chemiluminescence technique. The reduction and oxidation rate constants were determined to substantially vary depending on the type of HS. For example, the first-order rate constants varied by up to 10-fold for photochemical reduction and 7-fold for thermal reduction. The degree of variation in Fe(II) oxidation was larger for the H2O2-mediated reaction compared to the O2-mediated reaction (e.g., 15- and 3-fold changes for the former and latter reactions, respectively, at pH 8). The steady-state Fe(II) fraction under the simulated sunlight indicated that the Fe(II) fraction varies by up to 12-fold. The correlation analysis indicated that variation of Fe(II) oxidation is significantly associated with aliphatic content of HS, suggesting that Fe(II) complexation by aliphatic components accelerates Fe(II) oxidation. The reduction rate constant and steady-state Fe(II) fractions in the presence of sunlight had relatively strong positive relations with free radical content of HS, possibly due to the reductive property of radical semiquinone in HS. Overall, the findings in this study indicated that the Fe reduction and oxidation kinetics and resultant Fe(II) formation are substantially influenced by chemical properties of HS.
Microbial Manganese and Sulfate Reduction in Black Sea Shelf Sediments
Thamdrup, Bo; Rosselló-Mora, Ramón; Amann, Rudolf
2000-01-01
The microbial ecology of anaerobic carbon oxidation processes was investigated in Black Sea shelf sediments from mid-shelf with well-oxygenated bottom water to the oxic-anoxic chemocline at the shelf-break. At all stations, organic carbon (Corg) oxidation rates were rapidly attenuated with depth in anoxically incubated sediment. Dissimilatory Mn reduction was the most important terminal electron-accepting process in the active surface layer to a depth of ∼1 cm, while SO42− reduction accounted for the entire Corg oxidation below. Manganese reduction was supported by moderately high Mn oxide concentrations. A contribution from microbial Fe reduction could not be discerned, and the process was not stimulated by addition of ferrihydrite. Manganese reduction resulted in carbonate precipitation, which complicated the quantification of Corg oxidation rates. The relative contribution of Mn reduction to Corg oxidation in the anaerobic incubations was 25 to 73% at the stations with oxic bottom water. In situ, where Mn reduction must compete with oxygen respiration, the contribution of the process will vary in response to fluctuations in bottom water oxygen concentrations. Total bacterial numbers as well as the detection frequency of bacteria with fluorescent in situ hybridization scaled to the mineralization rates. Most-probable-number enumerations yielded up to 105 cells of acetate-oxidizing Mn-reducing bacteria (MnRB) cm−3, while counts of Fe reducers were <102 cm−3. At two stations, organisms affiliated with Arcobacter were the only types identified from 16S rRNA clone libraries from the highest positive MPN dilutions for MnRB. At the third station, a clone type affiliated with Pelobacter was also observed. Our results delineate a niche for dissimilatory Mn-reducing bacteria in sediments with Mn oxide concentrations greater than ∼10 μmol cm−3 and indicate that bacteria that are specialized in Mn reduction, rather than known Mn and Fe reducers, are important in this niche. PMID:10877783
Oxidation and Reduction Reactions in Organic Chemistry
ERIC Educational Resources Information Center
Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.
2010-01-01
A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…
NASA Technical Reports Server (NTRS)
Canfield, D. E.; DeVincenzi, D. L. (Principal Investigator)
1989-01-01
Compilations have been made of sulfate reduction rates and oxic respiration rates over the entire range of marine sedimentation rates, and sedimentary environments, including several euxinic sites. These data show, consistent with the findings of Jorgensen (1982, Nature, 296, 643-645), that sulfate reduction and oxic respiration oxidize equal amounts of organic carbon in nearshore sediments. As sedimentation rates decrease, oxic respiration, becomes progressively more important, and in deep-sea sediments 100-1000 times more organic carbon is oxidized by oxic respiration than by sulfate reduction. By contrast, nearly as much organic carbon is oxidized by sulfate reduction in euxinic sediments as is oxidized by the sum of sulfate reduction and oxic respiration in normal marine sediments of similar deposition rate. This observation appears at odds with the enhanced preservation of organic carbon observed in euxinic sediments. However, only small reductions in (depth-integrated) organic carbon decomposition rates (compared to normal marine) are required to give both high organic carbon concentrations and enhanced carbon preservation in euxinic sediments. Lower rates of organic carbon decomposition (if only by subtle amounts) are explained by the diminished ability of anaerobic bacteria to oxidize the full suite of sedimentary organic compounds.
Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker
2016-01-01
ABSTRACT Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3−reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of 14C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments. IMPORTANCE Twenty years after the discovery of nitrate-reducing Fe(II) oxidizers, it is still controversially discussed whether autotrophic nitrate-reducing Fe(II)-oxidizing microorganisms exist and to what extent Fe(II) oxidation in this reduction/oxidation process is enzymatically catalyzed or which role abiotic side reactions of Fe(II) with reactive N species play. Most pure cultures of nitrate-reducing Fe(II) oxidizers are mixotrophic; i.e., they need an organic cosubstrate to maintain their activity over several cultural transfers. For the few existing autotrophic isolates and enrichment cultures, either the mechanism of nitrate-reducing Fe(II) oxidation is not known or evidence for their autotrophic lifestyle is controversial. In the present study, we provide evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. The evidence is based on stoichiometries of nitrate reduction and Fe(II) oxidation determined in microcosm incubations and the incorporation of carbon from CO2 under conditions that favor the activity of nitrate-reducing Fe(II) oxidizers. PMID:27496777
Microbial reduction of manganese oxides - Interactions with iron and sulfur
NASA Technical Reports Server (NTRS)
Myers, Charles R.; Nealson, Kenneth H.
1988-01-01
Alteromonas putrefaciens (strain MR-1) is capable of rapid Mn(IV) reduction under conditions of neutral pH and temperatures characteristic of the Oneida Lake, New York, sediments from which it was isolated. MR-1 also reduces Fe(3+) to Fe(2+), and disproportionates thiosulfate to sulfide and sulfite; independently, the Fe(2+) and sulfide act as rapid reductants of Mn. The addition of Fe(3+) or thiosulfate to cultures of MR-1 in the presence of oxidized Mn increases the rate and the extent of Mn reduction relative to that observed in the absence of Fe(3+) or thiosulfate. Furthermore, when Fe(3+) and Mn oxides are present conjointly, Fe(2+) does not appear until the reduction of the oxidized Mn is complete. These results demonstrate that the observed rates of Fe(2+) and sulfide production may underestimate the total rates of Fe and sulfate reduction in those environments containing oxidized Mn. These results also demonstrate the potential impact that a single microbe can exert on sediment geochemistry, and provide the basis for preliminary models of the complexity of microbial and geochemical interactions that occur.
Rybnikova, V; Usman, M; Hanna, K
2016-09-01
Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe(0), Fe/Ni, Fe3O4, Fe3 - x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe(0) and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe(0) and Fe/Ni (18-19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250-500 and <500 μm), no PCB degradation was observed in the finest fraction (≤250 μm) having higher organic matter content. These findings may have important practical implications to promote successively reduction and oxidation reactions in soils and understand the impact of soil properties on remediation performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerken, James B.; Stahl, Shannon S.
2015-07-15
Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalystmore » drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less
LaGrow, Alec P; Ward, Michael R; Lloyd, David C; Gai, Pratibha L; Boyes, Edward D
2017-01-11
Understanding the oxidation and reduction mechanisms of catalytically active transition metal nanoparticles is important to improve their application in a variety of chemical processes. In nanocatalysis the nanoparticles can undergo oxidation or reduction in situ, and thus the redox species are not what are observed before and after reactions. We have used the novel environmental scanning transmission electron microscope (ESTEM) with 0.1 nm resolution in systematic studies of complex dynamic oxidation and reduction mechanisms of copper nanoparticles. The oxidation of copper has previously been reported to be dependent on its crystallography and its interaction with the substrate. By following the dynamic oxidation process in situ in real time with high-angle annular dark-field imaging in the ESTEM, we use conditions ideal to track the oxidation front as it progresses across a copper nanoparticle by following the changes in the atomic number (Z) contrast with time. The oxidation occurs via the nucleation of the oxide phase (Cu 2 O) from one area of the nanoparticle which then progresses unidirectionally across the particle, with the Cu-to-Cu 2 O interface having a relationship of Cu{111}//Cu 2 O{111}. The oxidation kinetics are related to the temperature and oxygen pressure. When the process is reversed in hydrogen, the reduction process is observed to be similar to the oxidation, with the same crystallographic relationship between the two phases. The dynamic observations provide unique insights into redox mechanisms which are important to understanding and controlling the oxidation and reduction of copper-based nanoparticles.
REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON
Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...
Oxidation and reduction in irradiated binary crystals of resorcinol and progesterone
NASA Astrophysics Data System (ADS)
Box, Harold C.; Budzinski, Edwin E.
1985-12-01
The binary single crystals of resorcinol and progesterone were x-irradiated at 4.2 K. The semiquinone of resorcinol was generated by radiation induced oxidation. The oxidation and reduction products were identified from ESR and ENDOR measurements. (AIP)
Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi
2015-03-01
Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.
Liu, Tongxu; Li, Xiaomin; Zhang, Wei; Hu, Min; Li, Fangbai
2014-06-01
Klebsiella pneumoniae L17 is a fermentative bacterium that can reduce iron oxide and generate electricity under anoxic conditions, as previously reported. This study reveals that K. pneumoniae L17 is also capable of dissimilatory nitrate reduction, producing NO2(-), NH4(+), NO and N2O under anoxic conditions. The presence of Fe(III) oxides (i.e., α-FeOOH, γ-FeOOH, α-Fe2O3 and γ-Fe2O3) significantly accelerates the reduction of nitrate and generation of electricity by K. pneumoniae L17, which is similar to a previous report regarding another fermentative bacterium, Bacillus. No significant nitrate reduction was observed upon treatment with Fe(2+) or α-FeOOH+Fe(2+), but a slight facilitation of nitrate reduction and electricity generation was observed upon treatment with L17+Fe(2+). This result suggests that aqueous Fe(II) or mineral-adsorbed Fe(II) cannot reduce nitrate abiotically but that L17 can catalyze the reduction of nitrate and generation of electricity in the presence of Fe(II) (which might exist as cell surface-bound Fe(II)). To rule out the potential effect of Fe(II) produced by L17 during microbial iron reduction, treatments with the addition of TiO2 or Al2O3 instead of Fe(III) oxides also exhibited accelerated microbial nitrate reduction and electricity generation, indicating that cell-mineral sorption did account for the acceleration effect. However, the acceleration caused by Fe(III) oxides is only partially attributed to the cell surface-bound Fe(II) and cell-mineral sorption but may be driven by the iron oxide conduction band-mediated electron transfer from L17 to nitrate or an electrode, as proposed previously. The current study extends the diversity of bacteria of which nitrate reduction and electricity generation can be facilitated by the presence of iron oxides and confirms the positive role of Fe(III) oxides on microbial nitrate reduction and electricity generation by particular fermentative bacteria in anoxic environments. Copyright © 2014 Elsevier Inc. All rights reserved.
Frommhagen, Matthias; van Erven, Gijs; Sanders, Mark; van Berkel, Willem J H; Kabel, Mirjam A; Gruppen, Harry
2017-08-07
Lytic polysaccharide monooxygenases (LPMOs) are able to cleave recalcitrant polysaccharides, such as cellulose, by oxidizing the C1 and/or C4 atoms. The analysis of the resulting products requires a variety of analytical techniques. Up to now, these techniques mainly focused on the identification of non-oxidized and C1-oxidized oligosaccharides. The analysis of C4-oxidized gluco-oligosaccharides is mostly performed by using high pressure anion exchange chromatography (HPAEC). However, the alkaline conditions used during HPAEC analysis lead to tautomerization of C4-oxidized gluco-oligosaccharides, which limits the use of this technique. Here, we describe the use of reverse phase-ultra high performance liquid chromatography (RP-UHPLC) in combination with non-reductive 2-aminobenzamide (2-AB) labeling. Non-reductive 2-AB labeling enabled separation of C4-oxidized gluco-oligosaccharides from their non-oxidized counterparts. Moreover, RP-UHPLC does not require buffered mobile phases, which reduce mass spectrometry (MS) sensitivity. The latter is seen as an advantage over other techniques such as hydrophilic interaction liquid chromatography and porous graphitized carbon coupled to MS. RP-UHPLC coupled to UV detection and mass spectrometry allowed the identification of both labeled non-oxidized and C4-oxidized oligosaccharides. Non-reductive labeling kept the ketone at the C4-position of LPMO oxidized oligosaccharides intact, while selective reducing agents such as sodium triacetoxyborohydride (STAB) reduced this ketone group. Our results show that RP-UHPLC-UV-ESI-MS in combination with non-reductively 2-AB labeling is a suitable technique for the separation and identification of LPMO-generated C4-oxidized gluco-oligosaccharides. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kaspar, H F; Tiedje, J M
1981-01-01
15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat. PMID:7224631
Wright, Randy B.
1992-01-01
Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).
Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor
NASA Technical Reports Server (NTRS)
Myers, Charles R.; Nealson, Kenneth H.
1988-01-01
Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.
NASA Technical Reports Server (NTRS)
Klettlinger, Jennifer Lindsey Suder
2012-01-01
The objective of this study was to evaluate the effect of titanium oxide, lanthanum oxide, and zirconium oxide on alumina supported cobalt catalysts. The hypothesis was that the presence of lanthanum oxide, titanium oxide, and zirconium oxide would reduce the interaction between cobalt and the alumina support. This was of interest because an optimized weakened interaction could lead to the most advantageous cobalt dispersion, particle size, and reducibility. The presence of these oxides on the support were investigated using a wide range of characterization techniques such as SEM, nitrogen adsorption, x-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed reduction after reduction (TPR-AR), and hydrogen chemisorptions/pulse reoxidation. Results indicated that both La2O3 and TiO2 doped supports facilitated the reduction of cobalt oxide species in reference to pure alumina supported cobalt catalysts, however further investigation is needed to determine the effect of ZrO2 on the reduction profile. Results showed an increased corrected cluster size for all three doped supported catalysts in comparison to their reference catalysts. The increase in reduction and an increase in the cluster size led to the conclusion that the support-metal interaction weakened by the addition of TiO2 and La2O3. It is also likely that the interaction decreased upon presence of ZrO2 on the alumina, but further research is necessary. Preliminary results have indicated that the alumina-supported catalysts with titanium oxide and lanthanum oxide present are of interest because of the weakened cobalt support interaction. These catalysts showed an increased extent of reduction, therefore more metallic cobalt is present on the support. However, whether or not there is more cobalt available to participate in the Fischer-Tropsch synthesis reaction (cobalt surface atoms) depends also on the cluster size. On one hand, increasing cluster size alone tends to decrease the active site density; on the other hand, by increasing the size of the cobalt clusters, there is less likelihood of forming oxidized cobalt complexes (cobalt aluminate) during Fischer-Tropsch synthesis. Thus, from the standpoint of stability, improving the extent of reduction while increasing the particle size slightly may be beneficial for maintaining the sites, even if there is a slight decrease in overall initial active site density.
Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.
2006-01-01
The potential for microbially-mediated anaerobic redox cycling of iron (Fe) was examined in a first-generation enrichment culture of freshwater wetland sediment microorganisms. MPN enumerations revealed the presence of significant populations of Fe(III)-reducing (ca. 108 cells mL-1) and Fe(II)-oxidizing, nitrate-reducing organisms (ca. 105 cells mL-1) in the sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (ca. 1 mM) medium with a small quantity (1% vol/vol) of wetland sediment, and resulted in the transient accumulation of NO2- and production of a mixture of end-products including NH4+. Fe(III) oxide (high surface area goethite) reduction took placemore » - after NO3- was depleted and continued until all the acetate was utilized. Addition of NO3 after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of + NO3-to NH4 . No significant NO2- accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by DGGE analysis of PCR amplified 16s rDNA and RT-PCR amplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related (= 95% sequence similarity) to the genera Geobacter and Dechloromonas. These results indicate that the wetland sediments contained organisms such as Geobacter sp. which are capable of both + dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO3-reduction to NH4 . Our findings suggest that microbially-catalyzed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic anaerobic Fe redox cycle in freshwater sediments.« less
Multi-stage catalyst systems and uses thereof
Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH
2009-02-10
Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).
A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials
NASA Astrophysics Data System (ADS)
Zeng, Sheng; Kar, Piyush; Thakur, Ujwal Kumar; Shankar, Karthik
2018-02-01
As the search for efficient catalysts for CO2 photoreduction continues, nanostructured perovskite oxides have emerged as a class of high-performance photocatalytic materials. The perovskite oxide candidates for CO2 photoreduction are primarily nanostructured forms of titanates, niobates, tantalates and cobaltates. These materials form the focus of this review article because they are much sought-after due to their nontoxic nature, adequate chemical stability, and tunable crystal structures, bandgaps and surface energies. As compared to conventional semiconductors and nanomaterial catalysts, nanostructured perovskite oxides also exhibit an extended optical-absorption edge, longer charge carrier lifetimes, and favorable band-alignment with respect to reduction potential of activated CO2 and reduction products of the same. While CO2 reduction product yields of several hundred μmol-1 h-1 are observed with many types of perovskite oxide nanomaterials in stand-alone forms, yield of such quantities are not common with semiconductor nanomaterials of other types. In this review, we present current state-of-the-art synthesis methods to form perovskite oxide nanomaterials, and procedures to engineer their bandgaps. This review also presents a comprehensive summary and discussion on crystal structures, defect distribution, morphologies and electronic properties of the perovskite oxides, and correlation of these properties to CO2 photoreduction performance. This review offers researchers key insights for developing advanced perovskite oxides in order to further improve the yields of CO2 reduction products.
NASA Astrophysics Data System (ADS)
Qiu, Guohong; Jiang, Kai; Ma, Meng; Wang, Dihua; Jin, Xianbo; Chen, George Z.
2007-06-01
Previous work, mainly from this research group, is re-visited on electrochemical reduction of solid metal oxides, in the form of compacted powder, in molten CaCl2, aiming at further understanding of the roles of cationic and elemental calcium. The discussion focuses on six aspects: 1.) debate on two mechanisms proposed in the literature, i. e. electro-metallothermic reduction and electro-reduction (or electro-deoxidation), for the electrolytic removal of oxygen from solid metals or metal oxides in molten CaCl2; 2.) novel metallic cavity working electrodes for electrochemical investigations of compacted metal oxide powders in high temperature molten salts assisted by a quartz sealed Ag/AgCl reference electrode (650 ºC- 950 ºC); 3.) influence of elemental calcium on the background current observed during electrolysis of solid metal oxides in molten CaCl2; 4.) electrochemical insertion/ inclusion of cationic calcium into solid metal oxides; 5.) typical features of cyclic voltammetry and chronoamperometry (potentiostatic electrolysis) of metal oxide powders in molten CaCl2; and 6.) some kinetic considerations on the electrolytic removal of oxygen.
Oxidation of aromatic contaminants coupled to microbial iron reduction
Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.
1989-01-01
THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.
Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide
NASA Astrophysics Data System (ADS)
Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li
2014-12-01
In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.
Regulation of cell function by methionine oxidation and reduction
Hoshi, Toshinori; Heinemann, Stefan H
2001-01-01
Reactive oxygen species (ROS) are generated during normal cellular activity and may exist in excess in some pathophysiological conditions, such as inflammation or reperfusion injury. These molecules oxidize a variety of cellular constituents, but sulfur-containing amino acid residues are especially susceptible. While reversible cysteine oxidation and reduction is part of well-established signalling systems, the oxidation and the enzymatically catalysed reduction of methionine is just emerging as a novel molecular mechanism for cellular regulation. Here we discuss how the oxidation of methionine to methionine sulfoxide in signalling proteins such as ion channels affects the function of these target proteins. Methionine sulfoxide reductase, which reduces methionine sulfoxide to methionine in a thioredoxin-dependent manner, is therefore not only an enzyme important for the repair of age- or degenerative disease-related protein modifications. It is also a potential missing link in the post-translational modification cycle involved in the specific oxidation and reduction of methionine residues in cellular signalling proteins, which may give rise to activity-dependent plastic changes in cellular excitability. PMID:11179387
Structural changes in graphene oxide thin film by electron-beam irradiation
NASA Astrophysics Data System (ADS)
Tyagi, Chetna; Lakshmi, G. B. V. S.; Kumar, Sunil; Tripathi, Ambuj; Avasthi, D. K.
2016-07-01
Although we have a whole class of 2D materials, graphene has drawn much attention for its excellent electronic, optical, thermal and mechanical properties. Recent researches have shown its large scale production by the reduction of graphene oxide either thermally, chemically or electrochemically. Although the structure of graphene oxide is inhomogeneous and hence complicated due to the presence of organic moieties e.g. epoxy, carboxylic acid, hydroxyl groups etc., its properties can be tuned by reduction according to desired application. The aim of this work is to synthesize continuous thin film of graphene oxide using commercially available graphene oxide solution and to study its reduction by 25 keV electron beam irradiation at fluences varying from 2 × 1011 to 2 × 1013 e-/cm2. Our studies using X-ray diffraction, Raman microscopy and UV-Vis spectroscopy showed that electron-beam irradiation is an effective tool for reduction of graphene oxide and for tuning its band gap.
Wright, R.B.
1992-01-14
Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation). 23 figs.
NASA Astrophysics Data System (ADS)
Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung
2017-12-01
The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.
Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli; ...
2018-02-04
Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli
Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less
Reduction of metal oxides through mechanochemical processing
Froes, Francis H.; Eranezhuth, Baburaj G.; Senkov, Oleg N.
2000-01-01
The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.
Oxide reduction during triggered-lightning fulgurite formation
NASA Astrophysics Data System (ADS)
Jones, B. E.; Jones, K. S.; Rambo, K. J.; Rakov, V. A.; Jerald, J.; Uman, M. A.
2005-03-01
In this study triggered-lightning induced fulgurites were formed in 99.9% pure binary oxides of manganese (MnO) and nickel (NiO) in order to study oxide reduction mechanisms. The fulgurite formation process involved packing the oxide in PVC holders and using the standard rocket-and-wire technique to trigger a lightning strike through the oxide at the International Center for Lightning Research and Testing in Camp Blanding, Florida. These two oxides were chosen from the thermodynamic extrapolation of the oxide stability using the Ellingham Diagram. This diagram indicates that NiO is significantly less stable than MnO. Fulgurites from the pure oxides were analyzed in a scanning electron microscope (SEM); secondary electron images, backscattered images and energy dispersive spectroscopy (EDS) were used to determine the microstructure and composition of the fulgurites. SEM/EDS analysis of the NiO and MnO prior to fulgurite formation confirmed they were pure binary oxides with no metallic contamination. After fulgurite formation, it was found that the nickel oxide fulgurite contained metallic nickel particles; the manganese oxide fulgurite showed no metallic phase formation. Transmission electron microscopy (TEM) examination confirmed that the MnO was a pure oxide with no sign of metallic phase formation. However, TEM results of the NiO showed that approximately 50% of the NiO was reduced to metallic face-centered cubic Ni. The Ni and NiO were observed to be coherent with the [1 0 0]Ni//[1 0 0]NiO and [1 1 0]Ni//[1 1 0]NiO. These results are consistent with the aforementioned thermodynamic stability calculations and show that the presence of carbonaceous material or mixtures of oxides is not necessary for oxide reduction during fulgurite formation. These studies do not rule out the possibility that electrolysis plays a role in oxide reduction. However, these fulgurites were made simultaneously during the same lightning strike and therefore were subjected to the same electrical current, and thus it is proposed the thermodynamic stability of the oxide must play a role in oxide reduction.
Fast and fully-scalable synthesis of reduced graphene oxide
NASA Astrophysics Data System (ADS)
Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung
2015-05-01
Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene.
Phyto-reduction of graphene oxide using the aqueous extract of Eichhornia crassipes (Mart.) Solms
NASA Astrophysics Data System (ADS)
Firdhouse, M. Jannathul; Lalitha, P.
2014-10-01
The aqueous extract of Eichhornia crassipes was used as reductant to produce graphene from graphene oxide by refluxing method. The complete reduction of graphene oxide was monitored using UV-Vis spectrophotometer. Characterization of graphene was made through FTIR, XRD, and Raman spectroscopy analysis. The stability of graphene was studied by thermal gravimetric analysis and zeta potential measurements. The nature and surface morphology of the synthesized graphene was analyzed by transmission electron microscopy. The production of graphene using phytoextract as reductant emphasizes on the facile method of synthesis and greener nanotechnology.
Investigation of the reduction process of dopamine using paired pulse voltammetry
Kim, Do Hyoung; Oh, Yoonbae; Shin, Hojin; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.; Kim, In Young; Jang, Dong Pyo
2014-01-01
The oxidation of dopamine (DA) around +0.6V potential in anodic sweep and its reduction around −0.1V in cathodic sweep at a relatively fast scanning rate (300 V/s or greater) have been used for identification of DA oxidation in fast-scan cyclic voltammetry (FSCV). However, compared to the oxidation peak of DA, the reduction peak has not been fully examined in analytical studies, although it has been used as one of the representative features to identify DA. In this study, the reduction process of DA was investigated using paired pulse voltammetry (PPV), which consists of two identical triangle-shaped waveforms, separated by a short interval at the holding potential. Especially, the discrepancies between the magnitude of the oxidation and reduction peaks of DA were investigated based on three factors: (1) the instant desorption of the DA oxidation product (dopamine-o-quinone: DOQ) after production, (2) the effect of the holding potential on the reduction process, and (3) the rate-limited reduction process of DA. For the first test, the triangle waveform FSCV experiment was performed on DA with various scanrates (from 400 to 1000 V/s) and durations of switching potentials of the triangle waveform (from 0.0 to 6.0 ms) in order to vary the duration between the applied oxidation potential at +0.6V and the reduction potential at −0.2V. As a result, the ratio of reduction over oxidation peak current response decreased as the duration became longer. To evaluate the effect of holding potentials during the reduction process, FSCV experiments were conducted with holding potential from 0.0V to −0.8V. We found that more negative holding potentials lead to larger amount of reduction process. For evaluation of the rate-limited reduction process of DA, PPV with a 1Hz repetition rate and various delays (2, 8, 20, 40 and 80ms) between the paired scans were utilized to determine how much reduction process occurred during the holding potential (−0.4V). These tests showed that relatively large amounts of DOQ are reduced to DA during the holding potential. The rate-limited reduction process was also confirmed with the increase of reduction in a lower pH environment. In addition to the mechanism of the reduction process of DA, we found that the differences between the responses of primary and secondary pulses in PPV were mainly dependent on the rate-limited reduction process during the holding potential. In conclusion, the reduction process may be one of the important factors to be considered in the kinetic analysis of DA and other electroactive species in brain tissue and in the design of new types of waveform in FSCV. PMID:24926227
NASA Technical Reports Server (NTRS)
Hines, Mark E.; Tugel, Joyce B.; Giblin, A. E.; Banta, G. T.; Hobbie, J. E.
1992-01-01
Acetate is important in anaerobic metabolism of non-vegetated sediments but its role in salt marsh soils was not investigated thoroughly. Acetate concentrations, oxidation (C-14) and SO4(2-) reduction (S-35) were measured in S. alterniflora soils in NH and MA. Pore water from cores contained greater than 0.1 mM acetate and in some instances greater than 1.0 mM. Non-destructive samples contained less than 0.01 mM. Acetate was associated with roots and concentrations were highest during vegetative growth and varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of SO4(2-) reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a significant percentage of SO4(2-) reduction. These results differ markedly from data for non-vegetated coastal sediments where acetate levels are low, oxidation rate constants are high and acetate oxidation rates greatly exceed rates of SO4(2-) reduction. The discrepancy between rates of acetate oxidation and SO4(2-) reduction in marsh soils may be due either to the utilization of substrates other than acetate by SO4(2-) reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria.
NASA Astrophysics Data System (ADS)
Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki
2016-10-01
In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tao; Kukkadapu, Ravi K.; Griffin, Aron M.
Fe(III)-oxides and Fe(III)-bearing phyllosilicates are the two major iron sources utilized as electron acceptors by dissimilatory iron-reducing bacteria (DIRB) in anoxic soils and sediments. Although there have been many studies of microbial Fe(III)-oxide and Fe(III)-phyllosilicate reduction with both natural and specimen materials, no controlled experimental information is available on the interaction between these two phases when both are available for microbial reduction. In this study, the model DIRB Geobacter sulfurreducens was used to examine the pathways of Fe(III) reduction in Fe(III)-oxide stripped subsurface sediment that was coated with different amounts of synthetic high surface area goethite. Cryogenic (12K) 57Fe Mössbauermore » spectroscopy was used to determine changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate) in bioreduced samples. Analogous Mössbauer analyses were performed on samples from abiotic Fe(II) sorption experiments in which sediments were exposed to a quantity of exogenous soluble Fe(II) (FeCl22H2O) comparable to the amount of Fe(II) produced during microbial reduction. A Fe partitioning model was developed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicatesilicates. The microbial reduction experiments indicated that although reduction of Fe(III)-oxide accounted for virtually all of the observed bulk Fe(III) reduction activity, there was no significant abiotic electron transfer between oxide-derived Fe(II) and Fe(III)-phyllosilicatesilicates, with 26-87% of biogenic Fe(II) appearing as sorbed Fe(II) in the Fe(II)-phyllosilicate pool. In contrast, the abiotic Fe(II) sorption experiments showed that 41 and 24% of the added Fe(II) engaged in electron transfer to Fe(III)-phyllosilicate surfaces in synthetic goethite-coated and uncoated sediment. Differences in the rate of Fe(II) addition and system redox potential may account for the microbial and abiotic reaction systems. Our experiments provide new insight into pathways for Fe(III) reduction in mixed Fe(III)-oxide/Fe(III)-phyllosilicate assemblages, and provide key mechanistic insight for interpreting microbial reduction experiments and field data from complex natural soils and sediments.« less
Oxidase catalysis via aerobically generated hypervalent iodine intermediates
NASA Astrophysics Data System (ADS)
Maity, Asim; Hyun, Sung-Min; Powers, David C.
2018-02-01
The development of sustainable oxidation chemistry demands strategies to harness O2 as a terminal oxidant. Oxidase catalysis, in which O2 serves as a chemical oxidant without necessitating incorporation of oxygen into reaction products, would allow diverse substrate functionalization chemistry to be coupled to O2 reduction. Direct O2 utilization suffers from intrinsic challenges imposed by the triplet ground state of O2 and the disparate electron inventories of four-electron O2 reduction and two-electron substrate oxidation. Here, we generate hypervalent iodine reagents—a broadly useful class of selective two-electron oxidants—from O2. This is achieved by intercepting reactive intermediates of aldehyde autoxidation to aerobically generate hypervalent iodine reagents for a broad array of substrate oxidation reactions. The use of aryl iodides as mediators of aerobic oxidation underpins an oxidase catalysis platform that couples substrate oxidation directly to O2 reduction. We anticipate that aerobically generated hypervalent iodine reagents will expand the scope of aerobic oxidation chemistry in chemical synthesis.
Plasma-assisted oxide removal from ruthenium-coated EUV optics
NASA Astrophysics Data System (ADS)
Dolgov, A.; Lee, C. J.; Bijkerk, F.; Abrikosov, A.; Krivtsun, V. M.; Lopaev, D.; Yakushev, O.; van Kampen, M.
2018-04-01
An experimental study of oxide reduction at the surface of ruthenium layers on top of multilayer mirrors and thin Ru/Si films is presented. Oxidation and reduction processes were observed under conditions close to those relevant for extreme ultraviolet lithography. The oxidized ruthenium surface was exposed to a low-temperature hydrogen plasma, similar to the plasma induced by extreme ultraviolet radiation. The experiments show that hydrogen ions are the main reducing agent. Furthermore, the addition of hydrogen radicals increases the reduction rate beyond that expected from simple flux calculations. We show that low-temperature hydrogen plasmas can be effective for reducing oxidized top surfaces. Our proof-of-concept experiments show that an in situ, EUV-generated plasma cleaning technology is feasible.
Takagi, M; Tsuchiya, T; Ishimoto, M
1981-01-01
Proton translocation coupled to trimethylamine N-oxide reduction was studied in Escherichia coli grown anaerobically in the presence of trimethylamine N-oxide. Rapid acidification of the medium was observed when trimethylamine N-oxide was added to anaerobic cell suspensions of E. coli K-10. Acidification was sensitive to the proton conductor 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). No pH change was shown in a strain deficient in trimethylamine N-oxide reductase activity. The apparent H+/trimethylamine N-oxide ratio in cells oxidizing endogenous substrates was 3 to 4 g-ions of H+ translocated per mol of trimethylamine N-oxide added. The addition of trimethylamine N-oxide and formate to ethylenediaminetetraacetic acid-treated cell suspension caused fluorescence quenching of 3,3'-dipropylthiacarbocyanine [diS-C3-(5)], indicating the generation of membrane potential. These results indicate that the reduction of trimethylamine N-oxide in E. coli is catalyzed by an anaerobic electron transfer system, resulting in formation of a proton motive force. Trimethylamine N-oxide reductase activity and proton extrusion were also examined in chlorate-resistant mutants. Reduction of trimethylamine N-oxide occurred in chlC, chlG, and chlE mutants, whereas chlA, chlB, and chlD mutants, which are deficient in the molybdenum cofactor, could not reduce it. Protons were extruded in chlC and chlG mutants, but not in chlA, chlB, and chlD mutants. Trimethylamine N-oxide reductase activity in a chlD mutant was restored to the wild-type level by the addition of 100 microM molybdate to the growth medium, indicating that the same molybdenum cofactor as used by nitrate reductase is required for the trimethylamine N-oxide reductase system. PMID:7031034
Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction.
Shi, Hongfei; Wang, Can; Sun, Zhipei; Zhou, Yueliang; Jin, Kuijuan; Redfern, Simon A T; Yang, Guozhen
2014-08-11
Reduced graphene oxides with varying degrees of reduction have been produced by hydrazine reduction of graphene oxide. The linear and nonlinear optical properties of both graphene oxide as well as the reduced graphene oxides have been measured by single beam Z-scan measurement in the picosecond region. The results reveal both saturable absorption and two-photon absorption, strongly dependent on the intensity of the pump pulse: saturable absorption occurs at lower pump pulse intensity (~1.5 GW/cm2 saturation intensity) whereas two-photon absorption dominates at higher intensities (≥5.7 GW/cm2). Intriguingly, we find that the two-photon absorption coefficient (from 1.5 cm/GW to 4.5cm/GW) and the saturation intensity (from 1 GW/cm2 to 2 GW/cm2) vary with chemical reduction, which is ascribed to the varying concentrations of sp2 domains and sp2 clusters in the reduced graphene oxides. Our results not only provide an insight into the evolution of the nonlinear optical coefficient in reduced graphene oxide, but also suggest that chemical engineering techniques may usefully be applied to tune the nonlinear optical properties of various nano-materials, including atomically thick graphene sheets.
Large Scale Reduction of Graphite Oxide Project
NASA Technical Reports Server (NTRS)
Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy
2015-01-01
This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.
Lovley, D.R.; Lonergan, D.J.
1990-01-01
The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-14C]toluene was oxidized to 14CO2, and the stoichiometry of 14CO2 production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was a transitory extracellular intermediate of phenol and p-cresol metabolism but not of toluene metabolism. GS-15 oxidized potential aromatic intermediates in the oxidation of toluene (benzylalcohol and benzaldehyde) and p-cresol (p-hydroxybenzylalcohol and p-hydroxybenzaldehyde). The metabolism described here provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments.
Dey, Ramendra Sundar; Hajra, Saumen; Sahu, Ranjan K; Raj, C Retna; Panigrahi, M K
2012-02-07
A rapid and facile route for the synthesis of reduced graphene oxide sheets (rGOs) at room temperature by the chemical reduction of graphene oxide using Zn/acid in aqueous solution is demonstrated. This journal is © The Royal Society of Chemistry 2012
Tsang, Floris Y.
1980-01-01
Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.
Daniels, Bryan A; Baldridge, William H
2011-03-01
Horizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size. Horizontal cell receptive field size was assessed by comparing the responses to centered spot and annulus stimuli and from the responses to translated slit stimuli. A period of steady illumination decreased the receptive field size of horizontal cells, as did treatment with the nitric oxide donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (100 μM). Blocking the endogenous production of nitric oxide with the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (1 mM), decreased the light-induced reduction of horizontal cell receptive field size. These findings suggest that nitric oxide is involved in light-induced reduction of horizontal cell receptive field size. Copyright © Cambridge University Press, 2011
López Durán, Verónica; Larsson, Per A; Wågberg, Lars
2018-02-15
Despite the different chemical approaches used earlier to increase the ductility of fibre-based materials, it has not been possible to link the chemical modification to their mechanical performance. In this study, cellulose fibres have been modified by periodate oxidation, alone or followed either by borohydride reduction, reductive amination or chlorite oxidation. In addition, TEMPO oxidation, and TEMPO oxidation in combination with periodate oxidation and further reduction with sodium borohydride have also been studied. The objective was to gain understanding of the influence of different functional groups on the mechanical and structural properties of handsheets made from the modified fibres. It was found that the modifications studied improved the tensile strength of the fibres to different extents, but that only periodate oxidation followed by borohydride reduction provided more ductile fibre materials. Changes in density, water-holding capacity and mechanical performance were also quantified and all are dependent on the functional group introduced. Copyright © 2017 Elsevier Ltd. All rights reserved.
H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: A DFT study
NASA Astrophysics Data System (ADS)
Lin, Changfeng; Qin, Wu; Dong, Changqing
2016-11-01
Reduction of iron based desulfurizer occurs during hot gas desulfurization process, which will affect the interaction between H2S and the desulfurizer surface. In this work, a detailed adsorption behavior and dissociation mechanism of H2S on the perfect and reduced α-Fe2O3(001) surfaces, as well as the correlation between the interaction characteristic and reduction degree of iron oxide, have been studied by using periodic density functional theory (DFT) calculations. Results demonstrate that H2S firstly chemisorbs on surface at relatively higher oxidation state (reduction degree χ < 33%), then dissociative adsorption occurs and becomes the main adsorption type after χ > 33%. Reduction of iron oxide benefits the H2S adsorption. Further, dissociation processes of H2S via molecular and dissociative adsorption were investigated. Results show that after reduction of Fe2O3 into the oxidation state around FeO and Fe, the reduced surface exhibits very strong catalytic capacity for H2S decomposition into S species. Meanwhile, the overall dissociation process on all surfaces is exothermic. These results provide a fundamental understanding of reduction effect of iron oxide on the interaction mechanism between H2S and desulfurizer surface, and indicate that rational control of reduction degree of desulfurizer is essential for optimizing the hot gas desulfurization process.
Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun
2018-01-31
The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.
NASA Astrophysics Data System (ADS)
Winiwarter, W.; Höglund-Isaksson, L.; Klimont, Z.; Schöpp, W.; Amann, M.
2017-12-01
Nitrous oxide originates primarily from natural biogeochemical processes, but its atmospheric concentrations have been strongly affected by human activities. According to IPCC, it is the third largest contributor to the anthropogenic greenhouse gas emissions (after carbon dioxide and methane). Deep decarbonization scenarios, which are able to constrain global temperature increase within 1.5°C, require strategies to cut methane and nitrous oxide emissions on top of phasing out carbon dioxide emissions. Employing the Greenhouse gas and Air pollution INteractions and Synergies (GAINS) model, we have estimated global emissions of nitrous oxide until 2050. Using explicitly defined emission reduction technologies we demonstrate that, by 2030, about 26% ± 9% of the emissions can be avoided assuming full implementation of currently existing reduction technologies. Nearly a quarter of this mitigation can be achieved at marginal costs lower than 10 Euro/t CO2-eq with the chemical industry sector offering important reductions. Overall, the largest emitter of nitrous oxide, agriculture, also provides the largest emission abatement potentials. Emission reduction may be achieved by precision farming methods (variable rate technology) as well as by agrochemistry (nitrification inhibitors). Regionally, the largest emission reductions are achievable where intensive agriculture and industry are prevalent (production and application of mineral fertilizers): Centrally Planned Asia including China, North and Latin America, and South Asia including India. Further deep cuts in nitrous oxide emissions will require extending reduction efforts beyond strictly technological solutions, i.e., considering behavioral changes, including widespread adoption of "healthy diets" minimizing excess protein consumption.
Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin
2015-11-16
Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stabilized tin-oxide-based oxidation/reduction catalysts
NASA Technical Reports Server (NTRS)
Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Jordan, Jeffrey D. (Inventor); Schryer, Jacqueline L. (Inventor)
2008-01-01
The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore
Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan
2016-01-01
Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991
Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.
Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan
2016-07-04
Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Squires, Leah N.; Lessing, Paul
A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can easily removed upon cooling. Furthermore, the direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmar, N.; Gorby, Yuri A.; Beveridge, Terrance J.
This investigation documents the formation of Green Rust (GR) and immobilization of Ni2+ in response to bacterial reduction of hydrous ferric oxide (HFO) reduction experiments provided evidence that the solid-phase partitioning of Ni2+ in GR extended from equilibrium solid-solution behavior.
Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction
Lovley, D.R.; Woodward, J.C.
1996-01-01
The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.
Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT)
NASA Astrophysics Data System (ADS)
Musa, Nurhazwani; Halim, Nurul Farhanah Ab.; Ahmad, Mohd Noor; Zakaria, Zulkhairi; Hashim, Uda
2017-03-01
A green method and eco-friendly solution were used to chemically reduce graphene oxide (GO) to graphene using green reductant. In this study, graphene oxide (GO) were prepared by using Tours method. Then, reduced graphene oxides (rGO) were prepared by using three typical reduction agents: L-ascorbic acid (L-AA), formamidinesulfinic acid (FAS) and sodium sulfite (Na2SO3). The reduced materials were characterized by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and X-ray diffraction (XRD). Graphene based organic thin film transistor (G-OTFT) was prepared by a spin coating and thermal evaporation technique. The electrical characterization of G-OTFT was analyzed by using semiconductor parameter analyzer (SPA). The G-OTFT devices show p-type semiconducting behaviour. This article focuses on the synthesis and reduction of graphene oxide using three different reductants in order to maximise its electrical conductivity. The rGO product demonstrated a good electrical conductivity performance with highly sensitivity sensor.
