Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.; ...
2018-02-09
An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.
An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less
Effects of pretreatment processes for Zr electrorefining of oxidized Zircaloy-4 cladding tubes
NASA Astrophysics Data System (ADS)
Hwa Lee, Chang; Lee, Yoo Lee; Jeon, Min Ku; Choi, Yong Taek; Kang, Kweon Ho; Park, Geun Il
2014-06-01
The effect of pretreatment processes for the Zr electrorefining of oxidized Zircaloy-4 cladding tubes is examined in LiCl-KCl-ZrCl4 molten salts at 500 °C. The cyclic voltammetries reveal that the Zr dissolution kinetics is highly dependent on the thickness of a Zr oxide layer formed at 500 °C under air atmosphere. For the Zircaloy-4 tube covered with a 1 μm thick oxide layer, the Zr dissolution process is initiated from a non-stoichiometric Zr oxide surface through salt treatment at an open circuit potential in the molten salt electrolyte. The Zr dissolution of the samples in the middle range of oxide layer thickness appears to be more effectively derived by the salt treatment coupled with an anodic potential application at an oxidation potential of Zr. A modification of the process scheme offers an applicability of Zr electrorefining for the treatment of oxidized cladding hull wastes.
A multiphase interfacial model for the dissolution of spent nuclear fuel
NASA Astrophysics Data System (ADS)
Jerden, James L.; Frey, Kurt; Ebert, William
2015-07-01
The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary calculations to demonstrate the application and value of the model.
NASA Astrophysics Data System (ADS)
Li, X. David; Schwartz, Franklin W.
2004-01-01
Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant potential in using these organic acids to remove precipitates formed during the oxidation reaction.
NASA Astrophysics Data System (ADS)
Payne, Brad P.; Keech, Peter G.; McIntyre, N. Stewart
The corrosion products produced on polycrystalline Ni metal and Ni-Cr (20%) (NiCr) alloy surfaces exposed to aqueous environments chosen to emulate possible solution conditions in the steam generator (SG) tubing of pressurized water reactors (PWR) were studied using XPS. Additional measurements modelling the distribution of oxidized Ni and Cr species on select alloy specimens were carried out using ToF SIMS. Exposure of Ni metal and NiCr alloy samples to mildly oxidizing potentials in basic solutions resulted in the preferential growth of a β-Ni(OH)2 phase; driven by the dissolution of metallic Ni at both 25°C and 150°C. The presence of β-Ni(OH)2, Cr(OH)3 and small amounts of a Cr6+-containing oxide on NiCr specimens oxidized under mildly oxidizing conditions at 150°C in neutral solutions suggested that the dissolution of both metallic Ni and Cr followed by the back deposition of the corresponding corrosion products was responsible for oxide growth under these conditions. In acidic media oxide nucleation at 150°C under mildly oxidizing potentials was determined to occur via the dissolution of both Ni and Cr species on NiCr specimens as well. The increased stability of Ni2+ in acidic solution led to a limited precipitation of β-Ni(OH)2 resulting in the formation of very thin oxides containing higher levels of Cr(OH)3. Reactions on metallic Ni and NiCr surfaces under highly oxidizing potentials resulted in an increase in the NiO content of these films compared to similar exposures carried out at milder oxidation conditions attributed to accelerated dehydration of the β-Ni(OH)2 phase. In addition, an increase in the Cr(OH)3 contribution on the alloy surface oxidized at a more oxidative potential suggested a more rapid dissolution of Cr under these conditions; overall, uneven films were formed from these conditions. The composition of the corrosion product formed after an exposure to a highly oxidizing potential was found to be unchanged following a subsequent reaction of equivalent length at a much lower oxidizing potential in basic solution.
