Science.gov

Sample records for oxidative damage antioxidants

  1. Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system.

    PubMed

    Palmer, Debbie M; Kitchin, Jennifer Silverman

    2010-01-01

    It is believed that oxidative stress is caused by an imbalance between the production of reactive oxygen and a biological system's ability to neutralize the reactive intermediates. Oxidative damage occurs because of both intrinsic and extrinsic mechanisms. Together, intrinsic and extrinsic damage are the primary causes of skin aging. The skin uses a series of intrinsic antioxidants to protect itself from free radical damage. Naturally occurring extrinsic antioxidants have also been widely shown to offset and alleviate these changes. Unlike sunscreens, which have an SPF rating system to guide consumers in their purchases, there is no widely accepted method to choose antioxidant anti-aging products. ORAC (Oxygen Radical Absorbance Capacity) and ABEL-RAC (Analysis By Emitted Light-Relative Antioxidant Capacity), are both accepted worldwide as a standard measure of the antioxidant capacity of foods, and are rating systems that could be applied to all antioxidant skincare products. The standardization of antioxidant creams could revolutionize the cosmeceutical market and give physicians and consumers the ability to compare and choose effectively.

  2. Oxidative damage and antioxidant defense in thymus of malnourished lactating rats.

    PubMed

    Gavia-García, Graciela; González-Martínez, Haydeé; Miliar-García, Ángel; Bonilla-González, Edmundo; Rosas-Trejo, María de Los Ángeles; Königsberg, Mina; Nájera-Medina, Oralia; Luna-López, Armando; González-Torres, María Cristina

    2015-01-01

    Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effect of date seeds on oxidative damage and antioxidant status in vivo.

    PubMed

    Habib, Hosam M; Ibrahim, Wissam H

    2011-07-01

    Date seeds have been shown to contain high amounts of antioxidants. However, in vivo studies on date seeds are lacking. Therefore the purpose of this study was to determine the effect of date seeds on oxidative damage and antioxidant status in vivo. Male Wistar rats were fed a basal diet containing 0, 70 or 140 g kg(-1) date seeds for 30 days. All three diets were isonitrogenous and isocaloric. Indication of oxidative damage was assessed in the liver and serum, and antioxidant status was assessed in the liver. Serum biochemical parameters, including indicators of tissue cellular damage and complete blood count with differential, were also determined. The results showed that date seeds significantly (P<0.05) reduced liver and serum malondialdehyde (a lipid peroxidative damage product) and serum lactate dehydrogenase and creatine kinase. Liver antioxidants (vitamin E, vitamin C, glutathione, superoxide dismutase, glutathione peroxidase and catalase), complete blood count with differential and other serum biochemical parameters assessed were not significantly altered by date seeds. The results obtained suggest a protective effect of date seeds against in vivo oxidative damage, possibly through the action of their bioactive antioxidants. Copyright © 2011 Society of Chemical Industry.

  4. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    PubMed Central

    Suntres, Zacharias E.

    2011-01-01

    Reactive oxygen species (ROS), including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. PMID:21876690

  5. Therapeutic Hypothermia Reduces Oxidative Damage and Alters Antioxidant Defenses after Cardiac Arrest

    PubMed Central

    Hackenhaar, Fernanda S.; Medeiros, Tássia M.; Heemann, Fernanda M.; Behling, Camile S.; Putti, Jordana S.; Mahl, Camila D.; Verona, Cleber; da Silva, Ana Carolina A.; Guerra, Maria C.; Gonçalves, Carlos A. S.; Oliveira, Vanessa M.; Riveiro, Diego F. M.; Vieira, Silvia R. R.

    2017-01-01

    After cardiac arrest, organ damage consequent to ischemia-reperfusion has been attributed to oxidative stress. Mild therapeutic hypothermia has been applied to reduce this damage, and it may reduce oxidative damage as well. This study aimed to compare oxidative damage and antioxidant defenses in patients treated with controlled normothermia versus mild therapeutic hypothermia during postcardiac arrest syndrome. The sample consisted of 31 patients under controlled normothermia (36°C) and 11 patients treated with 24 h mild therapeutic hypothermia (33°C), victims of in- or out-of-hospital cardiac arrest. Parameters were assessed at 6, 12, 36, and 72 h after cardiac arrest in the central venous blood samples. Hypothermic and normothermic patients had similar S100B levels, a biomarker of brain injury. Xanthine oxidase activity is similar between hypothermic and normothermic patients; however, it decreases posthypothermia treatment. Xanthine oxidase activity is positively correlated with lactate and S100B and inversely correlated with pH, calcium, and sodium levels. Hypothermia reduces malondialdehyde and protein carbonyl levels, markers of oxidative damage. Concomitantly, hypothermia increases the activity of erythrocyte antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione S-transferase while decreasing the activity of serum paraoxonase-1. These findings suggest that mild therapeutic hypothermia reduces oxidative damage and alters antioxidant defenses in postcardiac arrest patients. PMID:28553435

  6. Oxidative stress and mitochondrial damage in coronary artery bypass graft surgery: effects of antioxidant treatments.

    PubMed

    Milei, J; Ferreira, R; Grana, D R; Boveris, A

    2001-01-01

    We examined antioxidant actions in 73 patients undergoing coronary artery surgery by assessing mitochondrial damage and oxidative stress in ventricular biopsies obtained at preischemia and postreperfusion. Those patients who received antioxidant therapy benefited by less oxidative stress and mitochondrial damage.

  7. Effects of Weather Conditions on Oxidative Stress, Oxidative Damage, and Antioxidant Capacity in a Wild-Living Mammal, the European Badger (Meles meles).

    PubMed

    Bilham, Kirstin; Newman, Chris; Buesching, Christina D; Noonan, Michael J; Boyd, Amy; Smith, Adrian L; Macdonald, David W

    Wild-living animals are subject to weather variability that may cause the generation of reactive oxygen species, resulting in oxidative stress and tissue damage, potentially driving demographic responses. Our 3-yr field study investigated the effects of seasonal weather conditions on biomarkers for oxidative stress, oxidative damage, and antioxidant defense in the European badger (Meles meles). We found age class effects: cubs were more susceptible to oxidative stress and oxidative damage than adults, especially very young cubs in the spring, when they also exhibited lower antioxidant biomarkers than adults. Although previous studies have found that intermediate spring and summer rainfall and warmer temperatures favor cub survival, counterintuitively these conditions were associated with more severe oxidative damage. Oxidative damage was high in cubs even when antioxidant biomarkers were high. In contrast, adult responses accorded with previous survival analyses. Wetter spring and summer conditions were associated with higher oxidative damage, but they were also associated with higher antioxidant biomarkers. Autumnal weather did not vary substantially from normative values, and thus effects were muted. Winter carryover effects were partially evident, with drier and milder conditions associated with greater oxidative damage in the following spring but also with higher antioxidant capacity. Plausibly, warmer conditions promoted more badger activity, with associated metabolic costs at a time of year when food supply is limited. Modeling biomarkers against projected climate change scenarios predicted greater future risks of oxidative damage, although not necessarily exceeding antioxidant capacity. This interdisciplinary approach demonstrates that individual adaptive physiological responses are associated with variation in natural environmental conditions.

  8. Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers.

    PubMed

    Rendón-Ramírez, Adela-Leonor; Maldonado-Vega, María; Quintanar-Escorza, Martha-Angelica; Hernández, Gerardo; Arévalo-Rivas, Bertha-Isabel; Zentella-Dehesa, Alejandro; Calderón-Salinas, José-Víctor

    2014-01-01

    The molecular response of the antioxidant system and the effects of antioxidant supplementation against oxidative insult in lead-exposed workers has not been sufficiently studied. In this work, antioxidants (vitamin E 400 IU+vitamin C 1g/daily) were supplemented for one year to 15 workers exposed to lead (73 μg of lead/dl of blood) and the results were compared with those on 19 non-lead exposed workers (6.7 μg of lead/dl). Lead intoxication was accompanied by a high oxidative damage and an increment in the erythrocyte antioxidant response due to increased activity of catalase and superoxide dismutase. Antioxidant supplementations decreased significantly the oxidative damage as well as the total antioxidant capacity induced by lead intoxication with reduction of the antioxidant enzyme activities. We conclude that antioxidant supplementation is effective in reducing oxidative damage and induces modifications in the physiopathological status of the antioxidant response in lead-exposed workers. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Biomarkers of oxidative damage and antioxidant defense capacity in Caiman latirostris blood.

    PubMed

    Poletta, Gisela L; Simoniello, María Fernanda; Mudry, Marta D

    2016-01-01

    Several xenobiotics, and among them pesticides, can produce oxidative stress, providing a mechanistic basis for their observed toxicity. Chronic oxidative stress induces deleterious modifications to DNA, lipids and proteins that are used as effective biomarkers to study pollutant-mediated oxidative stress. No previous report existed on the application of oxidative damage and antioxidant defense biomarkers in Caiman latirostris blood, while few studies reported in other crocodilians were done in organs or muscles of dead animals. The aim of this study was to characterize a new set of oxidative stress biomarkers in C. latirostris blood, through the modification of conventional techniques: 1) damage to lipids by thiobarbituric acid reactive substances (TBARS), 2) damage to DNA by comet assay modified with the enzymes FPG and Endo III, and 3) antioxidant defenses: catalase, superoxide dismutase and glutathione; in order to apply them in future biomonitoring studies. We successfully adapted standard procedures for CAT, SOD, GSH and TBARS determination in C. latirostris blood. Calibration curves for FPG and Endo III showed that the three dilutions tested were appropriate to conduct the modified comet assay for the detection of oxidized bases in C. latirostris erythrocytes. One hour of incubation allowed a complete repair of the damage generated. The incorporation of these biomarkers in biomonitoring studies of caiman populations exposed to xenobiotics is highly important considering that this species has recovered from a serious endangered state through the implementation of sustainable use programs in Argentina, and represents nowadays a relevant economic resource for many human communities. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance.

    PubMed

    Melgar, Juan Carlos; Guidi, Lucia; Remorini, Damiano; Agati, Giovanni; Degl'innocenti, Elena; Castelli, Silvana; Camilla Baratto, Maria; Faraloni, Cecilia; Tattini, Massimiliano

    2009-09-01

    The interactive effects of root-zone salinity and sunlight on leaf biochemistry, with special emphasis on antioxidant defences, were analysed in Olea europaea L. cv. Allora, during the summer period. Plants were grown outside under 15% (shade plants) or 100% sunlight (sun plants) and supplied with 0 or 125 mM NaCl. The following measurements were performed: (1) the contribution of ions and soluble carbohydrates to osmotic potentials; (2) the photosystem II (PSII) photochemistry and the photosynthetic pigment concentration; (3) the concentration and the tissue-specific distribution of leaf flavonoids; (4) the activity of antioxidant enzymes; and (5) the leaf oxidative damage. The concentrations of Na(+) and Cl(-) were significantly greater in sun than in shade leaves, as also observed for the concentration of the 'antioxidant' sugar-alcohol mannitol. The de-epoxidation state of violaxanthin-cycle pigments increased in response to salinity stress in sun leaves. This finding agrees with a greater maximal PSII photochemistry (F(v)/F(m)) at midday, detected in salt-treated than in control plants, growing in full sunshine. By contrast, salt-treated plants in the shade suffered from midday depression in F(v)/F(m) to a greater degree than that observed in control plants. The high concentration of violaxanthin-cycle pigments in sun leaves suggests that zeaxanthin may protect the chloroplast from photo-oxidative damage, rather than dissipating excess excitation energy via non-photochemical quenching mechanisms. Dihydroxy B-ring-substituted flavonoid glycosides accumulate greatly in the mesophyll, not only in the epidermal cells, in response to high sunlight. The activity of antioxidant enzymes varied little because of sunlight irradiance, but declined sharply in response to high salinity in shade leaves. Interestingly, control and particularly salt-treated plants in the shade underwent greater oxidative damage than their sunny counterparts. These findings, which conform to

  11. Association of oxidative DNA damage, protein oxidation and antioxidant function with oxidative stress induced cellular injury in pre-eclamptic/eclamptic mothers during fetal circulation.

    PubMed

    Negi, Reena; Pande, Deepti; Karki, Kanchan; Kumar, Ashok; Khanna, Ranjana S; Khanna, Hari D

    2014-02-05

    Pre-eclampsia is a devastating multi system syndrome and a major cause of maternal, fetal, neonatal morbidity and mortality. Pre-eclampsia is associated with oxidative stress in the maternal circulation. To have an insight on the effect of pre-eclampsia/eclampsia on the neonates, the study was made to explore the oxidative status by quantification of byproducts generated during protein oxidation and oxidative DNA damage and deficient antioxidant activity in umbilical cord blood of pre-eclamptic/eclamptic mothers during fetal circulation. Umbilical cord blood during delivery from neonates born to 19 pre-eclamptic mothers, 14 eclamptic mothers and 18 normotensive mothers (uncomplicated pregnancy) as control cases was collected. 8-OHdG (8-hydroxy-2-deoxyguanosine), protein carbonyl, nitrite, catalase, non-enzymatic antioxidants (vitamin A, E, C), total antioxidant status and iron status were determined. Significant elevation in the levels of 8-OHdG, protein carbonyl, nitrite and iron along with decreased levels of catalase, vitamin A, E, C, total antioxidant status were observed in the umbilical cord blood of pre-eclamptic and eclamptic pregnancies. These parameters might be influential variables for the risk of free radical damage in infants born to pre-eclamptic/eclamptic pregnancies. Increased oxidative stress causes oxidation of DNA and protein which alters antioxidant function. Excess iron level and decreased unsaturated iron binding capacity may be the important factor associated with oxidative stress and contribute in the pathogenesis of pre-eclampsia/eclampsia which is reflected in fetal circulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    PubMed

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  13. Prophylaxis with Bacopa monnieri attenuates acrylamide induced neurotoxicity and oxidative damage via elevated antioxidant function.

    PubMed

    Shinomol, George Kunnel; Raghunath, Narayanareddy; Bharath, Muchukunte Mukunda Srinivas; Muralidhara

    2013-03-01

    Acrylamide (ACR) is a water-soluble, vinyl monomer that has multiple chemical and industrial applications. Exposure to ACR causes neuropathy and associated neurological defects including gait abnormalities and skeletal muscle weakness, due to impaired neurotransmitter release and eventual neurodegeneration. Using in vivo and in vitro models, we examined whether oxidative events are involved in ACR-mediated neurotoxicity and whether these could be prevented by natural plant extracts. Administration (i.p.) of ACR in mice (40 mg/kg bw/ d for 5d) induced significant oxidative damage in the brain cortex and liver as evidenced by elevated lipid peroxidation, reactive oxygen species and protein carbonyls. This was associated with lowered antioxidant activities including antioxidant enzymes (catalase, glutathione-s-transferase) and reduced glutathione (GSH) compared to untreated controls. Similarly, exposure of N27 neuronal cells in culture to ACR (1-5 mM) caused dose-dependent neuronal death and lowered GSH. Interestingly, dietary supplementation with the leaf powder of Bacopa monnieri (BM) (which possesses neuroprotective properties and nootropic activity) in mice for 30 days offered significant protection against ACR toxicity and oxidative damage in vivo. Similarly, pretreatment with BM protected the N27 cells against ACR-induced cell death and associated oxidative damage. Co-treatment and pre-treatment of Drosophila melanogaster with BM extract protected against ACR-induced locomotor dysfunction and GSH depletion. We infer that BM displays prophylactic effects against ACR induced oxidative damage and neurotoxicity with potential therapeutic application in human pathology associated with neuropathy.

  14. Frying oils with high natural or added antioxidants content, which protect against postprandial oxidative stress, also protect against DNA oxidation damage.

    PubMed

    Rangel-Zuñiga, Oriol A; Haro, Carmen; Tormos, Carmen; Perez-Martinez, Pablo; Delgado-Lista, Javier; Marin, Carmen; Quintana-Navarro, Gracia M; Cerdá, Concha; Sáez, Guillermo T; Lopez-Segura, Fernando; Lopez-Miranda, Jose; Perez-Jimenez, Francisco; Camargo, Antonio

    2017-06-01

    Using sunflower oil as frying oil increases postprandial oxidative stress, which is considered the main endogenous source of DNA oxidative damage. We aimed to test whether the protective effect of virgin olive oil and oil models with added antioxidants against postprandial oxidative stress may also protect against DNA oxidative damage. Twenty obese people received four breakfasts following a randomized crossover design consisting of different oils [virgin olive oil (VOO), sunflower oil (SFO), and a mixed seed oil (SFO/canola oil) with added dimethylpolysiloxane (SOX) or natural antioxidants from olives (SOP)], which were subjected to 20 heating cycles. We observed the postprandial increase in the mRNA levels of p53, OGG1, POLB, and GADD45b after the intake of the breakfast prepared with SFO and SOX, and an increase in the expression of MDM2, APEX1, and XPC after the intake of the breakfast prepared with SFO, whereas no significant changes at the postprandial state were observed after the intake of the other breakfasts (all p values <0.05). We observed lower 8-OHdG postprandial levels after the intake of the breakfast prepared with VOO and SOP than after the intake of the breakfast prepared with SFO and SOX (all p values <0.05). Our results support the beneficial effect on DNA oxidation damage of virgin olive oil and the oil models with added antioxidants, as compared to the detrimental use of sunflower oil, which induces p53-dependent DNA repair pathway activation.

  15. Oxidative Stress and Antioxidant System in Periodontitis

    PubMed Central

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  16. Nitroxides are more efficient inhibitors of oxidative damage to calf skin collagen than antioxidant vitamins.

    PubMed

    Venditti, Elisabetta; Scirè, Andrea; Tanfani, Fabio; Greci, Lucedio; Damiani, Elisabetta

    2008-01-01

    Reactive oxygen species generated upon UV-A exposure appear to play a major role in dermal connective tissue transformations including degradation of skin collagen. Here we investigate on oxidative damage to collagen achieved by exposure to (i) UV-A irradiation and to (ii) AAPH-derived radicals and on its possible prevention using synthetic and natural antioxidants. Oxidative damage was identified through SDS-PAGE, circular dichroism spectroscopy and quantification of protein carbonyl residues. Collagen (2 mg/ml) exposed to UV-A and to AAPH-derived radicals was degraded in a time- and dose-dependent manner. Upon UV-A exposure, maximum damage was observable at 730 kJ/m2 UV-A, found to be equivalent to roughly 2 h of sunshine, while exposure to 5 mM AAPH for 2 h at 50 degrees C lead to maximum collagen degradation. In both cases, dose-dependent protection was achieved by incubation with muM concentrations of nitroxide radicals, where the extent of protection was shown to be dictated by their structural differences whereas the vitamins E and C proved less efficient inhibitors of collagen damage. These results suggest that nitroxide radicals may be able to prevent oxidative injury to dermal tissues in vivo alternatively to commonly used natural antioxidants.

  17. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    PubMed

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Antioxidants and biomarkers of oxidative damage in the saliva of patients with Down's syndrome.

    PubMed

    de Sousa, Michelle Cardoso; Vieira, Rafael Brizola; Dos Santos, Danielle Sá; Carvalho, Claudio Antonio Talge; Camargo, Samira Esteves Afonso; Mancini, Maria Nadir Gasparoto; de Oliveira, Luciane Dias

    2015-04-01

    The aim of this study was to investigate enzymatic and non-enzymatic antioxidant systems and levels of biomarker levels of oxidative damage in the saliva of patients with Down's syndrome (DS). Saliva samples were collected from 30 patients with DS and control group (age: 14-24 years). Subsequently, the concentrations of superoxide dismutase, concentration of malondialdehyde, carbonylated proteins, uric acid, vitamin C and total protein, peroxidase activity and total antioxidant capacity were analyzed. Patients with DS presented significantly higher concentrations of superoxide dismutase, higher levels of malondialdehyde and salivary total protein content than controls (p<0.05). Conversely, no difference in carbonylated proteins or antioxidants (uric acid, vitamin C, peroxidase, and total antioxidant capacity) was observed between DS patients and controls (p>0.05). Patients with DS are more vulnerable to oxidative stress in saliva as indicated by the significant increase in malondialdehyde and superoxide dismutase concentrations found in this study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage

    PubMed Central

    Ganapathy, Vengatesh; Manyanga, Jimmy; Brame, Lacy; McGuire, Dehra; Sadhasivam, Balaji; Floyd, Evan; Rubenstein, David A.; Ramachandran, Ilangovan; Wagener, Theodore

    2017-01-01

    Background Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. Objective The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. Methods Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. Results EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. Conclusions Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public. PMID:28542301

  20. Quercitrin protects skin from UVB-induced oxidative damage

    SciTech Connect

    Yin, Yuanqin; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY; Li, Wenqi

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidativemore » damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.« less

  1. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  2. Antioxidant Defence, Oxidative Stress and Oxidative Damage in Saliva, Plasma and Erythrocytes of Dementia Patients. Can Salivary AGE be a Marker of Dementia?

    PubMed Central

    Choromańska, Magdalena; Klimiuk, Anna; Kostecka-Sochoń, Paula; Wilczyńska, Karolina; Kwiatkowski, Mikołaj; Okuniewska, Natalia; Waszkiewicz, Napoleon; Zalewska, Anna

    2017-01-01

    Oxidative stress plays a crucial role in dementia pathogenesis; however, its impact on salivary secretion and salivary qualities is still unknown. This study included 80 patients with moderate dementia and 80 healthy age- and sex-matched individuals. Salivary flow, antioxidants (salivary peroxidase, catalase, superoxide dismutase, uric acid and total antioxidant capacity), and oxidative damage products (advanced oxidation protein products, advanced glycation end products (AGE), 8-isoprostanes, 8-hydroxy-2’-deoxyguanosine and total oxidant status) were estimated in non-stimulated and stimulated saliva, as well as in plasma and erythrocytes. We show that in dementia patients the concentration/activity of major salivary antioxidants changes, and the level of oxidative damage to DNA, proteins and lipids is increased compared to healthy controls. Non-stimulated and stimulated salivary secretions were significantly reduced in dementia patients. The deterioration in mini mental state examination (MMSE) score correlated with salivary AGE levels, which when considered with receiver operating characteristic (ROC) analysis, suggests their potential role in the non-invasive diagnosis of dementia. In conclusion, dementia is associated with disturbed salivary redox homeostasis and impaired secretory function of the salivary glands. Salivary AGE may be useful in the diagnosis of dementia. PMID:29053628

  3. Quercitrin Protects Skin from UVB-induced Oxidative Damage

    PubMed Central

    Yin, Yuanqin; Li, Wenqi; Son, Yong-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. PMID:23545178

  4. Anti-oxidative protection against iron overload-induced liver damage in mice by Cajanus cajan (L.) Millsp. leaf extract.

    PubMed

    Sarkar, Rhitajit; Hazra, Bibhabasu; Mandal, Nripendranath

    2013-02-01

    In view of the contribution of iron deposition in the oxidative pathologic process of liver disease, the potential of 70% methanolic extract of C. cajan leaf (CLME) towards antioxidative protection against iron-overload-induced liver damage in mice has been investigated. DPPH radical scavenging and protection of Fenton reaction induced DNA damage was conducted in vitro. Post oral administration of CLME to iron overloaded mice, the levels of antioxidant and serum enzymes, hepatic iron, serum ferritin, lipid peroxidation, and protein carbonyl and hydroxyproline contents were measured, in comparison to deferasirox treated mice. Oral treatment of the plant extract effectively lowered the elevated levels of liver iron, lipid peroxidation, protein carbonyl and hydroxyproline. There was notable increment in the dropped levels of hepatic antioxidants. The dosage of the plant extract not only made the levels of serum enzymes approach normal value, but also counteracted the overwhelmed serum ferritin level. The in vitro studies indicated potential antioxidant activity of CLME. The histopathological observations also substantiated the ameliorative function of the plant extract. Accordingly, it is suggested that Cajanus cajan leaf can be a useful herbal remedy to suppress oxidative damage caused by iron overload.

  5. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Antioxidant properties of xanthones from Calophyllum brasiliense: prevention of oxidative damage induced by FeSO₄.

    PubMed

    Blanco-Ayala, Tonali; Lugo-Huitrón, Rafael; Serrano-López, Elizabeth M; Reyes-Chilpa, Ricardo; Rangel-López, Edgar; Pineda, Benjamín; Medina-Campos, Omar Noel; Sánchez-Chapul, Laura; Pinzón, Enrique; Cristina, Trejo-Solis; Silva-Adaya, Daniela; Pedraza-Chaverrí, José; Ríos, Camilo; de la Cruz, Verónica Pérez; Torres-Ramos, Mónica

    2013-10-11

    Reactive oxygen species (ROS) are important mediators in a number of degenerative diseases. Oxidative stress refers to the imbalance between the production of ROS and the ability to scavenge these species through endogenous antioxidant systems. Since antioxidants can inhibit oxidative processes, it becomes relevant to describe natural compounds with antioxidant properties which may be designed as therapies to decrease oxidative damage and stimulate endogenous cytoprotective systems. The present study tested the protective effect of two xanthones isolated from the heartwood of Calophyllum brasilienses against FeSO₄-induced toxicity. Through combinatory chemistry assays, we evaluated the superoxide (O₂·⁻), hydroxyl radical (OH·), hydrogen peroxide (H₂O₂) and peroxynitrite (ONO⁻) scavenging capacity of jacareubin (xanthone III) and 2-(3,3-dimethylallyl)-1,3,5,6-tetrahydroxyxanthone (xanthone V). The effect of these xanthones on murine DNA and bovine serum albumin degradation induced by an OH· generator system was also evaluated. Additionally, we investigated the effect of these xanthones on ROS production, lipid peroxidation and glutathione reductase (GR) activity in FeSO₄-exposed brain, liver and lung rat homogenates. Xanthone V exhibited a better scavenging capacity for O₂·⁻, ONOO⁻ and OH· than xanthone III, although both xanthones were unable to trap H₂O₂. Additionally, xanthones III and V prevented the albumin and DNA degradation induced by the OH· generator system. Lipid peroxidation and ROS production evoked by FeSO₄ were decreased by both xanthones in all tissues tested. Xanthones III and V also prevented the GR activity depletion induced by pro-oxidant activity only in the brain. Altogether, the collected evidence suggests that xanthones can play a role as potential agents to attenuate the oxidative damage produced by different pro-oxidants.

  7. The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells.

    PubMed

    Lowes, Damon A; Wallace, Carol; Murphy, Michael P; Webster, Nigel R; Galley, Helen F

    2009-04-01

    Tendinitis and tendon rupture during treatment with fluoroquinolone antibiotics is thought to be mediated via oxidative stress. This study investigated whether ciprofloxacin and moxifloxacin cause oxidative stress and mitochondrial damage in cultured normal human Achilles' tendon cells and whether an antioxidant targeted to mitochondria (MitoQ) would protect against such damage better than a non-mitochondria targeted antioxidant. Human tendon cells from normal Achilles' tendons were exposed to 0-0.3 mM antibiotic for 24 h and 7 days in the presence of 1 microM MitoQ or an untargeted form, idebenone. Both moxifloxacin and ciprofloxacin resulted in up to a 3-fold increase in the rate of oxidation of dichlorodihydrofluorescein, a marker of general oxidative stress in tenocytes (p<0.0001) and loss of mitochondrial membrane permeability (p<0.001). In cells treated with MitoQ the oxidative stress was less and mitochondrial membrane potential was maintained. Mitochondrial damage to tenocytes during fluoroquinolone treatment may be involved in tendinitis and tendon rupture.

  8. Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

    PubMed Central

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Kil, Jeung-Ha

    2014-01-01

    BACKGROUND/OBJECTIVES This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide (H2O2)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (•OH), and H2O2 scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against H2O2-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS The ability of FSeS to scavenge DPPH, •OH and H2O2 was greater than that of FSS and AHSS. FSeS also significantly inhibited H2O2-induced (500 µM) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P < 0.05). Following treatment with 100 µg/mL of FSeS and FSS to prevent H2O2-induced oxidation, cell viability increased from 56.7% (control) to 83.7% and 75.6%, respectively. However, AHSS was not able to reduce H2O2-induced cell damage (viability of the AHSS-treated cells was 54.6%). FSeS more effectively suppressed H2O2-induced ROS generation and lipid peroxidation compared to FSS and AHSS (P < 0.05). Compared to the other sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS These results from the present study suggest that FSeS is an effective radical scavenger and protects against H2O2-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity. PMID:24741396

  9. Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia.

    PubMed

    Rivera-Barahona, Ana; Alonso-Barroso, Esmeralda; Pérez, Belén; Murphy, Michael P; Richard, Eva; Desviat, Lourdes R

    2017-09-01

    Oxidative stress contributes to the pathogenesis of propionic acidemia (PA), a life threatening disease caused by the deficiency of propionyl CoA-carboxylase, in the catabolic pathway of branched-chain amino acids, odd-number chain fatty acids and cholesterol. Patients develop multisystemic complications including seizures, extrapyramidal symptoms, basal ganglia deterioration, pancreatitis and cardiomyopathy. The accumulation of toxic metabolites results in mitochondrial dysfunction, increased reactive oxygen species and oxidative damage, all of which have been documented in patients' samples and in a hypomorphic mouse model. Here we set out to investigate whether treatment with a mitochondria-targeted antioxidant, MitoQ, or with the natural polyphenol resveratrol, which is reported to have antioxidant and mitochondrial activation properties, could ameliorate the altered redox status and its functional consequences in the PA mouse model. The results show that oral treatment with MitoQ or resveratrol decreases lipid peroxidation and the expression levels of DNA repair enzyme OGG1 in PA mouse liver, as well as inducing tissue-specific changes in the expression of antioxidant enzymes. Notably, treatment decreased the cardiac hypertrophy marker BNP that is found upregulated in the PA mouse heart. Overall, the results provide in vivo evidence to justify more in depth investigations of antioxidants as adjuvant therapy in PA. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Antioxidant properties of xanthones from Calophyllum brasiliense: prevention of oxidative damage induced by FeSO4

    PubMed Central

    2013-01-01

    Background Reactive oxygen species (ROS) are important mediators in a number of degenerative diseases. Oxidative stress refers to the imbalance between the production of ROS and the ability to scavenge these species through endogenous antioxidant systems. Since antioxidants can inhibit oxidative processes, it becomes relevant to describe natural compounds with antioxidant properties which may be designed as therapies to decrease oxidative damage and stimulate endogenous cytoprotective systems. The present study tested the protective effect of two xanthones isolated from the heartwood of Calophyllum brasilienses against FeSO4-induced toxicity. Methods Through combinatory chemistry assays, we evaluated the superoxide (O2●—), hydroxyl radical (OH●), hydrogen peroxide (H2O2) and peroxynitrite (ONOO—) scavenging capacity of jacareubin (xanthone III) and 2-(3,3-dimethylallyl)-1,3,5,6-tetrahydroxyxanthone (xanthone V). The effect of these xanthones on murine DNA and bovine serum albumin degradation induced by an OH• generator system was also evaluated. Additionally, we investigated the effect of these xanthones on ROS production, lipid peroxidation and glutathione reductase (GR) activity in FeSO4-exposed brain, liver and lung rat homogenates. Results Xanthone V exhibited a better scavenging capacity for O2●—, ONOO- and OH● than xanthone III, although both xanthones were unable to trap H2O2. Additionally, xanthones III and V prevented the albumin and DNA degradation induced by the OH● generator system. Lipid peroxidation and ROS production evoked by FeSO4 were decreased by both xanthones in all tissues tested. Xanthones III and V also prevented the GR activity depletion induced by pro-oxidant activity only in the brain. Conclusions Altogether, the collected evidence suggests that xanthones can play a role as potential agents to attenuate the oxidative damage produced by different pro-oxidants. PMID:24119308

  11. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    PubMed

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (p<0.05), while total antioxidant capacity was significantly lower (p<0.001). While there was a positive correlation between total antioxidant capacity and hemoglobin levels (r=0.706, p<0.001), both total antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  12. Free radicals hasten head and neck cancer risk: A study of total oxidant, total antioxidant, DNA damage, and histological grade

    PubMed Central

    Singh, AK; Pandey, P; Tewari, M; Pandey, HP; Gambhir, IS; Shukla, HS

    2016-01-01

    Background: Free radicals such as reactive oxygen species (ROS), which induce oxidative stress, are the main contributors to head and neck carcinogenesis (HNC). The present study was conducted with the aim to assess the oxidant/antioxidant status and DNA damage analysis in head and neck cancer/control patients. Materials and Methods: This prospective study was conducted on 60 patients with biopsy-proven HNC and 17 patients of head and neck disease (HND). The total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) were determined by novel automatic colorimetric methods from tissue homogenate. DNA damage analysis was determined by single cell gel electrophoresis (SCGE). Results: The mean age of the study cohort was 46.65 ± 14.84 years for HNC patients, while it was 49.41 ± 13.00 years for HND patients. There were no significant differences found between the two groups with respect to demographic presentation except tobacco addiction. The association between oxidative stress parameters and DNA damage analysis with study group revealed the following. (A) DNA damage - tissue homogenate TOS and OSI were significantly higher in HNC subjects than in HND (16.06 ± 1.78 AU vs 7.86 ± 5.97 AU, P < 0.001; 53.00 ± 40.61 vs 19.67 ± 21.90, P < 0.01; 7.221 ± 5.80 vs 2.40 ± 2.54, P < 0.01, respectively), while TAS was significantly decreased. (B) Aggressive histological features were identified, more commonly with higher TOS and lower TAS [probability (P) = 0.002, relative risk (RR) = 11.838, 95% confidence interval CI = 2.514-55.730 and P = 0.043, RR = 0.271, 95% CI = 0.077-0.960, respectively]. Conclusion: The increase in free radicals may be the event that led to the reduction of antioxidant status in HNC, thus explaining the oxidative damage of DNA and the severity of disease. Increased OSI represents a general mechanism in its pathogenesis. PMID:27089108

  13. The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters.

    PubMed

    Du, Wei; Rani, Reena; Sipple, Jared; Schick, Jonathan; Myers, Kasiani C; Mehta, Parinda; Andreassen, Paul R; Davies, Stella M; Pang, Qishen

    2012-05-03

    Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi anemia (FA), a genetic disorder associated with BM failure and cancer. Here we show that major antioxidant defense genes are down-regulated in FA patients, and that gene down-regulation is selectively associated with increased oxidative DNA damage in the promoters of the antioxidant defense genes. Assessment of promoter activity and DNA damage repair kinetics shows that increased initial damage, rather than a reduced repair rate, contributes to the augmented oxidative DNA damage. Mechanistically, FA proteins act in concert with the chromatin-remodeling factor BRG1 to protect the promoters of antioxidant defense genes from oxidative damage. Specifically, BRG1 binds to the promoters of the antioxidant defense genes at steady state. On challenge with oxidative stress, FA proteins are recruited to promoter DNA, which correlates with significant increase in the binding of BRG1 within promoter regions. In addition, oxidative stress-induced FANCD2 ubiquitination is required for the formation of a FA-BRG1-promoter complex. Taken together, these data identify a role for the FA pathway in cellular antioxidant defense.

  14. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress.

    PubMed

    Imam, Mustapha Umar; Zhang, Shenshen; Ma, Jifei; Wang, Hao; Wang, Fudi

    2017-06-28

    Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions.

  15. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress

    PubMed Central

    Zhang, Shenshen; Ma, Jifei; Wang, Hao; Wang, Fudi

    2017-01-01

    Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions. PMID:28657578

  16. Diet supplementation during early lactation with non-alcoholic beer increases the antioxidant properties of breastmilk and decreases the oxidative damage in breastfeeding mothers.

    PubMed

    Codoñer-Franch, Pilar; Hernández-Aguilar, María T; Navarro-Ruiz, Almudena; López-Jaén, Ana B; Borja-Herrero, Cintia; Valls-Bellés, Victoria

    2013-04-01

    After delivery and birth, mothers and neonates are exposed to oxidative stress. We tested whether supplementing the diet of breastfeeding mothers with non-alcoholic beer, a product rich in antioxidants, could improve their oxidative status and the antioxidant content of their milk. A prospective trial begun on Day 2 postpartum was conducted in mother-infant dyads. Sixty breastfeeding mothers and their infants were allocated to either a control group (n=30) on a free diet or a study group (n=30) on a free diet supplemented with 660 mL of non-alcoholic beer/day. The oxidative status of the mothers' breastmilk, plasma, and urine and the infant's urine was analyzed on Days 2 and 30 postpartum. The before-after difference was compared within and between the groups. The increase in antioxidant capacity and coenzyme Q10 content in the breastmilk of the study group at Day 30 was higher than in that of the control group (p<0.001). There was also a change in the oxidative status of the mothers' plasma in the supplemented group regarding the control group; higher values of total antioxidant capacity (p<0.05) and lower levels of 8-hydroxydeoxyguanosine (p<0.05), indicative of DNA oxidative damage, were found. These results indicate a positive effect of non-alcoholic beer supplementation on oxidative stress in mothers. However, no difference in oxidant markers was found in the infant's urine. The consumption of non-alcoholic beer appears to enhance the antioxidant capacity of breastmilk and decrease oxidative damage in breastfeeding mothers.

  17. Evaluation of Both Free Radical Scavenging Capacity and Antioxidative Damage Effect of Polydatin.

    PubMed

    Jin, Ju; Li, Yan; Zhang, Xiuli; Chen, Tongsheng; Wang, Yifei; Wang, Zhiping

    Cellular damage such as oxidation and lipid peroxidation, and DNA damage induced by free-radicals like reactive oxygen species, has been implicated in several diseases. Radicals generated by 2,2-azobis (2-amidino-propane) dihydrochloride (AAPH) are similar to physiologically active ones. In this study we found that polydatin, a resveratrol natural precursor derived from many sources, has the capacity of free radical scavenging and antioxidative damage. Using free radical scavenging assays, the IC50 values of polydatin were 19.25 and 5.29 μg/ml with the DPPH and the ABTS assay, respectively, and 0.125 mg ferrous sulfate/1 mg polydatin with the FRAP assay. With the AAPH-induced oxidative injury cell model assay, polydatin showed a strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicate that the antioxidant properties of polydatin have great potential for use as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetics and pharmaceutical preparations for the treatment of oxidative diseases.

  18. Phytochemicals enhance antioxidant enzyme expression to protect against NSAID-induced oxidative damage of the gastrointestinal mucosa.

    PubMed

    Cheng, Yu-Ting; Lu, Chi-Cheng; Yen, Gow-Chin

    2017-06-01

    The gastrointestinal (GI) mucosa provides the first protective barrier for digested food and xenobiotics, which are easily attacked by toxic substances. Nonsteroidal anti-inflammatory drugs, including aspirin, diclofenac, indomethacin, and ketoprofen, are widely used in clinical medicine, but these drugs may cause oxidative stress, leading to GI damage such as ulcers. Lansoprazol, omeprazole, and other clinical drugs are widely used to treat duodenal and gastric ulcers and have been shown to have multiple biological functions, such as antioxidant activity and the ability to upregulate antioxidant enzymes in vivo. Therefore, the reduction of oxidative stress may be an effective curative strategy for preventing and treating nonsteroidal anti-inflammatory drug induced ulcers of the GI mucosa. Phytochemicals, such as dietary phenolic compounds, phenolic acids, flavan-3-ols, flavonols, flavonoids, gingerols, carotenes, and organosulfur, are common antioxidants in fruits, vegetables, and beverages. A large amount of evidence has demonstrated that natural phytochemicals possess bioactivity and potential health benefits, such as antioxidant, anti-inflammatory, and antibacterial benefits, and they can prevent digestive disease processes. In this review, we summarize the literature on phytochemicals with biological effects, such as angiogenic, antioxidant, antiapoptotic, anti-inflammatory, and antiulceration effects, and their related mechanisms are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine

    PubMed Central

    2010-01-01

    Background There is increasing recognition that many of today's diseases are due to the "oxidative stress" that results from an imbalance between the formation and neutralization of reactive molecules such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can be removed with antioxidants. The main objective of the present study was to evaluate the antioxidant activity of plants routinely used in the Unani system of medicine. Several plants were screened for radical scavenging activity, and the ten that showed promising results were selected for further evaluation. Methods Methanol (50%) extracts were prepared from ten Unani plants, namely Cleome icosandra, Rosa damascena, Cyperus scariosus, Gardenia gummifera, Abies pindrow, Valeriana wallichii, Holarrhena antidysenterica, Anacyclus pyrethrum, Asphodelus tenuifolius and Cyperus scariosus, and were used to determine their total phenolic, flavonoid and ascorbic acid contents, in vitro scavenging of DPPH·, ABTS·+, NO, ·OH, O2.- and ONOO-, and capacity to prevent oxidative DNA damage. Cytotoxic activity was also determined against the U937 cell line. Results IC50 values for scavenging DPPH·, ABTS·+, NO, ·OH, O2.- and ONOO- were in the ranges 0.007 ± 0.0001 - 2.006 ± 0.002 mg/ml, 2.54 ± 0.04 - 156.94 ± 5.28 μg/ml, 152.23 ± 3.51 - 286.59 ± 3.89 μg/ml, 18.23 ± 0.03 - 50.13 ± 0.04 μg/ml, 28.85 ± 0.23 - 537.87 ± 93 μg/ml and 0.532 ± 0.015 - 3.39 ± 0.032 mg/ml, respectively. The total phenolic, flavonoid and ascorbic acid contents were in the ranges 62.89 ± 0.43 - 166.13 ± 0.56 mg gallic acid equivalent (GAE)/g extract, 38.89 ± 0.52 - 172.23 ± 0.08 mg quercetin equivalent (QEE)/g extract and 0.14 ± 0.09 - 0.98 ± 0.21 mg AA/g extract. The activities of the different plant extracts against oxidative DNA damage were in the range 0.13-1.60 μg/ml. Of the ten selected plant extracts studied here, seven - C. icosandra, R. damascena, C. scariosus, G. gummifera, A. pindrow, V

  20. Effect of Acetyl-L-Carnitine on Antioxidant Status, Lipid Peroxidation, and Oxidative Damage of Arsenic in Rat.

    PubMed

    Sepand, Mohammad Reza; Razavi-Azarkhiavi, Kamal; Omidi, Ameneh; Zirak, Mohammad Reza; Sabzevari, Samin; Kazemi, Ali Reza; Sabzevari, Omid

    2016-05-01

    Arsenic (As) is a widespread environmental contaminant present around the world in both organic and inorganic forms. Oxidative stress is postulated as the main mechanism for As-induced toxicity. This study was planned to examine the protective effect of acetyl-L-carnitine (ALC) on As-induced oxidative damage in male rats. Animals were randomly divided into four groups of control (saline), sodium arsenite (NaAsO2, 20 mg/kg), ALC (300 mg/kg), and NaAsO2 plus ALC. Animals were dosed orally for 28 successive days. Blood and tissue samples including kidney, brain, liver, heart, and lung were collected on the 28th day and evaluated for oxidative damage and histological changes. NaAsO2 exposure caused a significant lipid peroxidation as evidenced by elevation in thiobarbituric acid-reactive substances (TBARS). The activity of antioxidant enzymes such as glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), as well as sulfhydryl group content (SH group) was significantly suppressed in various organs following NaAsO2 treatment (P < 0.05). Furthermore, NaAsO2 administration increased serum values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and bilirubin. Our findings revealed that co-administration of ALC and NaAsO2 significantly suppressed the oxidative damage induced by NaAsO2. Tissue histological studies have confirmed the biochemical findings and provided evidence for the beneficial role of ALC. The results concluded that ALC attenuated NaAsO2-induced toxicity, and this protective effect may result from the ability of ALC in maintaining oxidant-antioxidant balance.

  1. DNA Damage Protecting Activity and Antioxidant Potential of Launaea taraxacifolia Leaves Extract.

    PubMed

    Adinortey, Michael Buenor; Ansah, Charles; Weremfo, Alexander; Adinortey, Cynthia Ayefoumi; Adukpo, Genevieve Etornam; Ameyaw, Elvis Ofori; Nyarko, Alexander Kwadwo

    2018-01-01

    The leaf extract of Launaea taraxacifolia commonly known as African Lettuce is used locally to treat dyslipidemia and liver diseases, which are associated with oxidative stress. Methanol extract from L. taraxacifolia leaves was tested for its antioxidant activity and its ability to protect DNA from oxidative damage. In vitro antioxidant potential of the leaf extract was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and hydroxyl (OH) radical scavenging assays. Ferric reducing power, total antioxidant capacity (TAC), metal chelating, and anti-lipid peroxidation ability of the extract were also examined using gallic acid, ascorbic acid, citric acid, and ethylenediaminetetraacetic acid as standards. L. taraxacifolia leaves extract showed antioxidant activity with IC 50 values of 16.18 μg/ml (DPPH), 123.3 μg/ml (NO), 128.2 μg/ml (OH radical), 97.94 μg/ml (metal chelating), 80.28 μg/ml (TAC), and 23 μg/ml (anti-lipid peroxidation activity). L. taraxacifolia leaves extract exhibited a strong capability for DNA damage protection at 20 mg/ml concentration. These findings suggest that the methanolic leaf extract of L. taraxacifolia could be used as a natural antioxidant and also as a preventive therapy against diseases such as arteriosclerosis associated with DNA damage.

  2. Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes.

    PubMed

    Rubiolo, Juan Andrés; Mithieux, Gilles; Vega, Félix Victor

    2008-09-04

    Oxidative stress is recognized as an important factor in the development of liver pathologies. The reactive oxygen species endogenously generated or as a consequence of xenobiotic metabolism are eliminated by enzymatic and nonenzymatic cellular systems. Besides endogen defences, the antioxidant consumption in the diet has an important role in the protection against the development of diseases product of oxidative damage. Resveratrol is a naturally occurring compound which is part of the human diet. This molecule has been shown to have many biological properties, including antioxidant activity. We decided to test if resveratrol could protect primary hepatocytes in culture from oxidative stress damage and if so, to determine if this compound affects the cellular detoxifying systems and their regulation through the Nrf2 transcription factor that regulates the expression of antioxidant and phase II detoxifying enzymes. Cell death by necrosis was detected by measuring the activity of lactate dehydrogenase liberated to the medium. The activities of antioxidant and phase II enzymes were measured using previously described methods. Activation of the Nrf2 transcription factor was studied by confocal microscopy and the Nrf2 and its coding mRNA levels were determined by western blot and quantitative PCR respectively. Resveratrol pre-treatment effectively protected hepatocytes in culture exposed to oxidative stress, increasing the activities of catalase, superoxide dismutase, glutathione peroxidase, NADPH quinone oxidoreductase and glutathione-S-transferase. Resveratrol increases the level of Nrf2 and induces its translocation to the nucleus. Also, it increases the concentration of the coding mRNA for Nrf2. In this work we show that resveratrol could be a useful drug for the protection of liver cells from oxidative stress induced damage.

  3. Yolk testosterone reduces oxidative damages during postnatal development

    PubMed Central

    Noguera, José Carlos; Alonso-Alvarez, Carlos; Kim, Sin-Yeon; Morales, Judith; Velando, Alberto

    2011-01-01

    Conditions experienced during early life can influence the development of an organism and several physiological traits, even in adulthood. An important factor is the level of oxidative stress experienced during early life. In birds, extra-genomic egg substances, such as the testosterone hormone, may exert a widespread influence over the offspring phenotype. Interestingly, testosterone can also upregulate the bioavailability of certain antioxidants but simultaneously increases the susceptibility to oxidative stress in adulthood. However, little is known about the effects of maternally derived yolk testosterone on oxidative stress in developing birds. Here, we investigated the role of yolk testosterone on oxidative stress of yellow-legged gull chicks during their early development by experimentally increasing yolk testosterone levels. Levels of antioxidants, reactive oxygen species and lipid oxidative damage were determined in plasma during nestlings' growth. Our results revealed that, contrary to control chicks, birds hatched from testosterone-treated eggs did not show an increase in the levels of oxidative damage during postnatal development. Moreover, the same birds showed a transient increase in plasma antioxidant levels. Our results suggest that yolk testosterone may shape the oxidative stress-resistance phenotype of the chicks during early development owing to an increase in antioxidant defences and repair processes. PMID:20659922

  4. Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants.

    PubMed

    Hassan, Waseem; Noreen, Hamsa; Rehman, Shakila; Gul, Shehnaz; Kamal, Mohammad Amjad; Kamdem, Jean Paul; Zaman, Bakht; da Rocha, Joao B T

    2017-01-01

    Reactive species are produced in biological system because of redox reactions. The imbalance in pro-oxidant and antioxidant homeostasis leads to the production of toxic reactive oxygen and nitrogen species like hydrogen peroxide, organic peroxides, hydroxyl radicals, superoxide anion and nitric oxide. Inactivation of metabolic enzymes, oxidation of biomolecules and cellular damage are some of the prominent characteristics of reactive species. Similarly, oxidative stress has been associated with more than one hundred (100) pathologies such as atherosclerosis, diabetes, cardiovascular diseases, pancreatic and liver diseases, joint disorders, cardiac fibrosis, acute respiratory distress syndrome, neurological diseases (amyotrophic lateral sclerosis, Huntington's disorder, Parkinson's disease and Alzheimer's disease), ageing and cancer etc. The toxicity of reactive species is balanced by the integrated antioxidant systems, which include enzymatic and non-enzymatic antioxidants. Antioxidant therapies or defenses protect the biological sites by removing or quenching the free radicals (prooxidants). Medicinal plants can not only protect the oxidative damage, but also play a vital role in health maintenance and prevention of chronic degenerative diseases. This review will provide a valuable discussion of one hundred (100) well known medicinal plants, which may add to the optimization of antioxidants rank. Besides, some of the antioxidant evaluation techniques or mechanisms via which medicinal plants act as antioxidants are also described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense

    PubMed Central

    Nechifor, Marina T.; Niculiţe, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea

    2012-01-01

    UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate. PMID:23222638

  6. Protective effect of Pterostilbene against free radical mediated oxidative damage

    PubMed Central

    2013-01-01

    Background Pterostilbene, a methoxylated analog of Resveratrol, is gradually gaining more importance as a therapeutic drug owing to its higher lipophilicity, bioavailability and biological activity than Resveratrol. This study was undertaken to characterize its ability to scavenge free radicals such as superoxide, hydroxyl and hydrogen peroxide and to protect bio-molecules within a cell against oxidative insult. Methods Anti-oxidant activity of Pterostilbene was evaluated extensively by employing several in vitro radical scavenging/inhibiting assays and pulse radiolysis study. In addition, its ability to protect rat liver mitochondria against tertiary-butyl hydroperoxide (TBHP) and hydroxyl radical generated oxidative damage was determined by measuring the damage markers such as protein carbonyls, protein sulphydryls, lipid hydroperoxides, lipid peroxides and 8-hydroxy-2'-deoxyguanosine. Pterostilbene was also evaluated for its ability to inhibit •OH radical induced single strand breaks in pBR322 DNA. Result Pterostilbene exhibited strong anti-oxidant activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide in a concentration dependent manner. Pterostilbene conferred protection to proteins, lipids and DNA in isolated mitochondrial fractions against TBHP and hydroxyl radical induced oxidative damage. It also protected pBR322 DNA against oxidative assault. Conclusions Thus, present study provides an evidence for the strong anti-oxidant property of Pterostilbene, methoxylated analog of Resveratrol, thereby potentiating its role as an anti-oxidant. PMID:24070177

  7. Reduction in plasma total homocysteine through increasing folate intake in healthy individuals is not associated with changes in measures of antioxidant activity or oxidant damage.

    PubMed

    Moat, S J; Hill, M H; McDowell, I F W; Pullin, C H; Ashfield-Watt, P A L; Clark, Z E; Whiting, J M; Newcombe, R G; Lewis, M J; Powers, H J

    2003-03-01

    Various mechanisms have been proposed to explain the association between plasma total homocysteine (tHcy) and risk of cardiovascular disease, including oxidative activity of homocysteine. To explore the putative role of reactive oxygen species in the association between plasma tHcy and risk of cardiovascular disease in healthy individuals. A double-blind, placebo-controlled crossover intervention to increase folate intake through diet (increased consumption of folate-rich foods) and supplement (400 micro g folic acid) was carried out in 126 healthy men and women. Measurements were made of antioxidant activity in red blood cells and plasma, and products of oxidant damage in plasma. Diet and supplement-based interventions led to an increase in measures of folate status and a reduction in plasma tHcy. This was not associated with any significant change in measures of antioxidant activity (plasma and red blood cell glutathione peroxidase activity and red blood cell superoxide dismutase activity) or oxidant damage (plasma malondialdehyde), although an improvement in plasma total antioxidant capacity just failed to reach significance. In healthy individuals lowering plasma tHcy does not have any functional implications regarding oxidative damage.

  8. Protective and antioxidative effect of rubropunctatin against oxidative protein damage induced by metal catalyzed reaction.

    PubMed

    Dhale, Mohan A; Javagal, Manjunatha; Puttananjaiah, Mohan-Kumari H

    2018-05-03

    Monascus purpureus is known to produce several coloured secondary metabolites. In this study, M. purpureus CFR 410-11 mutant fermented with rice was dried and extracted in hexane for purification of pigment. The purity of the isolated pigment was confirmed by different chromatography techniques. The spectroscopic analysis revealed its structural identity as rubropunctatin. The antioxidant potencies of isolated rubropunctatin were evaluated. Rubropunctatin scavenged 16% 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical and inhibited 20% superoxide generation at 8 μg/ml concentration. The multiple antioxidant abilities of rubropunctatin were evidenced by its ferric reducing capacity also. The oxidative damage of BSA protein was induced by the metal catalyzed oxidation (MCO) by Fe 2+ /H 2 O 2 . The protective effects of rubropunctatin and M. purpureus (MTCC-410 and CFR 410-11) extracts were compared with glutathione and ascorbic acid. The M. purpureus extracts and rubropunctatin inhibited the formation of carbonyl content and protein oxidation assayed by SDS-PAGE. Rubropunctatin (42-169 μM) efficiently inhibited the protein oxidation compared to glutathione (48-195 μM) and ascorbic acid (85-340 μM) by scavenging the superoxide and hydroxyl radical generated in the system. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    PubMed Central

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  10. Oxidative damage and cellular defense mechanisms in sea urchin models of aging.

    PubMed

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-10-01

    The free radical, or oxidative stress, theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging because of the existence of species with tremendously different natural life spans, including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity, and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus, and Strongylocentrotus purpuratus, which has an intermediate life span. Levels of protein carbonyls and 4-hydroxynonenal measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2'-deoxyguanosine measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age pigment lipofuscin, measured in muscle, nerve, and esophagus, increased with age; however, it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species; however, further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age, and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. Copyright © 2013 Elsevier Inc. All

  11. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions.

    PubMed

    Haces, María L; Hernández-Fonseca, Karla; Medina-Campos, Omar N; Montiel, Teresa; Pedraza-Chaverri, José; Massieu, Lourdes

    2008-05-01

    Ketone bodies play a key role in mammalian energy metabolism during the suckling period. Normally ketone bodies' blood concentration during adulthood is very low, although it can rise during starvation, an exogenous infusion or a ketogenic diet. Whenever ketone bodies' levels increase, their oxidation in the brain rises. For this reason they have been used as protective molecules against refractory epilepsy and in experimental models of ischemia and excitotoxicity. The mechanisms underlying the protective effect of these compounds are not completely understood. Here, we studied a possible antioxidant capacity of ketone bodies and whether it contributes to the protection against oxidative damage induced during hypoglycemia. We report for the first time the scavenging capacity of the ketone bodies, acetoacetate (AcAc) and both the physiological and non-physiological isomers of beta-hydroxybutyrate (D- and L-BHB, respectively), for diverse reactive oxygen species (ROS). Hydroxyl radicals (.OH) were effectively scavenged by D- and L-BHB. In addition, the three ketone bodies were able to reduce cell death and ROS production induced by the glycolysis inhibitor, iodoacetate (IOA), while only D-BHB and AcAc prevented neuronal ATP decline. Finally, in an in vivo model of insulin-induced hypoglycemia, the administration of D- or L-BHB, but not of AcAc, was able to prevent the hypoglycemia-induced increase in lipid peroxidation in the rat hippocampus. Our data suggest that the antioxidant capacity contributes to protection of ketone bodies against oxidative damage in in vitro and in vivo models associated with free radical production and energy impairment.

  12. Hawkmoths use nectar sugar to reduce oxidative damage from flight.

    PubMed

    Levin, E; Lopez-Martinez, G; Fane, B; Davidowitz, G

    2017-02-17

    Nectar-feeding animals have among the highest recorded metabolic rates. High aerobic performance is linked to oxidative damage in muscles. Antioxidants in nectar are scarce to nonexistent. We propose that nectarivores use nectar sugar to mitigate the oxidative damage caused by the muscular demands of flight. We found that sugar-fed moths had lower oxidative damage to their flight muscle membranes than unfed moths. Using respirometry coupled with δ 13 C analyses, we showed that moths generate antioxidant potential by shunting nectar glucose to the pentose phosphate pathway (PPP), resulting in a reduction in oxidative damage to the flight muscles. We suggest that nectar feeding, the use of PPP, and intense exercise are causally linked and have allowed the evolution of powerful fliers that feed on nectar. Copyright © 2017, American Association for the Advancement of Science.