Investigation on the Oxidation and Reduction of Titanium in Molten Salt with the Soluble TiC Anode
NASA Astrophysics Data System (ADS)
Wang, Shulan; Wan, Chaopin; Liu, Xuan; Li, Li
2015-12-01
To reveal the oxidation process of titanium from TiC anode and the reduction mechanism of titanium ions in molten NaCl-KCl, the polarization curve of TiC anode in molten NaCl-KCl and cyclic voltammograms of the molten salt after polarization were studied. Investigation on the polarization curve shows that titanium can be oxidized and dissociated from the TiC anode at very low potential. The cyclic voltammograms demonstrated that the reduction reaction of titanium ions in the molten salt is a one-step process. By potentiostatic electrolysis, dendritic titanium is obtained on the steel plate. The work promotes the understanding on the process of electrochemical oxidization/dissociation of titanium from TiC anode and the reduction mechanism of titanium ions in molten salt.
The Interface Between Chemical and Oxide Materials in the DSPEC
NASA Astrophysics Data System (ADS)
Meyer, Thomas; Alibabaei, Leila; Sherman, Benjamin; Sheridan, Matthew; Ashford, Dennis; Lapides, Alex; Brennaman, Kyle; Nayak, Animesh; Roy, Subhangi
Significant challenges exist for both chemical and oxide materials in the Dye Sensitized Photoelectrosynthesis Cell (DSPEC) for water oxidation or CO2 reduction. They arise from light absorption, the energetics of electron or hole injection, the accumulation of multiple redox equivalents at catalysts for water oxidation or water/CO2 reduction in competition with back electron transfer, and sustained, long term performance. These challenges are being met by the use of a variety of chromophores (metal complexes, organic dyes, porphyrins), broad application of nanoparticle mesoscopic oxide films, atomic layer deposition (ALD) to prepare core/shell and stabilizing overlayer structures, and recent advances in the molecular catalysis of water oxidation and CO2 reduction. UNC EFRC Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011.
Recent biocatalytic oxidation–reduction cascades
Schrittwieser, Joerg H; Sattler, Johann; Resch, Verena; Mutti, Francesco G; Kroutil, Wolfgang
2011-01-01
The combination of an oxidation and a reduction in a cascade allows performing transformations in a very economic and efficient fashion. The challenge is how to combine an oxidation with a reduction in one pot, either by running the two reactions simultaneously or in a stepwise fashion without isolation of intermediates. The broader availability of various redox enzymes nowadays has triggered the recent investigation of various oxidation–reduction cascades. PMID:21130024
Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation
NASA Technical Reports Server (NTRS)
Nealson, K. H.; Saffarini, D.
1994-01-01
Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.
Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts
NASA Technical Reports Server (NTRS)
Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Summers, Jerry C. (Inventor); Davis, Patricia P. (Inventor); Oglesby, Donald M. (Inventor); Schryer, Jacqueline L. (Inventor); Gulati, Suresh T. (Inventor)
2011-01-01
The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping
2008-01-01
This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.
Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis
NASA Astrophysics Data System (ADS)
Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide
2015-02-01
Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.
NASA Astrophysics Data System (ADS)
Chourasia, A.
2015-03-01
Vanadium oxide thin films were formed by depositing thin films of vanadium on quartz substrates and oxidizing them in an atmosphere of oxygen. The deposition was done by the e-beam technique. The oxide films were annealed at different temperatures for different times under high vacuum conditions. The technique of x-ray photoelectron spectroscopy has been employed to study the changes in the oxidation states of vanadium and oxygen in such films. The spectral features in the vanadium 2p, oxygen 1s, and the x-ray excited Auger regions were investigated. The Auger parameter has been utilized to study the changes. The complete oxidation of elemental vanadium to V2O5 was observed to occur at 700°C. At any other temperature, a mixture of oxides consisting of V2O5 and VO2 was observed in the films. Annealing of the films resulted in the gradual loss of oxygen followed by reduction in the oxidation state from +5 to 0. The reduction was observed to depend upon the annealing temperature and the annealing time. Organized Research, TAMU-Commerce.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storm, Mie Møller, E-mail: mmst@dtu.dk; Johnsen, Rune E.; Norby, Poul
2016-08-15
Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermalmore » reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses. - Graphical abstract: In situ X-ray diffraction results for of the modified Hummers synthesis and the thermal reduction of graphene oxide, revealing three stages for both syntheses as well as new GO diffraction peaks and unidentified crystalline material for the Hummers synthesis and a disordered stage for the thermal reduction of graphene oxide. Display Omitted - Highlights: • Hummers synthesis consists of three stages: dissolution, intercalation and crystal. • GO is produced early on during the synthesis and display new diffraction peaks. • An unidentified triclinic phase is observed for the Hummers synthesis. • Thermal reduction of GO display three stages: GO, a disordered stage and rGO. • In situ XRD indicate reformation of rGO even for fast heated thermal reduction.« less
NASA Astrophysics Data System (ADS)
Wang, Zhijuan; Wu, Shixin; Zhang, Juan; Chen, Peng; Yang, Guocheng; Zhou, Xiaozhu; Zhang, Qichun; Yan, Qingyu; Zhang, Hua
2012-02-01
The comparison between two kinds of single-layer reduced graphene oxide (rGO) sheets, obtained by reduction of graphene oxide (GO) with the electrochemical method and hydrazine vapor reduction, referred to as E-rGO and C-rGO, respectively, is systematically studied. Although there is no morphology difference between the E-rGO and C-rGO films adsorbed on solid substrates observed by AFM, the reduction process to obtain the E-rGO and C-rGO films is quite different. In the hydrazine vapor reduction, the nitrogen element is incorporated into the obtained C-rGO film, while no additional element is introduced to the E-rGO film during the electrochemical reduction. Moreover, Raman spectra show that the electrochemical method is more effective than the hydrazine vapor reduction method to reduce the GO films. In addition, E-rGO shows better electrocatalysis towards dopamine than does C-rGO. This study is helpful for researchers to understand these two different reduction methods and choose a suitable one to reduce GO based on their experimental requirements.
Wu, Yuzhi; Qiu, Jian-Wen; Qian, Pei-Yuan; Wang, Yong
2018-05-01
In deep-sea cold seeps, microbial communities are shaped by geochemical components in seepage solutions. In the present study, we report the composition of microbial communities and potential metabolic activities in the surface sediment of Jiaolong cold seep at the northern South China Sea. Pyrosequencing of 16S rRNA gene amplicons revealed that a majority of the microbial inhabitants of the surface layers (0-6 cm) were sulfur oxidizer bacteria Sulfurimonas and archaeal methane consumer ANME-1, while sulfate reducer bacteria SEEP-SRB1, ANME-1 and ANME-2 dominated the bottom layers (8-14 cm). The potential ecological roles of the microorganisms were further supported by the presence of functional genes for methane oxidation, sulfur oxidation, sulfur reduction and nitrate reduction in the metagenomes. Metagenomic analysis revealed a significant correlation between coverage of 16S rRNA gene of sulfur oxidizer bacteria, functional genes involved in sulfur oxidation and nitrate reduction in different layers, indicating that sulfur oxidizing may be coupled to nitrate reducing at the surface layers of Jiaolong seeping site. This is probably related to the sulfur oxidizers of Sulfurimonas and Sulfurovum, which may be the capacity of nitrate reduction or associated with unidentified syntrophic nitrate-reducing microbes in the surface of the cold seep.
Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite
NASA Astrophysics Data System (ADS)
Rathnayake, R. M. N. M.; Wijayasinghe, H. W. M. A. C.; Pitawala, H. M. T. G. A.; Yoshimura, Masamichi; Huang, Hsin-Hui
2017-01-01
Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated RO/C of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.
Mathematical model of the direct reduction of dust composite pellets containing zinc and iron
NASA Astrophysics Data System (ADS)
An, Xiu-wei; Wang, Jing-song; She, Xue-feng; Xue, Qing-guo
2013-07-01
Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage.
Effect of pretreatment on a platinized tin oxide catalyst used for low-temperature CO-oxidation
NASA Technical Reports Server (NTRS)
Drawdy, Jean E.; Hoflund, Gar B.; Gardner, Steven D.; Yngvadottir, Eva; Schryer, David R.
1990-01-01
A commercial platinized tin oxide catalyst used for low-temperature CO oxidation has been characterized using ion scattering spectroscopy (ISS), Auger electron spectroscopy (AES) and Electron Spectroscopy for Chemical Analysis (ESCA) before and after reduction in 40 Torr of CO for 1 hour at various temperatures from 75 to 175 C. The reduction results in loss of surface oxygen, formation of metallic tin, conversion of platinum oxides to Pt-O-Sn and Pt(OH)2 and a small amount of metallic Pt which alloys with the tin. These results should be useful in understanding how the pretreatment temperature affects the catalytic activity of platinized tin oxide toward CO oxidation.
Acetate concentrations and oxidation in salt marsh sediments
NASA Technical Reports Server (NTRS)
1992-01-01
Acetate concentrations and rates of acetate oxidation and sulfate reduction were measured in S. alterniflora sediments in New Hampshire and Massachusetts. Pore water extracted from cores by squeezing or centrifugation contained in greater than 0.1 mM acetate and, in some instances, greater than 1.0 mM. Pore water sampled nondestructively contained much less acetate, often less than 0.01 mM. Acetate was associated with roots, and concentrations varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of sulfate reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a substantial percentage of sulfate reduction. These results differ markedly from data for unvegetated coastal sediments where acetate levels are low, oxidation rate constants are high, and acetate oxication rates greatly exceed rates of sulfate reduction. The discrepancy between rates of acetate oxidation and sulfate reduction in these marsh soils may be due either to the utilization of substrates other than acetate by sulfate reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria. Care must be taken when interpreting data from salt marsh sediments since the release of material from roots during coring may affect the concentrations of certain compounds as well as influencing results obtained when sediment incubations are employed.
Platinized tin oxide catalysts for CO2 lasers: Effects of pretreatment
NASA Technical Reports Server (NTRS)
Gardner, Steven D.; Hoflund, Gar B.; Schryer, David R.; Upchurch, Billy T.
1990-01-01
Platinized tin oxide surfaces used for low-temperature CO oxidation in CO2 lasers have been characterized before and after reduction in CO at 125 and 250 C using ion scattering spectroscopy (ISS) and X ray photoelectron spectroscopy (XPS). XPS indicates that the Pt is present initially as PtO2. Reduction at 125 C converts the PtO2 to Pt(OH)2 while reduction at 250 C converts the PtO2 to metallic Pt. ISS shows that the Pt in the outermost atomic layer of the catalyst is mostly covered by substrate species during the 250 C reduction. Both the ISS and XPS results are consistent with Pt/Sn alloy formation. The surface dehydration and migration of substrate species over surface Pt and Sn appear to explain why a CO pretreatment at 250 C produces inferior CO oxidation activities compared to a 125 C pretreatment.
Platinized tin oxide catalysts for CO2 lasers - Effects of pretreatment
NASA Technical Reports Server (NTRS)
Gardner, Steven D.; Hoflund, Gar B.; Schryer, David R.; Upchurch, Billy T.
1989-01-01
Platinized tin oxide surfaces used for low-temperature CO oxidation in CO2 lasers have been characterized before and after reduction in CO at 125 and 250 C using ion scattering spectroscopy (ISS) and X-ray photoelectron spectroscopy (XPS). XPS indicates that the Pt is present initially as Pto2. Reduction at 125 C converts the PtO2 to Pt(OH)2 while reduction at 250 C converts the PtO2 to metallic Pt. ISS shows that the Pt in the outermost atomic layer of the catalyst is mostly covered by substrate species during the 250 C reduction. Both the ISS and XPS results are consistent with Pt/Sn alloy formation. The surface dehydration and migration of substrate species over surface Pt and Sn appear to explain why a CO pretreatment at 250 C produces inferior CO oxidation activities compared to a 125 C pretreatment.
Electron transfer of Pseudomonas aeruginosa CP1 in electrochemical reduction of nitric oxide.
Zhou, Shaofeng; Huang, Shaobin; He, Jiaxin; Li, Han; Zhang, Yongqing
2016-10-01
This study reports catalytic electro-chemical reduction of nitric oxide (NO) enhanced by Pseudomonas aeruginosa strain CP1. The current generated in the presence of bacteria was 4.36times that in the absence of the bacteria. The strain was able to catalyze electro-chemical reduction of NO via indirect electron transfer with an electrode, revealed by a series of cyclic voltammetry experiments. Soluble electron shuttles secreted into solution by live bacteria were responsible for the catalytic effects. The enhancement of NO reduction was also confirmed by detection of nitrous oxide; the level of this intermediate was 46.4% higher in the presence of bacteria than in controls, illustrated that the electron transfer pathway did not directly reduce nitric oxide to N2. The findings of this study may offer a new model for bioelectrochemical research in the field of NO removal by biocatalysts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Progress of reduction of graphene oxide by ascorbic acid
NASA Astrophysics Data System (ADS)
De Silva, K. Kanishka H.; Huang, Hsin-Hui; Yoshimura, Masamichi
2018-07-01
Graphene oxide (GO) and reduced graphene oxide (RGO) are in greater demand in many research fields. As a result, the synthesis of these materials on a large scale in a costeffective manner is more concerned for numerous applications. In the present work, GO was synthesized by oxidizing natural graphite and reduced by ascorbic acid (AA), which is a green reductant. The reduced products obtained at different time periods were in detail characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results showed that the oxidation of graphite has given highly oxidized GO with a 9.30 Å interlayer space and about 33% of oxygen atomic percentage. Until 50 min of the reduction, both GO and RGO coexist. The reduction rate is fast within the first 30 min. In addition, the suitability of natural graphite over synthetic graphite for the synthesis of GO is shown. The findings of this work pave the way to select GO and RGO for applications of interest in a cheap, green and efficient manner.
Influence of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid.
Cihanoğlu, Aydın; Gündüz, Gönül; Dükkancı, Meral
2017-11-01
The main objective of this study is to investigate the effect of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid, which is one of the most resistant carboxylic acids to oxidation. For this purpose, firstly, the degradation of acetic acid was examined by using ultrasound alone and the effects of different parameters such as: type of sonication system, ultrasonic power, and addition of H 2 O 2 were investigated on the degradation of acetic acid. There was no chemical oxygen demand (COD) reduction in the presence of sonication alone. In the presence of the heterogeneous Fenton-like oxidation process alone, at 303 K, COD reduction reached only 7.1% after 2 h of reaction. However, the combination of the heterogeneous Fenton-like oxidation process with ultrasound increased the COD reduction from 7.1% to 25.5% after 2 h of reaction in an ultrasonic bath operated at 40 kHz, while the COD reduction only increased from 7.1% to 8.9% in the ultrasonic reactor operated at 850 kHz. This result indicates that the hybrid process of ultrasound and heterogeneous Fenton-like oxidation is a promising process to degrade acetic acid.
Chen, Sheng-Yu; Song, Wenqiao; Lin, Hui-Jan; ...
2016-03-08
In this work, a generic one-pot hydrothermal synthesis route has been successfully designed and utilized to in situ grow uniform manganese oxide nanorods and nanowires onto the cordierite honeycomb monolithic substrates, forming a series of nanoarray-based monolithic catalysts. During the synthesis process, three types of potassium salt oxidants have been used with different reduction potentials, i.e., K 2Cr 2O 7, KClO 3, and K 2S 2O 8, denoted as HM-DCM, HM-PCR, and HM-PSF, respectively. The different reduction potentials of the manganese source (Mn 2+) and oxidants induced the formation of manganese oxide nanoarrays with different morphology, surface area, and reactivitymore » of carbon monoxide (CO) oxidation. K 2Cr 2O 7 and KClO 3 can induce sharp and long nanowires with slow growth rates due to their low reduction potentials. In comparison, the nanoarrays of HM-PSF presented shorter nanorods but displayed an efficient 90% CO oxidation conversion at 200 °C (T90) without noble-metal loading. Reducibility tests for the three monolithic catalysts by hydrogen temperature-programmed reduction revealed an activation energy order of HM-PSF > HM-DCM > HM-PCR for CO oxidation. The characterizations of oxygen temperature-programmed desorption and X-ray photoelectron spectroscopy indicated the abundant surface-adsorbed oxygen and lattice oxygen contributing to the superior reactivity of HM-PSF. Finally, the straightforward synthetic process showed a scalable, low-cost, and template-free method to fabricate manganese oxide nanoarray monolithic catalysts for exhaust treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coker, Eric Nicholas; Rodriguez, Mark A.; Ambrosini, Andrea
Hydrogen and carbon monoxide may be produced using solar-thermal energy in two-stage reactions of water and carbon dioxide, respectively, over certain metal oxide materials. The most active materials observed experimentally for these processes are complex mixtures of ferrite and zirconia based solids, and it is not clear how far the ferrites, the zirconia, or a solid solution between the two participate in the change of oxidation state during the cycling. Identification of the key phases in the redox material that enable splitting is of paramount importance to developing a working model of the materials. A three-pronged approach was adopted here:more » computer modeling to determine thermodynamically favorable materials compositions, bench reactor testing to evaluate materials’ performance, and in-situ characterization of reactive materials to follow phase changes and identify the phases active for splitting. For the characterization and performance evaluation thrusts, cobalt ferrites were prepared by co-precipitation followed by annealing at 1400 °C. An in-situ X-ray diffraction capability was developed and tested, allowing phase monitoring in real time during thermochemical redox cycling. Key observations made for an un-supported cobalt ferrite include: 1) ferrite phases partially reduce to wustite upon heating to 1400 °C in helium; 2) exposing the material to air at 1100 °C causes immediate re-oxidation; 3) the re-oxidized material may be thermally reduced at 1400 °C under inert; 4) exposure of a reduced material to CO 2 results in gradual re-oxidation at 1100 °C, but minimization of background O 2-levels is essential; 5) even after several redox cycles, the lattice parameters of the ferrites remain constant, indicating that irreversible phase separation does not occur, at least over the first five cycles; 6) substituting chemical (hydrogen) reduction for thermal reduction resulted in formation of a CoFe metallic alloy. Materials were also evaluated for their CO 2-splitting performance in bench reactor systems utilizing chemical reduction in place of thermal reduction. These tests lead to the following general conclusions: 1) despite over-reduction of the cobalt ferrite phase to CoFe alloy on chemical reduction, splitting of CO 2 still occurs; 2) the kinetics of chemical reduction follow the sequence: un-supported < ZrO 2-supported < yttria-stabilized ZrO 2 (YSZ)-supported ferrite; 3) ferrite/YSZ re-oxidizes faster than ferrite/ZrO 2 under CO 2 in the range 400 – 700 °C. The temperature and pressure regimes in which the thermal reduction and water-splitting steps are thermodynamically favorable in terms of the enthalpy and entropy of oxide reduction, were determined. These metrics represent a useful design goal for any proposed water-splitting cycle. Applying this theoretical framework to available thermodynamic data, it was shown that none of the 105 binary oxide redox couples that were screened possess both energetically favorable reduction and oxidation steps. However, several driving forces, including low pressure and a large positive solid-state entropy of reduction of the oxide, have the potential to enable thermodynamically-favored two-step cycles.« less
XPS study of graphene oxide reduction induced by (100) and (111)-oriented Si substrates
NASA Astrophysics Data System (ADS)
Priante, F.; Salim, M.; Ottaviano, L.; Perrozzi, F.
2018-02-01
The reduction of graphene oxide (GO) has been extensively studied in literature in order to let GO partially recover the properties of graphene. Most of the techniques proposed to reduce GO are based on high temperature annealing or chemical reduction. A new procedure, based on the direct reduction of GO by etched Si substrate, was recently proposed in literature. In the present work, we accurately investigated the Si-GO interaction with x-ray photoelectron spectroscopy. In order to avoid external substrate oxidation factors we used EtOH as the GO solvent instead of water, and thermal annealing was carried out in UHV. We investigated the effect of Si(100), Si(111) and Au substrates on GO, to probe the role played by both the substrate composition and substrate orientation during the reduction process. A similar degree of GO reduction was observed for all samples but only after thermal annealing, ruling out the direct reduction effect of the substrate.
Molten salt applications in materials processing
NASA Astrophysics Data System (ADS)
Mishra, Brajendra; Olson, David L.
2005-02-01
The science of molten salt electrochemistry for electrowinning of reactive metals, such as calcium, and its in situ application in pyro-reduction has been described. Calcium electrowinning has been performed in a 5 10 wt% calcium oxide calcium chloride molten salt by the electrolytic dissociation of calcium oxide. This electrolysis requires the use of a porous ceramic sheath around the anode to keep the cathodically deposited calcium and the anodic gases separate. Stainless steel cathode and graphite anode have been used in the temperature range of 850 950 °C. This salt mixture is produced as a result of the direct oxide reduction (DOR) of reactive metal oxides by calcium in a calcium chloride bath. The primary purpose of this process is to recover the expensive calcium reductant and to recycle calcium chloride. Experimental data have been included to justify the suitability as well as limitations of the electrowinning process. Transport of oxygen ions through the sheath is found to be the rate controlling step. Under the constraints of the reactor design, a calcium recovery rate of approx. 150 g/h was achieved. Feasibility of a process to produce metals by pyrometallurgical reduction, using the calcium reductant produced electrolytically within the same reactor, has been shown in a hybrid process. Several processes are currently under investigation to use this electrowon calcium for in situ reduction of metal oxides.
Fractionation of mercury isotopes by photo-oxidation in aquatic systems
NASA Astrophysics Data System (ADS)
Ghosh, S.; Bergquist, B. A.; Blum, J. D.
2009-12-01
Mercury is a globally distributed pollutant that bioaccumulates in aquatic food webs, even in remote locations. The recent discovery of both large mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) has made the promise of tracing this neurotoxin through the environment by using its isotopes very exciting. So far, the only process demonstrated experimentally to produce large MIF for Hg (similar in magnitude to the MIF observed in natural samples such as fish) is photochemical reduction (Bergquist and Blum, 2007). During photo-reduction, MIF of the odd isotopes was observed with the odd isotopes (199Hg, 201Hg) being preferentially enriched in the aqueous phase. Bergquist and Blum, 2007, suggested that the cause of MIF was the magnetic isotope effect (MIE), which is purely a kinetic phenomenon involving radical pair intermediates. Radical pairs with odd isotopes, which have non-zero nuclear spin and magnetic moments, can undergo spin conversion faster than radical pairs with non-magnetic even isotopes. This allows the odd and even isotopes to be preferentially enriched in different reaction products. MIE is a complex phenomenon that is dependent on several factors including hyperfine coupling, life-time of the radical pair, coupling strength of the radical pair, spin-orbital coupling, diffusion factors, and the solvent cage (space) in which the reaction occurs. Only under rare circumstances will all the factors be suitable for the expression of MIE in natural reactions. The goal of this study was to conduct aqueous photo-oxidation reactions to investigate whether this redox pathway expresses MIF (in the form of MIE) similar to the photo-reduction pathway. In natural systems, net photo-reduction of Hg (II) species results in the release of Hg(0) vapor to the atmosphere. However this net photo-reduction is a combination of both photo-reduction and photo-oxidation. In their experiments, Bergquist and Blum 2007, only investigated the aqueous photo-reduction pathway and suppressed the photo-oxidation reaction. Photochemical oxidation experiments of Hg(0) were performed in quartz reaction chambers using natural sunlight. Solutions of aqueous Hg(0) were prepared by continuously bubbling vapor Hg(0) generated by a gas-liquid separator into the quartz reaction chamber filled with water. Experiments were conducted in the presence of Cl- and other potential oxidants such as semiquinone, hydroxyl radicals and H2O2 to assess if the presence of these different oxidants showed significant differences in the expression of Hg isotopic fractionation during the photo-oxidation process. For experiments run in the presence of Cl- only, ~2% of Hg was oxidized at the end of 7 hours whereas in the presence of both semiquinone radical and Cl- , approximately 20% of Hg was oxidized at the end of 6 hours. In the experiment with hydroxyl radicals present, ~ 7% of Hg was oxidized at the end of 6.5 hours. Another set of experiments were conducted where the net photo-reduction was mimicked, which allowed both photo-oxidation and photo-reduction to occur. Isotopic results and their implications on the redox cycle of mercury obtained from these experiments will be discussed in detail.
Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.
Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M
2015-11-01
A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.
Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments
Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M
2015-01-01
A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration—a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder. PMID:25871933
Humic substances as a mediator for microbially catalyzed metal reduction
Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.
1998-01-01
The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.
Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA
2010-07-20
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
WORKSHOP ON MONITORING OXIDATION-REDUCTION PROCESSES FOR GROUND-WATER RESTORATION
Redox conditions are among the most important parameters for controlling contaminant transport and fate in ground-water systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting solubility, rea...
Investigation of iron oxide reduction by TEM
NASA Astrophysics Data System (ADS)
Rau, Mann-Fu; Rieck, David; Evans, James W.
1987-03-01
An “environmental cell” located in a high voltage transmission electron microscope has been used to study the reduction of single crystal iron oxides by hydrogen and hydrogen-argon mixtures. The cell enables a direct observation of the solid during reaction, thus permitting the nucleation and growth of solid reaction products to be observed. Hematite was reduced at temperatures in the range 387 to 610°C with gas pressures up to 5.3 kP. Reduction with pure hydrogen was considerably faster than when argon was present. Lath magnetite which rapidly transforms to porous magnetite and thence (more slowly) to porous iron was observed. The reduction of magnetite and of wustite single crystals was observed in the temperature range 300 to 514°C using both hydrogen and hydrogen-argon mixtures at gas pressures up to 6.6 kP. Incubation periods were found for magnetite reduction; during these periods faceted pits formed in the oxide. Iron formed in the early stages was epitaxial with the host magnetite; at later stages the epitaxy was lost and fissures frequently formed in the metal. The morphology of the iron differed between the gas mixtures. Disproportionation accompanied the reduction of wustite, producing intermediate polycrystalline magnetite despite reducing conditions. The disproportionation appeared to be promoted by the reduction reaction. For both oxides, reduction in the hydrogen-argon mixture was slower than in pure hydrogen.
Nitrite oxidation in the Namibian oxygen minimum zone.
Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel M M
2012-06-01
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in (15)N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (≤372 nM NO(2)(-) d(-1)) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ~9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO(3)(-) was re-oxidized back to NO(3)(-) via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.
Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials
NASA Astrophysics Data System (ADS)
Sohn, Youngku; Huang, Weixin; Taghipour, Fariborz
2017-02-01
The conversion of CO2 with H2O to valuable chemicals and fuels is a new solution to current environmental and energy problems, and the high energy barrier of these reactions can be overcome by the input of solar and electrical energy. However, the reduction efficiencies and selectivities of these reactions are insufficient for practical use, and significant effort and strategy are required to overcome the many obstacles preventing the large-scale application of photocatalytic CO2 reduction. This article reviews recent progress in CO2 reduction using titanium oxide-based materials and various strategic factors for increasing photocatalytic efficiency. This article also highlights non-titanium-oxide catalysts, the photoelectrocatalytic reduction of CO2, and other recent review articles concerning the recycling of CO2 to value-added carbon compounds.
Methanol-tolerant cathode catalyst composite for direct methanol fuel cells
Zhu, Yimin; Zelenay, Piotr
2006-09-05
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells
Zhu, Yimin; Zelenay, Piotr
2006-03-21
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
Patterning and reduction of graphene oxide using femtosecond-laser irradiation
NASA Astrophysics Data System (ADS)
Kang, SeungYeon; Evans, Christopher C.; Shukla, Shobha; Reshef, Orad; Mazur, Eric
2018-07-01
Graphene has emerged as one of the most versatile materials ever discovered due to its extraordinary electronic, optical, thermal, and mechanical properties. However, device fabrication is a well-known challenge and requires novel fabrication methods to realize the complex integration of graphene-based devices. Here, we demonstrate direct laser writing of reduced graphene oxide using femtosecond-laser irradiation at λ = 795 nm. We perform a systematic study of the reduction process of graphene oxide to graphene by varying both the laser fluence and the pulse repetition rate. Our observations show that the reduction has both thermal and non-thermal features, and suggest that we can achieve better resolution and conductivity using kHz pulse trains than using MHz pulse trains or a continuous wave laser. Our reduced graphene oxide lines written at 10-kHz exhibit a 5 order-of-magnitude decrease in resistivity compared to a non-irradiated control sample. This study provides new insight into the reduction process of graphene oxide and opens doors to achieving a high degree of flexibility and control in the fabrication of graphene layers.
In-situ sequential laser transfer and laser reduction of graphene oxide films
NASA Astrophysics Data System (ADS)
Papazoglou, S.; Petridis, C.; Kymakis, E.; Kennou, S.; Raptis, Y. S.; Chatzandroulis, S.; Zergioti, I.
2018-04-01
Achieving high quality transfer of graphene on selected substrates is a priority in device fabrication, especially where drop-on-demand applications are involved. In this work, we report an in-situ, fast, simple, and one step process that resulted in the reduction, transfer, and fabrication of reduced graphene oxide-based humidity sensors, using picosecond laser pulses. By tuning the laser illumination parameters, we managed to implement the sequential printing and reduction of graphene oxide flakes. The overall process lasted only a few seconds compared to a few hours that our group has previously published. DC current measurements, X-Ray Photoelectron Spectroscopy, X-Ray Diffraction, and Raman Spectroscopy were employed in order to assess the efficiency of our approach. To demonstrate the applicability and the potential of the technique, laser printed reduced graphene oxide humidity sensors with a limit of detection of 1700 ppm are presented. The results demonstrated in this work provide a selective, rapid, and low-cost approach for sequential transfer and photochemical reduction of graphene oxide micro-patterns onto various substrates for flexible electronics and sensor applications.
Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.
Egger, Matthias; Rasigraf, Olivia; Sapart, Célia J; Jilbert, Tom; Jetten, Mike S M; Röckmann, Thomas; van der Veen, Carina; Bândă, Narcisa; Kartal, Boran; Ettwig, Katharina F; Slomp, Caroline P
2015-01-06
Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.
Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C
2015-05-26
Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.
Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants
NASA Astrophysics Data System (ADS)
Halder, S.; Fruehan, R. J.
2008-12-01
A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO2 and wüstite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wüstite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wüstite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wüstite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (>1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.
Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almond, P. M.; Stefanko, D. B.; Langton, C. A.
2013-03-01
The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO 4 - in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases [Shuh, et al., 1994, Shuh, et al., 2000, Shuh, et al., 2003]. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O 4 -, which is very soluble. Consequently the rate of technetium oxidation front advancementmore » into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate was used as a non-radioactive surrogate for pertechnetate in simulated waste form samples. Depth discrete subsamples were cut from material exposed to Savannah River Site (SRS) field cured conditions. The subsamples were prepared and analyzed for both reduction capacity and chromium leachability. Results from field-cured samples indicate that the depth at which leachable chromium was detected advanced further into the sample exposed for 302 days compared to the sample exposed to air for 118 days (at least 50 mm compared to at least 20 mm). Data for only two exposure time intervals is currently available. Data for additional exposure times are required to develop an equation for the oxidation front progression. Reduction capacity measurements (per the Angus-Glasser method, which is a measurement of the ability of a material to chemically reduce Ce(IV) to Ce(III) in solution) performed on depth discrete samples could not be correlated with the amount of chromium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium (i.e., effective Cr oxidation front). Exposure to oxygen (air or oxygen dissolved in water) results in the release of chromium through oxidation of Cr(III) to highly soluble chromate, Cr(VI). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) in the presence of oxygen. Consequently, this method for determining reduction capacity may not be a good indicator of the effective contaminant oxidation rate in a relatively porous solid (40 to 60 volume percent porosity). The chromium extracted in depth discrete samples ranged from a maximum of about 5.8 % at about 5 mm (118 day exposure) to about 4 % at about 10 mm (302 day exposure). The use of reduction capacity as an indicator of long-term performance requires further investigation. The carbonation front was also estimated to have advanced to at least 28 mm in 302 days based on visual observation of gas evolution during acid addition during the reduction capacity measurements. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance and will support conceptual model development.« less
Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran
2015-06-28
We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method.
NASA Astrophysics Data System (ADS)
Simmonds, Tegan; Hayes, Peter C.
2017-12-01
In the carbon looping combustion process the oxygen carrier is regenerated through oxidation in air; this process has been simulated by the oxidation of dense synthetic magnetite for selected temperatures and times. The oxidation of magnetite in air is shown to occur through the formation of dense hematite layers on the particle surface. This dense hematite forms through lath type shear transformations or solid-state diffusion through the product layer. Cyclic reduction in CO-CO2/oxidation in air of hematite single crystals has been carried out under controlled laboratory conditions at 1173 K (900 °C). It has been shown that the initial reduction step is critical to determining the product microstructure, which consists of gas pore dendrites in the magnetite matrix with blocky hematite formed on the pore surfaces. The progressive growth of the magnetite layer with the application of subsequent cycles appears to continue until no original hematite remains, after which physical disintegration of the particles takes place.
Moessbauer spectra of ferrite catalysts used in oxidative dehydrogenation
NASA Technical Reports Server (NTRS)
Cares, W. R.; Hightower, J. W.
1971-01-01
Room temperature Mossbauer spectroscopy was used to examine bulk changes which occur in low surface area CoFe2O4 and CuFe2O4 catalysts as a result of contact with various mixtures of trans-2-butene and O2 during oxidative dehydrogenation reactions at about 420 C. So long as there was at least some O2 in the gas phase, the CoFe2O4 spectrum was essentially unchanged. However, the spectrum changed from a random spinel in the oxidized state to an inverse spinel as it was reduced by oxide ion removal. The steady state catalyst lies very near the fully oxidized state. More dramatic solid state changes occurred as the CuFe2O4 underwent reduction. Under severe reduction, the ferrite was transformed into Cu and Fe3O4, but it could be reversibly recovered by oxidation. An intense doublet located near zero velocity persisted in all spectra of CuFe2O4 regardless of the state of reduction.
Role of tartaric and malic acids in wine oxidation.
Danilewicz, John C
2014-06-04
Tartaric acid determines the reduction potential of the Fe(III)/Fe(II) redox couple. Therefore, it is proposed that it determines the ability of Fe to catalyze wine oxidation. The importance of tartaric acid was demonstrated by comparing the aerial oxidation of 4-methylcatechol (4-MeC) in model wine made up with tartaric and acetic acids at pH 3.6. Acetic acid, as a weaker Fe(III) ligand, should raise the reduction potential of the Fe couple. 4-MeC was oxidized in both systems, but the mechanisms were found to differ. Fe(II) readily reduced oxygen in tartrate model wine, but Fe(III) alone failed to oxidize the catechol, requiring sulfite assistance. In acetate model wine the reverse was found to operate. These observations should have broad application to model systems designed to study the oxidative process in foods and other beverages. Consideration should be given to the reduction potential of metal couples by the inclusion of appropriate ligands.
Formation of peroxynitrite during thiol-mediated reduction of sodium nitroprusside.
Aleryani, S; Milo, E; Kostka, P
1999-10-18
Aerobic incubations of equimolar concentrations (5-500 microM) of sodium nitroprusside (SNP) and dithiothreitol (DTT) carried out at pH 7.4 in the absence of light caused a concentration-dependent increase in the rates of oxidation of dihydrorhodamine-123. The enhancement of the rates of oxidation under such conditions was only partially sensitive to the inhibition by 100 mM dimethyl sulfoxide implying the involvement of both peroxynitrite and hydroxyl radicals in the observed effects. The oxidation of dihydrorhodamine-123 in the presence of SNP and DTT was nearly completely abolished by superoxide dismutase (20 U/ml). It was found that such an effect of the enzyme was related primarily to the stabilization of an intermediate of SNP reduction formed upstream to the liberation of nitrosonium ligand. Increased rates of oxidation of dihydrorhodamine-123 were also observed during the reduction of SNP with either L-cysteine or glutathione. It is concluded that thiol-mediated reduction of SNP under aerobic conditions is accompanied by the formation of oxygen-derived free radicals. Nitrosonium ligand liberated from the product(s) of SNP reduction is, under such conditions, converted to peroxynitrite.
Ma, Yunjian; Qiu, Keqiang
2015-06-01
Lead sulfate, lead oxides and lead metal are the main component of lead paste in spent lead acid battery. When lead sulfate was desulfurized and transformed into lead carbonate by sodium carbonate, lead metal and lead oxides remained unchanged. Lead carbonate is easily decomposed to lead oxide and carbon dioxide under high temperature. Namely, vacuum thermal process is the reduction reaction of lead oxides. A compatible environmental process consisted of hydrometallurgical desulfurization and vacuum thermal reduction to recycle lead was investigated in this research. Lead paste was firstly desulfurized with sodium carbonate, by which, the content of sulfur declined from 7.87% to 0.26%. Then, the desulfurized lead paste was reduced by charcoal under vacuum. Under the optimized reaction conditions, i.e., vacuum thermal reduction at temperature 850°C under 20 Pa for 45 min, a 22.11×10(-2) g cm(-2) min(-1) reduction rate, and a 98.13% direct recovery ratio of fine lead (99.77%) had been achieved, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Stocksdale, Mark G; Pointer, Roy D; Benson, Barret W.; Fletcher, Steven E. S.; Henry, Ian; Ogren, Paul J.; Berg, Michael A. G.
2004-01-01
A two-step oxidation-reduction sequence that incorporates several important aspects of synthesis into introductory organic chemistry laboratories is described. This experiment is an excellent vehicle for introducing elements of discovery and intermediate yield improvement strategies.
Direct electrochemical reduction of metal-oxides
Redey, Laszlo I.; Gourishankar, Karthick
2003-01-01
A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A; Gardel, EJ; Vidoudez, C
Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light.more » Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.« less
2017-01-01
Particulate matter and NOx emissions from diesel exhaust remains one of the most pressing environmental problems. We explore the use of hierarchically ordered mixed Fe–Ce–Zr oxides for the simultaneous capture and oxidation of soot and reduction of NOx by ammonia in a single step. The optimized material can effectively trap the model soot particles in its open macroporous structure and oxidize the soot below 400 °C while completely removing NO in the 285–420 °C range. Surface characterization and DFT calculations emphasize the defective nature of Fe-doped ceria. The isolated Fe ions and associated oxygen vacancies catalyze facile NO reduction to N2. A mechanism for the reduction of NO with NH3 on Fe-doped ceria is proposed involving adsorbed O2. Such adsorbed O2 species will also contribute to the oxidation of soot. PMID:28603656
Wert, Eric C; Rosario-Ortiz, Fernando L; Snyder, Shane A
2009-07-01
The reduction of ultraviolet (UV) absorbance at 254 nm (UV254) and true color were identified as appropriate surrogates to assess the oxidation of six pharmaceuticals (i.e., carbamazepine, meprobamate, dilantin, primidone, atenolol, and iopromide) during ozonation of wastewater. Three tertiary-treated wastewaters were evaluated during oxidation with ozone (O3) and O3 coupled with hydrogen peroxide (O3/H2O2). The correlation between pharmaceutical oxidation and removal of UV254 was dependent upon the reactivity of each specific compound toward ozone, as measured by the second-order rate constant (k'(O3)). Oxidation of compounds with k'(O3) > 10(3) M(-1) s(-1) correlated well (R2 > 0.73) with UV254 reduction between 0-50%. Oxidation of compounds with apparent k'(O3) < 10 M(-1) s(-1) resulted primarily from hydroxyl radicals and correlated well (R2 > 0.80) with the UV254 reduction of 15-85%. The removal of true color also correlated well (R2 > 0.85) with the oxidation of pharmaceuticals during the ozonation of two wastewaters. These correlations demonstrate that UV254 reduction and true color removal may be used as surrogates to evaluate pharmaceutical oxidation in the presence or absence of dissolved ozone residual during advanced wastewater treatment with O3 or O3/H2O2. The use of online UV254 measurements would allow wastewater utilities to optimize the ozone dose required to meet their specific treatment objectives.
Hydroxylamine addition impact to Nitrosomonas europaea activity in the presence of monochloramine.
Wahman, David G; Speitel, Gerald E
2015-01-01
In drinking water, monochloramine may promote ammonia–oxidizing bacteria (AOB) growth because of concurrent ammonia presence. AOB use (i) ammonia monooxygenase for biological ammonia oxidation to hydroxylamine and (ii) hydroxylamine oxidoreductase for biological hydroxylamine oxidation to nitrite. In addition, monochloramine and hydroxylamine abiotically react, providing AOB a potential benefit by removing the disinfectant (monochloramine) and releasing growth substrate (ammonia). Alternatively and because biological hydroxylamine oxidation supplies the electrons (reductant) required for biological ammonia oxidation, the monochloramine/hydroxylamine abiotic reaction represents a possible inactivation mechanism by consuming hydroxylamine and inhibiting reductant generation. To investigate the abiotic monochloramine and hydroxylamine reaction's impact on AOB activity, the current study used batch experiments with Nitrosomonas europaea (AOB pure culture), ammonia, monochloramine, and hydroxylamine addition. To decipher whether hydroxylamine addition benefitted N. europaea activity by (i) removing monochloramine and releasing free ammonia or (ii) providing an additional effect (possibly the aforementioned reductant source), a previously developed cometabolism model was coupled with an abiotic monochloramine and hydroxylamine model for data interpretation. N. europaea maintained ammonia oxidizing activity when hydroxylamine was added before complete ammonia oxidation cessation. The impact could not be accounted for by monochloramine removal and free ammonia release alone and was concentration dependent for both monochloramine and hydroxylamine. In addition, a preferential negative impact occurred for ammonia versus hydroxylamine oxidation. These results suggest an additional benefit of exogenous hydroxylamine addition beyond monochloramine removal and free ammonia release, possibly providing reductant generation.
NASA Technical Reports Server (NTRS)
Luther, George W., III
1987-01-01
In this paper, molecular orbital theory is used to explain a heterogeneous reaction mechanism for both pyrite oxidation and reduction. The mechanism demonstrates that the oxidation of FeS2 by Fe(3+) may occur as a result of three important criteria: (1) the presence of a suitable oxidant having a vacant orbital (in case of liquid phase) or site (solid phase) to bind to the FeS2 via sulfur; (2) the initial formation of a persulfido (disulfide) bridge between FeS2 and the oxidant, and (3) an electron transfer from a pi(asterisk) orbital in S2(2-) to a pi or pi(asterisk) orbital of the oxidant.
NASA Astrophysics Data System (ADS)
Siriwardane, Ranjani V.; Poston, James A.
1993-05-01
Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.