Dissolution of Platinum in the Operational Range of Fuel Cells
Keeley, Gareth P.; Geiger, Simon; Zeradjanin, Aleksandar R.; Hodnik, Nejc; Kulyk, Nadiia
2015-01-01
Abstract One of the most important practical issues in low‐temperature fuel‐cell catalyst degradation is platinum dissolution. According to the literature, it initiates at 0.6–0.9 VRHE, whereas previous time‐ and potential‐resolved inductively coupled plasma mass spectrometry (ICP–MS) experiments, however, revealed dissolution onset at only 1.05 VRHE. In this manuscript, the apparent discrepancy is addressed by investigating bulk and nanoparticulated catalysts. It is shown that, given enough time for accumulation, traces of platinum can be detected at potentials as low as 0.85 VRHE. At these low potentials, anodic dissolution is the dominant process, whereas, at more positive potentials, more platinum dissolves during the oxide reduction after accumulation. Interestingly, the potential and time dissolution dependence is similar for both types of electrode. Dissolution processes are discussed with relevance to fuel‐cell operation and plausible dissolution mechanisms are considered. PMID:27525206
NASA Astrophysics Data System (ADS)
Li, Yubiao; Qian, Gujie; Brown, Paul L.; Gerson, Andrea R.
2017-09-01
Dissolution and oxidation of sulfide minerals play key roles in both acid and metalliferous rock drainage and supergene enrichment. Surface speciation heterogeneity, critical to understanding mechanisms of mineral sulfide dissolution, has to date largely not been considered. To this end synchrotron scanning photoelectron microscopy (SPEM) was employed to examine freshly fractured and partially dissolved chalcopyrite (CuFeS2) surfaces (pH 1.0 HClO4 solution, redox potential 650 mV relative to a standard hydrogen electrode, 75 °C). S2- (bulk), S22- and Sn2- were found to be present on all samples at varying concentrations. Oxidation was observed to take place heterogeneously at the sub-micron scale. As compared to chalcopyrite partially dissolved for 5 days, extended dissolution to 10 days did not show appreciably enhanced oxidation of surface species; however surface roughness increased markedly due to the growth/overlap of oxidised sulfur species. On addition of 4 mM iron both S0 and SO42- were observed but not SO32-, indicating that the greater Fe3+ activity/concentration promotes heterogeneous sulfur oxidation. On contact of pyrite (FeS2) with chalcopyrite, significantly greater chalcopyrite surface oxidation was observed than for the other systems examined, with S0, SO32- and SO42- being identified heterogeneously across the surface. It is proposed that chalcopyrite oxidative dissolution is enhanced by increasing its cathodic area, e.g. contacting with pyrite, while increased Fe3+ activity/concentration also contributes to increased dissolution rates. The high degree of surface heterogeneity of these surface products indicates that these surfaces are not passivated by their formation. These results suggest that chalcopyrite dissolution will be accelerated when in contact with pyrite at solution redox potential intermediate between the rest potentials of chalcopyrite and pyrite (560 mV and 660 mV, respectively) and/or iron rich acidic waters with resulting enhanced formation of secondary sulfur containing species and release of copper and iron. This in turn suggests accelerated supergene formation and enhanced metalliferous drainage under these conditions.
Synergistic effect of reductive and ligand-promoted dissolution of goethite.
Wang, Zimeng; Schenkeveld, Walter D C; Kraemer, Stephan M; Giammar, Daniel E
2015-06-16
Ligand-promoted dissolution and reductive dissolution of iron (hydr)oxide minerals control the bioavailability of iron in many environmental systems and have been recognized as biological iron acquisition strategies. This study investigated the potential synergism between ligands (desferrioxamine B (DFOB) or N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED)) and a reductant (ascorbate) in goethite dissolution. Batch experiments were performed at pH 6 with ligand or reductant alone and in combination, and under both oxic and anoxic conditions. Goethite dissolution in the presence of reductant or ligand alone followed classic surface-controlled dissolution kinetics. Ascorbate alone does not promote goethite dissolution under oxic conditions due to rapid reoxidation of Fe(II). The rate coefficients for goethite dissolution by ligands are closely correlated with the stability constants of the aqueous Fe(III)-ligand complexes. A synergistic effect of DFOB and ascorbate on the rate of goethite dissolution was observed (total rates greater than the sum of the individual rates), and this effect was most pronounced under oxic conditions. For HBED, macroscopically the synergistic effect was hidden due to the inhibitory effect of ascorbate on HBED adsorption. After accounting for the concentrations of adsorbed ascorbate and HBED, a synergistic effect could still be identified. The potential synergism between ligand and reductant for iron (hydr)oxide dissolution may have important implications for iron bioavailability in soil environments.