  13. Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats.

    PubMed

    Bisht, Rohit; Joshi, Bhuwan Chandra; Kalia, Ajudhiya Nath; Prakash, Atish

    2017-09-01

    Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich

  14. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  15. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  16. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation

    PubMed Central

    Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman

    2016-01-01

    Summary Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1–diphenyl–2–picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products. PMID:28115903

  17. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation.

    PubMed

    Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman; Kızıl, Murat

    2016-12-01

    Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products.

  18. Ultrasensitive determination of DNA oxidation products by gas chromatography-tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage.

    PubMed

    Dawbaa, Sam; Aybastıer, Önder; Demir, Cevdet

    2017-04-15

    Oxidative stress is considered as one of the significant causes of DNA damage which in turn contributes to cell death through a series of intermediate processes such as cancer formation, mutation, and aging. Natural sources such as plant and fruit products have provided us with interesting substances of antioxidant activity that could be recruited in protecting the genetic materials of the cells. This study is an effort to discover some of those antioxidants effects in their standard and natural forms by performing an ultrasensitive determination of the products of DNA oxidation using GC-MS/MS. Experiments were used to determine the direct antioxidant activity of the substances contained in the tendrils of Vitis vinifera (var. alphonse) by extracting them and achieving Folin-Ciocalteau and CHROMAC analyses to determine the total phenolic content (TPC) and the antioxidant capacity of the extract, respectively; results revealed a phenolic content of 11.39±0.30mg Gallic Acid Equivalent (GAE)/g of the plant's fresh weight (FW) by Folin-Ciocalteau and 8.17±0.49mg Trolox Equivalent (TE)/g FW by CHROMAC assays. The qualitative analysis of the plant extract by HPLC-DAD technique revealed that two flavonoid glycosides namely rutin and isoquercitrin in addition to chlorogenic acid were contained in the extract. The determination of the DNA oxidation products was performed after putting DNA, rutin and isoquercitrin standard samples with different concentration, and the extract's sample under oxidative stress. Eighteen DNA oxidation products were traced using GC-MS/MS with ultra-sensitivity and the experiments proved a significant decrease in the concentration of the DNA oxidation products when the extract was used as a protectant against the oxidative stress. It is believed by conclusion that the extract of V. vinifera's (var. alphonse) tendrils has a good antioxidant activity; hence it is recommended to be used as a part of the daily healthy food list if possible

  19. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    PubMed Central

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-01-01

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed. PMID:26540040

  20. Oxidative damage increases with reproductive energy expenditure and is reduced by food-supplementation

    PubMed Central

    Fletcher, Quinn E.; Selman, Colin; Boutin, Stan; McAdam, Andrew G.; Woods, Sarah B.; Seo, Arnold Y.; Leeuwenburgh, Christiaan; Speakman, John R.; Humphries, Murray M.

    2013-01-01

    A central principle in life-history theory is that reproductive effort negatively affects survival. Costs of reproduction are thought to be physiologically-based, but the underlying mechanisms remain poorly understood. Using female North American red squirrels (Tamiasciurus hudsonicus), we test the hypothesis that energetic investment in reproduction overwhelms investment in antioxidant protection, leading to oxidative damage. In support of this hypothesis we found that the highest levels of plasma protein oxidative damage in squirrels occurred during the energetically-demanding period of lactation. Moreover, plasma protein oxidative damage was also elevated in squirrels that expended the most energy and had the lowest antioxidant protection. Finally, we found that squirrels that were food-supplemented during lactation and winter had increased antioxidant protection and reduced plasma protein oxidative damage providing the first experimental evidence in the wild that access to abundant resources can reduce this physiological cost. PMID:23617928

  1. Evaluation of free radical scavenging capacity and antioxidative damage effect of resveratrol-nanostructured lipid carriers

    NASA Astrophysics Data System (ADS)

    Jin, Ju; Shi, Fan; Li, Qiu-wen; Li, Pei-shan; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2016-03-01

    Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical(ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, resveratrol loaded nanostructured lipid carriers (Res-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Res-NLC on free radical scavenging capacity and antioxidative damage is investigated. The particle size and zeta potential of Res-NLC were 139.3 ± 1.7 nm and -11.21 ± 0.41 mV, respectively. By free radical scavenging assays, the IC50 value of Res-NLC were 19.25, 5.29 μg/mL with DPPH, ABTS assay respectively, and 0.161 mg ferrous sulfate/1 mg Res-NLC with FRAP assay; and by AAPH-induced oxidative injury cell model assay, Res-NLC showed the strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicated that the antioxidant properties of Res-NLC hold great potential used as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.

  2. Assessment of anti-oxidant activity of plant extracts using microbial test systems.

    PubMed

    Oktyabrsky, O; Vysochina, G; Muzyka, N; Samoilova, Z; Kukushkina, T; Smirnova, G

    2009-04-01

    To evaluate the anti-oxidant properties of extracts from 20 medicinal herbs growing in western Siberia using microbial test systems and different in vitro methods. In vivo anti-oxidant activity of extracts was evaluated for their capacity to protect bacteria, Escherichia coli, against bacteriostatic and bactericidal effects of H(2)O(2) and menadione, and action on anti-oxidant gene expression. In vitro anti-oxidant activity has been examined by a number of methods including: the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(*))-scavenging assay, chelating activity and capacity to protect plasmid DNA against oxidative damage. In addition, total polyphenol content was determined. The extracts of Fragaria vesca, Rosa majalis, Pentaphylloides fruticosa, Alchemilla vulgaris and Pulmonaria mollis possessed the highest levels of anti-oxidant activity in vivo and in vitro. The protective properties were more closely related to the DPPH(*) radical-scavenging activity, tannin content and action on anti-oxidant gene expression than to other parameters. The extracts of medicinal plants may have anti-oxidant effects on bacteria simultaneously through several different pathways, including direct inhibition of reactive oxygen species, iron chelation and anti-oxidant genes induction. Using microbial test systems, we revealed herbs that may be used as potential sources of natural anti-oxidants.

  3. A Topical Mitochondria-Targeted Redox Cycling Nitroxide Mitigates Oxidative Stress Induced Skin Damage

    PubMed Central

    Brand, Rhonda M.; Epperly, Michael W.; Stottlemyer, J. Mark; Skoda, Erin M.; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E.; Greenberger, Joel S.; Falo, Louis D.

    2017-01-01

    Skin is the largest human organ and provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation induced skin damage ranges from photoaging and cutaneous carcinogenesis from UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species (ROS). Mitochondria are particularly susceptible to oxidative stress, and mitochondrial dependent apoptosis plays a major role in radiation induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent ROS accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrial targeted antioxidant prevents and mitigates radiation induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin’s antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. PMID:27794421

  4. The influence of selenium status on body composition, oxidative DNA damage and total antioxidant capacity in newly diagnosed type 2 diabetes mellitus: A case-control study.

    PubMed

    Othman, Fatimah Binti; Mohamed, Hamid Jan Bin Jan; Sirajudeen, K N S; Noh, Mohd Fairulnizal B Md; Rajab, Nor Fadilah

    2017-09-01

    Selenium is involved in the complex system of defense against oxidative stress in diabetes through its biological function of selenoproteins and the antioxidant enzyme. A case-control study was carried out to determine the association of plasma selenium with oxidative stress and body composition status presented in Type 2 Diabetes Mellitus (T2DM) patient and healthy control. This study involved 82 newly diagnosed T2DM patients and 82 healthy controls. Plasma selenium status was determined with Graphite Furnace Atomic Absorption Spectrometry. Body Mass Index, total body fat and visceral fat was assessed for body composition using Body Composition Analyzer (TANITA). Oxidative DNA damage and total antioxidant capacity were determined for oxidative stress biomarker status. In age, gender and BMI adjustment, no significant difference of plasma selenium level between T2DM and healthy controls was observed. There was as a significant difference of Oxidative DNA damage and total antioxidant capacity between T2DM patients and healthy controls with tail DNA% 20.62 [95% CI: 19.71,21.49] (T2DM), 17.67 [95% CI: 16.87,18.56] (control); log tail moment 0.41[95% CI: 0.30,0.52] (T2DM), 0.41[95% CI: 0.30,0.52] (control); total antioxidant capacity 0.56 [95% CI: 0.54,0.58] (T2DM), 0.60 [95% CI: 0.57,0.62] (control). Waist circumference, BMI, visceral fat, body fat and oxidative DNA damage in the T2DM group were significantly lower in the first plasma selenium tertile (38.65-80.90μg/L) compared to the second (80.91-98.20μg/L) and the third selenium tertiles (98.21-158.20μg/L). A similar trend, but not statistically significant, was observed in the control group. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage.

    PubMed

    Venditti, P; Pamplona, R; Ayala, V; De Rosa, R; Caldarone, G; Di Meo, S

    2006-03-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T3)- or thyroxine (T4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T3 treatment could depend on differences in serum levels of T4.

  6. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions.

    PubMed

    Habib, Hosam M; Al Meqbali, Fatima T; Kamal, Hina; Souka, Usama D; Ibrahim, Wissam H

    2014-06-15

    Honey serves as a good source of natural antioxidants, which are effective in reducing the risk of occurrence of several diseases. This study was undertaken to address the limited knowledge regarding the polyphenolic content, antioxidant and DNA damage inhibitory activities of honeys produced in arid regions and compare them with well-recognized honeys from non-arid regions. Different types of honey were assessed for their contents of total phenolics, total flavonoids, and certain types of phenolic compounds. The antioxidant capacity of honey was evaluated by ferric-reducing/antioxidant power assay (FRAP), free radical-scavenging activity (DPPH), nitric oxide (NO) radical-scavenging assay, total antioxidant activity, and DNA damage. Results clearly showed significant differences among honeys with all the evaluated parameters. Results also showed that one or more types of honey from arid regions contained higher levels of phenolic compounds, free radical-scavenging activities, or DNA damage inhibitory activities compared with the evaluated honeys from non-arid regions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Investigation of antioxidant ability of grape seeds extract to prevent oxidatively induced DNA damage by gas chromatography-tandem mass spectrometry.

    PubMed

    Aybastıer, Önder; Dawbaa, Sam; Demir, Cevdet

    2018-01-01

    Phenolic compounds have been studied elaborately for their efficacy to improve health and to protect against a wide variety of diseases. Herein this study, different analysis methods were implemented to evaluate the antioxidant properties of catechin and cyanidin using their standard substances and as they found in the grape seeds extracts. Total phenol contents were 107.39±8.94mg GAE/g dw of grape seeds for grape seed extract (GSE) and 218.32±10.66mg GAE/g dw of grape seeds for acid-hydrolyzed grape seed extract (AcGSE). The extracts were analyzed by HPLC-DAD system and the results showed the presence of catechin, gallic acid, chlorogenic acid and ellagic acid in the processed methanolic extract and cyanidin, gallic acid and ellagic acid in the processed acidified methanolic extract. The protective abilities of catechin and cyanidin were tested against the oxidation of DNA. The results showed that cyanidin has better protection of DNA against oxidation than catechin. GSE and AcGSE were revealed to inhibit the oxidatively induced DNA damage. GSE decreased about 57% of damage caused by the Fenton control sample. This study could show new aspects of the antioxidant profiles of cyanidin and catechin. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The in vivo antioxidant action and the reduction of oxidative stress by boysenberry extract is dependent on base diet constituents in rats.

    PubMed

    Barnett, Laura E; Broomfield, Anne M; Hendriks, Wouter H; Hunt, Martin B; McGhie, Tony K

    2007-06-01

    Dietary antioxidants are often defined by in vitro measures of antioxidant activity. Such measures are valid indicators of the antioxidant potential, but provide little evidence of activity as a dietary antioxidant. This study was undertaken to assess the in vivo antioxidant efficacy of a berry fruit extract by measuring biomarkers of oxidative damage to protein (carbonyls), lipids (malondialdehyde), and DNA (8-oxo-2'-deoxyguanosine urinary excretion) and plasma antioxidant status (antioxidant capacity, vitamin E) in rats when fed basal diets containing fish and soybean oils, which are likely to generate different levels of oxidative stress. Boysenberry (Rubus loganbaccus x baileyanus Britt) extract was used as the dietary antioxidant. The basal diets (chow, synthetic/soybean oil, or synthetic/fish oil) had significant effects on the biomarkers of oxidative damage and antioxidant status, with rats fed the synthetic/fish oil diet having the lowest levels of oxidative damage and the highest antioxidant status. When boysenberry extract was added to the diet, there was little change in 8-oxo-2'-deoxyguanosine excretion in urine, oxidative damage to proteins decreased, and plasma malondialdehyde either increased or decreased depending on the basal diet. This study showed that boysenberry extract functioned as an in vivo antioxidant and raised the antioxidant status of plasma while decreasing some biomarkers of oxidative damage, but the effect was highly modified by basal diet. Our results are further evidence of complex interactions among dietary antioxidants, background nutritional status as determined by diet, and the biochemical nature of the compartments in which antioxidants function.

  9. Mobile phone radiation-induced free radical damage in the liver is inhibited by the antioxidants N-acetyl cysteine and epigallocatechin-gallate.

    PubMed

    Ozgur, Elcin; Güler, Göknur; Seyhan, Nesrin

    2010-11-01

    To investigate oxidative damage and antioxidant enzyme status in the liver of guinea pigs exposed to mobile phone-like radiofrequency radiation (RFR) and the potential protective effects of N-acetyl cysteine (NAC) and epigallocatechin-gallate (EGCG) on the oxidative damage. Nine groups of guinea pigs were used to study the effects of exposure to an 1800-MHz Global System for Mobile Communications (GSM)-modulated signal (average whole body Specific Absorption Rate (SAR) of 0.38 W/kg, 10 or 20 min per day for seven days) and treatment with antioxidants. Significant increases in malondialdehyde (MDA) and total nitric oxide (NO(x)) levels and decreases in activities of superoxide dismutase (SOD), myeloperoxidase (MPO) and glutathione peroxidase (GSH-Px) were observed in the liver of guinea pigs after RFR exposure. Only NAC treatment induces increase in hepatic GSH-Px activities, whereas EGCG treatment alone attenuated MDA level. Extent of oxidative damage was found to be proportional to the duration of exposure (P < 0.05). Mobile phone-like radiation induces oxidative damage and changes the activities of antioxidant enzymes in the liver. The adverse effect of RFR may be related to the duration of mobile phone use. NAC and EGCG protect the liver tissue against the RFR-induced oxidative damage and enhance antioxidant enzyme activities.

  10. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.

    PubMed

    Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline

    2012-09-01

    Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.

  11. Coping with Physiological Oxidative Stress: A Review of Antioxidant Strategies in Seals

    PubMed Central

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Elsner, Robert; Ortiz, Rudy M.

    2012-01-01

    While diving, seals are exposed to apnea-induced hypoxemia and repetitive cycles of ischemia/reperfusion. While on land, seals experience sleep apnea, as well as prolonged periods of food and water deprivation. Prolonged fasting, sleep apnea, hypoxemia and ischemia/reperfusion increase oxidant production and oxidative stress in terrestrial mammals. In seals, however, neither prolonged fasting nor apnea-induced hypoxemia or ischemia/reperfusion increase systemic or local oxidative damage. The strategies seals evolved to cope with increased oxidant production are reviewed in the present manuscript. Among these strategies, high antioxidant capacity and the oxidant-mediated activation of hormetic responses against hypoxia and oxidative stress are discussed. In addition to expanding our knowledge of the evolution of antioxidant defenses and adaptive responses to oxidative stress, understanding the mechanisms that allow adapted mammals to avoid oxidative damage has the potential to advance our knowledge of oxidative stress-induced pathologies and to enhance the translative value of biomedical therapies in the long term. PMID:22327141

  12. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants

    PubMed Central

    Poljsak, Borut; Šuput, Dušan; Milisav, Irina

    2013-01-01

    Free radical damage is linked to formation of many degenerative diseases, including cancer, cardiovascular disease, cataracts, and aging. Excessive reactive oxygen species (ROS) formation can induce oxidative stress, leading to cell damage that can culminate in cell death. Therefore, cells have antioxidant networks to scavenge excessively produced ROS. The balance between the production and scavenging of ROS leads to homeostasis in general; however, the balance is somehow shifted towards the formation of free radicals, which results in accumulated cell damage in time. Antioxidants can attenuate the damaging effects of ROS in vitro and delay many events that contribute to cellular aging. The use of multivitamin/mineral supplements (MVMs) has grown rapidly over the past decades. Some recent studies demonstrated no effect of antioxidant therapy; sometimes the intake of antioxidants even increased mortality. Oxidative stress is damaging and beneficial for the organism, as some ROS are signaling molecules in cellular signaling pathways. Lowering the levels of oxidative stress by antioxidant supplements is not beneficial in such cases. The balance between ROS and antioxidants is optimal, as both extremes, oxidative and antioxidative stress, are damaging. Therefore, there is a need for accurate determination of individual's oxidative stress levels before prescribing the supplement antioxidants. PMID:23738047

  13. Manuka honey protects middle-aged rats from oxidative damage

    PubMed Central

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-01-01

    OBJECTIVE: This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. METHOD: Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. RESULTS: Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. CONCLUSIONS: Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status. PMID:24270958

  14. Manuka honey protects middle-aged rats from oxidative damage.

    PubMed

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-11-01

    This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status.

  15. Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense.

    PubMed

    Wang, Ning; Yi, Wen Jing; Tan, Lu; Zhang, Jia Hui; Xu, Jiamin; Chen, Yi; Qin, Mengting; Yu, Shuang; Guan, Jing; Zhang, Rui

    2017-06-01

    Pancreatic beta cells are very sensitive to oxidative stress, which is one of the major causes of cell damages in diabetes. Growing interest has focused on the development of effective therapeutics to protect pancreatic cells from oxidative stress and searching for potentially protective antioxidants for treating diabetes. Apigenin, a plant-derived flavonoid, was investigated to determine whether it could protect rat insulinoma cell lines (RINm5F pancreatic beta cells) against streptozotocin (STZ)-induced oxidative damages and the mechanisms implicated. Our results showed that STZ treatment could induce oxidative stress and consequent cytotoxic effects in RINm5F cells. Pretreatment with apigenin effectively decreased the intracellular reactive oxygen species (ROS) production, attenuated cellular DNA damage, diminished lipid peroxidation, relieved protein carbonylation, and restored the cell apoptosis of pancreatic beta cells stressed by STZ. Our further experiments demonstrated that the beneficial effects of apigenin were related to ameliorate the loss of antioxidant enzymes of the STZ-treated cells in the level of gene transcription, protein expression, and enzyme activity. That suggested apigenin was not only a free radical scavenger but also a regulator to antioxidant defenses of pancreatic cells. Taken all together, our findings suggested that apigenin could attenuate the STZ-induced oxidative damages in pancreatic beta cells and might serve as a novel agent for the treatment of diabetes.

  16. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    NASA Astrophysics Data System (ADS)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  17. Antihemolytic and antioxidant properties of pearl powder against 2,2'-azobis(2-amidinopropane) dihydrochloride-induced hemolysis and oxidative damage to erythrocyte membrane lipids and proteins.

    PubMed

    Yang, Hsin-Ling; Korivi, Mallikarjuna; Lin, Ming-Kuem; Chang, Hebron Chun-Wei; Wu, Chi-Rei; Lee, Meng-Shiou; Chen, William Tzu-Liang; Hseu, You-Cheng

    2017-10-01

    Pearl powder, a well-known traditional mineral medicine, is reported to be used for well-being and to treat several diseases from centuries in Taiwan and China. We investigated the in vitro antihemolytic and antioxidant properties of pearl powder that could protect erythrocytes against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage to membrane proteins/lipids. Human erythrocytes were incubated with different concentrations of pearl powder (50-200 μg/mL) for 30 minutes and then exposed to AAPH for 2-6 hours. We found that AAPH alone time dependently increased the oxidative hemolysis of erythrocytes, while pearl powder pretreatment substantially inhibited the hemolysis in a concentration-/time-dependent manner. AAPH-induced oxidative damage to erythrocyte membrane lipids was evidenced by the elevated malondialdehyde (MDA) levels. However, pearl powder remarkably inhibited the malondialdehyde formation, and the 200 μg/mL concentration showed almost similar malondialdehyde values to the control. Furthermore, pearl powder suppressed the AAPH-induced high-molecular-weight protein formation and concomitantly increased the low-molecular-weight proteins in erythrocytes. Antioxidant potential that was measured as superoxide dismutase activity and glutathione content was significantly dropped by AAPH incubation, which suggests the vulnerability of erythrocytes to AAPH-induced oxidative stress. Noteworthy, erythrocytes pretreated with pearl powder showed restored superoxide dismutase activity and glutathione levels against AAPH-induced loss. Our findings conclude that pearl powder attenuate free radical-induced hemolysis and oxidative damage to erythrocyte membrane lipids/proteins. The potent antioxidant property of pearl powder may offer protection from free radical-related diseases. Copyright © 2016. Published by Elsevier B.V.

  18. The anti-oxidant effects of melatonin derivatives on human gingival fibroblasts.

    PubMed

    Phiphatwatcharaded, Chawapon; Puthongking, Ploenthip; Chaiyarit, Ponlatham; Johns, Nutjaree Pratheepawanit; Sakolchai, Sumon; Mahakunakorn, Pramote

    2017-07-01

    Aim of this in vitro study was to evaluate the anti-oxidant activity of indole ring modified melatonin derivatives as compared with melatonin in primary human gingival fibroblast (HGF) cells. Anti-oxidant activity of melatonin (MLT), acetyl-melatonin (AMLT) and benzoyl-melatonin (BMLT) was evaluated by5 standard methods as follows: 2, 2-diphenyl-1-picrylhydrazyl (DPPH); ferric ion reducing antioxidant power (FRAP); superoxide anion scavenging; nitric oxide (NO) scavenging; and thiobarbituric acid reactive substances (TBARs).Evaluation of cellular antioxidant activity (CAA) and protectivity against H 2 O 2 induced cellular damage was performed via MTT assay in HGF cells. According to the standard anti-oxidant assays, the antioxidant power of AMLT and BMLT were slightly less than MLT in FRAP and superoxide scavenging assays. In the NO scavenging and TBARs assays, BMLT and AMLT were more potent than MLT, whereas DPPH assays demonstrated that MLT was more potent than others. BMLT and AMLT had more potent anti-oxidant and protective activities against H 2 O 2 in HGF cells as compared with MLT. MLT derivatives demonstrated different anti-oxidant activities as compared with MLT, depending upon assays. These findings imply that N-indole substitution of MLT may help to improve hydrogen atom transfer to free radicals but electron transfer property is slightly decreased. Anti-oxidant and protective effects of melatonin derivatives (AMLT and BMLT) on human gingival fibroblasts imply the potential use of these molecules as alternative therapeutics for chronic inflammatory oral diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chlorpyrifos-induced oxidative damage is reduced under warming and predation risk: Explaining antagonistic interactions with a pesticide.

    PubMed

    Janssens, Lizanne; Stoks, Robby

    2017-07-01

    Interactions with pollutants and environmental factors are poorly studied for physiological traits. Yet physiological traits are important for explaining and predicting interactions at higher levels of organization. We investigated the single and combined impact of the pesticide chlorpyrifos, predation risk and warming on endpoints related to oxidative stress in the damselfly Enallagma cyathigerum. We thereby integrated information on reactive oxygen species (ROS), antioxidant enzymes and oxidative damage. All three treatments impacted the oxidative stress levels and for most traits the pesticide interacted antagonistically with warming or predation risk. Chlorpyrifos exposure resulted in increased ROS levels, decreased antioxidant defence and increased oxidative damage compared to the control situation. Under warming, the pesticide-induced increase in oxidative stress was less strong and the investment in antioxidant defence higher. Although both the pesticide and predation risk increased oxidative damage, the effects of the pesticide on oxidative damage were less strong in the presence of predator cues (at 20 °C). Despite the weaker pesticide-induced effects under predation risk, the combination of the pesticide and predator cues consistently caused the highest ROS levels, the lowest antioxidant defence and the highest oxidative damage, indicating the importance of cumulative stressor effects for impairing fitness. Our results provide the first evidence for antagonistic interactions of warming and predation risk with a pollutant for physiological traits. We identified two general mechanisms that may generate antagonistic interactions for oxidative stress: cross-tolerance and the maximum cumulative levels of damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of prolonged exercise on oxidative damage and susceptibility to oxidants of rat tissues in severe hyperthyroidism.

    PubMed

    Venditti, P; De Rosa, R; Caldarone, G; Di Meo, S

    2005-10-15

    We investigated effects of prolonged aerobic exercise and severe hyperthyroidism on indices of oxidative damage, susceptibility to oxidants, and respiratory capacity of homogenates from rat liver, heart and skeletal muscle. Both treatments induced increases in hydroperoxide and protein-bound carbonyl levels. Moreover, the highest increases were found when hyperthyroid animals were subjected to exercise. These changes, which were associated to reduced exercise endurance capacity, were in part due to higher susceptibility to oxidants of hyperthyroid tissues. Levels of oxidative damage indices were scarcely related to changes in antioxidant enzyme activities and lipid-soluble antioxidant concentrations. However, the finding that, following exercise the scavenger levels generally decreased in liver homogenates and increased in heart and muscles ones, suggested a net shuttle of antioxidants from liver to other tissues under need. Aerobic capacity, evaluated by cytochrome oxidase activity, was not modified by exercise, which, conversely, affected the rates of oxygen consumption of hyperthyroid preparations. These results seem to confirm the higher susceptibility of hyperthyroid tissues to oxidative challenge, because the mechanisms underlying the opposite changes in respiration rates during State 4 and State 3 likely involve oxidative modifications of components of mitochondrial respiratory chain, different from cytochrome aa3.

  1. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  2. Antioxidant and hepatoprotective activity of vitex honey against paracetamol induced liver damage in mice.

    PubMed

    Wang, Yuan; Li, Dan; Cheng, Ni; Gao, Hui; Xue, Xiaofeng; Cao, Wei; Sun, Liping

    2015-07-01

    Fourteen vitex honeys from China were investigated to evaluate its antioxidant and hepatoprotective activity against paracetamol-induced liver damage. All honey samples exhibited high total phenolic content (344-520 mg GAE per kg), total flavonoid content (19-31 mg Rutin per kg), and strong antioxidant activity in DPPH radical scavenging, ferric reducing antioxidant power and Ferrous ion-chelating ability. Nine phenolic acids were detected in vitex honey samples, in which caffeic acid was the main compound. Honey from Heibei Zanhuang (S2) ranked the highest antioxidant activity was orally administered to mice (5 g kg(-1), 20 g kg(-1)) for 70 days. In high-dose (20 g kg(-1)), vitex honey pretreatment resulting in significant increase in serum oxygen radical absorbance capacity (15.07%) and decrease in Cu(2+)-mediate lipoprotein oxidation (80.07%), and suppression in alanine aminotransferase (75.79%) and aspartate aminotransferase (74.52%), enhancement in the superoxide dismutase and glutathione peroxidase activities and reduction in malondialdehyde (36.15%) and 8-hydroxy-2'-deoxyguanosine (19.6%) formation compared with paracetamol-intoxicated group. The results demonstrated the hepatoprotection of vitex honey against paracetamol-induced liver damage might attribute to its antioxidant and/or perhaps pro-oxidative property.

  3. Quercetin, a Flavonoid Antioxidant, Ameliorated Procarbazine-Induced Oxidative Damage to Murine Tissues

    PubMed Central

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Adeyemo, Oluwatobi Adewumi; Ola, Olaniyi Solomon; Olotu, Olaoluwa Oluwaseun; Echebiri, Roseline Chinonye

    2015-01-01

    Procarbazine (PCZ) (indicated in Hodgkin’s disease), is an alkylating agent known to generate free radicals in vivo, while Quercetin (QCT) is a flavonoid antioxidant with proven free radical scavenging capacity. This study investigated the protective effects of QCT on PCZ-induced oxidative damage in the rat. Male Wistar rats (160–180 g) were randomized into five groups (n = 5/group): I (control), II PCZ-treated (2 mg/kg body weight (bw) for seven days); III pre-treated with QCT (20 mg/kg bw) for seven days, followed by PCZ for seven days; IV co-treated with PCZ and QCT for seven days and V administered QCT alone for seven days. PCZ caused a significant increase in plasma total bilirubin, urea, and creatinine when compared with control (P < 0.05). Similarly, plasma activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl transferase (γ-GT) were significantly increased in the PCZ-treated group relative to control. Furthermore, PCZ caused a significant decrease in the activities of hepatic superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) as well as levels of ascorbic acid (AA) and glutathione (GSH). This was followed by a significant increase in hepatic malondialdehyde (MDA) content. However, QCT pre-treatment and co-treatment ameliorated the PCZ-induced changes in plasma levels of urea, creatinine, and bilirubin as well as the activities of ALP, AST, ALT, and GGT. QCT also ameliorated hepatic AA and GSH levels and the activities of SOD, CAT, and GST. This all suggests that QCT protected against PCZ-induced oxidative damage in rats. PMID:26783707

  4. Prolonged fasting does not increase oxidative damage or inflammation in postweaned northern elephant seal pups.

    PubMed

    Vázquez-Medina, José Pablo; Crocker, Daniel E; Forman, Henry Jay; Ortiz, Rudy M

    2010-07-15

    Elephant seals are naturally adapted to survive up to three months of absolute food and water deprivation (fasting). Prolonged food deprivation in terrestrial mammals increases reactive oxygen species (ROS) production, oxidative damage and inflammation that can be induced by an increase in the renin-angiotensin system (RAS). To test the hypothesis that prolonged fasting in elephant seals is not associated with increased oxidative stress or inflammation, blood samples and muscle biopsies were collected from early (2-3 weeks post-weaning) and late (7-8 weeks post-weaning) fasted seals. Plasma levels of oxidative damage, inflammatory markers and plasma renin activity (PRA), along with muscle levels of lipid and protein oxidation, were compared between early and late fasting periods. Protein expression of angiotensin receptor 1 (AT(1)), pro-oxidant (Nox4) and antioxidant enzymes (CuZn- and Mn-superoxide dismutases, glutathione peroxidase and catalase) was analyzed in muscle. Fasting induced a 2.5-fold increase in PRA, a 50% increase in AT(1), a twofold increase in Nox4 and a 70% increase in NADPH oxidase activity. By contrast, neither tissue nor systemic indices of oxidative damage or inflammation increased with fasting. Furthermore, muscle antioxidant enzymes increased 40-60% with fasting in parallel with an increase in muscle and red blood cell antioxidant enzyme activities. These data suggest that, despite the observed increases in RAS and Nox4, an increase in antioxidant enzymes appears to be sufficient to suppress systemic and tissue indices of oxidative damage and inflammation in seals that have fasted for a prolonged period. The present study highlights the importance of antioxidant capacity in mammals during chronic periods of stress to help avoid deleterious systemic consequences.

  5. Climate change (elevated CO₂, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage.

    PubMed

    Salazar-Parra, Carolina; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Irigoyen, Juan José; Morales, Fermín

    2012-02-01

    Photosynthetic carbon fixation (A(N) ) and photosynthetic electron transport rate (ETR) are affected by different environmental stress factors, such as those associated with climate change. Under stress conditions, it can be generated an electron excess that cannot be consumed, which can react with O₂, producing reactive oxygen species. This work was aimed to evaluate the influence of climate change (elevated CO₂, elevated temperature and moderate drought) on the antioxidant status of grapevine (Vitis vinifera) cv. Tempranillo leaves, from veraison to ripeness. The lowest ratios between electrons generated (ETR) and consumed (A(N) + respiration + photorespiration) were observed in plants treated with elevated CO₂ and elevated temperature. In partially irrigated plants under current ambient conditions, electrons not consumed seemed to be diverted to alternative ways. Oxidative damage to chlorophylls and carotenoids was not observed. However, these plants had increases in thiobarbituric acid reacting substances, an indication of lipid peroxidation. These increases matched well with an early rise of H₂O₂ and antioxidant enzyme activities, superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6). Enzymatic activities were maintained high until ripeness. In conclusion, plants grown under current ambient conditions and moderate drought were less efficient to cope with oxidative damage than well-irrigated plants, and more interestingly, plants grown under moderate drought but treated with elevated CO₂ and elevated temperature were not affected by oxidative damage, mainly because of higher rates of electrons consumed in photosynthetic carbon fixation. Copyright © Physiologia Plantarum 2011.

  6. Reproductive Benefit of Oxidative Damage: An Oxidative Stress “Malevolence”?

    PubMed Central

    Poljsak, B.; Milisav, I.; Lampe, T.; Ostan, I.

    2011-01-01

    High levels of reactive oxygen species (ROS) compared to antioxidant defenses are considered to play a major role in diverse chronic age-related diseases and aging. Here we present an attempt to synthesize information about proximate oxidative processes in aging (relevant to free radical or oxidative damage hypotheses of aging) with an evolutionary scenario (credited here to Dawkins hypotheses) involving tradeoffs between the costs and benefits of oxidative stress to reproducing organisms. Oxidative stress may be considered a biological imperfection; therefore, the Dawkins' theory of imperfect adaptation of beings to environment was applied to the role of oxidative stress in processes like famine and infectious diseases and their consequences at the molecular level such as mutations and cell signaling. Arguments are presented that oxidative damage is not necessarily an evolutionary mistake but may be beneficial for reproduction; this may prevail over its harmfulness to health and longevity in evolution. Thus, Dawkins' principle of biological “malevolence” may be an additional biological paradigm for explaining the consequences of oxidative stress. PMID:21969876

  7. Oxidant and antioxidant status in children with subacute sclerosing panencephalitis.

    PubMed

    Caksen, Hüseyin; Ozkan, Mustafa; Cemek, Mustafa; Cemek, Fatma

    2014-11-01

    We analyzed serum alpha-tocopherol, beta-carotene, retinol, and ascorbic acid levels and malondialdehyde and reduced glutathione concentrations on erythrocyte and cerebrospinal fluid in 30 patients with subacute sclerosing panencephalitis to evaluate oxidant and antioxidant status. Serum alpha-tocopherol, beta-carotene, retinol, ascorbic acid levels, and erythrocyte and cerebrospinal fluid reduced glutathione concentrations were decreased; however, erythrocyte and cerebrospinal fluid malondialdehyde levels were increased in the patients. Cerebrospinal fluid malondialdehyde levels were different between clinical stages of the disease (P < .05). Higher cerebrospinal fluid malondialdehyde level was associated with the more severe clinical stage. A positive correlation was found between cerebrospinal fluid malondialdehyde level and clinical stages (r = 0.42; P < .05) and between erythrocyte malondialdehyde level and clinical stages (r = 0.40; P < .05). Our findings showed presence of oxidative damage in subacute sclerosing panencephalitis and that antioxidants were increased as defense mechanisms of the organism against oxidative damage. © The Author(s) 2013.

  8. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells.

    PubMed

    Kalghatgi, Sameer; Spina, Catherine S; Costello, James C; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S; Collins, James J

    2013-07-03

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics-quinolones, aminoglycosides, and β-lactams-cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic-induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-l-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.

  9. Beneficial effects of Korean red ginseng on lymphocyte DNA damage, antioxidant enzyme activity, and LDL oxidation in healthy participants: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Kim, Ji Young; Park, Ju Yeon; Kang, Hee Jung; Kim, Oh Yoen; Lee, Jong Ho

    2012-07-17

    The reported health benefits of Korean red ginseng (KRG) include antioxidant, antitumor, antimutagenic, and immunomodulatory activities; however, the effects on oxidative stress have not yet been evaluated. Therefore, we assessed the effect of KRG on antioxidant enzymes and oxidative stress markers in humans. We conducted a randomized, double-blind, placebo-controlled study with three groups, including placebo, low-dose (3 g/day), and high-dose (6 g/day), which were randomly assigned to healthy subjects aged 20-65 years. Lymphocyte DNA damage, antioxidative enzyme activity, and lipid peroxidation were assessed before and after the 8-week supplementation. Fifty-seven subjects completed the protocol. Plasma superoxide dismutase (SOD) activity after the 8-week KRG supplementation was significantly higher in the low-and high-dose groups compared to baseline. Plasma glutathione peroxidase (GPx) and catalase activities were also increased after the high-dose supplementation. Furthermore, the DNA tail length and tail moment were significantly reduced after the supplementation (low-dose and high-dose), and plasma oxidized low-density lipoprotein (LDL) levels were reduced in low-dose and high-dose groups, but increased in the placebo group. The net changes in oxidized LDL after the supplementation differed significantly between both KRG supplementation groups and the placebo group. Net changes in GPx, SOD and catalase activities, and DNA tail length and tail moment were significantly different between the high-dose group and the placebo group. Additionally, the net changes in urinary 8-epi-PGF(2α) were significantly different between the KRG supplementation groups and the placebo group. KRG supplementation may attenuate lymphocyte DNA damage and LDL oxidation by upregulating antioxidant enzyme activity.

  10. Beneficial effects of Korean red ginseng on lymphocyte DNA damage, antioxidant enzyme activity, and LDL oxidation in healthy participants: a randomized, double-blind, placebo-controlled trial

    PubMed Central

    2012-01-01

    Background The reported health benefits of Korean red ginseng (KRG) include antioxidant, antitumor, antimutagenic, and immunomodulatory activities; however, the effects on oxidative stress have not yet been evaluated. Therefore, we assessed the effect of KRG on antioxidant enzymes and oxidative stress markers in humans. Methods We conducted a randomized, double-blind, placebo-controlled study with three groups, including placebo, low-dose (3 g/day), and high-dose (6 g/day), which were randomly assigned to healthy subjects aged 20–65 years. Lymphocyte DNA damage, antioxidative enzyme activity, and lipid peroxidation were assessed before and after the 8-week supplementation. Results Fifty-seven subjects completed the protocol. Plasma superoxide dismutase (SOD) activity after the 8-week KRG supplementation was significantly higher in the low-and high-dose groups compared to baseline. Plasma glutathione peroxidase (GPx) and catalase activities were also increased after the high-dose supplementation. Furthermore, the DNA tail length and tail moment were significantly reduced after the supplementation (low-dose and high-dose), and plasma oxidized low-density lipoprotein (LDL) levels were reduced in low-dose and high-dose groups, but increased in the placebo group. The net changes in oxidized LDL after the supplementation differed significantly between both KRG supplementation groups and the placebo group. Net changes in GPx, SOD and catalase activities, and DNA tail length and tail moment were significantly different between the high-dose group and the placebo group. Additionally, the net changes in urinary 8-epi-PGF2α were significantly different between the KRG supplementation groups and the placebo group. Conclusions KRG supplementation may attenuate lymphocyte DNA damage and LDL oxidation by upregulating antioxidant enzyme activity. PMID:22805313

  11. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils' oxidative stress in chronic exercise.

    PubMed

    Funes, Lorena; Carrera-Quintanar, Lucrecia; Cerdán-Calero, Manuela; Ferrer, Miguel D; Drobnic, Franchek; Pons, Antoni; Roche, Enrique; Micol, Vicente

    2011-04-01

    Intense exercise is directly related to muscular damage and oxidative stress due to excessive reactive oxygen species (ROS) in both, plasma and white blood cells. Nevertheless, exercise-derived ROS are essential to regulate cellular adaptation to exercise. Studies on antioxidant supplements have provided controversial results. The purpose of this study was to determine the effect of moderate antioxidant supplementation (lemon verbena extract) in healthy male volunteers that followed a 90-min running eccentric exercise protocol for 21 days. Antioxidant enzymes activities and oxidative stress markers were measured in neutrophils. Besides, inflammatory cytokines and muscular damage were determined in whole blood and serum samples, respectively. Intense running exercise for 21 days induced antioxidant response in neutrophils of trained male through the increase of the antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase. Supplementation with moderate levels of an antioxidant lemon verbena extract did not block this cellular adaptive response and also reduced exercise-induced oxidative damage of proteins and lipids in neutrophils and decreased myeloperoxidase activity. Moreover, lemon verbena supplementation maintained or decreased the level of serum transaminases activity indicating a protection of muscular tissue. Exercise induced a decrease of interleukin-6 and interleukin-1β levels after 21 days measured in basal conditions, which was not inhibited by antioxidant supplementation. Therefore, moderate antioxidant supplementation with lemon verbena extract protects neutrophils against oxidative damage, decreases the signs of muscular damage in chronic running exercise without blocking the cellular adaptation to exercise.

  12. Oxidative damage of DNA in subjects occupationally exposed to lead.

    PubMed

    Pawlas, Natalia; Olewińska, Elżbieta; Markiewicz-Górka, Iwona; Kozłowska, Agnieszka; Januszewska, Lidia; Lundh, Thomas; Januszewska, Ewa; Pawlas, Krystyna

    2017-09-01

    Exposure to lead (Pb) in environmental and occupational settings continues to be a serious public health problem and may pose an elevated risk of genetic damage. The aim of this study was to assess the level of oxidative stress and DNA damage in subjects occupationally exposed to lead. We studied a population of 78 male workers exposed to lead in a lead and zinc smelter and battery recycling plant and 38 men from a control group. Blood lead levels were detected by graphite furnace atomic absorption spectrophotometry and plasma lead levels by inductively coupled plasma-mass spectrometry. The following assays were performed to assess the DNA damage and oxidative stress: comet assay, determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG), lipid peroxidation and total antioxidant status (TAS). The mean concentration of lead in the blood of the exposed group was 392 ± 103 μg/L and was significantly higher than in the control group (30.3 ± 29.4 μg/L, p < 0.0001). Oxidative DNA damages measured by comet assay showed no significant differences between populations. The concentration of 8-OHdG was about twice as high as in the control group. We found a significant positive correlation between the level of biomarkers of lead exposure [lead in blood, lead in plasma, zinc protoporphyrin (ZPP)] and urine concentration of 8-OHdG. The level of oxidative damage of DNA was positively correlated with the level of lipid peroxidation (TBARS) and negatively with total anti-oxidative status (TAS). Our study suggests that occupational exposure causes an increase in oxidative damage to DNA, even in subjects with relatively short length of service (average length of about 10 years). 8-OHdG concentration in the urine proved to be a sensitive and non-invasive marker of lead induced genotoxic damage.

  13. Prolonged fasting does not increase oxidative damage or inflammation in postweaned northern elephant seal pups

    PubMed Central

    Vázquez-Medina, José Pablo; Crocker, Daniel E.; Forman, Henry Jay; Ortiz, Rudy M.

    2010-01-01

    Elephant seals are naturally adapted to survive up to three months of absolute food and water deprivation (fasting). Prolonged food deprivation in terrestrial mammals increases reactive oxygen species (ROS) production, oxidative damage and inflammation that can be induced by an increase in the renin–angiotensin system (RAS). To test the hypothesis that prolonged fasting in elephant seals is not associated with increased oxidative stress or inflammation, blood samples and muscle biopsies were collected from early (2–3 weeks post-weaning) and late (7–8 weeks post-weaning) fasted seals. Plasma levels of oxidative damage, inflammatory markers and plasma renin activity (PRA), along with muscle levels of lipid and protein oxidation, were compared between early and late fasting periods. Protein expression of angiotensin receptor 1 (AT1), pro-oxidant (Nox4) and antioxidant enzymes (CuZn- and Mn-superoxide dismutases, glutathione peroxidase and catalase) was analyzed in muscle. Fasting induced a 2.5-fold increase in PRA, a 50% increase in AT1, a twofold increase in Nox4 and a 70% increase in NADPH oxidase activity. By contrast, neither tissue nor systemic indices of oxidative damage or inflammation increased with fasting. Furthermore, muscle antioxidant enzymes increased 40–60% with fasting in parallel with an increase in muscle and red blood cell antioxidant enzyme activities. These data suggest that, despite the observed increases in RAS and Nox4, an increase in antioxidant enzymes appears to be sufficient to suppress systemic and tissue indices of oxidative damage and inflammation in seals that have fasted for a prolonged period. The present study highlights the importance of antioxidant capacity in mammals during chronic periods of stress to help avoid deleterious systemic consequences. PMID:20581282

  14. Temperature stress, anti-oxidative enzyme activity and virus acquisition in Bemisia tabaci (Hemiptera: Aleyrodidae)

    USDA-ARS?s Scientific Manuscript database

    In most eukaryotic systems, antioxidants provide protection when cells are exposed to stressful environmental conditions. Antioxidants, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase, function in a stepwise series with SOD initially preventing oxidative damage by conve...

  15. Antioxidant and DNA damage protective properties of anthocyanin-rich extracts from Hibiscus and Ocimum: a comparative study.

    PubMed

    Sarkar, Biswatrish; Kumar, Dhananjay; Sasmal, Dinakar; Mukhopadhyay, Kunal

    2014-01-01

    Anthocyanin extracts (AEs) from Ocimum tenuiflorum (leaf), Hibiscus rosa-sinensis (petal) and Hibiscus sabdariffa (calyx) were investigated and compared for in vitro antioxidant activity and DNA damage protective property. Total phenolic content (TPC) and total anthocyanin content (TAC) of the AEs were determined and the major anthocyanins were characterised. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay, 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical-scavenging activity, 2-deoxy-D-ribose degradation assay and lipid peroxidation assay. The protective property of the AEs was also examined against oxidative DNA damage by H2O2 and UV using pUC19 plasmid. All the AEs particularly those from O. tenuiflorum demonstrated efficient antioxidant activity and protected DNA from damage. Strong correlation between antioxidant capacity and TPC and TAC was observed. Significant correlation between antioxidant capacity and TPC and TAC ascertained that phenolics and anthocyanins were the major contributors of antioxidant activity.

  16. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice

    PubMed Central

    Das, Jayanta Kumar; Sarkar, Sibani; Hossain, Sk Ugir; Chakraborty, Pramita; Das, Rajat Kumar; Bhattacharya, Sudin

    2013-01-01

    Background & objectives: Malachite green (MG), an environmentally hazardous material, is used as a non permitted food colouring agent, especially in India. Selenium (Se) is an essential nutritional trace element required for animals and humans to guard against oxidative stress induced by xenobiotic compounds of diverse nature. In the present study, the role of the selenium compound diphenylmethyl selenocyanate (DMSE) was assessed on the oxidative stress (OS) induced by a food colouring agent, malachite green (MG) in vivo in mice. Methods: Swiss albino mice (Mus musculus) were intraperitoneally injected with MG at a standardized dose of 100 μg/ mouse for 30 days. DMSE was given orally at an optimum dose of 3 mg/kg b.w. in pre (15 days) and concomitant treatment schedule throughout the experimental period. The parameters viz. ALT, AST, LPO, GSH, GST, SOD, CAT, GPx, TrxR, CA, MN, MI and DNA damage have been evaluated. Results: The DMSE showed its potential to protect against MG induced hepatotoxicity by controlling the serum alanine aminotransferase and aspartate amino transferase (ALT and AST) levels and also ameliorated oxidative stress by modulating hepatic lipid peroxidation and different detoxifying and antioxidative enzymes such as glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and also the selenoenzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) and reduced glutathione level which in turn reduced DNA damage. Interpretation & conclusions: The organo-selenium compound DMSE showed significant protection against MG induced heptotoxicity and DNA damage in murine model. Better protection was observed in pretreatment group than in the concomitant group. Further studies need to be done to understand the mechanism of action. PMID:23852297

  18. Protective Effects of Gelam Honey against Oxidative Damage in Young and Aged Rats

    PubMed Central

    Sahhugi, Zulaikha; Jubri, Zakiah

    2014-01-01

    Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities. PMID:25505937

  19. Free radicals and antioxidants in primary fibromyalgia: an oxidative stress disorder?

    PubMed

    Bagis, Selda; Tamer, Lulufer; Sahin, Gunsah; Bilgin, Ramazan; Guler, Hayal; Ercan, Bahadir; Erdogan, Canan

    2005-04-01

    The role of free radicals in fibromyalgia is controversial. In this study, 85 female patients with primary fibromyalgia and 80 age-, height-, and weight-matched healthy women were evaluated for oxidant/antioxidant balance. Malondialdehyde is a toxic metabolite of lipid peroxidation used as a marker of free radical damage. Superoxide dismutase is an intracellular antioxidant enzyme and shows antioxidant capacity. Pain was assessed by visual analog scale. Tender points were assessed by palpation. Age, smoking, body mass index (BMI), and duration of disease were also recorded. Malondialdehyde levels were significantly higher and superoxide dismutase levels significantly lower in fibromyalgic patients than controls. Age, BMI, smoking, and duration of disease did not affect these parameters. We found no correlation between pain and number of tender points. In conclusion, oxidant/antioxidant balances were changed in fibromyalgia. Increased free radical levels may be responsible for the development of fibromyalgia. These findings may support the hypothesis of fibromyalgia as an oxidative disorder.

  20. Bentazon triggers the promotion of oxidative damage in the Portuguese ricefield cyanobacterium Anabaena cylindrica: response of the antioxidant system.

    PubMed

    Galhano, Victor; Peixoto, Francisco; Gomes-Laranjo, José

    2010-10-01

    Rice fields are frequently exposed to environmental contamination by herbicides and cyanobacteria, as primary producers of these aquatic ecosystems, are adversely affected. Anabaena cylindrica is a cyanobacterium with a significantly widespread occurrence in Portuguese rice fields. This strain was studied throughout 72 h in laboratory conditions for its stress responses to sublethal concentrations (0.75-2 mM) of bentazon, a selective postemergence herbicide recommended for integrated weed management in rice, with special reference to oxidative stress, role of proline and intracellular antioxidant enzymes in herbicide-induced free radicals detoxification. Activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione S-transferase (GST) increased in a time- and herbicide dose-response manner and were higher than those in the control samples after 72 h. A time- and concentration-dependent increase of malondialdehyde (MDA) levels and the enhanced cell membrane leakage following bentazon exposure are indicative of lipid peroxidation, free radicals formation, and oxidative damage, while increased amounts of SOD, CAT, APX, GST, and proline indicated their involvement in free radical scavenging mechanisms. The appreciable decline in the reduced glutathione (GSH) pool after 72 h at higher bentazon concentrations could be explained by the reduction of the NADPH-dependent glutathione reductase (GR) activity. The obtained results suggested that the alterations of antioxidant systems in A. cylindrica might be useful biomarkers of bentazon exposure. As the toxic mechanism of bentazon is a complex phenomenon, this study also adds relevant findings to explain the oxidative stress pathways of bentazon promoting oxidative stress in cyanobacteria. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.

  1. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes.

    PubMed

    Douiri, Salma; Bahdoudi, Seyma; Hamdi, Yosra; Cubì, Roger; Basille, Magali; Fournier, Alain; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Vaudry, David; Masmoudi-Kouki, Olfa

    2016-06-01

    Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the

  2. Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells

    PubMed Central

    Costello, James C.; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S.; Collins, James J.

    2013-01-01

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics—quinolones, aminoglycosides, and β-lactams—cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic–induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-L-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people. PMID:23825301

  3. Evaluation of Antioxidant and DNA Damage Protection Activity of the Hydroalcoholic Extract of Desmostachya bipinnata L. Stapf

    PubMed Central

    Bhimathati, Solomon Sunder Raj

    2014-01-01

    Desmostachya bipinnata Stapf (Poaceae/Gramineae) is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18 ± 3.47 μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton's reagent) at a concentration of 50 μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea) in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2). Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases. PMID:24574873

  4. Evaluation of antioxidant and DNA damage protection activity of the hydroalcoholic extract of Desmostachya bipinnata L. Stapf.

    PubMed

    Golla, Upendarrao; Bhimathati, Solomon Sunder Raj

    2014-01-01

    Desmostachya bipinnata Stapf (Poaceae/Gramineae) is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18±3.47  μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton's reagent) at a concentration of 50  μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea) in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2). Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases.

  5. Wine and oxidative stress: up-to-date evidence of the effects of moderate wine consumption on oxidative damage in humans.

    PubMed

    Covas, María Isabel; Gambert, Philippe; Fitó, Montserrat; de la Torre, Rafael

    2010-02-01

    Wine and alcohol consumption has been considered to be protective against coronary heart disease development, an oxidative stress associated disease. Wine contains polyphenols displaying antioxidant properties tested in in vitro and in vivo studies. Due to this, a general consensus exists, both among the general public and the scientific community, that wine, particularly red wine, is an antioxidant beverage. Alcohol consumption, however, is associated with oxidative damage. Several studies have been carried out on the antioxidant health benefits of wine and wine polyphenols. However, adequate scientific evidence (Level I or II) is required to be provided before recommendations or statements which can reach the general public can be formulated. Here, we summarize the state of the art of the up-to-date body of knowledge, and the extent to which there exists evidence of the benefits of moderate wine consumption on oxidative damage in humans. From the available data, there is no evidence, at present, that sustained wine consumption provides antioxidant benefits in healthy volunteers other than to counteract a possible pro-oxidative effect of the alcohol. On the contrary, data on the antioxidant protective effect of red wine in oxidative stress situations are promising. In this way, the postprandial oxidative stress after a meal, despite the diversity of biomarkers used for its evaluation, is counteracted by the ingestion of wine. Further studies are warranted. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system.

    PubMed

    Amir Aslani, Banafsheh; Ghobadi, Sirous

    2016-02-01

    Free radical generation occurs continuously within cells as a consequence of common metabolic processes. However, in high concentrations, whether from endogenous or exogenous sources, free radicals can lead to oxidative stress; a harmful process that cause serious damages to all biomolecules in our body hence impairs cell functions and even results in cell death and diseased states. Oxidative injuries accumulate over time and participate in cancer development, cardiovascular and neurodegenerative disorders as well as aging. Nature has bestowed the human body with a complex web of antioxidant defense system including enzymatic antioxidants like glutathione peroxidase and glutathione reductase, catalase and superoxide dismutase as well as non-enzymatic antioxidants such as thiol antioxidants, melatonin, coenzyme Q, and metal chelating proteins, which are efficient enough to fight against excessive free radicals. Also, nutrient antioxidants such as vitamin C, vitamin E, carotenoids, polyphenols, and trace elements are known to have high antioxidant potency to assist in minimizing harmful effects of reactive species. The immune system is also extremely vulnerable to oxidant and antioxidant balance as uncontrolled free radical production can impair its function and defense mechanism. The present paper reviews the ways by which free radicals form in the body and promote tissue damage, as well as the role of the antioxidants defense mechanisms. Finally, we will have a brief glance at oxidants and antioxidants relevance to the immune system. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The impact of urban environment on oxidative damage (TBARS) and antioxidant systems in lungs and liver of great tits, Parus major.

    PubMed

    Isaksson, C; Sturve, J; Almroth, B C; Andersson, S

    2009-01-01

    A direct negative link between human health and urban pollution levels generated by increased internal levels of oxyradicals is well established. The impact of urban environment on the physiology of wild birds is however, poorly investigated. Here we compare oxidative damage (i.e., lipid peroxidation, measured as TBARS) and different antioxidant enzymes (glutathione reductase (GR), glutathione-S-transferase (GST), and catalase (CAT)) in lungs of urban and rural great tits, Parus major. In addition, we investigated enzymatic (i.e., CAT) and non-enzymatic (i.e., carotenoids) antioxidant levels in liver tissue. There was no significant difference in lipid peroxidation in lungs between the environments. Among the antioxidant enzymes measured in lungs, only CAT showed a tendency towards increased activity in the urban environment. In contrast, CAT in livers was highly non-significant. However, there was a significantly higher concentration of dietary carotenoids (i.e., lutein (Lut) and zeaxanthin (Zx)) in urban males, along with a sex-specific difference in composition (Lut:Zx ratio) between the environments. Taken together, these results suggest that great tit lungs and livers do not seem to be negatively affected, regarding oxidative stress, by living in an urban environment.