Self-propagating solar light reduction of graphite oxide in water
NASA Astrophysics Data System (ADS)
Todorova, N.; Giannakopoulou, T.; Boukos, N.; Vermisoglou, E.; Lekakou, C.; Trapalis, C.
2017-01-01
Graphite Oxide (GtO) is commonly used as an intermediate material for preparation of graphene in the form of reduced graphene oxide (rGO). Being a semiconductor with tunable band gap rGO is often coupled with various photocatalysts to enhance their visible light activity. The behavior of such rGO-based composites could be affected after prolonged exposure to solar light. In the present work, the alteration of the GtO properties under solar light irradiation is investigated. Water dispersions of GtO manufactured by oxidation of natural graphite via Hummers method were irradiated into solar light simulator for different periods of time without addition of catalysts or reductive agent. The FT-IR analysis of the treated dispersions revealed gradual reduction of the GtO with the increase of the irradiation time. The XRD, FT-IR and XPS analyses of the obtained solid materials confirmed the transition of GtO to rGO under solar light irradiation. The reduction of the GtO was also manifested by the CV measurements that revealed stepwise increase of the specific capacitance connected with the restoration of the sp2 domains. Photothermal self-propagating reduction of graphene oxide in aqueous media under solar light irradiation is suggested as a possible mechanism. The self-photoreduction of GtO utilizing solar light provides a green, sustainable route towards preparation of reduced graphene oxide. However, the instability of the GtO and partially reduced GO under irradiation should be considered when choosing the field of its application.
Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments
NASA Astrophysics Data System (ADS)
Aller, Robert C.; Rude, Peter D.
1988-03-01
During the physical or biological reworking of surficial marine sediments, metal oxides are often brought into contact with both solid and dissolved sulfides. Experiments simulating these mixing processes demonstrate that in natural sediments Mn-oxides can completely oxidize solid phase sulfides to SO 4- under anoxic conditions. The major source of sulfur is probably acid volatile sulfide. Minerals containing Mn +4 are apparently more effective than Mn +3 in driving the oxidation. There is slight or no evidence for complete sulfide oxidation by Fe-oxides under similar conditions. The reaction is inhibited by DNP (dinitrophenol) and azide, implying biological mediation by a group of chemolithotrophic bacteria such as the thiobacilli, having a well-organized cytochrome system, oxidative phosphorylation coupled with sulfide oxidation, and possibly aulolrophic CO 2 fixation. Lack of sensitivity to chlorate suggests that a No 3- reductase complex is not involved. Because of metal reduction and the overall stoichiometry of reaction, this sulfide oxidation causes a rise in pH in contrast to oxidation by O 2. Alkalinity is also simultaneously depeleted by Mn, Ca carbonate precipitation. Both manganoan kutnahorite and manganoan calcite are observed to form rapidly (days) during Mn reduction. The oxidation of sulfides by Mn-oxides is likely to be important, but highly variable, in organic-rich shelf sediments and environments such as hydrothermal vents where sulfidic plumes contact oxidized metals. A substantial Proportion of sedimentary sulfide may be oxidized and Mn reduced by this pathway, particularly in bioturbated sediments. The relative roles of lithotrophic (S) and heterotrophic (C) Mn-reduction in marine sediments are presently unknown.
Reduction Rates for Higher Americium Oxidation States in Nitric Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C
The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show thatmore » the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.« less
Pence, Dallas T.; Thomas, Thomas R.
1980-01-01
Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.
NASA Astrophysics Data System (ADS)
Cao, Jiliang; Huang, Zhan; Wang, Chaoxia
2018-05-01
Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.
Bioturbation and Manganese Cycling in Hemipelagic Sediments
NASA Astrophysics Data System (ADS)
Aller, R. C.
1990-06-01
The activities of infaunal macrobenthos have major influences on the types, rates and distributions of diagenetic reactions involving manganese in relatively carbon-rich deep-sea and nearshore sediments. In some non-sulphidic hemipelagic deposits of the eastern equatorial Pacific (Panama Basin) biogenic reworking drives internal cycles of manganese, which can apparently account for up to ca. 100% of organic carbon oxidation and reduction of O2 supplied (diffusively) to the sea floor. Heterotrophic (carbon-based) manganese reduction is stimulated by simultaneous mixing of reactive organic matter and manganese oxide into suboxic-anoxic deposits. In sulphidic sediments, biogenic reworking must also enhance a lithotrophic pathway (sulphur-based) pathway of manganese reduction by promoting contact of manganese oxides and iron sulphides. Particle reworking dramatically alters the balance between aerobic and anaerobic decomposition pathways, promoting the utilization of O2 in the reoxidaton of reduced metabolites rather than direct oxidation of carbon. Irrigated burrows create microenvironments, which increase manganese reduction-oxidation and deplete Mn2+ from deeper pore waters. This may increase net Mn2+ production rates by removal of metabolites and potential co-precipitants with Mn2+. The occurrence and geometry of manganese oxide encrusted biogenic structures imply specific adaptations of infauna to manganese based microbial activity in hemipelagic sediments like the Panama Basin.
Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium.
Irisa, Tatsuya; Hira, Daisuke; Furukawa, Kenji; Fujii, Takao
2014-12-01
The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr
Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less
Impact of Sr-Incorporation on Cr Oxidation and Water Dissociation in La(1-x)SrxCrO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoerzinger, Kelsey A.; Du, Yingge; Ihm, Kyuwook
2018-01-17
The oxidation and reduction of metal oxides and their interaction with the environment play a critical role in material stability and the ability to catalyze reactions. The local change in valence and formation of surface adsorbates affect the oxide electronic structure and chemical reactivity, yet are challenging to probe experimentally. Here we present a detailed study of the oxidation and reduction of Cr in the perovskite oxide family of La(1-x)SrxCrO3 using ambient pressure X-ray photoelectron spectroscopy. The incorporation of Sr increases the propensity to oxidize the surface, leading to the presence of Cr4+ and Cr6+ principally confined to the topmore » unit cell when in equilibrium with O2 gas. These acidic sites are readily reduced to Cr3+ in equilibrium with H2O vapor, and the resultant amount of hydroxyls formed from the dissociation of H2O is directly proportional to the density of surface sites which had been oxidized. Our quantification of the redox stability of La(1-x)SrxCrO3 and the relationship between the extent of oxidation, reduction, and hydroxylation with Sr yields important insight into the surface functionality during electrochemical applications.« less
Impact of Sr-Incorporation on Cr Oxidation and Water Dissociation in La (1- x ) Sr x CrO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoerzinger, Kelsey A.; Du, Yingge; Ihm, Kyuwook
The oxidation and reduction of metal oxides and their interaction with the environment play a critical role in material stability and the ability to catalyze reactions. The local change in valence and formation of surface adsorbates affect the oxide electronic structure and chemical reactivity, yet are challenging to probe experimentally. Here we present a detailed study of the oxidation and reduction of Cr in the perovskite oxide family of La(1-x)SrxCrO3 using ambient pressure X-ray photoelectron spectroscopy. The incorporation of Sr increases the propensity to oxidize the surface, leading to the presence of Cr4+ and Cr6+ principally confined to the topmore » unit cell when in equilibrium with O2 gas. These acidic sites are readily reduced to Cr3+ in equilibrium with H2O vapor, and the resultant amount of hydroxyls formed from the dissociation of H2O is directly proportional to the density of surface sites which had been oxidized. Our quantification of the redox stability of La(1-x)SrxCrO3 and the relationship between the extent of oxidation, reduction, and hydroxylation with Sr yields important insight into the surface functionality during electrochemical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, N.; Prins, R.
1979-10-15
Catalysts resembling reforming catalysts were prepared to contain finely dispersed 0.75% Pt, 0.7% Re, or 0.35% Pt plus 0.1-2% Re on chlorided ..gamma..-alumina. The catalysts were dried in an oxidizing atmosphere and studied by temperature-programed reduction. Up to a Re/Pt ratio of 0.6:1 the metals were completely reduced in hydrogen below 255/sup 0/C, i.e., the platinum catalyzed rhenium reduction. A small amount of added water (< 50 ppm) also promoted rhenium reduction. Segregation of the metals occurred in oxygen above 200/sup 0/C, but at 100/sup 0/C, the rate of segregation was slow. These results suggested that under reforming conditions, Pt-Remore » catalysts are completely reduced bimetallic clusters. The mechanisms of reduction, cluster formation, and oxidative segregation are discussed.« less
Cu(II) removal by Anoxybacillus flavithermus-iron oxide composites during the addition of Fe(II)aq
NASA Astrophysics Data System (ADS)
Franzblau, Rachel E.; Daughney, Christopher J.; Swedlund, Peter J.; Weisener, Christopher G.; Moreau, Magali; Johannessen, Bernt; Harmer, Sarah L.
2016-01-01
There is currently poor understanding of metal removal by composites of bacteria and iron oxide minerals, even though they commonly co-occur and are among the most important sorbents in near-surface fluid-rock environments. This study evaluated Cu removal by composites of Anoxybacillus flavithermus and iron oxide over time during the addition, oxidation, and hydrolysis of Fe(II)aq and precipitation of the mineral, in comparison to Cu removal in the two single-sorbent end-member systems. In the absence of iron oxide, Cu removal by A. flavithermus was well described by a previously published surface complexation model, after inclusion of additional reactions describing aqueous complexation by exudate ligands released by the bacteria. In the absence of bacterial cells, Cu removal by iron oxide synthesized in the presence of the bacterial exudate ligands demonstrated the formation of ternary surface complexes. Removal of Cu by the A. flavithermus-iron oxide composites was ca. 20% greater than the prediction based on assumption of additivity in the two end-member systems. This non-additive behavior was attributed to (1) progressive physical blockage of bacterial surface sites by the iron oxide particles, (2) physical blockage of adsorption sites as a result of self-aggregation of the iron oxide particles, and (3) the reduction of Cu(II) to Cu(I) at the bacterial cell surface, as demonstrated by X-ray absorption spectroscopy. The extent of reduction of Cu(II) to Cu(I) was proportional to the concentration of solid phase Fe(II), suggesting that iron oxidation and copper reduction are linked. This study has shown that Cu removal by bacteria-iron oxide composites is greatly affected by redox processes such as Cu(II) reduction on the cell surface both by other bacterial surface ligands and the oxidation of sorbed Fe(II), as well as Fe(II) redox interactions, and aging effects of the mineral (i.e. surface site masking).
NASA Astrophysics Data System (ADS)
Sun, Haoyan; Adetoro, Ajala Adewole; Pan, Feng; Wang, Zhen; Zhu, Qingshan
2017-06-01
The oxidation behaviors of South Africa (SA) titanomagnetite (TTM) and its effects on the gas solid reduction in the fluidized bed were investigated on the basis of the two-stage short process of direct reduction-electric arc furnace (DR-EAF) melting separation. The results showed that the oxidation phase transformations in the high-temperature range from 1073 K to 1223 K (800 °C to 950 °C) can be divided into two typical processes: with the fast generation of pseudobrookite and with the maghemite generation at the initial stage. The reduction efficiency for SA TTM was improved by the preoxidation treatment, mainly because of the dissociation of titania-ferrous oxides to the easy reducible hematite. However, at a preoxidation temperature higher than 1173 K (900 °C), the improving effect became weak, due to high-temperature sintering and the larger crystallite size of oxidation products. There is an extreme value of the preoxidation influence, and the optimum preoxidation time is different for various temperatures. The reduction metallization degree of SA TTM can be relatively improved by 14.5 and 4.5 pct for the first and second reduction steps, respectively, by 1173 K (900 °C) preoxidation with an optimum time of 30 minutes. Finally, the equilibrium relationship between the metallization degree and the gas reduction potential for TTM ore with preoxidation treatment was built.
Nitrite oxidation in the Namibian oxygen minimum zone
Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel MM
2012-01-01
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2− d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3− was re-oxidized back to NO3− via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways. PMID:22170426
Casein mediated green synthesis and decoration of reduced graphene oxide
NASA Astrophysics Data System (ADS)
Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Tammina, Sai Kumar; Kiran Kumar, H. A.
This research is mainly focusing on one-step biosynthesis of graphene from graphene oxide and its stabilization using naturally occurring milk protein, casein. The synthesis of casein reduced graphene oxide (CRGO) was completed within 7 h under reflux at 90 °C with the formation of few layered fine graphene nanosheets. UV-Vis, XRD, XPS analysis data revealed the reduction process of the graphene oxide. Results of FT-IR, HPLC and TEM analysis have shown that the ensuing material consists of graphene decorated with casein molecules. Aspartic acid and glutamic acid residue present in casein molecules are responsible for the reduction of graphene oxide.
Evidence for single metal two electron oxidative addition and reductive elimination at uranium.
Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T
2017-12-01
Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.
Papadopoulos, A E; Fatta, D; Loizidou, M
2007-07-31
The examination of the effectiveness of the chemical oxidation using Fenton's reagent (H(2)O(2)/Fe(2+)) for the reduction of the organic content of wastewater generated from a textile industry has been studied. The experimental results indicate that the oxidation process leads to a reduction in the chemical oxygen demand (COD) concentration up to 45%. Moreover, the reduction is reasonably fast at the first stages of the process, since the COD concentration is decreased up to 45% within four hours and further treatment time does not add up to the overall decrease in the COD concentration (48% reduction within six hours). The maximum color removal achieved was 71.5%. In addition, the alterations observed in the organic matter during the development of the process, as indicated by the ratios of COD/TOC and BOD/COD and the oxidation state, show that a great part of the organic substances, which are not completely mineralized, are subjected to structural changes to intermediate organic by-products.
Saroff, Harry A
Analyses of the binding of oxygen to monomers such as myoglobin employ the Mass Action equation. The Mass Action equation, as such, is not directly applicable for the analysis of the binding of oxygen to oligomers such as hemoglobin. When the binding of oxygen to hemoglobin is analyzed, models incorporating extensions of mass action are employed. Oxidation-reduction reactions of the heme group in myoglobin and hemoglobin involve the binding and dissociation of electrons. This reaction is described with the Nernst equation. The Nernst equation is applicable only to a monomeric species even if the number of electrons involved is greater than unity. To analyze the oxidation-reduction reaction in a molecule such as hemoglobin a model is required which incorporates extensions of the Nernst equation. This communication develops models employing the Nernst equation for oxidation-reduction reactions analogous to those employed for hemoglobin in the analysis of the oxygenation (binding of oxygen) reaction.
Na, Kwan Byung; Hwang, Tae Sik; Lee, Sung Hun; Ahn, Dae Hee; Park, Doo Hyun
2007-03-01
The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.
Tiwari, Jitendra N.; Nath, Krishna; Kumar, Susheel; Tiwari, Rajanish N.; Kemp, K. Christian; Le, Nhien H.; Youn, Duck Hyun; Lee, Jae Sung; Kim, Kwang S.
2013-01-01
Nanosize platinum clusters with small diameters of 2–4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA–graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA–graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA–graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries. PMID:23900456
Nitrous oxide reduction in nodules: denitrification or N/sub 2/ fixation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coyne, M.S.; Focht, D.D.
1987-05-01
Detached cowpea nodules that contained a nitrous oxide reductase-positive (Nor/sup +/) rhizobium strain (8A55) and a nitrous oxide reductase-negative (Nor/sup -/) rhizobium strain (32H1) were incubated with 1% /sup 15/N/sub 2/O (95 atom% /sup 15/N) in the following three atmospheres: aerobic with C/sub 2/H/sub 2/ (10%), aerobic without C/sub 2/H/sub 2/, and anaerobic (argon atmosphere) without C/sub 2/H/sub 2/. The greatest production of /sup 15/N/sub 2/ occurred anaerobically with 8A55, yet very little was formed with 32H1. Although acetylene reduction activity was slightly higher with 32H1, about 10 times more /sup 15/N/sub 2/ was produced aerobically by 8A55 than bymore » 32H1 in the absence of acetylene. The major reductive pathway of N/sub 2/O reduction by denitrifying rhizobium strain 8A55 is by nitrous oxide reductase rather than nitrogenase.« less
Reduction reactions and densification during in situ TEM heating of iron oxide nanochains
NASA Astrophysics Data System (ADS)
Bonifacio, Cecile S.; Das, Gautom; Kennedy, Ian M.; van Benthem, Klaus
2017-12-01
The reduction reactions and densification of nanochains assembled from γ-Fe2O3 nanoparticles were investigated using in situ transmission electron microscopy (TEM). Morphological changes and reduction of the metal oxide nanochains were observed during in situ TEM annealing through simultaneous imaging and quantitative analysis of the near-edge fine structures of Fe L2,3 absorption edges acquired by spatially resolved electron energy loss spectroscopy. A change in the oxidation states during annealing of the iron oxide nanochains was observed with phase transformations due to continuous reduction from Fe2O3 over Fe3O4, FeO to metallic Fe. Phase transitions during the in situ heating experiments were accompanied with morphological changes in the nanochains, specifically rough-to-smooth surface transitions below 500 °C, neck formation between adjacent particles around 500 °C, and subsequent neck growth. At higher temperatures, coalescence of FeO particles was observed, representing densification.
Hellal, Jennifer; Guédron, Stéphane; Huguet, Lucie; Schäfer, Jörg; Laperche, Valérie; Joulian, Catherine; Lanceleur, Laurent; Burnol, André; Ghestem, Jean-Philippe; Garrido, Francis; Battaglia-Brunet, Fabienne
2015-09-01
Mercury (Hg) mobility and speciation in subsurface aquifers is directly linked to its surrounding geochemical and microbial environment. The role of bacteria on Hg speciation (i.e., methylation, demethylation and reduction) is well documented, however little data is available on their impact on Hg mobility. The aim of this study was to test if (i) Hg mobility is due to either direct iron oxide reduction by iron reducing bacteria (IRB) or indirect iron reduction by sulfide produced by sulfate reducing bacteria (SRB), and (ii) to investigate its subsequent fate and speciation. Experiments were carried out in an original column setup combining geochemical and microbiological approaches that mimic an aquifer including an interface of iron-rich and iron depleted zones. Two identical glass columns containing iron oxides spiked with Hg(II) were submitted to (i) direct iron reduction by IRB and (ii) to indirect iron reduction by sulfides produced by SRB. Results show that in both columns Hg was leached and methylated during the height of bacterial activity. In the column where IRB are dominant, Hg methylation and leaching from the column was directly correlated to bacterial iron reduction (i.e., Fe(II) release). In opposition, when SRB are dominant, produced sulfide induced indirect iron oxide reduction and rapid adsorption of leached Hg (or produced methylmercury) on neoformed iron sulfides (e.g., Mackinawite) or its precipitation as HgS. At the end of the SRB column experiment, when iron-oxide reduction was complete, filtered Hg and Fe concentrations increased at the outlet suggesting a leaching of Hg bound to FeS colloids that may be a dominant mechanism of Hg transport in aquifer environments. These experimental results highlight different biogeochemical mechanisms that can occur in stratified sub-surface aquifers where bacterial activities play a major role on Hg mobility and changes in speciation. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behdadfar, Behshid, E-mail: bbehdadfar@ma.iut.ac.ir; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat
Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids weremore » stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm{sup 2}/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: Black-Right-Pointing-Pointer Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. Black-Right-Pointing-Pointer Citric acid acted as reducing agent and surfactant in the route. Black-Right-Pointing-Pointer This is a facile, low energy and environmental friendly route. Black-Right-Pointing-Pointer The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. Black-Right-Pointing-Pointer The calculated intrinsic loss power of the synthesized ferrofluids was very high.« less
Coastal eutrophication thresholds: a matter of sediment microbial processes.
Lehtoranta, Jouni; Ekholm, Petri; Pitkänen, Heikki
2009-09-01
In marine sediments, the major anaerobic mineralization processes are Fe(III) oxide reduction and sulfate reduction. In this article, we propose that the two alternative microbial mineralization pathways in sediments exert decisively different impacts on aquatic ecosystems. In systems where iron reduction dominates in the recently deposited sediment layers, the fraction of Fe(III) oxides that is dissolved to Fe(II) upon reduction will ultimately be transported to the oxic layer, where it will be reoxidized. Phosphorus, which is released from Fe(III) oxides and decomposing organic matter from the sediment, will be largely trapped by this newly formed Fe(III) oxide layer. Consequently, there are low concentrations of phosphorus in near-bottom and productive water layers and primary production tends to be limited by phosphorus (State 1). By contrast, in systems where sulfate reduction dominates, Fe(III) oxides are reduced by sulfides. This chemical reduction leads to the formation and permanent burial of iron as solid iron sulfides that are unable to capture phosphorus. In addition, the cycling of iron is blocked, and phosphorus is released to overlying water. Owing to the enrichment of phosphorus in water, the nitrogen : phosphorus ratio is lowered and nitrogen tends to limit algal growth, giving an advantage to nitrogen-fixing blue-green algae (State 2). A major factor causing a shift from State 1 to State 2 is an increase in the flux of labile organic carbon to the bottom sediments; upon accelerating eutrophication a critical point will be reached when the availability of Fe(III) oxides in sediments will be exhausted and sulfate reduction will become dominant. Because the reserves of Fe(III) oxides are replenished only slowly, reversal to State 1 may markedly exceed the time needed to reduce the flux of organic carbon to the sediment. A key factor affecting the sensitivity of a coastal system to such a regime shift is formed by the hydrodynamic alterations that decrease the transport of O2 to the near-bottom water, e.g., due to variations in salinity and temperature stratification.
Okada, Takashi; Yonezawa, Susumu
2014-08-01
With large quantity of flux (Na2CO3), lead can be recovered from the funnel glass of waste cathode-ray tubes via reduction-melting at 1000°C. To reduce flux cost, a technique to recover added flux from the generated oxide phase is also important in order to recycle the flux recovered from the reduction-melting process. In this study, the phase separation of sodium and the crystallization of water-soluble sodium silicates were induced after the reduction-melting process to enhance the leachability of sodium in the oxide phase and to extract the sodium from the phase for the recovery of Na2CO3 as flux. A reductive atmosphere promoted the phase separation and crystallization, and the leachability of sodium from the oxide phase was enhanced. The optimum temperature and treatment time for increasing the leachability were 700°C and 2h, respectively. After treatment, more than 90% of the sodium in the oxide phase was extracted in water. NaHCO3 can be recovered by carbonization of the solution containing sodium ions using carbon dioxide gas, decomposed to Na2CO3 at 50°C and recycled for use in the reduction-melting process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Electrochemical process for the preparation of nitrogen fertilizers
Jiang, Junhua; Aulich, Ted R; Ignatchenko, Alexey V
2015-04-14
Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.
Redox characterization of the Fe(II)-catalyzed transformation of ferrihydrite to goethite
NASA Astrophysics Data System (ADS)
Jones, Adele M.; Collins, Richard N.; Waite, T. David
2017-12-01
The reduction potential of Fe(II)-Fe(III) (oxyhydr)oxide systems provides an important control on the biogeochemical cycling of redox-sensitive elements such as carbon and nitrogen as well as trace metals and organic contaminants in natural systems. As such, an in-depth understanding of the factors controlling the reduction potential of such systems is critical to predicting the likely transformation, transport and fate of these species in natural and perturbed environments. In this study the mineralogy and reduction potential of ferrihydrite suspensions at pH 6.50 and pH 7.00 were determined over the course of their Fe(II)-catalyzed transformation to lepidocrocite and goethite using X-ray absorption spectroscopy and mediated electrochemical approaches. The measured reduction potentials were compared to those of analogous Fe(II)-Fe(III) (oxyhydr)oxide suspensions reacted for 5 min containing pure ferrihydrite (Fh), lepidocrocite (L) and goethite (Gt). The reduction potentials of the pure Fe(II)-Fe(III) (oxyhydr)oxide suspensions were, respectively, +47.5, -13.5 and -122.3 mV vs. SHE at pH 6.5, and -22.9, -84.1 and -189.7 mV vs. SHE at pH 7. These values are in good agreement with reduction potentials calculated using the Nernst equation and reported thermodynamic solubility products indicating that these suspensions had reached equilibrium within 5 min. The reduction potential of the pH 6.50 Fe(II)-ferrihydrite suspension decreased from +47.4 mV to -126.4 mV over a week, and from -20.1 mV to -188.4 mV (all vs. SHE) after 24 h at pH 7. The changes in reduction potential over time matched well to those calculated from the relative proportion of each pure Fe(III) (oxyhydr)oxide present suggesting that Fe3+ activity was influenced by the mix of iron oxides present rather than the most insoluble solid species. Finally, evidence is provided that adsorbed Fe(II) has the capacity to reduce a significantly larger fraction of a reducible species than the aqueous Fe(II) species with which it is in equilibrium. As an Fe(III) (oxyhydr)oxide suspension in equilibrium with aqueous and adsorbed Fe(II) species possesses a single, unique reduction potential, this suggests that adsorbed Fe(II) is a more facile reductant than aqueous Fe(II).
Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, John D.
2005-06-01
A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction,more » and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1. The nitrate-dependent U(IV) oxidizing microbial population in groundwaters is less numerous ranging from 0 cells mL-1 (Well FW300, Uncontaminated Background NABIR FRC) to 4.3 x 102 cells mL-1 (Well TPB16, Contaminated Area 2 NABIR FRC). The presence of nitrate-dependent U(IV) oxidizing bacteria supports our hypothesis that bacteria capable of anaerobic U(IV) oxidation are ubiquitous and indigenous to sedimentary and groundwater environments.« less
Hydrogen Plasma Processing of Iron Ore
NASA Astrophysics Data System (ADS)
Sabat, Kali Charan; Murphy, Anthony B.
2017-06-01
Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.
NASA Astrophysics Data System (ADS)
Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J. K.
2017-01-01
Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation-reduction reaction.
Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides.
Stewart, Sydney M; Hofstetter, Thomas B; Joshi, Prachi; Gorski, Christopher A
2018-05-15
Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe 2+ ) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential ( E H ) values for oxide-bound Fe 2+ species. Recently, our group demonstrated that E H values for hematite- and goethite-bound Fe 2+ can be accurately calculated using Gibbs free energy of formation values. Here, we tested if calculated E H values for oxide-bound Fe 2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area-normalized rate constant ( k SA ) values and E H and pH values [log( k SA ) = - E H /0.059 V - pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe 2+ relates to redox reaction kinetics.
NASA Astrophysics Data System (ADS)
Lomonosov, V. I.; Gordienko, Yu. A.; Sinev, M. Yu.; Rogov, V. A.; Sadykov, V. A.
2018-03-01
Mixed NaWMn/SiO2 oxide, samples containing individual components (Na, W, Mn) and their double combinations (Na-W, Na-Mn, W-Mn) supported on silica were studied by temperature programmed reduction (TPR) and desorption (TPD), and heat flow calorimetry during their reoxidation with molecular oxygen in pulse mode. The NaWMn/SiO2 mixed oxide was shown to contain two different types of reactive lattice oxygen. The weakly-bonded oxygen can be reversibly released from the oxide in a flow of inert gas in the temperature range of 575‒900°C, while the strongly-bonded oxygen can be removed during the reduction of the sample with hydrogen at 700-900°C. The measured thermal effect of oxygen consumption for these two oxygen forms are 185 and 350 kJ/mol, respectively. The amount of oxygen removed at reduction ( 443 μmol/g) considerably exceeded the amount desorbed in an inert gas flow ( 56 μmol/g). The obtained results suggest that the reversible oxygen desorption is due to the redox process in which manganese ions are involved, while during the temperature programmed reduction, mainly oxygen bonded with tungsten is removed.
All the reaction mechanisms developed during the proposed research activities will provide essential information during risk assessment and evaluation of remediation strategies of NACs contamination. The concept of integrated reductive/oxidative technologies. exper...
ACIDIFICATION OF AQUATIC AND TERRESTRIAL SYSTEMS: CHEMICAL WEATHERING
The pH and p(epsilon) of the terrestrial and aquatic environment is determined by coupled reactions of oxidation-reduction and acid-base. If disturbances are created in elemental cycles of the environment (whereby oxidation of C, S, and N exceeds reduction reactions), a net produ...
Enhancement of anaerobic DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) biotransformation by mixed cultures was studied with application of surfactants and oxidation reduction potential reducing agents. Without amendments, DDT transformation resulted mainly in the pr...
Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects.
Johnson, D Barrie; Kanao, Tadayoshi; Hedrich, Sabrina
2012-01-01
Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed.
Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects
Johnson, D. Barrie; Kanao, Tadayoshi; Hedrich, Sabrina
2012-01-01
Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed. PMID:22438853
NASA Astrophysics Data System (ADS)
Marrani, Andrea Giacomo; Coico, Anna Chiara; Giacco, Daniela; Zanoni, Robertino; Scaramuzzo, Francesca Anna; Schrebler, Ricardo; Dini, Danilo; Bonomo, Matteo; Dalchiele, Enrique A.
2018-07-01
Wafer-scale integration of reduced graphene oxide with H-terminated Si(1 1 1) surfaces has been accomplished by electrochemical reduction of a thin film of graphene oxide deposited onto Si by drop casting. Two reduction methods have been assayed and carried out in an acetonitrile solution. The initial deposit was subjected either to potential cycling in a 0.1 M TBAPF6/CH3CN solution at scan rates values of 20 mV s-1 and 50 mV s-1, or to a potentiostatic polarization at Eλ,c = -3 V for 450 s. The resulting interface has been characterized in its surface composition, morphology and electrochemical behavior by X-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy and electrochemical measurements. The results evidence that few-layer graphene deposits on H-Si(1 1 1) were obtained after reduction, and use of organic instead of aqueous medium led to a very limited surface oxidation of the Si substrate and a very low oxygen-to-carbon ratio. The described approach is fast, simple, economic, scalable and straightforward, as one reduction cycle is already effective in promoting the establishment of a graphene-Si interface. It avoids thermal treatments at high temperatures, use of aggressive chemicals and the presence of metal contaminants, and enables preservation of Si(1 1 1) surface from oxidation.
Characterization study of polycrystalline tin oxide surfaces before and after reduction in CO
NASA Technical Reports Server (NTRS)
Drawdy, Jean E.; Hoflund, Gar B.; Davidson, Mark R.; Schryer, David R.
1990-01-01
Polycrystalline tin oxide surfaces have been examined before and after reduction in 40 Torr of CO at 100 and 175 C using Auger electron spectroscopy (AES), electron spectroscopy for chemical analysis (ESCA), ion scattering spectroscopy (ISS) and electron stimulated desorption (ESD). The changes in the surface composition and chemical states of the surface species generally are subtle for the reductive conditions used. However, significant changes do occur with regard to the amounts and the chemical forms of the hydrogen-containing species remaining after both the 100 and 175 C reductions.
Lum, Yanwei; Ager, Joel W
2018-01-08
Oxide-derived (OD) Cu catalysts have high selectivity towards the formation of multi-carbon products (C 2 /C 3 ) for aqueous electrochemical CO 2 reduction (CO 2 R). It has been proposed that a large fraction of the initial oxide can be surprisingly resistant to reduction, and these residual oxides play a crucial catalytic role. The stability of residual oxides was investigated by synthesizing 18 O-enriched OD Cu catalysts and testing them for CO 2 R. These catalysts maintain a high selectivity towards C 2 /C 3 products (ca. 60 %) for up to 5 h in 0.1 m KHCO 3 at -1.0 V vs. RHE. However, secondary-ion mass spectrometry measurements show that only a small fraction (<1 %) of the original 18 O content remains, showing that residual oxides are not present in significant amounts during CO 2 R. Furthermore, we show that OD Cu can reoxidize rapidly, which could compromise the accuracy of ex situ methods for determining the true oxygen content. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rayala, Ramanjaneyulu; Giuglio-Tonolo, Alain; Broggi, Julie; Terme, Thierry; Vanelle, Patrice; Theard, Patricia; Médebielle, Maurice; Wnuk, Stanislaw F
2016-04-21
Studies directed toward the oxidative and reductive desulfurization of readily available 2'- S -aryl-2'-thiouridine derivatives were investigated with the prospect to functionalize the C2'-position of nucleosides. The oxidative desulfurization-difluorination strategy was successful on 2-(arylthio)alkanoate surrogates, while extension of the combination of oxidants and fluoride sources was not an efficient fluorination protocol when applied to 2'- S -aryl-2'-thiouridine derivatives, resulting mainly in C5-halogenation of the pyrimidine ring and C2'-monofluorination without desulfurization. Cyclic voltammetry of 2'-arylsulfonyl-2'-deoxyuridines and their 2'-fluorinated analogues showed that cleavage of the arylsulfone moiety could occur, although at relatively high cathodic potentials. While reductive-desulfonylation of 2'-arylsulfonyl-2'-deoxyuridines with organic electron donors (OEDs) gave predominantly base-induced furan type products, chemical (OED) and electrochemical reductive-desulfonylation of the α-fluorosulfone derivatives yielded the 2'-deoxy-2'-fluorouridine and 2',3'-didehydro-2',3'-dideoxy-2'-fluorouridine derivatives. These results provided good evidence of the generation of a C2'-anion through carbon-sulfur bond cleavage, opening new horizons for the reductive-functionalization approaches in nucleosides.
Rayala, Ramanjaneyulu; Giuglio-Tonolo, Alain; Broggi, Julie; Terme, Thierry; Vanelle, Patrice; Theard, Patricia; Médebielle, Maurice; Wnuk, Stanislaw F.
2016-01-01
Studies directed toward the oxidative and reductive desulfurization of readily available 2'-S-aryl-2'-thiouridine derivatives were investigated with the prospect to functionalize the C2'-position of nucleosides. The oxidative desulfurization-difluorination strategy was successful on 2-(arylthio)alkanoate surrogates, while extension of the combination of oxidants and fluoride sources was not an efficient fluorination protocol when applied to 2'-S-aryl-2'-thiouridine derivatives, resulting mainly in C5-halogenation of the pyrimidine ring and C2'-monofluorination without desulfurization. Cyclic voltammetry of 2'-arylsulfonyl-2'-deoxyuridines and their 2'-fluorinated analogues showed that cleavage of the arylsulfone moiety could occur, although at relatively high cathodic potentials. While reductive-desulfonylation of 2'-arylsulfonyl-2'-deoxyuridines with organic electron donors (OEDs) gave predominantly base-induced furan type products, chemical (OED) and electrochemical reductive-desulfonylation of the α-fluorosulfone derivatives yielded the 2'-deoxy-2'-fluorouridine and 2',3'-didehydro-2',3'-dideoxy-2'-fluorouridine derivatives. These results provided good evidence of the generation of a C2'-anion through carbon-sulfur bond cleavage, opening new horizons for the reductive-functionalization approaches in nucleosides. PMID:27019535
Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide
NASA Astrophysics Data System (ADS)
Saquib, Mohammad; Halder, Aditi
2018-02-01
Electrochemical reduction of carbon dioxide is one of the methods which have the capability to recycle CO2 into valuable products for energy and industrial applications. This research article describes about a new electrocatalyst "reduced graphene oxide supported gold nanoparticles" for selective electrochemical conversion of carbon dioxide to carbon monoxide. The main aim for conversion of CO2 to CO lies in the fact that the latter is an important component of syn gas (a mixture of hydrogen and carbon monoxide), which is then converted into liquid fuel via well-known industrial process called Fischer-Tropsch process. In this work, we have synthesized different composites of the gold nanoparticles supported on defective reduced graphene oxide to evaluate the catalytic activity of reduced graphene oxide (RGO)-supported gold nanoparticles and the role of defective RGO support towards the electrochemical reduction of CO2. Electrochemical and impedance measurements demonstrate that higher concentration of gold nanoparticles on the graphene support led to remarkable decrease in the onset potential of 240 mV and increase in the current density for CO2 reduction. Lower impedance and Tafel slope values also clearly support our findings for the better performance of RGOAu than bare Au for CO2 reduction.
NASA Astrophysics Data System (ADS)
Unruh, Karl; Cichocki, Ronald; Kelly, Brian; Poirier, Gerald
2015-03-01
To better assess the potential of cobalt oxide for thermal energy storage (TES), the Co3O4/CoO oxidation/reduction reaction has been studied by thermogravimetric (TGA), calorimetric (DSC), and x-ray diffraction (XRD) measurements in N2 and atmospheric air environments. TGA measurements showed an abrupt mass loss of about 6.6% in both N2 and air, consistent with the stoichiometric reduction of Co3O4 to CoO and structural measurements. The onset temperature of the reduction of Co3O4 in air was only weakly dependent on the sample heating rate and occurred at about 910 °C. The onset temperature for the oxidation of CoO varied between about 850 and 875 °C for cooling rates between 1 and 20 °C/min, but complete re-conversion to Co3O4 could only be achieved at the slowest cooling rates. Due to the dependence of the rate constant on the oxygen partial pressure, the oxidation of Co3O4 in a N2 environment occurred at temperatures between about 775 and 825 °C for heating rates between 1 and 20 °C/min and no subsequent re-oxidation of the reduced Co3O4 was observed on cooling to room temperature. In conjunction with a measured transition heat of about 600 J/g of Co3O4, these measurements indicate that cobalt oxide is a viable TES material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.
Nitrate contamination in soils, sediments, and water bodies is a significant issue. Although much is known about nitrate degradation in these environments, especially via microbial pathways, a complete understanding of all degradation processes, especially in clay mineral-rich soils, is still lacking. The objective of this study was to study the potential of removing nitrate contaminant using structural Fe(II) in clay mineral nontronite. Specifically, the coupled processes of microbial oxidation of Fe(II) in microbially reduced nontronite (NAu-2) and nitrate reduction by Pseudogulbenkiania species strain 2002 was investigated. Bio-oxidation experiments were conducted in bicarbonate-buffered medium under both growth and nongrowth conditions. Themore » extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in nontronite. The bio-oxidation extent under growth and nongrowth conditions reached 93% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Magnetite was a mineral product of nitrate-dependent Fe(II) oxidation, as evidenced by XRD data and TEM diffraction patterns. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in soils.« less
New Screening Test Developed for the Blanching Resistance of Copper Alloys
NASA Technical Reports Server (NTRS)
Thomas-Ogbuji, Linus U.
2004-01-01
NASA's extensive efforts towards more efficient, safer, and more affordable space transportation include the development of new thrust-cell liner materials with improved capabilities and longer lives. For rocket engines fueled with liquid hydrogen, an important metric of liner performance is resistance to blanching, a phenomenon of localized wastage by cycles of oxidation-reduction due to local imbalance in the oxygen-fuel ratio. The current liner of the Space Shuttle Main Engine combustion chamber, a Cu-3Ag-0.5Zr alloy (NARloy-Z) is degraded in service by blanching. Heretofore, evaluating a liner material for blanching resistance involved elaborate and expensive hot-fire tests performed on rocket test stands. To simplify that evaluation, researchers at the NASA Glenn Research Center developed a screening test that uses simple, in situ oxidation-reduction cycling in a thermogravimetric analyzer (TGA). The principle behind this test is that resistance to oxidation or to the reduction of oxide, or both, implies resistance to blanching. Using this test as a preliminary tool to screen alloys for blanching resistance can improve reliability and save time and money. In this test a small polished coupon is hung in a TGA furnace at the desired (service) temperature. Oxidizing and reducing gases are introduced cyclically, in programmed amounts. Cycle durations are chosen by calibration, such that all copper oxides formed by oxidation are fully reduced in the next reduction interval. The sample weight is continuously acquired by the TGA as usual.
Gilson, Emily R; Huang, Shan; Jaffé, Peter R
2015-11-01
This study investigated the possibility of links between the biological immobilization of uranium (U) and ammonium oxidation under iron (Fe) reducing conditions. The recently-identified Acidimicrobiaceae bacterium A6 (ATCC, PTA-122488) derives energy from ammonium oxidation coupled with Fe reduction. This bacterium has been found in various soil and wetland environments, including U-contaminated wetland sediments. Incubations of Acidimicrobiaceae bacteria A6 with nontronite, an Fe(III)-rich clay, and approximately 10 µM U indicate that these bacteria can use U(VI) in addition to Fe(III) as an electron acceptor in the presence of ammonium. Measurements of Fe(II) production and ammonium oxidation support this interpretation. Concentrations of approximately 100 µM U were found to entirely inhibit Acidimicrobiaceae bacteria A6 activity. These results suggest that natural sites of active ammonium oxidation under Fe reducing conditions by Acidimicrobiaceae bacteria A6 could be hotspots of U immobilization by bioreduction. This is the first report of biological U reduction that is not coupled to carbon oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve Xunhu
Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reductionmore » of P2O5 in the glass-ceramic where the P 2O 5 is to form Li 3PO 4 nuclei for growth of high expansion crystalline SiO 2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.« less
Investigation of Mixed Oxide Catalysts for NO Oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.
2014-12-09
The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been foundmore » to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).« less
In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry...
A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...
The postulated scheme for the metabolism of inorganic As involves alternating steps of oxidative methylation and of reduction of As from the pentavalent to the trivalent oxidation state, producing methylated compounds containing AsIII that are highly reactive and toxic. S-adenosy...
Cyclic voltammetry was used qualitatively to characterize and determine the feasibility of the oxidation and reduction of selected organic peroxides and hydroperoxides at a glassy carbon electrode. Organic peroxides were determined using reversed-phase high-performance liquid chr...
The Simulation of an Oxidation-Reduction Titration Curve with Computer Algebra
ERIC Educational Resources Information Center
Whiteley, Richard V., Jr.
2015-01-01
Although the simulation of an oxidation/reduction titration curve is an important exercise in an undergraduate course in quantitative analysis, that exercise is frequently simplified to accommodate computational limitations. With the use of readily available computer algebra systems, however, such curves for complicated systems can be generated…
Regeneration of anion exchange resins by catalyzed electrochemical reduction
Gu, Baohua; Brown, Gilbert M.
2002-01-01
Anion exchange resins sorbed with perchlorate may be regenerated by a combination of chemical reduction of perchlorate to chloride using a reducing agent and an electrochemical reduction of the oxidized reducing agent. Transitional metals including Ti, Re, and V are preferred chemical reagents for the reduction of perchlorate to chloride. Complexing agents such as oxalate are used to prevent the precipitation of the oxidized Ti(IV) species, and ethyl alcohol may be added to accelerate the reduction kinetics of perchlorate. The regeneration may be performed by continuously recycling the regenerating solution through the resin bed and an electrochemical cell so that the secondary waste generation is minimized.