Effect of the microstructure of Ti-5Mo on the anodic dissolution in H/sub 2/SO/sub 4/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y.J.; Oriani, R.A.
1987-04-01
The effect of microstructure of the Ti-5Mo alloy on its anodic dissolution rate in sulfuric acid solution at various temperatures has been investigated. TiMo alloys exhibit a region of increased dissolution rate in the vicinity of +0.20 V (saturated calomel electrode (SCE)) in 10% H/sub 2/SO/sub 4/, the same potential region in which pure Mo exhibits a large anodic dissolution rate. Aging of Ti-5Mo at 350 C was found to lead to the formation of ..omega.. phase. Heat treatment caused larger passive currents in 10% H/sub 2/SO/sub 4/, but the critical passivation potentials and corrosion potentials were not significantly affected.more » Molybdenum was enriched in the oxide formed on aged Ti-5Mo at +0.23 V (SCE), in comparison with the Mo concentration found in the oxide on as-received Ti-5Mo.« less
Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.
Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong
2015-11-03
Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.
Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.
2016-01-01
The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an ‘electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable. PMID:27767178
Ligand-controlled Fe mobilization catalyzed by adsorbed Fe(II) on Fe(hydr)oxides
NASA Astrophysics Data System (ADS)
Kang, Kyounglim; Biswakarma, Jagannath; Borowski, Susan C.; Hug, Stephan J.; Hering, Janet G.; Schenkeveld, Walter D. C.; Kraemer, Stephan M.
2017-04-01
Dissolution of Fe(hydr)oxides is a key process in biological iron acquisition. Due to the low solubility of iron oxides in environments with a circumneutral pH, organisms may exude organic compounds catalyzing iron mobilization by reductive and ligand controlled dissolution mechanisms. Recently, we have shown synergistic effects between reductive dissolution and ligand-controlled dissolution that may operate in biological iron acquisition. The synergistic effects were observed in Fe mobilization from single goethite suspensions as well as in suspensions containing calcareous soil[1],[2]. However, how the redox reaction accelerates Fe(hydr)oxide dissolution by ligands is not studied intensively. In our study, we hypothesized that electron transfer to structural Fe(III) labilizes the Fe(hydr)oxide structure, and that this can accelerate ligand controlled dissolution. Systematical batch dissolution experiments were carried out under anoxic conditions at environmentally relevant pH values in which various Fe(hydr)oxides (goethite, hematite, lepidocrocite) interacted with two different types of ligand (desferrioxamine B (DFOB) and N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid monohydrochloride (HBED)). Electron transfer to the structure was induced by adsorbing Fe(II) to the mineral surface at various Fe(II) concentrations. Our results show a distinct catalytic effect of adsorbed Fe(II) on ligand controlled dissolution, even at submicromolar Fe(II) concentrations. We observed the effect for a range of iron oxides, but it was strongest in lepidocrocite, most likely due to anisotropy in conductivity leading to higher near-surface concentration of reduced iron. Our results demonstrate that the catalytic effect of reductive processes on ligand controlled dissolution require a very low degree of reduction making this an efficient process for biological iron acquisition and a potentially important effect in natural iron cycling. References 1. Wang, Z. M.; Schenkeveld, W. D. C.; Kraemer, S. M.; Giammar, D. E. Environ. Sci. Technol. 2015, 49, (12), 7236-7244. 2. Schenkeveld, W. D. C.; Wang, Z. M.; Giammar, D. E.; Kraemer, S. M. Environ. Sci. Technol. 2016, 50, (12), 6381-6388.