  8. Examining food additives and spices for their anti-oxidant ability to counteract oxidative damage due to chronic exposure to free radicals from environmental pollutants

    NASA Astrophysics Data System (ADS)

    Martinez, Raul A., III

    The main objective of this work was to examine food additives and spices (from the Apiaceae family) to determine their antioxidant properties to counteract oxidative stress (damage) caused by Environmental pollutants. Environmental pollutants generate Reactive Oxygen species and Reactive Nitrogen species. Star anise essential oil showed lower antioxidant activity than extracts using DPPH scavenging. Dill Seed -- Anethum Graveolens -the monoterpene components of dill showed to activate the enzyme glutathione-S-transferase , which helped attach the antioxidant molecule glutathione to oxidized molecules that would otherwise do damage in the body. The antioxidant activity of extracts of dill was comparable with ascorbic acid, alpha-tocopherol, and quercetin in in-vitro systems. Black Cumin -- Nigella Sativa: was evaluated the method 1,1-diphenyl2-picrylhhydrazyl (DPPH) radical scavenging activity. Positive correlations were found between the total phenolic content in the black cumin extracts and their antioxidant activities. Caraway -- Carum Carvi: The antioxidant activity was evaluated by the scavenging effects of 1,1'-diphenyl-2-picrylhydrazyl (DPPH). Caraway showed strong antioxidant activity. Cumin -- Cuminum Cyminum - the major polyphenolic were extracted and separated by HPTLC. The antioxidant activity of the cumin extract was tested on 1,1'-diphenyl-2- picrylhydrazyl (DPPH) free radical scavenging. Coriander -- Coriandrum Sativum - the antioxidant and free-radical-scavenging property of the seeds was studied and also investigated whether the administration of seeds curtails oxidative stress. Coriander seed powder not only inhibited the process of Peroxidative damage, but also significantly reactivated the antioxidant enzymes and antioxidant levels. The seeds also showed scavenging activity against superoxides and hydroxyl radicals. The total polyphenolic content of the seeds was found to be 12.2 galic acid equivalents (GAE)/g while the total flavonoid content

  9. Antioxidant agents against trichothecenes: new hints for oxidative stress treatment

    PubMed Central

    Nepovimova, Eugenie; Wang, Yun; Yang, Hualin; Li, Li; Zhang, Xiujuan; Kuca, Kamil

    2017-01-01

    Trichothecenes are a group of mycotoxins mainly produced by fungi of genus Fusarium. Due to high toxicity and widespread dissemination, T-2 toxin and deoxynivalenol (DON) are considered to be the most important compounds of this class. Trichothecenes generate free radicals, including reactive oxygen species (ROS), which induce lipid peroxidation, decrease levels of antioxidant enzymes, and ultimately lead to apoptosis. Consequently, oxidative stress is an active area of research on the toxic mechanisms of trichothecenes, and identification of antioxidant agents that could be used against trichothecenes is crucial for human health. Numerous natural compounds have been analyzed and have shown to function very effectively as antioxidants against trichothecenes. In this review, we summarize the molecular mechanisms underlying oxidative stress induced by these compounds, and discuss current knowledge regarding such antioxidant agents as vitamins, quercetin, selenium, glucomannan, nucleotides, antimicrobial peptides, bacteria, polyunsaturated fatty acids, oligosaccharides, and plant extracts. These products inhibit trichothecene-induced oxidative stress by (1) inhibiting ROS generation and induced DNA damage and lipid peroxidation; (2) increasing antioxidant enzyme activity; (3) blocking the MAPK and NF-κB signaling pathways; (4) inhibiting caspase activity and apoptosis; (5) protecting mitochondria; and (6) regulating anti-inflammatory actions. Finally, we summarize some decontamination methods, including bacterial and yeast biotransformation and degradation, as well as mycotoxin-binding agents. This review provides a comprehensive overview of antioxidant agents against trichothecenes and casts new light on the attenuation of oxidative stress. PMID:29299181

  10. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis.

    PubMed

    Lowes, Damon A; Thottakam, Bensita M V; Webster, Nigel R; Murphy, Michael P; Galley, Helen F

    2008-12-01

    Sepsis is characterised by a systemic dysregulated inflammatory response and oxidative stress, often leading to organ failure and death. Development of organ dysfunction associated with sepsis is now accepted to be due at least in part to oxidative damage to mitochondria. MitoQ is an antioxidant selectively targeted to mitochondria that protects mitochondria from oxidative damage and which has been shown to decrease mitochondrial damage in animal models of oxidative stress. We hypothesised that if oxidative damage to mitochondria does play a significant role in sepsis-induced organ failure, then MitoQ should modulate inflammatory responses, reduce mitochondrial oxidative damage, and thereby ameliorate organ damage. To assess this, we investigated the effects of MitoQ in vitro in an endothelial cell model of sepsis and in vivo in a rat model of sepsis. In vitro MitoQ decreased oxidative stress and protected mitochondria from damage as indicated by a lower rate of reactive oxygen species formation (P=0.01) and by maintenance of the mitochondrial membrane potential (P<0.005). MitoQ also suppressed proinflammatory cytokine release from the cells (P<0.05) while the production of the anti-inflammatory cytokine interleukin-10 was increased by MitoQ (P<0.001). In a lipopolysaccharide-peptidoglycan rat model of the organ dysfunction that occurs during sepsis, MitoQ treatment resulted in lower levels of biochemical markers of acute liver and renal dysfunction (P<0.05), and mitochondrial membrane potential was augmented (P<0.01) in most organs. These findings suggest that the use of mitochondria-targeted antioxidants such as MitoQ may be beneficial in sepsis.

  11. The role of oxidative stress and antioxidants in male fertility

    PubMed Central

    Walczak–Jedrzejowska, Renata; Wolski, Jan Karol

    2013-01-01

    Oxidative stress results from the imbalance between production of the reactive oxygen species (ROS) and the protective effect of the antioxidant system responsible for their neutralization and removal. An excess of ROS causes a pathological reaction resulting in damage to cells and tissues. Spermatozoa are particularly vulnerable to the harmful effects of ROS. Oxidative stress affects their activity, damages DNA structure, and accelerates apoptosis, all of which consequently decrease their numbers, hinders motility and development of normal morphology, and impairs function. This leads to disturbances in fertility or embryo development disorder. The main cellular source of ROS in the semen are immature sperm cells and white blood cells. The increase in the number of leukocytes may be due to infection and inflammation, but can also be secondary to harmful environmental factors, long sexual abstinence, or varicocele. The protective antioxidant system in the semen is composed of enzymes, as well as nonenzymatic substances, which closely interact with each other to ensure optimal protection against ROS. Non–enzymatic antioxidants include vitamins A, E, C, and B complex, glutathione, pantothenic acid, coenzyme Q10 and carnitine, and micronutrients such as zinc, selenium, and copper. It seems that a deficiency of any of them can cause a decrease in total antioxidant status. In vitro and in vivo that studies demonstrate many antioxidants possess a beneficial effect on fertility and, therefore, their use is recommended as supportive therapy for the treatment of infertility in men. PMID:24578993

  12. The role of oxidative stress and antioxidants in male fertility.

    PubMed

    Walczak-Jedrzejowska, Renata; Wolski, Jan Karol; Slowikowska-Hilczer, Jolanta

    2013-01-01

    Oxidative stress results from the imbalance between production of the reactive oxygen species (ROS) and the protective effect of the antioxidant system responsible for their neutralization and removal. An excess of ROS causes a pathological reaction resulting in damage to cells and tissues. Spermatozoa are particularly vulnerable to the harmful effects of ROS. Oxidative stress affects their activity, damages DNA structure, and accelerates apoptosis, all of which consequently decrease their numbers, hinders motility and development of normal morphology, and impairs function. This leads to disturbances in fertility or embryo development disorder. The main cellular source of ROS in the semen are immature sperm cells and white blood cells. The increase in the number of leukocytes may be due to infection and inflammation, but can also be secondary to harmful environmental factors, long sexual abstinence, or varicocele. The protective antioxidant system in the semen is composed of enzymes, as well as nonenzymatic substances, which closely interact with each other to ensure optimal protection against ROS. Non-enzymatic antioxidants include vitamins A, E, C, and B complex, glutathione, pantothenic acid, coenzyme Q10 and carnitine, and micronutrients such as zinc, selenium, and copper. It seems that a deficiency of any of them can cause a decrease in total antioxidant status. In vitro and in vivo that studies demonstrate many antioxidants possess a beneficial effect on fertility and, therefore, their use is recommended as supportive therapy for the treatment of infertility in men.

  13. Temperature experienced during incubation affects antioxidant capacity but not oxidative damage in hatchling red-eared slider turtles (Trachemys scripta elegans).

    PubMed

    Treidel, L A; Carter, A W; Bowden, R M

    2016-02-01

    Our understanding of how oxidative stress resistance phenotypes are affected by the developmental environment is limited. One component of the developmental environment, which is likely central to early life oxidative stress among ectothermic and oviparous species, is that of temperature. We investigated how incubation temperature manipulations affect oxidative damage and total antioxidant capacity (TAC) in red-eared slider turtle (Trachemys scripta elegans) hatchlings. First, to determine whether temperature fluctuations elicit oxidative stress, eggs from clutches were randomly assigned to either a constant (29.5 °C) or daily fluctuating temperature incubation (28.7 ± 3 °C) treatment. Second, to assess the effect of temperature fluctuation frequency on oxidative stress, eggs were incubated in one of three fluctuating incubation regimes: 28.7 ± 3 °C fluctuations every 12 h (hyper), 24 h (normal) or 48 h (hypo). Third, we tested the influence of average incubation temperature by incubating eggs in a daily fluctuating incubation temperature regime with a mean temperature of 26.5 °C (low), 27.1 °C (medium) or 27.7 °C (high). Although the accumulation of oxidative damage in hatchlings was unaffected by any thermal manipulation, TAC was affected by both temperature fluctuation frequency and average incubation temperature. Individuals incubated with a low frequency of temperature fluctuations had reduced TAC, while incubation at a lower average temperature was associated with enhanced TAC. These results indicate that although sufficient to prevent oxidative damage, TAC is influenced by developmental thermal environments, potentially because of temperature-mediated changes in metabolic rate. The observed differences in TAC may have important future consequences for hatchling fitness and overwinter survival. © 2016. Published by The Company of Biologists Ltd.

  14. Evaluation of free radical scavenging and anti-oxidative capacity of polydatin-nanostructured lipid carriers

    NASA Astrophysics Data System (ADS)

    Meng, Xiang-Ping; Shi, Fan; Li, Hai-Jie; Yin, Li-De; Wang, Yi-Fei; Wang, Zhi-ping; Chen, Tong-sheng

    2016-10-01

    Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical (ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, polydatin loaded nanostructured lipid carriers (Pol-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Pol-NLC on free radical scavenging and anti-oxidative capacity is investigated. The particle size and zeta potential of Pol-NLC were 113.9 +/- 1.1 nm and -16.3 1 +/- 0.27 mV, respectively. By free radical scavenging assays, the IC50 value of Pol-NLC were 28.71, 9.83 μg/mL with DPPH, ABTS assay respectively, and 0.143 mg ferrous sulfate/1 mg Pol-NLC with FRAP assay. These results indicated that the antioxidant properties of Pol-NLC hold great potential used as an alternative to more toxic synthetic anti-oxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.

  15. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury.

    PubMed

    Milatovic, Dejan; Gupta, Ramesh C; Yu, Yingchun; Zaja-Milatovic, Snjezana; Aschner, Michael

    2011-11-01

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p<0.01) increase in biomarkers of oxidative damage, F(2)-isoprostanes (F(2)-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 μM) for 2h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F(2)-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100mg/kg, s.c.) 24h. Additionally, pretreatment with vitamin E (100mg/kg, i.p.) or ibuprofen (140 μg/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F(2)-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic transmission and slowing of

  16. Oxidative Stress and Antioxidant Defense in Endometriosis and Its Malignant Transformation

    PubMed Central

    Iwabuchi, Takuya; Yoshimoto, Chiharu; Shigetomi, Hiroshi; Kobayashi, Hiroshi

    2015-01-01

    The aim of this study was to investigate the role of redox status in endometriosis and its malignant transformation. A search was conducted between 1990 and 2014 through the English language literature (online MEDLINE PubMed database) using the keywords endometriosis combined with malignant transformation, oxidative stress, and antioxidant defense. In benign endometriosis, autoxidation and Fenton reaction of hemoglobin from the ferrous Fe2+ (oxyhemoglobin) state to the ferric Fe3+ (methemoglobin) state lead to production of excess reactive oxygen species (ROS) such as O2 − and ∙OH. Hemoglobin, heme, and iron derivatives in endometriotic cysts cause distortion in the homeostatic redox balance. Excess oxidative stress could trigger DNA damage and cell death. In contrast, endometriosis-associated ovarian cancer (EAOC) might be associated with an effective antioxidant defense, including heme oxygenases, cytochrome P450 family, and glutathione transferase family. The pattern of redox balance supports that enhanced antioxidants may be involved in the pathogenesis of malignant transformation. In conclusion, oxidant/antioxidant balance function is a double-edged sword, promoting cell death or carcinogenesis. Upregulation of antioxidant functions in endometriotic cyst may result in restoration of cell survival and subsequent malignant transformation. PMID:26185594

  17. Oxidative DNA damage and oxidative stress in lead-exposed workers.

    PubMed

    Dobrakowski, M; Pawlas, N; Kasperczyk, A; Kozłowska, A; Olewińska, E; Machoń-Grecka, A; Kasperczyk, S

    2017-07-01

    There are many discrepancies among the results of studies on the genotoxicity of lead. The aim of the study was to explore lead-induced DNA damage, including oxidative damage, in relation to oxidative stress intensity parameters and the antioxidant defense system in human leukocytes. The study population consisted of 100 male workers exposed to lead. According to the blood lead (PbB) levels, they were divided into the following three subgroups: a group with PbB of 20-35 μg/dL (low exposure to lead (LE) group), a group with a PbB of 35-50 µg/dL (medium exposure to lead (ME) group), and a group with a PbB of >50 μg/dL (high exposure to lead (HE) group). The control group consisted of 42 healthy males environmentally exposed to lead (PbB < 10 μg/dL). A comet assay was used to measure the DNA damage in leukocytes. We measured the activity of superoxide dismutase (SOD), catalase, glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD), and glutathione-S-transferase (GST) as well as the concentration of malondialdehyde (MDA), and the value of the total antioxidant capacity. The level of PbB was significantly higher in the examined subgroups than in the control group. The percentage of DNA in the tail was significantly higher in the LE, ME, and HE subgroups than in the control group by 10% ( p = 0.001), 15% ( p < 0.001), and 20% ( p < 0.001), respectively. The activity of GR was significantly lower in the LE and ME subgroups than in the control group by 25% ( p = 0.007) and 17% ( p = 0.028), respectively. The activity of G6PD was significantly lower in the ME subgroup by 25% ( p = 0.022), whereas the activity of GST was significantly higher in the HE subgroup by 101% ( p = 0.001) than in the control group. Similarly, the activity of SOD was significantly higher in the LE and ME subgroups by 48% ( p = 0.026) and 34% ( p = 0.002), respectively. The concentration of MDA was significantly higher in the LE, ME, and HE subgroups than in the control group by 43

  18. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress.

    PubMed

    Farías, Jorge G; Molina, Víctor M; Carrasco, Rodrigo A; Zepeda, Andrea B; Figueroa, Elías; Letelier, Pablo; Castillo, Rodrigo L

    2017-09-01

    Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia-reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs.

  19. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood.

    PubMed

    Qasim, Neha; Mahmood, Riaz

    2015-01-01

    Creatine (Cr) is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their lifespan.

  20. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood

    PubMed Central

    Qasim, Neha; Mahmood, Riaz

    2015-01-01

    Creatine (Cr) is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their lifespan. PMID

  1. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera.

    PubMed

    Margotta, Joseph W; Roberts, Stephen P; Elekonich, Michelle M

    2018-05-03

    Frequent and highly aerobic behaviors likely contribute to naturally occurring stress, accelerate senescence, and limit lifespan. To understand how the physiological and cellular mechanisms that determine the onset and duration of senescence are shaped by behavioral development and behavioral duration, we exploited the tractability of the honey bee ( Apis mellifera ) model system. First, we determined if a cause-effect relationship exists between honey bee flight and oxidative stress by comparing oxidative damage accrued from intense flight bouts to damage accrued from D-galactose ingestion, which induces oxidative stress and limit lifespan in other insects. Second, we experimentally manipulated the duration of honey bee flight across a range of ages to determine their effects on reactive oxygen species (ROS) accumulation and associated enzymatic antioxidant protective mechanisms. In bees fed D-galactose, lipid peroxidation (MDA) was higher than in bees fed sucrose and age-matched bees with high and low flight experience collected from a colony. Bees with high amounts of flight experience exhibited elevated 8-OHdG, a marker of oxidative DNA damage, relative to bees with less flight experience. Bees with high amounts of flight experience also showed increased levels of pro-oxidants (superoxide and H 2 O 2 ) and decreased or unchanged levels of antioxidants (SOD and catalase). These data implicate an imbalance of pro- to antioxidants in flight-associated oxidative stress and reveal how behavior can damage a cell and consequently limit lifespan. © 2018. Published by The Company of Biologists Ltd.

  2. Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats.

    PubMed

    Yang, Lin; Chen, Jia-Hou; Xu, Tong; Zhou, Ai-Shen; Yang, Hong-Kun

    2012-10-05

    To evaluate the effects of rice protein (RP) on glutathione metabolism and oxidative damage. Seven-week-old male Wistar rats were fed diets containing casein and RP without cholesterol for 3weeks. Plasma and liver lipid levels, hepatic accumulation of total glutathione (T-GSH), oxidized glutathione (GSSG), reduced glutathione (GSH), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In the liver, the total antioxidative capacity (T-AOC), mRNA levels of glutamate cysteine ligase catalytic subunit (GCLC) and glutamate cysteine ligase modulatory subunit (GCLM), and the activities of hepatic catalase (CAT), total superoxide dismutase (T-SOD), γ-glutamylcysteine synthetase (γ-GCS), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GSHPx) were also measured. T-AOC, GCLC and GCLM mRNA levels, antioxidative enzyme activities (T-SOD and CAT) and glutathione metabolism related enzyme activities (γ-GCS, GST, GR and GSHPx) were effectively stimulated by RP feeding compared to casein, and RP significantly reduced the hepatic accumulation of MDA and PCO in rats. These results indicate that lipid-lowering activity was induced by RP feeding. The present study demonstrates that RP improves oxidative stress primarily through enzymatic and non-enzymatic antioxidative defense mechanisms, reflected by enhancing the antioxidative status and attenuating the oxidative damage to lipids and proteins. These results suggest that RP can prevent hyperlipidemia in part through modifying glutathione metabolism, and sulfur amino acids may be the main modulator of this antioxidative mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Scavenging and antioxidant properties of different grape cultivars against ionizing radiation-induced liver damage ex vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2016-04-01

    Ionizing radiation (IR) has become an integral part of the modern medicine--both for diagnosis as well as therapy. However, normal tissues or even distant cells also suffer IR-induced free radical insult. It may be more damaging in longer term than direct radiation exposure. Antioxidants provide protection against IR-induced damage. Grapes are the richest source of antioxidants. Here, we assessed the scavenging properties of four grape (Vitis vinifera) cultivars, namely Flame seedless (Black), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Green), and also evaluated their protective action against γ-radiation-induced oxidative stress in liver tissue ex vivo. The scavenging abilities of grape seeds [2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC₅₀ = 0.008 ± 0.001 mg/mL), hydrogen peroxide (IC₅₀ = 0.49 to 0.8 mg/mL), hydroxyl radicals (IC₅₀ = 0.08 ± 0.008 mg/mL), and nitric oxide (IC₅₀ = 0.8 ± 0.08 mg/mL)] were higher than that of skin or pulp. Gamma (γ) radiation exposure to sliced liver tissues ex vivo from goat, @ 6 Gy significantly (P < 0.001) decreased reduced glutathione (GSH) content by 21.2% and also activities of catalase, glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST) by 49.5, 66.0, 70.3, 73.6%, respectively. However, it increased thiobarbituric acid reactive substances (TBARS) by 2.04-fold and nitric oxide level by 48.6% compared to untreated group. Further increase in doses (10 or 16 Gy) of γ-radiation correspondingly decreased GSH content and enzyme activities, and increased TBARS and nitric oxide levels. Grape extract treatment prior to ionizing radiation exposure ameliorated theses effects at varying extent. The seed extracts exhibited strong antioxidant potential compared to skin or pulp extracts of different grape cultivars against oxidative damage by ionizing radiation (6 Gy, 10 Gy and 16 Gy) in sliced liver tissues ex vivo. Grape extracts at

  4. Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides.

    PubMed

    Zepeda-Arce, Rigoberto; Rojas-García, Aurora Elizabeth; Benitez-Trinidad, Alma; Herrera-Moreno, José Francisco; Medina-Díaz, Irma Martha; Barrón-Vivanco, Briscia S; Villegas, Germán Pier; Hernández-Ochoa, Isabel; Sólis Heredia, María de Jesús; Bernal-Hernández, Yael Y

    2017-06-01

    The indiscriminate use of pesticides in agriculture and public health campaigns has been associated with an increase of oxidative stress and DNA damage, resulting in health outcomes. Some defense mechanisms against free radical-induced oxidative damage include the antioxidant enzyme systems. The aim of this study was to determine the levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and the relationship of antioxidant enzyme levels with DNA damage among sprayers (workers) occupationally exposed to pesticides. The determinations of MDA and antioxidant enzymes were performed spectrophotometrically. The genotoxic effects were evaluated using the comet assay. The results showed a marginally significant decrease in SOD and CAT activities in the high exposure group compared to the control group. For MDA, statistically significant differences were found among people working long term vs. those working temporarily (P = 0.02) as sprayers. In the moderate exposure group, a positive correlation was observed between MDA levels and GPx activity. In the high exposure group, a negative correlation was observed between GR and CAT activities, and between MDA levels and GPx activities. Furthermore, in the high exposure group, a positive correlation between DNA damage parameters and MDA levels was observed. The results suggest an important role of antioxidant enzymes for the protection of DNA damage caused by occupational exposure to pesticides. © 2017 Wiley Periodicals, Inc.

  5. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.

    PubMed

    Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina

    2015-01-01

    Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need

  6. Carotenoids, Birdsong and Oxidative Status: Administration of Dietary Lutein Is Associated with an Increase in Song Rate and Circulating Antioxidants (Albumin and Cholesterol) and a Decrease in Oxidative Damage

    PubMed Central

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits. PMID:25549336

  7. Carotenoids, birdsong and oxidative status: administration of dietary lutein is associated with an increase in song rate and circulating antioxidants (albumin and cholesterol) and a decrease in oxidative damage.

    PubMed

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits.

  8. DNA damage protection against free radicals of two antioxidant neolignan glucosides from sugarcane molasses.

    PubMed

    Asikin, Yonathan; Takahashi, Makoto; Mizu, Masami; Takara, Kensaku; Oku, Hirosuke; Wada, Koji

    2016-03-15

    Sugarcane molasses is a potential by-product of the sugarcane manufacturing industry that is rich in antioxidant materials. The present study aimed to obtain antioxidative compounds from sugarcane molasses and to evaluate their ability to protect DNA from oxidative damage. Two neolignan glucosides were isolated from sugarcane molasses using bioassay and UV spectra monitoring-guided fractionation. The compounds were elucidated as (7R,8S)-dehydrodiconiferyl alcohol-4-O-β-d-glucoside (1) and (7S,8R)-simulanol-9'-O-β-d-glucoside (2). Neolignan glucoside 2 protected against DNA damage caused by free radicals more effectively than did neolignan glucoside 1 (13.62 and 9.08 µmol L(-1) for peroxyl and hydroxyl radicals, respectively, compared to 48.07 and 14.42 µmol L(-1) ). Additionally, neolignan glucoside 2 exhibited superior DNA protection against free radicals compared with various known antioxidative compounds, including p-coumaric acid, ferulic acid, vanillic acid and epigallocatechin gallate. The isolated neolignan glucosides from sugarcane molasses are able to protect DNA from oxidative damage caused by free radicals. This is the first identification of these two compounds in sugarcane molasses. The sugarcane molasses can therefore be used as potential nutraceutical preventative agents, and the findings may foster the utilization of this by-product as a bioresource-based product. © 2015 Society of Chemical Industry. Copyright © 2015 Society of Chemical Industry.

  9. Black soybean seed coat polyphenols prevent AAPH-induced oxidative DNA-damage in HepG2 cells

    PubMed Central

    Yoshioka, Yasukiyo; Li, Xiu; Zhang, Tianshun; Mitani, Takakazu; Yasuda, Michiko; Nanba, Fumio; Toda, Toshiya; Yamashita, Yoko; Ashida, Hitoshi

    2017-01-01

    Black soybean seed coat extract (BE), which contains abundant polyphenols such as procyanidins, cyanidin 3-glucoside, (+)-catechin, and (−)­epicatechin, has been reported on health beneficial functions such as antioxidant activity, anti-inflammatory, anti-obesity, and anti-diabetic activities. In this study, we investigated that prevention of BE and its polyphenols on 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH)-induced oxidative DNA damage, and found that these polyphenols inhibited AAPH-induced formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker for oxidative DNA damage in HepG2 cells. Under the same conditions, these polyphenols also inhibited AAPH-induced accumulation of reactive oxygen species (ROS) in the cells. Inhibition of ROS accumulation was observed in both cytosol and nucleus. It was confirmed that these polyphenols inhibited formation of AAPH radical using oxygen radical absorbance capacity assay under the cell-free conditions. These results indicate that polyphenols in BE inhibit free radical-induced oxidative DNA damages by their potent antioxidant activity. Thus, BE is an effective food material for prevention of oxidative stress and oxidative DNA damages. PMID:28366989

  10. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress

    PubMed Central

    Molina, Víctor M.; Carrasco, Rodrigo A.; Figueroa, Elías; Letelier, Pablo; Castillo, Rodrigo L.

    2017-01-01

    Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia–reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs. PMID:28862654

  11. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants

    PubMed Central

    Baradaran, Azar; Nasri, Hamid; Rafieian-Kopaei, Mahmoud

    2014-01-01

    Hypertension is a major risk factor for myocardial infarction, heart failure, stroke, peripheral arterial disease, and aortic aneurysm, and is a cause of chronic kidney disease. Hypertension is often associated with metabolic abnormalities such as diabetes and dyslipidemia, and the rate of these diseases is increasing nowadays. Recently it has been hypothesized that oxidative stress is a key player in the pathogenesis of hypertension. A reduction in superoxide dismutase and glutathione peroxidase activity has been observed in newly diagnosed and untreated hypertensive subjects, which are inversely correlated with blood pressure. Hydrogen peroxide production is also higher in hypertensive subjects. Furthermore, hypertensive patients have higher lipid hydroperoxide production. Oxidative stress is also markedly increased in hypertensive patients with renovascular disease. If oxidative stress is indeed a cause of hypertension, then, antioxidants should have beneficial effects on hypertension control and reduction of oxidative damage should result in a reduction in blood pressure. Although dietary antioxidants may have beneficial effects on hypertension and cardiovascular risk factors, however, antioxidant supplementation has not been shown consistently to be effective and improvement is not usually seen in blood pressure after treatment with single or combination antioxidant therapy in subjects thought to be at high risk of cardiovascular disease. This matter is the main focus of this paper. A list of medicinal plants that have been reported to be effective in hypertension is also presented. PMID:25097610

  12. Oxidative stress evoked damages on rat sperm and attenuated antioxidant status on consumption of aspartame.

    PubMed

    Ashok, I; Poornima, P S; Wankhar, D; Ravindran, R; Sheeladevi, R

    2017-07-01

    Although several studies on toxic effect of aspartame metabolite have been studied, controversial reports over the use of aspartame owing to the fact that it releases methanol as one of its metabolite during metabolism exist. This present study is proposed to investigate whether aspartame (40 mg kg -1 b.wt) administration for 90 days could induce oxidative stress and alter antioxidant status of epididymal sperm in Wistar strain male albino rats. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the effects of aspartame. Oral intubations of FDA approved 40 mg kg -1 b.wt aspartame were given daily for 90 days to Wistar strain male albino rats and studied along with controls and MTX-treated controls. Sperm count, viability, morphology, morphometry and motility were assessed. A significant decrease in sperm function of aspartame treated animals was observed when compared with the control and MTX control. The free radical generation were observed in epididymal sperm by assessing the scavenging enzymes, enzymatic and non-enzymatic antioxidants. Result suggest that there was a significant increase glutathione-s-transferase (GST), with a significant decrease in reduced glutathione (GSH), superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), catalase activity (CAT) and glutathione reductase concentration. The increase in free radicals generation could have ultimately caused the lipid peroxidation mediated damages on the testis. Aspartame treated animals also revealed the reduced space in seminiferous tubules, which resulted in reduced Leydig cells when compared with control in histopathology. These findings demonstrate that aspartame metabolites could be a contributing factor for development of oxidative stress in the epididymal sperm.

  13. Benefits of dietary phytochemical supplementation on eccentric exercise-induced muscle damage: Is including antioxidants enough?

    PubMed

    Pereira Panza, Vilma Simões; Diefenthaeler, Fernando; da Silva, Edson Luiz

    2015-09-01

    The purpose of this review was to critically discuss studies that investigated the effects of supplementation with dietary antioxidant phytochemicals on recovery from eccentric exercise-induced muscle damage. The performance of physical activities that involve unaccustomed eccentric muscle actions-such as lowering a weight or downhill walking-can result in muscle damage, oxidative stress, and inflammation. These events may be accompanied by muscle weakness and delayed-onset muscle soreness. According to the current evidences, supplementation with dietary antioxidant phytochemicals appears to have the potential to attenuate symptoms associated with eccentric exercise-induced muscle damage. However, there are inconsistencies regarding the relationship between muscle damage and blood markers of oxidative stress and inflammation. Furthermore, the effectiveness of strategies appear to depend on a number of aspects inherent to phytochemical compounds as well as its food matrix. Methodological issues also may interfere with the proper interpretation of supplementation effects. Thus, the study may contribute to updating professionals involved in sport nutrition as well as highlighting the interest of scientists in new perspectives that can widen dietary strategies applied to training. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Anti-Oxidative Effects of Rooibos Tea (Aspalathus linearis) on Immobilization-Induced Oxidative Stress in Rat Brain

    PubMed Central

    Kim, Hyun-Pyo

    2014-01-01

    Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS) or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea’s ability to (i) reverse the increase in stress-related metabolites (5-HIAA and FFA), (ii) prevent lipid peroxidation (LPO), (iii) restore stress-induced protein degradation (PD), (iv) regulate glutathione metabolism (GSH and GSH/GSSG ratio), and (v) modulate changes in the activities of antioxidant enzymes (SOD and CAT). PMID:24466326

  15. Testing the Effects of dl-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation in Australian Field Crickets (Teleogryllus commodus)

    PubMed Central

    Archer, C. Ruth; Hempenstall, Sarah; Royle, Nick J.; Selman, Colin; Willis, Sheridan; Rapkin, James; Blount, Jon D.; Hunt, John

    2015-01-01

    The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus) four diets differing in their protein and carbohydrate content, which have sex-specific effects on reproductive effort and lifespan. We supplemented half of these crickets with the vitamin E isoform dl-alpha-tocopherol and measured the effects of nutrient intake on lifespan, reproduction, oxidative damage and antioxidant protection. We found a clear trade-off between reproductive effort and lifespan in females but not in males. In direct contrast to the oxidative stress theory, crickets fed diets that improved their lifespan had high levels of oxidative damage to proteins. Supplementation with dl-alpha-tocopherol did not significantly improve lifespan or reproductive effort. However, males fed diets that increased their reproductive investment experienced high oxidative damage to proteins. While this suggests that male reproductive effort could elevate oxidative damage, this was not associated with reduced male survival. Overall, these results provide little evidence that oxidative damage plays a central role in mediating life-history trade-offs in T. commodus. PMID:26783958

  16. Coccidian Infection Causes Oxidative Damage in Greenfinches

    PubMed Central

    Sepp, Tuul; Karu, Ulvi; Blount, Jonathan D.; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2012-01-01

    The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant protection (TAC and OXY), plasma triglyceride and carotenoid levels or body mass, indicating that pathological consequences of infection were generally mild. Infected birds had on average 8% higher levels of plasma malondialdehyde (MDA, a toxic end-product of lipid peroxidation) than un-infected birds. The birds that had highest MDA levels subsequent to experimental infection experienced the highest decrease in infection intensity. This observation is consistent with the idea that oxidative stress is a causative agent in the control of coccidiosis and supports the concept of oxidative costs of immune responses and parasite resistance. The finding that oxidative damage accompanies even the mild infection with a common parasite highlights the relevance of oxidative stress biology for the immunoecological research. PMID:22615772

  17. Magmas functions as a ROS regulator and provides cytoprotection against oxidative stress-mediated damages

    PubMed Central

    Srivastava, S; Sinha, D; Saha, P P; Marthala, H; D'Silva, P

    2014-01-01

    Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases. PMID:25165880

  18. Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats.

    PubMed

    Hassan, H A; Abdel-Aziz, A F

    2010-01-01

    Oxidative damage to cellular components such as lipids and cell membranes by free radicals and other reactive oxygen species is believed to be associated with the development of degenerative diseases. Fluoride intoxication is associated with oxidative stress and altered anti-oxidant defense mechanism. So the present study was extended to investigate black berry anti-oxidant capacity towards superoxide anion radicals, hydroxyl radicals and nitrite in different organs of fluoride-intoxicated rats. The data indicated that sodium fluoride (10.3mg/kg bw) administration induced oxidative stress as evidenced by elevated levels of lipid peroxidation and nitric oxide in red blood cells, kidney, testis and brain tissues. Moreover, significantly decreased glutathione level, total anti-oxidant capacity and superoxide dismutase activity were observed in the examined tissues. On the other hand, the induced oxidative stress and the alterations in anti-oxidant system were normalized by the oral administration of black berry juice (1.6g/kg bw). Therefore it can be concluded that black berry administration could minimize the toxic effects of fluoride indicating its free radical-scavenging and potent anti-oxidant activities. Published by Elsevier Ltd.

  19. Oxidative Stress and the Use of Antioxidants in Stroke

    PubMed Central

    Shirley, Rachel; Ord, Emily N. J.; Work, Lorraine M.

    2014-01-01

    Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease. PMID:26785066

  20. Phenolic Content of Hypodaphnis Zenkeri and Its Antioxidant Effects against Fenton Reactions’ Mediated Oxidative Injuries on Liver Homogenate

    PubMed Central

    Moukette Moukette, Bruno; Pieme, Constant Anatole; Nya Biapa, Prosper Cabral; Njimou, Jacques Romain; Ama Moor, Vicky Jocelyne; Stoller, Marco; Bravi, Marco; Ngogang, Jeanne Yonkeu

    2014-01-01

    Under oxidative stress conditions, endogenous antioxidant defenses are unable to completely inactivate the free radicals generated by an excessive production of reactive oxygen species (ROS). This state causes serious cell damage leading to a variety of human diseases. Natural antioxidants can protect cells against oxidative stress. Hypaodaphnis zenkeri (H. zenkiri) is a plant consumed as a spice in the Cameroonian diet, and its bark has been used in traditional medicine for the treatment of several diseases. The present study aims at investigating the antioxidant activity, which includes free radical scavenging and protective properties of an extract from H. Zenkiri against oxidative damage on a liver homogenate. The free radical assays determined the scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), nitrite oxide (NO) and 2,2-azinobis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radicals and the enzymes, whose protection was to be considered in the liver homogenate, including superoxide dismutase, catalase, and peroxidase. The antioxidative activities were studied using the ferric reducing antioxidant power (FRAP), reductive activity, and phosphomolybdenum antioxidant power (PAP) methods. In addition, the phenolic contents of the extracts were examined. The results showed that these extracts demonstrated significant scavenging properties and antioxidant activities, with the hydro-ethanolic extract of the bark of H. zenkeri (EEH) being the most potent. This extract had the highest total polyphenol (21.77 ± 0.05 mg caffeic acid (CAE)/g dried extract (DE)) and flavonoids (3.34 ± 0.13 mg quercetin (QE)/g dried extract) content. The same extract had significantly greater protective effects on enzyme activities compared to other extracts. The high performance liquied chromatography (HPLC) profile showed higher levels of caffeic acid, OH-tyrosol acid, and rutin in the leaves compared to the bark of H. zenkeri. In conclusion, the ethanolic

  1. Amelioration of oxidative DNA damage in mouse peritoneal macrophages by Hippophae salicifolia due to its proton (H+) donation capability: Ex vivo and in vivo studies

    PubMed Central

    Chakraborty, Mainak; Karmakar, Indrajit; Haldar, Sagnik; Das, Avratanu; Bala, Asis; Haldar, Pallab Kanti

    2016-01-01

    Introduction: The present study evaluates the antioxidant effect of methanol extract of Hippophae salicifolia (MEHS) bark with special emphasis on its role on oxidative DNA damage in mouse peritoneal macrophages. Material and Methods: In vitro antioxidant activity was estimated by standard antioxidant assays whereas the antioxidant activity concluded the H+ donating capacity. Mouse erythrocytes’ hemolysis and peritoneal macrophages’ DNA damage were determined spectrophotometrically. In vivo antioxidant activity of MEHS was determined in carbon tetrachloride-induced mice by studying its effect on superoxide anion production in macrophages cells, superoxide dismutase in the cell lysate, DNA damage, lipid peroxidation, and reduces glutathione. Results: The extract showed good in vitro antioxidant activities whereas the inhibitory concentrations values ranged from 5.80 to 106.5 μg/ml. MEHS significantly (P < 0.05) attenuated the oxidative DNA damage. It also attenuated the oxidative conversion of hemoglobin to methemoglobin and elevation of enzymatic and nonenzymatic antioxidant in cells. Conclusion: The result indicates MEHS has good in vitro-in vivo antioxidant property as well as the protective effect on DNA and red blood cell may be due to its H+ donating property. PMID:27413349

  2. Antioxidative effects of sulfurous mineral water: protection against lipid and protein oxidation.

    PubMed

    Benedetti, S; Benvenuti, F; Nappi, G; Fortunati, N A; Marino, L; Aureli, T; De Luca, S; Pagliarani, S; Canestrari, F

    2009-01-01

    To investigate the antioxidative properties of sulfurous drinking water after a standard hydropinic treatment (500 ml day(-1) for 2 weeks). Forty apparently healthy adults, 18 men and 22 women, age 41-55 years old. The antioxidant profile and the oxidative condition were evaluated in healthy subjects supplemented for 2 weeks with (study group) or without (controls) sulfurous mineral water both before (T0) and after (T1) treatment. At T1, a significant decrease (P<0.05) in both lipid and protein oxidation products, namely malondialdehyde, carbonyls and AOPP, was found in plasma samples from subjects drinking sulfurous water with respect to controls. Concomitantly, a significant increment (P<0.05) of the total antioxidant capacity of plasma as well as of total plasmatic thiol levels was evidenced. Tocopherols, carotenoids and retinol remained almost unchanged before and after treatment in both groups. The improved body redox status in healthy volunteers undergoing a cycle of hydropinic therapy suggests major benefits from sulfurous water consumption in reducing biomolecule oxidation, possibly furnishing valid protection against oxidative damage commonly associated with aging and age-related degenerative diseases.

  3. Oxidative damage in response to natural levels of UV-B radiation in larvae of the tropical sea urchin Tripneustes gratilla.

    PubMed

    Lister, Kathryn Naomi; Lamare, Miles D; Burritt, David J

    2010-01-01

    To assess the effects of UV radiation (280-400nm) on development, oxidative damage and antioxidant defence in larvae of the tropical sea urchin Tripneustes gratilla, a field experiment was conducted at two depths in Aitutaki, Cook Islands (18.85°S, 159.75°E) in May 2008. Compared with field controls (larvae shielded from UV-R but exposed to VIS-radiation), UV-B exposure resulted in developmental abnormality and increases in oxidative damage to proteins (but not lipids) in embryos of T. gratilla held at 1m depth. Results also indicated that larvae had the capacity to increase the activities of protective antioxidant enzymes when exposed to UV-B. The same trends in oxidative damage and antioxidant defence were observed for embryos held at 4m, although the differences were smaller and more variable. In contrast to UV-B exposure, larvae exposed to UV-A only showed no significant increases in abnormality or oxidative damage to lipids and proteins compared with field controls. This was true at both experimental depths. Furthermore, exposure to UV-A did not cause a significant increase in the activities of antioxidants. This study indicates that oxidative stress is an important response of tropical sea urchin larvae to exposure to UV radiation. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  4. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model

    PubMed Central

    Dare, Anna J.; Logan, Angela; Prime, Tracy A.; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M.; Bradley, J. Andrew; Pettigrew, Gavin J.; Murphy, Michael P.; Saeb-Parsy, Kourosh

    2015-01-01

    Background Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Methods Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non–anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. Results MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. Conclusions IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. PMID:26140808

  5. Plasma Protein Oxidation and Its Correlation with Antioxidant Potential During Human Aging

    PubMed Central

    Pandey, Kanti Bhooshan; Mehdi, Mohd Murtaza; Maurya, Pawan Kumar; Rizvi, Syed Ibrahim

    2010-01-01

    Previous studies have indicated that the main molecular characteristic of aging is the progressive accumulation of oxidative damages in cellular macromolecules. Proteins are one of the main molecular targets of age-related oxidative stress, which have been observed during aging process in cellular systems. Reactive oxygen species (ROS) can lead to oxidation of amino acid side chains, formation of protein-protein cross-linkages, and oxidation of the peptide backbones. In the present study, we report the age-dependent oxidative alterations in biomarkers of plasma protein oxidation: protein carbonyls (PCO), advanced oxidation protein products (AOPPs) and plasma total thiol groups (T-SH) in the Indian population and also correlate these parameters with total plasma antioxidant potential. We show an age dependent decrease in T-SH levels and increase in PCO and AOPPs level. The alterations in the levels of these parameters correlated significantly with the total antioxidant capacity of the plasma. The levels of oxidized proteins in plasma provide an excellent biomarker of oxidative stress due to the relative long half-life of such oxidized proteins. PMID:20826915

  6. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    PubMed Central

    Han, Ye; Xu, Qi; Hu, Jiang-ning; Han, Xin-yue; Li, Wei; Zhao, Li-chun

    2015-01-01

    The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties. PMID:25608939

  7. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect.

    PubMed

    Piao, Mei Jing; Kang, Kyoung Ah; Zhang, Rui; Ko, Dong Ok; Wang, Zhi Hong; You, Ho Jin; Kim, Hee Sun; Kim, Ju Sun; Kang, Sam Sik; Hyun, Jin Won

    2008-12-01

    We elucidated the cytoprotective effects of hyperoside (quercetin-3-O-galactoside) against hydrogen peroxide (H2O2)-induced cell damage. We found that hyperoside scavenged the intracellular reactive oxygen species (ROS) detected by fluorescence spectrometry, flow cytometry, and confocal microscopy. In addition, we found that hyperoside scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4)+H2O2) in a cell-free system, which was detected by electron spin resonance (ESR) spectrometry. Hyperoside was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population, and decreased DNA fragmentation. In addition, hyperoside pretreatment inhibited the H2O2-induced activation of caspase-3 measured in terms of levels of cleaved caspase-3. Hyperoside prevented H2O2-induced lipid peroxidation as well as protein carbonyl. In addition, hyperoside prevented the H2O2-induced cellular DNA damage, which was established by comet tail, and phospho histone H2A.X expression. Furthermore, hyperoside increased the catalase and glutathione peroxidase activities. Conversely, the catalase inhibitor abolished the cytoprotective effect of hyperoside from H2O2-induced cell damage. In conclusion, hyperoside was shown to possess cytoprotective properties against oxidative stress by scavenging intracellular ROS and enhancing antioxidant enzyme activity.

  8. Vitamin-E reduces the oxidative damage on delta-aminolevulinic dehydratase induced by lead intoxication in rat erythrocytes.

    PubMed

    Rendón-Ramirez, A; Cerbón-Solórzano, J; Maldonado-Vega, M; Quintanar-Escorza, M A; Calderón-Salinas, J V

    2007-09-01

    Lead intoxication induces oxidative damage on lipids and proteins. In the present paper we study in vivo and in vitro the antioxidant effect of vitamin-E and trolox, on the oxidative effects of lead intoxication in rat erythrocytes. Vitamin-E simultaneously administered to erythrocytes treated with lead was capable to prevent the inhibition of delta-aminolevulinic dehydratase activity and lipid oxidation. Partial but important protective effects were found when vitamin-E was administered either after or before lead exposure in rats. In vitro, the antioxidant trolox protected delta-ALA-D activity against damage induced by lead or menadione. These results indicate that vitamin-E could be useful in order to protect membrane-lipids and, notably, to prevent protein oxidation produced by lead intoxication.

  9. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury.

    PubMed

    Adlam, Victoria J; Harrison, Joanne C; Porteous, Carolyn M; James, Andrew M; Smith, Robin A J; Murphy, Michael P; Sammut, Ivan A

    2005-07-01

    Mitochondrial oxidative damage contributes to a wide range of pathologies, including cardiovascular disorders and neurodegenerative diseases. Therefore, protecting mitochondria from oxidative damage should be an effective therapeutic strategy. However, conventional antioxidants have limited efficacy due to the difficulty of delivering them to mitochondria in situ. To overcome this problem, we developed mitochondria-targeted antioxidants, typified by MitoQ, which comprises a lipophilic triphenylphosphonium (TPP) cation covalently attached to a ubiquinol antioxidant. Driven by the large mitochondrial membrane potential, the TPP cation concentrates MitoQ several hundred-fold within mitochondria, selectively preventing mitochondrial oxidative damage. To test whether MitoQ was active in vivo, we chose a clinically relevant form of mitochondrial oxidative damage: cardiac ischemia-reperfusion injury. Feeding MitoQ to rats significantly decreased heart dysfunction, cell death, and mitochondrial damage after ischemia-reperfusion. This protection was due to the antioxidant activity of MitoQ within mitochondria, as an untargeted antioxidant was ineffective and accumulation of the TPP cation alone gave no protection. Therefore, targeting antioxidants to mitochondria in vivo is a promising new therapeutic strategy in the wide range of human diseases such as Parkinson's disease, diabetes, and Friedreich's ataxia where mitochondrial oxidative damage underlies the pathology.

  10. Integrated use of antioxidant enzymes and oxidative damage in two fish species to assess pollution in man-made hydroelectric reservoirs.

    PubMed

    Sakuragui, M M; Paulino, M G; Pereira, C D S; Carvalho, C S; Sadauskas-Henrique, H; Fernandes, M N

    2013-07-01

    This study investigated the relationship between contaminant body burden and the oxidative stress status of the gills and livers of two wild fish species in the Furnas Hydroelectric Power Station (HPS) reservoir (Minas Gerais, Brazil). Gills and livers presented similar pathways of metals and organochlorine bioaccumulation. During June, organochlorines were associated with lipid peroxidation (LPO), indicating oxidative stress due to the inhibition of the antioxidant enzymes superoxide dismutase and glutathione peroxidase. In the most polluted areas, metal concentrations in the liver were associated with metallothionein. During December, contaminants in the gills and liver were associated with catalase activity and LPO. Aldrin/dieldrin was the contaminant most associated with oxidative damage in the livers of both species. This integrated approach shed light on the relationship between adverse biological effects and bioaccumulation of contaminants inputted by intensive agricultural practices and proved to be a suitable tool for assessing the environmental quality of man-made reservoirs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum).

    PubMed

    Sun, Chengliang; Lu, Lingli; Liu, Lijuan; Liu, Wenjing; Yu, Yan; Liu, Xiaoxia; Hu, Yan; Jin, Chongwei; Lin, Xianyong

    2014-03-01

    • Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Roles of oxidative stress in synchrotron radiation X-ray-induced testicular damage of rodents

    PubMed Central

    Ma, Yingxin; Nie, Hui; Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Shao, Jiaxiang; He, Xin; Zhang, Tingting; Zheng, Chaobo; Xia, Weiliang; Ying, Weihai

    2012-01-01

    Synchrotron radiation (SR) X-ray has characteristic properties such as coherence and high photon flux, which has excellent potential for its applications in medical imaging and cancer treatment. However, there is little information regarding the mechanisms underlying the damaging effects of SR X-ray on biological tissues. Oxidative stress plays an important role in the tissue damage induced by conventional X-ray, while the role of oxidative stress in the tissue injury induced by SR X-ray remains unknown. In this study we used the male gonads of rats as a model to study the roles of oxidative stress in SR X-ray-induced tissue damage. Exposures of the testes to SR X-ray at various radiation doses did not significantly increase the lipid peroxidation of the tissues, assessed at one day after the irradiation. No significant decreases in the levels of GSH or total antioxidation capacity were found in the SR X-ray-irradiated testes. However, the SR X-ray at 40 Gy induced a marked increase in phosphorylated H2AX – a marker of double-strand DNA damage, which was significantly decreased by the antioxidant N-acetyl cysteine (NAC). NAC also attenuated the SR X-ray-induced decreases in the cell layer number of seminiferous tubules. Collectively, our observations have provided the first characterization of SR X-ray-induced oxidative damage of biological tissues: SR X-ray at high doses can induce DNA damage and certain tissue damage during the acute phase of the irradiation, at least partially by generating oxidative stress. However, SR X-ray of various radiation doses did not increase lipid peroxidation. PMID:22837810

  13. Aeroallergens Induce Reactive Oxygen Species Production and DNA Damage and Dampen Antioxidant Responses in Bronchial Epithelial Cells.

    PubMed

    Chan, Tze Khee; Tan, W S Daniel; Peh, Hong Yong; Wong, W S Fred

    2017-07-01

    Exposure to environmental allergens is a major risk factor for asthma development. Allergens possess proteolytic activity that is capable of disrupting the airway epithelium. Although there is increasing evidence pointing to asthma as an epithelial disease, the underlying mechanism that drives asthma has not been fully elucidated. In this study, we investigated the direct DNA damage potential of aeroallergens on human bronchial epithelial cells and elucidated the mechanisms mediating the damage. Human bronchial epithelial cells, BEAS-2B, directly exposed to house dust mites (HDM) resulted in enhanced DNA damage, as measured by the CometChip and the staining of DNA double-strand break marker, γH2AX. HDM stimulated cellular reactive oxygen species production, increased mitochondrial oxidative stress, and promoted nitrosative stress. Notably, expression of nuclear factor erythroid 2-related factor 2-dependent antioxidant genes was reduced immediately after HDM exposure, suggesting that HDM altered antioxidant responses. HDM exposure also reduced cell proliferation and induced cell death. Importantly, HDM-induced DNA damage can be prevented by the antioxidants glutathione and catalase, suggesting that HDM-induced reactive oxygen and nitrogen species can be neutralized by antioxidants. Mechanistic studies revealed that HDM-induced cellular injury is NADPH oxidase (NOX)-dependent, and apocynin, a NOX inhibitor, protected cells from double-strand breaks induced by HDM. Our results show that direct exposure of bronchial epithelial cells to HDM leads to the production of reactive oxygen and nitrogen species that damage DNA and induce cytotoxicity. Antioxidants and NOX inhibitors can prevent HDM-induced DNA damage, revealing a novel role for antioxidants and NOX inhibitors in mitigating allergic airway disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine.

    PubMed

    Rodrigo, Ramón; Rivera, Gonzalo

    2002-08-01

    Over the last decade, oxidative stress has been implicated in the pathogenesis of a wide variety of seemingly unrelated renal diseases. Epidemiological studies have documented an association of moderate wine consumption with a decreased risk of cardiovascular and neurological diseases; however, similar studies in the kidney are still lacking. The kidney is an organ highly vulnerable to damage caused by reactive oxygen species (ROS), likely due to the abundance of polyunsaturated fatty acids in the composition of renal lipids. ROS are involved in the pathogenic mechanism of conditions such as glomerulosclerosis and tubulointerstitial fibrosis. The health benefits of moderate consumption of red wine can be partly attributed to its antioxidant properties. Indeed, the kidney antioxidant defense system is enhanced after chronic exposure to moderate amounts of wine, a response arising from the combined effects of ethanol and the nonalcoholic components, mainly polyphenols. Polyphenols behave as potent ROS scavengers and metal chelators; ethanol, in turn, modulates the activity of antioxidant enzymes. Therefore, a hypothesis that red wine causes a decreased vulnerability of the kidney to the oxidative challenges could be proposed. This view is partly supported by direct evidences indicating that wine and antioxidants isolated from red wine, as well as other antioxidants, significantly attenuate or prevent the oxidative damage to the kidney. The present hypothesis paper provides a collective body of evidence suggesting a protective role of moderate wine consumption against the production and progression of renal diseases, based on the existing concepts on the pathophysiology of kidney injury mediated by oxidative stress.

  15. Pro-oxidant Induced DNA Damage in Human Lymphoblastoid Cells: Homeostatic Mechanisms of Genotoxic Tolerance

    PubMed Central

    Seager, Anna L.

    2012-01-01

    Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response. Yet, homeostatic mechanisms, including DNA repair, that allow cells to tolerate low levels of genotoxic exposure exist. Acceptance of thresholds for genotoxicity has widespread consequences in terms of understanding cancer risk and regulating human exposure to chemicals/drugs. Three pro-oxidant chemicals, hydrogen peroxide (H2O2), potassium bromate (KBrO3), and menadione, were examined for low dose-response curves in human lymphoblastoid cells. DNA repair and antioxidant capacity were assessed as possible threshold mechanisms. H2O2 and KBrO3, but not menadione, exhibited thresholded responses, containing a range of nongenotoxic low doses. Levels of the DNA glycosylase 8-oxoguanine glycosylase were unchanged in response to pro- oxidant stress. DNA repair–focused gene expression arrays reported changes in ATM and BRCA1, involved in double-strand break repair, in response to low-dose pro-oxidant exposure; however, these alterations were not substantiated at the protein level. Determination of oxidatively induced DNA damage in H2O2-treated AHH-1 cells reported accumulation of thymine glycol above the genotoxic threshold. Further, the H2O2 dose-response curve was shifted by modulating the antioxidant glutathione. Hence, observed pro- oxidant thresholds were due to protective capacities of base excision repair enzymes and antioxidants against DNA damage, highlighting the importance of homeostatic mechanisms in “genotoxic tolerance.” PMID:22539617

  16. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model.

    PubMed

    Dare, Anna J; Logan, Angela; Prime, Tracy A; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M; Bradley, J Andrew; Pettigrew, Gavin J; Murphy, Michael P; Saeb-Parsy, Kourosh

    2015-11-01

    Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non-anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Antioxidant protective effect of honey in cigarette smoke-induced testicular damage in rats.

    PubMed

    Mohamed, Mahaneem; Sulaiman, Siti Amrah; Jaafar, Hasnan; Sirajudeen, Kuttulebbai Nainamohamed Salam

    2011-01-01

    Cigarette smoke (CS) can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily) and honey supplementation (1.2 g/kg daily) were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS) and glutathione peroxidase (GPx) activity, as well as reduced total antioxidant status (TAS) and activities of superoxide dismutase (SOD) and catalase (CAT). However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis.

  18. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses.

    PubMed

    Hamed, Seham M; Selim, Samy; Klöck, Gerd; AbdElgawad, Hamada

    2017-10-01

    Depending on species, heavy metals, including copper (Cu), differentially affect algal growth and metabolism. Here, we aim to evaluate the differential responses of two green microalgae, Chlorella sorokiniana and Scenedesmus acuminatus, exposed to sub-lethal doses of Cu (25 and 50µM, respectively) for 7 days. The changes in growth, oxidative damage markers, and antioxidants were analysed. We found that S. acuminatus could acclimatise during long-term exposure to Cu stress. S. acuminatus accumulated lower Cu content and showed a slight decrease in H 2 O 2 levels when compared to C. sorokiniana. Cu stress induced membrane damage in the two microalgae species, however, this increase was slightly lower in S. acuminatus. To mitigate Cu stress impact, C. sorkiniana markedly increased proline, polyphenols, flavonoids, tocopherols, glutathione levels, as well as the activities of GST, APX, GR and SOD enzymes, which could explain less-stress sensitivity. On the other hand, S. acuminatus exhibited significant increases in proline, polyphenol, and tocopherol contents. Activity levels of POX, APX, GR and SOD enzymes, were also increased. These results suggest that the two microalgae differentially induced the antioxidant defence system to neutralise the oxidative damage induced by Cu stress. This study also provided new data for Cu tolerance and Cu removal abilities of two microalgal species, which commonly exist in surface water bodies, where low Cu uptake and efficient antioxidant defence system protected S. acuminatus against oxidative stress induced by Cu stress. This makes it feasible for treatment of Cu contaminated waters. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars.

    PubMed

    Petridis, Antonios; Therios, Ioannis; Samouris, Georgios; Koundouras, Stefanos; Giannakoula, Anastasia

    2012-11-01

    . However, the severity as well as the duration of water stress might exceed antioxidant capacity, since MDA levels and subsequent oxidative damage increased after two months of water deficit. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Effects of tadalafil administration on plasma markers of exercise-induced muscle damage, IL6 and antioxidant status capacity.

    PubMed

    Ceci, Roberta; Duranti, Guglielmo; Sgrò, Paolo; Sansone, Massimiliano; Guidetti, Laura; Baldari, Carlo; Sabatini, Stefania; Di Luigi, Luigi

    2015-03-01

    Physical exercise is associated with enhanced production of reactive oxygen species, which if uncontrolled can result in tissue injury. Phosphodiesterase type 5 inhibitors (PDE5i) exhibit protective effect against oxidative stress, both in animals and healthy/unhealthy humans. However, the effect of a chronic administration of PDE5i, particularly combined with physical exercise, has never been investigated. The present study was designed to evaluate the effect of the long-acting PDE5i tadalafil on oxidative status and muscle damage after exhaustive exercise in healthy males included in a double-blind crossover trial. Tadalafil, having a putative antioxidant activity, may reduce oxidative damage after strenuous exercise. Each volunteer randomly received two tablets of placebo or tadalafil (20 mg/day) with 36 h of interval before performing exhaustive exercise. After 2 weeks of washout, the volunteers were crossed over. Blood samples were collected immediately before exercise, immediately after, and during recovery (15, 30, 60 min). Plasma total antioxidant status, glutathione homeostasis (GSH/GSSG), malondialdehyde (MDA), protein carbonyls, creatine kinase (CK), lactate dehydrogenase (LDH) and the inflammatory cytokine interleukin 6 were assessed. Tadalafil administration per se affected redox homeostasis (GSH/GSSG -36%; p < 0.05), cellular (CK +75% and LDH +36%; p < 0.05) and oxidative damage (MDA +41% and protein carbonyls +50%; p < 0.05) markers. The exhaustive exercise increased all the above-reported biochemical parameters, with subjects from the tadalafil group showing significantly higher values with respect to the placebo group. A prolonged exposure to tadalafil decreases antioxidant capacity at resting condition, therefore making subjects more susceptible to the oxidative stress induced by an exhaustive bout of exercise.