Lou, Zhangrong; Li, Peng; Han, Keli
2015-01-01
Selenium is a biologically important trace element and acts as an active center of glutathione peroxidase (GPx). GPx is the important antioxidant enzyme to protect organisms from oxidative damage via catalyzing the reaction between ROS and glutathione (GSH). Mimicking the oxidation-reduction cycles of the versatile selenium core in GPx, we can develop fluorescence probes to detect oxidation and reduction events in living systems. The cellular redox balance between hypochloric acid (HClO) and hydrogen sulfide (H2S) has broad implications in human health and diseases, such as Alzheimer's disease (AD). Therefore, to further investigate the roles of this redox balance and understand the pathogenesis of neurodegenerative diseases, it is necessary to detect the redox state between HClO and H2S in real time. We have developed a reversible fluorescence probe MPhSe-BOD for imaging of the redox cycle between HClO and H2S based on oxidation and reduction of selenide in living cells.
Localized conductive patterning via focused electron beam reduction of graphene oxide
NASA Astrophysics Data System (ADS)
Kim, Songkil; Kulkarni, Dhaval D.; Henry, Mathias; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V.; Fedorov, Andrei G.
2015-03-01
We report on a method for "direct-write" conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.
Johnson, D. Barrie; Hedrich, Sabrina; Pakostova, Eva
2017-01-01
Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A. cryptum. Measurements of redox potentials of iron, copper and chromium couples in acidic, sulfate-containing liquors showed that these differed from situations where metals are not complexed by inorganic ligands, and supported the current observations of indirect copper oxido-reduction and chromium reduction mediated by acidophilic bacteria. The implications of these results for both industrial applications of acidophiles and for exobiology are discussed. PMID:28239375
Chen, Huanlian; Denton, Travis T; Xu, Hui; Calingasan, Noel; Beal, M Flint; Gibson, Gary E
2016-12-01
Reductions in metabolism and excess oxidative stress are prevalent in multiple neurodegenerative diseases. The activity of the mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) appears central to these abnormalities. KGDHC is diminished in multiple neurodegenerative diseases. KGDHC can not only be rate limiting for NADH production and for substrate level phosphorylation, but is also a source of reactive oxygen species (ROS). The goal of these studies was to determine how changes in KGDHC modify baseline ROS, the ability to buffer ROS, baseline glutathionylation, calcium modulation and cell death in response to external oxidants. In vivo, reducing KGDHC with adeno virus diminished neurogenesis and increased oxidative stress. In vitro, treatments of short duration increased ROS and glutathionylation and enhanced the ability of the cells to diminish the ROS from added oxidants. However, long-term reductions lessened the ability to diminish ROS, diminished glutathionylation and exaggerated oxidant-induced changes in calcium and cell death. Increasing KGDHC enhanced the ability of the cells to diminish externally added ROS and protected against oxidant-induced changes in calcium and cell death. The results suggest that brief periods of diminished KGDHC are protective, while prolonged reductions are harmful. Furthermore, elevated KGDHC activities are protective. Thus, mitogenic therapies that increase KGDHC may be beneficial in neurodegenerative diseases. Read the Editorial Highlight for this article on Page 689. © 2016 International Society for Neurochemistry.
Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.
Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia
2011-11-01
Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Green reduction of graphene oxide by ascorbic acid
NASA Astrophysics Data System (ADS)
Khosroshahi, Zahra; Kharaziha, Mahshid; Karimzadeh, Fathallah; Allafchian, Alireza
2018-01-01
Graphene, a single layer of sp2-hybridized carbon atoms in a hexagonal (two-dimensional honey-comb) lattice, has attracted strong scientific and technological interest due to its novel and excellent optical, chemical, electrical, mechanical and thermal properties. The solution-processable chemical reduction of Graphene oxide (GO is considered as the most favorable method regarding mass production of graphene. Generally, the reduction of GO is carried out by chemical approaches using different reductants such as hydrazine and sodium borohydride. These components are corrosive, combustible and highly toxic which may be dangerous for personnel health and the environment. Hence, these reducing agents are not promising choice for reducing of graphene oxide (GO). As a consequence, it is necessary for further development and optimization of eco-friendly, natural reducing agent for clean and effective reduction of GO. Ascorbic acid, an eco-friendly and natural reducing agents, having a mild reductive ability and nontoxic property. So, the aim of this research was to green synthesis of GO with ascorbic acid. For this purpose, the required amount of NaOH and ascorbic acid were added to GO solution (0.5 mg/ml) and were heated at 95 °C for 1 hour. According to the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical results, GO were reduced with ascorbic acid like hydrazine with better electrochemical properties and ascorbic acid is an ideal substitute for hydrazine in the reduction of graphene oxide process.
Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide
NASA Astrophysics Data System (ADS)
Merwin, Augustus
Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy showed mixed (kinetic and diffusion) control and an overall low impedance due to extreme corrosion. It was observed that tungsten is sufficiently stable in LiCl - 2wt% Li 2O at 700°C at the required anodic potential for the reduction of uranium oxide. This study identifies tungsten to be a superior anode material to platinum for the electrolytic reduction of uranium oxide, both in terms of superior corrosion behavior and reduced cost, and thus recommends that tungsten be further investigated as an alternative anode for the electrolytic reduction of uranium dioxide.
Kaminska, Izabela; Das, Manash R; Coffinier, Yannick; Niedziolka-Jonsson, Joanna; Sobczak, Jonusz; Woisel, Patrice; Lyskawa, Joel; Opallo, Marcin; Boukherroub, Rabah; Szunerits, Sabine
2012-02-01
An easy and environmentally friendly chemical method for the simultaneous reduction and noncovalent functionalization of graphene oxide (GO) using dopamine derivatives is described. The reaction takes place at room temperature under ultrasonication of an aqueous suspension of GO and a dopamine derivative. X-ray photoelectron spectroscopy, FT-IR spectroscopy, and cyclic voltammetry characterizations revealed that the resulting material consists of graphene functionalized with the dopamine derivative. This one-step protocol is applied for simultaneous reduction and functionalization of graphene oxide with a dopamine derivative bearing an azide function. The chemical reactivity of the azide function was demonstrated by a postfunctionalization with ethynylferrocene using the Cu(I) catalyzed 1,3-dipolar cyloaddition.
Laser modification of graphene oxide layers
NASA Astrophysics Data System (ADS)
Malinský, Petr; Macková, Anna; Cutroneo, Mariapompea; Siegel, Jakub; Bohačová, Marie; Klímova, Kateřina; Švorčík, Václav; Sofer, Zdenĕk
2018-01-01
The effect of linearly polarized laser irradiation with various energy densities was successfully used for reduction of graphene oxide (GO). The ion beam analytical methods (RBS, ERDA) were used to follow the elemental composition which is expected as the consequence of GO reduction. The chemical composition analysis was accompanied by structural study showing changed functionalities in the irradiated GO foils using spectroscopy techniques including XPS, FTIR and Raman spectroscopy. The AFM was employed to identify the surface morphology and electric properties evolution were subsequently studied using standard two point method measurement. The used analytical methods report on reduction of irradiated graphene oxide on the surface and the decrease of surface resistivity as a growing function of the laser beam energy density.
Liebeskind, Lanny S; Gangireddy, Pavankumar; Lindale, Matthew G
2016-06-01
Carboxylic acids and amine/amino acid reactants can be converted to amides and peptides at neutral pH within 5-36 h at 50 °C using catalytic quantities of a redox-active benzoisothiazolone and a copper complex. These catalytic "oxidation-reduction condensation" reactions are carried out open to dry air using O2 as the terminal oxidant and a slight excess of triethyl phosphite as the reductant. Triethyl phosphate is the easily removed byproduct. These simple-to-run catalytic reactions provide practical and economical procedures for the acylative construction of C-N bonds.
Wang, Meng; Hou, Yuyang; Slade, Robert C. T.; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun
2016-01-01
Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C. PMID:27597939
NASA Astrophysics Data System (ADS)
Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.
PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.
Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.
2017-01-01
Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation–reduction reaction.
On the Significance of a Carbon-Rich Background in Plasma-Based Graphene Oxide Reduction
2016-06-02
can lead to the formation of defects and vacancies. We find that methane provides not only hydrogen but also the carbon necessary to restore the...Graphene oxide Reduction Plasma Argon Hydrogen Methane Office of Naval Research One Liberty Center 875 North Randolph Street, Suite 1425 Arlington, VA...electron-beam generated plasmas produced in argon/ methane (Ar/CH4) backgrounds. However, unlike other reduction approaches [14] the process was found to
Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang
2016-03-29
The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into "redox mediator-iron oxide" interaction in the presence of DIRB. Two pre-incubation reaction systems of the "strain S12- goethite" and the "strain S12-AQS" were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for "Quinone-Iron" interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among "quinone-DIRB- goethite" under biotic/abiotic driven.
Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics.
McDonald, Matthew P; Eltom, Ahmed; Vietmeyer, Felix; Thapa, Janak; Morozov, Yurii V; Sokolov, Denis A; Hodak, Jose H; Vinodgopal, Kizhanipuram; Kamat, Prashant V; Kuno, Masaru
2013-01-01
Graphene oxide (GO) is an important precursor in the production of chemically derived graphene. During reduction, GO's electrical conductivity and band gap change gradually. Doping and chemical functionalization are also possible, illustrating GO's immense potential in creating functional devices through control of its local hybridization. Here we show that laser-induced photolysis controllably reduces individual single-layer GO sheets. The reaction can be followed in real time through sizable decreases in GO's photoluminescence efficiency along with spectral blueshifts. As-produced reduced graphene oxide (rGO) sheets undergo additional photolysis, characterized by dramatic emission enhancements and spectral redshifts. Both GO's reduction and subsequent conversion to photobrightened rGO are captured through movies of their photoluminescence kinetics. Rate maps illustrate sizable spatial and temporal heterogeneities in sp(2) domain growth and reveal how reduction "flows" across GO and rGO sheets. The observed heterogeneous reduction kinetics provides mechanistic insight into GO's conversion to chemically derived graphene and highlights opportunities for overcoming its dynamic, chemical disorder.
Biogeochemistry of manganese in ferruginous Lake Matano, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, C.; Crowe, S.A.; Sturm, A.
2012-12-13
This study explores Mn biogeochemistry in a stratified, ferruginous lake, a modern analogue to ferruginous oceans. Intense Mn cycling occurs in the chemocline where Mn is recycled at least 15 times before sedimentation. The product of biologically catalyzed Mn oxidation in Lake Matano is birnessite. Although there is evidence for abiotic Mn reduction with Fe(II), Mn reduction likely occurs through a variety of pathways. The flux of Fe(II) is insufficient to balance the reduction of Mn at 125m depth in the water column, and Mn reduction could be a significant contributor to CH{sub 4} oxidation. By combining results from synchrotron-basedmore » X-ray fluorescence and X-ray spectroscopy, extractions of sinking particles, and reaction transport modeling, we find the kinetics of Mn reduction in the lake's reducing waters are sufficiently rapid to preclude the deposition of Mn oxides from the water column to the sediments underlying ferruginous water. This has strong implications for the interpretation of the sedimentary Mn record.« less
A density functional theory study of CO oxidation on CuO1-x(111).
Yang, Bing-Xing; Ye, Li-Ping; Gu, Hui-Jie; Huang, Jin-Hua; Li, Hui-Ying; Luo, Yong
2015-08-01
The surface structures, CO adsorption, and oxidation-reaction properties of CuO1-x(111) with different reduction degree have been investigated by using density functional theory including on-site Coulomb corrections (DFT + U). Results indicate that the reduction of Cu has a great influence on the adsorption of CO. Electron localization caused by the reduction turns Cu(2+) to Cu(+), which interacts much stronger with CO, and the adsorption strength of CO is related to the electronic interaction with the substrate as well as the structural relaxation. In particular, the electronic interaction is proved to be the decisive factor. The surfaces of CuO1-x(111) with different reduction degree all have good adsorption to CO. With the expansion of the surface reduction degree, the amount of CO that is stably adsorbed on the surface increases, while the number of surface active lattice O decreases. In general, the activity of CO oxidation first rises and then declines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharlamov, Alexey; Bondarenko, Marina, E-mail: mebondarenko@ukr.net; Kharlamova, Ganna
For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists ofmore » weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.« less
Sutka, R L; Ostrom, N E; Ostrom, P H; Breznak, J A; Gandhi, H; Pitt, A J; Li, F
2006-01-01
The intramolecular distribution of nitrogen isotopes in N2O is an emerging tool for defining the relative importance of microbial sources of this greenhouse gas. The application of intramolecular isotopic distributions to evaluate the origins of N2O, however, requires a foundation in laboratory experiments in which individual production pathways can be isolated. Here we evaluate the site preferences of N2O produced during hydroxylamine oxidation by ammonia oxidizers and by a methanotroph, ammonia oxidation by a nitrifier, nitrite reduction during nitrifier denitrification, and nitrate and nitrite reduction by denitrifiers. The site preferences produced during hydroxylamine oxidation were 33.5 +/- 1.2 per thousand, 32.5 +/- 0.6 per thousand, and 35.6 +/- 1.4 per thousand for Nitrosomonas europaea, Nitrosospira multiformis, and Methylosinus trichosporium, respectively, indicating similar site preferences for methane and ammonia oxidizers. The site preference of N2O from ammonia oxidation by N. europaea (31.4 +/- 4.2 per thousand) was similar to that produced during hydroxylamine oxidation (33.5 +/- 1.2 per thousand) and distinct from that produced during nitrifier denitrification by N. multiformis (0.1 +/- 1.7 per thousand), indicating that isotopomers differentiate between nitrification and nitrifier denitrification. The site preferences of N2O produced during nitrite reduction by the denitrifiers Pseudomonas chlororaphis and Pseudomonas aureofaciens (-0.6 +/- 1.9 per thousand and -0.5 +/- 1.9 per thousand, respectively) were similar to those during nitrate reduction (-0.5 +/- 1.9 per thousand and -0.5 +/- 0.6 per thousand, respectively), indicating no influence of either substrate on site preference. Site preferences of approximately 33 per thousand and approximately 0 per thousand are characteristic of nitrification and denitrification, respectively, and provide a basis to quantitatively apportion N2O.
In-Situ Chemical Reduction and Oxidation of VOCs in Groundwater: Groundwater Treatability Studies
NASA Technical Reports Server (NTRS)
Keith, Amy; Glasgow, Jason; McCaleh, Rececca C. (Technical Monitor)
2001-01-01
This paper presents NASA Marshall Space Flight Center's treatability studies for volatile organic compounds in groundwater. In-Situ groundwater treatment technologies include: 1) Chemical Reduction(Ferox); 2) Chemical Oxidation (Fenton Reagents, Permanganate, and Persulfate); and 3) Thermal (Dynamic Underground Stripping, Six-Phase Heating). This paper is presented in viewgraph form.
In situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids
Apblett, Christopher A.; Stewart, David M.; Fryer, Robert T.; ...
2015-10-23
We apply in situ X-Ray Absorption Near Edge Spectroscopy (XANES) and Extended X-Ray Absorption Fine Structure (EXAFS) techniques to a metal center ionic liquid undergoing oxidation and reduction in a three electrode spectroscopic cell. Furthermore, the determination of the extent of reduction under negative bias on the working electrode and the extent of oxidation are determined after pulse voltammetry to quiescence. While the ionic liquid undergoes full oxidation, it undergoes only partial reduction, likely due to transport issues on the timescale of the experiment. Nearest neighbor Fe-O distances in the fully oxidized state match well to expected values for similarlymore » coordinated solids, but reduction does not result in an extension of the Fe-O bond length, as would be expected from comparisons to the solid phase. Instead, little change in bond length is observed. Finally, we suggest that this may be due to a more complex interaction between the monodentate ligands of the metal center anion and the surrounding charge cloud, rather than straightforward electrostatics between the metal center and the nearest neighbor grouping.« less
Figueroa, Israel A; Barnum, Tyler P; Somasekhar, Pranav Y; Carlström, Charlotte I; Engelbrektson, Anna L; Coates, John D
2018-01-02
Dissimilatory phosphite oxidation (DPO), a microbial metabolism by which phosphite (HPO 3 2- ) is oxidized to phosphate (PO 4 3- ), is the most energetically favorable chemotrophic electron-donating process known. Only one DPO organism has been described to date, and little is known about the environmental relevance of this metabolism. In this study, we used 16S rRNA gene community analysis and genome-resolved metagenomics to characterize anaerobic wastewater treatment sludge enrichments performing DPO coupled to CO 2 reduction. We identified an uncultivated DPO bacterium, Candidatus Phosphitivorax ( Ca. P.) anaerolimi strain Phox-21, that belongs to candidate order GW-28 within the Deltaproteobacteria , which has no known cultured isolates. Genes for phosphite oxidation and for CO 2 reduction to formate were found in the genome of Ca. P. anaerolimi, but it appears to lack any of the known natural carbon fixation pathways. These observations led us to propose a metabolic model for autotrophic growth by Ca. P. anaerolimi whereby DPO drives CO 2 reduction to formate, which is then assimilated into biomass via the reductive glycine pathway.
NASA Astrophysics Data System (ADS)
Palmieri, Valentina; Barba, Marta; Di Pietro, Lorena; Gentilini, Silvia; Chiara Braidotti, Maria; Ciancico, Carlotta; Bugli, Francesca; Ciasca, Gabriele; Larciprete, Rosanna; Lattanzi, Wanda; Sanguinetti, Maurizio; De Spirito, Marco; Conti, Claudio; Papi, Massimiliano
2018-01-01
Graphene and graphene oxide (GO) are capable of inducing stem cells differentiation into bone tissue with variable efficacy depending on reductive state of the material. Thus, modulation of osteogenic process and of bone mineral density distribution is theoretically possible by controlling the GO oxidative state. In this study, we laser-printed GO surfaces in order to obtain both a local photo-thermal GO reduction and the formation of nano-wrinkles along precise geometric pattern. Initially, after cells adhered on the surface, stem cells migrated and accumulated on the reduced and wrinkled surface. When the local density of the stem cells on the reduced stripes was high, cells started to proliferate and occupy the oxidized/flat area. The designed surfaces morphology guided stem cell orientation and the reduction accelerated differentiation. Furthermore the reduced sharp nano-wrinkles were able to enhance the GO antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), a common cause of prosthetic joints infections. This strategy can offer a revolution in present and future trends of scaffolds design for regenerative medicine.
Tuning spontaneous polarization to alter water oxidation/reduction activities of LiNbO3
NASA Astrophysics Data System (ADS)
Fu, Hongwei; Song, Yan; Wu, Yangqing; Huang, Huiting; Fan, Guozheng; Xu, Jun; Li, Zhaosheng; Zou, Zhigang
2018-02-01
Here, we investigated the effects of spontaneous polarization on photoreactivities by using a ferroelectric material n-type congruent LiNbO3 single crystal as a model. It was found that c+ LiNbO3 was superior to c- LiNbO3 in photocatalytic water reduction, while c- LiNbO3 exhibited better performances for photoelectrochemical water oxidation than c+ LiNbO3. Using Kelvin probe force microscopy and open circuit potential methods, we observed that c- LiNbO3 generated a higher photovoltage and had a slower charge-recombination rate than c+ LiNbO3. The results of electrochemical impedance spectroscopy measurements indicated that c- LiNbO3 may favor the hole transport from the bulk to the surface compared with c+ LiNbO3, leading to the anisotropic performances of c+ and c- LiNbO3 in water oxidation/reduction. Therefore, tuning the direction of the polarization may be a strategy to dramatically prompt the photoreactivities of water oxidation or reduction.
Wet air oxidation induced enhanced biodegradability of distillery effluent.
Malik, S N; Saratchandra, T; Tembhekar, P D; Padoley, K V; Mudliar, S L; Mudliar, S N
2014-04-01
The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash. Copyright © 2014 Elsevier Ltd. All rights reserved.
Method of removing oxidized contaminants from water
Amonette, James E.; Fruchter, Jonathan S.; Gorby, Yuri A.; Cole, Charles R.; Cantrell, Kirk J.; Kaplan, Daniel I.
1998-01-01
The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).
Method of removing oxidized contaminants from water
Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.
1998-07-21
The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.
Green reduction of graphene oxide via Lycium barbarum extract
NASA Astrophysics Data System (ADS)
Hou, Dandan; Liu, Qinfu; Cheng, Hongfei; Zhang, Hao; Wang, Sen
2017-02-01
The synthesis of graphene from graphene oxide (GO) usually involves toxic reducing agents that are harmful to human health and the environment. Here, we report a facile approach for effective reduction of GO, for the first time, using Lycium barbarum extract as a green and natural reducing agent. The morphology and de-oxidation efficiency of the reduced graphene were characterized and results showed that Lycium barbarum extract can effectively reduce GO into few layered graphene with a high carbon to oxygen ratio (6.5), comparable to that of GO reduced by hydrazine hydrate (6.6). The possible reduction mechanism of GO may be due to the active components existing in Lycium barbarum fruits, which have high binding affinity to the oxygen containing groups to form their corresponding oxides and other by-products. This method avoided the use of any nocuous chemicals, thus facilitating the mass production of graphene and graphene-based bio-materials.
One-step electrolytic preparation of Si-Fe alloys as anodes for lithium ion batteries
NASA Astrophysics Data System (ADS)
Wang, Hailong; Sun, Diankun; Song, Qiqi; Xie, Wenqi; Jiang, Xu; Zhang, Bo
2016-06-01
One-step electrolytic formation of uniform crystalline Si-Fe alloy particles was successfully demonstrated in direct electro-reduction of solid mixed oxides of SiO2 and Fe2O3 in molten CaCl2 at 900∘C. Upon constant voltage electrolysis of solid mixed oxides at 2.8V between solid oxide cathode and graphite anode for 5h, electrolytic Si-Fe with the same Si/Fe stoichimetry of the precursory oxides was generated. The firstly generated Fe could function as depolarizers to enhance reduction rate of SiO2, resulting in the enhanced reduction kinetics to the electrolysis of individual SiO2. When evaluated as anode for lithium ion batteries, the prepared SiFe electrode showed a reversible lithium storage capacity as high as 470mAh g-1 after 100 cycles at 200mA g-1, promising application in high-performance lithium ion batteries.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.
1991-01-01
Ultrasonic velocity measurement techniques were used to evaluate the effects of oxidation and reduction on the elastic properties, global microstructure and oxygen content of the YBa2Cu3O(7-x) ceramic superconductor for samples ranging from 70 to 90 pct. of theoretical density. Bulk density, velocity, and elastic modulus generally increased with increasing oxygen content upon oxidation, and this behavior was reversible. Velocity image patterns were similar after oxidation and reduction treatments for a 90 pct. dense sample, although the velocity value at any given point on the sample was changed following the treatments. The unchanging pattern correlated with destructive measurements showing that the spatial pore distribution (fraction and size) was not measurably altered after the treatments. Changes in superconducting behavior, crystal structure, and grain structure were observed consistent with changes in oxygen content.
Electrochemistry in the mimicry of oxidative drug metabolism by cytochrome P450s.
Nouri-Nigjeh, Eslam; Bischoff, Rainer; Bruins, Andries P; Permentier, Hjalmar P
2011-05-01
Prediction of oxidative drug metabolism at the early stages of drug discovery and development requires fast and accurate analytical techniques to mimic the in vivo oxidation reactions by cytochrome P450s (CYP). Direct electrochemical oxidation combined with mass spectrometry, although limited to the oxidation reactions initiated by charge transfer, has shown promise in the mimicry of certain CYP-mediated metabolic reactions. The electrochemical approach may further be utilized in an automated manner in microfluidics devices facilitating fast screening of oxidative drug metabolism. A wide range of in vivo oxidation reactions, particularly those initiated by hydrogen atom transfer, can be imitated through the electrochemically-assisted Fenton reaction. This reaction is based on O-O bond activation in hydrogen peroxide and oxidation by hydroxyl radicals, wherein electrochemistry is used for the reduction of molecular oxygen to hydrogen peroxide, as well as the reduction of Fe(3+) to Fe(2+). Metalloporphyrins, as surrogates for the prosthetic group in CYP, utilizing metallo-oxo reactive species, can also be used in combination with electrochemistry. Electrochemical reduction of metalloporphyrins in solution or immobilized on the electrode surface activates molecular oxygen in a manner analogous to the catalytical cycle of CYP and different metalloporphyrins can mimic selective oxidation reactions. Chemoselective, stereoselective, and regioselective oxidation reactions may be mimicked using electrodes that have been modified with immobilized enzymes, especially CYP itself. This review summarizes the recent attempts in utilizing electrochemistry as a versatile analytical and preparative technique in the mimicry of oxidative drug metabolism by CYP. © 2011 Bentham Science Publishers Ltd.
NASA Astrophysics Data System (ADS)
Cavazos, A. R.; Taillefert, M.; Glass, J. B.
2016-12-01
The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.
Green reduction of graphene oxide via Lycium barbarum extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dandan, E-mail: houdandan114@163.com; Liu, Qinfu, E-mail: lqf@cumtb.edu.cn; Cheng, Hongfei, E-mail: h.cheng@cumtb.edu.cn
The synthesis of graphene from graphene oxide (GO) usually involves toxic reducing agents that are harmful to human health and the environment. Here, we report a facile approach for effective reduction of GO, for the first time, using Lycium barbarum extract as a green and natural reducing agent. The morphology and de-oxidation efficiency of the reduced graphene were characterized and results showed that Lycium barbarum extract can effectively reduce GO into few layered graphene with a high carbon to oxygen ratio (6.5), comparable to that of GO reduced by hydrazine hydrate (6.6). The possible reduction mechanism of GO may bemore » due to the active components existing in Lycium barbarum fruits, which have high binding affinity to the oxygen containing groups to form their corresponding oxides and other by-products. This method avoided the use of any nocuous chemicals, thus facilitating the mass production of graphene and graphene-based bio-materials. - Graphical abstract: Schematic illustration of the preparation of reduced graphene by Lycium barbarum extract. - Highlights: • The Lycium barbarum extract was used for the reduction of graphene oxide. • The obtained few layered graphene exhibited high carbon to oxygen ratio. • This approach can be applied in the preparation of graphene-based bio-materials.« less
Schopfer, Mark P.; Wang, Jun; Karlin, Kenneth D.
2010-01-01
The focus of this Forum review highlights work from our own laboratories and those of others in the area of biochemical and biologically inspired inorganic chemistry dealing with nitric oxide (nitrogen monoxide, ·NO(g)) and its biological roles and reactions. The latter focus is on (i) oxidation of ·NO(g) to nitrate by nitric oxide dioxygenases (NOD’s), and (ii) reductive coupling of two molecules of ·NO(g) to give N2O(g). In the former case, NOD’s are described and the highlighting of possible peroxynitrite-heme intermediates and consequences of this are given by discussion of recent works with myoglobin and a synthetic heme model system for NOD action. Summaries of recent copper complex chemistries with ·NO(g) and O2(g) leading to peroxynitrite species are given. The coverage of biological reductive coupling of ·NO(g) deals with bacterial nitric oxide reductases (NOR’s) with heme/non-heme diiron active sites, and on heme/Cu oxidases such as cytochrome c oxidase which can mediate the same chemistry. Recent designed protein and synthetic model compound (heme/non-heme diiron or heme/copper) as functional mimics are discussed in some detail. We also highlight examples from the chemical literature, not necessarily involving biologically relevant metal ions, which describe the oxidation of ·NO(g) to nitrate (or nitrite) and possible peroxynitrite intermediates, or reductive coupling of ·NO(g) to give nitrous oxide. PMID:20666386
Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi
2014-08-15
Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin Ryu, Ho; Chan Song, Kee; Il Park, Geun; Won Lee, Jung; Seung Yang, Myung
2005-02-01
A direct dry recycling process was developed in order to reuse spent pressurized light water reactor (LWR) nuclear fuel in CANDU reactors without the separation of sensitive nuclear materials such as plutonium. The benefits of the dry recycling process are the saving of uranium resources and the reduction of spent fuel accumulation as well as a higher proliferation resistance. In the process of direct dry recycling, fuel pellets separated from spent LWR fuel rods are oxidized from UO2 to U3O8 at 500 °C in an air atmosphere and reduced into UO2 at 700 °C in a hydrogen atmosphere, which is called OREOX (oxidation and reduction of oxide fuel). The pellets are pulverized during the oxidation and reduction processes due to the phase transformation between cubic UO2 and orthorhombic U3O8. Using the oxide powder prepared from the OREOX process, the compaction and sintering processes are performed in a remote manner in a shielded hot cell due to the high radioactivity of the spent fuel. Most of the fission gas and volatile fission products are removed during the OREOX and sintering processes. The mini-elements fabricated by the direct dry recycling process are irradiated in the HANARO research reactor for the performance evaluation of the recycled fuel pellets. Post-irradiation examination of the irradiated fuel showed that microstructural evolution and fission gas release behavior of the dry-recycled fuel were similar to high burnup UO2 fuel.
Experimental characterization of enhanced SNCR process with carbonaceous gas additives.
Yao, Ting; Duan, Yufeng; Yang, Zhizhong; Li, Yuan; Wang, Linwei; Zhu, Chun; Zhou, Qiang; Zhang, Jun; She, Min; Liu, Meng
2017-06-01
Carbonaceous gases such as CO and alkanes are commonly used as additives to enhance the selective non-catalytic reduction (SNCR) performance due to their high reducibility. This study compared the effect of CO and CH 4 on NO reduction in a tubular reactor with simulated flue gas. The enhancement of C 3 H 8 on SNCR process was tested at extremely low temperature, i.e. 650 °C. Experimental results suggested that reactions between NH 3 and SO 2 were favored at low temperatures and the competition for NH 3 between SO 2 and NO was influenced by gas additives. A maximum downward shift of 25 °C and 100 °C in temperature window for 50% NO reduction efficiency was obtained with the addition of CO and CH 4 , respectively. Considerable CO emission was observed with addition of CH 4 . The addition of CH 4 contributed to the formation of a self-accelerating reaction route within NO/O 2 /NH 3 SNCR reaction system. NO 2 produced from NO accelerates the oxidation of CH 4 to CO, while the oxidation of CH 4 returns to enhance the NO reduction globally. Optimal NO reduction of 44% was achieved with addition of C 3 H 8 at 650 °C. Substantial portion of C 3 H 8 was partially oxidized to CO and the remaining was converted into C 2 H 4 and C 3 H 6 during the SNCR process. Oxidative dehydrogenation of C 3 H 8 was involved. High reactivity of C 3 H 6 and C 2 H 4 favored the further oxidation and cracking to produce CO. These differences in oxidation behavior significantly influence the promotion capacities of CO, CH 4 and C 3 H 8 for NO reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Tingting; Xue, Jinjuan; Zhang, Xiaolei; He, Guangyu; Chen, Haiqun
2017-04-01
A novel composite ultrafine cobalt nanoparticles-reduced graphene oxide (Co-RGO) was firstly synthesized through a modified one-step solvothermal method with Co(OH)2 as the precursor. The prepared low-cost Co-RGO composite exhibited excellent catalytic activity for the reduction of highly toxic Cr(VI) to nontoxic Cr(III) at room temperature when formic acid (HCOOH) was employed as the reductant, and its catalytic performance was even comparable with that of noble metal-based catalysts in the same reduction reaction. Moreover, Co-RGO composite could be readily recovered under an external magnetic field and efficiently participated in recycled reaction for Cr(VI) reduction.
Tropical forest soil microbial communities couple iron and carbon biogeochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.
2009-10-15
We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction ofmore » iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.« less
Liu, Xixiang; Yuan, Songhu; Tong, Man; Liu, Deng
2017-04-15
Reduction by Fe(II)-bearing silicate minerals has been proposed as an important mechanism for the attenuation of chlorinated hydrocarbons (CHCs) in anoxic subsurfaces. The redox condition of subsurface often changes from anoxic to oxic due to natural processes and human activities, but little is known about the transformation of CHCs induced by Fe(II)-bearing silicate minerals under oxic conditions. This study reveals that trichloroethylene (TCE) can be efficiently oxidized during the oxygenation of reduced nontronite at pH 7.5, whereas the reduction was negligible under anoxic conditions. The maximum oxidation of TCE (initially 1 mg/L) attained 89.6% for 3 h oxygenation of 2 g/L nontronite with 50% reduction extent. TCE oxidation is attributed to the strongly oxidizing hydroxyl radicals (OH) produced by the oxygenation of Fe(II) in nontronite. Fe(II) on the edges is preferentially oxygenated for OH production, and the interior Fe(II) serves as an electron pool to regenerate the Fe(II) on the edges. Oxidation of TCE could be sustainable through chemically or biologically reducing the oxidized silicate minerals. Our findings present a new mechanism for the transformation of CHCs and other redox-active substances in the redox-fluctuation environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys
Stevenson, David T.; Troup, Robert L.
1985-01-01
Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.
Gruchlik, Yolanta; Fouché, Lise; Joll, Cynthia A; Heitz, Anna
2017-12-01
Applicability of alum addition to wastewater sludge and biosolids produced from different treatment processes was evaluated as a means of odor reduction. Four water resource recovery facilities (WRRFs) were chosen for this study: two used mesophilic anaerobic digestion and two used oxidation ditch processes. The experiments were conducted on a laboratory scale and in all cases the alum was added prior to dewatering. This is the first report of the application of alum for odor reduction in oxidation ditch processes. Alum addition was effective in reducing odors in anaerobically digested biosolids. Addition of 4% alum to anaerobically digested liquid biosolids prior to dewatering resulted in a 60% reduction in the peak odor concentration in the laboratory dewatered cake, relative to the control sample. Alum addition did not reduce odors in dewatered sludge from oxidation ditch processes.
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua
2013-03-19
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.
Dubin, Sergey; Gilje, Scott; Wang, Kan; Tung, Vincent C.; Cha, Kitty; Hall, Anthony S.; Farrar, Jabari; Varshneya, Rupal; Yang, Yang; Kaner, Richard B.
2014-01-01
Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24° 2θ (3.4 Å), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications. PMID:20586422
NOS II inhibition attenuates post-suspension hypotension in Sprague-Dawley rats
NASA Technical Reports Server (NTRS)
Eatman, D.; Walton, M.; Socci, R. R.; Emmett, N.; Bayorh, M. A.
2003-01-01
The reduction in mean arterial pressure observed in astronauts may be related to the impairment of autonomic function and/or excessive production of endothelium-derived relaxing factors. Here, we examined the role of a nitric oxide synthase II (NOS II) inhibitor AMT (2-amino-dihydro-6-methyl-4H-1,3-thiazine) against the post-suspension reduction in mean arterial pressure (MAP) in conscious male Sprague-Dawley rats. Direct MAP and heart rate were determined prior to tail-suspension, daily during the 7-day suspension and every 2 hrs post-suspension. Prior to release from suspension and at 2 and 4 hrs post-suspension, AMT (0.1 mg/kg), or saline, were administered intravenously. During the 7-day suspension, MAP was not altered, nor were there significant changes in heart rate. The reduction in MAP post-suspension in saline-treated rats was associated with significant increases in plasma nitric oxide and prostacyclin. 2-Amino-dihydro-6-methyl4H-1,3-thiazine reduced plasma nitric oxide levels, but not those of prostacyclin, attenuated the observed post-suspension reduction in MAP and modified the baroreflex sensitivity for heart rate. Thus, the post suspension reduction in mean arterial pressure is due, in part, to overproduction of nitric oxide, via the NOS II pathway, and alteration in baroreflex activity.
Harnik, M; Aharonowitz, Y; Lamed, R; Kashman, Y
1983-10-01
Preparative methods were developed for reduction with NaBH4 at 0 of 3 beta, 5 alpha- and 3 alpha, 5 beta-tetrahydroaldosterone (1) and (12) to their respective 20 alpha-ol derivatives 2a and 13a. Corroboration of structures was obtained by periodate oxidations to the lactols 3b and 14b and thence, by further oxidation, to the lactones 4 and 15 respectively; these lactones were also independently obtained from 1 and 12. Reduction with NaBH4 at 80 degrees C converted 1 and 12 into 18-hydroxy-3 beta, 5 alpha, 20- and 18-hydroxy-3 alpha, 5 beta, 20-hexahydrocorticosterone 6a and 17a respectively, which were mixtures of epimers at C-20. Compound 17a could also be prepared by reduction of the lactone 21 with sodium aluminum bis-(methoxyethoxy) hydride. Again, periodate oxidations of 6a and 17a gave the lactols 7b and 22b and thence, by Jones oxidation, the diketolactones 8 and 23, which were also prepared from 18-hydroxy-11-dehydrocorticosterone (10) and 18-hydroxycorticosterone (24) respectively. Improved conditions for reduction with Clostridium paraputrificum permitted convenient conversion of aldosterone (11), the corresponding 18 leads to 11 lactone 18a and 18-hydroxycorticosterone (24) into their 3 alpha, 5 beta-tetrahydro derivatives.
Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Dao-Bo; Chen, Jie-Jie; Li, Wen-Wei; Tong, Zhong-Hua; Wu, Chao; Yu, Han-Qing
2013-01-01
The dissimilatory metal reducing bacterium Shewanella oneidensis MR-1, known for its capacity of reducing iron and manganese oxides, has great environmental impacts. The iron oxides reducing process is affected by the coexistence of alternative electron acceptors in the environment, while investigation into it is limited so far. In this work, the impact of dimethyl sulphoxide (DMSO), a ubiquitous chemical in marine environment, on the reduction of hydrous ferric oxide (HFO) by S. oneidensis MR-1 was investigated. Results show that DMSO promoted HFO reduction by both wild type and ΔdmsE, but had no effect on the HFO reduction by ΔdmsB, indicating that such a promotion was dependent on the DMSO respiration. With the DMSO dosing, the levels of extracellular flavins and omcA expression were significantly increased in WT and further increased in ΔdmsE. Bioelectrochemical analysis show that DMSO also promoted the extracellular electron transfer of WT and ΔdmsE. These results demonstrate that DMSO could stimulate the HFO reduction through metabolic and genetic regulation in S. oneidensis MR-1, rather than compete for electrons with HFO. This may provide a potential respiratory pathway to enhance the microbial electron flows for environmental and engineering applications. PMID:24244312
Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Mary K.; Tyliszczak, Tolek; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya
2015-01-01
Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells. PMID:26056725
Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji
2015-11-16
The effect of oxide coating on the activity of a copper-zinc oxide-based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO₂ conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.
Doğan-Subaşı, Eylem; Elsner, Martin; Qiu, Shiran; Cretnik, Stefan; Atashgahi, Siavash; Shouakar-Stash, Orfan; Boon, Nico; Dejonghe, Winnie; Bastiaens, Leen
2017-10-15
cis-1,2-Dichloroethene (cis-DCE) and trichloroethene (TCE) are persistent, toxic and mobile pollutants in groundwater systems. They are both conducive to reductive dehalogenation and to oxidation by permanganate. In this study, the potential of dual element (C, Cl) compound specific isotope analyses (CSIA) for distinguishing between chemical oxidation and anaerobic reductive dechlorination of cis-DCE and TCE was investigated. Well-controlled cis-DCE degradation batch tests gave similar carbon isotope enrichment factors ε C (‰), but starkly contrasting dual element isotope slopes Δδ 13 C/Δδ 37 Cl for permanganate oxidation (ε C =-26‰±6‰, Δδ 13 C/Δδ 37 Cl≈-125±47) compared to reductive dechlorination (ε C =-18‰±4‰, Δδ 13 C/Δδ 37 Cl≈4.5±3.4). The difference can be tracked down to distinctly different chlorine isotope fractionation: an inverse isotope effect during chemical oxidation (ε Cl =+0.2‰±0.1‰) compared to a large normal isotope effect in reductive dechlorination (ε Cl =-3.3‰±0.9‰) (p≪0.05). A similar trend was observed for TCE. The dual isotope approach was evaluated in the field before and up to 443days after a pilot scale permanganate injection in the subsurface. Our study indicates, for the first time, the potential of the dual element isotope approach for distinguishing cis-DCE (and TCE) concentration drops caused by dilution, oxidation by permanganate and reductive dechlorination both at laboratory and field scale. Copyright © 2017. Published by Elsevier B.V.
Lin, Hui; Morrell-Falvey, Jennifer L.; Rao, Balaji; ...
2014-09-30
G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), in this paper we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62).more » These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell–SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10 –19 to 25 × 10 –19 moles-Hg/cell (equivalent to Hg/cell–SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn 2+ leads to increased Hg reduction and decreased methylation. Finally, these results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.« less
Evidence of alloy formation during reduction of platinized tin oxide surfaces
NASA Technical Reports Server (NTRS)
Gardner, Steven D.; Hoflund, Gar B.; Davidson, Mark R.; Schryer, David R.
1989-01-01
Ion scattering spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis have been used to examine a platinized tin oxide catalyst surface before, during, and after reduction by annealing under vacuum at 250 to 450 C. These techniques were then used to examine the reduced surface after a room-temperature, low-pressure oxygen exposure. The spectral results and the behavior of the reduced surface toward oxygen exposure both indicate that a Pt/Sn alloy is produced during reduction.
NASA Astrophysics Data System (ADS)
Wang, Zicheng; Wei, Renbo; Liu, Xiaobo
2017-01-01
Reduced graphene oxide/copper phthalocyanine nanocomposites are successfully prepared through a simple and effective two-step method, involving preferential reduction of graphene oxide and followed by self-assembly with copper phthalocyanine. The results of photographs, ultraviolet visible, x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy show that the in situ blending method can effectively facilitate graphene sheets to disperse homogenously in the copper phthalocyanine matrix through π- π interactions. As a result, the reduction of graphene oxide and restoration of the sp 2 carbon sites in graphene can enhance the dielectric properties and alternating current conductivity of copper phthalocyanine effectively.
Electrochemical CO 2 Reduction on Oxide-Derived Cu Surface with Various Oxide Thicknesses
Liang, Zhixiu; Fu, Jie; Vukmirovic, Miomir B.; ...
2018-03-26
Here, cuprous oxide on copper foil electrodes prepared via electrochemical deposition and thermal annealing are investigated towards CO 2 electrochemical reduction at low overpotential. The thickness of the electrochemical deposited Cu 2O was controlled by varying the constant-current deposition time. The surface morphology and roughness were examined with SEM and CV respectively. The electrode fabricated by cuprous oxide deposited for 20 min demonstrated the best faradic efficiency (7.02%) and specific activity (0.123 mA/cm 2) towards format/formic acid formation at -0.5 V vs. RHE in CO 2 saturated 0.5 M K 2CO 3 among studied samples.
Electrochemical CO 2 Reduction on Oxide-Derived Cu Surface with Various Oxide Thicknesses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Zhixiu; Fu, Jie; Vukmirovic, Miomir B.