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
Nitride stabilized core/shell nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.
Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.
Dissolution of Used Nuclear Fuel Using a TBP/N-Paraffin Solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T. S.; Shehee, T. C.; Jones, D. H.
2017-10-02
The dissolution of unirradiated used nuclear fuel (UNF) pellets pretreated for tritium removal was demonstrated using a tributly phosphate (TBP) solvent. Dissolution of pretreated fuel in TBP could potentially combine dissolution with two cycle of solvent extraction required for separating the actinides and lanthanides from other fission products. Dissolutions were performed using UNF surrogates prepared from both uranyl nitrate and uranium trioxide produced from the pretreatment process by adding selected actinide and stable fission product elements. In laboratory-scale experiments, the U dissolution efficiency ranged from 80-99+% for both the nitrate and oxide surrogate fuels. On average, 80% of the Pumore » and 50% of the Np and Am in the nitrate surrogate dissolved; however, little of the transuranic elements dissolved in the oxide form. The majority of the 3+ lanthanide elements dissolved. Only small amounts of Sr (0-1.6%) and Mo (0.1-1.7%) and essentially no Cs, Ru, Zr, or Pd dissolved.« less
Aquilina, Luc; Roques, Clément; Boisson, Alexandre; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Pauwels, Hélène; Pételet-Giraud, Emmanuelle; Pettenati, Marie; Dufresne, Alexis; Bethencourt, Lorine; Bour, Olivier
2018-04-01
We investigate denitrification mechanisms through batch experiments using crushed rock and groundwater from a granitic aquifer subject to long term pumping (Ploemeur, France). Except for sterilized experiments, extensive denitrification reaction induces NO 3 decreases ranging from 0.3 to 0.6mmol/L. Carbon concentrations, either organic or inorganic, remain relatively stable and do not document potential heterotrophic denitrification. Batch experiments show a clear effect of mineral dissolution which is documented through cation (K, Na, Ca) and Fluoride production. These productions are tightly related to denitrification progress during the experiment. Conversely, limited amounts of SO 4 , systematically lower than autotrophic denitrification coupled to sulfur oxidation stoichiometry, are produced during the experiments which indicates that sulfur oxidation is not likely even when pyrite is added to the experiments. Analysis of cation ratios, both in isolated minerals of the granite and within water of the batch, allow the mineral dissolution during the experiments to be quantified. Using cation ratios, we show that batch experiments are characterized mainly by biotite dissolution. As biotite contains 21 to 30% of Fe and 0.3 to 1.7% of F, it constitutes a potential source for these two elements. Denitrification could be attributed to the oxidation of Fe(II) contained in biotite. We computed the amount of K and F produced through biotite dissolution when entirely attributing denitrification to biotite dissolution. Computed amounts show that this process may account for the observed K and F produced. We interpret these results as the development of microbial activity which induces mineral dissolution in order to uptake Fe(II) which is used for denitrification. Although pyrite is probably available, SO 4 and cation measurements favor a large biotite dissolution reaction which could account for all the observed Fe production. Chemical composition of groundwater produced from the Ploemeur site indicates similar denitrification processes although original composition shows mainly plagioclase dissolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of oxalic acid on the dissolution kinetics of manganese oxide
NASA Astrophysics Data System (ADS)
Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.
2012-11-01
The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.