  1. [Effect of occupational stress on oxidation/antioxidant capacity in nurses].

    PubMed

    Cao, Lili; Tian, Honger; Zhang, Qingdong; Zhu, Xinyun; Zhan, Yongguo; Su, Jingguo; Xu, Tian; Zhu, Huabin; Liu, Ling

    2014-02-01

    To investigate the effect of occupational stress on the oxidation/antioxidant capacity in nurses. A total of 131 nurses were included as study subjects. The occupational health information collection system (based on the Internet of things) was used for measurement of occupational stress. Levels of hydroxyl free radicals and antioxidant enzymes were determined. The serum level of superoxide dismutase (SOD) was the highest in nurses under the age of 30 and the lowest in those over 45 (P < 0.05). The serum levels of glutathione peroxidase (GSH-Px) and peroxidase (POD) were the highest in nurses of working age less than 5 years, followed by those of 5-15 years, and nurses with more than 25 years' working experience showed the lowest GSH-Px and POD levels (P < 0.05). Furthermore, nurses with a university (college) degree had a higher GSH-Px level and a lower POD level compared with those with junior and senior high school degrees (P < 0.05). Job prospects and job control were positive occupational stress factors for SOD. Job hazards were negative occupational stress factors for POD. Psychological satisfaction was negative occupational stress reaction for hydroxyl free radicals. Calmness was positive occupational stress reaction for SOD, and daily stress was a negative one. The positive occupational stress reactions for GSH-Px were psychological satisfaction and job satisfaction, and daily stress was negative reaction. Nurses with higher occupational stress have stronger oxidation and weaker antioxidant capacity, which intensifies oxidant-antioxidant imbalance and leads to oxidative stress damage.

  2. Oxidative stress and food supplementation with antioxidants in therapy dogs.

    PubMed

    Sechi, Sara; Fiore, Filippo; Chiavolelli, Francesca; Dimauro, Corrado; Nudda, Anna; Cocco, Raffaella

    2017-07-01

    The objective of this study was to evaluate the ability of a long-term antioxidant-supplemented diet to regulate the oxidative stress and general health status of dogs involved in animal-assisted intervention (AAI) programs. Oxidative stress is a consequence of the accumulation of reactive oxygen species (ROS). Exercise-induced oxidative stress can increase muscle fatigue and fiber damage and eventually leads to impairment of the immune system. A randomized, placebo-controlled, crossover clinical evaluation was conducted with 11 healthy therapy dogs: 6 females and 5 males of different breeds and with a mean age of 2.7 ± 0.8 y (mean ± SEM). The dogs were divided into 2 groups, 1 fed a high quality commercial diet without antioxidants (CD) and the other a high quality commercial diet supplemented with antioxidants (SD) for 18 wk. After the first 18 wk, metabolic parameters, reactive oxygen metabolite-derivatives (d-ROMs), and biological antioxidant potential (BAP) levels were monitored and showed a significant reduction of d-ROMs, triglycerides, and creatinine values in the SD group ( P < 0.05) and a significant increase in amylase values in the CD group ( P < 0.01). At the end of this period, groups were crossed over and fed for another 18 wk. A significant decrease in amylase and glutamate pyruvate transaminase (GPT) values was observed in the CD and SD group, respectively ( P < 0.05). In conclusion, a controlled, balanced antioxidant diet may be a valid approach to restoring good cell metabolism and neutralizing excess free radicals in therapy dogs.

  3. Oxidative stress and food supplementation with antioxidants in therapy dogs

    PubMed Central

    Sechi, Sara; Fiore, Filippo; Chiavolelli, Francesca; Dimauro, Corrado; Nudda, Anna; Cocco, Raffaella

    2017-01-01

    The objective of this study was to evaluate the ability of a long-term antioxidant-supplemented diet to regulate the oxidative stress and general health status of dogs involved in animal-assisted intervention (AAI) programs. Oxidative stress is a consequence of the accumulation of reactive oxygen species (ROS). Exercise-induced oxidative stress can increase muscle fatigue and fiber damage and eventually leads to impairment of the immune system. A randomized, placebo-controlled, crossover clinical evaluation was conducted with 11 healthy therapy dogs: 6 females and 5 males of different breeds and with a mean age of 2.7 ± 0.8 y (mean ± SEM). The dogs were divided into 2 groups, 1 fed a high quality commercial diet without antioxidants (CD) and the other a high quality commercial diet supplemented with antioxidants (SD) for 18 wk. After the first 18 wk, metabolic parameters, reactive oxygen metabolite-derivatives (d-ROMs), and biological antioxidant potential (BAP) levels were monitored and showed a significant reduction of d-ROMs, triglycerides, and creatinine values in the SD group (P < 0.05) and a significant increase in amylase values in the CD group (P < 0.01). At the end of this period, groups were crossed over and fed for another 18 wk. A significant decrease in amylase and glutamate pyruvate transaminase (GPT) values was observed in the CD and SD group, respectively (P < 0.05). In conclusion, a controlled, balanced antioxidant diet may be a valid approach to restoring good cell metabolism and neutralizing excess free radicals in therapy dogs. PMID:28725111

  4. Evaluation of Cassia tora Linn. against Oxidative Stress-induced DNA and Cell Membrane Damage

    PubMed Central

    Kumar, R Sunil; Narasingappa, Ramesh Balenahalli; Joshi, Chandrashekar G; Girish, Talakatta K; Prasada Rao, Ummiti JS; Danagoudar, Ananda

    2017-01-01

    Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy. PMID:28584491

  5. Antioxidant properties of jujube honey and its protective effects against chronic alcohol-induced liver damage in mice.

    PubMed

    Cheng, Ni; Du, Bing; Wang, Yuan; Gao, Hui; Cao, Wei; Zheng, Jianbin; Feng, Fan

    2014-05-01

    The antioxidant potential of jujube honey, one of the most widely consumed honeys in China, has never been determined fully. In this study, jujube honey from six geographical origins in China was analyzed for individual phenolic acid, total phenolic content, and the antioxidant effect in chronic alcohol-related hepatic disease in mice. The results showed that jujube honey from Linxian of Shanxi province contained higher phenol levels, exhibited DPPH antioxidant activity, ferric ion reducing antioxidant power (FRAP) and protective effects against DNA damage. Treatment with jujube honey (Shanxi Linxian) for 12 weeks significantly inhibited serum lipoprotein oxidation, reduced the impact of alcoholism on aspartate aminotransferase (AST) and alanine aminotransferase (ALT). It also inhibited the generation of 8-hydroxy-2-deoxyguanosine (8-OHdG), lowered the levels of malondialdehyde (MDA) and increased the activity of hepatic glutathione peroxidase (GSH-Px). The study indicates that jujube honey exerts potent antioxidant activity and significant protection in hepatic disorders associated with chronic alcoholism. The protective effect is attributed to its antioxidant mechanisms and inhibition of oxidative degradation of lipids.

  6. Role of hydrotherapy in the amelioration of oxidant-antioxidant status in rheumatoid arthritis patients.

    PubMed

    Mateen, Somaiya; Moin, Shagufta; Khan, Abdul Q; Zafar, Atif; Fatima, Naureen; Shahzad, Sumayya

    2017-06-14

    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease. Reactive oxygen species (ROS) are involved in the pathophysiology of RA. Moderate intensity exercises have been reported to have anti-oxidant and anti-inflammatory effects. The aim of this study was to evaluate the effect of hydrotherapy on oxidant-antioxidant status in RA patients. Forty RA patients and 30 age- and sex-matched healthy controls were included in this study. RA patients were subdivided into two groups: the first group (n = 20) received treatment with conventional RA drugs, while the second group (n = 20) received hydrotherapy along with the conventional drugs for a period of 12 weeks. Disease Activity Score of 28 joints (DAS-28), ROS level, protein oxidation, lipid peroxidation, DNA damage and the activities of antioxidant enzymes were evaluated before and after 12 weeks of treatment. RA patients showed a significant change in the oxidative stress biomarkers (ROS, P < 0.01; ferric reducing antioxidant potential, P < 0.001; malondialdehyde, P < 0.01; protein carbonyl, P < 0.001; tail length, P < 0.05) and decrease in the activities of anti-oxidant enzymes (superoxide dismutase [SOD], P < 0.01; glutathione peroxidase [GPx], P < 0.001). Conventional drug treatment has not produced any significant change in these parameters. However, cotreatment of drugs with hydrotherapy has decreased protein, lipid and DNA oxidation by increasing the activities of antioxidant enzymes (SOD and GPx). Our results indicate that hydrotherapy along with drugs has reduced the severity of disease (DAS-28) by ameliorating the oxidant-antioxidant status in RA patients. Thus, in addition to conventional drugs, RA patients should be advised to have hydrotherapy (moderate intensity exercise) in their treatment regimen. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  7. Oxidant/Antioxidant Imbalance and the Risk of Alzheimer's Disease

    PubMed Central

    Abdel Moneim, Ahmed E.

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of memory and other cognitive functions among older people. Senile plaques and neurofibrillary tangles are the most hallmarks lesions in the brain of AD in addition to neurons loss. Accumulating evidence has shown that oxidative stress–induced damage may play an important role in the initiation and progression of AD pathogenesis. Redox impairment occurs when there is an imbalance between the production and quenching of free radicals from oxygen species. These reactive oxygen species augment the formation and aggregation of amyloid-β and tau protein hyperphosphorylation and vice versa. Currently, there is no available treatments can modify the disease. However, wide varieties of antioxidants show promise to delay or prevent the symptoms of AD and may help in treating the disease. In this review, the role of oxidative stress in AD pathogenesis and the common used antioxidant therapies for AD will summarize. PMID:25817254

  8. An association of cocoa consumption with improved physical fitness and decreased muscle damage and oxidative stress in athletes.

    PubMed

    González-Garrido, José A; García-Sánchez, José R; Garrido-Llanos, Silvia; Olivares-Corichi, Ivonne M

    2017-04-01

    Several studies have demonstrated the protective effects of cocoa consumption, due to its anti-inflammatory and antioxidant properties. Acute exercise induces oxidative stress and causes muscular damage during training. This study was designed to examine the effect of cocoa consumption on the markers of muscle damage, oxidative stress and physical fitness in professional soccer players. Fifteen players (15-18 years old) were included in the study. Biochemical parameters, markers of muscle damage and oxidative stress, and physical performance were evaluated before and after cocoa consumption. Biochemical parameters determined the healthy metabolic status of the study group; biomarkers of muscle and oxidative damage were measured in blood to establish muscle and redox status. However, high levels of biomarkers of muscle damage were detected. Interestingly, cocoa consumption decreased the muscle damage biomarkers of CK and LDH by 39.4% and 23.03%, respectively. The redox status was modified by a decrease in oxidative damage (carbonyl groups, 26.31%; thiol groups, 27.52%; MDA, 32.42%) and an increase in total antioxidant capacity (15.98%) and GSH-Px activity (26.37%). In addition, we observed an increase in physical performance by 4% in the Cooper Test. Our findings suggest that a short period of cocoa consumption could be useful in maintaining a good physical fitness, due to the favourable effects on muscle and redox status in athletes during exhaustive exercise.

  9. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain

    PubMed Central

    Simpson, Tamara; Pase, Matthew; Stough, Con

    2015-01-01

    The detrimental effect of neuronal cell death due to oxidative stress and mitochondrial dysfunction has been implicated in age-related cognitive decline and neurodegenerative disorders such as Alzheimer's disease. The Indian herb Bacopa monnieri is a dietary antioxidant, with animal and in vitro studies indicating several modes of action that may protect the brain against oxidative damage. In parallel, several studies using the CDRI08 extract have shown that extracts of Bacopa monnieri improve cognitive function in humans. The biological mechanisms of this cognitive enhancement are unknown. In this review we discuss the animal studies and in vivo evidence for Bacopa monnieri as a potential therapeutic antioxidant to reduce oxidative stress and improve cognitive function. We suggest that future studies incorporate neuroimaging particularly magnetic resonance spectroscopy into their randomized controlled trials to better understand whether changes in antioxidant status in vivo cause improvements in cognitive function. PMID:26413126

  10. Control of antioxidant supplementation through interview is not appropriate in oxidative-stress sport studies: Analytical confirmation should be required.

    PubMed

    Barranco-Ruiz, Yaira; Aragón-Vela, Jeronimo; Casals, Cristina; Martínez-Amat, Antonio; Casuso, Rafael A; Huertas, Jesus R

    2017-01-01

    Controlling antioxidant supplementation in athletes involved in studies related to oxidative stress and muscle damage is the key to ensure results. The aim of this study was to confirm through high-performance liquid chromatography (HPLC) analysis whether well-trained individuals lied during a personal interview when asked if they were taking supplements with antioxidants, and how this could affect oxidative stress, muscle damage, and antioxidant response. A total of 94 men, well trained in endurance sports, volunteered in this study. They denied taking any antioxidant supplementation at initial interview. After a HPLC analysis, abnormal α-tocopherol concentrations were detected, probably due to a hidden antioxidant supplementation. Participants were classified into two groups: no evidence of antioxidant supplementation (NS group = α-tocopherol values <80 nmol/mL; n = 75) and evidence of antioxidant supplementation (S group = α-tocopherol values >80 nmol/mL; n = 19). Lipid peroxidation, muscle damage, antioxidant enzyme activity, and nonenzymatic antioxidant content were analyzed according to this classification. Statistical comparisons were performed using Student's t test. The α-tocopherol concentrations were significantly higher in the S group than in the NS group (MD = 725.01 ± 39.01 nmol/mL; P = 0.001). The S group showed a trend toward lower hydroperoxides than the NS group (MD = 1.19 ± 0.72 nmol/mL; P = 0.071). The S group showed significantly lower catalase activity than the NS group (MD = 0.10 ± 0.02-seg-1 mg-1; P < 0.01). Skeletal muscle damage markers did not differ between experimental groups. Data from the present study reveal that 20% of participants lied in the exclusion criteria of antioxidant supplementation in a personal interview, as they showed high plasmatic α-tocopherol concentrations after HPLC verification. Catalase activity seems to be affected by high α-tocopherol plasma levels. Therefore, we strongly

  11. Frequency of polymorphism -262 c/t in catalase gene and oxidative damage in Slovak children with bronchial asthma.

    PubMed

    Babusikova, Eva; Jesenak, Milos; Evinova, Andrea; Banovcin, Peter; Dobrota, Dusan

    2013-12-01

    Bronchial asthma is a complex disease in which genetic factors, environmental factors and oxidative damage are responsible for the initiation and modulation of disease progression. If antioxidant mechanisms fail, reactive oxygen species damage the biomolecules followed by progression of the disease. Catalase is one of the most important endogenous enzymatic antioxidants. In the present study, we examined the hypothesis that increased oxidative damage and polymorphism in the CAT gene (-262 promoter region, C/T) are associated with childhood bronchial asthma. Genotyping of the polymorphisms in the CAT gene in healthy (249) and asthmatic children (248) was performed using polymerase chain reaction-restriction fragment length polymorphism. Markers of oxidative damage: content of sulfhydryl groups and thiobarbituric acid-reactive substances were determined by spectrophotometry in children. The TT genotype of catalase was more frequent among the asthmatic patients (22.6%) than in healthy children (4.8%) (odds ratio=5.63; 95% confidence interval=2.93-10.81, P<.001). The amount of sulfhydryl groups decreased significantly and conversely, the content of thiobarbituric acid-reactive substances increased significantly in bronchial asthma and in catalase TT genotype compared to other catalase genotypes of this gene. These results suggest that catalase polymorphism might participate in development of bronchial asthma and in enhanced oxidative damage in asthmatic children. Genetic variation of enzymatic antioxidants may modulate disease risk. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  12. Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus).

    PubMed

    Rey, Benjamin; Dégletagne, Cyril; Bodennec, Jacques; Monternier, Pierre-Axel; Mortz, Mathieu; Roussel, Damien; Romestaing, Caroline; Rouanet, Jean-Louis; Tornos, Jeremy; Duchamp, Claude

    2016-08-01

    Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure

  13. Oxidative damage and antioxidant defense in Caiman latirostris (Broad-snouted caiman) exposed in ovo to pesticide formulations.

    PubMed

    Burella, P M; Odetti, L M; Simoniello, M F; Poletta, G L

    2018-06-13

    The surface used for agricultural production in Argentina significantly increased in recent years, mainly due to the expansion of soybean crops. As a result, the use of agrochemicals increased too. Many natural populations of Caiman latirostris (broad-snouted caiman) are affected by habitat fragmentation and the constant exposure to pesticides. This exposure could produce Reactive Oxygen Species. The negative imbalance between ROS generation and the capacity of the biological systems to eliminate the reactive intermediaries or avoid the damage is called Oxidative Stress. The aim of this study was to evaluate oxidative damage and antioxidant defense in C. latirostris hatchlings after in ovo exposure to widely used pesticide formulations. Embryos were exposed by topical exposure on the eggshell, from the beginning of incubation period, to sub-lethal concentrations of two glyphosate formulations: PanzerGold® (PANZ) and Roundup® Full II (RU): 500, 750, 1000 μg/egg; to the endosulfan (END) formulation Galgofan® and the cypermethrin (CYP) formulation Atanor®: 1, 10, 100, and 1000 μg/ egg. Blood samples were taken to all animals immediately after hatching for the application and comparison of the following oxidative stress biomarkers between the exposed groups and their respective controls: lipoperoxidation through thiobarbituric acid reactive substances (TBARS), DNA base oxidation through the modified comet assay, and the activities of Catalase (CAT) and Superoxide dismutase (SOD) in erythrocytes. Our results showed lipoperoxidation in caiman exposed to END (10, 100, 1000 µg/egg), CYP (1, 10, 1000 µg/egg), RU (500, 1000 µg/egg) and PANZ (500, 1000 µg/egg), DNA base oxidation in those exposed to END (10, 100, 1000 µg/egg), CYP (1, 10 µg/egg) and PANZ (500, 750 µg/egg) as well as alteration in the activity of SOD in END 1 µg/egg and CYP (10, 1000 µg/egg). This study demonstrated the incidence of oxidative stress in animals exposed to

  14. Antioxidant Protective Effect of Honey in Cigarette Smoke-Induced Testicular Damage in Rats

    PubMed Central

    Mohamed, Mahaneem; Sulaiman, Siti Amrah; Jaafar, Hasnan; Sirajudeen, Kuttulebbai Nainamohamed Salam

    2011-01-01

    Cigarette smoke (CS) can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily) and honey supplementation (1.2 g/kg daily) were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS) and glutathione peroxidase (GPx) activity, as well as reduced total antioxidant status (TAS) and activities of superoxide dismutase (SOD) and catalase (CAT). However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis. PMID:22016605

  15. Antioxidant potential of different grape cultivars against Fenton-like reagent-induced liver damage ex-vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2014-10-01

    The phytochemicals present in the grapes are responsible for nutraceutical and health benfits due to their antioxidant properties. These phytochemicals, however, vary greatly among different cultivars. In this study, we evaluated the antioxidant potential and protective role of four different Indian grape (Vitis vinifera) cultivars extracts, namely Flame seedless (Black grapes), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Sonaka, Green) against the Fenton-like reagent (200 μmole H2O2, 2 mmole ascorbate, 25 μmole FeSO4)-induced liver damage. Non-enzymatic antioxidants, such as glutathione (GSH) levels and activities of antioxidant enzymes, such as glutathione S-transferase (GST) and superoxide dismutase (SOD), as well as total antioxidant capacity (TAC) were highest in the grape seed, followed by skin and pulp. Among edible parts of different cultivars, skin of Flame seedless (Black) cultivar showed highest antioxidant potential, while the Thompson seedless the least potential. These antioxidants were found to be significantly (P < 0.01) correlated with the levels of total phenol, flavonoids and ascorbic acid. Fenton-like reagent treatment significantly (P < 0.001) decreased GSH content by 39.1% and activities of catalase (CAT) by 43.2% and glutathione reductase (GR) by 60%, while increasing thiobarbituric acid reactive substances (TBARS) and nitric oxide levels by 2.13-fold and 0.64-fold, respectively and GST activity by 0.81-fold. Pre-treatment with grape seed extracts showed the best hepatoprotective action against Fenton-like reagent-induced damage, followed by the extracts of skin and pulp of any cultivar. Thus, our study showed the significant amounts of antioxidants were in grape seed, followed by its skin and pulp, which varied among the cultivars and was associated with the protective action of grape extracts against Fenton-like reagent-induced liver damage ex-vivo.

  16. Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages.

    PubMed

    Mulinacci, Nadia; Valletta, Alessio; Pasqualetti, Valentina; Innocenti, Marzia; Giuliani, Camilla; Bellumori, Maria; De Angelis, Giulia; Carnevale, Alessia; Locato, Vittoria; Di Venanzio, Cristina; De Gara, Laura; Pasqua, Gabriella

    2018-04-02

    Humans are exposed to ionizing radiations in medical radiodiagnosis and radiotherapy that cause oxidative damages and degenerative diseases. Airplane pilots, and even more astronauts, are exposed to a variety of potentially harmful factors, including cosmic radiations. Among the phytochemicals, phenols are particularly efficient in countering the oxidative stress. In the present study, different extracts obtained from plant food, plant by-products and dietary supplements, have been compared for their antioxidant properties before and after irradiation of 140 cGy, a dose absorbed during a hypothetical stay of three years in the space. All the dry extracts, characterized in terms of vitamin C and phenolic content, remained chemically unaltered and maintained their antioxidant capability after irradiation. Our results suggest the potential use of these extracts as nutraceuticals to protect humans from oxidative damages, even when these extracts must be stored in an environment exposed to cosmic radiations as in a space station.

  17. Frugivory is associated with low measures of plasma oxidative stress and high antioxidant concentration in free-ranging bats

    NASA Astrophysics Data System (ADS)

    Schneeberger, Karin; Czirják, Gábor Á.; Voigt, Christian C.

    2014-04-01

    Oxidative stress—an imbalance between reactive pro- and neutralising antioxidants—damages cell structures and impairs fitness-relevant traits such as longevity and reproduction. Theory predicts that feeding on diets with high antioxidant content such as fruits should reduce oxidative stress; however, there is no support of this idea in free-ranging mammals. Bats cover a large variety of ecological niches, and therefore, we asked if measures of oxidative stress are lower in species with fruit diets. We measured reactive oxygen metabolites (ROM) representing total pro-oxidants produced and antioxidants in the plasma of 33 Neotropical bat species. Species with a fruit diet showed the lowest level of ROM and the highest concentration of antioxidants, followed by omnivorous and animalivorous species. Potentially, frugivorous species ingest more antioxidants with food and thus are able to neutralise more pro-oxidants than species not feeding on fruits, resulting in an overall lower level of oxidative stress. We therefore showed for the first time that measures of oxidative stress vary according to diets in free-ranging mammals.

  18. The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides.

    PubMed

    Jiao, Rui; Liu, Yingxia; Gao, Hao; Xiao, Jia; So, Kwok Fai

    2016-01-01

    Oxidative stress has been increasingly recognized as a major contributing factor in a variety of human diseases, from inflammation to cancer. Although certain parts of signaling pathways are still under investigation, detailed molecular mechanisms for the induction of diseases have been elucidated, especially the link between excessive oxygen reactive species (ROS) damage and tumorigenesis. Emerging evidence suggests anti-oxidant therapy can play a key role in treating those diseases. Among potential drug resources, plant polysaccharides are natural anti-oxidant constituents important for human health because of their long history in ethnopharmacology, wide availability and few side effects upon consumption. Plant polysaccharides have been shown to possess anti-oxidant, anti-inflammation, cell viability promotion, immune-regulation and antitumor functions in a number of disease models, both in laboratory studies and in the clinic. In this paper, we reviewed the research progress of signaling pathways involved in the initiation and progression of oxidative stress- and cancer-related diseases in humans. The natural sources, structural properties and biological actions of several common plant polysaccharides, including Lycium barbarum, Ginseng, Zizyphus Jujuba, Astragalus lentiginosus, and Ginkgo biloba are discussed in detail, with emphasis on their signaling pathways. All of the mentioned common plant polysaccharides have great potential to treat oxidative stress and cancinogenic disorders in cell models, animal disease models and clinical cases. ROS-centered pathways (e.g. mitochondrial autophagy, MAPK and JNK) and transcription factor-related pathways (e.g. NF-[Formula: see text]B and HIF) are frequently utilized by these polysaccharides with or without the further involvement of inflammatory and death receptor pathways. Some of the polysaccharides may also influence tumorigenic pathways, such as Wnt and p53 to play their anti-tumor roles. In addition, current

  19. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    PubMed

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  20. Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio.

    PubMed

    Hemalatha, Devan; Amala, Antony; Rangasamy, Basuvannan; Nataraj, Bojan; Ramesh, Mathan

    2016-11-01

    Extensive use of quinalphos, an organophosphorus pesticide, is likely to reach the aquatic environment and thereby posing a health concern for aquatic organisms. Oxidative stress and antioxidant responses may be good indicators of pesticide contamination in aquatic organisms. The data on quinalphos induced oxidative stress and antioxidant responses in carps are scanty. This study is aimed to assess the two sublethal concentrations of quinalphos (1.09 and 2.18 μL L -1 ) on oxidative stress and antioxidant responses of Cyprinus carpio for a period of 20 days. In liver, the malondialdehyde level was found to be significantly increased in both the concentrations. The results of the antioxidant parameters obtained show a significant increase in superoxide dismutase, catalase, and glutathione-S-transferase activity in liver of fish. These results demonstrate that environmentally relevant levels of the insecticide quinalphos can cause oxidative damage and increase the antioxidant scavenging capacity in C. carpio. This may reflect the potential role of these parameters as useful biomarkers for the assessment of pesticide contamination. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1399-1406, 2016. © 2015 Wiley Periodicals, Inc.

  1. Oxidant damage during and after spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.

    2000-01-01

    The objectives of this study were to assess oxidant damage during and after spaceflight and to compare the results against bed rest with 6 degrees head-down tilt. We measured the urinary excretion of the F(2) isoprostane, 8-iso-prostaglandin (PG) F(2alpha), and 8-oxo-7,8-dihydro-2 deoxyguanosine (8-OH DG) before, during, and after long-duration spaceflight (4-9 mo) on the Russian space station MIR, short-duration spaceflight on the shuttle, and 17 days of bed rest. Sample collections on MIR were obtained between 88 and 186 days in orbit. 8-iso-PGF(2alpha) and 8-OH DG are markers for oxidative damage to membrane lipids and DNA, respectively. Data are mean +/- SE. On MIR, isoprostane levels were decreased inflight (96. 9 +/- 11.6 vs. 76.7 +/- 14.9 ng. kg(-1). day(-1), P < 0.05, n = 6) due to decreased dietary intake secondary to impaired thermoregulation. Isoprostane excretion was increased postflight (245.7 +/- 55.8 ng. kg(-1). day(-1), P < 0.01). 8-OH DG excretion was unchanged with spaceflight and increased postflight (269 +/- 84 vs 442 +/- 180 ng. kg(-1). day(-1), P < 0.05). On the shuttle, 8-OH DG excretion was unchanged in- and postflight, but 8-iso-PGF(2alpha) excretion was decreased inflight (15.6 +/- 4.3 vs 8.0 +/- 2.7 ng. kg(-1). day(-1), P < 0.05). No changes were found with bed rest, but 8-iso-PGF(2alpha) was increased during the recovery phase (48.9 +/- 23.0 vs 65.4 +/- 28.3 ng. kg(-1). day(-1), P < 0.05). The changes in isoprostane production were attributed to decreased production of oxygen radicals from the electron transport chain due to the reduced energy intake inflight. The postflight increases in the excretion of the products of oxidative damage were attributed to a combination of an increase in metabolic activity and the loss of some host antioxidant defenses inflight. We conclude that 1) oxidative damage was decreased inflight, and 2) oxidative damage was increased postflight.

  2. An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands.

    PubMed

    Weisel, Tamara; Baum, Matthias; Eisenbrand, Gerhard; Dietrich, Helmut; Will, Frank; Stockis, Jean-Pierre; Kulling, Sabine; Rüfer, Corinna; Johannes, Christian; Janzowski, Christine

    2006-04-01

    Oxidative cell damage is involved in the pathogenesis of atherosclerosis, cancer, diabetes and other diseases. Uptake of fruit juice with especially high content of antioxidant flavonoids/polyphenols, might reduce oxidative cell damage. Therefore, an intervention study was performed with a red mixed berry juice [trolox equivalent antioxidative capacity (TEAC): 19.1 mmol/L trolox] and a corresponding polyphenol-depleted juice (polyphenols largely removed, TEAC 2.4 mmol/L trolox), serving as control. After a 3-week run-in period, 18 male probands daily consumed 700 mL juice, and 9 consumed control juice, in a 4-week intervention, followed by a 3-week wash-out. Samples were collected weekly to analyze DNA damage (comet assay), lipid peroxidation (plasma malondialdehyde: HPLC/fluorescence; urinary isoprostanes: GC-MS), blood glutathione (photometrically), DNA-binding activity of nuclear factor-kappaB (ELISA) and plasma carotenoid/alpha-tocopherol levels (HPLC-DAD). During intervention with the fruit juice, a decrease of oxidative DNA damage (p<5x10(-4)) and an increase of reduced glutathione (p<5x10(-4)) and of glutathione status (p<0.05) were observed, which returned to the run-in levels in the subsequent wash-out phase. The other biomarkers were not significantly modulated by the juice supplement. Intervention with the control juice did not result in reduction of oxidative damage. In conclusion, the fruit juice clearly reduces oxidative cell damage in healthy probands.

  3. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System.

    PubMed

    Panda, Kamal K; Golari, Dambaru; Venugopal, A; Achary, V Mohan M; Phaomei, Ganngam; Parinandi, Narasimham L; Sahu, Hrushi K; Panda, Brahma B

    2017-05-18

    Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH₃COO)₂) through the green route using the milky latex from milk weed ( Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn 2+ from Zn(CH₃COO)₂ were tested in a dose range of 0-100 mg·L -1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O₂ •- , H₂O₂ and • OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn 2+ alone.

  4. Cinacalcet may improve oxidative DNA damage in maintenance hemodialysis patients: an observational study.

    PubMed

    Ari, Elif; Kaya, Yuksel; Demir, Halit; Asicioglu, Ebru; Eren, Zehra; Celik, Eray; Arikan, Hakki

    2014-09-01

    Oxidative stress is accepted as a non-classical cardiovascular risk factor in patients on maintenance hemodialysis (HD). The aim of this study was to evaluate the impact of cinacalcet on oxidative stress biomarkers, oxidative DNA damage (8-hydroxy-2'-deoxyguanosine/deoxyguanosine), endothelial function (FMD %) and carotid artery intima-media thickness (CIMT) in HD patients. Forty-two chronic HD patients with secondary hyperparathyroidism undergoing 60 mg/day cinacalcet treatment with a follow-up of 6 months and 38 age- and sex-matched healthy individuals were included in this prospective study. Plasma malondialdehyde (MDA) levels and 8-hydroxy-2'-deoxyguanosine/deoxyguanosine ratio (8-OHdG/dG) were determined as oxidative stress markers. Superoxide dismutase (SOD), paraoxonase (PON), catalase (CAT), carbonic anhydrase (CAN) and glutathione peroxidase (GPx) activities were measured as antioxidants. FMD % and CIMT were assessed by ultrasonography. MDA levels were decreased; SOD, PON, CAT, CAN and GPx activities were increased after 6 months of cinacalcet treatment in HD patients. Although CIMT remained stabile, there was a significant improvement in FMD % as well as a notable reduction trend in 8-OHdG/dG ratio after 6 months of treatment. Our data have demonstrated that cinacalcet improves oxidative stress, genomic damage, endothelial function and increases antioxidant protection in HD patients after 6 months of treatment.

  5. Oxidative DNA damage during sleep periods among nightshift workers.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2016-08-01

    Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we

  7. Effects of a fruit-vegetable dietary pattern on oxidative stress and genetic damage in coke oven workers: a cross-sectional study.

    PubMed

    Xie, Zheng; Lin, Haijiang; Fang, Renfei; Shen, Weiwei; Li, Shuguang; Chen, Bo

    2015-05-06

    Coke oven workers (COWs) are exposed to high level of genotoxic chemicals that induce oxidative stress and genetic damage. The dietary intake of certain types of foods may reverse these effects. We conducted a cross-sectional study with 51 topside COWs, 79 other COWs, and 67 controls, to assess the effects of dietary patterns on oxidative stress and genetic damage. Compared to the controls, both topside and other COWs had significantly higher urinary 1-hydroxypyrene levels, serum oxidant levels [malondialdehyde, (MDA)], and genetic damage [micronucleus (MN) frequency & 8-oxo-2'-deoxyguanosine (8-OH-dG)], but lower antioxidant levels [superoxide dismutase (SOD) and glutathione peroxidase, (GPx)]. The fruit-vegetable (FV) dietary pattern was positively correlated with serum SOD levels and negative correlated with serum MDA, MN frequency, and urinary 8-OH-dG. COWs with an FV patter in the highest quartile (Q4) had significantly increased antioxidant levels (SOD and GPx) and decreased oxidant levels (MDA) and genetic damage (MN frequency and 8-OH-dG) than those with an FV pattern in the lowest quartile (Q1). Compared to control subjects, COWs had increased oxidative stress and genetic damage. A FV dietary pattern may reverse oxidative stress and genetic damage in COWs.

  8. Autoxidation and toxicant-induced oxidation of lipid and DNA in monkey liver: reduction of molecular damage by melatonin.

    PubMed

    Cabrer, J; Burkhardt, S; Tan, D X; Manchester, L C; Karbownik, M; Reiter, R J

    2001-11-01

    Melatonin, the main secretory product of the pineal gland, is a free radical scavenger and antioxidant which protects against oxidative damage due to a variety of toxicants. However, there is little information regarding melatonin's antioxidative capacity in tissues of primates. In this study we examined the protective effects of melatonin in monkey liver homogenates against lipid damage that occurred as a result of autoxidation or that induced by exogenous addition of H202 and ferrous iron (Fe2+). Additionally, we tested melatonin's protective effect against oxidative damage to DNA induced by chromium(III) (CrIII) plus H202. The levels of malondialdehyde and 4-hydroxyalkenals were assayed as an index of lipid peroxidation, and the concentrations of 8-hydroxydeoxyguanosine (8-OHdG) as an endpoint of oxidative DNA damage. The increases in malondialdehyde+4-hydroxyalkenals concentrations as a consequence of autoxidation or after the addition of H202 plus Fe2+ to the homogenates were time-dependent. The accumulation of these damaged products due to either auto-oxidative processes or induced by H202 and Fe2+ were significantly reduced by melatonin in a concentration-dependent-manner. The levels of 8-OHdG were elevated in purified monkey liver DNA incubated with a combination of CrCl3 plus H2O2. This rise in oxidatively damaged DNA was prevented by 10 microM concentration of melatonin. Also, melatonin reduced the damage to DNA that was caused by auto-oxidative processes. These findings in monkey liver tissue document the ability of melatonin to protect against oxidative damage to both lipid and DNA in primate tissue, as observed previously in rodent tissue. The findings provide support for the use of melatonin as suitable agent to reduce damage inflicted by free radical species in primates.

  9. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the L-carnitine role.

    PubMed

    Guerreiro, Gilian; Mescka, Caroline Paula; Sitta, Angela; Donida, Bruna; Marchetti, Desirèe; Hammerschmidt, Tatiane; Faverzani, Jessica; Coelho, Daniella de Moura; Wajner, Moacir; Dutra-Filho, Carlos Severo; Vargas, Carmen Regla

    2015-05-01

    Maple syrup urine disease (MSUD) is a disorder of branched-chain amino acids (BCAA). The defect in the branched-chain α-keto acid dehydrogenase complex activity leads to an accumulation of these compounds and their corresponding α-keto-acids and α-hydroxy-acids. Studies have shown that oxidative stress may be involved in neuropathology of MSUD. L-carnitine (L-car), which has demonstrated an important role as antioxidant by reducing and scavenging free radicals formation and by enhancing the activity of antioxidant enzymes, have been used in the treatment of some metabolic rare disorders. This study evaluated the oxidative stress parameters, di-tyrosine, isoprostanes and antioxidant capacity, in urine of MSUD patients under protein-restricted diet supplemented or not with L-car capsules at a dose of 50 mg kg(-1) day(-1). It was also determined urinary α-keto isocaproic acid levels as well as blood free L-car concentrations in blood. It was found a deficiency of carnitine in patients before the L-car supplementation. Significant increases of di-tyrosine and isoprostanes, as well as reduced antioxidant capacity, were observed before the treatment with L-car. The L-car supplementation induced beneficial effects on these parameters reducing the di-tyrosine and isoprostanes levels and increasing the antioxidant capacity. It was also showed a significant increase in urinary of α-ketoisocaproic acid after 2 months of L-car treatment, compared to control group. In conclusion, our results suggest that L-car may have beneficial effects in the treatment of MSUD by preventing oxidative damage to the cells and that urine can be used to monitorize oxidative damage in patients affected by this disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. DNA damage and antioxidants in treatment naïve children with obsessive-compulsive disorder.

    PubMed

    Şimşek, Şeref; Gençoğlan, Salih; Yüksel, Tuğba

    2016-03-30

    The current study aimed to investigate whether serum antioxidant levels and DNA damage differ between the children and adolescents with Obsessive Compulsive Disorder (OCD) and healthy controls. The study included 31 children (Male/Female, 22/9; age range 7-17 years), with treatment naïve OCD diagnosed according to Diagnostic and Statistical Manual of Mental Disorders-V (DSM-V) and 28 age- and gender-matched healthy control subjects. Children's Yale Brown Obsession Compulsion Scale (CY-BOC) was applied to the children. Glutathione peroxidase (GPx), superoxide dismutase (SOD), coenzyme Q (CoQ), and 8-Hydroxy-2-Deoxyguanosine (8-OHdG) were all measured by the enzyme-linked immunosorbent assay method. GPx, CoQ and 8-OHdG levels were found to be significantly higher in the OCD group, compared to the control group (p=0.010, p=0.034, p=0.010, respectively); however, no significant difference was found in the SOD levels between two groups (p=0.10). There were no correlations between the CY-BOC scores, depression scores, duration of the disease and biochemical parameters (p>0.05, for all). Children with OCD were found to have higher antioxidant levels and oxidative DNA damage. The findings of this study support the role of oxidative stress in the pathogenesis of OCD. In this regard, any possible effect of adding antioxidants to conventional treatment can be investigated. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    PubMed Central

    Sung, Chih-Chien; Hsu, Yu-Chuan; Lin, Yuh-Feng

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies. PMID:24058721

  12. Effect of di(n-butyl) phthalate on testicular oxidative damage and antioxidant enzymes in hyperthyroid rats.

    PubMed

    Lee, Ena; Ahn, Mee Young; Kim, Hee Jin; Kim, In Young; Han, Soon Young; Kang, Tae Seok; Hong, Jin Hwan; Park, Kui Lea; Lee, Byung Mu; Kim, Hyung Sik

    2007-06-01

    This study compared the effects of di(n-butyl) phthalate (DBP) on the oxidative damage and antioxidant enzymes activity in testes of hyperthyroid rats. Hyperthyroidism was induced in pubertal male rats by intraperitoneal injection of triiodothyronine (T3, 10 microg/kg body weight) for 30 days. An oral dose of DBP (750 mg/kg) was administered simultaneously to normal or hyperthyroid (T3) rats over a 30-day period. No changes in body weight were observed in the hyperthyroid groups (T3, T3 + DBP) compared with controls. There were significantly higher serum T3 levels observed in the hyperthyroid rats than in the control, but the serum thyroid stimulating hormone levels were markedly lower in the hyperthyroid rats. DBP significantly decreased the weight of the testes in the normal (DBP) and hyperthyroid (T3 + DBP) groups. The serum testosterone concentrations were significantly lower in only DBP group. DBP significantly increased the 8-hydroxy-2-deoxyguanosine (8-OHdG) level in the testes, whereas the DBP-induced 8-OHdG levels were slightly higher in T3 + DBP group. Superoxide dismutase and glutathione peroxidase activities were significantly higher in the testes of the DBP or T3 + DBP groups. Catalase (CAT) activity was significantly higher in the DBP treatment group, but the T3 + DBP group showed slightly lower DBP-induced CAT activity. The testicular expression of thyroid hormone receptor alpha-1 (TRalpha-1) was significantly higher in the DBP groups, and androgen receptor (AR) expression was not detected in the DBP treatment group. In addition, DBP significantly increased the peroxisome proliferator-activated receptor-r (PPAR-r) levels in the testis. These results suggest that hyperthyroidism can cause a change in the expression level of PPAR-r in testes, and may increase the levels of oxidative damage induced by the metabolic activation of DBP.

  13. An Antioxidant Phytotherapy to Rescue Neuronal Oxidative Stress

    PubMed Central

    Lin, Zhihong; Zhu, Danni; Yan, Yongqing; Yu, Boyang; Wang, Qiujuan; Shen, Pingniang; Ruan, Kefeng

    2011-01-01

    Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed of Poria cocos (Chinese name: Fu Ling), Atractylodes macrocephala (Chinese name: Bai Zhu) and Angelica sinensis (Chinese names: Danggui, Dong quai, Donggui; Korean name: Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stress in vivo and in vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC50 10.6%, ET50 1.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC50 2.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC50 3.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals. PMID:18955358

  14. Vitamin D3 contributes to enhanced osteogenic differentiation of MSCs under oxidative stress condition via activating the endogenous antioxidant system.

    PubMed

    Zhou, J; Wang, F; Ma, Y; Wei, F

    2018-06-02

    The anti-oxidative effects of vitamin D3 (Vd3) on mesenchymal stem cells (MSCs) have not been studied before. The present study suggested that Vd3 could not only promote the osteogenic differentiation of MSCs under normal condition but also partly protect it from oxidative stress damage by activating the endogenous antioxidant system. Evolving evidence proved that oxidative stress caused by reactive oxygen species (ROS) overproduction might lead to bone loss. Vd3, a commonly used osteogenic induction drug, was proved to exhibit potent anti-oxidative effects on other cell types. The present study aims to investigate the protective effects of Vd3 on oxidative stress-induced dysfunctions of MSCs, as well as its underlying mechanisms. The H 2 O 2 was used as exogenous reactive oxygen species (ROS). The influence of ROS and anti-oxidative protection of Vd3 on MSCs were analyzed too. Multi-techniques were used to assess the beneficial effects of Vd3 on MSCs under oxidative stress condition. The results demonstrated that Vd3 could significantly attenuate the H 2 O 2 -induced cell injury of MSCs via Sirt1/FoxO1 signaling pathway, and reduced the H 2 O 2 exposure-induced intracellular oxidative stress status of MSCs. What's more, the H 2 O 2 exposure resulted in the decreased osteogenic differentiation of MSCs, as evidenced by decreased alkaline phosphatase activity, calcium deposition level, and osteogenic differentiation gene mRNA levels, but the injury was restored via Vd3 administration. The results suggested that Vd3 could not only promote the osteogenic differentiation of osteoblastic cells under normal condition but also partly protect the cell from oxidative stress damage by activating endogenous antioxidant system. The study shed light on the new roles of Vd3 in bone modeling and remodeling regulation.

  15. Eating increases oxidative damage in a reptile.

    PubMed

    Butler, Michael W; Lutz, Thomas J; Fokidis, H Bobby; Stahlschmidt, Zachary R

    2016-07-01

    While eating has substantial benefits in terms of both nutrient and energy acquisition, there are physiological costs associated with digesting and metabolizing a meal. Frequently, these costs have been documented in the context of energy expenditure while other physiological costs have been relatively unexplored. Here, we tested whether the seemingly innocuous act of eating affects either systemic pro-oxidant (reactive oxygen metabolite, ROM) levels or antioxidant capacity of corn snakes (Pantherophis guttatus) by collecting plasma during absorptive (peak increase in metabolic rate due to digestion of a meal) and non-absorptive (baseline) states. When individuals were digesting a meal, there was a minimal increase in antioxidant capacity relative to baseline (4%), but a substantial increase in ROMs (nearly 155%), even when controlling for circulating nutrient levels. We report an oxidative cost of eating that is much greater than that due to long distance flight or mounting an immune response in other taxa. This result demonstrates the importance of investigating non-energetic costs associated with meal processing, and it begs future work to identify the mechanism(s) driving this increase in ROM levels. Because energetic costs associated with eating are taxonomically widespread, identifying the taxonomic breadth of eating-induced ROM increases may provide insights into the interplay between oxidative damage and life history theory. © 2016. Published by The Company of Biologists Ltd.

  16. [Effect of a hypocaloric diet in the oxidative stress in obese subjects without prescription of exercise and antioxidants].

    PubMed

    Gutiérrez, Liliana; García, José R; Rincón, María de Jesús; Ceballos, Guillermo M; Olivares, Ivonne M

    2015-07-06

    Obesity is characterized by a generalized increase of adipose tissue, high production of adipocytokines and presence of oxidative systemic stress. The objective of this study was to evaluate the changes generated in the oxidative stress and anthropometric parameters in obese subjects by the prescription of a hypocaloric diet in combination with moderate aerobic exercise and supplementation with antioxidants. Oxidative damage was determined in the plasma from 30 normal weight and 30 obese subjects. Three groups of treatment were established: Hypocaloric diet (HD), HD plus moderate aerobic exercise (HDE) and HDE plus antioxidants (DHEA). Biomarkers of oxidative stress (thiobarbituric acid reactive substances [TBARS], carbonyl groups, dityrosine) and anthropometric parameters were determined. Higher values of biomarkers of oxidative damage were observed in obese (TBARS 13.74 ± 1.2 μM; carbonyl groups 0.89 ± 0.04 nmol of osazone/mg of protein; dityrosine 478.9 ± 27.4 RFU/mg of protein) in comparison to normal weight subjects (TBARS 7.08 ± 0.8 μM; carbonyl groups 0.65 ± 0.04 nmol of osazone/mg of protein; dityrosine 126.3 ± 12.6 RFU/mg of protein), thus showing the presence of an oxidative damage. The prescription of HD decreased the oxidative damage and anthropometric parameters in the obese subjects. We did not observe additional benefit effects on these determinations with HDE or HDEA treatments. We demonstrated that an HD decreases the oxidative damage in obese subjects. Oxidative stress is an important factor in the development of comorbidity in obesity. Therefore, the prescription of a HD could be a key issue in the treatment of the disease. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  17. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways.

    PubMed

    Saha, Sukanya; Sadhukhan, Pritam; Sinha, Krishnendu; Agarwal, Namrata; Sil, Parames C

    2016-03-01

    Mangiferin is a polyphenolic xanthonoid with remarkable antioxidant activity. Oxidative stress plays the key role in tert-butyl hydroperoxide (tBHP) induced renal cell damage. In this scenario, we consider mangiferin, as a safe agent in tBHP induced renal cell death and rationalize its action systematically, in normal human kidney epithelial cells (NKE). NKE cells were exposed to 20 µM mangiferin for 2 h followed by 50 µM tBHP for 18 h. The effect on endogenous ROS production, antioxidant status (antioxidant enzymes and thiols), mitochondrial membrane potential, apoptotic signaling molecules, PI3K mediated signaling cascades and cell cycle progression were examined using various biochemical assays, FACS and immunoblot analyses. tBHP exposure damaged the NKE cells and decreased its viability. It also elevated the intracellular ROS and other oxidative stress-related biomarkers within the cells. However, mangiferin dose dependently, exhibited significant protection against this oxidative cellular damage. Mangiferin inhibited tBHP induced activation of different pro-apoptotic signals and thus protected the renal cells against mitochondrial permeabilization. Further, mangiferin enhanced the expression of cell proliferative signaling cascade molecules, Cyclin d1, NFκB and antioxidant molecules HO-1, SOD2, by PI3K/Akt dependent pathway. However, the inhibitor of PI3K abolished mangiferin's protective activity. Results show Mangiferin maintains the intracellular anti-oxidant status, induces the expression of PI3K and its downstream molecules and shields NKE cells against the tBHP induced cytotoxicity. Mangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature.

  18. Alteration of hepatocellular antioxidant gene expression pattern and biomarkers of oxidative damage in diazinon-induced acute toxicity in Wistar rat: A time-course mechanistic study.

    PubMed

    Hassani, Shokoufeh; Maqbool, Faheem; Salek-Maghsoudi, Armin; Rahmani, Soheila; Shadboorestan, Amir; Nili-Ahmadabadi, Amir; Amini, Mohsen; Norouzi, Parviz; Abdollahi, Mohammad

    2018-01-01

    In the present survey, the plasma level of diazinon after acute exposure was measured by HPLC method at a time-course manner. In addition, the impact of diazinon on the expression of the key genes responsible for hepatocellular antioxidative defense, including PON1, GPx and CAT were investigated. The increase in oxidative damages in treated rats was determined by measuring LPO, protein carbonyl content and total antioxidant power in plasma. After administration of 85 mg/kg diazinon in ten groups of male Wistar rats at different time points between 0-24 hours, the activity of AChE enzyme was inhibited to about 77.94 %. Significant increases in carbonyl groups and LPO after 0.75 and 1 hours were also observed while the plasma antioxidant power was significantly decreased. Despite the dramatic reduction of GP X and PON1 gene expression, CAT gene was significantly upregulated in mRNA level by 1.1 fold after 4 hours and 1.5-fold after 24 hours due to diazinon exposure, compared to control group. Furthermore, no significant changes in diazinon plasma levels were found after 4 hours in the treated rats. The limits of detection and quantification were 137.42 and 416.52 ng/mL, respectively. The average percentage recoveries from plasma were between 90.62 % and 95.72 %. In conclusion, acute exposure to diazinon increased oxidative stress markers in a time-dependent manner and the changes were consistent with effects on hepatic antioxidant gene expression pattern. The effect of diazinon even as a non-lethal dose was induced on the gene expression of antioxidant enzymes. The change in antioxidant defense system occurs prior to diazinon plasma peak time. These results provide biochemical and molecular evidence supporting potential acute toxicity of diazinon and is beneficial in the evaluation of acute toxicity of other organophosphorus pesticides as well.

  19. Is warmer better? Decreased oxidative damage in notothenioid fish after long-term acclimation to multiple stressors.

    PubMed

    Enzor, Laura A; Place, Sean P

    2014-09-15

    Antarctic fish of the suborder Notothenioidei have evolved several unique adaptations to deal with subzero temperatures. However, these adaptations may come with physiological trade-offs, such as an increased susceptibility to oxidative damage. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly increase the level of oxidative stress and cellular damage in these endemic fish. Previous single stressor studies of the notothenioids have shown they possess the capacity to acclimate to increased temperatures, but the cellular-level effects remain largely unknown. Additionally, there is little information on the ability of Antarctic fish to respond to ecologically relevant environmental changes where multiple variables change concomitantly. We have examined the potential synergistic effects that increased temperature and Ṗ(CO2) have on the level of protein damage in Trematomus bernacchii, Pagothenia borchgrevinki and Trematomus newnesi, and combined these measurements with changes in total enzymatic activity of catalase (CAT) and superoxide dismutase (SOD) in order to gauge tissue-specific changes in antioxidant capacity. Our findings indicate that total SOD and CAT activity levels displayed only small changes across treatments and tissues. Short-term acclimation to decreased seawater pH and increased temperature resulted in significant increases in oxidative damage. Surprisingly, despite no significant change in antioxidant capacity, cellular damage returned to near-basal levels, and significantly decreased in T. bernacchii, after long-term acclimation. Overall, these data suggest that notothenioid fish currently maintain the antioxidant capacity necessary to offset predicted future ocean conditions, but it remains unclear whether this capacity comes with physiological trade-offs. © 2014. Published by The Company of Biologists Ltd.

  20. Vitamin U has a protective effect on valproic acid-induced renal damage due to its anti-oxidant, anti-inflammatory, and anti-fibrotic properties.

    PubMed

    Gezginci-Oktayoglu, Selda; Turkyilmaz, Ismet Burcu; Ercin, Merve; Yanardag, Refiye; Bolkent, Sehnaz

    2016-01-01

    The aim of present study was to investigate the effect of vitamin U (vit U, S-methylmethionine) on oxidative stress, inflammation, and fibrosis within the context of valproic acid (VPA)-induced renal damage. In this study, female Sprague Dawley rats were randomly divided into four groups: Group I consisted of intact animals, group II was given vit U (50 mg/kg/day, by gavage), group III was given VPA (500 mg/kg/day, intraperitonally), and group IV was given VPA + vit U. The animals were treated by vit U 1 h prior to treatment with VPA every day for 15 days. The following results were obtained in vit U + VPA-treated rats: (i) the protective effect of vit U on renal damage was shown by a significant decrease in histopathological changes and an increase in Na(+)/K(+)-ATPase activity; (ii) anti-oxidant property of vit U was demonstrated by a decrease in malondialdehyde levels and xanthine oxidase activity and an increase in glutathione levels, catalase and superoxide dismutase activities; (iii) anti-inflammatory property of vit U was demonstrated by a decrease in tumor necrosis factor-α, interleukin-1β, monocyte chemoattractant protein-1 levels, and adenosine deaminase activity; (iv) anti-fibrotic effect of vit U was shown by a decrease in transforming growth factor-β, collagen-1 levels, and arginase activity. Collectively, these data show that VPA is a promoter of inflammation, oxidative stress, and fibrosis which resulted in renal damage. Vit U can be proposed as a potential candidate for preventing renal damage which arose during the therapeutic usage of VPA.

  1. Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions.

    PubMed

    Sandhir, Rajat; Yadav, Aarti; Sunkaria, Aditya; Singhal, Nitin

    2015-10-01

    Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Oxalomalate, a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase, enhances lipid peroxidation-mediated oxidative damage in U937 cells.

    PubMed

    Yang, Joon-Hyuck; Park, Jeen-Woo

    2003-08-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.

  3. Total antioxidant/oxidant status in meningism and meningitis.

    PubMed

    Aycicek, Ali; Iscan, Akin; Erel, Ozcan; Akcali, Mustafa; Selek, Sahbettin

    2006-12-01

    The objective of this study was to investigate the antioxidant/oxidant status of serum and cerebrospinal fluid in children with meningismus and acute bacterial meningitis. Twenty-three children (age range, 0.75 to 9 years) with fever and meningeal signs that required analysis of the cerebrospinal fluid, but no cytologic or biochemical evidence of meningitis in their serum and cerebrospinal fluid, constituted the meningismus group. Thirty-one children (age range, 0.5 to 10 years) with acute bacterial meningitis constituted the meningitis group. Twenty-nine healthy children (age range, 0.5 to 11 years) were recruited as control subjects. Antioxidant status (ascorbic acid, albumin, thiol, uric acid, total bilirubin, total antioxidant capacity, catalase and ceruloplasmin concentrations) and oxidant status (lipid hydroperoxide and total oxidant status) were measured. The serum antioxidant status was lower, and oxidant status levels higher in both meningitis and meningismus subjects than in the control children (P < 0.001). Cerebrospinal fluid oxidant status was lower in the meningitis group than in the meningismus group (P < 0.05). These results indicate that serum antioxidant status was lower, and serum oxidant status was higher in children in the meningismus and meningitis groups, whereas cerebrospinal fluid oxidant status was higher in the meningismus group than in the meningitis group.

  4. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System

    PubMed Central

    Panda, Kamal K.; Golari, Dambaru; Venugopal, A.; Achary, V. Mohan M.; Phaomei, Ganngam; Parinandi, Narasimham L.; Sahu, Hrushi K.; Panda, Brahma B.

    2017-01-01

    Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH3COO)2) through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn2+ from Zn(CH3COO)2 were tested in a dose range of 0–100 mg·L−1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone. PMID:28524089

  5. Dietary antioxidants, lipid peroxidation and plumage colouration in nestling blue tits Cyanistes caeruleus

    NASA Astrophysics Data System (ADS)

    Larcombe, Stephen D.; Mullen, William; Alexander, Lucille; Arnold, Kathryn E.