Here, cuprous oxide on copper foil electrodes prepared via electrochemical deposition and thermal annealing are investigated towards CO 2 electrochemical reduction at low overpotential. The thickness of the electrochemical deposited Cu 2O was controlled by varying the constant-current deposition time. The surface morphology and roughness were examined with SEM and CV respectively. The electrode fabricated by cuprous oxide deposited for 20 min demonstrated the best faradic efficiency (7.02%) and specific activity (0.123 mA/cm 2) towards format/formic acid formation at -0.5 V vs. RHE in CO 2 saturated 0.5 M K 2CO 3 among studied samples.
NASA Astrophysics Data System (ADS)
Zhang, Yaozhong; Zhou, Jun; Zhang, Xiaoli; Hu, Jun; Gao, Han
2014-11-01
This article reports the effect of solvent polarity on the formation of n-octadecanethiol self-assembled monolayers (C18SH-SAMs) on pure copper surface and oxidized copper surface. The quality of SAMs prepared in different solvents (n-hexane, toluene, trichloroethylene, chloroform, acetone, acetonitrile, ethanol) was monitored by EIS, RAIRS and XPS. The results indicated that C18SH-SAMs formed in these solvents were in good barrier properties on pure copper surface and the structures of monolayers formed in high polarity solvents were more compact and orderly than that formed in low polarity solvents. For comparison, C18SH adsorbed on the surface of oxidized copper in these solvents were studied and the results indicated that C18SH could be adsorbed on oxidized copper surface after the reduction of copper oxide layer by thiols. Compared with high polarity solvents, a limited reduction process of oxidized copper by thiols led to the incompletely formation of monolayers in low polarity solvents. This can be interpreted that the generated water on solid-liquid interface and a smaller reaction force restrict the continuous reduction reaction in low polarity solvents
Arsenic Mobilization Influenced By Iron Reduction And Sulfidogenesis Under Dynamic Flow
NASA Astrophysics Data System (ADS)
Kocar, B. D.; Stewart, B. D.; Herbel, M.; Fendorf, S.
2004-12-01
Sulfidogenesis and iron reduction are ubiquitous processes that occur in a variety of anoxic subsurface and surface environments, which profoundly impact the cycling of arsenic. Of the iron (hydr)oxides, ferrihydrite possesses one of the highest capacities to retain arsenic, and is globally distributed within soils and sediments. Upon dissimilatory iron reduction, ferrihydrite may transform to lower surface area minerals, such as goethite and magnetite, which decreases arsenic retention, thus enhancing its transport. Here we examine how arsenic retained on ferrihydrite is mobilized under dynamic flow in the presence of Sulfurosprillum barnesii strain SES-3, a bacteria capable of reducing both As(V) and Fe(III). Ferrihydrite coated sands, loaded with 150 mg kg-1 As(V), were inoculated with S. barnesii, packed into a column and reacted with a synthetic groundwater solution. Within several days after initiation of flow, the concentration of arsenic in the column effluent increased dramatically coincident with the mineralogical transformation of ferrihydrite and As(V) reduction to As(III). Following the initial pulse of arsenic, effluent concentration then declined to less than 10 μ M. Thus, arsenic release into the aqueous phase is contingent upon the incongruent reduction of As(V) and Fe(III) as mediated by biological activity. Reaction of abiotically or biotically generated dissolved sulfide with iron (hydr)oxides may have a dramatic influence on the fate of arsenic within surface and subsurface environments. Accordingly, we examined the reaction of dissolved bisulfide and iron (hydr)oxide complexed with arsenic in both batch and column systems. Low ratios of sulfide to iron in batch reaction systems result in the formation of elemental sulfur and concomitant arsenic release from the iron (hydr)oxide surface. High sulfide to iron ratios, in contrast, appear to favor the formation of iron and arsenic sulfides. Our findings demonstrate that iron (hydr)oxides may quench reactions between sulfide and constituents sorbed to iron (hydr)oxide surfaces, forming elemental sulfur as opposed to sulfide-arsenic complexes. In addition, reductive transformation of iron (hydr)oxide by dissolved sulfide may release sorbed constituents. Hence, moderate to low concentrations of dissolved sulfide in association with iron (hydr)oxides may inhibit sequestration of important contaminants that are attenuated by Fe(III) and/or S(-II) bearing phases.
OXIDATIVE TREATMENT OF INDUSTRIAL WASTEWATER
This paper defines industrial waste treatment process as falling into categories of oxidative destruction, reductive destruction, and non-destructive, separation operations. The various oxidative approaches, including biological, chemical and thermal methods, are then discussed i...
Cinetica de oxidacion de polimeros conductores: poli-3,4- etilendioxitiofeno
NASA Astrophysics Data System (ADS)
Caballero Romero, Maria
Films of poly-3,4-ethylenedioxythiophene (PEDOT) perchlorate used as electrodes in liquid electrolytes incorporate anions and solvent during oxidation for charge and osmotic balance: the film swells. During reduction the film shrinks, closes its structure trapping counterions getting then rising conformational packed states by expulsion of counterions and solvent. Here by potential step from the same reduced initial state to the same oxidized final state the rate coefficient, the activation energy and reaction orders related to the counterion concentration in solution and to the concentration of active centers in the polymer film, were attained following the usual methodology used for chemical and electrochemical kinetics. Now the full methodology was repeated using different reduced-shrunk or reduced-conformational compacted initial states every time. Those initial states were attained by reduction of the oxidized film at rising cathodic potentials for the same reduction time each. Rising reduced and conformational compacted states give slower subsequent oxidation rates by potential step to the same anodic potential every time. The activation energy, the reaction coefficient and reaction orders change for rising conformational compacted initial states. Decreasing rate constants and increasing activation energies are obtained for the PEDOT oxidation from increasing conformational compacted initial states. The experimental activation energy presents two linear ranges as a function of the initial reduced-compacted state. Using as initial states for the oxidation open structures attained by reduction at low cathodic potentials, activation energies attained were constant: namely the chemical activation energy. Using as initial states for the oxidation deeper reduced, closed and packed conformational structures, the activation energy includes two components: the constant chemical energy plus the conformational energy required to relax the conformational structure generating free volume which allows the entrance of the balancing counterions required for the reaction. The conformational energy increases linearly as a function of the reduction-compaction potential. The kinetic magnitudes include conformational and structural information. The Chemical Kinetics becomes Structural (or conformational) Chemical Kinetics.
Development of a radiation-hard CMOS process
NASA Technical Reports Server (NTRS)
Power, W. L.
1983-01-01
It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth.
Bonding Cu to Al2O3 with Bi-B-Zn Oxide Glass Via Oxidation-Reduction Reaction
NASA Astrophysics Data System (ADS)
Chen, Jianqiang; Li, Yufeng; Miao, Weiliang; Mai, Chengle; Li, Mingyu
2018-01-01
Bonding Cu on Al2O3 is a key and difficult technology applied in high-power semiconductor devices. A method proposed in this work investigates bonding with a kind of Bi-B-Zn oxide glass powder paste as a solder. Oxidation-reduction reactions between the Cu plate and the solder took place and generated Bi metal during the joining procedure. With an increase in the joining temperature, the tensile strength increased due to the increase of Bi metal formation. The Bi metal played an important role in joining Cu and Al2O3 because of its much better wettability on Cu than that of the oxides. A compound ZnAl2O4 was observed to form between the Al2O3 ceramic and oxide layer, which strengthened the bond.
2014-01-01
Background A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Results Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A 15N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol 15NH4+ g-1 protein h-1. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6–8 μmol NO3- g-1 protein) for dissimilatory nitrate reduction. Conclusions Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide. PMID:24517718
Stief, Peter; Fuchs-Ocklenburg, Silvia; Kamp, Anja; Manohar, Cathrine-Sumathi; Houbraken, Jos; Boekhout, Teun; de Beer, Dirk; Stoeck, Thorsten
2014-02-11
A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A ¹⁵N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol ¹⁵NH₄⁺ g⁻¹ protein h⁻¹. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6-8 μmol NO₃⁻ g⁻¹ protein) for dissimilatory nitrate reduction. Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide.
Reduction and Oxidation of the Active Site Iron in Tyrosine Hydroxylase: Kinetics and Specificity†
Frantom, Patrick A.; Seravalli, Javier; Ragsdale, Stephen W.; Fitzpatrick, Paul F.
2006-01-01
Tyrosine hydroxylase (TyrH) is a pterin-dependent enzyme that catalyzes the hydroxylation of tyrosine to form dihydroxyphenylalanine. The oxidation state of the active site iron atom plays a central role in the regulation of the enzyme. The kinetics of reduction of ferric TyrH by several reductants were determined by anaerobic stopped-flow spectroscopy. Anaerobic rapid freeze–quench EPR confirmed that the change in the near-UV absorbance of TyrH upon adding reductant corresponded to iron reduction. Tetrahydrobiopterin reduces wild-type TyrH following a simple second-order mechanism with a rate constant of 2.8 ± 0.1 mM−1 s−1. 6-Methyltetrahydropterin reduces the ferric enzyme with a second-order rate constant of 6.1 ± 0.1 mM−1 s−1 and exhibits saturation kinetics. No EPR signal for a radical intermediate was detected. Ascorbate, glutathione, and 1,4-benzoquinone all reduce ferric TyrH, but much more slowly than tetrahydrobiopterin, suggesting that the pterin is a physiological reductant. E332A TyrH, which has an elevated Km for tetrahydropterin in the catalytic reaction, is reduced by tetrahydropterins with the same kinetic parameters as those of the wild-type enzyme, suggesting that BH4 does not bind in the catalytic conformation during the reduction. Oxidation of ferrous TyrH by molecular oxygen can be described as a single-step second-order reaction, with a rate constant of 210 mM−1 s−1. S40E TyrH, which mimics the phosphorylated state of the enzyme, has oxidation and reduction kinetics similar to those of the wild-type enzyme, suggesting that phosphorylation does not directly regulate the interconversion of the ferric and ferrous forms. PMID:16475826
Bacarese-Hamilton, A J; Adrian, T E; Chohan, P; Antony, T; Bloom, S R
1985-01-01
The study was undertaken to investigate the oxidation and reduction of cholecystokinin (CCK) both as pure standards and as endogenous porcine peptides. Furthermore an attempt was made to prevent oxidation of the endogenous porcine peptides in the extraction procedure. CCK-8 and CCK-33 standards were always oxidized in weak solutions, CCK-8 varying from 26% to 67% oxidized and CCK-33 from 18% to 70%. Similarly, tissue extracts of porcine brain and duodenum contained oxidized forms of the peptide. CCK standards were readily oxidized in the presence of hydrogen peroxide. Oxidized CCK-8 standard and CCK-8 in porcine brain was 90% reduced and oxidized CCK-33 standard and in duodenal extracts was reduced by 70% by a 40 hour incubation with 0.725 mol/l dithiothreitol at 37 degrees C. Extraction of CCK peptides in the presence of 65 mmol/l dithiothreitol resulted in almost complete prevention of oxidation with over 95% of the peptides being obtained in the reduced state. This additive is therefore recommended for all tissue quantitation studies.
Van Hoogmoed, L; Rakestraw, P C; Snyder, J R; Harmon, F A
1998-09-01
To determine the role of nitric oxide and an apamin-sensitive nonadrenergic-noncholinergic inhibitory transmitter in in vitro contractile activity of the third compartment in llamas. Isolated strips of third compartment of the stomach from 5 llamas. Strips were mounted in tissue baths containing oxygenated Kreb's buffer solution and connected to a polygraph chart recorder to measure contractile activity. Atropine, guanethidine, and indomethacin were added to tissue baths to inhibit muscarinic receptors, adrenoreceptors, and prostaglandin synthesis. Responses to electrical field stimulation following addition of the nitric oxide antagonist Nwo-nitro-L-arginine methyl ester (L-NAME) and apamin were evaluated. Electrical field stimulation (EFS) resulted in a reduction in the amplitude and frequency of contractile activity, followed by rebound contraction when EFS was stopped. Addition of L-NAME resulted in a significant reduction in inhibition of contractile activity. Addition of apamin also resulted in a significant reduction in inhibitory contractile activity at most stimulation frequencies. The combination of L-NAME and apamin resulted in a significant reduction in inhibition at all frequencies. Nitric oxide and a transmitter acting via an apamin-sensitive mechanism appear to be involved in inhibition of contractile activity of the third compartment in llamas. Results suggest that nitric oxide plays an important role in mediating contractile activity of the third compartment in llamas. Use of nitric oxide synthase inhibitors may have a role in the therapeutic management of llamas with lesions of the third compartment.
Modulation of oxidative damage by nitroxide free radicals.
Dragutan, Ileana; Mehlhorn, Rolf J
2007-03-01
Piperidine nitroxides like 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) are persistent free radicals in non-acidic aqueous solutions and organic solvents that may have value as therapeutic agents in medicine. In biological environments, they undergo mostly reduction to stable hydroxylamines but can also undergo oxidation to reactive oxoammonium compounds. Reactions of the oxoammonium derivatives could have adverse consequences including chemical modification of vital macromolecules and deleterious effects on cell signaling. An examination of their reactivity in aqueous solution has shown that oxoammonium compounds can oxidize almost any organic as well as many inorganic molecules found in biological systems. Many of these reactions appear to be one-electron transfers that reduce the oxoammonium to the corresponding nitroxide species, in contrast to a prevalence of two-electron reductions of oxoammonium in organic solvents. Amino acids, alcohols, aldehydes, phospholipids, hydrogen peroxide, other nitroxides, hydroxylamines, phenols and certain transition metal ions and their complexes are among reductants of oxoammonium, causing conversion of this species to the paramagnetic nitroxide. On the other hand, thiols and oxoammonium yield products that cannot be detected by ESR even under conditions that would oxidize hydroxylamines to nitroxides. These products may include hindered secondary amines, sulfoxamides and sulfonamides. Thiol oxidation products other than disulfides cannot be restored to thiols by common enzymatic reduction pathways. Such products may also play a role in cell signaling events related to oxidative stress. Adverse consequences of the reactions of oxoammonium compounds may partially offset the putative beneficial effects of nitroxides in some therapeutic settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Williams, M. S.; Zamecnik, J. R.
Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc 4+ state, 104Ru in the melt as reduced Ru +4 state as insoluble RuO 2, and hazardous volatile Cr 6+ in themore » less soluble and less volatile Cr +3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H 2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.« less
Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...
Displacement method and apparatus for reducing passivated metal powders and metal oxides
Morrell,; Jonathan S. , Ripley; Edward, B [Knoxville, TN
2009-05-05
A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.
This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...
NASA Technical Reports Server (NTRS)
Zeigler, R. A.; Jolliff, B. L.; Korotev, R. L.; Kremser, D. T.; Haskin, L. A.
2001-01-01
Apollo 16 particle 65903,16-7 is a magnesian, alkali-rich impact melt breccia. Low Fe/Mn and high phosphide/phosphate ratios are evidence of severe reduction during impact-melt cooling. Presence of carbonate and FeOOH is evidence for later oxidation. Additional information is contained in the original extended abstract.
Sulfur metabolism in Beggiatoa alba.
Schmidt, T M; Arieli, B; Cohen, Y; Padan, E; Strohl, W R
1987-01-01
The metabolism of sulfide, sulfur, and acetate by Beggiatoa alba was investigated under oxic and anoxic conditions. B. alba oxidized acetate to carbon dioxide with the stoichiometric reduction of oxygen to water. In vivo acetate oxidation was suppressed by sulfide and by several classic respiratory inhibitors, including dibromothymoquinone, an inhibitor specific for ubiquinones. B. alba also carried out an oxygen-dependent conversion of sulfide to sulfur, a reaction that was inhibited by several electron transport inhibitors but not by dibromothymoquinone, indicating that the electrons released from sulfide oxidation were shuttled to oxygen without the involvement of ubiquinones. Intracellular sulfur stored by B. alba was not oxidized to sulfate or converted to an external soluble form under aerobic conditions. On the other hand, sulfur stored by filaments of Thiothrix nivea was oxidized to extracellular soluble oxidation products, including sulfate. Sulfur stored by filaments of B. alba, however, was reduced to sulfide under short-term anoxic conditions. This anaerobic reduction of sulfur was linked to the endogenous oxidation of stored carbon and to hydrogen oxidation. PMID:3316186
NASA Astrophysics Data System (ADS)
Finke, N.; Vandieken, V.; Jorgensen, B. B.
2006-12-01
Anaerobic degradation of complex organic material in aquatic systems is a multi-step process. The metabolic products of fermentative bacteria serve as electron donors for the terminal oxidizing bacteria. In marine sediments, iron reduction and sulfate reduction are generally the most important terminal oxidation processes in the upper anoxic zone [1]. Microorganisms that reduce iron and sulfate may use a broad range of electron donors, yet the list of potential substrates provides little information about the substrates used in situ by these organisms. Investigations on the electron donors for sulfate reducers in marine sediments have shown that volatile fatty acids (VFA), and in particular acetate, together with hydrogen are the major substrates (e.g. [2-4]). Similar investigations for iron reduction or simultaneous iron and sulfate reduction are lacking for marine sediments. Furthermore, most of these studies were made in temperate sediments and little is known about the substrates for sulfate reducers in permanently cold sediments, which account for >90% of the ocean floor [5]. We investigated the relative contributions of iron reduction and sulfate reduction to the terminal oxidation of organic carbon and the importance of acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in permanently cold, Arctic sediments from Svalbard. In the surface layer (0-2 cm) sulfate reduction accounted for 2/3 of the organic carbon oxidation (determined as DIC production), the remaining 1/3 were attributed to iron reduction. In the 5-9 cm layer sulfate reduction was the sole important terminal oxidation step. The contribution of acetate to terminal oxidation was determined by radiotracer incubation as well as from the accumulation after the inhibition of sulfate reduction by selenate. The rates determined with the two methods varied by less than 20%. Acetate turnover, determined with the tracer incubations, accounted for 10 and 40% of the sulfate reduction in the 0-2 cm and 5-9 cm layer, respectively. Together acetate, lactate, propionate and isobutyrate accounted for 21 and 52% of the sulfate reduction, in the 0-2 cm and 5-9 cm layer, respectively. Assigning all acetate and lactate turnover in the selenate inhibited samples, these two VFA account for less than 10 and 2%, respectively, of the iron reduction in the 0-2 cm layer. Thus, 67 and 48% of the terminal oxidation in the 0-2cm and 5-9 cm layer must be driven by electron donors other than the investigated VFA. The sulfate reduction rates as well as the VFA turnover rates were at the lower end of reported rates from similar studies, mostly measured in temperate sites (e.g. [2-4, 6, 7]). Comparing a series of studies with different in situ temperatures shows, parameters other than in situ temperature seem to be more important in determining the sulfate reduction and VFA turnover rates. [1] Thamdrup, B. (2000) Bacterial manganese and iron reduction in aquatic sediments, 41-84 pp. Kluwer Academic / Plenum Publ., New York. [2] Parkes, R.J., Gibson, G.R., Mueller-Harvey, I., Buckingham, W.J. and Herbert, R.A. (1989) J. Gen. Microbiol. 135, 175-187. [3] Christensen, D. (1984) Limnol. Oceanogr. 29, 189-192. [4] Shaw, D.G. and McIntosh, D.J. (1990) Estuarine Coastal & Shelf Science 31, 775-788. [5] Levitus, S. and Boyer, T. (1994) World Ocean Atlas, pp. US Department of Commerce, Washington, DC. [6] Kristensen, E., King, G.M., Holmer, M., Banta, G.T., Jensen, M.H., Hansen, K. and Bussarawit, N. (1994) Mar. Ecol.-Prog. Ser. 109, 245-255. [7] Wellsbury, P. and Parkes, R.J. (1995) FEMS Microbiol. Ecol. 17, 85-94.
Pilot scale application of nanosized iron oxides as electron acceptors for bioremediation
NASA Astrophysics Data System (ADS)
Bosch, Julian; Fritzsche, Andreas; Frank-Fahle, Beatrice; Lüders, Tilmann; Höss, Sebastian; Eisenmann, Heinrich; Held, Thomas; Totsche, Kai U.; Meckenstock, Rainer U.
2014-05-01
Microbial reduction of ferric iron is a major biogeochemical process in groundwater aquifer ecosystems and often associated with the degradation of organic contaminants, as bacteria couple iron reduction to the oxidation reduced carbon like e.g. BTEX. Yet in general the low bioavailability of natural iron oxides limits microbial reduction rates. However, nanosized iron oxides have an unequally enhanced bioavailability and reactivity compared to their respective bulk, macro-sized, and more crystalline materials. At the same time, nanosized iron oxides can be produced in stable colloidal suspensions, permitting efficient injections into contaminated aquifers. We examined the reactivity of nanosized synthetic colloidal iron oxides in microbial iron reduction. Application of colloidal nanoparticles led to a strong and sustainable enhancement of microbial reaction rates in batch experiments and sediment columns. Toluene oxidation was increased five-fold as compared to bulk, non-colloidal ferrihydrite as electron acceptor. Furthermore, we developed a unique approach for custom-tailoring the subsurface mobility of these particles after being injected into a contaminant plume. In a field pilot application, we injected 18 m3 of an iron oxide nanoparticle solution into a BTEX contaminated aquifer with a maximum excess pressure as low as 0.2 bar. The applied suspension showed a superior subsurface mobility, creating a reactive zone of 4 m height (corresponding to the height of the confined aquifer) and 6 m in diameter. Subsequent monitoring of BTEX, microbial BTEX degradation metabolites, ferrous iron generation, stable isotopes fractionation, microbial populations, and methanogenesis demonstrated the strong impact of our approach. Mathematic processed X-ray diffractograms and FTIR spectra provided a semi-quantitatively estimate of the long-term fate of the iron oxide colloids in the aquifer. Potential environmental risks of the injection itself were monitored with ecotoxicological investigations. Our data suggest that the injection of ferric iron nanoparticles as electron acceptors into contaminated aquifers for the enhancement of microbial contaminant degradation might develop into a novel bioremediation strategy.
NASA Astrophysics Data System (ADS)
Wang, Zheming; Shi, Zhi; Shi, Liang; White, Gaye F.; Richardson, David J.; Clarke, Thomas A.; Fredrickson, Jim K.; Zachara, John M.
2015-08-01
Dissimilatory iron-reducing bacteria can utilize insoluble Fe(Mn)-oxides as a terminal electron acceptor under anaerobic conditions. For Shewanella species specifically, evidence suggests that iron reduction is associated with the secretion of flavin mononucleotide (FMN) and riboflavin. However, the exact mechanism of flavin involvement is unclear; while some indicate that flavins mediate electron transfer (Marsili et al., 2008), others point to flavin serving as co-factors to outer membrane proteins (Okamoto et al., 2013). In this work, we used methyl viologen (MVrad +)-encapsulated, porin-cytochrome complex (MtrCAB) embedded liposomes (MELs) as a synthetic model of the Shewanella outer membrane to investigate the proposed mediating behavior of microbially produced flavins. The reduction kinetics of goethite, hematite and lepidocrocite (200 μM) by MELs ([MVrad +] ∼ 40 μM and MtrABC ⩽ 1 nM) were determined in the presence FMN at pH 7.0 in N2 atmosphere by monitoring the concentrations of MVrad + and FMN through their characteristic UV-visible absorption spectra. Experiments were performed where (i) FMN and Fe(III)-oxide were mixed and then reacted with the reduced MELs and (ii) FMN was reacted with the reduced MELs followed by addition of Fe(III)-oxide. The redox reactions proceeded in two steps: a fast step that was completed in a few seconds, and a slower one lasting over 400 s. For all three Fe(III)-oxides, the initial reaction rate in the presence of a low concentration of FMN (⩽1 μM) was at least a factor of five faster than those with MELs alone, and orders of magnitude faster than those by FMNH2, suggesting that FMN may serve as a co-factor that enhances electron transfer from outer-membrane c-cytochromes to Fe(III)-oxides. The rate and extent of the initial reaction followed the order of lepidocrocite > hematite > goethite, the same as their reduction potentials, implying thermodynamic control on reaction rate. For LEP, with the highest reduction potential among the three Fe(III)-oxides, its reduction by FMNH2 was completed in less than 10 min, suggesting that FMN was capable of mediating electron transfer to LEP. At higher FMN concentrations (>1 μM), the reaction rates for both steps decreased and varied inversely with FMN concentration, indicating that FMN inhibited the MEL to Fe(III)-oxide electron transfer reaction under these conditions. The implications of the observed kinetic behaviors to flavin-mediated Fe(III)-oxide reduction in natural environments are discussed.
[Reduction of nitrobenzene by iron oxides bound Fe(II) system at different pH values].
Luan, Fu-Bo; Xie, Li; Li, Jun; Zhou, Qi
2009-07-15
Batch tests were conducted to investigate the reductive transformation of nitrobenzene by goethite, hematite, magnetite and steel converter slag bound Fe(II) system. And the reduction mechanism was explored at different pH values. Experimental results showed that hematite, magnetite and steel converter slag could adsorb Fe(II) on surfaces and form iron oxides bound Fe(II) system at pH from 6.5 to 7.0. The systems had strong reductive capacity and could reduce nitrobenzene to aniline. The reduction efficiency of nitrobenzene in surface bound Fe(II) system followed the sequence of magnetite, hematite and steel converter slag from high to low. The reduction efficiency of hematite and magnetite system increased with pH increasing. While it was almost pH independent in steel converter slag system. Although goethite adsorbed most of Fe(II) in solution, the adsorbed Fe(II) had no reductive activity for nitrobenzene. At pH 6.0, small amount of Fe(II) was adsorbed on magnetite and hematite and the systems did not show reductive activity for nitrobenzene. However, steel converter slag could adsorb Fe(II) at pH 6.0 and reduction efficiency almost equaled to the value at pH 7.0. When pH was above 7.5, dissolved Fe(II) could be converted to Fe(OH)2 and the newly formed Fe(OH)2 became the main redactor in the system. Under alkali condition, the presence of iron oxides inhibited the reduction capacity of system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn
2016-04-14
The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximatemore » to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.« less
Sulmonetti, Taylor P.; Hu, Bo; Lee, Sungsik; ...
2017-08-08
In this study, the ring-opening of furfuryl alcohol to diol products, including 1,2-pentanediol and 1,5- pentanediol, is investigated over reduced Cu-Co-Al mixed metal oxides in a liquid phase batch reactor under H 2 pressure. These catalysts are synthesized through the calcination of layered double hydroxides (LDH) to yield well-dispersed, porous mixed metal oxides, which upon reduction displayed activity towards diols, mainly the valuable monomer 1,5-pentanediol. The addition of Cu facilitated the reduction of Co oxide species at lower temperatures, and under optimized conditions a yield towards 1,5-pentanediol of 44% (total diol yield of 62%) was achieved. Various characterization techniques includingmore » TPR, XPS, and XAS are employed to elucidate the structure of the catalysts, suggesting the formation of both metallic (Co and Cu) and oxide (CoO) species after reduction and passivation. Finally, this study demonstrates the promising characteristics that non-precious multi-metal catalysts have for the conversion of biomass derived platform molecules to plastic precursors« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulmonetti, Taylor P.; Hu, Bo; Lee, Sungsik
In this study, the ring-opening of furfuryl alcohol to diol products, including 1,2-pentanediol and 1,5- pentanediol, is investigated over reduced Cu-Co-Al mixed metal oxides in a liquid phase batch reactor under H 2 pressure. These catalysts are synthesized through the calcination of layered double hydroxides (LDH) to yield well-dispersed, porous mixed metal oxides, which upon reduction displayed activity towards diols, mainly the valuable monomer 1,5-pentanediol. The addition of Cu facilitated the reduction of Co oxide species at lower temperatures, and under optimized conditions a yield towards 1,5-pentanediol of 44% (total diol yield of 62%) was achieved. Various characterization techniques includingmore » TPR, XPS, and XAS are employed to elucidate the structure of the catalysts, suggesting the formation of both metallic (Co and Cu) and oxide (CoO) species after reduction and passivation. Finally, this study demonstrates the promising characteristics that non-precious multi-metal catalysts have for the conversion of biomass derived platform molecules to plastic precursors« less
NASA Astrophysics Data System (ADS)
Riegg, S.; Müller, T.; Ebbinghaus, S. G.
2013-06-01
The oxygen stoichiometries of pure and rare-earth substituted La2RuO5 have been investigated by thermogravimetry (TG) in reducing atmosphere. Assuming that the observed total weight loss is caused by the reduction of Ru4+ to Ru-metal, remarkable oxygen deficiencies were calculated. These would correspond to ruthenium oxidation states significantly lower than the ones experimentally observed by XANES. To explain this discrepancy we investigated the reduction products by X-ray absorption spectroscopy (XAS). EXAFS measurements at the Ru-K edge revealed the presence of an X-ray amorphous ruthenium oxide, indicating an incomplete reduction. The apparent oxygen deficiencies obtained for pure and rare-earth substituted samples correlate with the amount of remaining ruthenium oxide. The presence of a ruthenium oxide species was furthermore verified by Ru-LIII XANES investigations. Our results show that the determination of oxygen contents by thermogravimetry might fail even for the easily reducable nobel metal oxides and therefore has to be applied with caution if the reaction products cannot be identified unambiguously.
Hoch, Laura B.; He, Le; Qiao, Qiao; ...
2016-06-01
Nonstoichiometric indium oxide nanoparticles, In 2O 3–x(OH)y, have been shown to function as active photocatalysts for gas-phase CO 2 reduction under simulated solar irradiation. We demonstrate that the choice of starting material has a strong effect on the photocatalytic activity of indium oxide nanoparticles. We also examine three indium oxide materials prepared via the thermal decomposition of either indium(III) hydroxide or indium(III) nitrate and correlate their stability and photocatalytic activity to the number and type of defect present in the material. Furthermore, we use 13CO 2 isotope-tracing experiments to clearly identify the origins of the observed carbon-containing products. Significantly, wemore » find that the oxidizing nature of the precursor anion has a substantial impact on the defect formation within the sample. Our study demonstrates the importance of surface defects in designing an active heterogeneous photocatalyst and provides valuable insight into key parameters for the precursor design, selection, and performance optimization of materials for gas-phase CO 2 reduction.« less
Nitrous oxide production kinetics during nitrate reduction in river sediments.
Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L
2010-03-01
A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tacey, Sean A.; Szilvasi, Tibor; Xu, Lang
Experimental and field measurements have shown that, in the presence of both iron-containing aerosols and sunlight, oxidized mercury species such as HgCl 2 and HgBr 2 undergo reduction to elemental mercury (Hg°), which remains in the atmosphere longer than oxidized mercury species due to its higher volatility. We performed density functional theory (DFT, PW91+U) calculations to elucidate the reduction mechanism for atmospheric HgCl 2 and HgBr 2 to Hg° on several iron-oxide aerosol surfaces relevant in the troposphere. On the OH-Fe-R-terminated α-Fe 2O 3(0001) surface, predicted to be most prevalent under ambient conditions, we show that: (1) the first Hg-Xmore » bond is broken via either thermal or photolytic activation depending on the ambient temperature; (2) photons with an energy of 2.69 eV (461 nm) are required to break the second Hg-X bond; and (3) a photo-induced surface-to-adsorbate charge-transfer process can promote Hg° desorption with an excitation energy of 2.59 eV (479 nm). All the calculated excitation energies are below the threshold value of 3.9 eV (320 nm) for photons in the troposphere, suggesting that sunlight can facilitate mercury reduction on iron-oxide aerosol surfaces. In contrast, the gas-phase reduction of HgCl 2 (HgBr 2) involves photoexcitation requiring an energy of 4.98 (4.45) eV (249 (279) nm); therefore, the energy range of sunlight is not suitable for gas-phase reduction. Our computational results provide the first evidence on the detailed mechanism for the combined role of aerosols and photons in the reduction of HgCl 2 and HgBr 2. In conclusion, our methodology can be adapted to study other photochemical heterogeneous processes in the atmosphere.« less
Tacey, Sean A.; Szilvasi, Tibor; Xu, Lang; ...
2018-04-22
Experimental and field measurements have shown that, in the presence of both iron-containing aerosols and sunlight, oxidized mercury species such as HgCl 2 and HgBr 2 undergo reduction to elemental mercury (Hg°), which remains in the atmosphere longer than oxidized mercury species due to its higher volatility. We performed density functional theory (DFT, PW91+U) calculations to elucidate the reduction mechanism for atmospheric HgCl 2 and HgBr 2 to Hg° on several iron-oxide aerosol surfaces relevant in the troposphere. On the OH-Fe-R-terminated α-Fe 2O 3(0001) surface, predicted to be most prevalent under ambient conditions, we show that: (1) the first Hg-Xmore » bond is broken via either thermal or photolytic activation depending on the ambient temperature; (2) photons with an energy of 2.69 eV (461 nm) are required to break the second Hg-X bond; and (3) a photo-induced surface-to-adsorbate charge-transfer process can promote Hg° desorption with an excitation energy of 2.59 eV (479 nm). All the calculated excitation energies are below the threshold value of 3.9 eV (320 nm) for photons in the troposphere, suggesting that sunlight can facilitate mercury reduction on iron-oxide aerosol surfaces. In contrast, the gas-phase reduction of HgCl 2 (HgBr 2) involves photoexcitation requiring an energy of 4.98 (4.45) eV (249 (279) nm); therefore, the energy range of sunlight is not suitable for gas-phase reduction. Our computational results provide the first evidence on the detailed mechanism for the combined role of aerosols and photons in the reduction of HgCl 2 and HgBr 2. In conclusion, our methodology can be adapted to study other photochemical heterogeneous processes in the atmosphere.« less
Dong, Xiyang; Dröge, Johannes; von Toerne, Christine; Marozava, Sviatlana; McHardy, Alice C; Meckenstock, Rainer U
2017-03-01
The enrichment culture BPL is able to degrade benzene with sulfate as electron acceptor and is dominated by an organism of the genus Pelotomaculum. Members of Pelotomaculum are usually known to be fermenters, undergoing syntrophy with anaerobic respiring microorganisms or methanogens. By using a metagenomic approach, we reconstructed a high-quality genome (∼2.97 Mbp, 99% completeness) for Pelotomaculum candidate BPL. The proteogenomic data suggested that (1) anaerobic benzene degradation was activated by a yet unknown mechanism for conversion of benzene to benzoyl-CoA; (2) the central benzoyl-CoA degradation pathway involved reductive dearomatization by a class II benzoyl-CoA reductase followed by hydrolytic ring cleavage and modified β-oxidation; (3) the oxidative acetyl-CoA pathway was utilized for complete oxidation to CO2. Interestingly, the genome of Pelotomaculum candidate BPL has all the genes for a complete sulfate reduction pathway including a similar electron transfer mechanism for dissimilatory sulfate reduction as in other Gram-positive sulfate-reducing bacteria. The proteome analysis revealed that the essential enzymes for sulfate reduction were all formed during growth with benzene. Thus, our data indicated that, besides its potential to anaerobically degrade benzene, Pelotomaculum candidate BPL is the first member of the genus that can perform sulfate reduction. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The electrochemical reduction processes of solid compounds in high temperature molten salts.
Xiao, Wei; Wang, Dihua
2014-05-21
Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.
Direct printing and reduction of graphite oxide for flexible supercapacitors
NASA Astrophysics Data System (ADS)
Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon
2014-08-01
We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.
On the temperature-programmed reduction of Pt-Ir/. gamma. -Al/sub 2/O/sub 3/ catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, N.; Prins, R.
1979-10-15
Temperature-programed reduction of a catalyst containing 0.37% Pt and 0.37% Ir on chlorided alumina and treated as previously described for a Pt-Re bimetallic catalyst showed a single reduction peak at 105/sup 0/C, almost exactly at the midpoint between the reduction peaks of the pure platimun and pure iridium peaks treated identically. This peak remained unaltered after fairly severe oxidation treatment (350/sup 0/C). The results indicated that the catalyst formed bimetallic clusters in the reduced state which were more stable than the Pt-Re clusters and did not segregate on oxidation.
NASA Astrophysics Data System (ADS)
Begum, Halima; Ahmed, Mohammad Shamsuddin; Cho, Sung; Jeon, Seungwon
2017-12-01
Inspire by the vision of finding a simple and green method for simultaneous reduction and nitrogen (N)-functionalization of graphene oxide (GO), a N-rich reduced graphene oxide (rGO) has been synthesized through a facile and ecofriendly hydrothermal strategy while most of the existing methods are involving with multiple steps and highly toxic reducing agents that are harmful to human health and environment. In this paper, the simultaneous reduction and N-functionalization of GO using as available lemon juice (denoted as Lem-rGO) for metal-free electrocatalysis towards oxygen reduction reaction (ORR) is described. The proposed method is based on the reduction of GO using of the reducing and the N-precursor capability of ascorbic acid and citric acid as well as the nitrogenous compounds, respectively, that containing in lemon juice. The resultant Lem-rGO has higher reduction degree, higher specific surface area and better crystalline nature with N-incorporation than that of well investigated ascorbic acid and citric acid treated rGO. As a result, it shows better ORR electrocatalytic activity in respect to the improved onset potential, electron transfer rate and kinetics than those typical rGO catalysts. Moreover, it shows a significant tolerance to the anodic fuels and durability than the Pt/C during ORR.
Solid-phase electrochemical reduction of graphene oxide films in alkaline solution
NASA Astrophysics Data System (ADS)
Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi
2013-09-01
Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.
Ash reduction system using electrically heated particulate matter filter
Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI
2011-08-16
A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.
Tetraalykylammonium polyoxoanionic oxidation catalysts
Ellis, Paul E.; Lyons, James E.; Myers, Jr., Harry K.; Shaikh, Shahid N.
1998-01-01
Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.
Tetraalklylammonium polyoxoanionic oxidation catalysts
Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.
1998-10-06
Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.
Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments
NASA Astrophysics Data System (ADS)
Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.
2011-12-01
Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number enumeration of nitrate-dependent U(IV) oxidizing microorganisms demonstrated an abundant community ranging from 1.61x104 to 2.74x104 cells g-1 sediment. Enrichments initiated verified microbial U reduction and U oxidation coupled to nitrate reduction. Sediment slurries were serially diluted and incubated over a period of eight weeks and compared to uninoculated controls. Oxidation (0-4,554 μg/L) and reduction (0-55 μg/L) of U exceeded uninoculated controls further providing evidence of a U biogeochemical cycling in these subsurface sediments. The oxidation of U(IV) could contribute to U mobilization in the groundwater and result in decreased water quality. Not only could nitrate serve as an oxidant, but Fe(III) could also contribute to U mobilization. Nitrate-dependent Fe(II) oxidation is an environmentally ubiquitous process facilitated by a diversity of microorganisms. Additional research is necessary in order to establish a role of biogenic Fe(III) oxides in U geochemical cycling at this site. These microbially mediated processes could also have a confounding effect on uranium mobility in subsurface environments.
Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys
Stevenson, D.T.; Troup, R.L.
1985-01-01
Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.
Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang
2014-01-01
To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779
Oremland, R.S.; Miller, L.G.; Dowdle, P.; Connell, T.; Barkay, T.
1995-01-01
Sediments from mercury-contaminated and uncontaminated reaches of the Carson River, Nevada, were assayed for sulfate reduction, methanogenesis, denitrification, and monomethylmercury (MeHg) degradation. Demethylation of [14C]MeHg was detected at all sites as indicated by the formation of 14CO2 and 14CH4. Oxidative demethylation was indicated by the formation of 14CO2 and was present at significant levels in all samples. Oxidized/reduced demethylation product ratios (i.e., 14CO2/14CH4 ratios) generally ranged from 4.0 in surface layers to as low as 0.5 at depth. Production of 14CO2 was most pronounced at sediment surfaces which were zones of active denitrification and sulfate reduction but was also significant within zones of methanogenesis. In a core taken from an uncontaminated site having a high proportion of oxidized, coarse-grain sediments, sulfate reduction and methanogenic activity levels were very low and 14CO2 accounted for 98% of the product formed from [14C]MeHg. There was no apparent relationship between the degree of mercury contamination of the sediments and the occurrence of oxidative demethylation. However, sediments from Fort Churchill, the most contaminated site, were most active in terms of demethylation potentials. Inhibition of sulfate reduction with molybdate resulted in significantly depressed oxidized/reduced demethylation product ratios, but overall demethylation rates of inhibited and uninhibited samples were comparable. Addition of sulfate to sediment slurries stimulated production of 14CO2 from [14C]MeHg, while 2-bromoethanesulfonic acid blocked production of 14CH4. These results reveal the importance of sulfate-reducing and methanogenic bacteria in oxidative demethylation of MeHg in anoxic environments.
Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.
Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang
2015-09-01
Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite
NASA Astrophysics Data System (ADS)
Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott
2010-02-01
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II) (aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III) (s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.
Rocksén, D; Lilliehöök, B; Larsson, R; Johansson, T; Bucht, A
2000-01-01
Inhalation of bacterial endotoxin induces an acute inflammation in the lower respiratory tract. In this study, the anti-inflammatory effects of the anti-oxidant N-acetylcysteine (NAC) and the glucocorticoid dexamethasone were investigated in mice exposed to aerosolized endotoxin (lipopolysaccharide (LPS)). Powerful reduction of neutrophils in bronchoalveolar lavage fluid (BALF) was obtained by a single i.p. injection of dexamethasone (10 mg/kg), whereas treatment with NAC only resulted in reduction of neutrophils when administered at a high dose (500 mg/kg). Measurement of cytokine and chemokine expression in lung tissue revealed a significant decrease of tumour necrosis factor-alpha, IL-1α, IL-1β, IL-6, IL-12p40, and MIP-1α mRNA when mice where treated with dexamethasone but not when treated with NAC. Analysis of oxidative burst demonstrated a remarkable reduction of oxygen radicals in BALF neutrophils after treatment with dexamethasone, whereas the effect of NAC was not significantly different from that in untreated animals. In conclusion, dexamethasone exerted both anti-inflammatory and anti-oxidative effects in acute airway inflammation, probably by blocking early events in the inflammatory cascade. In contrast, treatment with NAC resulted in a weak reduction of the inflammatory response but no inhibition of proinflammatory cytokines or reduction of oxidative burst in neutrophils. These results demonstrate dramatic differences in efficiency and also indicate that the two drugs have different actions. Combined treatment with NAC and dexamethasone revealed an additive action but no synergy was observed. PMID:11091282
NASA Astrophysics Data System (ADS)
Kuzuhara, Akio
2014-11-01
In order to investigate in detail the influence of chemical treatments (reduction, hydrolyzed eggwhite protein (HEWP) treatment, and oxidation) on damaged hair keratin fibers, the structure of cross-sections at various depths of excessively bleached (damaged) black human hair resulting from a permanent waving process was directly analyzed using Raman spectroscopy. It was found that L-cysteine (CYS) largely reacted with the gauche-gauche-gauche (GGG) conformation of disulfide (-SS-) groups (while CYS did not react with the trans-gauche-trans (TGT) conformation). In particular, not only the GGG content, but also the cysteic acid content existing throughout the cortex region of the excessively bleached human hair remarkably decreased by performing the oxidation process after reduction. On the other hand, the GGG content of the excessively bleached black human hair increased, while the TGT content decreased by performing the oxidation process after reduction and then HEWP treatment processes. From these experiments, the authors concluded that some of the keratin associated protein (KAP), which has a rich -SS- content and cysteic acid content was eluted from the cortex region along with the disconnection of -SS- groups, thereby leading to the remarkable reduction in the reconnection of -SS- groups of the excessively bleached black human hair after the permanent waving process (the reduction and oxidation processes). Also, the authors concluded that the HEWP treatment process in the permanent waving process caused the reconstruction of the KAP, thereby contributing to the acceleration of the reconnection of -SS- groups during the oxidation process.
Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocar, B.; Borch, T; Fendorf, S
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II){sub (aq)} concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III){sub (s)} depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less
Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 2: Reduction Studies
NASA Astrophysics Data System (ADS)
Elliott, R.; Coley, K.; Mostaghel, S.; Barati, M.
2018-02-01
Production of ultrahigh-manganese steels is expected to result in significant increase in demand for low-carbon (LC) ferromanganese (FeMn) and silicomanganese (SiMn). Current manganese processing techniques are energy intensive and typically yield a high-carbon product. The present work therefore reviews available literature regarding carbothermic reduction of Mn oxides and ores, with the objective of identifying opportunities for future process development to mitigate the cost of LC FeMn and SiMn. In general, there is consensus that carbothermic reduction of Mn oxides and ores is limited by gasification of carbon. Conditions which enhance or bypass this step (e.g., by application of CH4) show higher rates of reduction at lower temperatures. This phenomenon has potential application in solid-state reduction of Mn ore. Other avenues for process development include optimization of the prereduction step in conventional FeMn production and metallothermic reduction as a secondary reduction step.
The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...
The enzymes associated with denitrification
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Tomlinson, G. A.
1988-01-01
The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.
Synthesis of 2-(3'-Indolyl)tetrahydrofurans by oxidative cycloetherification.
Gillard, Rachel M; Sperry, Jonathan
2015-03-06
A series of 2-(3'-indolyl)tetrahydrofurans have been prepared by a DDQ-mediated oxidative cycloetherification process. Performing the reaction under biphasic conditions prevents reductive cleavage of the products by the spent oxidant (DDQH2).
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Mancinelli, R. L.; Dyar, M. D.; Parente, M.; Drief, A.; Lane, M. D.; Murad, E.
2006-01-01
We are performing oxidation and reduction reactions on hydrated ferric oxide minerals in order to investigate how these might alter under a variety of conditions on the surface of Mars. Preliminary experiments on ferrihydrite and goethite showed that heating these minerals in a dry oxidizing environment produces fine-grained hematite, while heating these minerals in a reducing environment produces fine-grained magnetite. Under Mars-like oxidation levels this magnetite then oxidizes to maghemite. These reactions are dependent on the presence of water and organic material that can act as a reductant. We are using reflectance and Mossbauer spectroscopy to characterize the reaction products and TEM to analyze the sample texture. Our preliminary results indicate that magnetite and maghemite could be formed in the soil on Mars from ferrihydrite and goethite if organics were present on early Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Day, Peggy A.; Asta, Maria P.; Kanematsu, Masakazu
2015-02-27
In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactivemore » transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.« less
ERIC Educational Resources Information Center
Temel, Senar
2016-01-01
This study aims to analyse prospective chemistry teachers' cognitive structures related to the subject of oxidation and reduction through a flow map method. Purposeful sampling method was employed in this study, and 8 prospective chemistry teachers from a group of students who had taken general chemistry and analytical chemistry courses were…
Passive Biobarrier for Treating Co-mingled Perchlorate and RDX in Groundwater at an Active Range
2016-05-12
and Groundwater Temperature ............................. 102 6.1.2 Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP...22 or equivalent). Parameters, including temperature , conductivity, dissolved oxygen , oxidation-reduction potential (ORP), turbidity, and pH were...3% for temperature and specific conductivity, and % for dissolved oxygen , ORP, and turbidity. When parameters were stable according to the above
S.R. Pezeshki; R.D. DeLaune
2000-01-01
Characterization of hydric soils and the relationship between soil oxidation-reduction processes and wetland plant distribution are critical to the identification and delineation of wetlands and to our understanding of soil processes and plant functioning in wetland ecosystems. However, the information on the relationship between flood response of wetland plants and...
ERIC Educational Resources Information Center
Rosenthal, Deborah P.; Sanger, Michael J.
2013-01-01
Two groups of students were shown unnarrated versions of two different particulate-level computer animations of varying complexity depicting the oxidation-reduction reaction of aqueous silver nitrate and solid copper metal; one group saw the more simplified animation first and the more complex animation second while the other group saw these…
Das, Biswanath; Ezzedinloo, Lida; Bhadbhade, Mohan; Bucknall, Martin P; Colbran, Stephen B
2017-09-05
A new ruthenium(ii) complex capable of catalysing both CO 2 reduction and water oxidation was designed and synthesised. The electro-catalytic efficiency and robustness of the complex together with the electronic effect of its co-ligands were investigated to develop next generation dual activity electrocatalysts.
ERIC Educational Resources Information Center
Rosenthal, Deborah P.; Sanger, Michael J.
2012-01-01
A group of 55 students were shown unnarrated versions of two different particulate-level computer animations of varying complexity depicting the oxidation-reduction reaction of aqueous silver nitrate and solid copper metal. These students were asked to explain their understanding of the chemical reaction based on their interpretations of these…
Fu, Xian; Adams, Zachary; Liu, Rui; ...
2017-09-05
Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysismore » reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.« less
Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates
NASA Astrophysics Data System (ADS)
Banerjee, Indrani; Mahapatra, Santosh K.; Pal, Chandana; Sharma, Ashwani K.; Ray, Asim K.
2018-05-01
Room temperature hydrogen plasma treatment on solution processed 300 nm graphene oxide (GO) films on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates has been performed by varying the plasma power between 20 W and 60 W at a constant exposure time of 30 min with a view to examining the effect of plasma power on reduction of GO. X-ray powder diffraction (XRD) and Raman spectroscopic studies show that high energy hydrogen species generated in the plasma assist fast exfoliation of the oxygenated functional groups present in the GO samples. Significant decrease in the optical band gap is observed from 4.1 eV for untreated samples to 0.5 eV for 60 W plasma treated samples. The conductivity of the films treated with 60 W plasma power is estimated to be six orders of magnitude greater than untreated GO films and this enhancement of conductivity on plasma reduction has been interpreted in terms of UV-visible absorption spectra and density functional based first principle computational calculations. Plasma reduction of GO/ITO/PET structures can be used for efficiently tuning the electrical and optical properties of reduced graphene oxide (rGO) for flexible electronics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Xian; Adams, Zachary; Liu, Rui
Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysismore » reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.« less
Physical and Chemical Processes in Flames
2010-02-15
Results: Use of comprehensively validated reduced chemical kinetic mechanism allows realistic description of methane oxidation chemistry with NOx ...PERFORMING ORGANIZATION REPORT NUMBER Department of Mechanical and Aerospace Engineering Princeton University Princeton, NJ 08544... mechanism reduction; skeletal mechanism ; CO/H2 oxidation; ethylene oxidation; heptane oxidation; directed relation graph; high-pressure combustion
40 CFR 52.1781 - Control strategy: Sulfur oxides and particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Sulfur oxides and... Carolina § 52.1781 Control strategy: Sulfur oxides and particulate matter. (a) The plan's control strategy... State expects the resulting emission reductions of nitrogen oxides and sulfur dioxide from this control...
40 CFR 52.1781 - Control strategy: Sulfur oxides and particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Sulfur oxides and... Carolina § 52.1781 Control strategy: Sulfur oxides and particulate matter. (a) The plan's control strategy... State expects the resulting emission reductions of nitrogen oxides and sulfur dioxide from this control...
40 CFR 52.1781 - Control strategy: Sulfur oxides and particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Sulfur oxides and... Carolina § 52.1781 Control strategy: Sulfur oxides and particulate matter. (a) The plan's control strategy... State expects the resulting emission reductions of nitrogen oxides and sulfur dioxide from this control...
Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
Butler, Elizabeth C; Chen, Lixia; Hansel, Colleen M; Krumholz, Lee R; Elwood Madden, Andrew S; Lan, Ying
2015-11-01
Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential for rapid (re)formation of dissolved Cr(vi) above regulatory levels.
In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films
NASA Astrophysics Data System (ADS)
Balcerzak, Jacek; Redzynia, Wiktor; Tyczkowski, Jacek
2017-12-01
A novel in-situ study of the surface molecular structure of catalytically active ruthenium-based films subjected to the oxidation (in oxygen) and reduction (in hydrogen) was performed in a Cat-Cell reactor combined with a XPS spectrometer. The films were produced by the plasma deposition method (PEMOCVD). It was found that the films contained ruthenium at different oxidation states: metallic (Ru0), RuO2 (Ru+4), and other RuOx (Ru+x), of which content could be changed by the oxidation or reduction, depending on the process temperature. These results allow to predict the behavior of the Ru-based catalysts in different redox environments.
Control of Sulfidogenesis Through Bio-oxidation of H 2S Coupled to (per)chlorate Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregoire, Patrick; Engelbrektson, Anna; Hubbard, Christopher G.
2014-04-04
Here, we investigate H 2S attenuation by dissimilatory perchlorate-reducing bacteria (DPRB). All DPRB tested oxidized H 2S coupled to (per)chlorate reduction without sustaining growth. H 2S was preferentially utilized over organic electron donors resulting in an enriched (34S)-elemental sulfur product. Electron microscopy revealed elemental sulfur production in the cytoplasm and on the cell surface of the DPRB Azospira suillum. We also propose a novel hybrid enzymatic-abiotic mechanism for H 2S oxidation similar to that recently proposed for nitrate-dependent Fe(II) oxidation. The results of this study have implications for the control of biosouring and biocorrosion in a range of industrial environments.
NASA Astrophysics Data System (ADS)
Postma, Dieke; Pham, Thi Kim Trang; Sø, Helle Ugilt; Hoang, Van Hoan; , Mai Lan, Vi; Nguyen, Thi Thai; Larsen, Flemming; Pham, Hung Viet; Jakobsen, Rasmus
2016-12-01
Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content.
Trang, Pham Thi Kim; Sø, Helle Ugilt; Van Hoan, Hoang; Lan, Vi Mai; Thai, Nguyen Thi; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus
2016-01-01
Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content. PMID:27867210
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin
2015-09-01
Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantifiedmore » the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.« less
Lee, Chun W; Srivastava, Ravi K; Ghorishi, S Behrooz; Hastings, Thomas W; Stevens, Frank M
2004-12-01
Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+). The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.
Activation of Peroxymonosulfate by Subsurface Minerals.
Yu, Miao; Teel, Amy L; Watts, Richard J
2016-08-01
In situ chemical oxidation (ISCO) has become a widely used technology for the remediation of soil and groundwater. Although peroxymonosulfate is not a common oxidant source for ISCO, its chemical structure is similar to the ISCO reagents hydrogen peroxide and persulfate, suggesting that peroxymonosulfate may have the beneficial properties of each of these oxidants. Peroxymonosulfate activation in the presence of subsurface minerals was examined as a basis for ISCO, and possible reactive species (hydroxyl radical, sulfate radical, and reductants+nucleophiles) generated in the mineral-activated peroxymonosulfate systems were investigated. Rates of peroxymonosulfate decomposition and generation rates of reactive species were studied in the presence of three iron oxides, one manganese oxide, and three soil fractions. The iron oxide hematite-activated peroxymonosulfate system most effectively degraded the hydroxyl radical probe nitrobenzene. Reductants+nucleophiles were not generated in mineral-activated peroxymonosulfate systems. Use of the probe compound anisole in conjunction with scavengers demonstrated that both sulfate radical and hydroxyl radical are generated in mineral-activated peroxymonosulfate systems. In order to confirm the activation of peroxymonosulfate by subsurface minerals, one natural soil and associated two soil fractions were evaluated as peroxymonosulfate catalysts. The natural soil did not effectively promote the generation of oxidants; however, the soil organic matter was found to promote the generation of reductants + nucleophiles. The results of this research show that peroxymonosulfate has potential as an oxidant source for ISCO applications, and would be most effective in treating halogenated contaminants when soil organic matter is present in the subsurface. Copyright © 2016. Published by Elsevier B.V.
Wang, Xin; Rathinasabapathi, Bala; de Oliveira, Letuzia Maria; Guilherme, Luiz R G; Ma, Lena Q
2012-10-16
Microbes play an important role in arsenic transformation and cycling in the environment. Microbial arsenic oxidation and reduction were demonstrated in the growth media of arsenic hyperaccumulator Pteris vittata L. All arsenite (AsIII) at 0.1 mM in the media was oxidized after 48 h incubation. Oxidation was largely inhibited by antibiotics, indicating that bacteria played a dominant role. To identify AsIII oxidizing bacteria, degenerate primers were used to amplify ∼500 bp of the AsIII oxidase gene aioA (aroA) using DNA extracted from the media. One aioA (aroA)-like sequence (MG-1, tentatively identified as Acinetobacter sp.) was amplified, exhibiting 82% and 91% identity in terms of gene and deduced protein sequence to those from Acinetobacter sp. 33. In addition, four bacterial strains with different arsenic tolerance were isolated and identified as Comamonas sp.C-1, Flavobacterium sp. C-2, Staphylococcus sp. C-3, and Pseudomonas sp. C-4 using carbon utilization, fatty acid profiles, and/or sequencing 16s rRNA gene. These isolates exhibited dual capacity for both AsV reduction and AsIII oxidation under ambient conditions. Arsenic-resistant bacteria with strong AsIII oxidizing ability may have potential to improve bioremediation of AsIII-contaminated water using P. vittata and/or other biochemical strategies.
Shi, Liang; Squier, Thomas C; Zachara, John M; Fredrickson, James K
2007-01-01
Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope. PMID:17581116
Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji
2015-01-01
The effect of oxide coating on the activity of a copper-zinc oxide–based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides. PMID:28793674
Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets
NASA Astrophysics Data System (ADS)
Wang, Shuai; Chen, Mao; Guo, Yufeng; Jiang, Tao; Zhao, Baojun
2018-04-01
Reduction and smelting of the vanadium titanomagnetite metallized pellets have been experimentally investigated in this study. By using the high-temperature smelting, rapid quenching, and electron probe x-ray microanalysis (EPMA) technique, the effects of basicity, reaction time, and graphite reductant amount were investigated. The vanadium contents in iron alloys increase with increasing basicity, reaction time, and graphite amount, whereas the FeO and V2O3 concentrations in the liquid phase decrease with the increase of graphite amount and reaction time. Increasing the reaction time and reductant content promotes the reduction of titanium oxide, whereas the reduction of titanium oxides can be suppressed with increasing the slag basicity. Titanium carbide (TiC) was not observed in all the quenched samples under the present conditions. The experimental results and the FactSage calculations are also compared in the present study.
Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures.
Jung, Inhwa; Dikin, Dmitriy A; Piner, Richard D; Ruoff, Rodney S
2008-12-01
Step-by-step controllable thermal reduction of individual graphene oxide sheets, incorporated into multiterminal field effect devices, was carried out at low temperatures (125-240 degrees C) with simultaneous electrical measurements. Symmetric hysteresis-free ambipolar (electron- and hole-type) gate dependences were observed as soon as the first measurable resistance was reached. The conductivity of each of the fabricated devices depended on the level of reduction (was increased more than 10(6) times as reduction progressed), strength of the external electrical field, density of the transport current, and temperature.
REACTIVITY OF CHEMICAL REDUCTANTS AS A FUNCTION OF REDOX ZONATION
The incorporation of reductive transformations into fate models continues to be a challenging problem. The occurrence of chemical reductants in anaerobic sediments and aquifers is a result of the reduction of inorganic, electron acceptors coupled to the microbial oxidation of org...
NASA Astrophysics Data System (ADS)
Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-04-01
The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.
NASA Astrophysics Data System (ADS)
Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh; Chang, Chia-Chin; Huang, Jow-Lay
2017-08-01
We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO2-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO2 nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO2-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g-1 at 3200 mA g-1) and stable capacitance (522 mAh g-1 after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO2 nanoparticle aggregation and degrade the Li ion storage property.
Major role of planktonic phosphate reduction in the marine phosphorus redox cycle
NASA Astrophysics Data System (ADS)
Van Mooy, B. A. S.; Krupke, A.; Dyhrman, S. T.; Fredricks, H. F.; Frischkorn, K. R.; Ossolinski, J. E.; Repeta, D. J.; Rouco, M.; Seewald, J. D.; Sylva, S. P.
2015-05-01
Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle.
Anion exchange membranes for electrochemical oxidation-reduction energy storage system
NASA Technical Reports Server (NTRS)
Odonnell, P. M.; Sheibley, D. W.; Gahn, R. F.
1977-01-01
Oxidation-reduction couples in concentrated solutions separated by appropriate ion selective membranes were considered as an attractive approach to bulk electrical energy storage. A key problem is the development of the membrane. Several promising types of anionic membranes are discussed which were developed and evaluated for redox energy storage systems. The copolymers of ethyleneglycoldimethacrylate with either 2-vinylpyridine or vinylbenzl chloride gave stable resistance values compared to the copolymer of vinylbenzlchloride and divinylbenzene which served as the baseline membrane. A polyvinylchloride film aminated with tetraethylenepentamine had a low resistance but a high ion transfer rate. A slurry coated vinylpyridine had the lowest ion transfer rate. All these membranes functioned well in laboratory cells at ambient temperatures with the acidic chloride oxidant/reductant system, Fe 3, Fe 2/Ti 3, Ti 4.
NASA Astrophysics Data System (ADS)
Lathuilliere, M. J.; Johnson, M. S.; Dalmagro, H. J.; Pinto Junior, O. B.; Couto, E. G.
2013-12-01
Plant communities of the Pantanal wetland are able to survive long periods of climatic and physiological stress in the dry and wet seasons. During inundation, soil oxygen demand increases dramatically as reducing soil conditions create stress in the root system with possible impacts on photosynthetic capacity of plants. We look at inundation cycles of a tree island (locally known as a cordilheira) in the Northern Pantanal near Poconé, Mato Grosso, and relate soil oxidation-reduction potential and soil oxygen depletion to the photosynthetic capacity of two plant communities of flooded scrub forest (Vochysia divergens and Curatela americana). Results show a drop in soil oxidation-reduction potential of over 400 mV, to levels below the absolute value of -200 mV, following inundation around the tree island. Both plant species showed increased carbon assimilation at highest soil oxygen demand despite a change in stomatal conductance, suggesting adaptation to the inundated environment. Absolute values of soil oxidation-reduction potential also allow for the determination of specific soil chemical reactions characteristic of the tree island environment, namely the reduction of iron(III), or carbon dioxide which in turn produces methane. Our combined analysis of soil chemistry with plant ecophysiology allows for a better understanding of soil-plant interactions in the Pantanal, specifically the drivers of biogeochemical processes between inundation periods.
Du, Yunfeng; Navab, Mohamad; Shen, Melody; Hill, James; Pakbin, Payam; Sioutas, Constantinos; Hsiai, Tzung K; Li, Rongsong
2013-07-05
Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter <200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production. Copyright © 2013 Elsevier Inc. All rights reserved.
Du, Yunfeng; Navab, Mohamad; Shen, Melody; Hill, James; Pakbin, Payam; Sioutas, Constantinos; Hsiai, Tzung; Li, Rongsong
2013-01-01
Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter < 200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production. PMID:23751346
NASA Astrophysics Data System (ADS)
Xu, Xiaoyang; Wu, Tao; Xia, Fengling; Li, Yi; Zhang, Congcong; Zhang, Lei; Chen, Mingxi; Li, Xichuan; Zhang, Li; Liu, Yu; Gao, Jianping
2014-11-01
A facile and quick route for the chemical reduction of graphene oxide (GO) using In powder as a reductant has been established. The reduction of GO by In powder is traced by UV-visible absorption spectroscopy, and the obtained reduced graphene oxide (rGO) is analyzed. The In3+ ions produced during the reaction between the GO and the In powder are chemically transformed to In2O3 and then form In2O3/rGO hybrids. The In2O3/rGO hybrids are used as electrode materials and their electrochemical performance are studied using cyclic voltammetry and galvanostatic charge/discharge. The In2O3/rGO hybrids demonstrate excellent electrochemical performance and their highest specific capacitance is 178.8 F g-1 which is much higher than that of either In2O3 or rGO. In addition, the In2O3/rGO hybrids are also very stable.
The optical and structural properties of graphene nanosheets and tin oxide nanocrystals composite
NASA Astrophysics Data System (ADS)
Farheen, Parveen, Azra; Azam, Ameer
2018-05-01
A nanocomposite material consisting of metal oxide and reduced graphene oxide was prepared via simple, economic, and effective chemical reduction method. The synthesis strategy was based on the reduction of GO with Sn2+ ion that combines tin oxidation and GO reduction in one step, which provides a simple, low-cost and effective way to prepare graphene nanosheets/SnO2 nanocrystals composites because no additional chemicals were needed. SEM and TEM images shows the uniform distribution of the SnO2 nanocrystals on the Graphene nanosheets (GNs) surface and transmission electron microscope shows an average particle size of 2-4 nm. The mean crystallite size was calculated by Debye Scherrer formula and was found to be about 4.0 nm. Optical analysis was done by using UV-Visible spectroscopy technique and the band gap energy of the GNs/SnO2 nanocomposite was calculated by Tauc relation and came out to be 3.43eV.
Christensen, A; Westerholm, R; Almén, J
2001-06-01
Relatively few emission characterization studies have been made on small engines used in garden equipment. The present investigation focuses on exhaust characterization from a lawn mower engine fueled with two different fuels in combination with and without an oxidizing catalyst. The compounds measured in the exhaust are carbon monoxide, hydrocarbons, nitrogen oxides, particulates, polycyclic aromatic hydrocarbons, methane, ethane, ethene, ethanol, and nitrous oxide. A significant reduction can be achieved by the use of a catalyst. By selection of the fuel, a significant reduction of certain carcinogenic compounds ("probably carcinogenic to humans" according to the IARC; benzo[a]pyrene and benzo[a]anthracene) may be achieved. The highest reduction improvement is achieved through the combination of an environmentally improved fuel, i.e., alkylate fuel, and a catalyst system. The data presented show that emissions from lawn mower engines are still relatively large although there is the potential for further improvements.
Clinical and electrodiagnostic characteristics of nitrous oxide-induced neuropathy in Taiwan.
Li, Han-Tao; Chu, Chun-Che; Chang, Kuo-Hsuan; Liao, Ming-Feng; Chang, Hong-Shiu; Kuo, Hung-Chou; Lyu, Rong-Kuo
2016-10-01
Nitrous oxide-induced neuropathy is toxic neuropathy occasionally encountered in Taiwanese neurological clinics. Only several case reports described their electrodiagnostic features. We used a case-control design to investigate the detailed electrodiagnostic characteristics and possible factors relating to severe nerve injury. We retrospectively reviewed 33 patients with nitrous oxide-induced neuropathy over a 10-year period and reported their demographic data, spinal cord MRI, laboratory examinations and nerve conduction studies. 56 healthy controls' nerve conduction studies were collected for comparison analysis. We noted significant motor and sensory amplitudes reduction, conduction velocities slowing, and latencies prolongation in most tested nerves compared to the controls. Similar nerve conduction study characteristics with prominent lower limbs' motor and sensory amplitudes reduction was observed in patient groups with or without abnormal vitamin B12 and/or homocysteine levels. Among those with lower limbs' motor or sensory amplitudes reduction <20% of the lower limit of normal, higher homocysteine levels were detected. Severe impairments of the lower limbs' sensory and motor amplitudes were frequently noted in patients with nitrous oxide exposure. Nitrous oxide exposure itself is an important factor for the development of neuropathy. Our study contributes to the understanding of electrodiagnostic features underlying the nitrous oxide-induced neuropathy. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Williams, M. S.; Edwards, T. B.
Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, retains radionuclides in the melt and thus the final glass. Specifically, long-lived radioactive 99Tc species are less volatile in the reduced Tc 4+ state as TcO 2 than as NaTcO 4 or Tc 2O 7, and ruthenium radionuclides in the reduced Ru 4+ state are insoluble RuO 2 inmore » the melt which are not as volatile as NaRuO 4 where the Ru is in the +7 oxidation state. Similarly, hazardous volatile Cr 6+ occurs in oxidized melt pools as Na 2CrO 4 or Na 2Cr 2O 7, while the Cr +3 state is less volatile and remains in the melt as NaCrO 2 or precipitates as chrome rich spinels. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam.« less
Few-Flakes Reduced Graphene Oxide Sensors for Organic Vapors with a High Signal-to-Noise Ratio
Hasan, Nowzesh; Zhang, Wenli
2017-01-01
This paper reports our findings on how to prepare a graphene oxide-based gas sensor for sensing fast pulses of volatile organic compounds with a better signal-to-noise ratio. We use rapid acetone pulses of varying concentrations to test the sensors. First, we compare the effect of graphene oxide deposition method (dielectrophoresis versus solvent evaporation) on the sensor’s response. We find that dielectrophoresis yields films with uniform coverage and better sensor response. Second, we examine the effect of chemical reduction. Contrary to prior reports, we find that graphene oxide reduction leads to a reduction in sensor response and current noise, thus keeping the signal-to-noise ratio the same. We found that if we sonicated the sensor in acetone, we created a sensor with a few flakes of reduced graphene oxide. Such sensors provided a higher signal-to-noise ratio that could be correlated to the vapor concentration of acetone with better repeatability. Modeling shows that the sensor’s response is due to one-site Langmuir adsorption or an overall single exponent process. Further, the desorption of acetone as deduced from the sensor recovery signal follows a single exponent process. Thus, we show a simple way to improve the signal-to-noise ratio in reduced graphene oxide sensors. PMID:29065488
Improvement in gold grade from iron-oxide mineral using reduction roasting and magnetic separation
NASA Astrophysics Data System (ADS)
Kim, Hyun-soo; On, Hyun-sung; Lim, Dae-hack; Myung, Eun-ji; Park, Cheon-young
2017-04-01
Microwave has a wide range of applications in mineral technology, metallurgy, etc. It is an established fact that microwave energy has potential for the speedy and efficient heating of minerals and in a commercial context may provide savings in both time and energy. Microwave heating is being developed as a potential thermal pre-treatment process, because of its unique advantages over the differences of ore minerals in absorbing microwaves. The aim of this study was to investigate the improvement in Au grade from iron-oxide mineral using reduction roasting and magnetic separation. The characteristics of iron-oxide mineral were analyzed using chemical, XRD and reflected light microscopy. The reduction roasting using microwave and magnetic separation experiments were examined under various conditions (reducing agent and chemical additive). The results of XRD and reflected light microscopy showed that the iron-oxide mineral mainly composed of illite, quartz and hematite. The iron-oxide mineral had an Au, Ag, Fe contents of 6.4, 35.1 and 155,441.1 mg/kg, respectively. The results demonstrated that the improvement in Au by reduction roasting using microwave (frequency of 2.45GHz, intensity of 5kW) and magnetic separation (magnetic field intensity of 9,000 Gauss) were effective processes. The Au content in iron-oxide mineral from 6.4 mg/kg to 14.2 mg/kg was achieved within microwave exposure time of 10min (reducing agent(PAC) ratio = 50 : 50, 5% of chemical additive(Soda ash)). Acknowledgment : This subject is supported by Korea Ministry of Environment as "Advanced Technology Program for Environmental Industry"
Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo
2012-01-01
Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 106 acetate-utilizing manganese-reducing cells cm−3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639
Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo
2012-11-01
Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.
Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S
2014-01-01
The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.
Hyde, Embriette R.; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K.; Torregrossa, Ashley C.; Tribble, Gena; Kaplan, Heidi B.; Petrosino, Joseph F.; Bryan, Nathan S.
2014-01-01
The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812
Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides
White, A.F.; Peterson, M.L.
1996-01-01
Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show minimum reactivity toward chromate ions. The ability of Fe(II) oxides to reduce transition metals in soils and groundwaters will be strongly dependent on the redox environment.
Reduction of aqueous transition metal species on the surfaces of Fe(II) -containing oxides
NASA Astrophysics Data System (ADS)
White, Art F.; Peterson, Maria L.
1996-10-01
Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25°C. For an aqueous transition metal m, such reactions are 3[FeFe23+]O+2/nm→4[Fe23+]O+Fe+2/nm and 3[FeTi]O+→Fe23+TiO+Fe+2/nm, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] → [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe 2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 × 10 -10 mol m -2 s -1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe 2+ is oxidized homogeneously in solution to Fe 3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show minimum reactivity toward chromate ions. The ability of Fe(II) oxides to reduce transition metals in soils and groundwaters will be strongly dependent on the redox environment.
Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments
Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.
1991-01-01
The potential for nonenzymatic reduction of Fe(III) either by organic compounds or by the development of a low redox potential during microbial metabolism was compared with direct, enzymatic Fe(III) reduction by Fe(III)-reducing microorganisms. At circumneutral pH, very few organic compounds nonenzymatically reduced Fe(III). In contrast, in the presence of the appropriate Fe(IH)-reducing microorganisms, most of the organic compounds examined could be completely oxidized to carbon dioxide with the reduction of Fe(III). Even for those organic compounds that could nonenzymatically reduce Fe(III), microbial Fe(III) reduction was much more extensive. The development of a low redox potential during microbial fermentation did not result in nonenzymatic Fe(III) reduction. Model organic compounds were readily oxidized in Fe(III)-reducing aquifer sediments, but not in sterilized sediments. These results suggest that microorganisms enzymatically catalyze most of the Fe(III) reduction in the Fe(III) reduction zone of aquatic sediments and aquifers.
NASA Astrophysics Data System (ADS)
Back, Seunghyun; Kang, Bongchul
2018-02-01
Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.
Lang, Sigrid; Wentzel, Anna-Pia; Ekstrom, Malin
2016-05-09
Theme: Accreditation and quality improvement. Dislocated fractures are common in the children's emergency department (ER). All forms of fracture reduction are very painful requiring nitrous oxide. The purpose is to shorten the length of stay in the hospital as well as sustain a high quality of care. All nurses received theoretical and practical training in the use of nitrous oxide. Evaluations with the families were made by telephone. A total of 40 enclosed fracture reductions were made at the ER, leading to a reduction of 33 patients in the operating department and the length of stay was shortened - this compared to the same time in 2014. No adverse event was reported and no patient felt any increase in pain during the treatment. All patients would repeat the procedure if necessary. The treatment has reduced the length of stay in the hospital without affecting the other patients in the ER or the quality of care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Shusuke, E-mail: shusuke-okada@aist.go.jp; Takagi, Kenta; Ozaki, Kimihiro
Submicron-sized Sm{sub 2}Fe{sub 17} powder samples were fabricated by a non-pulverizing process through reduction-diffusion of precursors prepared by a wet-chemical technique. Three precursors having different morphologies, which were micron-sized porous Sm-Fe oxide-impregnated iron nitrate, acicular goethite impregnated-samarium nitrate, and a conventional Sm-Fe coprecipitate, were prepared and subjected to hydrogen reduction and reduction-diffusion treatment to clarify whether these precursors could be convert to Sm{sub 2}Fe{sub 17} without impurity phases and which precursor is the most attractive for producing submicron-sized Sm{sub 2}Fe{sub 17} powder. As a result, all three precursors were successfully converted to Sm{sub 2}Fe{sub 17} powders without impurity phases, andmore » the synthesis route using iron-oxide particle-impregnated samarium oxide was revealed to have the greatest potential among the three routes.« less
Augmented Oxygen-Dependent Killing of Leishmania.
1992-06-30
reduction-oxidation cycling drugs: amphotericin B, menadione , and phenazine methosulfate. Promastigotes were exposed to the above drugs under...P02 = 2]..1 kPa) or hyperoxic conditions(P02 - 91.7 kPa). High oxygen tensions did not alter the lethal effects of either menadione or phenazine...effects of high oxygen tensions on the lethal effects of three reduction-oxidation cycling drugs: amphotericin B, menadione , and phenazine
ERIC Educational Resources Information Center
Bischoff, Paul J.; Avery, Leanne; Golden, Constance Feldt; French, Paul
2010-01-01
The purpose of this study was to investigate the development of preservice science teachers' knowledge structures in the domain of oxidation and reduction chemistry. Knowledge structures were elicited through video-recorded semi-structured interviews before and after the unit of instruction, and analyzed using a visual flow map representation.…
Sun, Mei; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.
2012-01-01
Carbon electrodes are proposed in reactive sediment caps for in situ treatment of contaminants. The electrodes produce reducing conditions and H2 at the cathode and oxidizing conditions and O2 at the anode. Emplaced perpendicular to seepage flow, the electrodes provide the opportunity for sequential reduction and oxidation of contaminants. The objectives of this study are to demonstrate degradation of nitrobenzene (NB) as a probe compound for sequential electrochemical reduction and oxidation, and to determine the effect of applied voltage, initial concentration and natural organic matter on the degradation rate. In H-cell reactors with graphite electrodes and buffer solution, NB was reduced stoichiometrically to aniline (AN) at the cathode with nitrosobenzene (NSB) as the intermediate. AN was then removed at the anode, faster than the reduction step. No common AN oxidation intermediate was detected in the system. Both the first order reduction rate constants of NB (kNB) and NSB (kNSB) increased with applied voltage between 2V and 3.5 V (when the initial NB concentration was 100 µM, kNB=0.3 d−1 and kNSB=0.04 d−1at 2V; kNB=1.6 d−1 and kNSB=0.64 d−1at 3.5 V) but stopped increasing beyond the threshold of 3.5V. When initial NB concentration decreased from 100 to 5 µM, kNB and kNSB became 9 and 5 times faster, respectively, suggesting that competition for active sites on the electrode surface is an important factor in NB degradation. Presence of natural organic matter (in forms of either humic acid or Anacostia River sediment porewater) decreased kNB while slightly increased kNSB, but only to a limited extent (~factor of 3) for dissolved organic carbon content up to 100 mg/l. These findings suggest that electrode-based reactive sediment capping via sequential reduction/oxidation is a potentially robust and tunable technology for in situ contaminants degradation. PMID:22571797
Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction
Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan; ...
2016-12-16
Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO 2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stablemore » under the strongly reducing conditions found in CO 2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.« less
Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction
Landa, E.R.; Phillips, E.J.P.; Lovley, D.R.
1991-01-01
Uranium mill tailings were anaerobically incubated in the presence of H2 with Alteromonas putrefaciens, a bacterium known to couple the oxidation of H2 and organic compounds to the reduction of Fe(III) oxides. There was a direct correlation between the extent of Fe(III) reduction and the accumulation of dissolved 226Ra. In sterile tailings in which Fe(III) was not reduced, there was negligible leaching of 226Ra. The behavior of Ba was similar to that of Ra in inoculated and sterile systems. These results demonstrate that under anaerobic conditions, microbial reduction of Fe(III) may result in the release of dissolved 226Ra from uranium mill tailings. ?? 1991.
Direct printing and reduction of graphite oxide for flexible supercapacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo
2014-08-04
We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm{sup 3} in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart powermore » applications.« less
Bobek, Michael M.; Stehle, Richard C.; Hahn, David W.
2012-01-01
A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.
IN-SITU CHEMICAL OXIDATION - DNAPL MASS REDUCTION TECHNOLOGY
In-situ chemical oxidation (ISCO) is a rapidly developing technology used at hazardous waste sites where oxidants and complimentary reagents are injected into the subsurface to transform organic contaminants into less toxic byproducts. This technology is being used at new sites ...
Yu, Lei; Wang, Shi; Tang, Qing-Wen; Cao, Ming-Yue; Li, Jia; Yuan, Kun; Wang, Ping; Li, Wen-Wei
2016-05-01
Klebsiella oxytoca GS-4-08 is capable of azo dye reduction, but its quinone respiration and Fe(III) reduction abilities have not been reported so far. In this study, the abilities of this strain were reported in detail for the first time. As the biotic reduction of Fe(III) plays an important role in the biogeochemical cycles, two amorphous Fe(III) oxides were tested as the sole electron acceptor during the anaerobic respiration of strain GS-4-08. For the reduction of goethite and hematite, the biogenic Fe(II) concentrations reached 0.06 and 0.15 mM, respectively. Humic acid analog anthraquinone-2-disulfonate (AQS) was found to serve as an electron shuttle to increase the reduction of both methyl orange (MO) and amorphous Fe(III) oxides, and improve the dye tolerance of the strain. However, the formation of Fe(II) was not accelerated by biologically reduced AQS (B-AH2QS) because of the high bioavailability of soluble Fe(III). For the K. oxytoca strain, high soluble Fe(III) concentrations (above 1 mM) limit its growth and decolorization ability, while lower soluble Fe(III) concentrations produce an electron competition with MO initially, and then stimulate the decolorization after the electron couples of Fe(III)/Fe(II) are formed. With the ability to respire both soluble Fe(III) and insoluble Fe(III) oxides, this formerly known azo-reducer may be used as a promising model organism for the study of the interaction of these potentially competing processes in contaminated environments.
Korge, Paavo; Calmettes, Guillaume; Weiss, James N
2015-01-01
Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially be targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage. Copyright © 2015 Elsevier B.V. All rights reserved.
Low-temperature reduction of Ge oxide by Si and SiH4 in low-pressure H2 and Ar environment
NASA Astrophysics Data System (ADS)
Minami, Kaichiro; Moriya, Atsushi; Yuasa, Kazuhiro; Maeda, Kiyohiko; Yamada, Masayuki; Kunii, Yasuo; Niwano, Michio; Murota, Junichi
2015-08-01
Introduction of Ge into ULSIs has become increasingly attractive because of the higher carrier mobility of Ge. Since Ge native oxide is formed easily in cleanroom air, the control of formation and reduction of the Ge oxide is requested for the introduction of Ge layers into Si process. Here, the reactions between gas phase Ge oxide and Si substrate and between the Ge oxide on Ge epitaxial layer and SiH4 are investigated. The native-oxidized Ge amount is obtained by calculating from chemically shifted peak intensity of Ge 3d measured by X-ray photoelectron spectroscopy. By the adsorption of the Ge oxide on Si(1 0 0) surface, pure Ge and Si oxide are formed on the Si surface even at 350 °C and the formed Ge amount tends to correspond to the oxidized Si amount, independently of the heat-treatment environment of H2 and Ar under the condition that Si oxide is not reduced by H2. By SiH4 treatment, the amount of the oxidized Ge on the Ge layer decreases drastically even at 350 °C and Si oxide is formed on the Ge layer. From these results, it is suggested that the Ge oxide is reduced even at 350 °C by Si or SiH4, and the Si oxide and the pure Ge are formed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orsenigo, C.; Lietti, L.; Tronconi, E.
1998-06-01
Transient experiments performed over synthesized and commercial V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalysts during catalyst conditioning and during step changes of the operating variables (SO{sub 2} inlet concentration and temperature) show that conditioning of the catalyst is required to attain significant and reproducible steady-state data in both the reduction of NO{sub x} and the oxidation of SO{sub 2}. The response time of conditioning for NO{sub x} reduction is of a few hours and that for SO{sub 2} oxidation is of several hours. Fourier transform infrared spectroscopy temperature programmed decomposition, and thermogravimetric measurements showed that catalyst conditioning is associated with amore » slow process of buildup of sulfates: the different characteristic conditioning times observed in the reduction of NO{sub x} and in the oxidation of SO{sub 2} suggest that the buildup of sulfates occurs first at the vanadyl sites and later on at the exposed titania surface. Formation of sulfates at or near the vanadyl sites increases the reactivity in the de-NO{sub x} reaction, possibly due to the increase in the Broensted and Lewis acidity of the catalyst, whereas the titania surface acts as SO{sub 3} acceptor and affects the outlet SO{sub 3} concentration during catalyst conditioning for the SO{sub 2} oxidation reaction. The response time to step changes in SO{sub 2} concentration and temperature is of a few hours in the case of SO{sub 2} oxidation and much shorter in the case of NO{sub x} reduction. The different time responses associated with conditioning and with step changes in the settings of the operating variables have been rationalized in terms of the different extent of perturbation of the sulfate coverage experienced by the catalyst.« less
Zhao, Cen; Arroyo-Mora, Luis E; DeCaprio, Anthony P; Sharma, Virender K; Dionysiou, Dionysios D; O'Shea, Kevin E
2014-12-15
Iopamidol, widely employed as iodinated X-ray contrast media (ICM), is readily degraded in a Fe(III)-oxalate photochemical system under UV (350 nm) and visible light (450 nm) irradiation. The degradation is nicely modeled by pseudo first order kinetics. The rates of hydroxyl radical (OH) production for Fe(III)-oxalate/H2O2/UV (350 nm) and Fe(III)-oxalate/H2O2/visible (450 nm) systems were 1.19 ± 0.12 and 0.30 ± 0.01 μM/min, respectively. The steady-state concentration of hydroxyl radical (OH) for the Fe(III)-oxalate/H2O2/UV (350 nm) conditions was 10.88 ± 1.13 × 10(-14) M and 2.7 ± 0.1 × 10(-14) M for the Fe(III)-oxalate/H2O2/visible (450 nm). The rate of superoxide anion radical (O2(-)) production under Fe(III)-oxalate/H2O2/UV (350 nm) was 0.19 ± 0.02 μM/min with a steady-state concentration of 5.43 ± 0.473 × 10(-10) M. Detailed product studies using liquid chromatography coupled to Q-TOF/MS demonstrate both reduction (multiple dehalogenations) and oxidation (aromatic ring and side chains) contribute to the degradation pathways. The reduction processes appear to be initiated by the carbon dioxide anion radical (CO2(-)) while oxidation processes are consistent with OH initiated reaction pathways. Unlike most advanced oxidation processes the Fe(III)-oxalate/H2O2/photochemical system can initiate to both reductive and oxidative degradation processes. The observed reductive dehalogenation is an attractive remediation strategy for halogenated organic compounds as the process can dramatically reduce the formation of the problematic disinfection by-products often associated with oxidative treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang
2012-01-01
Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm0.5Sr0.5CoO3−δ (SSC) catalyst coating bonded onto the internal surface of a high-porosity La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm2 at 650°C and 0.043 Ω cm2 at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm−2 at 650°C and 1.46 W cm−2 at 600°C when operated on humidified hydrogen fuel and air oxidant. PMID:22708057
Use of ion conductors in the pyrochemical reduction of oxides
Miller, William E.; Tomczuk, Zygmunt
1994-01-01
An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO.sub.2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a .beta.-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca.degree. used for reducing UO.sub.2 and PuO.sub.2 to U and Pu.