Chang, E; Lee, T M
2002-07-01
This study examined the influence of chemistries and surface characteristics of Ti6Al4V on the adsorption of Ca and P species and ion dissolution behavior of the material exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid at 37 degrees C. The variation of chemistries of the alloy and nano-surface characteristics (chemistries of nano-surface oxides, amphoteric OH group adsorbed on oxides, and oxide thickness) was effected by surface modification and three passivation methods (34% nitric acid passivation. 400 degrees C heated in air, and aged in 100 degrees C water). X-ray photoelectron spectroscopy and Auger electron spectroscopy were used for surface analyses. The chemistries of nano-surface oxides in a range studied should not change the capability of Ca and P adsorption. Nor is the capability affected significantly by amphoteric OH group and oxide thickness. However, passivations influence the surface oxide thickness and the early stage ion dissolution rate of the alloy. The rate-limiting step of the rate can be best explained by metal-ion transport through the oxide film, rather than hydrolysis of the film. Variation of the chemistries of titanium alloy alters the electromotive force potential of the metal, thereby affecting the corrosion and ion dissolution rate.
Lu, Yue; Geng, Jiguo; Wang, Kuan; Zhang, Wei; Ding, Wenqiang; Zhang, Zhenhua; Xie, Shaohua; Dai, Hongxing; Chen, Fu-Rong; Sui, Manling
2017-08-22
Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.
Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tianyuan; Xu, Gui-Liang; Li, Yan
The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less
Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries
Ma, Tianyuan; Xu, Gui -Liang; Li, Yan; ...
2017-02-16
The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less
Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries.
Ma, Tianyuan; Xu, Gui-Liang; Li, Yan; Wang, Li; He, Xiangming; Zheng, Jianming; Liu, Jun; Engelhard, Mark H; Zapol, Peter; Curtiss, Larry A; Jorne, Jacob; Amine, Khalil; Chen, Zonghai
2017-03-02
The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated from the electrochemical oxidation are energetically unstable and readily undergo a deprotonation reaction that generates protons and promotes the dissolution of Al 3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.
Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tianyuan; Xu, Gui -Liang; Li, Yan
The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less
Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Steven C.; Peper, Shane M.; Douglas, Matthew
2009-11-01
Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.
Oxidative Remobilization of Technetium Sequestered by Sulfide-Transformed Nano Zerovalent Iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Dimin; Anitori, Roberto; Tebo, Bradley M.
2014-06-02
The dissolution of Tc(IV) sulfide and concurrent transformation of sulfidated ZVI during 2 oxidation were examined. Kinetic data obtained with 10 mL batch reactors showed that Tc(VII) 3 reduced by sulfidated nZVI has significantly slower reoxidation rates than Tc(VII) reduced by 4 nZVI only. In a 50 mL batch reactor, initial inhibition of Tc(IV) dissolution was apparent and 5 lasted until 120 hours at S/Fe = 0.112, presumably due to the redox buffer capacity of FeS. This 6 is evidenced by the parallel trends in oxidation-reduction potentials (ORP) and Tc dissolution 7 kinetics. Mӧssbauer spectra and micro X-ray diffraction ofmore » S/Fe = 0.112 suggested the 8 persistence of FeS after 24-h oxidation although X-ray photoelectron spectroscopy indicated 9 substantial surface oxidation. After 120-h oxidation, all characterizations showed complete 10 oxidation of FeS, which further indicates that FeS inhibits Tc oxidation. X-ray absorption 11 spectroscopy for S/Fe = 0.011 showed significantly increasing percentage of TcS2 in the solid 12 phase after 24-h oxidation, indicating TcS2 is more resistant to oxidation than TcO2. At S/Fe = 13 0.112, the XAS results revealed significant transformation of Tc speciation from TcS2 to TcO2 14 after 120-h oxidation at S/Fe = 0.112. Given that no apparent Tc dissolution occurred during this 15 period, the speciation transformation might play a secondary role in hindering Tc oxidation, 16 especially as redox buffer capacity approached depletion.« less
High temperature dissolution of chromium substituted nickel ferrite in nitrilotriacetic acid medium
NASA Astrophysics Data System (ADS)
Sathyaseelan, V. S.; Chandramohan, P.; Velmurugan, S.