    2010-10-01

    Carotenoid pigments are responsible for many of the red, yellow and orange plumage and integument traits seen in birds. One idea suggests that since carotenoids can act as antioxidants, carotenoid-mediated colouration may reveal an individual's ability to resist oxidative damage. In fact, there is currently very little information on the effects of most dietary-acquired antioxidants on oxidative stress in wild birds. Here, we assessed the impacts on oxidative damage, plasma antioxidants, growth and plumage colouration after supplementing nestling blue tits Cyanistes caeruleus with one of three diets; control, carotenoid treatment or α-tocopherol treatment. Oxidative damage was assessed by HPLC analysis of plasma levels of malondialdehyde (MDA), a by-product of lipid peroxidation. Contrary to predictions, we found no differences in oxidative damage, plumage colouration or growth rate between treatment groups. Although plasma lutein concentrations were significantly raised in carotenoid-fed chicks, α-tocopherol treatment had no effect on concentrations of plasma α-tocopherol compared with controls. Interestingly, we found that faster growing chicks had higher levels of oxidative damage than slower growing birds, independent of treatment, body mass and condition at fledging. Moreover, the chromatic signal of the chest plumage of birds was positively correlated with levels of MDA but not plasma antioxidant concentrations: more colourful nestlings had higher oxidative damage than less colourful individuals. Thus, increased carotenoid-mediated plumage does not reveal resistance to oxidative damage for nestling blue tits, but may indicate costs paid, in terms of oxidative damage. Our results indicate that the trade-offs between competing physiological systems for dietary antioxidants are likely to be complex in rapidly developing birds. Moreover, interpreting the biological relevance of different biomarkers of antioxidant status represents a challenge for evolutionary

  6. In vitro antioxidant capacities of eight different kinds of apples and their effects on lipopolysaccharide-induced oxidative damage in mice.

    PubMed

    Guo, Shuang; Wang, Yuehua; Chou, Shurui; Cui, Huijun; Li, Dongnan; Li, Bin

    2018-01-01

    In the present study, the DPPH and ABTS+ radical scavenging activity of eight types of apples decreased (P < 0.05) during the 70-day storage at 4°C. The Fushi (F2) apples from Xin Jiang showed the highest radical scavenging activity. For in vivo study, 40 male Kunming mice (body weight 20-25 g) were selected and randomly assigned to four groups (10 mice per group). The F2 groups (F2S, F2 + sterile saline and F2L, F2 + lipopolysaccharide) were administered with 0.3 mL F2 filtrate via gastric intubation daily for 28 days. The control groups (CS, CON + sterile saline and CL, CON + lipopolysaccharide) were treated with sterile saline at the same volume. At day 29, mice of F2L and CL groups were injected with 100 μg/kg body weight of lipopolysaccharide (LPS) intraperitoneally, while those of F2S and CS groups were injected equal volume of sterile saline. In comparison to the CS group, the CL group showed a decrease (P < 0.05) in serum, liver, and hepatic mitochondrial antioxidant capacity, reduction (P < 0.05) in the expression of hepatic antioxidant-related genes, and an increase (P < 0.05) in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), protein carbonyl (PC), and reactive oxygen species (ROS). In comparison to the CL group, the F2L group showed lower (P < 0.05) levels of serum ALT, AST, and ROS, higher (P < 0.05) level of serum, liver, and hepatic mitochondrial antioxidant capacity, increased mitochondrial membrane potential (MMP), and enhanced (P < 0.05) expression of hepatic antioxidant-related genes. These results suggest that F2 may exert protective effect against LPS-induced oxidative damage by improving the antioxidant capacity.

  7. Anti-oxidant effects of kiwi fruit in vitro and in vivo.

    PubMed

    Iwasawa, Haruyo; Morita, Erika; Yui, Satoru; Yamazaki, Masatoshi

    2011-01-01

    We previously reported that kiwi fruit is rich in polyphenols and has immunostimulatory activity. Polyphenols are widely known for having anti-oxidant effects. We also revealed potential anti-oxidant effects of kiwi fruit in vivo by oral administration to mice. Here, we compared the anti-oxidant effects of kiwi fruit with those of other fruits in vitro. Then, we examined the inhibitory effects of kiwi fruit on oxidation in the human body. There are two varieties of kiwi fruit, green kiwi and gold kiwi. We also examined variation between these varieties. Comparison of the anti-oxidant effects in vitro demonstrated that kiwi fruit had stronger anti-oxidant effects than orange and grapefruit, which are rich in vitamin C; gold kiwi had the strongest anti-oxidant effects. Kiwi fruit inhibited oxidation of biological substances in the human body. In particular, kiwi fruit may inhibit early lipid oxidation. In this study, kiwi fruit had strong anti-oxidant effects and may prevent the development and deterioration of diseases caused by oxidative stress.

  8. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism.

    PubMed

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-06-01

    The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2 (-) scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays. Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2(-) scavenging, DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3',4'-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  9. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    PubMed Central

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  10. Selenium Alleviates Oxidative Stress and Lung Damage Induced by Aluminum Chloride in Adult Rats: Biochemical and Histological Approach.

    PubMed

    Ghorbel, Imen; Elwej, Awatef; Chaabane, Mariem; Jamoussi, Kamel; Mnif, Hela; Boudawara, Tahia; Zeghal, Najiba

    2017-03-01

    Our study pertains to the potential ability of selenium, used as a nutritional supplement, to alleviate oxidative stress induced by aluminum chloride in the lung tissue. Rats have received during 21 days either aluminum chloride (AlCl 3 ) (400 ppm) via drinking water, AlCl 3 associated with Na 2 SeO 3 (0.5 mg/kg of diet), or only Na 2 SeO 3 . Exposure of rats to AlCl 3 induced lung oxidative stress with an increase of malondialdehyde, hydrogen peroxide, and protein carbonyls levels. An alteration of lactate dehydrogenase activities and antioxidant redox status, enzymatic (catalase, superoxide dismutase, and glutathione peroxidase), and non-enzymatic (non-protein thiols, glutathione, metallothionein, and vitamin C) was also observed. These biochemical modifications were substantiated by histopathological data showing alveolar edema, a large number of hemosiderin-laden macrophages, and emphysema. Se supplementation attenuated the levels of oxidative stress by restoring antioxidant state and improved lung histological damage. Our results revealed that Se, a trace element with antioxidant properties, was effective in preventing lung damage.

  11. Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes activities in Alzheimer's disease brain: A meta-analysis in human pathological specimens.

    PubMed

    Zabel, Matthew; Nackenoff, Alex; Kirsch, Wolff M; Harrison, Fiona E; Perry, George; Schrag, Matthew

    2018-02-01

    Oxidative stress and decreased cellular responsiveness to oxidative stress are thought to influence brain aging and Alzheimer's disease, but the specific patterns of oxidative damage and the underlying mechanism leading to this damage are not definitively known. The objective of this study was to define the pattern of changes in oxidative-stress related markers by brain region in human Alzheimer's disease and mild cognitive impairment brain tissue. Observational case-control studies were identified from systematic queries of PubMed, ISI Web of Science and Scopus databases and studies were evaluated with appropriate quality measures. The data was used to construct a region-by-region meta-analysis of malondialdehyde, 4-hydroxynonenal, protein carbonylation, 8-hydroxyguanine levels and superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase activities. We also evaluated ascorbic acid, tocopherol, uric acid and glutathione levels. The analysis was complicated in several cases by publication bias and/or outlier data. We found that malondialdehyde levels were slightly increased in the temporal and occipital lobes and hippocampus, but this analysis was significantly impacted by publication bias. 4-hydroxynonenal levels were unchanged in every brain region. There was no change in 8-hydroxyguanine level in any brain region and protein carbonylation levels were unchanged except for a slight increase in the occipital lobe. Superoxide dismutase, glutathione peroxidase and reductase and catalase activities were not decreased in any brain region. There was limited data reporting non-enzymatic antioxidant levels in Alzheimer's disease brain, although glutathione and tocopherol levels appear to be unchanged. Minimal quantitative data is available from brain tissue from patients with mild cognitive impairment. While there is modest evidence supporting minor regional changes in markers of oxidative damage, this analysis fails to identify a consistent pattern

  12. Oxidative stress and antioxidant defenses in pregnant women.

    PubMed

    Leal, Claudio A M; Schetinger, Maria R C; Leal, Daniela B R; Morsch, Vera M; da Silva, Aleksandro Schafer; Rezer, João F P; de Bairros, André Valle; Jaques, Jeandre Augusto Dos Santos

    2011-01-01

    Oxidative stress (OS) is defined as an imbalance in the production of reactive oxygen species and the capacity of antioxidant defenses. The objective of this work was to investigate OS and antioxidant capacity in pregnant women. Parameters of the oxidative status and antioxidant capacity in serum and whole blood were evaluated in thirty-nine women with normal pregnancy. The assessment of antioxidants indicated an increase in superoxide dismutase and catalase activities (P<0.05 and P<0.01) and a decrease in ascorbic acid levels and the total content of sulfhydryl (P<0.05 and P<0.001). Additionally, when the pro-oxidant system was investigated we found an increase (P<0.01) in malondialdehyde and no significant change (P>0.05) in protein carbonylation. This study demonstrates that there is a change in the pro-oxidant and antioxidant defenses associated with body and circulation changes that are inherent to the pregnancy process.

  13. Antioxidant and hepatoprotective effects of A. cerana honey against acute alcohol-induced liver damage in mice.

    PubMed

    Zhao, Haoan; Cheng, Ni; He, Liangliang; Peng, Guoxia; Xue, Xiaofeng; Wu, Liming; Cao, Wei

    2017-11-01

    A. cerana honey, gathered from Apis cerana Fabricius (A. cerana), has not been fully studied. Samples of honey originating from six geographical regions (mainly in the Qinling Mountains of China) were investigated to determine their antioxidant and hepatoprotective effects against acute alcohol-induced liver damage. The results showed that A. cerana honeys from the Qinling Mountains had high total phenolic contents (345.1-502.1mgGAkg -1 ), ascorbic acid contents (153.8-368.4mgkg -1 ), and strong antioxidant activities in DPPH radical scavenging activity assays (87.5-136.2IC50mgmL -1 ), ferric reducing antioxidant powers (191.8-317.4mgTroloxkg -1 ), and ferrous ion-chelating activities (27.5-35.5mgNa 2 EDTAkg -1 ). Pretreatment with A. cerana honey (Qinling Mountains) at 5, 10, or 20gkg -1 twice daily for 12weeks significantly inhibited serum lipoprotein oxidation and increased serum radical absorbance capacity (ORAC) (P<0.05). Moreover, A. cerana honey inhibited acute alcohol-induced increases in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum (P<0.05), reduced the production of hepatic malondialdehyde (MDA) (P<0.05), and promoted superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities (P<0.05). More importantly, it also remarkably inhibited the level of TGF-β1 in the serum and liver (P<0.05). The results of this study indicate that administration of A. cerana honey prevents acute alcohol-induced liver damage likely because of its antioxidant properties and ability to prevent oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice.

    PubMed

    Miller, Darren M; Singh, Indrapal N; Wang, Juan A; Hall, Edward D

    2015-02-01

    The importance of free radical-induced oxidative damage after traumatic brain injury (TBI) has been well documented. Despite multiple clinical trials with radical-scavenging antioxidants that are neuroprotective in TBI models, none is approved for acute TBI patients. As an alternative antioxidant target, Nrf2 is a transcription factor that activates expression of antioxidant and cytoprotective genes by binding to antioxidant response elements (AREs) within DNA. Previous research has shown that neuronal mitochondria are susceptible to oxidative damage post-TBI, and thus the current study investigates whether Nrf2-ARE activation protects mitochondrial function when activated post-TBI. It was hypothesized that administration of carnosic acid (CA) would reduce oxidative damage biomarkers in the brain tissue and also preserve cortical mitochondrial respiratory function post-TBI. A mouse controlled cortical impact (CCI) model was employed with a 1.0mm cortical deformation injury. Administration of CA at 15 min post-TBI reduced cortical lipid peroxidation, protein nitration, and cytoskeletal breakdown markers in a dose-dependent manner at 48 h post-injury. Moreover, CA preserved mitochondrial respiratory function compared to vehicle animals. This was accompanied by decreased oxidative damage to mitochondrial proteins, suggesting the mechanistic connection of the two effects. Lastly, delaying the initial administration of CA up to 8h post-TBI was still capable of reducing cytoskeletal breakdown, thereby demonstrating a clinically relevant therapeutic window for this approach. This study demonstrates that pharmacological Nrf2-ARE induction is capable of neuroprotective efficacy when administered after TBI. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Antioxidants and the Integrity of Ocular Tissues

    PubMed Central

    Cabrera, Marcela P.; Chihuailaf, Ricardo H.

    2011-01-01

    Oxygen-derived free radicals are normally generated in many pathways. These radicals can interact with various cellular components and induce cell injury. When free radicals exceed the antioxidant capacity, cell injury causes diverse pathologic changes in the organs. The imbalance between the generation of free radicals and antioxidant defence is known as oxidative stress. The eye can suffer the effect of oxidative damage due to the etiopathogenesis of some pathological changes related to oxidative stress. This paper reviews the role of oxidative stress in the onset and progression of damage in different eye structures, the involvement of the antioxidant network in protecting and maintaining the homeostasis of this organ, and the potential assessment methodologies used in research and in some cases in clinical practice. PMID:21789267

  16. Restoring Effects of Natural Anti-Oxidant Quercetin on Cellular Senescent Human Dermal Fibroblasts.

    PubMed

    Sohn, Eun-Ju; Kim, Jung Min; Kang, Se-Hui; Kwon, Joseph; An, Hyun Joo; Sung, Jung-Suk; Cho, Kyung A; Jang, Ik-Soon; Choi, Jong-Soon

    2018-05-08

    The oxidative damage initiated by reactive oxygen species (ROS) is a major contributor to the functional decline and disability that characterizes aging. The anti-oxidant flavonoid, quercetin, is a plant polyphenol that may be beneficial for retarding the aging process. We examined the restoring properties of quercetin on human dermal fibroblasts (HDFs). Quercetin directly reduced either intracellular or extracellular ROS levels in aged HDFs. To find the aging-related target genes by quercetin, microarray analysis was performed and two up-regulated genes LPL and KCNE2 were identified. Silencing LPL increased the expression levels of senescence proteins such as p16 INK4A and p53 and silencing KCNE2 reversed gene expressions of EGR1 and p-ERK in quercetin-treated aged HDFs. Silencing of LPL and KCNE2 decreased the expression levels of antioxidant enzymes such as superoxide dismutase and catalase. Also, the mitochondrial dysfunction in aged HDFs was ameliorated by quercetin treatment. Taken together, these results suggest that quercetin has restoring effect on the cellular senescence by down-regulation of senescence activities and up-regulation of the gene expressions of anti-oxidant enzymes in aged HDFs.

  17. Protective Effect of Highly Polymeric A-Type Proanthocyanidins from Seed Shells of Japanese Horse Chestnut (Aesculus turbinata BLUME) against Light-Induced Oxidative Damage in Rat Retina

    PubMed Central

    Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro

    2018-01-01

    Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O-glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. Highlights: The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation

  18. Protective Effect of Highly Polymeric A-Type Proanthocyanidins from Seed Shells of Japanese Horse Chestnut (Aesculus turbinata BLUME) against Light-Induced Oxidative Damage in Rat Retina.

    PubMed

    Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro; Ohira, Akihiro

    2018-05-10

    Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O -glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut ( Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal

  19. Effects of isoquinoline alkaloid berberine on lipid peroxidation, antioxidant defense system, and liver damage induced by lead acetate in rats.

    PubMed

    Hasanein, Parisa; Ghafari-Vahed, Masumeh; Khodadadi, Iraj

    2017-01-01

    Liver is considered a target organ affected by lead toxicity. Oxidative stress is among the mechanisms involved in liver damage. Here we investigated the effects of the natural alkaloid berberine on oxidative stress and hepatotoxicity induced by lead in rats. Animals received an aqueous solution of lead acetate (500 mg Pb/l in the drinking water) and/or daily oral gavage of berberine (50 mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical, molecular, and histological evaluations. Lead-induced oxidative stress, shown by increasing lipid peroxidation along with a concomitant decrease in hepatic levels of thiol groups, total antioxidant capacity, the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and reduced versus oxidized glutathione ratio. Berberine corrected all the disturbances in oxidative stress markers induced by lead administration. Berberine also prevented the elevated levels of enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) and the decrease in body weight and albumin. The protective effects of berberine were comparable with silymarin. Furthermore, berberine attenuated liver damage, shown by decreased necrosis and inflammatory cell infiltration. Berberine represents a potential therapeutic option against lead-induced hepatotoxicity through inhibiting lipid peroxidation and enhancing antioxidant defenses. Berberine exerted protective effects on lead-induced oxidative stress and hepatotoxicity in rats.

  20. Is reproduction costly? No increase of oxidative damage in breeding bank voles.

    PubMed

    Ołdakowski, Łukasz; Piotrowska, Zaneta; Chrzaácik, Katarzyna M; Sadowska, Edyta T; Koteja, Paweł; Taylor, Jan R E

    2012-06-01

    According to life-history theory, investment in reproduction is associated with costs, which should appear as decreased survival to the next reproduction or lower future reproductive success. It has been suggested that oxidative stress may be the proximate mechanism of these trade-offs. Despite numerous studies of the defense against reactive oxygen species (ROS) during reproduction, very little is known about the damage caused by ROS to the tissues of wild breeding animals. We measured oxidative damage to lipids and proteins in breeding bank vole (Myodes glareolus) females after rearing one and two litters, and in non-breeding females. We used bank voles from lines selected for high maximum aerobic metabolic rates (which also had high resting metabolic rates and food intake) and non-selected control lines. The oxidative damage was determined in heart, kidneys and skeletal muscles by measuring the concentration of thiobarbituric acid-reactive substances, as markers of lipid peroxidation, and carbonyl groups in proteins, as markers of protein oxidation. Surprisingly, we found that the oxidative damage to lipids in kidneys and muscles was actually lower in breeding than in non-breeding voles, and it did not differ between animals from the selected and control lines. Thus, contrary to our predictions, females that bred suffered lower levels of oxidative stress than those that did not reproduce. Elevated production of antioxidant enzymes and the protective role of sex hormones may explain the results. The results of the present study do not support the hypothesis that oxidative damage to tissues is the proximate mechanism of reproduction costs.

  1. Hyperoxia-induced ciliary loss and oxidative damage in an in vitro bovine model: The protective role of antioxidant vitamins E and C

    SciTech Connect

    Al-Shmgani, Hanady S.; Moate, Roy M.; Sneyd, J. Robert

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer A new bovine bronchial model for studying hyperoxia-induced cilia loss is presented. Black-Right-Pointing-Pointer Hyperoxia-induced cilia loss was associated with increased sloughing of cells. Black-Right-Pointing-Pointer Hyperoxia led to higher epithelial glutathione levels, evidence of oxidative stress. Black-Right-Pointing-Pointer Hyperoxia led to increased DNA damage (Comet), and lipid peroxidation (TBARS). Black-Right-Pointing-Pointer Vitamins C and E partially protected against hyperoxia-induced cilia loss. -- Abstract: Although elevated oxygen fraction is used in intensive care units around the world, pathological changes in pulmonary tissue have been shown to occur with prolonged exposure to hyperoxia. In this work a bovine bronchus culture model has beenmore » successfully used to evaluate the effects of hyperoxia on ciliated epithelium in vitro. Samples were cultured using an air interface method and exposed to normoxia, 21% O{sub 2} or hyperoxia, 95% O{sub 2}. Cilial coverage was assessed using scanning electron microscopy (SEM). Tissue damage (lactate dehydrogenase, LDH, in the medium), lipid peroxidation (thiobarbituric acid reactive substances, TBARS), DNA damage (comet assay), protein oxidation (OxyBlot kit) and antioxidant status (total glutathione) were used to assess whether the hyperoxia caused significant oxidative stress. Hyperoxia caused a time-dependent decline (t{sub Vulgar-Fraction-One-Half} = 3.4 d compared to 37.1 d under normoxia) in cilial coverage (P < 0.0001). This was associated with a significant increase in the number of cells (2.80 {+-} 0.27 Multiplication-Sign 10{sup 6} compared to 1.97 {+-} 0.23 Multiplication-Sign 10{sup 6} ml{sup -1} after 6 d), many apparently intact, in the medium (P < 0.05); LDH release (1.06 {+-} 0.29 compared to 0.83 {+-} 0.36 {mu}mol min{sup -1} g{sup -1} after 6 d; P < 0.001); lipid peroxidation (352 {+-} 16 versus 247 {+-} 11 {mu}mol MDA g{sup -1} for

  2. Lymphocyte DNA damage and plasma antioxidant status in Korean subclinical hypertensive patients by glutathione S-transferase polymorphism

    PubMed Central

    Han, Jeong-Hwa; Lee, Hye-Jin; Choi, Hee Jeong; Yun, Kyung Eun

    2017-01-01

    BACKGROUND/OBJECTIVES Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of xenobiotics by conjugating substances with glutathione. The aim of this study is to assess the antioxidative status and the degree of DNA damage in the subclinical hypertensive patients in Korea using glutathione S-transferase polymorphisms. SUBJECTS/METHODS We examined whether DNA damage and antioxidative status show a difference between GSTM1 or GSTT1 genotype in 227 newly diagnosed, untreated (systolic blood pressure (BP) ≥ 130 mmHg or diastolic BP ≥ 85 mmHg) subclinical hypertensive patients and 130 normotensive subjects (systolic BP < 120 mmHg and diastolic BP < 80 mmHg). From the blood of the subjects, the degree of the DNA damage in lymphocyte, the activities of erythrocyte superoxide dismutase, the catalase, and the glutathione peroxidase, the level of glutathione, plasma total radical-trapping antioxidant potential (TRAP), anti-oxidative vitamins, as well as plasma lipid profiles and conjugated diene (CD) were analyzed. RESULTS Of the 227 subjects studied, 68.3% were GSTM1 null genotype and 66.5% were GSTT1 null genotype. GSTM1 null genotype had an increased risk of hypertension (OR: 2.104, CI: 1.38-3.35), but no significant association in GSTT1 null genotype (OR 0.982, CI: 0.62-1.55). No difference in erythrocyte activities of superoxide dismutase, catalase, or glutathione peroxidase, and plasma TRAP, CD, lipid profiles, and GSH levels were observed between GSTM1 or GSTT1 genotype. Plasma levels of α-tocopherol increased significantly in GSTT1 wild genotype (P < 0.05); however, plasma level of β-carotene increased significantly in GSTT1 null genotype (P < 0.01). DNA damage assessed by the Comet assay was significantly higher in GSTM1 null genotype than wild genotype (P < 0.05). CONCLUSIONS These results confirm the association between GSTM1 null genotype and risk of hypertension as they suggest

  3. The Levels of Cortisol, Oxidative Stress, and DNA Damage in the Victims of Childhood Sexual Abuse: A Preliminary Study.

    PubMed

    Şimşek, Şeref; Kaplan, İbrahim; Uysal, Cem; Yüksel, Tuğba; Alaca, Rümeysa

    2016-01-01

    In this study we aimed to investigate serum cortisol, oxidative stress, and DNA damage in children who are sexual abuse victims. The study included 38 children who sustained child sexual abuse and 38 age- and gender-matched children who did not have a history of trauma. Cortisol levels reflecting the status of the hypothalamic-pituitary-adrenal axis, anti-oxidant enzymes glutathione peroxidase, superoxide dismutase, natural anti-oxidant coenzyme Q, and 8-hydroxy-2-deoxyguanosine as the indicator of DNA damage were analyzed in serum samples using the enzyme linked immunosorbent assay method. Cortisol levels were significantly higher in the child sexual abuse group compared to the control group. There were no significant differences between the groups in terms of oxidative stress and DNA damage. Cortisol and 8-hydroxy-2-deoxyguanosine levels decreased as the time elapsed since the sexual abuse increased. Coenzyme Q level was lower in victims who sustained multiple assaults than in the victims of a single assault. Cortisol and superoxide dismutase levels were lower in the victims of familial sexual abuse. Decreases in cortisol and 8-hydroxy-2-deoxyguanosine levels as time elapsed may be an adaptation to the toxic effects of high cortisol levels over a prolonged period of time. Child sexual abuse did not result in oxidative stress and DNA damage; however, some features of sexual abuse raised the level of oxidative stress.

  4. Food-Derived Antioxidant Polysaccharides and Their Pharmacological Potential in Neurodegenerative Diseases

    PubMed Central

    Li, Haifeng; Ding, Fei; Xiao, Lingyun; Shi, Ruona; Wang, Hongyu; Han, Wenjing

    2017-01-01

    Oxidative stress is known to impair architecture and function of cells, which may lead to various chronic diseases, and therefore therapeutic and nutritional interventions to reduce oxidative damages represent a viable strategy in the amelioration of oxidative stress-related disorders, including neurodegenerative diseases. Over the past decade, a variety of natural polysaccharides from functional and medicinal foods have attracted great interest due to their antioxidant functions such as scavenging free radicals and reducing oxidative damages. Interestingly, these antioxidant polysaccharides are also found to attenuate neuronal damages and alleviate cognitive and motor decline in a range of neurodegenerative models. It has recently been established that the neuroprotective mechanisms of polysaccharides are related to oxidative stress-related pathways, including mitochondrial function, antioxidant defense system and pathogenic protein aggregation. Here, we first summarize the current status of antioxidant function of food-derived polysaccharides and then attempt to appraise their anti-neurodegeneration activities. PMID:28753972

  5. Lung Oxidative Damage by Hypoxia

    PubMed Central

    Araneda, O. F.; Tuesta, M.

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described. PMID:22966417

  6. Effect of vitamin E (Tri E®) on antioxidant enzymes and DNA damage in rats following eight weeks exercise

    PubMed Central

    2011-01-01

    Background Exercise is beneficial to health, but during exercise the body generates reactive oxygen species (ROS) which are known to result in oxidative stress. The present study analysed the effects of vitamin E (Tri E®) on antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (Cat) activity and DNA damage in rats undergoing eight weeks exercise. Methods Twenty four Sprague-Dawley rats (weighing 320-370 gm) were divided into four groups; a control group of sedentary rats which were given a normal diet, second group of sedentary rats with oral supplementation of 30 mg/kg/d of Tri E®, third group comprised of exercised rats on a normal diet, and the fourth group of exercised rats with oral supplementation of 30 mg/kg/d of Tri E®. The exercising rats were trained on a treadmill for 30 minutes per day for 8 weeks. Blood samples were taken before and after 8 weeks of the study to determine SOD, GPx, Cat activities and DNA damage. Results SOD activity decreased significantly in all the groups compared to baseline, however both exercised groups showed significant reduction in SOD activity as compared to the sedentary groups. Sedentary control groups showed significantly higher GPx and Cat activity compared to baseline and exercised groups. The supplemented groups, both exercised and non exercised groups, showed significant decrease in Cat activity as compared to their control groups with normal diet. DNA damage was significantly higher in exercising rats as compared to sedentary control. However in exercising groups, the DNA damage in supplemented group is significantly lower as compared to the non-supplemented group. Conclusions In conclusion, antioxidant enzymes activity were generally reduced in rats supplemented with Tri E® probably due to its synergistic anti-oxidative defence, as evidenced by the decrease in DNA damage in Tri E® supplemented exercise group. PMID:21513540

  7. Effect of vitamin E (Tri E®) on antioxidant enzymes and DNA damage in rats following eight weeks exercise.

    PubMed

    Abd Hamid, Noor Aini; Hasrul, Mohd A; Ruzanna, Rusdiah J; Ibrahim, Ibrahim A; Baruah, Prasamit S; Mazlan, Musalmah; Yusof, Yasmin Anum Mohd; Ngah, Wan Zurinah Wan

    2011-04-23

    Exercise is beneficial to health, but during exercise the body generates reactive oxygen species (ROS) which are known to result in oxidative stress. The present study analysed the effects of vitamin E (Tri E®) on antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (Cat) activity and DNA damage in rats undergoing eight weeks exercise. Twenty four Sprague-Dawley rats (weighing 320-370 gm) were divided into four groups; a control group of sedentary rats which were given a normal diet, second group of sedentary rats with oral supplementation of 30 mg/kg/d of Tri E®, third group comprised of exercised rats on a normal diet, and the fourth group of exercised rats with oral supplementation of 30 mg/kg/d of Tri E®. The exercising rats were trained on a treadmill for 30 minutes per day for 8 weeks. Blood samples were taken before and after 8 weeks of the study to determine SOD, GPx, Cat activities and DNA damage. SOD activity decreased significantly in all the groups compared to baseline, however both exercised groups showed significant reduction in SOD activity as compared to the sedentary groups. Sedentary control groups showed significantly higher GPx and Cat activity compared to baseline and exercised groups. The supplemented groups, both exercised and non exercised groups, showed significant decrease in Cat activity as compared to their control groups with normal diet. DNA damage was significantly higher in exercising rats as compared to sedentary control. However in exercising groups, the DNA damage in supplemented group is significantly lower as compared to the non-supplemented group. In conclusion, antioxidant enzymes activity were generally reduced in rats supplemented with Tri E® probably due to its synergistic anti-oxidative defence, as evidenced by the decrease in DNA damage in Tri E® supplemented exercise group.

  8. Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes.

    PubMed

    Park, Yong Seok; You, Seung Yeop; Cho, Sungrae; Jeon, Hyuk-Joon; Lee, Sukchan; Cho, Dong-Hyung; Kim, Jae-Sung; Oh, Jeong Su

    2016-09-01

    The maintenance of genomic integrity and stability is essential for the survival of every organism. Unfortunately, DNA is vulnerable to attack by a variety of damaging agents. Oxidative stress is a major cause of DNA damage because reactive oxygen species (ROS) are produced as by-products of normal cellular metabolism. Cells have developed eloquent antioxidant defense systems to protect themselves from oxidative damage along with aerobic metabolism. Here, we show that catalase (CAT) is present in mouse oocytes to protect the genome from oxidative damage during meiotic maturation. CAT was expressed in the nucleus to form unique vesicular structures. However, after nuclear envelope breakdown, CAT was redistributed in the cytoplasm with particular focus at the chromosomes. Inhibition of CAT activity increased endogenous ROS levels, but did not perturb meiotic maturation. In addition, CAT inhibition produced chromosomal defects, including chromosome misalignment and DNA damage. Therefore, our data suggest that CAT is required not only to scavenge ROS, but also to protect DNA from oxidative damage during meiotic maturation in mouse oocytes.

  9. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    SciTech Connect

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao, E-mail: xuwentaoboy@sina.com

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did notmore » affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage

  10. DNA and BSA damage inhibitory activities, and anti-acetylcholinesterase, anti-porcine α-amylase and antioxidant properties of Dolichos lablab beans.

    PubMed

    Habib, Hosam M; Theuri, Serah W; Kheadr, Ehab; Mohamed, Fedah E

    2017-02-22

    The underutilized Kenyan variety of Dolichos lablab bean seeds serve as a good source of natural antioxidants, which can probably be effective in reducing the risk of occurrence of several diseases. This study was undertaken for the first time to address the limited knowledge regarding the antioxidant activities of lablab beans. Moreover, their DNA damage inhibitory activity, bovine serum albumin (BSA) damage inhibitory activity, and the inhibition of acetylcholinesterase and porcine α-amylase were also investigated. The antioxidant capacity of Dolichos lablab bean seeds extracted with methanol, water or methanol/water combination was evaluated by the ferric-reducing antioxidant power (FRAP) assay, free radical-scavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO) radical-scavenging assay, and 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Results reported in the present study indicate that water, methanol and water/methanol extracts of lablab bean flour exhibited good antioxidant activity by effectively scavenging various free radicals, such as DPPH, NO, and ABTS radicals. The extracts also exhibited protective effects against DNA and BSA damage and inhibitory effects on porcine α-amylase. Findings of this study suggest that extracts from the lablab bean flour would have potential application in food supplements, and pharmaceutical and cosmetic industries.

  11. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats

    PubMed Central

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-01-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli (Brassica oleracea) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics (P<0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values (P<0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes. PMID:29333379

  12. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    PubMed

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  13. Mangiferin decreases inflammation and oxidative damage in rat brain after stress.

    PubMed

    Márquez, Lucía; García-Bueno, Borja; Madrigal, José L M; Leza, Juan C

    2012-09-01

    Stress exposure elicits neuroinflammation and oxidative damage in brain, and stress-related neurological and neuropsychiatric diseases have been associated with cell damage and death. Mangiferin (MAG) is a polyphenolic compound abundant in the stem bark of Mangifera indica L. with antioxidant and anti-inflammatory properties in different experimental settings. In this study, the capacity of MAG to prevent neuroinflammation and brain oxidative damage induced by stress exposure was investigated. Young-adult male Wistar rats immobilized during 6 h were administered by oral gavage with increasing doses of MAG (15, 30, and 60 mg/Kg), respectively, 7 days before stress. Prior treatment with MAG prevented all of the following stress-induced effects: (1) increase in glucocorticoids (GCs) and interleukin-1β (IL-1β) plasma levels, (2) loss of redox balance and reduction in catalase brain levels, (3) increase in pro-inflammatory mediators, such as tumor necrosis factor alpha TNF-α and its receptor TNF-R1, nuclear factor-kappa B (NF-κB) and synthesis enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), (4) increase in lipid peroxidation. These multifaceted protective effects suggest that MAG administration could be a new therapeutic strategy in neurological/neuropsychiatric pathologies in which hypothalamic/pituitary/adrenal (HPA) stress axis dysregulation, neuroinflammation, and oxidative damage take place in their pathophysiology.

  14. In vitro antioxidant properties, DNA damage protective activity, and xanthine oxidase inhibitory effect of cajaninstilbene acid, a stilbene compound derived from pigeon pea [Cajanus cajan (L.) Millsp.] leaves.

    PubMed

    Wu, Nan; Kong, Yu; Fu, Yujie; Zu, Yuangang; Yang, Zhiwei; Yang, Mei; Peng, Xiao; Efferth, Thomas

    2011-01-12

    The antioxidant properties, DNA damage protective activities, and xanthine oxidase (XOD) inhibitory effect of cajaninstilbene acid (CSA) derived from pigeon pea leaves were studied in the present work. Compared with resveratrol, CSA showed stronger antioxidant properties, DNA damage protective activity, and XOD inhibition activity. The IC(50) values of CSA for superoxide radical scavenging, hydroxyl radical scavenging, nitric oxide scavenging, reducing power, lipid peroxidation, and XOD inhibition were 19.03, 6.36, 39.65, 20.41, 20.58, and 3.62 μM, respectively. CSA possessed good protective activity from oxidative DNA damage. Furthermore, molecular docking indicated that CSA was more potent than resveratrol or allopurinol to interact with the active site of XOD (calculated free binding energy: -229.71 kcal mol(-1)). On the basis of the results, we conclude that CSA represents a valuable natural antioxidant source and may potentially be applicable in health food industry.

  15. Serum oxidant and antioxidant status of patients with chronic tension-type headache: possible effects of medical treatment.

    PubMed

    Gökçe Çokal, Burcu; Aytaç, Bilal; Durak, Zahide Esra; Güneş, Hafize Nalan; Öztürk, Bahadır; Keskin Güler, Selda; Durak, İlker; Yoldaş, Tahir Kurtuluş

    2015-10-01

    Tension-type headache (TTH) is one of the most common and costly primary types of headache in clinical practice, with an unknown etiology. This study assessed to investigate oxidative and antioxidative status in patients with chronic tension-type headache (CTTH), and to evaluate possible effect of medical treatment. The study included 41 CTTH patients and 19 age- and sex-matched healthy subjects without headache as controls. The CTTH group comprised 20 patients receiving treatment and 21 untreated patients. We evaluated oxidant/antioxidant status by measuring serum malondialdehyde (MDA) levels and activities of antioxidant enzymes, namely glutathione peroxidase (GSH-Px) and catalase (CAT). Comparison of oxidative parameters in the patient and control groups revealed significantly lower CAT activities and higher MDA level and GSH-Px activities in the patient group. In the CTTH group, serum CAT activities were found to be significantly decreased in patient groups, while serum MDA levels and GSH-Px activities were found to be higher in the untreated CTTH patients. These findings suggest that oxidative stress is increased in the patients with CTTH, and medical treatment abolishes the stress in part. It has been concluded that antioxidant support might be helpful for the patients with CTTH to prevent oxidant stress and peroxidation damages further.

  16. Protective effect of unsymmetrical dichalcogenide, a novel antioxidant agent, in vitro and an in vivo model of brain oxidative damage.

    PubMed

    Prigol, Marina; Wilhelm, Ethel A; Schneider, Caroline C; Nogueira, Cristina W

    2008-11-25

    Unsymmetrical dichalcogenides, a class of organoselenium compounds, were screened for antioxidant activity in rat brain homogenates in vitro. Unsymmetrical dichalcogenides (1-3) were tested against lipid peroxidation induced by sodium nitroprusside (SNP) or malonate, and reactive species (RS) production induced by sodium azide in rat brain homogenates. Compounds 1 (without a substituent at the phenyl group), 2 (chloro substituent at the phenyl group bounded to the sulfur atom) and 3 (chloro substituent at the phenyl group bounded to the selenium atom) protected against lipid peroxidation induced by SNP. The IC50 values followed the order 3<2<1. Lipid peroxidation induced by malonate was also reduced by dichalcogenides 1, 2 and 3. The IC50 values were 3oxidatively modified protein in rat brain homogenates. Compound 3 presented the lowest value of IC50 23.5 microM (IC50 values were 3<2antioxidant against lipid and protein oxidation in rat brain homogenates in vitro, 3 was investigated in the oxidative damage induced by SNP in mouse brain. Swiss albino mice were pre-treated with compound 3 (50 mg/kg, oral route, p.o). After 30 min, mice received SNP (0.35 microM/site i.c.v.). The levels of lipid peroxidation and the activity of catalase, glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR) were carried out in brain homogenates of SNP-injected mice. Compound 3 protected against the increase in lipid peroxidation levels and the reduction of GST and GR activities in brain homogenate of mice exposed to SNP, suggesting the potential beneficial activity of dichalcogenides against deleterious oxidations in an in vivo model.

  17. Oxidant-antioxidant balance and tolerance against oxidative stress in pioneer and non-pioneer tree species from the remaining Atlantic Forest.

    PubMed

    Esposito, Marisia Pannia; Nakazato, Ricardo Keiichi; Pedroso, Andrea Nunes Vaz; Lima, Marcos Enoque Leite; Figueiredo, Maurílio Assis; Diniz, Adriana Pedrosa; Kozovits, Alessandra Rodrigues; Domingos, Marisa

    2018-06-01

    The extensive land occupation in Southeast Brazil has resulted in climatic disturbances and environmental contamination by air pollutants, threatening the Atlantic forest remnants that still exist in that region. Based on previous results, we assumed that pioneer tree species are potentially more tolerant against environmental oxidative stress than non-pioneer tree species from that Brazilian biome. We also assumed that reactive oxygen species (ROS) are accumulated in higher proportions in leaves of non-pioneer trees, resulting in changes in the oxidant-antioxidant balance and in more severe oxidative damage at the cellular level than in the leaves of pioneer trees. We tested these hypotheses by establishing the relationship between oxidants (ROS), changes in key antioxidants (among enzymatic and non-enzymatic compounds) and in a lipid peroxidation derivative in their leaves, as well as between ROS accumulation and oscillations in environmental stressors, thus permitting to discuss comparatively for the first time the oxidant-antioxidant balance and the tolerance capacity of tree species of the Atlantic Forest in SE Brazil. We confirmed that the non-pioneer tree species accumulated higher amounts of superoxide and hydrogen peroxide in palisade parenchyma and epidermis, showing a less effective antioxidant metabolism than the pioneer species. However, the non-pioneer species showed differing capacities to compensate the oxidative stress in both years of study, which appeared to be associated with the level of ROS accumulation, which was evidently higher in 2015 than in 2016. We also applied exploratory multivariate statistics, which revealed that the oscillations in these biochemical leaf responses in both functional groups coincided with the oscillations in both climatic conditions and air pollutants, seemingly showing that they had acclimated to the stressful oxidative environment observed and may perpetuate in the disturbed forest remnants located in SE Brazil

  18. Mitoprotective antioxidant EUK-134 stimulates fatty acid oxidation and prevents hypertrophy in H9C2 cells.

    PubMed

    Purushothaman, Sreeja; Nair, R Renuka

    2016-09-01

    Oxidative stress is an important contributory factor for the development of cardiovascular diseases like hypertension-induced hypertrophy. Mitochondrion is the major source of reactive oxygen species. Hence, protecting mitochondria from oxidative damage can be an effective therapeutic strategy for the prevention of hypertensive heart disease. Conventional antioxidants are not likely to be cardioprotective, as they cannot protect mitochondria from oxidative damage. EUK-134 is a salen-manganese complex with superoxide dismutase and catalase activity. The possible role of EUK-134, a mitoprotective antioxidant, in the prevention of hypertrophy of H9C2 cells was examined. The cells were stimulated with phenylephrine (50 μM), and hypertrophy was assessed based on cell volume and expression of brain natriuretic peptide and calcineurin. Enhanced myocardial lipid peroxidation and protein carbonyl content, accompanied by nuclear factor-kappa B gene expression, confirmed the presence of oxidative stress in hypertrophic cells. Metabolic shift was evident from reduction in the expression of medium-chain acyl-CoA dehydrogenase. Mitochondrial oxidative stress was confirmed by the reduced expression of mitochondria-specific antioxidant peroxiredoxin-3 and enhanced mitochondrial superoxide production. Compromised mitochondrial function was apparent from reduced mitochondrial membrane potential. Pretreatment with EUK-134 (10 μM) was effective in the prevention of hypertrophic changes in H9C2 cells, reduction of oxidative stress, and prevention of metabolic shift. EUK-134 treatment improved the oxidative status of mitochondria and reversed hypertrophy-induced reduction of mitochondrial membrane potential. Supplementation with EUK-134 is therefore identified as a novel approach to attenuate cardiac hypertrophy and lends scope for the development of EUK-134 as a therapeutic agent in the management of human cardiovascular disease.

  19. Zinc ion enhances GABA tea-mediated oxidative DNA damage.

    PubMed

    Chuang, Show-Mei; Wang, Hsueh-Fang; Hsiao, Ching-Chuan; Cherng, Shur-Hueih

    2012-02-15

    GABA tea is a tea product that contains a high level of γ-aminobutyric acid (GABA). Previous study has demonstrated a synergistic effect of GABA tea and copper ions on DNA breakage. This study further explored whether zinc (Zn), a nonredox metal, modulated DNA cleavage induced by GABA tea extract. In a cell-free system, Zn(2+) significantly enhanced GABA tea extract and (-)-epigallocatechin-3-gallate (EGCG)- or H(2)O(2)-induced DNA damage at 24 h of incubation. Additionally, low dosages of GABA tea extract (1-10 μg/mL) possessed pro-oxidant activity to increase H(2)O(2)/Zn(2+)-induced DNA cleavage in a dose-dependent profile. By use of various reactive oxygen scavengers, it was observed that glutathione, catalase, and potassium iodide effectively inhibited DNA degradation caused by the GABA tea extract/H(2)O(2)/Zn(2+) system. Moreover, the data showed that the GABA tea extract itself (0.5-5 mg/mL) could induce DNA cleavage in a long-term exposure (48 h). EGCG, but not the GABA tea extract, enhanced H(2)O(2)-induced DNA cleavage. In contrast, GABA decreased H(2)O(2)- and EGCG-induced DNA cleavage, suggesting that GABA might contribute the major effect on the antioxidant activity of GABA tea extract. Furthermore, a comet assay revealed that GABA tea extract (0.25 mg/mL) and GABA had antioxidant activity on H(2)O(2)-induced DNA breakage in human peripheral lymphocytes. Taken together, these findings indicate that GABA tea has the potential of both pro-oxidant and antioxidant. It is proposed that a balance between EGCG-induced pro-oxidation and GABA-mediated antioxidation may occur in a complex mixture of GABA tea extract.

  20. Antioxidant modulation in response to heavy metal induced oxidative stress in Cladophora glomerata.

    PubMed

    Murugan, K; Harish, S R

    2007-11-01

    The present investigation was carried out to study the induction of oxidative stress subjected to heavy metal environment. Lipoperoxides showed positive correlation at heavy metal accumulation sites indicating the tissue damage resulting from the reactive oxygen species and resulted in unbalance to cellular redox status. The high activities of ascorbate peroxidase and superoxide dismutase probably counter balance this oxidative stress. Glutathione and soluble phenols decreased, whereas dehydroascorbate content increased in the algae from polluted sites. The results suggested that alga responded to heavy metals effectively by antioxidant compounds and scavenging enzymes.

  1. Antioxidant functionalized polymer capsules to prevent oxidative stress.

    PubMed

    Larrañaga, Aitor; Isa, Isma Liza Mohd; Patil, Vaibhav; Thamboo, Sagana; Lomora, Mihai; Fernández-Yague, Marc A; Sarasua, Jose-Ramon; Palivan, Cornelia G; Pandit, Abhay

    2018-02-01

    Polymeric capsules exhibit significant potential for therapeutic applications as microreactors, where the bio-chemical reactions of interest are efficiently performed in a spatial and time defined manner due to the encapsulation of an active biomolecule (e.g., enzyme) and control over the transfer of reagents and products through the capsular membrane. In this work, catalase loaded polymer capsules functionalized with an external layer of tannic acid (TA) are fabricated via a layer-by-layer approach using calcium carbonate as a sacrificial template. The capsules functionalised with TA exhibit a higher scavenging capacity for hydrogen peroxide and hydroxyl radicals, suggesting that the external layer of TA shows intrinsic antioxidant properties, and represents a valid strategy to increase the overall antioxidant potential of the developed capsules. Additionally, the hydrogen peroxide scavenging capacity of the capsules is enhanced in the presence of the encapsulated catalase. The capsules prevent oxidative stress in an in vitro inflammation model of degenerative disc disease. Moreover, the expression of matrix metalloproteinase-3 (MMP-3), and disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5), which represents the major proteolytic enzymes in intervertebral disc, are attenuated in the presence of the polymer capsules. This platform technology exhibits potential to reduce oxidative stress, a key modulator in the pathology of a broad range of inflammatory diseases. Oxidative stress damages important cell structures leading to cellular apoptosis and senescence, for numerous disease pathologies including cancer, neurodegeneration or osteoarthritis. Thus, the development of biomaterials-based systems to control oxidative stress has gained an increasing interest. Herein, polymer capsules loaded with catalase and functionalized with an external layer of tannic acid are fabricated, which can efficiently scavenge important reactive oxygen species (i

  2. Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins.

    PubMed

    Anbaraki, Afrooz; Khoshaman, Kazem; Ghasemi, Younes; Yousefi, Reza

    2016-10-01

    The main components of sunlight reaching the eye lens are UVA and visible light exerting their photo-damaging effects indirectly by the aid of endogenous photosensitizer molecules such as riboflavin (RF). In this study, lens proteins solutions were incubated with RF and exposed to the sunlight. Then, gel mobility shift analysis and different spectroscopic assessments were applied to examine the structural damaging effects of solar radiation on these proteins. Exposure of lens proteins to direct sunlight, in the presence of RF, leads to marked structural crosslinking, oligomerization and proteolytic instability. These structural damages were also accompanied with reduction in the emission fluorescence of Trp and Tyr and appearance of a new absorption peak between 300 and 400nm which can be related to formation of new chromophores. Also, photo-oxidation of lens crystallins increases their oligomeric size distribution as examined by dynamic light scattering analysis. The above mentioned structural insults, as potential sources of sunlight-induced senile cataract and blindness, were significantly attenuated in the presence of ascorbic acid and glutathione which are two important components of lens antioxidant defense system. Therefore, the powerful antioxidant defense mechanism of eye lens is an important barrier against molecular photo-damaging effects of solar radiations during the life span. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas.

    PubMed

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João

    2016-03-01

    Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Coordinated Changes in Antioxidative Enzymes Protect the Photosynthetic Machinery from Salinity Induced Oxidative Damage and Confer Salt Tolerance in an Extreme Halophyte Salvadora persica L.

    PubMed Central

    Rangani, Jaykumar; Parida, Asish K.; Panda, Ashok; Kumari, Asha

    2016-01-01

    Salinity-induced modulations in growth, photosynthetic pigments, relative water content (RWC), lipid peroxidation, photosynthesis, photosystem II efficiency, and changes in activity of various antioxidative enzymes were studied in the halophyte Salvadora persica treated with various levels of salinity (0, 250, 500, 750, and 1000 mM NaCl) to obtain an insight into the salt tolerance ability of this halophyte. Both fresh and dry biomass as well as leaf area (LA) declined at all levels of salinity whereas salinity caused an increase in leaf succulence. A gradual increase was observed in the Na+ content of leaf with increasing salt concentration up to 750 mM NaCl, but at higher salt concentration (1000 mM NaCl), the Na+ content surprisingly dropped down to the level of 250 mM NaCl. The chlorophyll and carotenoid contents of the leaf remained unaffected by salinity. The photosynthetic rate (PN), stomatal conductance (gs), the transpiration rate (E), quantum yield of PSII (ΦPSII), photochemical quenching (qP), and electron transport rate remained unchanged at low salinity (250 to 500 mM NaCl) whereas, significant reduction in these parameters were observed at high salinity (750 to 1000 mM NaCl). The RWC% and water use efficiency (WUE) of leaf remained unaffected by salinity. The salinity had no effect on maximum quantum efficiency of PS II (Fv/Fm) which indicates that PS II is not perturbed by salinity-induced oxidative damage. Analysis of the isoforms of antioxidative enzymes revealed that the leaves of S. persica have two isoforms each of Mn-SOD and Fe-SOD and one isoform of Cu-Zn SOD, three isoforms of POX, two isoforms of APX and one isoform of CAT. There was differential responses in activity and expression of different isoforms of various antioxidative enzymes. The malondialdehyde (MDA) content (a product of lipid peroxidation) of leaf remained unchanged in S. persica treated with various levels of salinity. Our results suggest that the absence of pigment

  5. Heme oxygenase-1 prevents hyperthyroidism induced hepatic damage via an antioxidant and antiapoptotic pathway.

    PubMed

    Giriş, Murat; Erbil, Yeşim; Depboylu, Bilge; Mete, Ozgür; Türkoğlu, Umit; Abbasoğlu, Semra Doğru; Uysal, Müjdat

    2010-12-01

    The exact pathogenesis of hepatic dysfunction in hyperthyroidism is still unknown. We aimed to investigate the pathogenesis of liver dysfunction caused by hyperthyroidism through inducing heme oxygenase-1 (HO-1) expression, which has antioxidant and anti-apoptotic properties. Rats were divided into six groups: untreated (group 1), treated with zinc protoporphyrin (ZnPP) (group 2), treated with hemin (group 3), treated with tri-iodothyronine (T3) (group 4), treated with T3 and ZnPP (group 5), and treated with T3 and hemin (group 6). After 22 d, oxidative stress and antioxidant enzymes and the expression of HO-1, mitochondrial permeability transition, cytochrome c, Bax, Bcl-2, caspase-3, caspase-8, and caspase-3 activity, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay were examined. Hyperthyroidism induced oxidative stress of liver tissue was ameliorated by HO-1 induction. Administration of hemin (HO-1 inducer) increased Bcl-2 expression. Decreased expression of cytochrome c was accompanied by a decrease in caspase-3, caspase-8, Bax expression, and caspase-3 activity. The apoptotic activity and oxidative damage were found to be increased by the administration of ZnPP (HO-1 inhibitor). Immunohistochemistry findings supported these results. HO-1 induction plays a protective role in the pathogenesis of the liver dysfunction in hyperthyroidism. This effect is dependent on modulation of the antiapoptotic and antioxidative pathways by HO-1 expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage.

    PubMed

    Blanco, Santos; Hernández, Raquel; Franchelli, Gustavo; Ramos-Álvarez, Manuel Miguel; Peinado, María Ángeles

    2017-01-30

    In this work, using a rat model combining ischemia and hypobaric hypoxia (IH), we evaluate the relationships between the antioxidant melatonin and the cerebral nitric oxide/nitric oxide synthase (NO/NOS) system seeking to ascertain whether melatonin exerts its antioxidant protective action by balancing this key pathway, which is highly involved in the cerebral oxidative and nitrosative damage underlying these pathologies. The application of the IH model increases the expression of the three nitric oxide synthase (NOS) isoforms, as well as nitrogen oxide (NOx) levels and nitrotyrosine (n-Tyr) impacts on the cerebral cortex. However, melatonin administration before IH makes nNOS expression response earlier and stronger, but diminishes iNOS and n-Tyr expression, while both eNOS and NOx remain unchanged. These results were corroborated by nicotine adenine dinucleotide phosphate diaphorase (NADPH-d) staining, as indicative of in situ NOS activity. In addition, the rats previously treated with melatonin exhibited a reduction in the oxidative impact evaluated by thiobarbituric acid reactive substances (TBARS). Finally, IH also intensified glial fibrillary acidic protein (GFAP) expression, reduced hypoxia-inducible factor-1alpha (HIF-1α), but did not change nuclear factor kappa B (NF-κB); meanwhile, melatonin did not significantly affect any of these patterns after the application of the IH model. The antioxidant melatonin acts on the NO/NOS system after IH injury balancing the release of NO, reducing peroxynitrite formation and protecting from nitrosative/oxidative damage. In addition, this paper raises questions concerning the classical role of some controversial molecules such as NO, which are of great consequence in the final fate of hypoxic neurons. We conclude that melatonin protects the brain from hypoxic/ischemic-derived damage in the first steps of the ischemic cascade, influencing the NO/NOS pathway and reducing oxidative and nitrosative stress. Copyright

  7. Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants.

    PubMed

    El-Demerdash, Fatma M

    2007-04-01

    Erythrocytes are a convenient model to understand the membrane oxidative damage induced by various xenobiotic-prooxidants. This study was designed to investigate (1) the possibility of lambda-cyhalothrin (LC), a type II pyrethroid, to induce oxidative stress response in rabbit erythrocytes in vitro and its effect on selected antioxidant enzymes and (2) the role of vitamin C (VC; 20mM) and vitamin E (VE; 2mM) in alleviating the cytotoxic effects of LC. Erythrocytes were divided into three groups. The first group, previously prepared erythrocytes was incubated for 4h at 37 degrees C with different concentrations (0, 0.1, 0.5, 1, 2.5, 5mM) of LC. The second and third groups were preincubated with VC or VE, respectively for 20 min and followed by LC incubation for 4h. Following in vitro exposure, LC caused a significant induction of oxidative damage in erythrocytes at different concentrations as evidenced by increased thiobarbituric acid reactive substances (TBARS) levels. However, a significant decrease in the content of sulfhydryl groups (SH-groups), and the activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) were observed. The response was concentration dependent. VC or VE pretreated erythrocytes showed a significant protection against the cytotoxic effects induced by LC on the studied parameters. In conclusion, antioxidant vitamins especially VE could be able to ameliorate LC-induced oxidative stress by decreasing lipid peroxidation and altering antioxidant defense system in erythrocytes.

  8. Nestling rearing is antioxidant demanding in female barn swallows ( Hirundo rustica)

    NASA Astrophysics Data System (ADS)

    Costantini, David; Bonisoli-Alquati, Andrea; Rubolini, Diego; Caprioli, Manuela; Ambrosini, Roberto; Romano, Maria; Saino, Nicola

    2014-07-01

    Reproduction is a demanding activity, since organisms must produce and, in some cases, protect and provision their progeny. Hence, a central tenet of life-history theory predicts that parents have to trade parental care against body maintenance. One physiological cost thought to be particularly important as a modulator of such trade-offs is oxidative stress. However, evidence in favour of the hypothesis of an oxidative cost of reproduction is contradictory. In this study, we manipulated the brood size of wild barn swallows Hirundo rustica soon after hatching of their nestlings to test whether an increase in nestling rearing effort translates into an increased oxidative damage and a decreased antioxidant protection at the end of the nestling rearing period. We found that, while plasma oxidative damage was unaffected by brood size enlargement, females rearing enlarged broods showed a decrease in plasma non-enzymatic antioxidants during the nestling rearing period. This was not the case among females rearing reduced broods and among males assigned to either treatment. Moreover, individuals with higher plasma oxidative damage soon after the brood size manipulation had lower plasma non-enzymatic antioxidants at the end of the nestling rearing period, suggesting that non-enzymatic antioxidants were depleted to buffer the negative effects of high oxidative damage. Our findings point to antioxidant depletion as a potential mechanism mediating the cost of reproduction among female birds.

  9. Protective Role for Antioxidants in Acute Kidney Disease

    PubMed Central

    Dennis, Joanne M.; Witting, Paul K.

    2017-01-01

    Acute kidney injury causes significant morbidity and mortality in the community and clinic. Various pathologies, including renal and cardiovascular disease, traumatic injury/rhabdomyolysis, sepsis, and nephrotoxicity, that cause acute kidney injury (AKI), induce general or regional decreases in renal blood flow. The ensuing renal hypoxia and ischemia promotes the formation of reactive oxygen species (ROS) such as superoxide radical anions, peroxides, and hydroxyl radicals, that can oxidatively damage biomolecules and membranes, and affect organelle function and induce renal tubule cell injury, inflammation, and vascular dysfunction. Acute kidney injury is associated with increased oxidative damage, and various endogenous and synthetic antioxidants that mitigate source and derived oxidants are beneficial in cell-based and animal studies. However, the benefit of synthetic antioxidant supplementation in human acute kidney injury and renal disease remains to be realized. The endogenous low-molecular weight, non-proteinaceous antioxidant, ascorbate (vitamin C), is a promising therapeutic in human renal injury in critical illness and nephrotoxicity. Ascorbate may exert significant protection by reducing reactive oxygen species and renal oxidative damage via its antioxidant activity, and/or by its non-antioxidant functions in maintaining hydroxylase and monooxygenase enzymes, and endothelium and vascular function. Ascorbate supplementation may be particularly important in renal injury patients with low vitamin C status. PMID:28686196

  10. Oxidative stress following traumatic brain injury: enhancement of endogenous antioxidant defense systems and the promise of improved outcome.