X-ray Crystal Truncation Rod Studies of Surface Oxidation and Reduction on Pt(111)
Liu, Yihua; Barbour, Andi; Komanicky, Vladimir; ...
2016-02-26
Here, we present X-ray crystal truncation rods measurements of Pt(111) surface under electrochemical conditions. Analyses of crystal truncation rods reveal that surface oxide formation buckles the top surface layer of platinum to two different heights at the potential (0.95 V vs RHE) below the so-called place-exchange potential. While the anti-Bragg intensity, sensitive to the top surface layer, drops in response to the anodic charge transfers, its responses to the cathodic charge transfers are significantly delayed. Implications to the surface oxidation and reduction behaviors are discussed.
Lubner, Carolyn E.; Peters, John W.
2017-10-06
Microbial life has evolved a wide range of metabolisms exploiting in many cases unanticipated suites of oxidation-reduction reactions to generate energy. Although many of these suites of reactions don't allow these microbes to enjoy the same quality of energetic life that we enjoy via respiration/oxidative phosphorylation, it has conferred the ability for life to exploit almost any oxidation-reduction reaction. We find in many of these cases when energy is sparing, the difference between life and death may be conserving the maximal amount of energy and minimizing loss of free energy through heat.
Graphene production by laser shot on graphene oxide: An ab initio prediction
NASA Astrophysics Data System (ADS)
Zhang, Hong; Miyamoto, Yoshiyuki
2012-01-01
By performing the first-principles simulation of electron-ion dynamics based on the time-dependent density-functional theory, we propose a way to produce graphene from graphene oxides by means of the laser-induced reduction without using chemical species. Epoxy and hydroxyl groups on graphene sheets can be completely removed upon irradiation with femtosecond laser without damaging the graphene sheet. By comparing the simulated results with different pulse shapes and intensities, optimum conditions of the femtosecond laser for reduction of graphene oxide were determined. The current works will be useful for further experimental researches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubner, Carolyn E.; Peters, John W.
Microbial life has evolved a wide range of metabolisms exploiting in many cases unanticipated suites of oxidation-reduction reactions to generate energy. Although many of these suites of reactions don't allow these microbes to enjoy the same quality of energetic life that we enjoy via respiration/oxidative phosphorylation, it has conferred the ability for life to exploit almost any oxidation-reduction reaction. We find in many of these cases when energy is sparing, the difference between life and death may be conserving the maximal amount of energy and minimizing loss of free energy through heat.
NASA Astrophysics Data System (ADS)
Giocondi, Jennifer Lynn
Experiments have been conducted to determine the effects of dipolar fields, surface termination, and surface orientation on the photochemical reactivity of several transition metal oxides. These compounds include BaTiO3, SrTiO3, BaTi4O9, Sr2Nb2O 7, and Sr2Ta2O7 which were studied as polycrystalline ceramics, single crystals, micron-sized faceted particles, or some combination of these forms. The reduction of Ag+ from an aqueous AgNO3 solution (Ag0 product) and the oxidation of Pb2+ from an aqueous lead acetate solution (PbO 2 product) were selected as probe reactions because they leave insoluble products on the oxide surfaces. The reactivity of ferroelectric BaTiO3 was dominated by the effect of dipolar fields on the transport of photogenerated charge carriers. Silver was reduced on domains with a positive surface charge while lead was oxidized on domains with a negative surface charge. This reactivity implies that the dipolar field in individual domains drives photogenerated charge carriers to oppositely charged surfaces. This reaction mechanism results in a physical separation of the photogenerated charge carriers and the locations of the oxidation and reduction half reactions on the catalyst surface. Experiments performed on polycrystalline ceramics, single crystals, and micron-sized particles all showed this domain specific reactivity. SrTiO3 has the ideal cubic perovskite structure from which the tetragonally distorted ferroelectric BaTiO3 phase is derived. Polished and annealed surfaces of randomly oriented grain surfaces were bound by some combination of the following three planes: {110}, {111}, and a complex facet inclined approximately 24° from {100}. Surfaces with the complex {100} facet were found to be the most active for Ag reduction. Single crystal studies also showed that the nonpolar (100) surface is the most reactive and that the composition of the termination layer does not influence this reaction. However, the polar (111) and (110) surfaces had a non-uniform distribution of reaction products. For these orientations, the location of the reduction and oxidation reactions is determined by the chemical and charge terminations of the different terraces or facets. The reactivity for silver reduction on the faceted particles is ranked as (100) > (111) > (110) while the (100) surface was least reactive for lead oxidation. Overall, these results show that the photochemical reactivity of SrTiO3 is anisotropic and that on polar surfaces, dipolar fields arising from charged surface domains influence the transport of photogenerated charge carriers and promote spatially selective oxidation and reduction reactions. (Abstract shortened by UMI.)
Microbial mats in the Black Sea that anaerobically oxidise methane
NASA Astrophysics Data System (ADS)
Nauhaus, K.; Knittel, K.; Krüger, M.; Boetius, A.; Michaelis, W.; Widdel, F.
2003-04-01
Reef-forming microbial mats were recovered from methane seeps in anoxic waters of the northwestern Black Sea (BS) shelf. The microbial mats consist mainly of archaea (ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). Laboratory incubations with homogenized subsamples of the mats revealed their ability for the anaerobic oxidation of methane (AOM). The phylogentic relationship of the sulfate reducing partner is the same as in the AOM consortia studied in sediment samples from a methane hydrate area (Hydrate Ridge (HR), Oregon, USA (1,2)). The archaeal partner however belongs to a different cluster than in the HR samples (ANME-2). Methane oxidation is coupled to sulfate reduction in a 1:1 stoichiometry. Elevated methane partial pressures (0.1 to 1.1 MPa) increased the sulfate reduction rates in the Black Sea samples only two-fold in contrast to 5-fold in HR samples. The optimal temperature for the BS samples is between 10 and 25^oC. In both samples AOM was not taking place if typical inhibitors for sulfate-reduction or methanogenesis were added, thus indicating a syntrophic relationship between the partner organisms. The intermediate that is exchanged between the methane oxidizing archaea and the sulfate-reducing bacterium is still unknown. Additions of the possible intermediates (Acetate, Formate, Hydrogen) did not result in higher sulfate reduction rates in the absence of methane. (1) Boetius, A. et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 407: 623--626 (2) Nauhaus, K., Boetius, A., Krüger, M., Widdel, F. (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4 (5): 296--305
Burdette, D; Zeikus, J G
1994-01-01
The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling. Images Figure 1 PMID:8068002
Direct Reduction of Ferrous Oxides to form an Iron-Rich Alternative Charge Material
NASA Astrophysics Data System (ADS)
Ünal, H. İbrahim; Turgut, Enes; Atapek, Ş. H.; Alkan, Attila
2015-12-01
In this study, production of sponge iron by direct reduction of oxides and the effect of reductant on metallization were investigated. In the first stage of the study, scale formed during hot rolling of slabs was reduced in a rotating furnace using solid and gas reductants. Coal was used as solid reductant and hydrogen released from the combustion reaction of LNG was used as the gas one. The sponge iron produced by direct reduction was melted and solidified. In the second stage, Hematite ore in the form of pellets was reduced using solid carbon in a furnace heated up to 1,100°C for 60 and 120 minutes. Reduction degree of process was evaluated as a function of time and the ratio of Cfix/Fetotal. In the third stage, final products were examined using scanning electron microscope and microanalysis was carried out by energy dispersive x-ray spectrometer attached to the electron microscope. It is concluded that (i) direct reduction using both solid and gas reductants caused higher metallization compared to using only solid reductant, (ii) as the reduction time and ratio of Cfix/Fetotal increased %-reduction of ore increased.
Siegert, Michael; Taubert, Martin; Seifert, Jana; von Bergen-Tomm, Martin; Basen, Mirko; Bastida, Felipe; Gehre, Matthias; Richnow, Hans-Hermann; Krüger, Martin
2013-11-01
Anaerobic methanotrophic (ANME) mats host methane-oxidizing archaea and sulfate-reducing prokaryotes. Little is known about the nitrogen cycle in these communities. Here, we link the anaerobic oxidation of methane (AOM) to the nitrogen cycle in microbial mats of the Black Sea by using stable isotope probing. We used four different (15)N-labeled sources of nitrogen: dinitrogen, nitrate, nitrite and ammonium. We estimated the nitrogen incorporation rates into the total biomass and the methyl coenzyme M reductase (MCR). Dinitrogen played an insignificant role as nitrogen source. Assimilatory and dissimilatory nitrate reduction occurred. High rates of nitrate reduction to dinitrogen were stimulated by methane and sulfate, suggesting that oxidation of reduced sulfur compounds such as sulfides was necessary for AOM with nitrate as electron acceptor. Nitrate reduction to dinitrogen occurred also in the absence of methane as electron donor but at six times slower rates. Dissimilatory nitrate reduction to ammonium was independent of AOM. Ammonium was used for biomass synthesis under all conditions. The pivotal enzyme in AOM coupled to sulfate reduction, MCR, was synthesized from nitrate and ammonium. Results show that AOM coupled to sulfate reduction along with biomass decomposition drive the nitrogen cycle in the ANME mats of the Black Sea and that MCR enzymes are involved in this process. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3
NASA Astrophysics Data System (ADS)
Liu, Zhiming; Feng, Xu; Zhou, Zizheng; Feng, Yongjun; Li, Junhua
2018-01-01
Ce-Sn binary oxide catalysts prepared by the hydrothermal method have been investigated for the selective catalytic reduction (SCR) of NOx with NH3. Compared with pure CeO2 and SnO2, Ce-Sn binary oxide catalyst showed significantly higher NH3-SCR activity. Moreover, Ce-Sn catalyst showed high resistance against H2O and SO2. The high catalytic performance of Ce-Sn binary oxide is attributed to the synergetic effect between Ce and Sn species, which not only enhances the redox property of the catalyst but also increases the Lewis acidity, thus promoting the adsorption and activation of NH3 species, which contributes to improving the NH3-SCR performance.
Reduced graphene oxide as photocatalyst for CO2 reduction reaction(Conference Presentation)
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung
2016-10-01
Photocatalytic conversion of carbon dioxide (CO2) to hydrocarbons such as methanol makes possible simultaneous solar energy harvesting and CO2 reduction. Our previous work is using graphene oxide (GO) as a promising photocatalyst for photocatalytic conversion of CO2 to methanol[1].When using graphene oxide as photocatalyst, the photocatalytic efficiency is 4-flod higher than TiO2 powder. GO has a lot of defects on the surface and those defects make sp2 carbon structure become sp3 carbon structure. The carbon structure change cause the GO has large energy gap about 2.7 eV to 3.2 eV. In order to remove the defect and reduce the energy gap of GO, Zhao et al. try to annealing GO powder in the nitrogen atmosphere at 900oC, the GO structure can be reduced to near graphene structure[2]. Zhu et al. do some low temperature annealing, it can control the structure and energy bandgap of GO by control annealing temperature. If the annealing temperature increase the bandgap of GO will be reduce[3]. So, we can using this annealing process to reduce the bandgap of the GO. In the varying temperature thermal reduction process, as the temperature increases from 130oC to 170oC, the functional groups of the graphene oxide will be reduced and band gap of graphene oxide will be narrowed at same time. The characteristic of thermal reduced graphene oxide were analyzed by SEM, XRD and Raman measurements. The band position was determined by UV/Vis. The reduction of functional groups correlates to red shift in light absorption and eventual quenching in the PL signal of RGOs. Combining hydrophobicity, light harvesting and PL quench, we get the highest yield of RGO150 (0.31 μmole g-1 -cat hr-1) is 1.7-fold higher than that of GO (0.18μmole g-1 -cat hr-1). This work investigates a modified method for using a thermal reduction process to reduce the energy gap of graphene oxide.
Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lum, Yanwei; Yue, Binbin; Lobaccaro, Peter
Here, copper electrodes, prepared by reduction of oxidized metallic copper, have been reported to exhibit higher activity for the electrochemical reduction of CO 2 and better selectivity toward C 2 and C 3 (C 2+) products than metallic copper that has not been preoxidized. We report here an investigation of the effects of four different preparations of oxide-derived electrocatalysts on their activity and selectivity for CO 2 reduction, with particular attention given to the selectivity to C 2+ products. All catalysts were tested for CO 2 reduction in 0.1 M KHCO 3 and 0.1 M CsHCO 3 at applied voltagesmore » in the range from –0.7 to –1.0 V vs RHE. The best performing oxide-derived catalysts show up to ~70% selectivity to C 2+ products and only ~3% selectivity to C 1 products at –1.0 V vs RHE when CsHCO 3 is used as the electrolyte. In contrast, the selectivity to C 2+ products decreases to ~56% for the same catalysts tested in KHCO 3. By studying all catalysts under identical conditions, the key factors affecting product selectivity could be discerned. These efforts reveal that the surface area of the oxide-derived layer is a critical parameter affecting selectivity. A high selectivity to C 2+ products is attained at an overpotential of –1 V vs RHE by operating at a current density sufficiently high to achieve a moderately high pH near the catalyst surface but not so high as to cause a significant reduction in the local concentration of CO 2. On the basis of recent theoretical studies, a high pH suppresses the formation of C 1 relative to C 2+ products. At the same time, however, a high local CO 2 concentration is necessary for the formation of C 2+ products.« less
Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction
Lum, Yanwei; Yue, Binbin; Lobaccaro, Peter; ...
2017-07-06
Here, copper electrodes, prepared by reduction of oxidized metallic copper, have been reported to exhibit higher activity for the electrochemical reduction of CO 2 and better selectivity toward C 2 and C 3 (C 2+) products than metallic copper that has not been preoxidized. We report here an investigation of the effects of four different preparations of oxide-derived electrocatalysts on their activity and selectivity for CO 2 reduction, with particular attention given to the selectivity to C 2+ products. All catalysts were tested for CO 2 reduction in 0.1 M KHCO 3 and 0.1 M CsHCO 3 at applied voltagesmore » in the range from –0.7 to –1.0 V vs RHE. The best performing oxide-derived catalysts show up to ~70% selectivity to C 2+ products and only ~3% selectivity to C 1 products at –1.0 V vs RHE when CsHCO 3 is used as the electrolyte. In contrast, the selectivity to C 2+ products decreases to ~56% for the same catalysts tested in KHCO 3. By studying all catalysts under identical conditions, the key factors affecting product selectivity could be discerned. These efforts reveal that the surface area of the oxide-derived layer is a critical parameter affecting selectivity. A high selectivity to C 2+ products is attained at an overpotential of –1 V vs RHE by operating at a current density sufficiently high to achieve a moderately high pH near the catalyst surface but not so high as to cause a significant reduction in the local concentration of CO 2. On the basis of recent theoretical studies, a high pH suppresses the formation of C 1 relative to C 2+ products. At the same time, however, a high local CO 2 concentration is necessary for the formation of C 2+ products.« less
NASA Astrophysics Data System (ADS)
Xu, Fen; Liu, Yuanyuan; Zachara, John; Bowden, Mark; Kennedy, David; Plymale, Andrew E.; Liu, Chongxuan
2017-12-01
An experimental and modeling study was conducted to investigate the redox transformation and reductive immobilization of groundwater contaminant Cr in hyporheic zone (HZ) sediments from U.S. DOE's Hanford Site, where groundwater Cr(VI) is migrating and discharging to the nearby Columbia River. Experimental results revealed that Cr(VI) can be reduced and immobilized by the HZ sediments in the presence/absence of O2. Anaerobic pre-incubation of the sediments increased the effective rate of Cr reduction that was correlated with the increase in HCl-extractable Fe(II) content in the sediments. The reduced Cr was stable when exposed to O2 under field-relevant pH (7.5) with and without dissolved Mn(II), which might be oxidized to form Mn(III/IV) oxides that may oxidize reduced Cr. The Cr(VI) reduction rate showed a multi-rate behavior, apparently reflecting the presence of reductants with different reactivity in the sediments. The results from this study indicated that the HZ sediments can reductively immobilize Cr and the sediment redox capacity can be recharged through microbial activities. The results implied that HZ can play a role as a natural permeable redox barrier for removing groundwater Cr before it discharges into a river system.
Jang, M H; Scrutton, N S; Hille, R
2000-04-28
The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.
Van Mooy, B A S; Krupke, A; Dyhrman, S T; Fredricks, H F; Frischkorn, K R; Ossolinski, J E; Repeta, D J; Rouco, M; Seewald, J D; Sylva, S P
2015-05-15
Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle. Copyright © 2015, American Association for the Advancement of Science.
DOT National Transportation Integrated Search
1977-04-01
This study showed that lime treatment removes polar, viscosity-building components and reduces the susceptibility of the asphalt to laboratory oxidative hardening. The beneficial effects of lime treatment in reducing asphalt oxidative hardening were ...
Sulfur oxide adsorbents and emissions control
Li, Liyu [Richland, WA; King, David L [Richland, WA
2006-12-26
High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.
Weiss, J.V.; Emerson, D.; Megonigal, J.P.
2004-01-01
We compared the reactivity and microbial reduction potential of Fe(III) minerals in the rhizosphere and non-rhizosphere soil to test the hypothesis that rapid Fe(III) reduction rates in wetland soils are explained by rhizosphere processes. The rhizosphere was defined as the area immediately adjacent to a root encrusted with Fe(III)-oxides or Fe plaque, and non-rhizosphere soil was 0.5 cm from the root surface. The rhizosphere had a significantly higher percentage of poorly crystalline Fe (66??7%) than non-rhizosphere soil (23??7%); conversely, non-rhizosphere soil had a significantly higher proportion of crystalline Fe (50??7%) than the rhizosphere (18??7%, P<0.05 in all cases). The percentage of poorly crystalline Fe(III) was significantly correlated with the percentage of FeRB (r=0.76), reflecting the fact that poorly crystalline Fe(III) minerals are labile with respect to microbial reduction. Abiotic reductive dissolution consumed about 75% of the rhizosphere Fe(III)-oxide pool in 4 h compared to 23% of the soil Fe(III)-oxide pool. Similarly, microbial reduction consumed 75-80% of the rhizosphere pool in 10 days compared to 30-40% of the non-rhizosphere soil pool. Differences between the two pools persisted when samples were amended with an electron-shuttling compound (AQDS), an Fe(III)-reducing bacterium (Geobacter metallireducens), and organic carbon. Thus, Fe(III)-oxide mineralogy contributed strongly to differences in the Fe(III) reduction potential of the two pools. Higher amounts of poorly crystalline Fe(III) and possibly humic substances, and a higher Fe(III) reduction potential in the rhizosphere compared to the non-rhizosphere soil, suggested the rhizosphere is a site of unusually active microbial Fe cycling. The results were consistent with previous speculation that rapid Fe cycling in wetlands is due to the activity of wetland plant roots. ?? 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Herron, J. Dudley
1975-01-01
Indicates that in explaining redox reactions the definition of oxidation and reduction should be in terms of oxidation number, not electron transfer. Presents reasons and examples for this approach. (GS)
Valenzuela, Edgardo I.; Prieto-Davó, Alejandra; López-Lozano, Nguyen E.; Hernández-Eligio, Alberto; Vega-Alvarado, Leticia; Juárez, Katy; García-González, Ana Sarahí; López, Mercedes G.
2017-01-01
ABSTRACT Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13CH4 oxidized · cm−3 · day−1. Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH4 · year−1 in coastal wetlands and more than 1,300 Tg · year−1, considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13CH4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor. PMID:28341676
Valenzuela, Edgardo I; Prieto-Davó, Alejandra; López-Lozano, Nguyen E; Hernández-Eligio, Alberto; Vega-Alvarado, Leticia; Juárez, Katy; García-González, Ana Sarahí; López, Mercedes G; Cervantes, Francisco J
2017-06-01
Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13 C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13 CH 4 oxidized · cm -3 · day -1 Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH 4 · year -1 in coastal wetlands and more than 1,300 Tg · year -1 , considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13 CH 4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor. Copyright © 2017 American Society for Microbiology.
Lazary, A; Weinberg, I; Vatine, J-J; Jefidoff, A; Bardenstein, R; Borkow, G; Ohana, N
2014-07-01
Contaminated textiles in hospitals contribute to endogenous, indirect-contact, and aerosol transmission of nosocomial related pathogens. Copper oxide impregnated linens have wide-spectrum antimicrobial, antifungal, and antiviral properties. Our aim was to determine if replacing non-biocidal linens with biocidal copper oxide impregnated linens would reduce the rates of healthcare-associated infections (HAI) in a long-term care ward. We compared the rates of HAI in two analogous patient cohorts in a head injury care ward over two 6-month parallel periods before (period A) and after (period B) replacing all the regular non-biocidal linens and personnel uniforms with copper oxide impregnated biocidal products. During period B, in comparison to period A, there was a 24% reduction in the HAI per 1000 hospitalization-days (p<0.05), a 47% reduction in the number of fever days (>38.5°C) per 1000 hospitalization-days (p<0.01), and a 32.8% reduction in total number of days of antibiotic administration per 1000 hospitalization-days (p<0.0001). Accordingly there was saving of approximately 27% in costs of antibiotics, HAI-related treatments, X-rays, disposables, labor, and laundry, expenses during period B. The use of biocidal copper oxide impregnated textiles in a long-term care ward may significantly reduce HAI, fever, antibiotic consumption, and related treatment costs. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, X. David; Schwartz, Franklin W.
2004-01-01
Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant potential in using these organic acids to remove precipitates formed during the oxidation reaction.
Graphene oxide as a photocatalytic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamoorthy, Karthikeyan; Mohan, Rajneesh; Kim, S.-J.
2011-06-13
The photocatalytic characteristics of graphene oxide (GO) nanostructures synthesized by modified Hummer's method were investigated by measuring reduction rate of resazurin (RZ) into resorufin (RF) as a function of UV irradiation time. The progress of the photocatalytic reaction was monitored by change in color from blue (RZ) into pink (RF) followed by absorption spectra. It exhibited excellent photocatalytic activity, leading to the reduction of RZ in UV irradiation. The fitting of absorbance maximum versus time suggests that the reduction of RZ follow the pseudo first-order reaction kinetics. These results indicate that GO have great potential for use as a photocatalyst.
Benzene oxidation coupled to sulfate reduction
Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.
1995-01-01
Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.
Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina
Aune, Jan Arthur; Johansen, Kai
2004-10-19
A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.
1994-09-01
Biodegradation, whether aerobic or anaerobic. is an oxidation-reduction or redox reaction . Microbes utilize the redox energy potential from the... redox reaction of organic contaminants and electron acceptors resulting in products such as carbon dioxide and water. According to the figure shown...electron acceptors in the intrinsic bioremediation oxidation/reduction reactions . Redox potentials are from Stumm and Morgan as reported by Bouwer
Ye, Yixing; Wang, Panpan; Dai, Enmei; Liu, Jun; Tian, Zhenfei; Liang, Changhao; Shao, Guosheng
2014-05-21
Quantum-sized SnO2 nanocrystals can be well dispersed on reduced graphene oxide (rGO) nanosheets through a convenient one-pot in situ reduction route without using any other chemical reagent or source. Highly reactive metastable tin oxide (SnO(x)) nanoparticles (NPs) were used as reducing agents and composite precursors derived by the laser ablation in liquid (LAL) technique. Moreover, the growth and phase transition of LAL-induced SnO(x) NPs and graphene oxide (GO) were examined by optical absorption, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and high-resolution transmission electron microscopy. Highly dispersed SnO(x) NPs can also prevent rGO from being restacked into a multilayer structure during GO reduction. Given the good electron transfer ability and unsaturated dangling bonds of rGO, as well as the ample electrocatalytic active sites of quantum-sized SnO2 NPs on unfolded rGO sheets, the fabricated SnO2-rGO nanocomposite exhibited excellent performance in the non-enzymatic electrochemical detection of glucose molecules. The use of LAL-induced reactive NPs for in situ GO reduction is also expected to be a universal and environmentally friendly approach for the formation of various rGO-based nanocomposites.
Studies of reaction geometry in oxidation and reduction of the alkaline silver electrode
NASA Technical Reports Server (NTRS)
Butler, E. A.; Blackham, A. U.
1971-01-01
Two methods of surface area estimations of sintered silver electrodes have given roughness factors of 58 and 81. One method is based on constant current oxidation, the other is based on potentiostatic oxidation. Examination of both wire and sintered silver electrodes via scanning electron microscopy at various stages of oxidation have shown that important structural features are mounds of oxide. In potentiostatic oxidations these appear to form on sites instantaneously nucleated while in constant current oxidations progressive nucleation is indicated.
Kumar, Ravinder; Singh, Lakhveer; Wahid, Zularisam Ab; Mahapatra, Durga Madhab; Liu, Hong
2018-04-01
The aim of this work was to evaluate the comparative performance of hybrid metal oxide nanorods i.e. MnCo 2 O 4 nanorods (MCON) and single metal oxide nanorods i.e. Co 3 O 4 nanorods (CON) as oxygen reduction catalyst in microbial fuel cells (MFC). Compared to the single metal oxide, the hybrid MCON exhibited a higher BET surface area and provided additional positively charged ions, i.e., Co 2+ /Co 3+ and Mn 3+ /Mn 4+ on its surfaces, which increased the electro-conductivity of the cathode and improved the oxygen reduction kinetics significantly, achieved an i o of 6.01 A/m 2 that was 12.4% higher than CON. Moreover, the porous architecture of MCON facilitated the diffusion of electrolyte, reactants and electrons during the oxygen reduction, suggested by lower diffusion (R d ), activation (R act ) and ohmic resistance (R ohm ) values. This enhanced oxygen reduction by MCON boosted the power generation in MFC, achieving a maximum power density of 587 mW/m 2 that was ∼29% higher than CON. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten
2018-06-01
The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.
Das, Santu; Kumar, Saurabh; Garai, Somenath; Pochamoni, Ramudu; Paul, Shounik; Roy, Soumyajit
2017-10-11
An immediate challenge for chemists is to devise different methods to trap chemical energy using light by reduction of carbon dioxide to a transportable fuel. To reach this goal the major obstacle lies in finding a suitable material that is abundant and possesses catalytic power to effect such reduction reaction and perform this reduction reaction without using any external photosensitizer. Here we report for the first time a softoxometalate based on a {[K 6.5 Cu(OH) 8.5 (H 2 O) 7.5 ] 0.5 [K 3 PW 12 O 40 ]} metal oxide framework which is stable in reaction conditions that effectively performs photochemical CO 2 reduction reaction in water with a very high turnover number of 613 and TOF of 47.15 h -1 . We observe that during this reaction water gets oxidized to oxygen, while the electrons released directly go to CO 2 reducing it to formic acid. A detailed account of the characterization of the catalyst along with that of products of this reaction is reported.
40 CFR 52.770 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 11/30/2004, 69 FR 69531. Article 10. Nitrogen Oxides Rules 10-1 Nitrogen Oxides Control in Clark and Floyd Counties 6/12/1996 6/3/1997, 62 FR 30253. 10-3 Nitrogen Oxide Reduction Program for Specific Source Categories 02/25/2007 11/29/2010, 75 FR 72956 Sec. 1. 10-4 Nitrogen Oxides Budget Trading Program...
Chemistry Rocks: Redox Chemistry as a Geologic Tool.
ERIC Educational Resources Information Center
Burns, Mary Sue
2001-01-01
Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)
NASA Astrophysics Data System (ADS)
Navarro, M. V.; López, J. M.; García, T.; Grasa, G.; Murillo, R.
2017-09-01
The operational limits of a commercial nickel-based catalyst under the conditions of a sorption-enhanced steam-methane reforming process coupled to a Ca/Cu chemical loop are investigated for high-purity H2 production in a cyclic operation. The performance of the reforming catalyst is tested by means of a high number of oxidation-reduction-reforming cycles. After 100 oxidation-reduction cycles, this catalyst retains its exceptional reforming activity. The methane conversion values are close to the thermodynamic equilibrium under very demanding conditions: temperature between 500 °C - 700 °C and mass hourly space velocity of 8.8 kgCH4 h-1 kgcat-1. After 200 cycles, the sample shows reduction in its reforming activity in line with a lower dispersion of the Ni species. Sintering of Ni nanocrystals is evidenced during the oxidation-reduction multi-cycles. The performance of the catalyst after 200 oxidation-reduction cycles mixed with a CaO-based CO2 sorbent is studied under optimal conditions calculated for the sorption-enhanced reforming process coupled to a Ca/Cu cycle (temperature of 650 °C, steam/methane ratio of 4, sorbent/catalyst ratio of 4 and space velocity of 0.75 kgCH4 h-1 kgcat-1). Remarkably, an equilibrium value over 92 vol.% H2 concentration is achieved, highlighting this catalyst as a promising candidate for the next steps of the process development.
NASA Astrophysics Data System (ADS)
Kopytko, M.; Correa-Torres, S. N.; Plata, A.
2016-07-01
Despite restrictions and bans on the use of many organochlorine pesticides in the 1970s and 1980s, they continue to persist in the environment today. This is the case of Agustin Codazzi, Cesar where the organochlorine pesticides were buried without control in the soil in 1999, after being banned their use. Nowadays is necessary to find the best method, which allows remediation of this soils. Reductive dechlorination is the first and limiting step in the metabolism of many organochlorine pesticides by anaerobic bacteria. In this study the reductive conditions were enhanced by addition of biogas as an auxiliary electron donors.The soil sample was taken from the zone at Agustin Codazzi, Cesar, and their characteristics correspond to a loam soil with low nutrient and slight compaction. The experimental tests were performed by varying the exposure time of a reducer to oxidative environment. Reductive conditions were enhanced by methane from biogas and oxidative environment was generated by air blown to stimulate a metabolic process of the soil native bacteria. Removals between 70 and 78.9% of compounds such as 4,4'-DDT, 4, 4'-DDD, 4,4'-DDE, Endrin and Trans- Chlordane, detected by gas chromatography analysis, were achieved under reductive/oxidative conditions during 120 days. Furthermore, bacterial strains capable of degrading organochlorine pesticides were selected from the native bacteria, and identified by the purified and identified based on its morphological characteristics and 16S rDNA sequencing.
Rustin, P; Lance, C
1991-01-01
The effects of rotenone on the succinate-driven reduction of matrix nicotinamide nucleotides were investigated in Percoll-purified mitochondria from potato (Solanum tuberosum) tubers. Depending on the presence of ADP or ATP, rotenone caused an increase or a decrease in the level of reduction of the matrix nicotinamide nucleotides. The increase in the reduction induced by rotenone in the presence of ADP was linked to the oxidation of the malate resulting from the oxidation of succinate. Depending on the experimental conditions, malic enzyme (at pH 6.6 or in the presence of added CoA) or malate dehydrogenase (at pH 7.9) were involved in this oxidation. At pH 7.9, the oxaloacetate produced progressively inhibited the succinate dehydrogenase. In the presence of ATP the production of oxaloacetate was stopped, and succinate dehydrogenase was protected from inhibition by oxaloacetate. However, previously accumulated oxaloacetate transitorily decreased the level of the reduction of the NAD+ driven by succinate, by causing the reversal of the malate dehydrogenase reaction. Under these conditions (i.e. presence of ATP), rotenone strongly inhibited the reduction of NAD+ by succinate-driven reverse electron flow. No evidence for an active reverse electron transport through a rotenone-insensitive path could be obtained. The inhibitory effect of rotenone was masked if malate had previously accumulated, owing to the malate-oxidizing enzymes which reduced part or all of the matrix NAD+. PMID:2001241
Shimakawa, Ginga; Shaku, Keiichiro; Miyake, Chikahiro
2018-01-01
Photosynthetic organisms oxidize P700 to suppress the production of reactive oxygen species (ROS) in photosystem I (PSI) in response to the lower efficiency of photosynthesis under high light and low CO 2 conditions. Previously, we found a positive relationship between reduction of plastoquinone (PQ) pool and oxidation of P700, which we named reduction-induced suppression of electron flow (RISE). In the RISE model, we proposed that the highly reduced state of the PQ pool suppresses Q-cycle turnover to oxidize P700 in PSI. Here, we tested whether RISE was relieved by the oxidation of the PQ pool, but not by the dissipation of the proton gradient (ΔpH) across the thylakoid membrane. Formation of ΔpH can also suppress electron flow to P700, because acidification on the luminal side of the thylakoid membrane lowers oxidation of reduced PQ in the cytochrome b 6 / f complex. We drove photosynthetic electron transport using H 2 O 2 -scavenging peroxidase reactions. Peroxidase reduces H 2 O 2 with electron donors regenerated along the photosynthetic electron transport system, thereby promoting the formation of ΔpH. Addition of H 2 O 2 to the cyanobacterium Synechococcus elongatus PCC 7942 under low CO 2 conditions induced photochemical quenching of chlorophyll fluorescence, enhanced NADPH fluorescence and reduced P700. Thus, peroxidase reactions relieved the RISE mechanism, indicating that P700 oxidation can be induced only by the reduction of PQ to suppress the production of ROS in PSI. Overall, our data suggest that RISE regulates the redox state of P700 in PSI in cooperation with ΔpH regulation.
NASA Astrophysics Data System (ADS)
Valle-Hernández, Julio; Romero-Paredes, Hernando; Arancibia-Bulnes, Camilo A.; Villafan-Vidales, Heidi I.; Espinosa-Paredes, Gilberto
2016-05-01
In this paper the simulation of the thermal reduction for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. For the thermochemical process, a solar reactor prototype is proposed; consisting of a cubic receptacle made of graphite fiber thermally insulated. Inside the reactor a pyramidal arrangement with nine tungsten pipes is housed. The pyramidal arrangement is made respect to the focal point where the reflected energy is concentrated. The solar energy is concentrated through the solar furnace of high radiative flux. The endothermic step is the reduction of the cerium oxide to lower-valence cerium oxide, at very high temperature. The exothermic step is the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For the modeling, three sections of the pipe where the reaction occurs were considered; the carrier gas inlet, the porous medium and the reaction products outlet. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).
Porous Ag/P/C Composite Electrodes: A New Approach for Metal Air Batteries
2012-02-29
polished prior to use. Pyrrole was purified prior to use. Tetrabutylammonium hexafluorophosphate was precipitated from tetrabutylammonium bromide and...electrodes (Figure 1). Pyrrole polymerizes oxidatively at +0.6 V. A semi-reversible reduction-oxidation couple appeared with the oxidative peak
Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D; Pumera, Martin
2012-08-07
Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.
Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D.; Pumera, Martin
2012-01-01
Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research. PMID:22826262
Transformation of mercury speciation through the SCR system in power plants.
Yang, Hong-min; Pan, Wei-ping
2007-01-01
Coal-fired utility boilers are now identified as the largest source of mercury in the United States. There is speculation that the installation of selective catalytic reduction (SCR) system for reduction of NOx can also prompt the oxidation and removal of mercury. In this paper, tests at six full-scale power plants with similar type of the SCR systems are conducted to investigate the effect of the SCR on the transformation of mercury speciation. The results show that the SCR system can achieve more than 70%-80% oxidation of elemental mercury and enhance the mercury removal ability in these units. The oxidation of elemental mercury in the SCR system strongly depends on the coal properties and the operation conditions of the SCR systems. The content of chloride in the coal is the key factor for the oxidization process and the maximum oxidation of elemental mercury is found when chloride content changes from 400 to 600 ppm. The sulfur content is no significant impact on oxidation of elemental mercury.
NASA Astrophysics Data System (ADS)
Ivanets, A. I.; Prozorovich, V. G.; Krivoshapkina, E. F.; Kuznetsova, T. F.; Krivoshapkin, P. V.; Katsoshvili, L. L.
2017-08-01
Experimental data on the sol-gel synthesis of manganese oxides formed during the reduction of potassium permanganate by polyvinyl alcohol in an aqueous medium are presented. The physicochemical properties of the obtained manganese oxide systems that depend on the conditions of the synthesis are studied by means of DTA, XRD, SEM, and the low temperature adsorption-desorption of nitrogen. It is found that the obtained samples have a mesoporous structure and predominantly consist of double potassium-manganese oxide K2Mn4O8 with a tunnel structure and impurities of oxides such as α-MnO2, MnO, α-Mn2O3, and Mn5O8. It is shown that the proposed method of synthesis allows us to regulate the size and volume of mesopores and, to a lesser extent, the texture of the obtained oxides, which can be considered promising sorbents for the selective extraction of strontium and cesium ions from multicomponent aqueous solutions.
Li, C; Li, X Z
2007-01-01
In this study, the degradation of bisphenol A in aqueous suspension by interaction of photocatalytic oxidation and ferrate(VI) oxidation was investigated under different conditions. The results indicate that the formation of Fe(V) and Fe(IV) is in the photocatalytic reduction of Fe(VI) by electron (ecb-) on the surface of TiO2. The oxidation efficiency of the photocatalytic oxidation in the presence of Fe(VI) was much greater than that without. In addition, the decomposition of Fe(VI) under different conditions was also investigated. The results indicate that the Fe(VI) reduction was accelerated by photocatalytic reaction and the adsorption capacity of Fe(VI) on TiO2 surface decreased as pH increased. The characteristics of solid potassium ferrate prepared were investigated by X-ray diffraction. It was found that the potassium ferrate solid has a tetrahedral structure with a space group of D2h (Pnma) and a = 7.705 A, b = 5.863 A, and c = 10.36 A.
Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Engelhard, Mark H; Yin, Geping; Lin, Yuehe
2011-03-22
Here we report that poly(diallyldimethylammonium chloride) (PDDA) acts as both a reducing agent and a stabilizer to prepare soluble graphene nanosheets from graphite oxide. The results of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and Fourier transform infrared indicated that graphite oxide was successfully reduced to graphene nanosheets which exhibited single-layer structure and high dispersion in various solvents. The reaction mechanism for PDDA-induced reduction of exfoliated graphite oxide was proposed. Furthermore, PDDA facilitated the in situ growth of highly dispersed Pt nanoparticles on the surface of graphene nanosheets to form Pt/graphene nanocomposites, which exhibited excellent catalytic activity toward formic acid oxidation. This work presents a facile and environmentally friendly approach to the synthesis of graphene nanosheets and opens up a new possibility for preparing graphene and graphene-based nanomaterials for large-scale applications.
Ke, Yiling; Mitacek, Rachel M; Abraham, Anupam; Mafi, Gretchen G; VanOverbeke, Deborah L; DeSilva, Udaya; Ramanathan, Ranjith
2017-09-06
Mitochondria play a significant role in beef color. However, the role of oxidative stress in cytochrome c release and mitochondrial degradation is not clear. The objective was to determine the effects of display time on cytochrome c content and oxidation-reduction potential (ORP) of beef longissimus lumborum (LL) and psoas major (PM) muscles. PM discolored by day 3 compared with LL. On day 0, mitochondrial content and mitochondrial oxygen consumption were greater in PM than LL. However, mitochondrial content and oxygen consumption were lower (P < 0.05) in PM than LL by day 7. Conversely, cytochrome c content in sarcoplasm was greater on days 3 and 7 for PM than LL. There were no significant differences in ORP for LL during display, but ORP increased for PM on day 3 when compared with day 0. The results suggest that muscle-specific oxidative stress can affect cytochrome c release and ORP changes.
Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won
2015-01-01
Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733
Voltage-induced reduction of graphene oxide
NASA Astrophysics Data System (ADS)
Faucett, Austin C.
Graphene Oxide (GO) is being widely researched as a precursor for the mass production of graphene, and as a versatile material in its own right for flexible electronics, chemical sensors, and energy harvesting applications. Reduction of GO, an electrically insulating material, into reduced graphene oxide (rGO) restores electrical conductivity via removal of oxygen-containing functional groups. Here, a reduction method using an applied electrical bias, known as voltage-induced reduction, is explored. Voltage-induced reduction can be performed under ambient conditions and avoids the use of hazardous chemicals or high temperatures common with standard methods, but little is known about the reduction mechanisms and the quality of rGO produced with this method. This work performs extensive structural and electrical characterization of voltage-reduced GO (V-rGO) and shows that it is competitive with standard methods. Beyond its potential use as a facile and eco-friendly processing approach, V-rGO reduction also offers record high-resolution patterning capabilities. In this work, the spatial resolution limits of voltage-induced reduction, performed using a conductive atomic force microscope probe, are explored. It is shown that arbitrary V-rGO conductive features can be patterned into insulating GO with nanoscale resolution. The localization of voltage-induced reduction to length scales < 10 nm allows studies of reduction reaction kinetics, using electrical current obtained in-situ, with statistical robustness. Methods for patterning V-rGO nanoribbons are then developed. After presenting sub-10nm patterning of V-rGO nanoribbons in GO single sheets and films, the performance of V-rGO nanoribbon field effect transistors (FETs) are demonstrated. Preliminary measurements show an increase in electrical current on/off ratios as compared to large-area rGO FETs, indicating transport gap modulation that is possibly due to quantum confinement effects.
Carbon-neutral energy cycles using alcohols.
Fukushima, Takashi; Kitano, Sho; Hata, Shinichi; Yamauchi, Miho
2018-01-01
We demonstrated carbon-neutral (CN) energy circulation using glycolic acid ( GC )/oxalic acid ( OX ) redox couple. Here, we report fundamental studies on both catalyst search for power generation process, i.e. GC oxidation, and elemental steps for fuel generation process, i.e. OX reduction, in CN cycle. The catalytic activity test on various transition metals revealed that Rh, Pd, Ir, and Pt have preferable features as a catalyst for electrochemical oxidation of GC . A carbon-supported Pt catalyst in alkaline conditions exhibited higher activity, durability, and product selectivity for electrooxidation of GC rather than those in acidic media. The kinetic study on OX reduction clearly indicated that OX reduction undergoes successive two-electron reductions to form GC . Furthermore, application of TiO 2 catalysts with large specific area for electrochemical reduction of OX facilitates the selective formation of GC .