2016-12-01
High temperature (HT) dissolution of chromium substituted nickel ferrite was carried out with relevance to the decontamination of nuclear reactors by way of chemical dissolution of contaminated corrosion product oxides present on stainless steel coolant circuit surfaces. Chromium substituted nickel ferrites of composition, NiFe(2-x)CrxO4 (x ≤ 1), was synthetically prepared and characterized. HT dissolution of these oxides was carried out in nitrilotriacetic acid medium at 160 °C. Dissolution was remarkably increased at 160 °C when compared to at 85 °C in a reducing decontamination formulation. Complete dissolution could be achieved for the oxides with chromium content 0 and 0.2. Increasing the chromium content brought about a marked reduction in the dissolution rate. About 40 fold decrease in rate of dissolution was observed when chromium was increased from 0 to 1. The rate of dissolution was not very significantly reduced in the presence of N2H4. Dissolution of oxide was found to be stoichiometric.
Tang, Yuanzhi; Zeiner, Carolyn A; Santelli, Cara M; Hansel, Colleen M
2013-04-01
Microbially mediated oxidation of Mn(II) to Mn(III/IV) oxides influences the cycling of metals and remineralization of carbon. Despite the prevalence of Mn(II)-bearing minerals in nature, little is known regarding the ability of microbes to oxidize mineral-hosted Mn(II). Here, we explored oxidation of the Mn(II)-bearing mineral rhodochrosite (MnCO3 ) and characteristics of ensuing Mn oxides by six Mn(II)-oxidizing Ascomycete fungi. All fungal species substantially enhanced rhodochrosite dissolution and surface modification. Mineral-hosted Mn(II) was oxidized resulting in formation of Mn(III/IV) oxides that were all similar to δ-MnO2 but varied in morphology and distribution in relation to cellular structures and the MnCO3 surface. For four fungi, Mn(II) oxidation occurred along hyphae, likely mediated by cell wall-associated proteins. For two species, Mn(II) oxidation occurred via reaction with fungal-derived superoxide produced at hyphal tips. This pathway ultimately resulted in structurally unique Mn oxide clusters formed at substantial distances from any cellular structure. Taken together, findings for these two fungi strongly point to a role for fungal-derived organic molecules in Mn(III) complexation and Mn oxide templation. Overall, this study illustrates the importance of fungi in rhodochrosite dissolution, extends the relevance of biogenic superoxide-based Mn(II) oxidation and highlights the potential role of mycogenic exudates in directing mineral precipitation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Dissolution mechanism of aluminum hydroxides in acid media
NASA Astrophysics Data System (ADS)
Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.
2008-08-01
The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.
Wang, Shaofeng; Jiao, BeiBei; Zhang, Mingmei; Zhang, Guoqing; Wang, Xin; Jia, Yongfeng
2018-03-15
The oxidative decomposition of arsenopyrite is an important source of As in surface environment. This study investigated the oxidative dissolution of arsenopyrite by O 2 and aqueous arsenic transformation at different pHs, dissolved oxygen (DO) contents, and temperatures in the absence and presence of EDTA. The oxidative dissolution was greatly inhibited at neutral and alkaline pH in the absence of EDTA. However, in the presence of EDTA, the oxidative dissolution rate increased linearly from pH 4 to 7. The highest dissolution rate was 3-4 times higher than that at pH 4 and 1-2 orders of magnitude higher than that at pH 7 in the absence of EDTA. This is possibly due to the lack of Fe oxyhydroxides on the surface of arsenopyrite. In the pH range of 7-10, the oxidative dissolution rate decreased linearly, possibly due to the formation of goethite and/or hematite coating. The oxidation of released arsenite (As III ) to arsenate (As V ) took place simultaneously during the oxidative dissolution of arsenopyrite in the presence of dissolved Fe without EDTA, while no obvious aqueous As III oxidation was observed in the presence of EDTA, indicating that aqueous Fe species play an important role in As III oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.