    PubMed

    Eghwrudjakpor, P O; Allison, A B

    2010-01-01

    Management of brain injury can pose enormous challenges to the health team. There are many studies aimed at discovering or developing pharmacotherapeutic agents targeted at improving outcome of head-injured patients. This paper reviews the role of oxidative stress in neuronal loss following traumatic brain injury and presents experimental and clinical evidence of the role of exogenous antioxidants as neuroprotectants. We reviewed published literature on reactive oxygen species and their role in experimental and clinical brain injuries in journals and the Internet using Yahoo and Google search engines. Traumatic brain injury causes massive production of reactive oxygen species with resultant oxidative stress. In experimental brain injury, exogenous antioxidants are useful in limiting oxidative damage. Results with clinical brain injury are however more varied. Oxidative stress due to excessive generation of reactive oxygen species with consequent impairment of endogenous antioxidant defence mechanisms plays a significant role in the secondary events leading to neuronal death. Enhancement of the defence mechanisms through the use of exogenous antioxidants may be neuroprotective, especially if the agents can penetrate cell membranes, are able to cross the blood-brain barrier and if they are administered within the neuroprotective time window.

  11. Oxidative and antioxidative status of children with acute bronchiolitis.

    PubMed

    Dundaroz, Rusen; Erenberk, Ufuk; Turel, Ozden; Demir, Aysegul Dogan; Ozkaya, Emin; Erel, Ozcan

    2013-01-01

    Oxidative stress has been shown to contribute to the pathogenesis of acute and chronic lung inflammatory diseases. This article aimed to evaluate the oxidant/antioxidant status of children with acute bronchiolitis through the measurement of plasma total antioxidant capacity, total oxidant status, and oxidative stress index. Children with acute bronchiolitis admitted to the pediatric emergency department of a university hospital between January and April of 2012 were compared with age-matched healthy controls. Patients with acute bronchiolitis were classified as mild and moderate bronchiolitis. Oxidative and antioxidative status were assessed by measurement of plasma total antioxidant capacity, total oxidant status, and oxidative stress index. Thirty-one children with acute bronchiolitis aged between 3 months and 2 years, and 39 healthy children were included. Total oxidative status (TOS) was higher in patients with acute bronchiolitis than the control group (5.16±1.99 μmol H2O2 versus 3.78±1.78 μmol H2O2 [p=0.004]). Total antioxidant capacity (TAC) was lower in children with bronchiolitis than the control group (2.51±0.37 μmol Trolox eqv/L versus 2.75±0.39 μmol Trolox eqv/L [p=0.013]). Patients with moderate bronchiolitis presented higher TOS levels than those with mild bronchiolitis and the control group (p=0.03, p<0.001, respectively). Patients with moderate bronchiolitis had higher oxidative stress index levels than the control group (p=0.015). Oxygen saturation level of bronchiolitis patients was inversely correlated with TOS (r=-0.476, p<0.05). The balance between oxidant and antioxidant systems is disrupted in children with moderate bronchiolitis, which indicates that this stress factor may have a role in the pathogenesis of the disease. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  12. Antioxidant Chemistry of Graphene-Based Materials and its Role in Oxidation Protection Technology

    PubMed Central

    Qiu, Yang; Wang, Zhongying; Owens, Alisa C.E.; Kulaots, Indrek; Chen, Yantao; Kane, Agnes B.; Hurt, Robert H.

    2015-01-01

    Two-dimensional nanomaterials have potential as a new class of antioxidants that combine physical barrier function with ultrahigh surface area for free radical scavenging. This work presents the first measurements of the chemical reactivities of graphene-based materials toward a set of model free radicals and reactive oxygen species using electron paramagnetic resonance spectroscopy (EPR) and sacrificial dye protection assays. Graphene-based materials are shown to protect a variety of molecular targets from oxidation by these species, and to be highly effective as hydroxyl-radical scavengers. When hydroxyl radical is produced photolytically, the overall antioxidant effect is a combination of preventative antioxidant activity (UV absorption) and ·OH radical scavenging. Few-layer graphene is more active than monolayer graphene oxide, despite its lower surface area, which indicates that the primary scavenging sites are associated with the sp2-carbon network rather than oxygen-containing functional groups. To explain this trend, we propose that GO is a weak hydrogen donor, due to the non-phenolic nature of most OH groups on GO, which reside at basal sp3-carbon sites that do not allow for radical resonance stabilization following hydrogen donation. As an example application of graphene antioxidant behavior, we show that encapsulation of TiO2 nanoparticles in graphene nanosacks reduces undesired photo-oxidative damage to nearby organic target molecules, which suggests graphene encapsulation as a new approach to managing adverse environmental or health impacts of redox-active nanomaterials. PMID:25157875

  13. Antioxidant Properties of Probiotic Bacteria.

    PubMed

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  14. Antioxidant Properties of Probiotic Bacteria

    PubMed Central

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-01-01

    Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated. PMID:28534820

  15. Effects of glutamine supplementation on oxidative stress-related gene expression and antioxidant properties in rats with streptozotocin-induced type 2 diabetes.

    PubMed

    Tsai, Pei-Hsuan; Liu, Jun-Jen; Yeh, Chui-Li; Chiu, Wan-Chun; Yeh, Sung-Ling

    2012-04-01

    There are close links among hyperglycaemia, oxidative stress and diabetic complications. Glutamine (GLN) is an amino acid with immunomodulatory properties. The present study investigated the effect of dietary GLN on oxidative stress-relative gene expressions and tissue oxidative damage in diabetes. There were one normal control (NC) and two diabetic groups in the present study. Diabetes was induced by an intraperitoneal injection of nicotinamide followed by streptozotocin (STZ). Rats in the NC group were fed a regular chow diet. In the two diabetic groups, one group (diabetes mellitus, DM) was fed a common semi-purified diet while the other group received a diet in which part of the casein was replaced by GLN (DM-GLN). GLN provided 25% of total amino acid N. The experimental groups were fed the respective diets for 8 weeks, and then the rats were killed for further analysis. The results showed that blood thioredoxin-interacting protein (Txnip) mRNA expression in the diabetic groups was higher than that in the NC group. Compared with the DM group, the DM-GLN group had lower glutamine fructose-6-phosphate transaminase 1, a receptor of advanced glycation end products, and Txnip gene expressions in blood mononuclear cells. The total antioxidant capacity was lower and antioxidant enzyme activities were altered by the diabetic condition. GLN supplementation increased antioxidant capacity and normalised antioxidant enzyme activities. Also, the renal nitrotyrosine level and Txnip mRNA expression were lower when GLN was administered. These results suggest that dietary GLN supplementation decreases oxidative stress-related gene expression, increases the antioxidant potential and may consequently attenuate renal oxidative damage in rats with STZ-induced diabetes.

  16. Oxidative stress damage as a detrimental factor in preterm birth pathology.

    PubMed

    Menon, Ramkumar

    2014-01-01

    Normal term and spontaneous preterm births (PTB) are documented to be associated with oxidative stress (OS), and imbalances in the redox system (balance between pro- and antioxidant) have been reported in the maternal-fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term) and pathophysiologic (preterm) pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging). The aging of the fetal cells is predominated by p38 mitogen activated kinase (p38MAPK) pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways.

  17. Oxidative Stress Damage as a Detrimental Factor in Preterm Birth Pathology

    PubMed Central

    Menon, Ramkumar

    2014-01-01

    Normal term and spontaneous preterm births (PTB) are documented to be associated with oxidative stress (OS), and imbalances in the redox system (balance between pro- and antioxidant) have been reported in the maternal–fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term) and pathophysiologic (preterm) pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging). The aging of the fetal cells is predominated by p38 mitogen activated kinase (p38MAPK) pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways. PMID:25429290

  18. Syzyguim guineense Extracts Show Antioxidant Activities and Beneficial Activities on Oxidative Stress Induced by Ferric Chloride in the Liver Homogenate

    PubMed Central

    Pieme, Constant Anatole; Ngoupayo, Joseph; Khou-Kouz Nkoulou, Claude Herve; Moukette Moukette, Bruno; Njinkio Nono, Borgia Legrand; Ama Moor, Vicky Jocelyne; Ze Minkande, Jacqueline; Yonkeu Ngogang, Jeanne

    2014-01-01

    The aim of this study was to determine the in vitro antioxidant activity, free radical scavenging property and the beneficial effects of extracts of various parts of Syzygium guineense in reducing oxidative stress damage in the liver. The effects of extracts on free radicals were determined on radicals DPPH, ABTS, NO and OH followed by the antioxidant properties using Ferric Reducing Antioxidant Power assay (FRAP) and hosphomolybdenum (PPMB). The phytochemical screening of these extracts was performed by determination of the phenolic content. The oxidative damage inhibition in the liver was determined by measuring malondialdehyde (MDA) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase. Overall, the bark extract of the ethanol/water or methanol showed the highest radical scavenging activities against DPPH, ABTS and OH radicals compared to the other extracts. This extract also contained the highest phenolic content implying the potential contribution of phenolic compounds towards the antioxidant activities. However, the methanol extract of the root demonstrated the highest protective effects of SOD and CAT against ferric chloride while the hydro-ethanol extract of the leaves exhibited the highest inhibitory effects on lipid peroxidation. These findings suggest that antioxidant properties of S. guineense extracts could be attributed to phenolic compounds revealed by phytochemical studies. Thus, the present results indicate clearly that the extracts of S. guineense possess antioxidant properties and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidants. The antioxidant properties of the bark extract may thus sustain its various biological activities. PMID:26785075

  19. The oxidative stress and antioxidant responses of Litopenaeus vannamei to low temperature and air exposure.

    PubMed

    Xu, Zihan; Regenstein, Joe M; Xie, Dandan; Lu, Wenjing; Ren, Xingchen; Yuan, Jiajia; Mao, Linchun

    2018-01-01

    Low temperature and air exposure were the key attributes for waterless transportation of fish and shrimp. In order to investigate the oxidative stress and antioxidant responses of the live shrimp Litopenaeus vannamei in the mimic waterless transportation, live shrimp were cooled at 13 °C for 3 min, stored in oxygen at 15 °C for 12 h, and then revived in water at 25 °C. The survival rate of shrimp under this waterless transportation system was over 86.67%. The ultrastructure of hepatopancreas cells were observed while activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione peroxidase (GSH-Px), antisuperoxide anion free radicals (ASAFR), total antioxidant capacity (TAOC), reactive oxygen species (ROS) production, content of malondialdehyde (MDA) and relative mRNA expressions of CAT and GSH-Px in the hemolymph and hepatopancreas were determined. Slight distortions of some organelles in hepatopancreas cells was reversible upon the shrimp revived from the cold shock. The activities of SOD, POD, CAT, GSH-Px, TAOC, ROS production and relative mRNA expressions of CAT and GSH-Px increased following the cold shock and reached peak levels after 3 or 6 h of storage, and then decreased gradually. There was no significant difference between the fresh and the revived shrimp in SOD, POD, GSH-Px, TAOC, ROS, MDA and relative mRNA expressions of CAT and GSH-Px. The oxidative stress and antioxidant responses were tissue-specific because hepatopancreas seemed to have a greater ability to defend against organelle damage and was more sensitive to stress than hemolymph based on the results of SOD activity, MDA content and GSH-Px mRNA expression. These results revealed that low temperature and air exposure caused significant oxidative and antioxidant responses, but did not lead to irreversible damages in this waterless system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Improving Asthma during Pregnancy with Dietary Antioxidants: The Current Evidence

    PubMed Central

    Grieger, Jessica A.; Wood, Lisa G.; Clifton, Vicki L.

    2013-01-01

    The complication of asthma during pregnancy is associated with a number of poor outcomes for the mother and fetus. This may be partially driven by increased oxidative stress induced by the combination of asthma and pregnancy. Asthma is a chronic inflammatory disease of the airways associated with systemic inflammation and oxidative stress, which contributes to worsening asthma symptoms. Pregnancy alone also intensifies oxidative stress through the systemic generation of excess reactive oxidative species (ROS). Antioxidants combat the damaging effects of ROS; yet antioxidant defenses are reduced in asthma. Diet and nutrition have been postulated as potential factors to combat the damaging effects of asthma. In particular, dietary antioxidants may play a role in alleviating the heightened oxidative stress in asthma. Although there are some observational and interventional studies that have shown protective effects of antioxidants in asthma, assessment of antioxidants in pregnancy are limited and there are no antioxidant intervention studies in asthmatic pregnancies on asthma outcomes. The aims of this paper are to (i) review the relationships between oxidative stress and dietary antioxidants in adults with asthma and asthma during pregnancy, and (ii) provide the rationale for which dietary management strategies, specifically increased dietary antioxidants, might positively impact maternal asthma outcomes. Improving asthma control through a holistic antioxidant dietary approach might be valuable in reducing asthma exacerbations and improving asthma management during pregnancy, subsequently impacting perinatal health. PMID:23948757

  1. N-Acetylcysteine supplementation reduces oxidative stress and DNA damage in children with β-thalassemia.

    PubMed

    Ozdemir, Zeynep Canan; Koc, Ahmet; Aycicek, Ali; Kocyigit, Abdurrahim

    2014-01-01

    There are several reports that increased oxidative stress and DNA damage were found in β-thalassemia major (β-TM) patients. In this study, we aimed to evaluate the effects of N-acetylcysteine (NAC) and vitamin E on total oxidative stress and DNA damage in children with β-TM. Seventy-five children with transfusion-dependent β-thalassemia (β-thal) were randomly chosen to receive 10 mg/kg/day of NAC or 10 IU/kg/day of vitamin E or no supplementation; 28 healthy controls were also included in the study. Serum total oxidant status (TOS) and total antioxidant capacity (TAC) were measured, oxidative stress index (OSI) was calculated, and mononuclear DNA damage was assessed by alkaline comet assay; they were determined before treatment and after 3 months of treatment. Total oxydent status, OSI, and DNA damage levels were significantly higher and TAC levels were significantly lower in the thalassemic children than in the healthy controls (p < 0.001). In both supplemented groups, mean TOS and OSI levels were decreased; TAC and pre transfusion hemoglobin (Hb) levels were significantly increased after 3 months (p ≤ 0.002). In the NAC group, DNA damage score decreased (p = 0.001). N-Acetylcysteine and vitamin E may be effective in reducing serum oxidative stress and increase pre transfusion Hb levels in children with β-thal. N-Acetylcysteine also can reduce DNA damage.

  2. The role of oxidative stress in Huntington's disease: are antioxidants good therapeutic candidates?

    PubMed

    Gil-Mohapel, Joana; Brocardo, Patricia S; Christie, Brian R

    2014-04-01

    Huntington's disease (HD) is the most common polyglutamine neurodegenerative disorder in humans, and is caused by a mutation of an unstable expansion of CAG repeats within the coding region of the HD gene, which expresses the protein huntingtin. Although abnormal protein is ubiquitously expressed throughout the organism, cell degeneration occurs mainly in the brain, and there, predominantly in the striatum and cortex. The mechanisms that account for this selective neuronal death are multifaceted in nature and several lines of evidence suggest that mitochondrial dysfunction, overproduction of reactive oxygen species (ROS) and oxidative stress (an imbalance between pro-oxidant and antioxidant systems resulting in oxidative damage to proteins, lipids and DNA) might play important roles. Over time, this can result in the death of the affected neuronal populations. In this review article we present an overview of the preclinical and clinical studies that have indicated a link between oxidative stress, neurodegeneration, and cell death in HD. We also discuss how changes in ROS production affect neuronal survival, highlighting the evidence for the use of antioxidants including essential fatty acids, coenzyme Q10, and creatine, as potential therapeutic strategies for the treatment of this devastating neurodegenerative disorder.

  3. A Novel Combination of Wheat Peptides and Fucoidan Attenuates Ethanol-Induced Gastric Mucosal Damage through Anti-Oxidant, Anti-Inflammatory, and Pro-Survival Mechanisms

    PubMed Central

    Kan, Juntao; Hood, Molly; Burns, Charlie; Scholten, Jeff; Chuang, Jennifer; Tian, Feng; Pan, Xingchang; Du, Jun; Gui, Min

    2017-01-01

    Gastritis or peptic ulcer is believed to affect about half of people worldwide. Traditional medications can lead to adverse effects, therefore, alternative nutritional strategies are needed to prevent the development of gastric mucosal damage. A novel combination of two food-grade ingredients, wheat peptides and fucoidan (WPF), was prepared to treat male Sprague Dawley rats for 30 days before gastric mucosal damage was induced by oral administration of ethanol. The serum levels of biomarkers were determined by enzyme-linked immunosorbent assay. Biomarkers in stomach tissue were analyzed using immunohistochemistry. In addition, human gastric epithelial cell line (GES-1) was used to investigate protein expression by Western blot. WPF could attenuate ethanol-induced gastric mucosal damage in an inverse dose-dependent manner, with both ulcer index and pathological index improved. WPF increased superoxide dismutase level and decreased malondialdehyde level. WPF also decreased the levels of interleukin-8, platelet-activating factor, and Caspase 3, while increasing the levels of prostaglandin E-2, epidermal growth factor (EGF), and EGF receptor (EGFR). Furthermore, phosphorylation of EGFR and extracellular signal–regulated kinases was induced by WPF in GES-1 cells. In conclusion, the novel combination of wheat peptides and fucoidan attenuated ethanol-induced gastric mucosal damage in rats through anti-oxidant, anti-inflammatory, and pro-survival mechanisms. PMID:28878183

  4. A Novel Combination of Wheat Peptides and Fucoidan Attenuates Ethanol-Induced Gastric Mucosal Damage through Anti-Oxidant, Anti-Inflammatory, and Pro-Survival Mechanisms.

    PubMed

    Kan, Juntao; Hood, Molly; Burns, Charlie; Scholten, Jeff; Chuang, Jennifer; Tian, Feng; Pan, Xingchang; Du, Jun; Gui, Min

    2017-09-06

    Gastritis or peptic ulcer is believed to affect about half of people worldwide. Traditional medications can lead to adverse effects, therefore, alternative nutritional strategies are needed to prevent the development of gastric mucosal damage. A novel combination of two food-grade ingredients, wheat peptides and fucoidan (WPF), was prepared to treat male Sprague Dawley rats for 30 days before gastric mucosal damage was induced by oral administration of ethanol. The serum levels of biomarkers were determined by enzyme-linked immunosorbent assay. Biomarkers in stomach tissue were analyzed using immunohistochemistry. In addition, human gastric epithelial cell line (GES-1) was used to investigate protein expression by Western blot. WPF could attenuate ethanol-induced gastric mucosal damage in an inverse dose-dependent manner, with both ulcer index and pathological index improved. WPF increased superoxide dismutase level and decreased malondialdehyde level. WPF also decreased the levels of interleukin-8, platelet-activating factor, and Caspase 3, while increasing the levels of prostaglandin E-2, epidermal growth factor (EGF), and EGF receptor (EGFR). Furthermore, phosphorylation of EGFR and extracellular signal-regulated kinases was induced by WPF in GES-1 cells. In conclusion, the novel combination of wheat peptides and fucoidan attenuated ethanol-induced gastric mucosal damage in rats through anti-oxidant, anti-inflammatory, and pro-survival mechanisms.

  5. Schisandrin B alleviates acute oxidative stress via modulating Nrf2/Keap1-mediated antioxidant pathway.

    PubMed

    Ying, Wu; Li, Zheng-Cai; Li-Qing, Yao; Mai, Li; Mei, Tang

    2018-05-09

    Schisandrin B (Sch B), one of Fructus Schisandrae's main effective components, protects neurons from oxidative stress in the central nervous system. Here we investigated the neuroprotective effect of Sch B in the acute oxidative stress damage and attempted to define the possible mechanisms. From the elevated plus maze (EPM) and open field test (OFT), we found that forcing swimming, an acute stressor, significantly induced anxiety-like behavior which was alleviated by Sch B (p.o.) treatment. In addition, the Sch B treatment suppressed toxicity, malondialdehyde (MDA) and reactive oxygen species (ROS), an important factor for neuron damage. The antioxidant molecules under the control of Nrf2 pathway, such as superoxide dismutase (SOD) and glutathione (GSH), were significantly increased by Sch B treatment. Moreover, a higher percentage of intact cells in the amygdala further verified the neuroprotective effect of Sch B in Nissl staining. Several proteins such as Nrf2 and its endogenous inhibitor Keap1, were abnormal expressed in force swimming mice but were significantly reversed by Sch B treatment. Herein, our results suggested that Sch B may be a potential therapeutic agent against anxiety disease that is associated with oxidative stress. The possible mechanism is attributed to its neuroprotection through enhancing antioxidant effect.

  6. Dietary antioxidants prevent age-related retinal pigment epithelium actin damage and blindness in mice lacking αvβ5 integrin

    PubMed Central

    Yu, Chia-Chia; Nandrot, Emeline F.; Dun, Ying; Finnemann, Silvia C.

    2011-01-01

    In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5−/− RPE but not neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants grapes or marigold extract containing macular pigments lutein/zeaxanthin was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5−/− mice. Acute generation of HNE-adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet. PMID:22178979

  7. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  8. Perspectives on Molecular Biomarkers of Oxidative Stress and Antioxidant Strategies in Traumatic Brain Injury

    PubMed Central

    Mendes Arent, André; de Souza, Luiz Felipe; Walz, Roger; Dafre, Alcir Luiz

    2014-01-01

    Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-induced damage in preclinical studies. These dietary antioxidants can increase antioxidant defenses via transcriptional activation of NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection. This paper reviews the relevance of redox biology in TBI, highlighting perspectives for future studies. PMID:24689052

  9. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation.

    PubMed

    Noctor, Graham; Mhamdi, Amna; Foyer, Christine H

    2016-05-01

    Oxidative stress and reactive oxygen species (ROS) are common to many fundamental responses of plants. Enormous and ever-growing interest has focused on this research area, leading to an extensive literature that documents the tremendous progress made in recent years. As in other areas of plant biology, advances have been greatly facilitated by developments in genomics-dependent technologies and the application of interdisciplinary techniques that generate information at multiple levels. At the same time, advances in understanding ROS are fundamentally reliant on the use of biochemical and cell biology techniques that are specific to the study of oxidative stress. It is therefore timely to revisit these approaches with the aim of providing a guide to convenient methods and assisting interested researchers in avoiding potential pitfalls. Our critical overview of currently popular methodologies includes a detailed discussion of approaches used to generate oxidative stress, measurements of ROS themselves, determination of major antioxidant metabolites, assays of antioxidative enzymes and marker transcripts for oxidative stress. We consider the applicability of metabolomics, proteomics and transcriptomics approaches and discuss markers such as damage to DNA and RNA. Our discussion of current methodologies is firmly anchored to future technological developments within this popular research field. © 2016 John Wiley & Sons Ltd.

  10. Impact of ovariectomy, high fat diet, and lifestyle modifications on oxidative/antioxidative status in the rat liver.

    PubMed

    Vuković, Rosemary; Blažetić, Senka; Oršolić, Ivana; Heffer, Marija; Vari, Sandor G; Gajdoš, Martin; Krivošíková, Zora; Kramárová, Patrícia; Kebis, Anton; Has-Schön, Elizabeta

    2014-06-01

    To estimate the impact of high fat diet and estrogen deficiency on the oxidative and antioxidative status in the liver of the ovariectomized rats, as well as the ameliorating effect of physical activity or consumption of functional food containing bioactive compounds with antioxidative properties on oxidative damage in the rat liver. The study was conducted from November 2012 to April 2013. Liver oxidative damage was determined by lipid peroxidation levels expressed in terms of thiobarbituric acid reactive substances (TBARS), while liver antioxidative status was determined by catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) activities, and glutathione (GSH) content. Sixty-four female Wistar rats were divided into eight groups: sham operated and ovariectomized rats that received either standard diet, high fat diet, or high fat diet supplemented with cereal selenized onion biscuits or high fat diet together with introduction of physical exercise of animals. High fat diet significantly increased TBARS content in the liver compared to standard diet (P=0.032, P=0.030). Furthermore, high fat diet decreased the activities of CAT, GR, and GST, as well as the content of GSH (P<0.050). GPx activity remained unchanged in all groups. Physical activity and consumption of cereal selenized onion biscuits showed protective effect through increased GR activity in sham operated rats (P=0.026, P=0.009), while in ovariectomized group CAT activity was increased (P=0.018) in rats that received cereal selenized onion biscuits. Feeding rats with high fat diet was accompanied by decreased antioxidative enzyme activities and increased lipid peroxidation. Bioactive compounds of cereal selenized onion biscuits showed potential to attenuate the adverse impact of high fat diet on antioxidative status.

  11. Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy.

    PubMed

    Aycicek, Ali; Erel, Ozcan

    2007-01-01

    To assess the effect of phototherapy on serum oxidant and antioxidant status in hyperbilirubinemic full-term newborns. Thirty-four full-term infants from 3 to 10 days of age exposed to phototherapy were studied. The serum antioxidant status was assessed by measuring the total antioxidant capacity (TAC) and individual antioxidant components: vitamin C, uric acid, albumin, thiol contents and total bilirubin. The oxidant status was assessed by determining the total oxidant status (TOS), oxidative stress index (OSI) and individual oxidant components: malondialdehyde (MDA), and lipid hydroperoxide levels. Vitamin C, uric acid, total bilirubin and MDA concentration were significantly lower, whereas serum TOS, lipid hydroperoxide and OSI levels were significantly higher after phototherapy (p < 0.05). There were significant positive correlations between serum total bilirubin and MDA (r = 0.434, p = 0.001). Although the MDA level was reduced after phototherapy, phototherapy has a negative impact on numerous parts of the oxidant/antioxidant defense system in jaundiced full-term newborns, exposing them to potential oxidative stress.

  12. Effect of the French Oak Wood Extract Robuvit on Markers of Oxidative Stress and Activity of Antioxidant Enzymes in Healthy Volunteers: A Pilot Study

    PubMed Central

    Orszaghova, Zuzana; Laubertova, Lucia; Sabaka, Peter; Rohdewald, Peter; Durackova, Zdenka; Muchova, Jana

    2014-01-01

    We examined in vitro antioxidant capacity of polyphenolic extract obtained from the wood of oak Quercus robur (QR), Robuvit, using TEAC (Trolox equivalent antioxidant capacity) method and the effect of its intake on markers of oxidative stress, activity of antioxidant enzymes, and total antioxidant capacity in plasma of 20 healthy volunteers. Markers of oxidative damage to proteins, DNA, and lipids and activities of Cu/Zn-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined in the erythrocytes. We have found an in vitro antioxidant capacity of Robuvit of 6.37 micromole Trolox equivalent/mg of Robuvit. One month intake of Robuvit in daily dose of 300 mg has significantly decreased the serum level of advanced oxidation protein products (AOPP) and lipid peroxides (LP). Significantly increased activities of SOD and CAT as well as total antioxidant capacity of plasma after one month intake of Robuvit have been shown. In conclusion, we have demonstrated for the first time that the intake of Robuvit is associated with decrease of markers of oxidative stress and increase of activity of antioxidant enzymes and total antioxidant capacity of plasma in vivo. PMID:25254080

  13. Hypothermia can reverse hepatic oxidative stress damage induced by hypoxia in rats.

    PubMed

    Garnacho-Castaño, Manuel Vicente; Alva, Norma; Sánchez-Nuño, Sergio; Bardallo, Raquel G; Palomeque, Jesús; Carbonell, Teresa

    2016-12-01

    Our previous findings demonstrated that hypothermia enhances the reduction potential in the liver and helps to maintain the plasmatic antioxidant pool. Here, we aimed to elucidate if hypothermia protects against hypoxia-induced oxidative stress damage in rat liver. Several hepatic markers of oxidative stress were compared in three groups of animals (n = 8 in each group): control normothermic group ventilated with room air and two groups under extreme hypoxia (breathing 10 % O 2 ), one kept at normothermia (HN) (37 °C) and the other under deep hypothermia (HH) (central body temperature of 21-22 °C). Hypoxia in normothermia significantly increased the levels of hepatic nitric oxide, inducible nitric oxide synthase expression, protein oxidation, Carbonilated proteins, advanced oxidation protein products, 4-hydroxynonenal (HNE) protein adducts, and lipid peroxidation when compared to the control group (p < 0.05). However, when hypoxia was induced under hypothermia, results from the oxidative stress biomarker analyses did not differ significantly from those found in the control group. Indeed, 4-HNE protein adduct amounts were significantly lower in the HH versus HN group (p < 0.05). Therefore, hypothermia can mitigate hypoxia-induced oxidative stress damage in rat liver. These effects could help clarify the mechanisms of action of therapeutic hypothermia.

  14. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage.

    PubMed

    Rodrigo, Ramón; Libuy, Matías; Feliú, Felipe; Hasson, Daniel

    2013-01-01

    Cardiovascular diseases are a leading cause of mortality and morbidity worldwide, with hypertension being a major risk factor. Numerous studies support the contribution of reactive oxygen and nitrogen species in the pathogenesis of hypertension, as well as other pathologies associated with ischemia/reperfusion. However, the validation of oxidative stress-related biomarkers in these settings is still lacking and novel association of these biomarkers and other biomarkers such as endothelial progenitor cells, endothelial microparticles, and ischemia modified albumin, is just emerging. Oxidative stress has been suggested as a pathogenic factor and therapeutic target in early stages of essential hypertension. Systolic and diastolic blood pressure correlated positively with plasma F2-isoprostane levels and negatively with total antioxidant capacity of plasma in hypertensive and normotensive patients. Cardiac surgery with extracorporeal circulation causes an ischemia/reperfusion event associated with increased lipid peroxidation and protein carbonylation, two biomarkers associated with oxidative damage of cardiac tissue. An enhancement of the antioxidant defense system should contribute to ameliorating functional and structural abnormalities derived from this metabolic impairment. However, data have to be validated with the analysis of the appropriate oxidative stress and/or nitrosative stress biomarkers.

  15. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2

    PubMed Central

    Grindel, Annemarie; Guggenberger, Bianca; Eichberger, Lukas; Pöppelmeyer, Christina; Gschaider, Michaela; Tosevska, Anela; Mare, George; Briskey, David; Brath, Helmut; Wagner, Karl-Heinz

    2016-01-01

    Background Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. Methods Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. Results No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. Conclusion BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which

  16. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    PubMed

    Grindel, Annemarie; Guggenberger, Bianca; Eichberger, Lukas; Pöppelmeyer, Christina; Gschaider, Michaela; Tosevska, Anela; Mare, George; Briskey, David; Brath, Helmut; Wagner, Karl-Heinz

    2016-01-01

    Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical treatment

  17. Anti-Oxidative Polyphenolic Compounds of Cocoa.

    PubMed

    Nabavi, Seyed F; Sureda, Antoni; Daglia, Maria; Rezaei, Parizad; Nabavi, Seyed M

    2015-01-01

    Oxidative stress plays a key role in the pathogenesis of different serious chronic diseases such as cancer, diabetes, cardiovascular and neurodegenerative disorders, etc. Recent research has been focused on the beneficial role of dietary antioxidants against oxidative stress both under in vitro and in vivo conditions. Theobroma cacao L. (cacao tree) is an evergreen tree which is native to South America. It is a plant of great economic importance and its seeds are commonly used to produce cocoa powder and chocolate. In addition to its uses in food industry, cocoa is a rich source of polyphenolic antioxidants. There is a plethora of in vitro and in vivo studies that report cocoa antioxidant capacity. The protective activity of cocoa seems to be due to its phytochemical constituents, especially catechins. However, bioavailability of cocoa polyphenolic constituents following oral administration is very low (nanomolar concentrations). In the present paper, we critically reviewed the available literature on the antioxidant and free radical scavenging activities of cocoa and its polyphenolic constituents. In addition to these, we provide brief information about cultivation, phytochemistry, bioavailability and clinical impacts of cocoa.

  18. Evaluation of Assays for Measurement of Serum (Anti)oxidants in Hemodialysis Patients

    PubMed Central

    Jansen, Eugene H. J. M.; Antarorov, Risto

    2014-01-01

    Background. Various biomarkers and assays have been used for assessment of (anti)oxidant status in hemodialysis patients, including those intended for measurement of serum total (anti)oxidants, most often as a part of panel biomarkers. Methods. Serum (anti)oxidant status was measured in 32 chronically hemodialyzed patients and in 47 healthy persons, using two oxidations and three antioxidant assays. Results. The patients before the hemodialysis session have had higher values of total oxidants in comparison to the healthy persons, with a further increase during the hemodialysis. These findings were confirmed with both oxidation assays, but they differ in the percentage of increase and the statistical significance. All three antioxidant assays showed significantly higher values of the total serum antioxidants in the patients before the hemodialysis session in comparison to the healthy persons, and their significant decrease during the hemodialysis. However, the assays differ in the percentage of decrease, its statistical significance, and the correlations with uric acid. Conclusion. The variability of results of total (anti)oxidants which are obtained using different assays should be taken into account when interpreting data from clinical studies of oxidative stress, especially in complex pathologies such as chronic hemodialysis. PMID:24982909

  19. Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats.

    PubMed

    Busanello, Estela Natacha Brandt; Lobato, Vannessa Gonçalves Araujo; Zanatta, Ângela; Borges, Clarissa Günther; Tonin, Anelise Miotti; Viegas, Carolina Maso; Manfredini, Vanusa; Ribeiro, César Augusto João; Vargas, Carmen Regla; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2014-12-01

    Zellweger syndrome (ZS) and some peroxisomal diseases are severe inherited disorders mainly characterized by neurological symptoms and cerebellum abnormalities, whose pathogenesis is poorly understood. Biochemically, these diseases are mainly characterized by accumulation of pristanic acid (Prist) and other fatty acids in the brain and other tissues. In this work, we evaluated the in vitro influence of Prist on redox homeostasis by measuring lipid, protein, and DNA damage, as well as the antioxidant defenses and the activities of aconitase and α-ketoglutarate dehydrogenase in cerebellum of 30-day-old rats. The effect of Prist on DNA damage was also evaluated in blood of these animals. Some parameters were also evaluated in cerebellum from neonatal rats and in cerebellum neuronal cultures. Prist significantly increased malondialdehyde (MDA) levels and carbonyl formation and reduced sulfhydryl content and glutathione (GSH) concentrations in cerebellum of young rats. It also caused DNA strand damage in cerebellum and induced a high micronuclei frequency in blood. On the other hand, this fatty acid significantly reduced α-ketoglutarate dehydrogenase and aconitase activities in rat cerebellum. We also verified that Prist-induced increase of MDA levels was totally prevented by melatonin and attenuated by α-tocopherol but not by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester, indicating the involvement of reactive oxygen species in this effect. Cerebellum from neonate rats also showed marked alterations of redox homeostasis, including an increase of MDA levels and a decrease of sulfhydryl content and GSH concentrations elicited by Prist. Finally, Prist provoked an increase of dichlorofluorescein (DCFH) oxidation in cerebellum-cultivated neurons. Our present data indicate that Prist compromises redox homeostasis in rat cerebellum and blood and inhibits critical enzymes of the citric acid cycle that are susceptible to free radical attack. The

  20. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus

    PubMed Central

    Beavers, William N.; Skaar, Eric P.

    2016-01-01

    Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets. PMID:27354296

  1. Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity.

    PubMed

    Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum

    2015-12-01

    This study aimed to evaluate the protective effects of curcumin on angiotensin-converting enzyme (ACE) gene expression, oxidative stress and anti-oxidant status in thioacetamide (TAA)-induced hepatotoxicity in rats. Total 32 albino Wistar rats (male, 200-250 g) were divided into six groups (n=8). Group 1: untreated controls; Group 2: received TAA (200 mg/kg body weight (b.w.); i.p.) for 12 weeks; Group 3: received curcumin (75 mg/kg b.w.) for 24 weeks; Group 4: received TAA (200 mg/kg b.w.; i.p.) for 12 weeks+curcumin (75 mg/kg b.w.) for 12 weeks. A significantly higher ACE gene expression was observed in TAA-induced groups as compared with control, indicating more synthesis of ACE proteins. Treatment with curcumin suppressed ACE expression in TAA liver and reversed the toxicity produced. TAA treatment results in higher lipid peroxidation and lower GSH, SOD and CAT than the normal, and this produces oxidative stress in the liver. Cirrhotic conditions were confirmed by serum enzymes (ALT, AST and ALP) as well as histopathological observations. Curcumin treatment reduced oxidative stress in animals by scavenging reactive oxygen species, protecting the anti-oxidant enzymes from being denatured and reducing the oxidative stress marker lipid peroxidation. Curcumin treatment restores hepatocytes, damaged by TAA, and protects liver tissue approaching cirrhosis. © The Author(s) 2014.

  2. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.

    PubMed

    Plecitá-Hlavatá, Lydie; Jezek, Jan; Jezek, Petr

    2009-01-01

    Oxidative stress of mitochondrial origin, i.e. elevated mitochondrial superoxide production, belongs to major factors determining aging and oxidative-stress-related diseases. Antioxidants, such as the mitochondria-targeted coenzyme Q, MitoQ(10), may prevent or cure these pathological conditions. To elucidate pro- and anti-oxidant action of MitoQ(10), we studied its effects on HepG2 cell respiration, mitochondrial network morphology, and rates of superoxide release (above that neutralized by superoxide dismutase) to the mitochondrial matrix (J(m)). MitoSOX Red fluorescence confocal microscopy monitoring of J(m) rates showed pro-oxidant effects of 3.5-fold increased J(m) with MitoQ(10). MitoQ(10) induced fission of the mitochondrial network which was recovered after 24h. In rotenone-inhibited HepG2 cells (i.e., already under oxidative stress) MitoQ(10) sharply decreased rotenone-induced J(m), but not together with the Complex II inhibitor thenoyltrifluoroacetone. Respiration of HepG2 cells and isolated rat liver mitochondria with MitoQ(10) increased independently of rotenone. The increase was prevented by thenoyltrifluoroacetone. These results suggest that MitoQ(10) accepts electrons prior to the rotenone-bound Q-site, and the Complex II reverse mode oxidizes MitoQ(10)H(2) to regenerate MitoQ(10). Consequently, MitoQ(10) has a pro-oxidant role in intact cells, whereas it serves as an antioxidant when Complex I-derived superoxide generation is already elevated due to electron flow retardation. Moreover, unlike mitochondrial uncoupling, MitoQ(10) exerted its antioxidant role when Complex I proton pumping was retarded by a hydrophobic amiloride, 5-(N-ethyl-N-isopropyl) amiloride. Consequently, MitoQ(10) may be useful in the treatment of diseases originating from impairment of respiratory chain Complex I due to oxidatively damaged mitochondrial DNA, when its targeted delivery to pathogenic tissues is ensured.

  3. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    PubMed

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  4. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding.

    PubMed

    Zimmerman, Matthew T; Bayse, Craig A; Ramoutar, Ria R; Brumaghim, Julia L

    2015-04-01

    Because sulfur and selenium antioxidants can prevent oxidative damage, numerous animal and clinical trials have investigated the ability of these compounds to prevent the oxidative stress that is an underlying cause of cardiovascular disease, Alzheimer's disease, and cancer, among others. One of the most common sources of oxidative damage is metal-generated hydroxyl radical; however, very little research has focused on determining the metal-binding abilities and structural attributes that affect oxidative damage prevention by sulfur and selenium compounds. In this review, we describe our ongoing investigations into sulfur and selenium antioxidant prevention of iron- and copper-mediated oxidative DNA damage. We determined that many sulfur and selenium compounds inhibit Cu(I)-mediated DNA damage and that DNA damage prevention varies dramatically when Fe(II) is used in place of Cu(I) to generate hydroxyl radical. Oxidation potentials of the sulfur or selenium compounds do not correlate with their ability to prevent DNA damage, highlighting the importance of metal coordination rather than reactive oxygen species scavenging as an antioxidant mechanism. Additional gel electrophoresis, mass spectrometry, and UV-visible studies confirmed sulfur and selenium antioxidant binding to Cu(I) and Fe(II). Ultimately, our studies established that both the hydroxyl-radical-generating metal ion and the chemical environment of the sulfur or selenium significantly affect DNA damage prevention and that metal coordination is an essential mechanism for these antioxidants. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Antioxidant defense system and oxidative status in Antarctic fishes: The sluggish rockcod Notothenia coriiceps versus the active marbled notothen Notothenia rossii.

    PubMed

    Klein, Roberta Daniele; Rosa, Carlos Eduardo; Colares, Elton Pinto; Robaldo, Ricardo Berteaux; Martinez, Pablo Elias; Bianchini, Adalto

    2017-08-01

    Adaptive responses of antioxidant defense systems (ADS) to changes in increased levels of activity are critical, especially in Antarctic fishes. The benthopelagic marbled notothen (Notothenia rossii) shows higher spontaneous activity than the benthonic and sluggish rockcod (N. coriiceps). Therefore, we hypothesize that species-related responses of ADS would occur to counteract different rates of reactive oxygen species formation in these two Antarctic fish. Here we evaluated ADS and oxidative damage in tissues (brain, gills, liver and white muscle) of the two Antarctic fish. Despite no significant differences in lipid and protein oxidative damage were observed, we actually found species- and tissue-specific differences in ADS. Gill metallothionein-like proteins (MTLP) and liver reduced glutathione (GSH) concentrations were higher in N. coriiceps than in N. rossii. Brain and gill antioxidant capacity against peroxyl radicals (ACAP); gill enzyme [glutamate-cysteine ligase (GSL), superoxide dismutase (SOD) and catalase (CAT)] activity; liver GCL and SOD activity; and white muscle CAT activity were higher in N. rossii than in N. coriiceps. Therefore, the more active fish (N. rossii) maintains higher activities of enzymes involved in superoxide ions (O 2 .- ) detoxification and GSH production in peripheral tissues (gills, liver and white muscle). This allows the more active fish (N. rossii) to keep levels of lipid and protein oxidative damage similar to those observed in the sluggish fish (N. coriiceps). It is worth noting that the more active fish also shows a higher brain antioxidant capacity, which could involve other non-enzymatic antioxidants like vitamins C and E. In contrast, N. coriiceps shows lower consumption of non-enzymatic antioxidants in peripheral tissues than N. coriiceps. As hypothesized, our results indicate that differences in ADS profiles between fish species are likely related to their habits and metabolic rates. This would imply in different fish

  6. The role of folic acid and selenium against oxidative damage from ethanol in early life programming: a review.

    PubMed

    Ojeda, Luisa; Nogales, Fátima; Murillo, Luisa; Carreras, Olimpia

    2018-04-01

    There are disorders in children, covered by the umbrella term "fetal alcohol spectrum disorder" (FASD), that occur as result of alcohol consumption during pregnancy and lactation. They appear, at least in part, to be related to the oxidative stress generated by ethanol. Ethanol metabolism generates reactive oxygen species and depletes the antioxidant molecule glutathione (GSH), leading to oxidative stress and lipid and protein damage, which are related to growth retardation and neurotoxicity, thereby increasing the incidence of FASD. Furthermore, prenatal and postnatal exposure to ethanol in dams, as well as increasing oxidation in offspring, causes malnutrition of several micronutrients such as the antioxidant folic acid and selenium (Se), affecting their metabolism and bodily distribution. Although abstinence from alcohol is the only way to prevent FASD, it is possible to reduce its harmful effects with a maternal dietary antioxidant therapy. In this review, folic acid and Se have been chosen to be analyzed as antioxidant intervention systems related to FASD because, like ethanol, they act on the methionine metabolic cycle, being related to the endogenous antioxidants GSH and glutathione peroxidase. Moreover, several birth defects are related to poor folate and Se status.

  7. Quantitative combination of natural anti-oxidants prevents metabolic syndrome by reducing oxidative stress

    PubMed Central

    Gao, Mingjing; Zhao, Zhen; Lv, Pengyu; Li, YuFang; Gao, Juntao; Zhang, Michael; Zhao, Baolu

    2015-01-01

    Insulin resistance and abdominal obesity are present in the majority of people with the metabolic syndrome. Antioxidant therapy might be a useful strategy for type 2 diabetes and other insulin-resistant states. The combination of vitamin C (Vc) and vitamin E has synthetic scavenging effect on free radicals and inhibition effect on lipid peroxidation. However, there are few studies about how to define the best combination of more than three anti-oxidants as it is difficult or impossible to test the anti-oxidant effect of the combination of every concentration of each ingredient experimentally. Here we present a math model, which is based on the classical Hill equation to determine the best combination, called Fixed Dose Combination (FDC), of several natural anti-oxidants, including Vc, green tea polyphenols (GTP) and grape seed extract proanthocyanidin (GSEP). Then we investigated the effects of FDC on oxidative stress, blood glucose and serum lipid levels in cultured 3T3-L1 adipocytes, high fat diet (HFD)-fed rats which serve as obesity model, and KK-ay mice as diabetic model. The level of serum malondialdehyde (MDA) in the treated rats was studied and Hematoxylin-Eosin (HE) staining or Oil red slices of liver and adipose tissue in the rats were examined as well. FDC shows excellent antioxidant and anti-glycation activity by attenuating lipid peroxidation. FDC determined in this investigation can become a potential solution to reduce obesity, to improve insulin sensitivity and be beneficial for the treatment of fat and diabetic patients. It is the first time to use the math model to determine the best ratio of three anti-oxidants, which can save much more time and chemical materials than traditional experimental method. This quantitative method represents a potentially new and useful strategy to screen all possible combinations of many natural anti-oxidants, therefore may help develop novel therapeutics with the potential to ameliorate the worldwide metabolic

  8. DNA damage in children exposed to secondhand cigarette smoke and its association with oxidative stress.

    PubMed

    Shermatov, Kabil; Zeyrek, Dost; Yildirim, Faruk; Kilic, Mehmet; Cebi, Nazime; Kocyigit, Abdurrahim

    2012-12-01

    To compare oxidative status, total antioxidant capacity and values of DNA damage in peripheral blood lymphocytes in children exposed to secondhand cigarette smoke with healthy controls. Analytical, Observational. 54 children without any chronic diseases, attending the healthy child monitoring polyclinic. These comprised 27 children who had been exposed to passive cigarette smoke and 27 children who had not been exposed to cigarette smoke. Urine cotinine levels by the chemiluminescent technique; DNA damage by alkaline comet assay; and total oxidant status (TOS) using a novel automated measurement method. The mean urine cotinine, TOS, Oxidative Stress Index (OSI) and DNA damage values of the group exposed to cigarette smoke were determined to be at significantly higher level compared to the group not exposed to cigarette smoke (P<0.001). No statistically significant difference was determined in the TAS level between the two groups (P=0.1) The results showed that TOS levels, OSI index and DNA damage in peripheral blood lymphocytes were significantly higher in children exposed to secondhand cigarette smoke than in those not exposed to secondhand cigarette smoke.

  9. Evaluation of anti-oxidant capacity of root of Scutellaria baicalensis Georgi, in comparison with roots of Polygonum multiflorum Thunb and Panax ginseng CA Meyer.

    PubMed

    Chan, Enoch; Wong, Cynthia Ying-Kat; Wan, Chun-Wai; Kwok, Ching-Yee; Wu, Jian-Hong; Ng, Kar-Man; So, Chi-Hang; Au, Alice Lai-Shan; Poon, Christina Chui-Wa; Seto, Sai-Wang; Kwan, Yiu-Wa; Yu, Peter Hoi-Fu; Chan, Shun-Wan

    2010-01-01

    In Chinese communities, regular consumption of Chinese-medicated diets (CMD) (usually in the form of soup) is a traditional practice to promote health and prevent disease development. The overall improvement of health conditions is believed to be correlated with the anti-oxidant potentials of these herbs. Huangqin, roots of Scutellaria baicalensis Georgi (Lamiaceae), is one of the herbs commonly used in CMD. In this study, the anti-oxidant capacities of Huangqin extracts (water, ethanol and ether extracts) were evaluated and compared to commonly used CMD herbs, Heshouwu, roots of Polygonum multiflorum Thunb (Polygonaceae) and Renshen (or Ginseng), roots of Panax ginseng CA Meyer (Araliaceae). The anti-oxidant capacities were measured by using both cell-free assay [ferric reducing/anti-oxidant power (FRAP)] and biological methods [2,2'-azobis-(2-amidinopropane) (AAPH)-induced haemolysis assay and H(2)O(2)-induced cell damage on H9C2 cells]. Additionally, the total phenolic content was measured using Folin-Ciocalteu methods. Water extract of Huangqin has the highest anti-oxidant activities compared to the ethanol and ether extracts. A positive relationship between the anti-oxidant effects and total phenolic contents of extracts was demonstrated. This shows that Huangqin could be an effective dietary anti-oxidant that can be consumed regularly as a functional food for the prevention of oxidant/free radical-related diseases.

  10. Protective effect of Anoectochilus roxburghii polysaccharide against CCl4-induced oxidative liver damage in mice.

    PubMed

    Yang, Zhenguo; Zhang, Xiaohui; Yang, Lawei; Pan, Qunwen; Li, Juan; Wu, Yongfu; Chen, Meizhen; Cui, Shichao; Yu, Jie

    2017-03-01

    This study investigated the isolation and characterization of Anoectochilus roxburghii polysaccharides (ARP), and further evaluated whether ARP possessed hepatoprotective activities against CCl 4 -induced oxidative liver damage in mice. ARP is comprised of glucose and galactose in a 1.9:1 molar ratio, and the molecular weight is 19.5kDa. ARP displayed significant scavenging effects against hydroxyl radical, superoxide anion radical, DPPH radical and a strong reducing power. In vivo experiment demonstrated ARP (150mg/kg) administrated to mice for 7days prior to carbon tetrachloride treatment, attenuated the elevated expression levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG) in serum and inhibited the formation of hepatic malondialdehyde (MDA). ARP pretreatment also increased antioxidant enzyme activities such as glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the liver of CCl 4 -induced mice. Furthermore, hepatic histopathological changes induced by CCl 4 were significantly normalized by ARP pretreatment. These findings demonstrated that ARP possessed hepatoprotective effect against acute CCl 4 -induced liver damage by reducing lipid oxidation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The effect of predator exposure and reproduction on oxidative stress parameters in the Catarina scallop Argopecten ventricosus.

    PubMed

    Guerra, C; Zenteno-Savín, T; Maeda-Martínez, A N; Abele, D; Philipp, E E R

    2013-05-01

    Predation is known to impact growth and reproduction, and the physiological state of the prey, including its susceptibility to oxidative stress. In this study, we investigated how prolonged exposure to predators modulates tissue specific antioxidant defense and oxidative damage in the short-lived epibenthic scallop Argopecten ventricosus (2years maximum lifespan). Scallops that were experimentally exposed to predators had not only lower antioxidant capacities (superoxide dismutase and catalase), but also lower oxidative damage (protein carbonyls and TBARS=thiobarbituric acid reactive substances including lipid peroxides) in gills and mantle compared to individuals not exposed to predators. In contrast, oxidative damage in the swimming muscle was higher in predator-exposed scallops. When predator-exposed scallops were on the verge of spawning, levels of oxidative damage increased in gills and mantle in spite of a parallel increase in antioxidant defense in both tissues. Levels of oxidative damage increased also in the swimming muscle whereas muscle antioxidant capacities decreased. Interestingly, post-spawned scallops restored antioxidant capacities and oxidative damage to immature levels, suggesting they can recover from spawning-related oxidative stress. Our results show that predator exposure and gametogenesis modulate oxidative damage in a tissue specific manner and that high antioxidant capacities do not necessarily coincide with low oxidative damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Antioxidant delivery pathways in the anterior eye.

    PubMed

    Umapathy, Ankita; Donaldson, Paul; Lim, Julie

    2013-01-01

    Tissues in the anterior segment of the eye are particular vulnerable to oxidative stress. To minimise oxidative stress, ocular tissues utilise a range of antioxidant defence systems which include nonenzymatic and enzymatic antioxidants in combination with repair and chaperone systems. However, as we age our antioxidant defence systems are overwhelmed resulting in increased oxidative stress and damage to tissues of the eye and the onset of various ocular pathologies such as corneal opacities, lens cataracts, and glaucoma. While it is well established that nonenzymatic antioxidants such as ascorbic acid and glutathione are important in protecting ocular tissues from oxidative stress, less is known about the delivery mechanisms used to accumulate these endogenous antioxidants in the different tissues of the eye. This review aims to summarise what is currently known about the antioxidant transport pathways in the anterior eye and how a deeper understanding of these transport systems with respect to ocular physiology could be used to increase antioxidant levels and delay the onset of eye diseases.

  13. The targeted anti-oxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue.

    PubMed

    Gottwald, Esther M; Duss, Michael; Bugarski, Milica; Haenni, Dominik; Schuh, Claus D; Landau, Ehud M; Hall, Andrew M

    2018-04-01

    Kidney proximal tubules (PTs) contain a high density of mitochondria, which are required to generate ATP to power solute transport. Mitochondrial dysfunction is implicated in the pathogenesis of numerous kidney diseases. Damaged mitochondria are thought to produce excess reactive oxygen species (ROS), which can lead to oxidative stress and activation of cell death pathways. MitoQ is a mitochondrial targeted anti-oxidant that has shown promise in preclinical models of renal diseases. However, recent studies in nonkidney cells have suggested that MitoQ might also have adverse effects. Here, using a live imaging approach, and both in vitro and ex vivo models, we show that MitoQ induces rapid swelling and depolarization of mitochondria in PT cells, but these effects were not observed with SS-31, another targeted anti-oxidant. MitoQ consists of a lipophilic cation (Tetraphenylphosphonium [TPP]) joined to an anti-oxidant component (quinone) by a 10-carbon alkyl chain, which is thought to insert into the inner mitochondrial membrane (IMM). We found that mitochondrial swelling and depolarization was also induced by dodecyltriphenylphosphomium (DTPP), which consists of TPP and the alkyl chain, but not by TPP alone. Surprisingly, MitoQ-induced mitochondrial swelling occurred in the absence of a decrease in oxygen consumption rate. We also found that DTPP directly increased the permeability of artificial liposomes with a cardiolipin content similar to that of the IMM. In summary, MitoQ causes mitochondrial swelling and depolarization in PT cells by a mechanism unrelated to anti-oxidant activity, most likely because of increased IMM permeability due to insertion of the alkyl chain. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.

    PubMed

    Oh, Joo-Yeun; Stapley, Ryan; Harper, Victoria; Marques, Marisa B; Patel, Rakesh P

    2015-12-01

    Storage-dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision-making. Oxidative-stress mediates storage-dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in "young" RBCs will predict storage-dependent hemolysis. RBCs were sampled from bags and segments stored for 7 to 42 days. Redox tone was assessed by nitrite oxidation kinetics and peroxiredoxin-2 (Prx-2) oxidation. In parallel, hemolysis was assessed by measuring cell-free hemoglobin (Hb) and free heme (hemin). Correlation analyses were performed to determine if Day 7 measurements predicted either the level of hemolysis at Day 35 or the increase in hemolysis during storage. Higher Day 7 Prx-2 oxidation was associated with higher Day 35 Prx-2 oxidation, suggesting that early assessment of this variable may identify RBCs that will incur the most oxidative damage during storage. RBCs that oxidized nitrite faster on Day 7 were associated with the greatest levels of storage-dependent hemolysis and increases in Prx-2 oxidation. An inverse relationship between storage-dependent changes in oxyhemoglobin and free heme was observed underscoring an unappreciated reciprocity between these molecular species. Moreover, free heme was higher in the bag compared to paired segments, with opposite trends observed for free Hb. Measurement of Prx-2 oxidation and nitrite oxidation kinetics early during RBC storage may predict storage-dependent damage to RBC including hemolysis-dependent formation of free Hb and heme. © 2015 AABB.

  15. Effect of exercise-induced dehydration on circulatory markers of oxidative damage and antioxidant capacity.

    PubMed

    Georgescu, Vincent P; de Souza Junior, Tacito P; Behrens, Christian; Barros, Marcelo P; Bueno, Carlos Alves; Utter, Alan C; McAnulty, Lisa S; McAnulty, Steven R

    2017-07-01

    Dehydration is a common event associated with exercise. However, few studies have examined the effects of dehydration on plasma redox status in humans. Eighty-two athletes were recruited and baseline anthropometrics and blood samples were obtained. Athletes then engaged in a dehydration protocol, training until 3% of preweight body mass was lost. Athletes returned to the lab and had postdehydration blood collected. Athletes then consumed an isotonic drink until pre-exercise body weight was reestablished. Blood was then recollected (1 h post full rehydration (PFR)). Samples were centrifuged and the plasma snap frozen in liquid nitrogen and stored at -80 °C. Lipid and protein oxidative stress was determined by measuring F 2 -isoprostanes and protein carbonyls (PC), respectively. Antioxidant capacity was determined by the ferric reducing ability of plasma (FRAP) and trolox equivalent antioxidant capacity (TEAC) assays. Plasma osmolality was determined using an osmometer. Statistical analysis utilized a 1-way ANOVA with posthoc testing. Values are reported as mean ± SD. Plasma osmolality was significantly elevated immediately postdehydration (p ≤ 0.001) but decreased to baseline at PFR. Plasma TEAC increased immediately postdehydration and at PFR (p ≤ 0.001). FRAP increased immediately postdehydration (p ≤ 0.001) and decreased to below baseline at PFR (p ≤ 0.05). Conversely, F 2 -isoprostanes declined significantly from baseline to immediately postdehydration and then significantly rose at PFR (p ≤ 0.001), whereas PC declined at PFR (p ≤ 0.01). This study indicates that dehydration and exercise cause a significant increase in plasma osmolality and antioxidant potential immediately postexercise. We propose dehydration significantly elevates antioxidant concentration which suppresses F 2 -isoprostanes and PC.