Carbon-neutral energy cycles using alcohols
Fukushima, Takashi; Kitano, Sho; Hata, Shinichi; Yamauchi, Miho
2018-01-01
Abstract We demonstrated carbon-neutral (CN) energy circulation using glycolic acid (GC)/oxalic acid (OX) redox couple. Here, we report fundamental studies on both catalyst search for power generation process, i.e. GC oxidation, and elemental steps for fuel generation process, i.e. OX reduction, in CN cycle. The catalytic activity test on various transition metals revealed that Rh, Pd, Ir, and Pt have preferable features as a catalyst for electrochemical oxidation of GC. A carbon-supported Pt catalyst in alkaline conditions exhibited higher activity, durability, and product selectivity for electrooxidation of GC rather than those in acidic media. The kinetic study on OX reduction clearly indicated that OX reduction undergoes successive two-electron reductions to form GC. Furthermore, application of TiO2 catalysts with large specific area for electrochemical reduction of OX facilitates the selective formation of GC. PMID:29511392
Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides
2015-01-01
Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities. PMID:26045733
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki
2015-04-06
We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer.more » The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.« less
Schmidt, Christina M.; Blount, Jonathan D.; Bennett, Nigel C.
2014-01-01
Oxidative stress has been implicated as both a physiological cost of reproduction and a driving force on an animal's lifespan. Since increased reproductive effort is generally linked with a reduction in survival, it has been proposed that oxidative stress may influence this relationship. Support for this hypothesis is inconsistent, but this may, in part, be due to the type of tissues that have been analyzed. In Damaraland mole-rats the sole reproducing female in the colony is also the longest lived. Therefore, if oxidative stress does impact the trade-off between reproduction and survival in general, this species may possess some form of enhanced defense. We assessed this relationship by comparing markers of oxidative damage (malondialdehyde, MDA; protein carbonyls, PC) and antioxidants (total antioxidant capacity, TAC; superoxide dismutase, SOD) in various tissues including plasma, erythrocytes, heart, liver, kidney and skeletal muscle between wild-caught reproductive and non-reproductive female Damaraland mole-rats. Reproductive females exhibited significantly lower levels of PC across all tissues, and lower levels of MDA in heart, kidney and liver relative to non-reproductive females. Levels of TAC and SOD did not differ significantly according to reproductive state. The reduction in oxidative damage in breeding females may be attributable to the unusual social structure of this species, as similar relationships have been observed between reproductive and non-reproductive eusocial insects. PMID:25068591
Bio-Physicochemical Interactions of Engineered Nanomaterials in in Vitro Cell Culture Model
2014-10-11
are the important factors to study their toxicity . To investigate the potential role of oxidative stress as a mechanism of toxicity , reactive oxygen...of oxidative stress as a mechanism of toxicity , reactive oxygen species (ROS), nitric oxide (NO) lactate dehydrogenase (LDH) level and reduction in...potential role of oxidative stress as a mechanism of toxicity , reactive oxygen species (ROS), nitric oxide (NO), lactate dehydrogenase (LDH) level
Zhang, Yiqiang; Ikeno, Yuji; Qi, Wenbo; Chaudhuri, Asish; Li, Yan; Bokov, Alex; Thorpe, Suzanne R.; Baynes, John W.; Epstein, Charles; Richardson, Arlan
2009-01-01
To test the impact of increased mitochondrial oxidative stress as a mechanism underlying aging and age-related pathologies, we generated mice with a combined deficiency in two mitochondrial-localized antioxidant enzymes, Mn superoxide dismutase (MnSOD) and glutathione peroxidase-1 (Gpx-1). We compared life span, pathology, and oxidative damage in Gpx1−/−, Sod2+/−Gpx1+/−, Sod2+/−Gpx1−/−, and wild-type control mice. Oxidative damage was elevated in Sod2+/−Gpx1−/− mice, as shown by increased DNA oxidation in liver and skeletal muscle and increased protein oxidation in brain. Surprisingly, Sod2+/−Gpx1−/− mice showed no reduction in life span, despite increased levels of oxidative damage. Consistent with the important role for oxidative stress in tumorigenesis during aging, the incidence of neoplasms was significantly increased in the older Sod2+/−Gpx1−/− mice (28–30 months). Thus, these data do not support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice and do not support the oxidative stress theory of aging. PMID:19776219
Báez, Daniela F.; Pardo, Helena; Laborda, Ignacio; Marco, José F.; Yáñez, Claudia; Bollo, Soledad
2017-01-01
For the first time a critical analysis of the influence that four different graphene oxide reduction methods have on the electrochemical properties of the resulting reduced graphene oxides (RGOs) is reported. Starting from the same graphene oxide, chemical (CRGO), hydrothermal (hTRGO), electrochemical (ERGO), and thermal (TRGO) reduced graphene oxide were produced. The materials were fully characterized and the topography and electroactivity of the resulting glassy carbon modified electrodes were also evaluated. An oligonucleotide molecule was used as a model of DNA electrochemical biosensing. The results allow for the conclusion that TRGO produced the RGOs with the best electrochemical performance for oligonucleotide electroanalysis. A clear shift in the guanine oxidation peak potential to lower values (~0.100 V) and an almost two-fold increase in the current intensity were observed compared with the other RGOs. The electrocatalytic effect has a multifactorial explanation because the TRGO was the material that presented a higher polydispersity and lower sheet size, thus exposing a larger quantity of defects to the electrode surface, which produces larger physical and electrochemical areas. PMID:28677654
Iron Oxide Silica Derived from Sol-Gel Synthesis
Darmawan, Adi; Smart, Simon; Julbe, Anne; Diniz da Costa, João Carlos
2011-01-01
In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of the Fe/Si molar ratio or sol pH. Hence, the densification of the matrix was accompanied by similar reduction in pore volume. However, calcination at 700 °C resulted in samples with similar surface area though the iron oxide content increased from 5% to 50% Fe/Si molar ratio. As metal oxide particles have lower surface area than polymeric silica structures, these results strongly suggest that the iron oxides opposed the silica structure collapse. The effect of sol pH was found to be less significant than the Fe/Si molar ratio in the formation of molecular sieve structures derived from iron oxide silica. PMID:28879999
NASA Astrophysics Data System (ADS)
Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia
2018-05-01
Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.
Photoactivity of N-doped ZnO nanoparticles in oxidative and reductive reactions
NASA Astrophysics Data System (ADS)
Oliveira, Jéssica A.; Nogueira, André E.; Gonçalves, Maria C. P.; Paris, Elaine C.; Ribeiro, Caue; Poirier, Gael Y.; Giraldi, Tania R.
2018-03-01
N-doped ZnO is a prospective material for photocatalytic reactions. However, only oxidative paths are well investigated in the literature. This paper describes a comparative study about ZnO and ZnO:N potential for oxidative and reductive reactions, probed by rhodamine B dye photodegradation and CO2 photoreduction. The materials were prepared by the polymeric precursor method, using urea as a nitrogen source, and different heat treatments were used to observe their effects on surface decontamination, crystallinity, particle sizes and shapes, and photocatalytic performance. ZnO and ZnO:N presented a wurtzite crystalline structure and nanometric-scale particles. Samples submitted to higher temperatures showed lower specific surface areas, but higher crystallinity and lower contents of species adsorbed on their surfaces. On the other hand, the photocatalysts annealed in shorter times presented smaller crystallite sizes and lower crystallinity. These factors influenced the photoactivity in both conditions, i.e., oxidation and reduction reactions, under the ultraviolet and visible light, indicating that structural factors influenced the adequate charge separation and consequent photocatalytic activity since the as-synthesized samples were versatile photocatalysts in both redox reactions.
Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation.
Manu, B; Mahamood, S
2011-01-01
For the treatment of paracetamol in water, the UV-C Fenton oxidation process and classic Fenton oxidation have been found to be the most effective. Paracetamol reduction and chemical oxygen demand (COD) removal are measured as the objective functions to be maximized. The experimental conditions of the degradation of paracetamol are optimized by the Fenton process. Influent pH 3, initial H(2)O(2) dosage 60 mg/L, [H(2)O(2)]/[Fe(2+)] ratio 60 : 1 are the optimum conditions observed for 20 mg/L initial paracetamol concentration. At the optimum conditions, for 20 mg/L of initial paracetamol concentration, 82% paracetamol reduction and 68% COD removal by Fenton oxidation, and 91% paracetamol reduction and 82% COD removal by UV-C Fenton process are observed in a 120 min reaction time. By HPLC analysis, 100% removal of paracetamol is observed at the above optimum conditions for the Fenton process in 240 min and for the UV-C photo-Fenton process in 120 min. The methods are effective and they may be used in the paracetamol industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silversmith, Geert; Poelman, Hilde; Poelman, Dirk
2007-02-02
A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure duringmore » propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.« less
Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.
Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V
2015-09-21
A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.
ADSORPTION, DESORPTION AND OXIDATION OF ARSENIC AFFECTED BY CLAY MINERALS AND AGING PROCESS
Adsorption/desorption and oxidation/reduction of arsenic at clay surfaces are very important to the natural attenuation of arsenic in the subsurface environment. Although numerous studies have concluded that iron oxides have high affinities for the adsorption of As(V), very litt...
THE RELATION OF THE BACTERIOSTATIC ACTION OF CERTAIN DYES TO OXIDATION-REDUCTION PROCESSES
Dubos, René
1929-01-01
Oxidized indophenols and methylene blue are bacteriostatic for Pneumococcus and hemolytic streptococci of human and bovine origin, while the indigoes, malachite green and litmus are not toxic. 2-Chloroindophenol, the most positive of the indicators of oxidation-reduction potentials used, is also the only one to have a bacteriostatic action on cheese strains of Streptococcus hæmolyticus. Methylene blue and the indophenols are no longer bacteriostatic when present in a reduced form in a medium capable of maintaining them in such a condition. A comparison of these results with the growth in plain broth of the organisms studied suggests that the "inhibiting" dyes "poise" the medium at an oxidation potential outside the range in which the inhibited organisms can grow. PMID:19869565
Botsoglou, Evropi; Govaris, Alexander; Ambrosiadis, Ioannis; Fletouris, Dimitrios; Botsoglou, Nikolas
2014-10-01
Our previous study has demonstrated the protective effects of olive leaf extracts on the oxidation of pork patties from n-3 fatty acid-enriched meat during refrigerated storage. The target of the present study was to examine these effects during frozen storage. Results showed that frozen storage accelerated (P=0.05) both lipid and protein oxidation in pork patties, but an addition of olive leaf extract at 200mg gallic acid equivalent/kg improved sensory attributes by delaying oxidation of lipids (reduction (P=0.05) of conjugated dienes, hydroperoxides and malondialdehyde), and of proteins (reduction (P=0.05) of protein carbonyls and inhibition (P=0.05) of the decrease of protein sulfhydryls). Copyright © 2014. Published by Elsevier Ltd.
Preparation of Cu@Cu₂O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol.
Jang, Seongwan; Yoon, Chohye; Lee, Jae Myung; Park, Sungkyun; Park, Kang Hyun
2016-11-02
HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe₃O₄@HKUST-1 by layer-by layer assembly strategy and Cu@Cu₂O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu₂O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di- tert -butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.
Review on electrochromic devices for automotive glazing
NASA Astrophysics Data System (ADS)
Demiryont, Hulya
1991-12-01
Electrochromic materials have been intensively studied for applications of various switchable optical systems. These materials exhibit adjustable optical absorption upon reversible oxidation/reduction processes. Since a reversible oxidation/reduction phenomenon is provided by electrically-driven electrochemical reactions, these materials are known as electrochromics. There are many publications including proceedings, books, and review articles written on electrochromic (EC) materials and their applications. This paper focuses on conventional and some new electrochromic devices (ECD), their specifications, and applications.
Revealing the Atomic Restructuring of Pt–Co Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Huolin L.; Alayoglu, Selim; Tao, Runzhe
2014-06-11
We studied Pt-Co bimetallic nanoparticles during oxidation in O2 and reduction in H2 atmospheres using an aberration corrected environmental transmission electron microscope. During oxidation Co migrates to the nanoparticle surface forming a strained epitaxial CoO film. It subsequently forms islands via strain relaxation. The atomic restructuring is captured as a function of time. During reduction cobalt migrates back to the bulk, leaving a monolayer of platinum on the surface.
Sato, Yuki; Kawaguchi, Shin-ichi; Ogawa, Akiya
2015-07-04
A photoinduced reaction between TMDPO (diphenyl(2,4,6-trimethylbenzoyl)-phosphine oxide) and perfluoroalkyl iodides successfully affords P-(perfluoroalkyl)diphenylphosphines as promising ligands for recyclable catalysts. Interestingly, the perfluoroalkylation reaction involves the reduction of phosphorus(V) compounds to phosphorus(III) species. The advantages of the present reaction include the use of an air-stable phosphorus source and good yields of P-perfluoroalkylphosphines in short reaction times.
Eilert, André; Roberts, F. Sloan; Friebel, Daniel; ...
2016-04-04
Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less
Yang, Wenyao; Chen, Yan; Wang, Jingfeng; Peng, Tianjun; Xu, Jianhua; Yang, Bangchao; Tang, Ke
2018-06-15
We demonstrate an electrochemical reduction method to reduce graphene oxide (GO) to electrochemically reduced graphene oxide (ERGO) with the assistance of carbon nanotubes (CNTs). The faster and more efficient reduction of GO can be achieved after proper addition of CNTs into GO during the reduction process. This nanotube/nanosheet composite was deposited on electrode as active material for electrochemical energy storage applications. It has been found that the specific capacitance of the composite film was strongly affected by the mass ratio of GO/CNTs and the scanning ratio of cyclic voltammetry. The obtained ERGO/CNT composite electrode exhibited a 279.4 F/g-specific capacitance and showed good cycle rate performance with the evidence that the specific capacitance maintained above 90% after 6000 cycles. The synergistic effect between ERGO and CNTs as well as crossing over of CNTs into ERGO is attributed to the high electrochemical performance of composite electrode.
Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter.
Cassarini, Chiara; Rene, Eldon R; Bhattarai, Susma; Esposito, Giovanni; Lens, Piet N L
2017-09-01
Microorganisms from an anaerobic methane oxidizing sediment were enriched with methane gas as the substrate in a biotrickling filter (BTF) using thiosulfate as electron acceptor for 213days. Thiosulfate disproportionation to sulfate and sulfide were the dominating sulfur conversion process in the BTF and the sulfide production rate was 0.5mmoll -1 day -1 . A specific group of sulfate reducing bacteria (SRB), belonging to the Desulforsarcina/Desulfococcus group, was enriched in the BTF. The BTF biomass showed maximum sulfate reduction rate (0.38mmoll -1 day -1 ) with methane as sole electron donor, measured in the absence of thiosulfate in the BTF. Therefore, a BTF fed with thiosulfate as electron acceptor can be used to enrich SRB of the DSS group and activate the inoculum for anaerobic oxidation of methane coupled to sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K. M.; Davis, J. A.; Bargar, J.
2011-10-15
Reductive biostimulation is currently being explored as a possible remediation strategy for uranium (U) contaminated groundwater, and is currently being investigated at a field site in Rifle, CO, USA. The long-term stability of the resulting U(IV) phases is a key component of the overall performance and depends upon a variety of factors, including rate and mechanism of reduction, mineral associations in the subsurface, and propensity for oxidation. To address these factors, several approaches were used to evaluate the redox sensitivity of U: measurement of the rate of oxidative dissolution of biogenic uraninite (UO{sub 2(s)}) deployed in groundwater at Rifle, characterizationmore » of a zone of natural bioreduction exhibiting relevant reduced mineral phases, and laboratory studies of the oxidative capacity of Fe(III) and reductive capacity of Fe(II) with regard to U(IV) and U(VI), respectively.« less
Single-step treatment of 2,4-dinitrotoluene via zero-valent metal reduction and chemical oxidation.
Thomas, J Mathew; Hernandez, Rafael; Kuo, Chiang-Hai
2008-06-30
Many nitroaromatic compounds (NACs) are considered toxic and potential carcinogens. The purpose of this study was to develop an integrated reductive/oxidative process for treating NACs contaminated waters. The process consists of the combination of zero-valent iron and an ozonation based treatment technique. Corrosion promoters are added to the contaminated water to minimize passivation of the metallic species. Water contaminated with 2,4-dinitrotoluene (DNT) was treated with the integrated process using a recirculated batch reactor. It was demonstrated that addition of corrosion promoters to the contaminated water enhances the reduction of 2,4-DNT with zero-valent iron. The addition of corrosion promoters resulted in 62% decrease in 2,4-DNT concentration to 2,4-diaminotoluene. The data shows that iron reduced the 2,4-DNT and ozone oxidized these products resulting in a 73% removal of TOC and a 96% decrease in 2,4-DNT concentration.
DOE R&D Accomplishments Database
Marcus, R. A.
1962-01-01
Using a theory of electron transfers which takes cognizance of reorganization of the medium outside the inner coordination shell and of changes of bond lengths inside it, relations between electrochemical and related chemical rate constants are deduced and compared with the experimental data. A correlation is found, without the use of arbitrary parameters. Effects of weak complexes with added electrolytes are included under specified conditions. The deductions offer a way of coordinating a variety of data in the two fields, internally as well as with each those in another. For example, the rate of oxidation or reduction of a series of related reactants by one reagent is correlated with that of another and with that of the corresponding electrochemical oxidation-reduction reaction, under certain specified conditions. These correlations may also provide a test for distinguishing an electron from an atom transfer mechanism. (auth)
NASA Astrophysics Data System (ADS)
Halder, S.; Fruehan, R. J.
2008-12-01
A new ironmaking concept is being proposed that involves the combination of a rotary hearth furnace (RHF) with an iron-bath smelter. The RHF makes use of iron-oxide-carbon composite pellets as the charge material and the final product is direct-reduced iron (DRI) in the solid or molten state. This part of the research includes the development of a reactor that simulated the heat transfer in an RHF. The external heat-transport and high heating rates were simulated by means of infrared (IR) emitting lamps. The reaction rates were measured by analyzing the off-gas and computing both the amount of CO and CO2 generated and the degree of reduction. The reduction times were found to be comparable to the residence times observed in industrial RHFs. Both artificial ferric oxide (PAH) and naturally occurring hematite and taconite ores were used as the sources of iron oxide. Coal char and devolatilized wood charcoal were the reductants. Wood charcoal appeared to be a faster reductant than coal char. However, in the PAH-containing pellets, the reverse was found to be true because of heat-transfer limitations. For the same type of reductant, hematite-containing pellets were observed to reduce faster than taconite-containing pellets because of the development of internal porosity due to cracking and fissure formation during the Fe2O3-to-Fe3O4 transition. This is, however, absent during the reduction of taconite, which is primarily Fe3O4. The PAH-wood-charcoal pellets were found to undergo a significant amount of swelling at low-temperature conditions, which impeded the external heat transport to the lower layers. If the average degree of reduction targeted in an RHF is reduced from 95 to approximately 70 pct by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced 1.5 to 2 times. The use of a two- or three-layer bed was found to be superior to that of a single layer, for higher productivities.
Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C. A.; Almond, P. M.
The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup -} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup -}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function ofmore » depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report. The Cr oxidation front (depth to which soluble Cr was detected) for the Cast Stone sample exposed for 68 days to ambient outdoor temperatures and humid air (total age of sample was 131 days) was determined to be about 35 mm below the top sample surface exposed. The Tc oxidation front, depth at which Tc was insoluble, was not determined. Interpretation of the results indicates that the oxidation front is at least 38 mm below the exposed surface. The sample used for this measurement was exposed to ambient laboratory conditions and humid air for 50 days. The total age of the sample was 98 days. Technetium appears to be more easily oxidized than Cr in the Cast Stone matrix. The oxidized forms of Tc and Cr are soluble and therefore leachable. Longer exposure times are required for both the Cr and Tc spiked samples to better interpret the rate of oxidation. Tc spiked subsamples need to be taken further from the exposed surface to better define and interpret the leachable Tc profile. Finally Tc(VII) reduction to Tc(IV) appears to occur relatively fast. Results demonstrated that about 95 percent of the Tc(VII) was reduced to Tc(IV) during the setting and very early stage setting for a Cast Stone sample cured 10 days. Additional testing at longer curing times is required to determine whether additional time is required to reduce 100 % of the Tc(VII) in Cast Stone or whether the Tc loading exceeded the ability of the waste form to reduce 100 % of the Tc(VII). Additional testing is required for samples cured for longer times. Depth discrete subsampling in a nitrogen glove box is also required to determine whether the 5 percent Tc extracted from the subsamples was the result of the sampling process which took place in air. Reduction capacity measurements (per the Angus-Glasser method) performed on depth discrete samples could not be correlated with the amount of chromium or technetium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium and technetium (i.e., effective Cr and Tc oxidation fronts). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) or Tc(VII) in the presence of oxygen. Depth discrete sampling and leaching is a useful for evaluating Cast Stone and other chemically reducing waste forms containing ground granulated blast furnace slag (GGBFS) or other reduction / sequestration reagents to control redox sensitive contaminant chemistry and leachability in the near surface disposal environment. Based on results presented in this report, reduction capacity measured by the Angus-Glasser Ce(IV) method is not an appropriate or meaningful parameter for determining or predicting Tc and Cr oxidation / retentions, speciation, or solubilities in cementitious materials such as Cast Stone. A model for predicting Tc(IV) oxidation to soluble Tc(VII) should consider the waste form porosity (pathway for oxygen ingress), oxygen source, and the contaminant specific oxidation rates and oxidation fronts. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance. This information can be used to support conceptual model development.« less
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R [Grand Forks, ND; Olson, Edwin S [Grand Forks, ND; Jiang, Junhua [Grand Forks, ND
2012-04-10
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.
Li, Jie; Chen, Changlun; Zhang, Rui; Wang, Xiangke
2015-06-01
Nanoscale zero-valent iron particles supported on reduced graphene oxides (NZVI/rGOs) from spent graphene oxide (GO)-bound iron ions were developed by using a hydrogen/argon plasma reduction method to improve the reactivity and stability of NZVI. The NZVI/rGOs exhibited excellent water treatment performance with excellent removal capacities of 187.16 and 396.37 mg g(-1) for chromium and lead, respectively. Moreover, the NZVI/rGOs could be regenerated by plasma treatment and maintained high removal ability after four cycles. X-ray photoelectron spectroscopy analysis results implied that the removal mechanisms could be attributed to adsorption/precipitation, reduction, or both. Such multiple removal mechanisms by the NZVI/rGOs were attributed to the reduction ability of the NZVI particles and the role of dispersing and stabilizing abilities of the rGOs. The results indicated that the NZVI/rGOs prepared by a hydrogen/argon plasma reduction method might be an effective composite for heavy-metal-ion removal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reduction of Iron-Oxide-Carbon Composites: Part III. Shrinkage of Composite Pellets during Reduction
NASA Astrophysics Data System (ADS)
Halder, S.; Fruehan, R. J.
2008-12-01
This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Anibal Boscoboinik; Zhong, Jian -Qiang; Kestell, John
2016-03-23
The oxidation and reduction of Ru(0001) surfaces at the confined space between two-dimensional nanoporous silica frameworks and Ru(0001) have been investigated using synchrotron-based ambient pressure X-ray photoelectron spectroscopy (AP-XPS). The porous nature of the frameworks and the weak interaction between the silica and the ruthenium substrate allow oxygen and hydrogen molecules to go through the nanopores and react with the metal at the interface between the silica framework and the metal surface. In this work, three types of two-dimensional silica frameworks have been used to study their influence in the oxidation and reduction of the ruthenium surface at elevated pressuresmore » and temperatures. These frameworks are bilayer silica (0.5 nm thick), bilayer aluminosilicate (0.5 nm thick), and zeolite MFI nanosheets (3 nm thick). It is found that the silica frameworks stay essentially intact under these conditions, but they strongly affect the oxidation of ruthenium, with the 0.5 nm thick aluminosilicate bilayer completely inhibiting the oxidation. Furthermore, the latter is believed to be related to the lower chemisorbed oxygen content arising from electrostatic interactions between the negatively charged aluminosilicate framework and the Ru(0001) substrate.« less
NASA Astrophysics Data System (ADS)
Yasmin, Sabina; Cho, Sung; Jeon, Seungwon
2018-03-01
We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.
Monternier, Pierre-Axel; Teulier, Loïc; Drai, Jocelyne; Bourguignon, Aurore; Collin-Chavagnac, Delphine; Hervant, Frédéric; Rouanet, Jean-Louis; Roussel, Damien
2017-10-01
Fasted endothermic vertebrates must develop physiological responses to maximize energy conservation and survival. The aim of this study was to determine the effect of 1-wk. fasting in 5-wk. old ducklings (Cairina moschata) from whole-body resting metabolic rate and body temperature to metabolic phenotype of tissues and mitochondrial coupling efficiency. At the level of whole organism, the mass-specific metabolic rate of ducklings was decreased by 40% after 1-wk. of fasting, which was associated with nocturnal Tb declines and shallow diurnal hypothermia during fasting. At the cellular level, fasting induced a large reduction in liver, gastrocnemius (oxidative) and pectoralis (glycolytic) muscle masses together with a fuel selection towards lipid oxidation and ketone body production in liver and a lower glycolytic phenotype in skeletal muscles. At the level of mitochondria, fasting induced a reduction of oxidative phosphorylation activities and an up-regulation of coupling efficiency (+30% on average) in liver and skeletal muscles. The present integrative study shows that energy conservation in fasted ducklings is mainly achieved by an overall reduction in mitochondrial activity and an increase in mitochondrial coupling efficiency, which would, in association with shallow hypothermia, increase the conservation of endogenous fuel stores during fasting. Copyright © 2017 Elsevier Inc. All rights reserved.
Use of ion conductors in the pyrochemical reduction of oxides
Miller, W.E.; Tomczuk, Z.
1994-02-01
An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO[sub 2] oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a [beta]-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca[sup o] used for reducing UO[sub 2] and PuO[sub 2] to U and Pu. 2 figures.
Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.
Braunschweig, Juliane; Bosch, Julian; Meckenstock, Rainer U
2013-09-25
Iron oxides are important constituents of soils and sediments and microbial iron reduction is considered to be a significant anaerobic respiration process in the subsurface, however low microbial reduction rates of macroparticulate Fe oxides in laboratory studies led to an underestimation of the role of Fe oxides in the global Fe redox cycle. Recent studies show the high potential of nano-sized Fe oxides in the environment as, for example, electron acceptor for microbial respiration, electron shuttle between different microorganisms, and scavenger for heavy metals. Biotic and abiotic reactivity of iron macroparticles differ significantly from nano-sized Fe oxides, which are usually much more reactive. Factors such as particle size, solubility, ferrous iron, crystal structure, and organic molecules were identified to influence the reactivity. This review discusses factors influencing the microbial reactivity of Fe oxides. It highlights the differences between natural and synthetic Fe oxides especially regarding the presence of organic molecules such as humic acids and natural organic matter. Attention is given to the transport behavior of Fe oxides in laboratory systems and in the environment, because of the high affinity of different contaminants to Fe oxide surfaces and associated co-transport of pollutants. The high reactivity of Fe oxides and their potential as adsorbents for different pollutants are discussed with respect to application and development of remediation technologies. Copyright © 2013. Published by Elsevier B.V.
Ghosh, Semanti; Bagchi, Angshuman
2018-04-26
Sulfur metabolism is one of the oldest known biochemical processes. Chemotrophic or phototrophic proteobacteria, through the dissimilatory pathway, use sulfate, sulfide, sulfite, thiosulfate or elementary sulfur by either reductive or oxidative mechanisms. During anoxygenic photosynthesis, anaerobic sulfur oxidizer Allochromatium vinosum forms sulfur globules that are further oxidized by dsr operon. One of the key redox enzymes in reductive or oxidative sulfur metabolic pathways is the DsrAB protein complex. However, there are practically no reports to elucidate the molecular mechanism of the sulfur oxidation process by the DsrAB protein complex from sulfur oxidizer Allochromatium vinosum. In the present context, we tried to analyze the structural details of the DsrAB protein complex from sulfur oxidizer Allochromatium vinosum by molecular dynamics simulations. The molecular dynamics simulation results revealed the various types of molecular interactions between DsrA and DsrB proteins during the formation of DsrAB protein complex. We, for the first time, predicted the mode of binding interactions between the co-factor and DsrAB protein complex from Allochromatium vinosum. We also compared the binding interfaces of DsrAB from sulfur oxidizer Allochromatium vinosum and sulfate reducer Desulfovibrio vulgaris. This study is the first to provide a comparative aspect of binding modes of sulfur oxidizer Allochromatium vinosum and sulfate reducer Desulfovibrio vulgaris.
Oxidation and Reduction: Too Many Definitions?
ERIC Educational Resources Information Center
Silverstein, Todd P.
2011-01-01
IUPAC gives several different definitions of oxidation: loss of electrons, increase in oxidation state, loss of hydrogen, or gain of oxygen. Most introductory or general chemistry textbooks use all of these definitions at one time or another, which can lead to some confusion in the minds of first-year chemistry students. Some paradoxical…
Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi-Zhang
2018-02-01
Ever-increasing fossil-fuel combustion along with massive CO 2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO 2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO 2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO 2 conversion with an oxidative half reaction, e.g., H 2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO 2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO 2 reduction and H 2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO 2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO 2 -reduction cocatalysts for semiconductor-based photocatalytic CO 2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Purushothaman, Sreeja; Nair, R Renuka
2016-09-01
Oxidative stress is an important contributory factor for the development of cardiovascular diseases like hypertension-induced hypertrophy. Mitochondrion is the major source of reactive oxygen species. Hence, protecting mitochondria from oxidative damage can be an effective therapeutic strategy for the prevention of hypertensive heart disease. Conventional antioxidants are not likely to be cardioprotective, as they cannot protect mitochondria from oxidative damage. EUK-134 is a salen-manganese complex with superoxide dismutase and catalase activity. The possible role of EUK-134, a mitoprotective antioxidant, in the prevention of hypertrophy of H9C2 cells was examined. The cells were stimulated with phenylephrine (50 μM), and hypertrophy was assessed based on cell volume and expression of brain natriuretic peptide and calcineurin. Enhanced myocardial lipid peroxidation and protein carbonyl content, accompanied by nuclear factor-kappa B gene expression, confirmed the presence of oxidative stress in hypertrophic cells. Metabolic shift was evident from reduction in the expression of medium-chain acyl-CoA dehydrogenase. Mitochondrial oxidative stress was confirmed by the reduced expression of mitochondria-specific antioxidant peroxiredoxin-3 and enhanced mitochondrial superoxide production. Compromised mitochondrial function was apparent from reduced mitochondrial membrane potential. Pretreatment with EUK-134 (10 μM) was effective in the prevention of hypertrophic changes in H9C2 cells, reduction of oxidative stress, and prevention of metabolic shift. EUK-134 treatment improved the oxidative status of mitochondria and reversed hypertrophy-induced reduction of mitochondrial membrane potential. Supplementation with EUK-134 is therefore identified as a novel approach to attenuate cardiac hypertrophy and lends scope for the development of EUK-134 as a therapeutic agent in the management of human cardiovascular disease.
Shen, Yue; Wang, Ying; Zhou, Yuan; Hai, Chunxi; Hu, Jun; Zhang, Yi
2018-01-01
Electrostatic force spectroscopy (EFS) is a method for monitoring the electrostatic force microscopy (EFM) phase with high resolution as a function of the electrical direct current bias applied either to the probe or sample. Based on the dielectric constant difference of graphene oxide (GO) sheets (reduced using various methods), EFS can be used to characterize the degree of reduction of uniformly reduced one-atom-thick GO sheets at the nanoscale. In this paper, using thermally or chemically reduced individual GO sheets on mica substrates as examples, we characterize their degree of reduction at the nanoscale using EFS. For the reduced graphene oxide (rGO) sheets with a given degree of reduction (sample n), the EFS curve is very close to a parabola within a restricted area. We found that the change in parabola opening direction (or sign the parabola opening value) indicates the onset of reduction on GO sheets. Moreover, the parabola opening value, the peak bias value (tip bias leads to the peak or valley EFM phases) and the EFM phase contrast at a certain tip bias less than the peak value can all indicate the degree of reduction of rGO samples, which is positively correlated with the dielectric constant. In addition, we gave the ranking of degree for reduction on thermally or chemically reduced GO sheets and evaluated the effects of the reducing conditions. The identification of the degree of reduction of GO sheets using EFS is important for reduction strategy optimization and mass application of GO, which is highly desired owing to its mechanical, thermal, optical and electronic applications. Furthermore, as a general and quantitative technique for evaluating the small differences in the dielectric properties of nanomaterials, the EFS technique will extend and facilitate its nanoscale electronic devices applications in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zheming; Shi, Zhi; Shi, Liang
2015-08-25
Dissimilatory iron-reducing bacteria can utilize insoluble Fe(Mn)-oxides as a terminal electron acceptor under anaerobic conditions. For Shewanella species specifically, some evidence suggests that iron reduction is associated with the secretion of flavin mononucleotide (FMN) and riboflavin that are proposed to mediate electron transfer (Marsili et al., 2008). In this work, we used methyl viologen (MV•+)-encapsulated, porin-cytochrome complex (MtrCAB) embedded liposomes (MELs) as a synthetic model of the Shewanella outer membrane to investigate the proposed mediating behavior of secreted flavins. The reduction kinetics of goethite, hematite and lepidocrocite (200 µM) by MELs ([MV•+] ~ 42 µM and MtrABC ≤ 1 nM)more » were determined in the presence FMN at pH 7.0 in N2 atmosphere by monitoring the concentrations of MV•+ and FMN through their characteristic UV-visible absorption spectra. Experiments were performed where i) FMN and Fe(III)-oxide were mixed and then reacted with the reduced MELs and ii) FMN was reacted with the reduced MELs followed by addition of Fe(III)-oxide. The redox reactions proceeded in two steps: a fast step that was completed in a few seconds, and a slower one lasting over 400 seconds. For all three Fe(III)-oxides, the initial reaction rate in the presence of a low concentration of FMN (≤ 1 µM) was at least a factor of five faster than those with MELs alone, and orders of magnitude faster than those by FMNH2, suggesting that FMN may serve as a co-factor that enhances electron transfer from outer-membrane c-cytochromes to Fe(III)-oxides. The rate and extent of the initial reaction followed the order of lepidocrocite > hematite > goethite, the same as their reduction potentials, implying thermodynamic control on reaction rate. However, at higher FMN concentrations (> 1 µM), the reaction rates for both steps decreased and varied inversely with FMN concentration, indicating that FMN inhibited the MEL to Fe(III)-oxide electron transfer reaction. The implications of the observed kinetic behaviors to flavin-mediated Fe(III) oxide reduction in natural environments are discussed.« less
Zan, Hsiao-Wen; Yeh, Chun-Cheng; Meng, Hsin-Fei; Tsai, Chuang-Chuang; Chen, Liang-Hao
2012-07-10
An effective approach to reduce defects and increase electron mobility in a-IGZO thin-film transistors (a-IGZO TFTs) is introduced. A strong reduction layer, calcium, is capped onto the back interface of a-IGZO TFT. After calcium capping, the effective electron mobility of a-IGZO TFT increases from 12 cm(2) V(-1) s(-1) to 160 cm(2) V(-1) s(-1). This high mobility is a new record, which implies that the proposed defect reduction effect is key to improve electron transport in oxide semiconductor materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermogravity system designed for use in dispersion strengthening studies
NASA Technical Reports Server (NTRS)
Herbell, T. P.
1972-01-01
A thermogravimetry system designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 PPM water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.
Thermogravimetry system designed for use in dispersion strengthening studies.
NASA Technical Reports Server (NTRS)
Herbell, T. P.
1972-01-01
A thermogravimetry system, designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials, is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 p.p.m. water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.
Phase formation during the carbothermic reduction of eudialyte concentrate
NASA Astrophysics Data System (ADS)
Krasikov, S. A.; Upolovnikova, A. G.; Sitnikova, O. A.; Ponomarenko, A. A.; Agafonov, S. N.; Zhidovinova, S. V.; Maiorov, D. V.
2013-07-01
The phase transformations of eudialyte concentrate during the carbothermic reduction in the temperature range 25-2000°C are studied by thermodynamic simulation, differential thermal analysis, and X-ray diffraction. As the temperature increases to 1500°C, the following phases are found to form sequentially: iron and manganese carbides, free iron, niobium carbide, iron silicides, silicon and titanium carbides, and free silicon. Strontium, yttrium, and uranium in the temperature range under study are not reduced and are retained in an oxide form, and insignificant reduction of zirconium oxides with the formation of carbide ZrC is possible only at temperatures above 1500°C.
Nanoscale reduction of graphene oxide thin films and its characterization
NASA Astrophysics Data System (ADS)
Lorenzoni, M.; Giugni, A.; Di Fabrizio, E.; Pérez-Murano, Francesc; Mescola, A.; Torre, B.
2015-07-01
In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material.
Crozier-Reabe, Karen R; Phillips, Robert S; Moran, Graham R
2008-11-25
Kynurenine 3-monooxygenase (KMO) is a flavin-dependent hydroxylase that catalyzes the conversion of l-kynurenine (l-Kyn) to 3-hydroxykynurenine (3OHKyn) in the pathway for tryptophan catabolism. KMO inhibition has been widely suggested as an early treatment for stroke and other neurological disorders that involve ischemia. We have investigated the reductive and the oxidative half-reactions of a stable form of KMO from Pseudomonas fluorescens (KMO). The binding of l-Kyn by the enzyme is relatively slow and involves at least two reversible steps. The rate constant for reduction of the flavin cofactor by NADPH increases by a factor of approximately 2.5 x 10(3) when l-Kyn is bound. The rate of reduction of the KMO.l-Kyn complex is 160 s(-1), and the K(d) for the NADPH complex is 200 microM with charge-transfer absorption bands for the KMO(RED).l-Kyn.NADP(+) complex accumulating after reduction. The reduction potential of KMO is -188 mV and is unresponsive to the addition of l-Kyn or other inhibitory ligands. KMO inhibitors whose structures are reminiscent of l-Kyn such as m-nitrobenzoylalanine and benzoylalanine also stimulate reduction of flavin by NADPH and, in the presence of dioxygen, result in the stoichiometric liberation of hydrogen peroxide, diminishing the perceived therapeutic potential of inhibitors of this type. In the presence of the native substrate, the oxidative half-reaction exhibits triphasic absorbance data. A spectrum consistent with that of a peroxyflavin species accumulates and then decays to yield the oxidized enzyme. This species then undergoes minor spectral changes that, based on flavin difference spectra defined in the presence of 3OHKyn, can be correlated with product release. The oxidative half-reaction observed in the presence of saturating benzoylalanine or m-nitrobenzoylalanine also shows the accumulation of a peroxyflavin species that then decays to yield hydrogen peroxide without hydroxylation.
Modular cathode assemblies and methods of using the same for electrochemical reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may bemore » supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.« less
Modular cathode assemblies and methods of using the same for electrochemical reduction
Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L
2014-12-02
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.
Siegel, Michael P.; Kruse, Shane E.; Knowels, Gary; Salmon, Adam; Beyer, Richard; Xie, Hui; Van Remmen, Holly; Smith, Steven R.; Marcinek, David J.
2011-01-01
Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ) treatment of wild type mice) and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1−/−)) models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O) at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax) was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain. PMID:22132085
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Grady, Joseph E.; Miller, Christopher J.; Hultgren, Lennart S.; Jones, Michael G.
2016-01-01
Recent developments have reduced fan and jet noise contributions to overall subsonic aircraft jet-engine noise. Now, aircraft designers are turning their attention toward reducing engine core noise. The NASA Glenn Research Center and NASA Langley Research Center have teamed to investigate the development of a compact, lightweight acoustic liner based on oxide/oxide ceramic matrix composite (CMC) materials. The NASA team has built upon an existing oxide/oxide CMC sandwich structure concept that provides monotonal noise reduction. Oxide/oxide composites have good high temperature strength and oxidation resistance, which could allow them to perform as core liners at temperatures up to 1000C (1832F), and even higher depending on the selection of the composite constituents. NASA has initiated the evaluation of CMC-based liners that use cells of different lengths (variable-depth channels) or effective lengths to achieve broadband noise reduction. Reducing the overall liner thickness is also a major goal, to minimize the volume occupied by the liner. As a first step toward demonstrating the feasibility of our concepts, an oxide/oxide CMC acoustic testing article with different channel lengths was tested. Our approach, summary of test results, current status, and goals for the future are reported.
Li, Renchao; Gao, Ying; Jin, Xiaoying; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra
2015-01-15
In this report, various iron-based nanoparticles (nZVI, n-Ni/Fe, n-Pd/Fe) were used for both heterogeneous Fenton oxidation of 2,4-dichlorophenol (2,4-DCP) and reductive dechlorination of 2,4-DCP in order to understand their roles in the Fenton oxidation and the reductive degradation of 2,4-DCP. The dechlorination efficiency of 2,4-DCP using nZVI, n-Ni/Fe, n-Fe/Pd and Fe(2)(+) was 6.48%, 6.80%, 15.95%, 5.02%, while Fenton oxidation efficiency of 2,4-DCP was 57.87%, 34.23%, 27.94%, 19.61% after 180 min, respectively. The new findings included a higher dechlorination using n-Fe/Pd due to Pd effective catalysis and the effective heterogeneous Fenton oxidation using nZVI depending on reductive dechlorination and heterogeneous Fenton oxidation occurs simultaneously. However, nZVI as the potential catalyst for heterogeneous Fenton was observed, and SEM, EDS and XRD demonstrate that change on the nZVI surface occurred due to the Fe(2+) leaching, and Total Organic Carbon (TOC) (30.71%) shows that 2,4-DCP was degraded. Furthermore, the experiment indicates that the pH values and concentration of 2,4-DCP significantly impacted on the heterogeneous Fenton oxidation of 2,4-DCP and the data fits well with the pseudo first-order kinetic model, which was a diffusion-controlled reaction. Finally, a possible mechanism for degradation of 2,4-DCP was proposed. Copyright © 2014 Elsevier Inc. All rights reserved.