Meister, Paul; Qi, Xin; Kloepsch, Richard; Krämer, Elisabeth; Streipert, Benjamin; Winter, Martin; Placke, Tobias
2017-02-22
The inability of imide salts to form a sufficiently effective passivation layer on aluminum current collectors is one of the main obstacles that limit their broad application in electrochemical energy-storage systems. However, under certain circumstances, the use of electrolytes with imide electrolyte salts in combination with the aluminum current collector is possible. In this contribution, the stability of the aluminum current collector in electrolytes containing either lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) or lithium fluorosulfonyl-(trifluoromethanesulfonyl) imide (LiFTFSI) as conductive salt was investigated by electrochemical techniques, that is, cyclic voltammetry (CV) and chronocoulometry (CC) in either room-temperature ionic liquids or in ethyl methyl sulfone. In particular, the influence of the solvent, operating temperature, and thickness of the native oxide layer of aluminum on the pit formation at the aluminum current collector surface was studied by means of scanning electron microscopy. In general, a more pronounced aluminum dissolution and pit formation was found at elevated temperatures as well as in solvents with a high dielectric constant. An enhanced thickness of the native aluminum oxide layer increases the oxidative stability versus dissolution. Furthermore, we found a different reaction rate depending on dwell time at the upper cut-off potential for aluminum dissolution in TFSI- and FTFSI-based electrolytes during the CC measurements; the use of LiFTFSI facilitated the dissolution of aluminum compared to LiTFSI. Overall, the mechanism of anodic aluminum dissolution is based on: i) the attack of the Al 2 O 3 surface by acidic species and ii) the dissolution of bare aluminum into the electrolyte, which, in turn, is influenced by the electrolyte's dielectric constant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sasaki, Kotaro; Marinkovic, Nebojsa; Isaacs, Hugh S.; ...
2015-11-17
Understanding oxidation/dissolution mechanisms of Pt is critical in designing durable catalysts for the oxygen reduction reaction (ORR), but exact mechanisms remain unclear. Our present work explores the oxidation/dissolution of Pt and Pt monolayer (ML) electrocatalysts over a wide range of applied potentials using cells that facilitate in situ measurements by combining X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) measurements. Furthermore, the X-ray absorption near edge structure (XANES) measurement demonstrated that Pt nanoparticle surfaces were oxidized from metallic Pt to α-PtO 2-type oxide during the potential sweep from 0.41 to 1.5 V, and the transition state of O or OHmore » adsorption on Pt and the onset of the place exchange process were revealed by the delta mu (Δμ) method. Only the top layers of Pt nanoparticles were oxidized, while the inner Pt atoms remained intact. At a higher potential over 1.9 V, α-PtO 2-type surface oxides dissolve due to local acidification caused by the oxygen evolution reaction and carbon corrosion. Pt oxidation of Pt ML on the Pd nanoparticle electrocatalyst is considerably hampered compared with the Pt/C catalyst, presumably because preferential Pd oxidation proceeds at the defects in Pt MLs up to 0.91 V and through O penetrated through the Pt MLs by the place exchange process above 1.11 V.« less
NASA Astrophysics Data System (ADS)
You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.
2017-12-01
Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may play an important role in improving hydraulic fracturing of shale formation by reducing the energy requirements for crack growth. However, additional work is needed to the selection of highly-effective, economical, and environmentally friendly oxidants.
Zhao, Hongbo; Wang, Jun; Hu, Minghao; Qin, Wenqing; Zhang, Yansheng; Qiu, Guanzhou
2013-12-01
Bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans was carried out to investigate the influences between each other during bioleaching. Bioleaching results indicated that bornite accelerated the dissolution of chalcopyrite, and chalcopyrite also accelerated the dissolution of bornite, it could be described as a synergistic effect during bioleaching, this synergistic effect might be attributed to the galvanic effect between chalcopyrite and bornite, and to the relatively low solution potential as the addition of bornite. Significantly amount of elemental sulfur and jarosite formed on the minerals surface might be the main passivation film inhibiting the further dissolution, and the amount of elemental sulfur significantly increased with the addition of bornite. Results of electrochemical measurements indicated that the oxidation and reduction mechanisms of chalcopyrite and bornite were similar, the addition of bornite or chalcopyrite did not change the oxidative and reductive mechanisms, but increased the oxidation rate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Time-dependent Enhanced Corrosion of Ti6Al4V in the Presence of H2O2 and Albumin.