  16. Mice Deficient in Both Mn Superoxide Dismutase and Glutathione Peroxidase-1 Have Increased Oxidative Damage and a Greater Incidence of Pathology but No Reduction in Longevity

    PubMed Central

    Zhang, Yiqiang; Ikeno, Yuji; Qi, Wenbo; Chaudhuri, Asish; Li, Yan; Bokov, Alex; Thorpe, Suzanne R.; Baynes, John W.; Epstein, Charles; Richardson, Arlan

    2009-01-01

    To test the impact of increased mitochondrial oxidative stress as a mechanism underlying aging and age-related pathologies, we generated mice with a combined deficiency in two mitochondrial-localized antioxidant enzymes, Mn superoxide dismutase (MnSOD) and glutathione peroxidase-1 (Gpx-1). We compared life span, pathology, and oxidative damage in Gpx1−/−, Sod2+/−Gpx1+/−, Sod2+/−Gpx1−/−, and wild-type control mice. Oxidative damage was elevated in Sod2+/−Gpx1−/− mice, as shown by increased DNA oxidation in liver and skeletal muscle and increased protein oxidation in brain. Surprisingly, Sod2+/−Gpx1−/− mice showed no reduction in life span, despite increased levels of oxidative damage. Consistent with the important role for oxidative stress in tumorigenesis during aging, the incidence of neoplasms was significantly increased in the older Sod2+/−Gpx1−/− mice (28–30 months). Thus, these data do not support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice and do not support the oxidative stress theory of aging. PMID:19776219

  17. Commonly consumed and naturally occurring dietary substances affect biomarkers of oxidative stress and DNA damage in healthy rats.

    PubMed

    Farombi, E O; Hansen, M; Ravn-Haren, G; Møller, P; Dragsted, L O

    2004-08-01

    The influence of black currant juice, Bowman-Birk protease inhibitor (BBI), kolaviron (a biflavonoid fraction of Garcinia kola seed), sugars, vitamin C and tert-butyl hydroperoxide on a wide range of biomarkers for oxidative stress, DNA damage and sugar or lipid metabolism has been investigated in male F 344 rats. The selected pro-oxidant control, tert-butyl hydroperoxide, significantly increased plasma and liver 2-amino-adipic semialdehyde (AAS), a marker of protein oxidation (p <0.05) whereas lipid oxidation assessed as malon dialdehyde (MDA) and DNA oxidation were not significantly increased. Feeding BBI also increased the level of oxidized protein in plasma and liver at the higher dose level (0.5%). No effect was observed at the lower dose level (0.25%), which even decreased lipid oxidation in plasma. BBI did not affect background levels of DNA strand breaks or oxidation (comets). In rats exposed to black currant juice, a statistically significant decrease in liver AAS and MDA was observed. This effect could not be explained by its content of sugars or of the known redox active constituent, vitamin C. The lowering effect of black currant juice on protein and lipid oxidation was similar in magnitude to that of the known liver protectant, kolaviron. In rats treated with kolaviron (200 mg/kg body weight), background AAS levels were significantly reduced in both plasma and liver whereas the effect on MDA only reached statistical significance in plasma. Kolaviron was the only extract tested which decreased oxidative damage to DNA in the liver. The erythrocyte antioxidant enzyme activities, catalase and glutathione peroxidase were decreased in rats treated with tert-butyl hydroperoxide (p <0.05) but were not affected by the other treatments. Black currant juice and sugars increased plasma triglyceride levels and black currant juice increased plasma cholesterol but neither of them nor any other treatment affected blood glucose, erythrocyte HbA1c or fructosamine. We

  18. The impact of match-play tennis in a hot environment on indirect markers of oxidative stress and antioxidant status

    PubMed Central

    Knez, Wade L; Périard, JP

    2014-01-01

    Objectives The purpose of this study was to determine the impact of changes in oxidative stress and antioxidant status in response to playing tennis in HOT (∼36°C and 35% relative humidity (RH)) and COOL (∼22°C and 70% RH) conditions. Methods 10 male tennis players undertook two matches for an effective playing time (ie, ball in play) of 20 min, corresponding to ∼122 and ∼107 min of total play in HOT and COOL conditions, respectively. Core body temperature, body mass and indirect markers of oxidative stress (diacrons reactive oxygen metabolic test) and antioxidant status (biological antioxidant potential test) were assessed immediately prematch, midmatch and postmatch, and 24 and 48 h into recovery. Results Regardless of the condition, oxidative stress remained similar throughout play and into recovery. Likewise, match-play tennis in the COOL had no impact on antioxidant status. However, antioxidants status increased significantly in the HOT compared with COOL environment (p<0.05). Body mass losses (∼0.5 kg) were similar between conditions. Rectal temperature increased during both matches (p<0.05), but with a greater magnitude in the HOT (39.3±0.5°C) versus COOL (38.7±0.2°C) environment (p<0.05). Conclusions Match-play tennis in the heat does not exacerbate the development of oxidative stress, but significantly increases antioxidant status. These data suggest that the heat stress observed in the HOT environment may provide a necessary signal for the upregulation of antioxidant defence, dampening cellular damage. PMID:24668382

  19. The impact of match-play tennis in a hot environment on indirect markers of oxidative stress and antioxidant status.

    PubMed

    Knez, Wade L; Périard, Julien D; Périard, J P

    2014-04-01

    The purpose of this study was to determine the impact of changes in oxidative stress and antioxidant status in response to playing tennis in HOT (∼36°C and 35% relative humidity (RH)) and COOL (∼22°C and 70% RH) conditions. 10 male tennis players undertook two matches for an effective playing time (ie, ball in play) of 20 min, corresponding to ∼122 and ∼107 min of total play in HOT and COOL conditions, respectively. Core body temperature, body mass and indirect markers of oxidative stress (diacrons reactive oxygen metabolic test) and antioxidant status (biological antioxidant potential test) were assessed immediately prematch, midmatch and postmatch, and 24 and 48 h into recovery. Regardless of the condition, oxidative stress remained similar throughout play and into recovery. Likewise, match-play tennis in the COOL had no impact on antioxidant status. However, antioxidants status increased significantly in the HOT compared with COOL environment (p<0.05). Body mass losses (∼0.5 kg) were similar between conditions. Rectal temperature increased during both matches (p<0.05), but with a greater magnitude in the HOT (39.3±0.5°C) versus COOL (38.7±0.2°C) environment (p<0.05). Match-play tennis in the heat does not exacerbate the development of oxidative stress, but significantly increases antioxidant status. These data suggest that the heat stress observed in the HOT environment may provide a necessary signal for the upregulation of antioxidant defence, dampening cellular damage.

  20. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice

    PubMed Central

    Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim

    2016-01-01

    Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384

  1. Antioxidant properties of MitoTEMPOL and its hydroxylamine.

    PubMed

    Trnka, Jan; Blaikie, Frances H; Logan, Angela; Smith, Robin A J; Murphy, Michael P

    2009-01-01

    Piperidine nitroxides such as TEMPOL have been widely used as antioxidants in vitro and in vivo. MitoTEMPOL is a mitochondria-targeted derivative of TEMPOL designed to protect mitochondria from the oxidative damage that they accumulate, but once there is rapidly reduced to its hydroxylamine, MitoTEMPOL-H. As little is known about the antioxidant efficacy of hydroxylamines, this study has assessed the antioxidant activity of both MitoTEMPOL and MitoTEMPOL-H. The hydroxylamine was more effective at preventing lipid-peroxidation than MitoTEMPOL and decreased oxidative damage to mitochondrial DNA caused by menadione. In contrast to MitoTEMPOL, MitoTEMPOL-H has no superoxide dismutase activity and its antioxidant actions are likely to be mediated by hydrogen atom donation. Therefore, even though MitoTEMPOL is rapidly reduced to MitoTEMPOL-H in cells, it remains an effective antioxidant. Furthermore, as TEMPOL is also reduced to a hydroxylamine in vivo, many of its antioxidant effects may also be mediated by its hydroxylamine.

  2. An Update on Oxidative Damage to Spermatozoa and Oocytes.

    PubMed

    Opuwari, Chinyerum S; Henkel, Ralf R

    2016-01-01

    On the one hand, reactive oxygen species (ROS) are mandatory mediators for essential cellular functions including the function of germ cells (oocytes and spermatozoa) and thereby the fertilization process. However, the exposure of these cells to excessive levels of oxidative stress by too high levels of ROS or too low levels of antioxidative protection will render these cells dysfunctional thereby failing the fertilization process and causing couples to be infertile. Numerous causes are responsible for the delicate bodily redox system being out of balance and causing disease and infertility. Many of these causes are modifiable such as lifestyle factors like obesity, poor nutrition, heat stress, smoking, or alcohol abuse. Possible correctable measures include foremost lifestyle changes, but also supplementation with antioxidants to scavenge excessive ROS. However, this should only be done after careful examination of the patient and establishment of the individual bodily antioxidant needs. In addition, other corrective measures include sperm separation for assisted reproductive techniques. However, these techniques have to be carried out very carefully as they, if applied wrongly, bear risks of generating ROS damaging the germ cells and preventing fertilization.

  3. An Update on Oxidative Damage to Spermatozoa and Oocytes

    PubMed Central

    Opuwari, Chinyerum S.; Henkel, Ralf R.

    2016-01-01

    On the one hand, reactive oxygen species (ROS) are mandatory mediators for essential cellular functions including the function of germ cells (oocytes and spermatozoa) and thereby the fertilization process. However, the exposure of these cells to excessive levels of oxidative stress by too high levels of ROS or too low levels of antioxidative protection will render these cells dysfunctional thereby failing the fertilization process and causing couples to be infertile. Numerous causes are responsible for the delicate bodily redox system being out of balance and causing disease and infertility. Many of these causes are modifiable such as lifestyle factors like obesity, poor nutrition, heat stress, smoking, or alcohol abuse. Possible correctable measures include foremost lifestyle changes, but also supplementation with antioxidants to scavenge excessive ROS. However, this should only be done after careful examination of the patient and establishment of the individual bodily antioxidant needs. In addition, other corrective measures include sperm separation for assisted reproductive techniques. However, these techniques have to be carried out very carefully as they, if applied wrongly, bear risks of generating ROS damaging the germ cells and preventing fertilization. PMID:26942204

  4. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    PubMed Central

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2014-01-01

    Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-α mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-α mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441

  5. Synthesis and antioxidant activity of star-shape phenolic antioxidants catalyzed by acidic nanocatalyst based on reduced graphene oxide.

    PubMed

    Golestanzadeh, Mohsen; Naeimi, Hossein; Zahraie, Zohreh

    2017-02-01

    Phenolic antioxidants play important role in prevention of oxidation in different industrials. The research objective in the current study was synthesis and evaluate of antioxidant activity of star-shape phenolic antioxidants. The synthetic compounds were prepared in the presence of sulfonated reduced graphene oxide. The antioxidant activity of synthesized compounds was investigated by spectrophotometrically method according to the DPPH assay. Overall, these compounds are potentially important antioxidant and also to limit activity of reactive oxygen species. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats.

    PubMed

    Anbarasi, K; Vani, G; Balakrishna, K; Devi, C S Shyamala

    2006-02-16

    Free radicals mediated oxidative stress has been implicated in the pathogenesis of smoking-related diseases and antioxidant nutrients are reported to prevent the oxidative damage induced by smoking. Therefore, the present study was conducted to evaluate the antioxidant role of bacoside A (triterpenoid saponin isolated from Bacopa monniera) against chronic cigarette smoking induced oxidative damage in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with bacoside A (10 mg/kg b.w./day, p.o.). Antioxidant status of the brain was assessed from the levels of reduced glutathione, vitamin C, vitamin E, and vitamin A and the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The levels of copper, iron, zinc and selenium in brain and serum ceruloplasmin activity were also measured. Oxidative stress was evident from the diminished levels of both enzymatic and non-enzymatic antioxidants. Alterations in the levels of trace elements with accumulation of copper and iron, and depletion of zinc and selenium were also observed. Bacoside A administration improved the antioxidant status and maintained the levels of trace elements. These results suggest that chronic cigarette smoke exposure enhances oxidative stress, thereby disturbing the tissue defense system and bacoside A protects the brain from the oxidative damage through its antioxidant potential.

  7. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity1

    PubMed Central

    Delles, Rebecca M.; Xiong, Youling L.; True, Alma D.; Ao, Touying; Dawson, Karl A.

    2014-01-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P < 0.05) with an antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P < 0.05) in antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. PMID:24879706

  8. Mesenchymal stem cells increase antioxidant capacity in intestinal ischemia/reperfusion damage.

    PubMed

    Inan, M; Bakar, E; Cerkezkayabekir, A; Sanal, F; Ulucam, E; Subaşı, C; Karaöz, E

    2017-07-01

    hypothesis, MSC increases the antioxidant capacity of small bowel tissue after intestinal I/R damage. The MSCs migrated to the reperfused small intestine by homing and reduced oxidative stress via the effects of SOD, CAT, and Gpx, as well as reducing the MDA level; thus, they could increase antioxidant capacity of intestine and have a therapeutic effect on the damaged tissue. We think that this effect was achieved via scavenging of oxygen radicals, suppression of pro-inflammatory cytokines, and increasing the expression of anti-inflammatory cytokines. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Blood antioxidant and oxidative stress biomarkers acute responses to a 1000-m kayak sprint in elite male kayakers.

    PubMed

    Teixeira, V H; Valente, H F; Casal, S I; Marques, F P; Moreira, P A

    2013-02-01

    This study aimed to investigate the response of blood antioxidants and biomarkers of lipid peroxidation, muscle damage and inflammation to a 1000m kayak trial in elite male kayakers. Enzymatic (superoxide dismutase [SOD], glutathione reductase [Gr] and glutathione peroxidase [GPx] activities) and non-enzymatic (total antioxidant status [TAS], uric acid, α-tocopherol, α-carotene, β-carotene, lycopene and lutein and zeaxanthin) antioxidants, thiobarbituric acid reactive substances (TBARS), creatine kinase (CK), interleukin-6 (IL-6) and cortisol were determined in 15 elite male kayakers before and 15 min after a 1000-m kayak simulated race. Both enzymatic and non-enzymatic antioxidants were unaffected by exercise, with the exception of α-carotene which decreased (P=0.013). Uric acid levels were incremented following exercise (P=0.016). The acute exercise resulted in a significant decrease in TAS (P=0.001) and in an increase in CK (P=0.023), TBARS (P<0.001) and IL-6 (P=0.028). Our study suggests that a 1000-m kayak simulated race induces oxidative stress and damage in highly-trained kayakers.

  10. Mitochondrion-specific antioxidants as drug treatments for Alzheimer disease.

    PubMed

    Palacios, Hector H; Yendluri, Bharat B; Parvathaneni, Kalpana; Shadlinski, Vagif B; Obrenovich, Mark E; Leszek, Jerzy; Gokhman, Dmitry; Gąsiorowski, Kazimierz; Bragin, Valentin; Aliev, Gjumrakch

    2011-03-01

    Age-related dementias such as Alzheimer disease (AD) have been linked to vascular disorders like hypertension, diabetes and atherosclerosis. These risk factors cause ischemia, inflammation, oxidative damage and consequently reperfusion, which is largely due to reactive oxygen species (ROS) that are believed to induce mitochondrial damage. At higher concentrations, ROS can cause cell injury and death which occurs during the aging process, where oxidative stress is incremented due to an accelerated generation of ROS and a gradual decline in cellular antioxidant defense mechanisms. Neuronal mitochondria are especially vulnerable to oxidative stress due to their role in energy supply and use, causing a cascade of debilitating factors such as the production of giant and/or vulnerable young mitochondrion who's DNA has been compromised. Therefore, mitochondria specific antioxidants such as acetyl-L-carnitine and R-alphalipoic acid seem to be potential treatments for AD. They target the factors that damage mitochondria and reverse its effect, thus eliminating the imbalance seen in energy production and amyloid beta oxidation and making these antioxidants very powerful alternate strategies for the treatment of AD.

  11. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    SciTech Connect

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidativemore » stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system.

  12. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke.

    PubMed

    Chen, Sheng-Hsien; Lin, Mao-Tsun; Chang, Ching-Ping

    2013-03-01

    The hypothalamus may be involved in regulating homeostasis, motivation, and emotional behavior by controlling autonomic and endocrine activity. The hypothalamus communicates input from the thalamus to the pituitary gland, reticular activating substance, limbic system, and neocortex. This allows the output of pituitary hormones to respond to changes in autonomic nervous system activity. Environmental heat stress increases cutaneous blood flow and metabolism, and progressively decreases splanchnic blood flow. Severe heat exposure also decreases mean arterial pressure (MAP), increases intracranial pressure (ICP), and decreases cerebral perfusion pressure (CPP = MAP - ICP), all of which lead to cerebral ischemia and hypoxia. Compared with normothermic controls, rodents with heatstroke have higher hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), proinflammatory cytokines (e.g., interleukin-1β and tumor necrosis factor-α), inducible nitric oxide synthase-dependent nitric oxide, and an indicator for the accumulation of polymorphonuclear leukocytes (e.g., myeloperoxidase activity), as well as neuronal damage (e.g., apoptosis, necrosis, and autophagy) after heatstroke. Hypothalamic values of antioxidant defenses (e.g., glutathione peroxidase and glutathione reductase), however, are lower. The ischemic, hypoxic, and oxidative damage to the hypothalamus during heatstroke may cause multiple organ dysfunction or failure through hypothalamic-pituitary-adrenal axis mechanisms. Finding the link between the signaling and heatstroke-induced hypothalamic oxidative and ischemic damage might allow us to clinically attenuate heatstroke. In particular, free radical scavengers, heat shock protein-70 inducers, hypervolemic hemodilution, inducible nitric oxide synthase inhibitors, progenitor stem cells, flutamide, estrogen, interleukin-1

  13. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids.

    PubMed

    Martín-Montañez, E; Millon, C; Boraldi, F; Garcia-Guirado, F; Pedraza, C; Lara, E; Santin, L J; Pavia, J; Garcia-Fernandez, M

    2017-10-01

    Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc

  14. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium.

    PubMed

    Xue, Lingui; Li, Shiweng; Sheng, Hongmei; Feng, Huyuan; Xu, Shijian; An, Lizhe

    2007-10-01

    To study the role of nitric oxide (NO) on enhanced ultraviolet-B (UV-B) radiation (280-320 nm)-induced damage of Cyanobacterium, the growth, pigment content, and antioxidative activity of Spirulina platensis-794 cells were investigated under enhanced UV-B radiation and under different chemical treatments with or without UV-B radiation for 6 h. The changes in chlorophyll-a, malondialdehyde content, and biomass confirmed that 0.5 mM: sodium nitroprusside (SNP), a donor of nitric oxide (NO), could markedly alleviate the damage caused by enhanced UV-B. Specifically, the biomass and the chlorophyll-a content in S. platensis-794 cells decreased 40% and 42%, respectively under enhanced UV-B stress alone, but they only decreased 10% and 18% in the cells treated with UV-B irradiation and 0.5 mM: SNP. Further experiments suggested that NO treatment significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the accumulation of O (2)(-) in enhanced UV-B-irradiated cells. SOD and CAT activity increased 0.95- and 6.73-fold, respectively. The accumulation of reduced glutathione (GSH) increased during treatment with 0.5 mM: SNP in normal S. platensis cells, but SNP treatment could inhibit the increase of GSH in enhanced UV-B-stressed S. platensis cells. Thus, these results suggest that NO can strongly alleviate oxidative damage caused by UV-B stress by increasing the activities of SOD, peroxidase, CAT, and the accumulation of GSH, and by eliminating O (2)(-) in S. platensis-794 cells. In addition, the difference of NO origin between plants and cyanobacteria are discussed.

  15. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis

    PubMed Central

    Benoist d’Azy, Cédric; Pereira, Bruno; Chiambaretta, Frédéric

    2016-01-01

    Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: “oxidative stress” or “oxidant stress” or “nitrative stress” or “oxidative damage” or “nitrative damage” or “antioxidative stress” or “antioxidant stress” or “antinitrative stress” and “glaucoma”. We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20–2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84–1.74) to 2.62 in aqueous humor (95%CI 1.60–3.65). Despite a decrease in antioxidative stress marker in serum (effect size = –0.41; 95%CI –0.72 to –0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20–5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88–9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78–16.6, P < 0.001), and higher in pseudo-exfoliative glaucoma vs primary angle closed glaucoma (effect size = 12.2; 95%CI 8.96–15.5, P < 0.001). In conclusion, oxidative

  16. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage.

    PubMed

    Akıncı, Ayşin; Eşrefoğlu, Mukaddes; Taşlıdere, Elif; Ateş, Burhan

    2017-01-01

    Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Animal experimentation. Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ) groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals' stomachs were arranged for microscopic and biochemical examinations. Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57) was higher than that of the control group (1.50±0.22) (p<0.05). Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05), the stress and stress + standard diet groups (p<0.05), and the stress and stress + LPZ groups (p<0.05). The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05). Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50) and superoxide dismutase (15.18±1.05) and catalase (16.68±2.29) activities. Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system.

  17. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    PubMed Central

    Akıncı, Ayşin; Eşrefoğlu, Mukaddes; Taşlıdere, Elif; Ateş, Burhan

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation Methods: Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ) groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals’ stomachs were arranged for microscopic and biochemical examinations. Results: Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57) was higher than that of the control group (1.50±0.22) (p<0.05). Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05), the stress and stress + standard diet groups (p<0.05), and the stress and stress + LPZ groups (p<0.05). The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05). Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50) and superoxide dismutase (15.18±1.05) and catalase (16.68±2.29) activities. Conclusion: Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system. PMID:28251024

  18. Enrichment of antioxidants in black garlic juice using macroporous resins and their protective effects on oxidation-damaged human erythrocytes.

    PubMed

    Zou, Ying; Zhao, Mouming; Yang, Kun; Lin, Lianzhu; Wang, Yong

    2017-08-15

    The black garlic juice is popular for its nutritive value. Enrichment of antioxidants is needed to make black garlic extract an effective functional ingredient. Five macroporous resins were evaluated for their capacity in adsorbing antioxidants in black garlic juice. XAD-16 resin was chosen for further study due to its high adsorption and desorption ratios. Pseudo-second-order kinetics (q e =625μmol Trolox equiv/g dry resin, k 2 =0.0001463) and Freundlich isotherm models (ΔH=-10.1547kJ/mol) were suitable for describing the whole exothermic and physical adsorption processes of the antioxidants from black garlic juice on XAD-16 resin. The antioxidants and phenolics were mostly enriched in 40% ethanol fraction by XAD-16 resin column chromatography. The black garlic extract and its fractions could protect erythrocytes against AAPH-induced hemolysis in dose-dependent manners. The pretreatment of AAPH-damaged erythrocytes with 40% ethanol fractions (2.5mg/mL) significantly decreased the hemolysis ratios from 53.58% to 3.79%. The 40% ethanol fraction possessing strong intracellular antioxidant activity could be used as a functional food ingredient. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K

    2017-01-01

    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

  20. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    PubMed

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p < .05) and increased the activities of antioxidant enzymes like catalase and superoxide dismutase along with increased concentration of non-enzymatic antioxidant, reduced glutathione (GSH). Similarly, BDE caused a significant decrease in the lipid peroxidation (LPO) in the cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  1. Protecting the BBB Endothelium against Cigarette Smoke-Induced Oxidative Stress Using Popular Antioxidants: Are they really beneficial?

    PubMed Central

    Kaisar, Mohammad Abul; Prasad, Shikha; Cucullo, Luca

    2015-01-01

    Blood Brain Barrier (BBB) exposed to realistic concentrations (comparable to a chronic heavy smoker) of Cigarette Smoke Extract (CSE) triggers a strong endothelial inflammatory which can lead to the onset of neurological disorders. The involvement of Reactive Oxygen Species (ROS) in this inflammatory cascade is evident from the up-regulation of nuclear factor erythroid 2 related factor 2 (Nrf-2), a transcription factor involved in anti-oxidant response signaling in CSE exposed endothelial cells. We have shown that pre-treatment with α-tocopherol and/or ascorbic acid is highly protective for the BBB, thus suggesting that, prophylactic administration of antioxidants can reduce CSE and/or inflammatory-dependent BBB damage. We have assessed and ranked the protective effects of 5 popular OTC antioxidants (Coenzyme Q10, Melatonin, Glutathione, Lipoic acid and Resveratrol) against CSE-induced BBB endothelial damage using hCMEC/D3 cells. The analysis of pro-inflammatory cytokines release by ELISA revealed that, resveratrol, lipoic acid melatonin and Co-Q10 inhibited the BBB endothelial release of pro-inflammatory cytokines IL-6 & IL-8, reduced (not Co-Q10) CSE-induced up-regulation of Platelet Endothelial Cell Adhesion Molecule -1 (PECAM-1), Vascular Endothelial Cell Adhesion Molecule-1 (VCAM-1) & E-selectin and inhibited monocytes-endothelial cell adhesion. The anti-inflammatory effects correlated with the anti-oxidative protection endowed by these compounds as evidenced by upregulation of NADPH: Quinone Oxidoreductase 1 (NQO1) and reduced cellular oxidative stress. CSE-induced release of Vascular Endothelial Growth Factor (VEGF) was inhibited by all tested compounds although the effect was not strictly dose-dependent. Further in vivo studies are required to validate our results and expand our current study to include combinatorial treatments. PMID:26410779

  2. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients.

    PubMed

    L Gupta, Krishan; Sahni, Nancy

    2012-10-01

    Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients.

  3. Dietary Probiotic Bacillus subtilis Strain fmbj Increases Antioxidant Capacity and Oxidative Stability of Chicken Breast Meat during Storage

    PubMed Central

    Bai, Wen Kai; Zhang, Fei Jing; He, Tian Jin; Su, Peng Wei; Ying, Xiong Zhi; Zhang, Li Li; Wang, Tian

    2016-01-01

    This study was aimed to measure the dietary effects of probiotic Bacillus subtilis strain fmbj (BS fmbj) on antioxidant capacity and oxidative stability of chicken breast meat during storage. Treatment groups were fed the basal diet with BS fmbj at 0 g/kg (CON), 0.2 g/kg (BS-1), 0.3 g/kg (BS-2), or 0.4 g/kg (BS-3) doses without antibiotics. During 8 days of storage at 4°C, BS-2 group showed a significant improvement (P < 0.05) on meat quality (pH, Drip loss, Cooking loss, Shear force, color L*, a*, b*), free radical scavenging activity (DPPH, ABTS+, H2O2), tissues antioxidant enzyme capacity (SOD, CAT, GSH-Px, GSH, T-SH), mitochondria antioxidant enzyme capacity (MnSOD, GPx, GSH), mRNA expression of antioxidant genes (Nrf2, HO-1, SOD, CAT, GSH-Px) and mitochondrial function genes (avUCP, NRF1, NRF2, TFAM, PGC-1α), oxidative damage index (MDA, ROS, PC, 8-OHdG), and MMP level in chicken breast meat as compared to the CON group. These results indicate that dietary BS fmbj in broiler diets can protect breast meat against the storage-induced oxidative stress by improving their free radical scavenging capacity and antioxidant activity during 8 days of storage at 4°C. PMID:27907152

  4. Oxidants, antioxidants, and respiratory tract lining fluids.

    PubMed Central

    Cross, C E; van der Vliet, A; O'Neill, C A; Louie, S; Halliwell, B

    1994-01-01

    Respiratory tract lining fluids (RTLFs) are a heterogeneous group of substances covering the respiratory tract epithelial cells (RTECs) from nasal mucosa to alveoli. Antioxidant contained in the RTLFs can be expected to provide an initial defense against inhaled environmental toxins. The major antioxidants in RTLF include mucin, uric acid, protein (largely albumin), ascorbic acid, and reduced glutathione (GSH). RTLF antioxidants can be augmented by such processes as transudation/exudation of plasma constituents; RTEC secretory processes, including glandular mucus secretion; and cellular antioxidants derived from lysis of RTECs and of inflammatory cells. The antioxidant composition of RTLFs and their role in modulating normal and pathophysiologic RTEC functions under conditions of oxidative stress are yet to be fully characterized. PMID:7705296

  5. Effect of complex polyphenols and tannins from red wine on DNA oxidative damage of rat colon mucosa in vivo.

    PubMed

    Giovannelli, L; Testa, G; De Filippo, C; Cheynier, V; Clifford, M N; Dolara, P

    2000-10-01

    Dietary polyphenols have been reported to have a variety of biological actions, including anti-carcinogenic, antioxidant and anti-inflammatory activities. In the present study we have evaluated the effect of an oral treatment with complex polyphenols and tannins from red wine and tea on DNA oxidative damage in the rat colon mucosa. Isolated colonocytes were prepared from the colon mucosa of rats treated for ten days with either wine complex polyphenols (57.2 mg/kg/d) or thearubigin (40 mg/kg/d) by oral gavage. Colonocyte oxidative DNA damage was analysed at the single cell level using a modification of the comet assay technique. The results show that wine complex polyphenols and tannins induce a significant decrease (-62% for pyrimidine and -57% for purine oxidation) in basal DNA oxidative damage in colon mucosal cells without affecting the basal level of single-strand breaks. On the other hand, tea polyphenols, namely a crude extract of thearubigin, did not affect either strand breaks or pyrimidine oxidation in colon mucosal cells. Our experiments are the first demonstration that dietary polyphenols can modulate in vivo oxidative damage in the gastrointestinal tract of rodents. These data support the hypothesis that dietary polyphenols might have both a protective and a therapeutic potential in oxidative damage-related pathologies.

  6. Potential in vitro antioxidant and protective effects of Gymnema montanum H. on alloxan-induced oxidative damage in pancreatic beta-cells, HIT-T15.

    PubMed

    Ramkumar, Kunga Mohan; Manjula, Chinnasamy; Sankar, Lakshmanan; Suriyanarayanan, Sarvajayakesavalu; Rajaguru, Palanisamy

    2009-09-01

    The present study describes the antioxidant activities of ethanol extract from Gymnema montanum (GLEt) which is an endemic plant of India. Antioxidant activity of the GLEt was studied in vitro based on scavenging of hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, reducing power and inhibition of lipid peroxidation estimated in terms of thiobarbituric acid reactive substances (TBARS). Further, we examined its protective effect against alloxan-induced oxidative stress in pancreatic beta-cells, HIT-T15 by measuring the free radical generation, malonaldehyde formation and antioxidant levels such as CAT, GPx and GSH. Results showed that G. montanum leaves exhibited significant antioxidant activities measured by various in vitro model systems. The HIT-T15 cell line studies showed the tendency of GLEt to increase antioxidant levels meanwhile decrease the free radical formation and inhibit the lipid peroxidation. The antioxidant activity was found to be well correlated with the phenolic phytochemicals present in the extract. GC-MS analyses revealed the presence of few phenolic compounds in the extract. As this plant has already been demonstrated for a variety of medicinal properties from our laboratory, results of this study suggest that G. montanum is an interesting source for antioxidant compounds and useful for various therapeutic applications.

  7. Scavenging of reactive oxygen species and prevention of oxidative neuronal cell damage by a novel gallotannin, pistafolia A.

    PubMed

    Wei, Taotao; Sun, Handong; Zhao, Xingyu; Hou, Jingwu; Hou, Aijun; Zhao, Qinshi; Xin, Wenjuan

    2002-03-08

    Pistafolia A is a novel gallotannin isolated from the leaf extract of Pistacia weinmannifolia. In the present investigation, the ability of Pistafolia A to scavenge reactive oxygen species including hydroxyl radicals and superoxide anion was measured by ESR spin trapping technique. The inhibition effect on iron-induced lipid peroxidaiton in liposomes was studied. The protective effects of Pistafolia A against oxidative neuronal cell damage and apoptosis induced by peroxynitrite were also assessed. The results showed that Pistafolia A could scavenge both hydroxyl radicals and superoxide anion dose-dependently and inhibit lipid peroxidation effectively. In cerebellar granule cells pretreated with Pistafolia A, peroxynitrite-induced oxidative neuronal damage and apoptosis were prevented markedly. The antioxidant capacity of Pistafolia A was much more potent then that of the water-soluble analog of vitamin E, Trolox. The results suggested that Pistafolia A might be used as an effective natural antioxidant for the prevention and cure of neuronal diseases associated with the production of peroxynitrite and related reactive oxygen species.

  8. Hepatoprotective effect of 2'-O-galloylhyperin against oxidative stress-induced liver damage through induction of Nrf2/ARE-mediated antioxidant pathway.

    PubMed

    Wang, Peng; Gao, Yi-Meng; Sun, Xing; Guo, Na; Li, Ji; Wang, Wei; Yao, Li-Ping; Fu, Yu-Jie

    2017-04-01

    2'-O-galloylhyperin (2'-O-GH), an active compound isolated from Pyrola calliantha, possesses remarkable antioxidant activity. The aims of this study were to investigate the hepatoprotective effect of 2'-O-GH against oxidative stress and elucidate the underlying mechanistic signaling pathways in HepG2 cells as well as in an animal model. Results showed that 2'-O-GH significantly inhibited hydrogen peroxide (H 2 O 2 )-induced HepG2 cell death in a dose dependent manner. The mitogen-activated protein kinase activation, ROS production, mitochondrial membrane potential, intracellular calcium level and subsequent apoptotic protein activation in H 2 O 2 -stimulated HepG2 cells were remarkably inhibited by 2'-O-GH. Furthermore, 2'-O-GH stimulation resulted in a fast and dramatic activation of Akt and nuclear translocation of the NF-E2-related factor 2 (Nrf2), along with the increased expression of heme oxygenase-1 (HO-1) and levels of glutathione (GSH). Meanwhile, histopathological evaluation of the liver also revealed that 2'-O-GH effectively ameliorated CCl 4 -induced the hepatic damage by reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Therefore, these results suggested the hepatoprotective effect of 2'-O-GH might be correlated with its antioxidant and free radical scavenger effect. Copyright © 2017. Published by Elsevier Ltd.

  9. Antioxidant profile of strawberry tree honey and its marker homogentisic acid in several models of oxidative stress.

    PubMed

    Rosa, Antonella; Tuberoso, Carlo Ignazio Giovanni; Atzeri, Angela; Melis, Maria Paola; Bifulco, Ersilia; Dessì, Maria Assunta

    2011-12-01

    The antioxidant activity of several honeys was evaluated considering the different contribution of entire samples. The strawberry tree honey emerged as the richest in total phenols and the most active honey in the DPPH and FRAP tests, and could protect cholesterol against oxidative degradation (140°C). Homogentisic acid (2,5-dihydroxyphenylacetic acid, HGA), the main phenolic compound from strawberry tree honey, showed interesting antioxidant and antiradical activities, and protective effect against thermal-cholesterol degradation, comparable to those of well known antioxidants. Moreover, the pre-treatment with HGA significantly preserved liposomes and LDL from Cu(2+)-induced oxidative damage at 37°C for 2h, inhibiting the reduction of polyunsaturated fatty acids and cholesterol and the increase of their oxidative products. This phenol had no toxic effect in human intestinal epithelial Caco-2 cells within the concentration range tested (5-1000μM). HGA was able to pass through the Caco-2 monolayers, the apparent permeability coefficients (Papp) in the apical-to-basolateral and basolateral-to-apical direction were 3.48±1.22×10(-6) and 2.18±0.34×10(-6)cm/s, respectively, suggesting a passive diffusion pathway as the dominating process. The results of the work qualify HGA as natural antioxidant, able to exert a significant in vitro protective effect and to contribute to the strawberry tree honey antioxidant activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. [Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases].

    PubMed

    Lucio, Lorena M C; Braz, Mariana G; do Nascimento Junior, Paulo; Braz, José Reinaldo C; Braz, Leandro G

    The waste anesthetic gases (WAGs) present in the ambient air of operating rooms (OR), are associated with various occupational hazards. This paper intends to discuss occupational exposure to WAGs and its impact on exposed professionals, with emphasis on genetic damage and oxidative stress. Despite the emergence of safer inhaled anesthetics, occupational exposure to WAGs remains a current concern. Factors related to anesthetic techniques and anesthesia workstations, in addition to the absence of a scavenging system in the OR, contribute to anesthetic pollution. In order to minimize the health risks of exposed professionals, several countries have recommended legislation with maximum exposure limits. However, developing countries still require measurement of WAGs and regulation for occupational exposure to WAGs. WAGs are capable of inducing damage to the genetic material, such as DNA damage assessed using the comet assay and increased frequency of micronucleus in professionals with long-term exposure. Oxidative stress is also associated with WAGs exposure, as it induces lipid peroxidation, oxidative damage in DNA, and impairment of the antioxidant defense system in exposed professionals. The occupational hazards related to WAGs including genotoxicity, mutagenicity and oxidative stress, stand as a public health issue and must be acknowledged by exposed personnel and responsible authorities, especially in developing countries. Thus, it is urgent to stablish maximum safe limits of concentration of WAGs in ORs and educational practices and protocols for exposed professionals. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  11. Polyphenol-rich strawberry extract protects human dermal fibroblasts against hydrogen peroxide oxidative damage and improves mitochondrial functionality.

    PubMed

    Giampieri, Francesca; Alvarez-Suarez, José M; Mazzoni, Luca; Forbes-Hernandez, Tamara Y; Gasparrini, Massimiliano; Gonzàlez-Paramàs, Ana M; Santos-Buelga, Celestino; Quiles, José L; Bompadre, Stefano; Mezzetti, Bruno; Battino, Maurizio

    2014-06-11

    Strawberry bioactive compounds are widely known to be powerful antioxidants. In this study, the antioxidant and anti-aging activities of a polyphenol-rich strawberry extract were evaluated using human dermal fibroblasts exposed to H2O2. Firstly, the phenol and flavonoid contents of strawberry extract were studied, as well as the antioxidant capacity. HPLC-DAD analysis was performed to determine the vitamin C and β-carotene concentration, while HPLC-DAD/ESI-MS analysis was used for anthocyanin identification. Strawberry extract presented a high antioxidant capacity, and a relevant concentration of vitamins and phenolics. Pelargonidin- and cyanidin-glycosides were the most representative anthocyanin components of the fruits. Fibroblasts incubated with strawberry extract and stressed with H2O2 showed an increase in cell viability, a smaller intracellular amount of ROS, and a reduction of membrane lipid peroxidation and DNA damage. Strawberry extract was also able to improve mitochondrial functionality, increasing the basal respiration of mitochondria and to promote a regenerative capacity of cells after exposure to pro-oxidant stimuli. These findings confirm that strawberries possess antioxidant properties and provide new insights into the beneficial role of strawberry bioactive compounds on protecting skin from oxidative stress and aging.

  12. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients

    PubMed Central

    L Gupta, Krishan; Sahni, Nancy

    2012-01-01

    Context Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Evidence Acquisitions Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Results Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Conclusions Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients. PMID:24475404

  13. Counteraction of oxidative damage in the rat liver by an ancient grain (Kamut brand khorasan wheat).

    PubMed

    Benedetti, Serena; Primiterra, Mariangela; Tagliamonte, Maria Chiara; Carnevali, Andrea; Gianotti, Andrea; Bordoni, Alessandra; Canestrari, Franco

    2012-04-01

    We previously demonstrated in rat plasma the antioxidant protective effect of whole-grain bread, particularly when made from Kamut brand khorasan wheat. In the present study, we investigated the effects of the same experimental breads in rat liver using two different bread-making procedures (baker's yeast and sourdough fermentation). Rats were examined in the basal condition and after the administration of doxorubicin, a pro-oxidative agent. The following parameters were measured in liver homogenates: glutathione peroxidase and thioredoxin reductase activities, as antioxidant enzymes containing selenium; glutathione, α-tocopherol and β-carotene, as major non-enzymatic cell antioxidants; malondialdehyde and advanced oxidation protein products, as markers of oxidative damage to lipids and proteins, respectively. A histologic evaluation of liver tissue was also conducted. In agreement with our previous work, we observed a lower oxidative status and a different activity of glutathione peroxidase and thioredoxin reductase in rats fed the whole-grain Kamut khorasan bread than in rats fed the modern whole-grain durum wheat bread. Histologic evaluation of the hepatic tissue showed the onset of inflammation in response to doxorubicin only in rats fed the modern durum wheat bread. Our data confirm that bread made from whole-grain Kamut khorasan protects rats from oxidative stress better than bread made from whole-grain durum wheat. This is consistent with their different antioxidant profiles. The type of wheat used for bread-making appeared to be the main determinant of the observed protective effect. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Does Swimming at a Moderate Altitude Favor a Lower Oxidative Stress in an Intensity-Dependent Manner? Role of Nonenzymatic Antioxidants.

    PubMed

    Casuso, Rafael A; Aragón-Vela, Jerónimo; López-Contreras, Gracia; Gomes, Silvana N; Casals, Cristina; Barranco-Ruiz, Yaira; Mercadé, Jordi J; Huertas, Jesus R

    2017-03-01

    Casuso, Rafael A., Jerónimo Aragón-Vela, Gracia López-Contreras, Silvana N. Gomes, Cristina Casals, Yaira Barranco-Ruiz, Jordi J. Mercadé, and Jesus R. Huertas. Does swimming at a moderate altitude favor a lower oxidative stress in an intensity-dependent manner? Role of nonenzymatic antioxidants. High-Alt Med Biol. 18:46-55, 2017.-we aimed to describe oxidative damage and enzymatic and nonenzymatic antioxidant responses to swimming at different intensities in hypoxia. We recruited 12 highly experienced swimmers who have been involved in competitive swimming for at least 9 years. They performed a total of six swimming sessions carried out at low (LOW), moderate (MOD), or high (HIGH) intensity at low altitude (630 m) and at 2320 m above sea level. Blood samples were collected before the session (Pre), after the cool down (Post), and after 15 minutes of recovery (Rec). Blood lactate (BL) and heart rate were recorded throughout the main part of the session. Average velocities did not change between hypoxia and normoxia. We found a higher BL in response to MOD intensity in hypoxia. Plasmatic hydroperoxide level decreased at all intensities when swimming in hypoxia. This effect coincided with a lower glutation peroxidase activity and a marked mobilization of the circulating levels of α-tocopherol and coenzyme Q10 in an intensity-dependent manner. Our results suggest that, regardless of the intensity, no oxidative damage is found in response to hypoxic swimming in well-trained swimmers. Indeed, swimmers show a highly efficient antioxidant system by stimulating the mobilization of nonenzymatic antioxidants.

  15. Protein oxidative damage and heme oxygenase in sunlight-exposed human skin: roles of MAPK responses to oxidative stress.

    PubMed

    Akasaka, Emiko; Takekoshi, Susumu; Horikoshi, Yosuke; Toriumi, Kentarou; Ikoma, Norihiro; Mabuchi, Tomotaka; Tamiya, Shiho; Matsuyama, Takashi; Ozawa, Akira

    2010-12-20

    Oxidative stress derived from ultraviolet (UV) light in sunlight induces different hazardous effects in the skin, including sunburn, photo-aging and DNA mutagenesis. In this study, the protein-bound lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8OHdG) were investigated in chronically sun-exposed and sun-protected human skins using immunohistochemistry. The levels of antioxidative enzymes, such as heme oxygenase 1 and 2, Cu/Zn-SOD, Mn-SOD and catalase, were also examined. Oxidative stress is also implicated in the activation of signal transduction pathways, such as mitogen-activated protein kinase (MAPK). Therefore, the expression and distribution of phosphorylated p38 MAPK, phosphorylated Jun N-terminal kinase (JNK) and phosphorylated extracellular signal-regulated kinase (ERK) were observed. Skin specimens were obtained from the surgical margins. Chronically sunlight-exposed skin samples were taken from the ante-auricular (n = 10) and sunlight-protected skin samples were taken from the post-auricular (n = 10). HNE was increased in the chronically sunlight-exposed skin but not in the sunlight-protected skin. The expression of heme oxygenase-2 was markedly increased in the sunlight-exposed skin compared with the sun-protected skin. In contrast, the intensity of immunostaining of Cu/Zn-SOD, Mn-SOD and catalase was not different between the two areas. Phosphorylated p38 MAPK and phosphorylated JNK accumulated in the ante-auricular dermis and epidermis, respectively. These data show that particular anti-oxidative enzymes function as protective factors in chronically sunlight-exposed human skin. Taken together, our results suggest (1) antioxidative effects of heme oxygenase-2 in chronically sunlight-exposed human skin, and that (2) activation of p38 MAPK may be responsible for oxidative stress.

  16. Experimental and clinical evidence of antioxidant therapy in acute pancreatitis

    PubMed Central

    Esrefoglu, Mukaddes

    2012-01-01

    Oxidative stress has been shown to play an important role in the pathogenesis of acute pancreatitis (AP). Antioxidants, alone or in combination with conventional therapy, should improve oxidative-stress-induced organ damage and therefore accelerate the rate of recovery. In recent years, substantial amounts of data about the efficiency of antioxidants against oxidative damage have been obtained from experiments with rodents. Some of these antioxidants have been found beneficial in the treatment of AP in humans; however, at present there is insufficient clinical data to support the benefits of antioxidants, alone or in combination with conventional therapy, in the management of AP in humans. Conflicting results obtained from experimental animals and humans may represent distinct pathophysiological mechanisms mediating tissue injury in different species. Further detailed studies should be done to clarify the exact mechanisms of tissue injury in human AP. Herein I tried to review the existing experimental and clinical studies on AP in order to determine the efficiency of antioxidants. The use of antioxidant enriched nutrition is a potential direction of clinical research in AP given the lack of clues about the efficiency and safety of antioxidant usage in patients with AP. PMID:23112545

  17. Local and systemic oxidant/antioxidant status before and during lung cancer radiotherapy

    PubMed Central

    Crohns, Marika; Saarelainen, Seppo; Kankaanranta, Hannu; Moilanen, Eeva; Alho, Hannu; Kellokumpu-Lehtinen, Pirkko

    2009-01-01

    To examine local and systemic oxidative status of lung cancer (LC) and oxidant effects of radiotherapy (RT), this study evaluated antioxidants and markers of oxidative and nitrosative stress in bronchoalveolar lavage (BAL) fluid and in the blood of 36 LC patients and 36 non-cancer controls at baseline and during and after RT for LC. LC patients had higher baseline serum urate, plasma nitrite and lower serum oxidized proteins than controls (p = 0.016, p < 0.001 and p = 0.027, respectively), but BAL fluid oxidative stress markers were similar. RT tended to raise some antioxidants, however, significant increases were seen in serum urate, conjugated dienes and TBARS (p = 0.044, p = 0.034 and p = 0.004, respectively) 3 months after RT. High urate at baseline may compensate against the oxidative stress caused by LC. RT shifts the oxidant/antioxidant balance towards lipid peroxidation, although the antioxidant defense mechanisms of the body appear to counteract the increased oxidative stress rather effectively. PMID:19444690

  18. In Barrett's esophagus patients and Barrett's cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids.

    PubMed

    Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H; Wang, David H; Chen, Minhu; Souza, Rhonda F; Spechler, Stuart Jon

    2014-07-15

    Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. Copyright © 2014 the American Physiological Society.

  19. In Barrett's esophagus patients and Barrett's cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids

    PubMed Central

    Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H.; Wang, David H.; Chen, Minhu; Spechler, Stuart Jon

    2014-01-01

    Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. PMID:24852569

  20. The effect of green, black and white tea on the level of alpha and gamma tocopherols in free radical-induced oxidative damage of human red blood cells.

    PubMed

    Gawlik, Małgorzata; Czajka, Aneta

    2007-01-01

    The present study was undertaken to investigate the effect of aqueous tea extracts on lipid peroxidation and alpha and gamma tocopherols concentration in the oxidative damage of human red blood cells (RBC). RBC was taken as the model for study of the oxidative damage was induced by cumene hydroperoxide (cumOOH). The antioxidative property of leaf green tea, leaf and granulate of black tea and white tea at levels 1, 2, 4 g/150 mL of water were evaluated. The correlation was observed between reducing power of tea extract and formation of malondialdehyde--MDA (an indicator of lipid peroxidation) in oxidative damage of RBC. All tea extracts at level of 4 g/150 mL of water significantly decreased concentration of MDA. The extract of green tea in comparison to black and white tea extracts at the same levels seems to be a better protective agent against oxidative stress. The antioxidant synergism between components extracted from leaves of green tea and endogenous alpha tocopherol in the oxidative damage of red blood cells was observed. The consumption of alpha tocopherol in oxidative damage of RBC was the lowest after treatment with the highest dose of green tea extract. All tea extracts did not protect against decrease of gamma tocopherol in human erythrocytes treated with cumOOH.

  1. Spirulina improves antioxidant status by reducing oxidative stress in rabbits fed a high-cholesterol diet.

    PubMed

    Kim, Mi Yeon; Cheong, Sun Hee; Lee, Jeung Hee; Kim, Min Ji; Sok, Dai-Eun; Kim, Mee Ree

    2010-04-01

    The beneficial effect of Spirulina (Spirulina platensis) on tissue lipid peroxidation and oxidative DNA damage was tested in the hypercholesterolemic New Zealand White rabbit model. After hypercholesterolemia was induced by feeding a high cholesterol (0.5%) diet (HCD) for 4 weeks, then HCD supplemented with 1% or 5% Spirulina (SP1 or SP5, respectively) was provided for an additional 8 weeks. Spirulina supplementation significantly reduced the increased lipid peroxidation level in HCD-fed rabbits, and levels recovered to control values. Oxidative stress biomarkers such as glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase were significantly improved in the liver and red blood cells of rabbits fed SP1. Furthermore, SP5 induced antioxidant enzyme activity by 3.1-fold for glutathione, 2.5-fold for glutathione peroxidase, 2.7-fold for glutathione reductase, and 2.3-fold for glutathione S-transferase in liver, compared to the HCD group. DNA damage in lymphocytes was significantly reduced in both the SP1 and SP5 groups, based on the comet assay. Findings from the present study suggest that dietary supplementation with Spirulina may be useful to protect the cells from lipid peroxidation and oxidative DNA damage.

  2. Allelochemical Stress Can Trigger Oxidative Damage in Receptor Plants

    PubMed Central

    Lara-Núñez, Aurora; Anaya, Ana Luisa

    2007-01-01

    Plants can interact with other plants through the release of chemical compounds or allelochemicals. These compounds released by donor plants influence germination, growth, development, and establishment of receptor plants; having an important role on the pattern of vegetation, i.e as invasive strategy, and on crop productivity. This phytotoxic or negative effect of the released allelochemicals (allelochemical stress) is caused by modifying or altering diverse metabolic processes, having many molecular targets in the receptor plants. Recently, using an aggressive and allelopathic plant Sicyos deppei as the donor plant, and Lycopersicon esculentum as the receptor plant, we showed that the allelochemicals released by S. deppei caused oxidative damage through an increase in reactive oxygen species (ROS) and activation or modification of antioxidant enzymes. Based on this study, we proposed that oxidative stress is one of the mechanisms, among others, by which an allelopathic plant causes phytotoxicity to other plants. PMID:19704677

  3. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    PubMed

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Pre- vs. post-treatment with melatonin in CCl4-induced liver damage: Oxidative stress inferred from biochemical and pathohistological studies.

    PubMed

    Ničković, Vanja P; Novaković, Tatjana; Lazarević, Slavica; Šulović, Ljiljana; Živković, Zorica; Živković, Jovan; Mladenović, Bojan; Stojanović, Nikola M; Petrović, Vladmir; Sokolović, Dušan T

    2018-06-01

    The present study was designed to compare the ameliorating potential of pre- and post-treatments with melatonin, a potent natural antioxidant, in the carbon tetrachloride-induced rat liver damage model by tracking changes in enzymatic and non-enzymatic liver tissue defense parameters, as well as in the occurring pathohistological changes. Rats from two experimental groups were treated with melatonin before and after CCl 4 administration, while the controls, negative and positive, received vehicle/melatonin and CCl 4 , respectively. Serum levels of transaminases, alkaline phosphates, γ-GT, bilirubin, and albumin, as well as a wide panel of oxidative stress-related parameters in liver tissue, were determined in all experimental animals. Liver tissue specimens were stained with hematoxylin and eosin and further evaluated for morphological changes. Both pre- and post-treatment with melatonin prevented a CCl 4 -induced increase in serum (ALT, AST, and γ-GT) and tissue (MDA and XO) liver damage markers and a decrease in the tissue total antioxidant capacity, in both enzymatic and non-enzymatic systems. The intensity of pathological changes, hepatocyte vacuolar degeneration, necrosis and inflammatory cell infiltration, was suppressed by the treatment with melatonin. In conclusion, melatonin, especially as a post-intoxication treatment, attenuated CCl 4 -induced liver oxidative damage, increased liver antioxidant capacities and improved liver microscopic appearance. The results are of interest due to the great protective potential of melatonin that was even demonstrated to be stronger if applied after the tissue damage. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Lycopene, resveratrol, vitamin C and FeSO4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications.

    PubMed

    Dueñas-García, I E; Heres-Pulido, M E; Arellano-Llamas, M R; De la Cruz-Núñez, J; Cisneros-Carrillo, V; Palacios-López, C S; Acosta-Anaya, L; Santos-Cruz, L F; Castañeda-Partida, L; Durán-Díaz, A

    2017-05-01

    4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 μM], resveratrol [11, 43, 172 μM], and vitamin C [5.6 mM] added or not with FeSO 4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 μM], vitamin C and FeSO 4 resulted in genotoxicity; the three antioxidants and FeSO 4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO 4 , were genotoxic. Only resveratrol [172 μM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO 4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO. Copyright © 2017. Published by Elsevier Ltd.

  6. Changes in Oxidative Damage, Inflammation and [NAD(H)] with Age in Cerebrospinal Fluid

    PubMed Central

    Guest, Jade; Grant, Ross; Mori, Trevor A.; Croft, Kevin D.

    2014-01-01

    An extensive body of evidence indicates that oxidative stress and inflammation play a central role in the degenerative changes of systemic tissues in aging. However a comparatively limited amount of data is available to verify whether these processes also contribute to normal aging within the brain. High levels of oxidative damage results in key cellular changes including a reduction in available nicotinamide adenine dinucleotide (NAD+), an essential molecule required for a number of vital cellular processes including DNA repair, immune signaling and epigenetic processing. In this study we quantified changes in [NAD(H)] and markers of inflammation and oxidative damage (F2-isoprostanes, 8-OHdG, total antioxidant capacity) in the cerebrospinal fluid (CSF) of healthy humans across a wide age range (24–91 years). CSF was collected from consenting patients who required a spinal tap for the administration of anesthetic. CSF of participants aged >45 years was found to contain increased levels of lipid peroxidation (F2-isoprostanes) (p = 0.04) and inflammation (IL-6) (p = 0.00) and decreased levels of both total antioxidant capacity (p = 0.00) and NAD(H) (p = 0.05), compared to their younger counterparts. A positive association was also observed between plasma [NAD(H)] and CSF NAD(H) levels (p = 0.03). Further analysis of the data identified a relationship between alcohol intake and CSF [NAD(H)] and markers of inflammation. The CSF of participants who consumed >1 standard drink of alcohol per day contained lower levels of NAD(H) compared to those who consumed no alcohol (p<0.05). An increase in CSF IL-6 was observed in participants who reported drinking >0–1 (p<0.05) and >1 (p<0.05) standard alcoholic drinks per day compared to those who did not drink alcohol. Taken together these data suggest a progressive age associated increase in oxidative damage, inflammation and reduced [NAD(H)] in the brain which may be exacerbated by alcohol intake. PMID

  7. Oxidative Damage Induced by Arsenic in Mice or Rats: A Systematic Review and Meta-Analysis.

    PubMed

    Xu, Mengchuan; Rui, Dongsheng; Yan, Yizhong; Xu, Shangzhi; Niu, Qiang; Feng, Gangling; Wang, Yan; Li, Shugang; Jing, Mingxia

    2017-03-01

    In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As 3+ than to As 5+ . Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.

  8. An atomistic-based chemophysical environment for evaluating asphalt oxidation and antioxidants.

    PubMed

    Pan, Tongyan; Sun, Lu; Yu, Qifeng

    2012-12-01

    Asphalt binders in service conditions are subject to oxidative aging that involves the reactions between oxygen molecules and the component species of bulk asphalt. As a result, significant alterations can occur to the desired physical and/or mechanical properties of asphalt. A common practice to alleviate asphalt aging has been to employ different chemical additives or modifiers as antioxidants. The current state of knowledge in asphalt oxidation and antioxidant evaluation is centered on determining the degradation of asphalt physical properties, mainly the viscosity and ductility. Such practices, although meeting direct engineering needs, do not contribute to the fundamental understanding of the aging and anti-oxidation mechanisms, and thereby developing anti-aging strategies. From this standpoint, this study was initiated to study the chemical and physical bases of asphalt oxidation, as well as the anti-oxidation mechanisms of bio-based antioxidants using the coniferyl-alcohol lignin as an example. A quantum chemistry (QC) based chemophysical environment is developed, in which the various chemical reactions between asphalt component species and oxygen, as well as the incurred physical changes are studied. X-ray photoelectron spectroscopy (XPS) was used to validate the modified and unmodified asphalt models.

  9. Copper toxicity, oxidative stress, and antioxidant nutrients.

    PubMed

    Gaetke, Lisa M; Chow, Ching Kuang

    2003-07-15

    Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Although normally bound to proteins, Cu may be released and become free to catalyze the formation of highly reactive hydroxyl radicals. Data obtained from in vitro and cell culture studies are largely supportive of Cu's capacity to initiate oxidative damage and interfere with important cellular events. Oxidative damage has been linked to chronic Cu-overload and/or exposure to excess Cu caused by accidents, occupational hazards, and environmental contamination. Additionally, Cu-induced oxidative damage has been implicated in disorders associated with abnormal Cu metabolism and neurodegenerative changes. Interestingly, a deficiency in dietary Cu also increases cellular susceptibility to oxidative damage. A number of nutrients have been shown to interact with Cu and alter its cellular effects. Vitamin E is generally protective against Cu-induced oxidative damage. While most in vitro or cell culture studies show that ascorbic acid aggravates Cu-induced oxidative damage, results obtained from available animal studies suggest that the compound is protective. High intakes of ascorbic acid and zinc may provide protection against Cu toxicity by preventing excess Cu uptake. Zinc also removes Cu from its binding site, where it may cause free radical formation. Beta-carotene, alpha-lipoic acid and polyphenols have also been shown to attenuate Cu-induced oxidative damage. Further studies are needed to better understand the cellular effects of this essential, but potentially toxic, trace mineral and its functional interaction with other nutrients.

  10. Effect of complex polyphenols and tannins from red wine (WCPT) on chemically induced oxidative DNA damage in the rat.

    PubMed

    Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P

    1999-08-01

    Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.

  11. Eleusine indica L. possesses antioxidant activity and precludes carbon tetrachloride (CCl₄)-mediated oxidative hepatic damage in rats.

    PubMed

    Iqbal, Mohammad; Gnanaraj, Charles

    2012-07-01

    The purpose of this study was to evaluate the ability of aqueous extract of Eleusine indica to protect against carbon tetrachloride (CCl₄)-induced hepatic injury in rats. The antioxidant activity of E. indica was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. The total phenolic content of E. indica was also determined. Biochemical parameters [e.g. alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), glutathione (GSH), catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and quinone reductase] were used to evaluate hepatic damage in animals pretreated with E. indica and intoxicated with CCl₄. CCl₄-mediated hepatic damage was also evaluated by histopathologically. E. indica extract was able to reduce the stable DPPH level in a dose-dependent manner. The half maximal inhibitory concentration (IC₅₀) value was 2350 μg/ml. Total phenolic content was found to be 14.9 ± 0.002 mg/g total phenolic expressed as gallic acid equivalent per gram of extract. Groups pretreated with E. indica showed significantly increased activity of antioxidant enzymes compared to the CCl₄-intoxicated group (p < 0.05). The increased levels of serum ALT and AST were significantly prevented by E. indica pretreatment (p < 0.05). The extent of MDA formation due to lipid peroxidation was significantly reduced (p < 0.05), and reduced GSH was significantly increased in a dose-dependently manner (p < 0.05) in the E. indica-pretreated groups as compared to the CCl₄-intoxicated group. The protective effect of E. indica was further evident through decreased histopathological alterations in the liver. The results of our study indicate that the hepatoprotective effects of E. indica might be ascribable to its antioxidant and free radical scavenging property.

  12. [UV-induced DNA damage and protective effects of antioxidants on DNA damage in human lens epithelial cells studied with comet assay].

    PubMed

    Wu, Zhi-hong; Wang, Mian-rong; Yan, Qi-chang; Pu, Wei; Zhang, Jin-song

    2006-11-01

    To investigate the mechanism of UV-induced DNA damage and repair and the protective effects of antioxidants on DNA damage in human lens epithelial cells. Human lens epithelial cells were irradiated at UV-doses 0.0 (control group), 2.5, 5.0, 7.5, 10.0 mJ/cm(2) (treated group 1 - 4). The amounts of DNA single strand breaks (SSB) were measured with the alkaline comet assay (CA). The spontaneous repair of DNA SSB after exposure to UV at 10.0 mJ/cm(2) was also determined in human lens epithelial cells. Human lens epithelial cells were treated with different concentration of VitaminC (VitC), taurine, superoxide dismutase (SOD) and epigallocatechin gallate (EGCG) before and after ultraviolet radiation, the effects of antioxidants on DNA damage was examined with alkaline comet assay. The amount of DNA SSB in control group and treated groups 1 - 4 showed increased tendency, was dose-dependent to the dose of UV irradiation, the differences of DNA SSB in 5 group were significantly (P < 0.01). UV-induced DNA SSB at 10.0 mJ/cm(2) in human lens epithelial cells, the half repair time was 60 minutes. Human lens epithelial cells were treated with different concentrations of taurine, SOD and EGCG before ultraviolet radiation. The differences of DNA damage in control and various antioxidant treated groups was statistically significant (F = 6.591, 13.542, 4.626 in cells treated with taurine, SOD and EGCG, respectively, P < 0.01), the difference of VitC effect on DNA in control and treated group were not significantly (F = 1.451, P > 0.05). Human lens epithelial cells were treated with different concentration of VitC, taurine, SOD and EGCG after ultraviolet radiation. The differences of DNA damage between the control and treated group were statistically significant (F = 6.571, 4.810, 6.824, 9.182 in cells treated with VitC, taurine, SOD and EGCG, respectively, P < 0.01). The differences of protective effects on DNA damage in these four different kinds of antioxidants added before UV

  13. Inhibiting the photosensitized oxidation of anthracene and tryptophan by means of natural antioxidants

    NASA Astrophysics Data System (ADS)

    Aksenova, N. A.; Vyzhlova, E. N.; Malinovskaya, V. V.; Parfenov, V. V.; Solov'eva, A. B.; Timashev, P. S.

    2013-08-01

    It is shown that model reactions of photosensitized oxidation of anthracene and tryptophan can be used for evaluation and comparison of antioxidant activity of various classes of compounds. Inhibition of the oxidation of substrates in the presence of the familiar antioxidants tocopherol (vitamin E), ascorbic acid (vitamin C), and mixtures of these vitamins with methionine, and in the presence of reputed antioxidants dihydroquercetin and taurine, are considered. It is concluded that all of the above compounds except for taurine have antioxidant properties; i.e., they reduce the rate constants of the photosensitized oxidation of anthracene and tryptophan. It is found that the inhibition of oxidation is associated with the interaction between antioxidants and singlet oxygen. Analysis of the kinetic dependences of the photosensitized oxidation of substrates in the presence of antioxidants reveals that a mixture of vitamins inhibits the process most efficiently, and inhibition occurs at the initial stages due to more active interaction between singlet oxygen and vitamin C

  14. Methoxychlor causes mitochondrial dysfunction and oxidative damage in the mouse ovary

    SciTech Connect

    Gupta, R.K.; Schuh, R.A.; Department of Anesthesiology, University of Maryland, Baltimore, MD

    2006-11-01

    Methoxychlor (MXC) is an organochlorine pesticide that reduces fertility in female rodents by causing ovarian atrophy, persistent estrous cyclicity, and antral follicle atresia (apoptotic cell death). Oxidative damage resulting from reactive oxygen species (ROS) generation has been demonstrated to lead to toxicant-induced cell death. Thus, this work tested the hypothesis that MXC causes oxidative damage to the mouse ovary and affects mitochondrial respiration in a manner that stimulates ROS production. For the in vitro experiments, mitochondria were collected from adult cycling mouse ovaries, treated with vehicle (dimethyl sulfoxide; DMSO) or MXC, and subjected to polarographic measurements of respiration. For themore » in vivo experiments, adult cycling CD-1 mice were dosed with either vehicle (sesame oil) or MXC for 20 days. After treatment, ovarian mitochondria were isolated and subjected to measurements of respiration and fluorimetric measurements of H{sub 2}O{sub 2} production. Some ovaries were also fixed and processed for immunohistochemistry using antibodies for ROS production markers: nitrotyrosine and 8-hydroxy-2'-deoxyguanosine (8-OHG). Ovaries from in vivo experiments were also used to measure the mRNA expression and activity of antioxidants such as Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX), and catalase (CAT). The results indicate that MXC significantly impairs mitochondrial respiration, increases production of H{sub 2}O{sub 2}, causes more staining for nitrotyrosine and 8-OHG in antral follicles, and decreases the expression and activity of SOD1, GPX, and CAT as compared to controls. Collectively, these data indicate that MXC inhibits mitochondrial respiration, causes ROS production, and decreases antioxidant expression and activity in the ovary, specifically in the antral follicles. Therefore, it is possible that MXC causes atresia of ovarian antral follicles by inducing oxidative stress through mitochondrial production of ROS.« less

  15. Influence of nutrient intake on antioxidant capacity, muscle damage and white blood cell count in female soccer players

    PubMed Central

    2012-01-01

    Background Soccer is a form of exercise that induces inflammatory response, as well as an increase in free radicals potentially leading to muscle injury. Balanced nutritional intake provides important antioxidant vitamins, including vitamins A, C and E, which may assist in preventing exercise-related muscle damage. The purpose of the present study was to determine the effect of macro/micronutrient intake on markers of oxidative stress, muscle damage, inflammatory and immune response in female soccer players. Methods Twenty-eight female players belonging to two soccer teams of the same professional soccer club participated in this study after being informed about the aims and procedures and after delivering written consent. Each team completed an 8-day dietary record and played one competition match the same week. Participants were divided into two groups: the REC group (who complied with recommended intakes) and the NO-REC group (who were not compliant). Laboratory blood tests were carried out to determine hematological, electrolytic and hormonal variables, as well as to monitor markers of cell damage and oxidative stress. Blood samples were obtained 24 h before, immediately after and 18 h after official soccer matches. Student t-test or Mann–Whitney U-test was used to compare both groups throughout the match. Results At rest, we observed that the REC group had higher levels of total antioxidant status (TAS), glutathione peroxidase (GPx), and lower levels of creatine kinase (CK) and lactate dehydrogenase (LDH) in comparison to the NO-REC group. Immediately after the match, levels of TAS, GPx, superoxide dismutase (SOD), LDH and % lymphocytes were higher and the % of neutrophils were lower in the REC group compared to the NO-REC group. These differences were also maintained 18 h post-match, only for TAS and GPx. Conclusions Our data reveal an association between nutritional intake and muscle damage, oxidative stress, immunity and inflammation markers. The benefit

  16. Oxidant-antioxidant imbalance in horses infected with equine infectious anaemia virus.

    PubMed

    Bolfă, Pompei Florin; Leroux, Caroline; Pintea, Adela; Andrei, Sanda; Cătoi, Cornel; Taulescu, Marian; Tăbăran, Flaviu; Spînu, Marina

    2012-06-01

    This study assesses the impact of equine infectious anaemia virus (EIAV) infection on the oxidant/antioxidant equilibrium of horses. Blood samples from 96 Romanian horses aged 1-25 years, were divided into different groups according to their EIAV-infection status, age, and time post-seroconversion. The effect of infection on oxidative stress was estimated by measuring enzymatic antioxidants (superoxide dismutase [SOD], glutathione peroxidase [GPx] and catalase), non-enzymatic antioxidants (uric acid and carotenoids), and lipid peroxidation (malondialdehyde [MDA]). Infection modified the oxidant/antioxidant equilibrium in the horses, influencing GPx and uric acid levels (P<0.05). Time post-seroconversion also contributed to oxidative stress imbalance, exhibiting a significant influence on both SOD and MDA concentrations in the blood (P<0.05). Animal age did not have a significant influence on oxidative stress. Recently infected horses (<1 year following seroconversion), and horses >5 years old, represented the most vulnerable category in terms of oxidative stress, followed by recently infected animals <5 years old. The results of this study are novel in implicating EIAV infection in the development of oxidative stress in horses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The Neglected Significance of “Antioxidative Stress”

    PubMed Central

    Poljsak, B.; Milisav, I.

    2012-01-01

    Oxidative stress arises when there is a marked imbalance between the production and removal of reactive oxygen species (ROS) in favor of the prooxidant balance, leading to potential oxidative damage. ROSs were considered traditionally to be only a toxic byproduct of aerobic metabolism. However, recently, it has become apparent that ROS might control many different physiological processes such as induction of stress response, pathogen defense, and systemic signaling. Thus, the imbalance of the increased antioxidant potential, the so-called antioxidative stress, should be as dangerous as well. Here, we synthesize increasing evidence on “antioxidative stress-induced” beneficial versus harmful roles on health, disease, and aging processes. Oxidative stress is not necessarily an un-wanted situation, since its consequences may be beneficial for many physiological reactions in cells. On the other hand, there are potentially harmful effects of “antioxidative stress,” especially in the cases of overconsumption of synthetic antioxidants. Antioxidants can neutralize ROS and decrease oxidative stress; however, this is not always beneficial in regard to disease formation or progression (of, e.g., cancer) or for delaying aging. PMID:22655114

  18. Submaximal exercise training, more than dietary selenium supplementation, improves antioxidant status and ameliorates exercise-induced oxidative damage to skeletal muscle in young equine athletes.

    PubMed

    White, S H; Warren, L K

    2017-02-01

    Exercise is associated with increased production of reactive oxygen species (ROS) as metabolism is upregulated to fuel muscle activity. If antioxidant systems become overwhelmed, ROS can negatively affect health and performance. Adaptation to exercise through regular training has been shown to improve defense against oxidative insult. Given selenium's role as an antioxidant, we hypothesized that increased Se intake would further enhance skeletal muscle adaptations to training. Quarter Horse yearlings (18 ± 0.2 mo; 402 ± 10 kg) were randomly assigned to receive either 0.1 or 0.3 mg Se/kg DM and placed in either an untrained or a trained (30 min walk-trot-canter, 4 d/wk) group for 14 wk. Phase 1 (wk 1 to 8) consisted of 4 treatments: trained and fed 0.1 mg Se/kg DM through wk 14 (CON-TR; n = 10), trained and fed 0.3 mg Se/kg DM through wk 14 (HIGH-TR; n = 10), untrained and fed 0.1 mg Se/kg DM through wk 14 (CON-UN; n = 5), or untrained and fed 0.3 mg Se/kg DM through wk 14 (HIGH-UN; n = 5). During Phase 2 (wk 9 to 14), dietary Se level in half of the trained horses was reversed, resulting in 6 treatments: CON-TR (n = 5), trained and fed 0.1 mg/kg Se in Phase 1 and then switched to 0.3 mg/kg Se for Phase 2 (ADD-TR; n = 5), trained and fed 0.3 mg/kg Se in Phase 1 and then switched to 0.1 mg/kg Se for Phase 2 (DROP-TR; n = 5), HIGH-TR (n = 5), CON-UN (n = 5), or HIGH-UN (n = 5). All horses underwent a 120-min submaximal exercise test (SET) at the end of Phase 1 (SET 1) and 2 (SET 2). Blood samples and biopsies from the middle gluteal muscle were collected before and after each phase of the study and in response to each SET and analyzed for markers of oxidative damage and antioxidant enzyme activity. In both phases, serum Se was higher (P < 0.0001) when horses received a diet with 0.3 than 0.1 mg Se/kg DM. Throughout the 14-wk study, resting activities of muscle glutathione peroxidase (GPx; P = 0.004) and superoxide dismutase (SOD; P = 0.06) were greater in trained

  19. Protection of Clitoria ternatea flower petal extract against free radical-induced hemolysis and oxidative damage in canine erythrocytes.

    PubMed

    Phrueksanan, Wathuwan; Yibchok-anun, Sirinthorn; Adisakwattana, Sirichai

    2014-10-01

    The present study assessed the antioxidant activity and protective ability of Clitoria ternatea flower petal extract (CTE) against in vitro 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH)-induced hemolysis and oxidative damage of canine erythrocytes. From the phytochemical analysis, CTE contained phenolic compounds, flavonoids, and anthocyanins. In addition, CTE showed antioxidant activity as measured by oxygen radical absorbance capacity (ORAC) method and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. CTE (400 µg/ml) remarkably protected erythrocytes against AAPH-induced hemolysis at 4 h of incubation. Moreover, CTE (400 µg/ml) reduced membrane lipid peroxidation and protein carbonyl group formation and prevented the reduction of glutathione concentration in AAPH-induced oxidation of erythrocytes. The AAPH-induced morphological alteration of erythrocytes from a smooth discoid to an echinocytic form was effectively protected by CTE. The present results contribute important insights that CTE may have the potential to act as a natural antioxidant to prevent free radical-induced hemolysis, protein oxidation and lipid peroxidation in erythrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Oxidative stress and antioxidants in athletes undertaking regular exercise training.

    PubMed

    Watson, Trent A; MacDonald-Wicks, Lesley K; Garg, Manohar L

    2005-04-01

    Exercise has been shown to increase the production of reactive oxygen species to a point that can exceed antioxidant defenses to cause oxidative stress. Dietary intake of antioxidants, physical activity levels, various antioxidants and oxidative stress markers were examined in 20 exercise-trained "athletes" and 20 age- and sex-matched sedentary "controls." Plasma F2-isoprostanes, antioxidant enzyme activities, and uric acid levels were similar in athletes and sedentary controls. Plasma alpha-tocopherol and beta-carotene were higher in athletes compared with sedentary controls. Total antioxidant capacity tended to be lower in athletes, with a significant difference between male athletes and male controls. Dietary intakes of antioxidants were also similar between groups and well above recommended dietary intakes for Australians. These findings suggest that athletes who consume a diet rich in antioxidants have elevated plasma alpha-tocopherol and beta-carotene that were likely to be brought about by adaptive processes resulting from regular exercise.

  1. Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin.

    PubMed

    Vacek, Jan; Zatloukalová, Martina; Desmier, Thomas; Nezhodová, Veronika; Hrbáč, Jan; Kubala, Martin; Křen, Vladimír; Ulrichová, Jitka; Trouillas, Patrick

    2013-10-05

    Besides the well-known chemoprotective effects of polyphenols, their prooxidant activities via interactions with biomacromolecules as DNA and proteins are of the utmost importance. Current research focuses not only on natural polyphenols but also on synthetically prepared analogs with promising biological activities. In the present study, the antioxidant and prooxidant properties of a semi-synthetic flavonolignan 7-O-galloylsilybin (7-GSB) are described. The presence of the galloyl moiety significantly enhances the antioxidant capacity of 7-GSB compared to that of silybin (SB). These findings were supported by electrochemistry, DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity, total antioxidant capacity (CL-TAC) and DFT (density functional theory) calculations. A three-step oxidation mechanism of 7-GSB is proposed at pH 7.4, in which the galloyl moiety is first oxidized at Ep,1=+0.20V (vs. Ag/AgCl3M KCl) followed by oxidation of the 20-OH (Ep,2=+0.55V) and most probably 5-OH (Ep,3=+0.95V) group of SB moiety. The molecular orbital analysis and the calculation of O-H bond dissociation enthalpies (BDE) fully rationalize the electrooxidation processes. The metal (Cu(2+)) complexation of 7-GSB was studied, which appeared to involve both the galloyl moiety and the 5-OH group. The prooxidant effects of the metal-complexes were then studied according to their capacity to oxidatively induce DNA modification and cleavage. These results paved the way towards the conclusion that 7-O-galloyl substitution to SB concomitantly (i) enhances antioxidant (ROS scavenging) capacity and (ii) decreases prooxidant effect/DNA damage after Cu complexation. This multidisciplinary approach provides a comprehensive mechanistic picture of the antioxidant vs. metal-induced prooxidant effects of flavonolignans at the molecular level, under ex vivo conditions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Oxidant and antioxidant parameters in the treatment of meningitis.

    PubMed

    Aycicek, Ali; Iscan, Akin; Erel, Ozcan; Akcali, Mustafa; Ocak, Ali Riza

    2007-08-01

    The aim of this study was to assess the effects of meningitis treatment on the serum and cerebrospinal-fluid oxidant and antioxidant status in children with bacterial meningitis. Forty children with bacterial meningitis, at ages ranging from 4 months to 12 years (mean age, 4 years), were enrolled in the study. Within 8 hours after admission (before treatment) and 10 days after clinical and laboratory indications of recovery (after treatment), cerebrospinal fluid and venous blood were collected. Thirty-seven healthy children (mean age, 4 years) were enrolled as control subjects, and only venous blood was collected. Serum total oxidant status, lipid hydroperoxide, oxidative stress index, uric acid, albumin, and ceruloplasmin levels were lower in the patient group after treatment (P<0.05). Serum total antioxidant capacity levels, vitamin C, total bilirubin, and catalase concentrations were not significantly altered by treatment (P>0.05). However, cerebrospinal fluid total oxidant status, lipid hydroperoxide, and oxidative stress index levels were higher, and cerebrospinal fluid total antioxidant capacity levels were lower after treatment than before treatment (P<0.05). In conclusion, we demonstrated that serum oxidative stress was lower, and cerebrospinal fluid oxidative stress was higher, after rather than before treatment in children with bacterial meningitis.

  3. Serum total oxidant and antioxidant status in earthquake survivors with post-traumatic stress disorder.

    PubMed

    Ozdemir, Pinar Guzel; Kaplan, İbrahim; Uysal, Cem; Bulut, Mahmut; Atli, Abdullah; Bez, Yasin; Kaya, Mehmet Cemal; Ozdemir, Osman

    2015-06-01

    Oxidative stress has been shown to play an important role in the pathogenesis of post-traumatic stress disorder (PTSD). Although there are some studies on oxidative stress and PTSD, there is no report available on the serum total oxidant and antioxidant status in earthquake survivors with PTSD. Therefore, this study aimed to investigate the serum total oxidant and antioxidant status in earthquake survivors with chronic PTSD. The study group included 45 earthquake survivors with PTSD and 40 earthquake survivors without PTSD. The oxidative status was determined using the total antioxidant status and total oxidant status (TOS) measurements and by calculating the oxidative stress index (OSI). There were no statistically significant differences in the total antioxidant status, TOS, or OSI when comparing individuals with and without PTSD (all, p>0.05). There were no correlations between Clinician-Administered PTSD Scale scores and oxidant and antioxidant stress markers (all, p>0.05). Our results suggest that the total oxidant and antioxidant status may not affect earthquake survivors with PTSD. This is the first study to evaluate the oxidative status in earthquake survivors with PTSD. Further studies are necessary to confirm these findings.

  4. Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain.

    PubMed

    Wani, Willayat Yousuf; Gudup, Satish; Sunkaria, Aditya; Bal, Amanjit; Singh, Parvinder Pal; Kandimalla, Ramesh J L; Sharma, Deep Raj; Gill, Kiran Dip

    2011-12-01

    Dichlorvos is a synthetic insecticide that belongs to the family of chemically related organophosphate (OP) pesticides. It can be released into the environment as a major degradation product of other OPs, such as trichlorfon, naled, and metrifonate. Dichlorvos exerts its toxic effects in humans and animals by inhibiting neural acetylcholinesterase. Chronic low-level exposure to dichlorvos has been shown to result in inhibition of the mitochondrial complex I and cytochrome oxidase in rat brain, resulting in generation of reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt c) from mitochondria to cytosol resulting in apoptotic cell death. MitoQ is an antioxidant, selectively targeted to mitochondria and protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in dichlorvos induced neurodegeneration, then MitoQ should ameliorate neuronal apoptosis. Administration of MitoQ (100 μmol/kg body wt/day) reduced dichlorvos (6 mg/kg body wt/day) induced oxidative stress (decreased ROS production, increased MnSOD activity and glutathione levels) with decreased lipid peroxidation, protein and DNA oxidation. In addition, MitoQ also suppressed DNA fragmentation, cyt c release and caspase-3 activity in dichlorvos treated rats compared to the control group. Further electron microscopic studies revealed that MitoQ attenuates dichlorvos induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that MitoQ may be beneficial against OP (dichlorvos) induced neurodegeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications

    PubMed Central

    Kasote, Deepak M.; Katyare, Surendra S.; Hegde, Mahabaleshwar V.; Bae, Hanhong

    2015-01-01

    Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants. PMID:26157352

  6. Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells.

    PubMed

    Anantachoke, Natthinee; Lomarat, Pattamapan; Praserttirachai, Wasin; Khammanit, Ruksinee; Mangmool, Supachoke

    2016-01-01

    The cellular antioxidant enzymes play the important role of protecting the cells and organisms from the oxidative damage. Natural antioxidants contained in fruits have attracted considerable interest because of their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals contained in fruits on the induction of antioxidant enzymes in the cells have not been fully defined. In this study, we showed that extracts from Antidesma ghaesembilla , Averrhoa bilimbi , Malpighia glabra , Mangifera indica, Sandoricum koetjape , Syzygium malaccense, and Ziziphus jujuba inhibited H 2 O 2 -induced intracellular reactive oxygen species production in HEK-293 cells. Additionally, these Thai fruit extracts increased the mRNA and protein expressions of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase. The consumption of Thai fruits rich in phenolic compounds may reduce the risk of oxidative stress.

  7. Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells

    PubMed Central

    Anantachoke, Natthinee; Lomarat, Pattamapan; Praserttirachai, Wasin; Khammanit, Ruksinee

    2016-01-01

    The cellular antioxidant enzymes play the important role of protecting the cells and organisms from the oxidative damage. Natural antioxidants contained in fruits have attracted considerable interest because of their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals contained in fruits on the induction of antioxidant enzymes in the cells have not been fully defined. In this study, we showed that extracts from Antidesma ghaesembilla, Averrhoa bilimbi, Malpighia glabra, Mangifera indica, Sandoricum koetjape, Syzygium malaccense, and Ziziphus jujuba inhibited H2O2-induced intracellular reactive oxygen species production in HEK-293 cells. Additionally, these Thai fruit extracts increased the mRNA and protein expressions of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase. The consumption of Thai fruits rich in phenolic compounds may reduce the risk of oxidative stress. PMID:28074103

  8. Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage

    PubMed Central

    Svilar, David; Goellner, Eva M.; Almeida, Karen H.

    2011-01-01

    Abstract Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage–induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated β-lyase activity; (b) monofunctional; and (c) bifunctional with an associated β,δ-lyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease. Antioxid. Redox Signal. 14, 2491–2507. PMID:20649466

  9. Distinct roles of oxidative stress and antioxidants in the nucleus dorsalis and red nucleus following spinal cord hemisection.

    PubMed

    Xu, Mei; Yip, George Wai-Cheong; Gan, Le-Ting; Ng, Yee-Kong

    2005-09-07

    Oxidative stress plays an important role in the pathogenesis of neurodegeneration after the acute central nervous system injury. We reported previously that increased nitric oxide (NO) production following spinal cord hemisection tends to lead to neurodegeneration in neurons of the nucleus dorsalis (ND) that normally lacks expression of neuronal NO synthase (nNOS) in opposition to those in the red nucleus (RN) that constitutively expresses nNOS. We wondered whether oxidative stress could be a mechanism underlying this NO involved neurodegeneration. In the present study, we examined oxidative damage evaluated by the presence of 4-hydroxynonenal (HNE) and iron accumulation and expression of putative antioxidant enzymes heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) in neurons of the ND and RN after spinal cord hemisection. We found that HNE expression was induced in neurons of the ipsilateral ND from 1 to 14 days following spinal cord hemisection. Concomitantly, iron staining was seen from 7 to 14 days after lesion. HO-1, however, was only transiently induced in ipsilateral ND neurons between 3 and 7 days after lesion. In contrast to the ND neurons, HNE was undetectable and iron level was unaltered in the RN neurons after spinal cord hemisection. HO-1, SOD-Cu/Zn and SOD-Mn were constitutively expressed in RN neurons, and lesion to the spinal cord did not change their expression. These results suggest that oxidative stress is involved in the degeneration of the lesioned ND neurons; whereas constitutive antioxidant enzymes may protect the RN neurons from oxidative damage.

  10. Effect of different stunning methods on antioxidant status, in vivo myofibrillar protein oxidation, and the susceptibility to oxidation of silver carp (Hypophthalmichthys molitrix) fillets during 72 h postmortem.

    PubMed

    Zhang, Longteng; Li, Qian; Jia, Shiliang; Huang, Zhan; Luo, Yongkang

    2018-04-25

    This study aimed to evaluate the effects of different stunning methods (percussion, T1; immersion in ice/water slurry, T2; gill cut, T3) on antioxidant status, in vivo myofibrillar protein (MP) oxidation, and the susceptibility to postmortem oxidation (induced by hydroxyl radical oxidizing system) of silver carp (Hypophthalmichthys molitrix) fillets. Stress conditions, antioxidant enzyme activities, and protein oxidation parameters were analyzed during 72 h postmortem. The results indicated that the strongest stress conditions in the T3 group led to impaired glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activity, and significantly (P < .05) higher carbonyl concentrations, thereby promoted in vivo MP oxidation of fillets. The T3 group also showed severe losses in myosin heavy chain (MHC) intensities and sulfhydryl groups at higher H 2 O 2 concentrations. Overall, fillets from the T3 group were more susceptible to oxidative damage, and the T1 and T2 groups maintained better quality in terms of lower MP oxidation rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Anti-oxidative effects of rooibos tea extract on autoxidation and thermal oxidation of lipids.

    PubMed

    Fukasawa, Ryo; Kanda, Ayato; Hara, Setsuko

    2009-01-01

    Powdered rooibos tea extract (RTE), which is rich in polyphenols, is made from rooibos tea by freeze-drying. "Rooibos" is Afrikaans for "red bush," and the scientific name is "Aspalathus linearis." It is a broom-like member of the legume family of plants and is used to make an herbal tea which has been popular in South Africa for generations and is now consumed in many countries. In the present work, the anti-oxidative effect of RTE on oils and fats in autoxidation or thermal oxidation was studied, and it was confirmed that RTE has a very strong anti-oxidative effect on emulsifying oils owing to the water-soluble polyphenols such as rutin and quercetin contained in RTE. RTE was found to have a strong ability to quench radicals generated in the water phase, and to confer higher thermal stability against deep fat frying than tocopherol. But RTE showed little anti-oxidative effect on frying oil because of its lower oil-solubility.

  12. The protective effect of grape seed procyanidin extract against cadmium-induced renal oxidative damage in mice.

    PubMed

    Chen, Qing; Zhang, Rong; Li, Wei-min; Niu, Yu-jie; Guo, Hui-cai; Liu, Xue-hui; Hou, Yu-chun; Zhao, Li-juan

    2013-11-01

    As an important environmental pollutant, cadmium (Cd) can lead to serious renal damage. Grape seed procyanidins extract (GSPE), a biological active component of grape seed, has been shown to possess antioxidative effects. Here, we assessed the protective effect of GSPE on Cd-induced renal damage using animal experiment. After 30 days, the oxidative damage of kidney was evaluated through measurement of superoxide dismutase (SOD), glutathione peroxidation (GSH-Px) and malondialdehyde (MDA). Since, oxidative stress could lead to apoptosis, the renal apoptosis was measured using flow cytometer. Moreover, the expression of apoptosis-related protein Bax and Bcl-2 was analyzed by immunohistochemistry and Western blot. The results showed that Cd led to the decrease of SOD and GSH-Px activities, and the increase of MDA level, induced renal apoptosis. However, the coadministration of GSPE attenuated Cd-induced lipid peroxidation, and antagonized renal apoptosis, probably associated with the expression of Bax and Bcl-2. These data suggested that GSPE has protective effect against renal oxidative damage induced by Cd, which provide a potential natural chemopreventive agent against Cd-poisoning. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin.

    PubMed

    Han, Yingnan; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui; Zhang, Shumin

    2014-09-01

    Azoxystrobin has been widely used in recent years. The present study investigated the oxidative stress and DNA damage effects of azoxystrobin on earthworms (Eisenia fetida). Earthworms were exposed to different azoxystrobin concentrations in an artificial soil (0, 0.1, 1, and 10mg/kg) and sampled on days 7, 14, 21, and 28. Superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), glutathione-S-transferase (GST), reactive oxygen species (ROS), and malondialdehyde (MDA) content were measured by an ultraviolet spectrophotometer to determine the antioxidant responses and lipid peroxidation. Single cell gel electrophoresis (SCGE) was used to detect DNA damage in the coelomocytes. Compared with these in the controls, earthworms exposed to azoxystrobin had excess ROS accumulation and greater SOD, POD, and GST activity while the opposite trend occurred for CAT activity. MDA content increased after 14-day exposure, and DNA damage was enhanced with an increase in the concentration of azoxystrobin. In conclusion, azoxystrobin caused oxidative stress leading to lipid peroxidation and DNA damage in earthworms. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The role of the antioxidant system during intense endurance exercise: lessons from migrating birds.

    PubMed

    Cooper-Mullin, Clara; McWilliams, Scott R

    2016-12-01

    During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise. © 2016. Published by The Company of Biologists Ltd.

  15. Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols.

    PubMed

    Hashimoto, Fumio; Ono, Masateru; Masuoka, Chikako; Ito, Yasuyuki; Sakata, Yusuke; Shimizu, Keiichi; Nonaka, Gen-ichiro; Nishioka, Itsuo; Nohara, Toshihiro

    2003-02-01

    Forty-three polyphenols from tea leaves were evaluated for their anti-oxidative effect against lipid peroxidation by the ferric thiocyanate method in vitro. Among these, 1,4,6-tri-O-galloyl-beta-D-glucose (hydrolyzable tannin) showed the highest anti-oxidative activity against lipid peroxidation, even stronger than that of 3-tert.-butyl-4-hydroxyanisole (BHA). The assay demonstrates that tea polyphenols, except for desgalloylated dimeric proanthocyanidins that possess a catechin structure in the upper unit and desgalloylated flavan-3-ols, and excepting theaflavin 3,3'-di-O-gallate, had more anti-oxidative activity than that of alpha-tocopherol. The chemical structure-activity relationship shows that the anti-oxidative action advanced with the condensation of two molecules of flavan-3-ols as well as with 3-O-acylation in the flavan skeleton such as that by galloyl, (3'-O-methyl)-galloyl, and p-coumaroyl groups.

  16. Dietary antioxidants and human cancer.

    PubMed

    Borek, Carmia

    2004-12-01

    Epidemiological studies show that a high intake of anti-oxidant-rich foods is inversely related to cancer risk. While animal and cell cultures confirm the anticancer effects of antioxidants, intervention trials to determine their ability to reduce cancer risk have been inconclusive, although selenium and vitamin E reduced the risk of some forms of cancer, including prostate and colon cancer, and carotenoids have been shown to help reduce breast cancer risk. Cancer treatment by radiation and anticancer drugs reduces inherent antioxidants and induces oxidative stress, which increases with disease progression. Vitamins E and C have been shown to ameliorate adverse side effects associated with free radical damage to normal cells in cancer therapy, such as mucositis and fibrosis, and to reduce the recurrence of breast cancer. While clinical studies on the effect of anti-oxidants in modulating cancer treatment are limited in number and size, experimental studies show that antioxidant vitamins and some phytochemicals selectively induce apoptosis in cancer cells but not in normal cells and prevent angiogenesis and metastatic spread, suggesting a potential role for antioxidants as adjuvants in cancer therapy.

  17. Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes

    PubMed Central

    Marchitti, Satori A.; Chen, Ying; Thompson, David C.; Vasiliou, Vasilis

    2011-01-01

    Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species are highly reactive with DNA, proteins and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat reactive oxygen species and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, NADPH and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants which are essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multi-functional ocular antioxidants. PMID:21670692

  18. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    PubMed Central

    Tóthová, L'ubomíra; Celec, Peter

    2017-01-01

    Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status. PMID:29311982

  19. Nephro-protective action of P. santalinus against alcohol-induced biochemical alterations and oxidative damage in rats.

    PubMed

    Bulle, Saradamma; Reddy, Vaddi Damodara; Hebbani, Ananda Vardhan; Padmavathi, Pannuru; Challa, Chandrasekhar; Puvvada, Pavan Kumar; Repalle, Elisha; Nayakanti, Devanna; Aluganti Narasimhulu, Chandrakala; Nallanchakravarthula, Varadacharyulu

    2016-12-01

    The present study investigated the antioxidant potential of P. santalinus heartwood methanolic extract (PSE) against alcohol-induced nephro-toxicity. The results indicated an increase in the concentration of kidney damage plasma markers, urea and creatinine with a concomitant decrease in the concentration of uric acid in alcohol-administered rats. A significant decrease in plasma electrolytes and mineral levels with increased kidney thiobarbituric acid reactive substances (TBARS) and nitric oxide (NOx) levels was also observed. PSE treatment to alcohol-administered rats effectively prevented the elevation in TBARS and NOx levels. Decreased activity of Na + /K + -ATPase in alcohol administered rats was brought to near normal levels with treatment of PSE. Chronic alcohol consumption affects antioxidant enzymatic activity and reabsorption function of the kidney which is evident from the decreased level of GSH as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST). However, treatment with PSE to alcohol-administered rats significantly enhanced these enzymatic activities and reduced glutathione (GSH) content close to normal level. Alcohol-induced organ damage was evident from morphological changes in the kidney. Nevertheless, administration of PSE effectively restored these morphological changes to normal. The flavonoid and tannoid compounds might have protective activity against alcohol-induced oxidative/nitrosative stress mediated kidney damage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. The supramolecular chemistry of lipid oxidation and antioxidation in bulk oils

    PubMed Central

    Budilarto, Elizabeth S; Kamal-Eldin, Afaf

    2015-01-01

    The microenvironment formed by surface active compounds is being recognized as the active site of lipid oxidation. Trace amounts of water occupy the core of micro micelles and several amphiphilic minor components (e.g., phospholipids, monoacylglycerols, free fatty acids, etc.) act as surfactants and affect lipid oxidation in a complex fashion dependent on the structure and stability of the microemulsions in a continuous lipid phase such as bulk oil. The structures of the triacylglycerols and other lipid-soluble molecules affect their organization and play important roles during the course of the oxidation reactions. Antioxidant head groups, variably located near the water-oil colloidal interfaces, trap and scavenge radicals according to their location and concentration. According to this scenario, antioxidants inhibit lipid oxidation not only by scavenging radicals via hydrogen donation but also by physically stabilizing the micelles at the microenvironments of the reaction sites. There is a cut-off effect (optimum value) governing the inhibitory effects of antioxidants depending inter alias on their hydrophilic/lipophilic balance and their concentrations. These complex effects, previously considered as paradoxes in antioxidants research, are now better explained by the supramolecular chemistry of lipid oxidation and antioxidants, which is discussed in this review. PMID:26448722

  1. Protective activity of Panduratin A against Thioacetamide-induced oxidative damage: demonstration with in vitro experiments using WRL-68 liver cell line

    PubMed Central

    2013-01-01

    Background Chalcone Panduratin A (PA) has been known for its antioxidant property, but its merits against oxidative damage in liver cells has yet to be investigated. Hence, the paper aimed at accomplishing this task with normal embryonic cell line WRL-68. Methods PA was isolated from Boesenbergia rotunda rhizomes and its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing power (FRAP) activities were measured in comparison with that of the standard reference drug Silymarin (SI). Oxidative damage was induced by treating the cells with 0.04 g/ml of toxic thioacetamide for 60 minutes followed by treatment with 1, 10 and 100 μg/ml concentrations of either PA or SI. The severities of oxidative stress in the control and experimental groups of cells were measured by Malondialdehyde (MDA) levels, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Results PA exhibited an acceptable DPPH scavenging and FRAP activities close to that of Silymarin. Treating the injured cells with PA significantly reduced the MDA level and increased the cell viability, comparable to SI. The activities of SOD, CAT and GPx were significantly elevated in the PA-treated cells in a dose dependent manner and again similar to SI. Conclusion Collectively, data suggested that PA has capacity to protect normal liver cells from oxidative damage, most likely via its antioxidant scavenging ability. PMID:24156366

  2. Ethyl acetate extract of germinated brown rice attenuates hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuroblastoma cells: role of anti-apoptotic, pro-survival and antioxidant genes.

    PubMed

    Azmi, Nur Hanisah; Ismail, Norsharina; Imam, Mustapha Umar; Ismail, Maznah

    2013-07-17

    There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer's disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD. The total phenolic content and antioxidant capacity of the ethyl acetate extract of GBR were compared to that of brown rice (BR), and the cytotoxicity of both extracts were determined on human SH-SY5Y neuronal cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay. Based on its higher antioxidant potentials, the effect of the GBR extract on morphological changes due to hydrogen peroxide (H₂O₂)-induced oxidative damage in human SH-SY5Y neuronal cells was examined using inverted light microscope and fluorescence microscope by means of acridine orange-propidium iodide (AO/PI) staining. Also, evaluation of the transcriptional regulation of antioxidant and apoptotic genes was carried out using Multiplex Gene Expression System. The ethyl acetate extract of GBR had higher total phenolic content and antioxidant capacity compared to BR. The cytotoxicity results showed that GBR extract did not cause any damage to the human SH-SY5Y neuronal cells at concentrations of up to 20 ppm, and the morphological analyses showed that the GBR extract (up to 10 ppm) prevented H₂O₂-induced apoptotic changes in the cells. Furthermore, multiplex gene expression analyses showed that the protection of the cells by the GBR extract was linked to its ability to induce transcriptional changes in antioxidant (SOD 1, SOD 2 and catalase) and apoptotic

  3. Total Oxidant and Antioxidant Status in Prepubertal Children with Obesity.

    PubMed

    Rowicka, Grażyna; Dyląg, Hanna; Ambroszkiewicz, Jadwiga; Riahi, Agnieszka; Weker, Halina; Chełchowska, Magdalena

    2017-01-01

    Obesity is accompanied by the formation of oxygen free radicals, whose intensified activity without effective defense mechanisms can lead to oxidative stress and related complications. We evaluated the presence of oxidative stress in obese prepubertal children. The study included 83 healthy children aged 2-10 years (62 with obesity and 21 nonobese controls). Total oxidant capacity (TOC), total antioxidant capacity (TAC), oxidized low-density lipoprotein (ox-LDL), lipid parameters, glucose, and C-reactive protein (CRP) were measured in serum. Oxidative stress index (OSI) was calculated. Serum TOC concentration was significantly higher ( p < 0.05) and TAC concentration was lower ( p < 0.05) in obese children. OSI was higher ( p < 0.01) in obese subjects compared with controls. CRP levels were normal in all children, but median CRP value was higher ( p < 0.01) and HDL cholesterol levels were lower ( p < 0.05) in the obese group. We found a significant negative correlation between TAC and ox-LDL concentrations ( r = -0.27, p < 0.05) in obese children. Furthermore, obesity duration was positively correlated with TOC level ( r = 0.32, p < 0.05) in this group. Obesity-related oxidative stress already occurs in prepubescence. Early obesity diagnosis and the necessary therapeutic activity implementation is a vital strategy for the prophylaxis of free radical damage and related multiorgan complications.

  4. Analysis of the effects of iron and vitamin C co-supplementation on oxidative damage, antioxidant response and inflammation in THP-1 macrophages.

    PubMed

    Marcil, V; Lavoie, J C; Emonnot, L; Seidman, E; Levy, E

    2011-07-01

    The aims of the study were to test the susceptibility of THP-1 macrophages to develop oxidative stress and to deploy antioxidant defense mechanisms that insure the balance between the pro- and antioxidant molecules. Differentiated THP-1 were incubated in the presence or absence of iron-ascorbate (Fe/As) (100/1000μM) and the antioxidants Trolox, BHT, α-Tocopherol and NAC. Fe/As promoted the production of lipid peroxidation as reflected by the formation of malondialdehyde and H(2)O(2) along with reduced PUFA levels and elevated glutathione disulfide/total glutathione ratio, a reliable index of cellular redox status. THP-1 macrophages developed an increase in cytoplasmic SOD activity due in part to high cytoplasmic SOD1. On the other hand, a decline was noted in mRNA and protein of extra-cellular SOD3, as well as the activity of GSH-peroxidase, GSH-transferase and ATOX-1 expression. Macrophages activated under conditions of oxidative stress do not adequately deploy a powerful endogenous antioxidant response, a situation that can lead to an enhanced inflammatory response. Copyright © 2011 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  5. Anti-oxidants show an anti-hypertensive effect in diabetic and hypertensive subjects.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Lefebvre, P J

    1991-12-01

    1. In this study an acute anti-hypertensive effect of three anti-oxidant agents (vitamin C, thiopronine and glutathione) in hypertensive subjects and in both hypertensive and non-hypertensive diabetic patients is reported. 2. The anti-oxidants had no effect on blood pressure in healthy normal subjects at a dose of 6 mmol, but thiopronine and glutathione produced a significant hypotensive effect at a dose of 12 mmol. 3. These data suggest that anti-oxidants might have a dilatatory effect and that an imbalance of the nitric oxide-free radical interaction might facilitate the development of hypertension in humans.

  6. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer.

    PubMed

    Bostwick, D G; Alexander, E E; Singh, R; Shan, A; Qian, J; Santella, R M; Oberley, L W; Yan, T; Zhong, W; Jiang, X; Oberley, T D

    2000-07-01

    Oxidative stress results in damage to cellular structures and has been linked to many diseases, including cancer. The authors sought to determine whether the expression of three major antioxidant enzymes, copper-zinc superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), and catalase, was altered in human prostate carcinoma and its likely precursor, high grade prostatic intraepithelial neoplasia (PIN). The level of reactive oxygen species damage was evaluated by measuring the expression of the DNA adduct 8-hydroxydeoxyguanosine. The authors evaluated the tissue expression of the antioxidant enzymes in prostate carcinoma by immunohistochemistry, immunogold electron microscopy, and enzymatic assay. The polymerase chain reaction was used to amplify and screen tissue specimens for the genes of SOD1, SOD2, and extracellular SOD (SOD3). Matched paraffin embedded tissue sections were evaluated by RNA in situ hybridization for expression of SOD1 and immunohistochemically for the DNA adduct 8-hydroxydeoxyguanosine. All prostatic tissues, including cancer, displayed immunoreactivity for the three antioxidant enzymes in epithelial cells, with no staining of the stroma, inflammatory cells, or endothelial cells. The number of immunoreactive cells was greater in benign epithelium than in PIN and cancer for each enzyme. The mean percentage and intensity of immunoreactive cells was greatest for SOD2, intermediate for SOD1, and lower for catalase. Staining in cancer was heterogeneous. Immunogold ultrasound studies revealed strong mitochondrial labeling for SOD2, which was greater in benign epithelium than in cancer; SOD1 labeling was invariably weaker, with nuclear labeling in benign epithelium and cytoplasmic labeling in cancer cells. There was no difference in enzyme activity for the three antioxidant enzymes between benign epithelium and cancer. No mutations were found in the 5 exons of SOD1, 5 exons of SOD2, and 3 exons of SOD3, except for 3 of 20 cases with

  7. Honest sexual signalling mediated by parasite and testosterone effects on oxidative balance.

    PubMed

    Mougeot, Francois; Martínez-Padilla, Jesús; Webster, Lucy M I; Blount, Jonathan D; Pérez-Rodríguez, Lorenzo; Piertney, Stuart B

    2009-03-22

    Extravagant ornaments evolved to advertise their bearers' quality, the honesty of the signal being ensured by the cost paid to produce or maintain it. The oxidation handicap hypothesis (OHH) proposes that a main cost of testosterone-dependent ornamentation is oxidative stress, a condition whereby the production of reactive oxygen and nitrogen species (ROS/RNS) overwhelms the capacity of antioxidant defences. ROS/RNS are unstable, very reactive by-products of normal metabolic processes that can cause extensive damage to key biomolecules (cellular proteins, lipids and DNA). Oxidative stress has been implicated in the aetiology of many diseases and could link ornamentation and genetic variation in fitness-related traits. We tested the OHH in a free-living bird, the red grouse. We show that elevated testosterone enhanced ornamentation and increased circulating antioxidant levels, but caused oxidative damage. Males with smaller ornaments suffered more oxidative damage than those with larger ornaments when forced to increase testosterone levels, consistent with a handicap mechanism. Parasites depleted antioxidant defences, caused oxidative damage and reduced ornament expression. Oxidative damage extent and the ability of males to increase antioxidant defences also explained the impacts of testosterone and parasites on ornamentation within treatment groups. Because oxidative stress is intimately linked to immune function, parasite resistance and fitness, it provides a reliable currency in the trade-off between individual health and ornamentation. The costs induced by oxidative stress can apply to a wide range of signals, which are testosterone-dependent or coloured by pigments with antioxidant properties.

  8. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems

    PubMed Central

    Lü, Jian-Ming; Lin, Peter H; Yao, Qizhi; Chen, Changyi

    2010-01-01

    Abstract Free radicals derived from oxygen, nitrogen and sulphur molecules in the biological system are highly active to react with other molecules due to their unpaired electrons. These radicals are important part of groups of molecules called reactive oxygen/nitrogen species (ROS/RNS), which are produced during cellular metabolism and functional activities and have important roles in cell signalling, apoptosis, gene expression and ion transportation. However, excessive ROS attack bases in nucleic acids, amino acid side chains in proteins and double bonds in unsaturated fatty acids, and cause oxidative stress, which can damage DNA, RNA, proteins and lipids resulting in an increased risk for cardiovascular disease, cancer, autism and other diseases. Intracellular antioxidant enzymes and intake of dietary antioxidants may help to maintain an adequate antioxidant status in the body. In the past decades, new molecular techniques, cell cultures and animal models have been established to study the effects and mechanisms of antioxidants on ROS. The chemical and molecular approaches have been used to study the mechanism and kinetics of antioxidants and to identify new potent antioxidants. Antioxidants can decrease the oxidative damage directly via reacting with free radicals or indirectly by inhibiting the activity or expression of free radical generating enzymes or enhancing the activity or expression of intracellular antioxidant enzymes. The new chemical and cell-free biological system has been applied in dissecting the molecular action of antioxidants. This review focuses on the research approaches that have been used to study oxidative stress and antioxidants in lipid peroxidation, DNA damage, protein modification as well as enzyme activity, with emphasis on the chemical and cell-free biological system. PMID:19754673

  9. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis.

    PubMed

    Qin, Guozheng; Meng, Xianghong; Wang, Qing; Tian, Shiping

    2009-05-01

    Oxidative damage to mitochondria caused by reactive oxygen species (ROS) has been implicated in the process of senescence as well as a number of senescence-related disorders in a variety of organisms. Whereas mitochondrial DNA was shown to be oxidatively modified during cellular senescence, mitochondrial protein oxidation is not well-understood. With the use of high-resolution, two-dimensional gel electrophoresis coupled with immunoblotting, we show here that protein carbonylation, a widely used marker of protein oxidation, increased in mitochondria during the senescence of peach fruit. Specific mitochondrial proteins including outer membrane transporter (voltage-dependent anion-selective channel, VDAC), tricarboxylic acid cycle enzymes (malate dehydrogenase and aconitase), and antioxidant proteins (manganese superoxide dismutase, MnSOD) were found as the targets. The oxidative modification was concomitant with a change of VDAC function and loss of catalytic activity of malate dehydrogenase and MnSOD, which in turn facilitated the release of superoxide radicals in mitochondria. Reduction of ROS content by lowering the environmental temperature prevented the accumulation of protein carbonylation in mitochondria and retarded fruit senescence, whereas treatment of fruit with H2O2 had the opposite effect. Our data suggest that oxidative damage of specific mitochondrial proteins may be responsible for impairment of mitochondrial function, thus, leading to fruit senescence. Proteomics analysis of mitochondrial redox proteins provides considerable information on the molecular mechanisms involved in the progression of fruit senescence.

  10. THE EFFECT OF GREEN TEA ON OXIDATIVE DAMAGE AND TUMOUR FORMATION IN LOBUND-WISTAR RATS

    PubMed Central

    O'Sullivan, Jacintha; Sheridan, Juliette; Mulcahy, Hugh; Tenniswood, Martin; Morrissey, Colm

    2014-01-01

    A number of epidemiological studies suggest that the consumption of green tea reduces the incidence of prostate cancer. Since the major catechins present in green tea are potent anti-oxidants, we hypothesized that genetic and cellular damage induced by oxygen free radicals could be significantly reduced by potent anti-oxidants in green tea, thus reducing the cumulative genetic and cellular damage with age, and slowing or preventing tumour formation. Long-term administration of a decaffeinated green tea extract to Lobund-Wistar rats for periods up to 26 months almost halved the incidence of primary tumours in the genitourinary tract when compared to an aged-matched cohort receiving just water. We observed no inhibition of DNA adduct formation or lipid peroxidation in animals consuming green tea compared to animals consuming de-ionized water. The decrease in tumour formation was associated with an increase in 8-hydroxy-2’deoxyguanosine (8-OH-dG) and 4-hydroxynonenal (4-HNE) content (markers of DNA adduct formation and lipid peroxidation respectively) in the epithelium of the ventral prostate in aging animals. There was also an increase in 8-OH-dG expression, but no change in 4-HNE expression in the seminal vesicles of older animals. There was an age associated increase in expression of the anti-oxidant enzymes MnSOD and catalase in the epithelium of the ventral prostate of aging animals. There was also an increase in MnSOD expression, but no change in catalase expression in the seminal vesicles of older animals. These data demonstrate that consumption of green tea decreases the incidence of genitourinary tract tumours in the Lobund-Wistar rat, but has no effect on age associated DNA adduct formation and lipid peroxidation in the aging rat ventral prostate and seminal vesicles. PMID:18941371

  11. Oxidative stress and anti-oxidant enzyme activities in the trophocytes and fat cells of queen honeybees (Apis mellifera).

    PubMed

    Hsieh, Yu-Shan; Hsu, Chin-Yuan

    2013-08-01

    Trophocytes and fat cells of queen honeybees have been used for delayed cellular senescence studies, but their oxidative stress and anti-oxidant enzyme activities with advancing age are unknown. In this study, we assayed reactive oxygen species (ROS) and anti-oxidant enzymes in the trophocytes and fat cells of young and old queens. Young queens had lower ROS levels, lower superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and higher thioredoxin reductase (TR) activity compared to old queens. These results show that oxidative stress and anti-oxidant enzyme activities in trophocytes and fat cells increase with advancing age in queens and suggest that an increase in oxidative stress and a consequent increase in stress defense mechanisms are associated with the longevity of queen honeybees.

  12. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity.

    PubMed

    Sreelatha, S; Padma, P R

    2009-12-01

    Antioxidants play an important role in inhibiting and scavenging free radicals, thus providing protection to human against infections and degenerative diseases. Current research is now directed towards natural antioxidants originated from plants due to safe therapeutics. Moringa oleifera is used in Indian traditional medicine for a wide range of various ailments. To understand the mechanism of pharmacological actions, antioxidant properties of the Moringa oleifera leaf extracts were tested in two stages of maturity using standard in vitro models. The successive aqueous extract of Moringa oleifera exhibited strong scavenging effect on 2, 2-diphenyl-2-picryl hydrazyl (DPPH) free radical, superoxide, nitric oxide radical and inhibition of lipid per oxidation. The free radical scavenging effect of Moringa oleifera leaf extract was comparable with that of the reference antioxidants. The data obtained in the present study suggests that the extracts of Moringa oleifera both mature and tender leaves have potent antioxidant activity against free radicals, prevent oxidative damage to major biomolecules and afford significant protection against oxidative damage.

  13. Mutual anti-oxidative effect of gossypol acetic acid and gossypol-iron complex on hepatic lipid peroxidation in male rats.

    PubMed

    El-Sharaky, A S; Wahby, M M; Bader El-Dein, M M; Fawzy, R A; El-Shahawy, I N

    2009-11-01

    Gossypol displays anticancer behavior and anti-fertility in males. Male rats were treated with either gossypol acetic acid (GAA) or gossypol-iron complex (GIC). Serum alanine transaminase (ALT) activity elevated of GAA. However, GIC-treated animals showed a decrease in hepatic glutathione (GSH) content with increased malondialdehyde (MDA) content. Whereas, GSH-Px specific activity increased in GAA group. GAA and GIC induce significant increases in the hepatic NEFA with remarkable decrease in the total saturated fatty acids with a significant increase of PUFA. Lipid peroxidation is inhibited by gossypol, which shield lipids against oxidative damage. Phenols are oxidized to phenoxy radicals, which do not permit anti-oxidation due to resonance stabilization. GAA stimulate hydroxyl radicals (()OH) generation and DNA damage. GAA and GIC produce increase in lipid peroxidation as proved by a steep rise in thiobarbituric acid reactive species (TBARS). Controversy of specificity of TBARS towards compounds other than MDA was reported. If TBARS increased, more specific assay to be employed. Assay of lipid classes and fatty acids pattern, reveled the significance of the technique in assessment of lipid peroxidation in tissues. GAA and GIC were powerful inhibitors of lipid peroxidation and exhibit pro- and antioxidant behavior, with less toxicity of GIC.

  14. Polydatin attenuates d-galactose-induced