Zhang, Yue; Addison, Owen; Yu, Fei; Troconis, Brendy C Rincon; Scully, John R; Davenport, Alison J
2018-02-16
There is increasing concern regarding the biological consequences of metal release from implants. However, the mechanisms underpinning implant surface degradation, especially in the absence of wear, are often poorly understood. Here the synergistic effect of albumin and H 2 O 2 on corrosion of Ti6Al4V in physiological saline is studied with electrochemical methods. It is found that albumin induces a time-dependent dissolution of Ti6Al4V in the presence of H 2 O 2 in physiology saline. Potentiostatic polarisation measurements show that albumin supresses dissolution in the presence of H 2 O 2 at short times (<24 h) but over longer time periods (120 h) it significantly accelerates corrosion, which is attributed to albumin-catalysed dissolution of the corrosion product layer resulting in formation of a thinner oxide film. Dissolution of Ti6Al4V in the presence of albumin and H 2 O 2 in physiological saline is also found to be dependent on potential: the titanium ion release rate is found to be higher (0.57 µg/cm 2 ) at a lower potential (90 mV), where the oxide capacitance and resistance inferred from Electrochemical Impedance Spectroscopy also suggests a less resistant oxide film. The study highlights the importance of using more realistic solutions, and considering behaviour over longer time periods when testing corrosion resistance of metallic biomaterials.
The interaction of molecular hydrogen with α-radiolytic oxidants on a (U,Pu)O2 surface
NASA Astrophysics Data System (ADS)
Bauhn, Lovisa; Hansson, Niklas; Ekberg, Christian; Fors, Patrik; Delville, Rémi; Spahiu, Kastriot
2018-07-01
In order to assess the impact of α-radiolysis of water on the oxidative dissolution of spent fuel, an un-irradiated, annealed MOX fuel pellet with high content of Pu (∼24 wt%), and a specific α-activity of 4.96 GBq/gMOX, was leached in carbonate-containing solutions of low ionic strength. The high Pu content in the pellet stabilizes the (U,Pu)O2(s) matrix towards oxidative dissolution, whereas the α-decays emitted from the surface are expected to produce ∼3.6 × 10-7 mol H2O2/day, contributing to the oxidative dissolution of the pellet. Two sets of leaching tests were conducted under different redox conditions: Ar gas atmosphere and deuterium gas atmosphere. A relatively slow increase of the U and Pu concentrations was observed in the Ar case, with U concentrations increasing from 1·10-6 M after 1 h to ∼7 × 10-5 M after 58 days. Leaching under an atmosphere starting at 1 MPa deuterium gas was undertaken in order to evaluate any effect of dissolved hydrogen on the radiolytic dissolution of the pellet, as well as to investigate any potential recombination of the α-radiolytic products with dissolved deuterium. For the latter purpose, isotopic analysis of the D/H content was carried out on solution samples taken during the leaching. Despite the continuous production of radiolytic oxidants, the concentrations of U and Pu remained quite constant at the level of ∼3 × 10-8 M during the first 30 days, i.e. as long as the deuterium pressure remained higher than 0.8 MPa. These data rule out any oxidative dissolution of the pellet during the first month. The un-irradiated MOX fuel does not contain metallic ε-particles, hence it is mainly the interaction of radiolytic oxidants and dissolved deuterium with the surface of the mixed actinide oxide that causes the neutralization of the oxidants. This conclusion is supported by the steadily increasing levels of HDO measured in the leachate samples.
Environmental and taxonomic bacterial diversity of anaerobic uranium(IV) bio-oxidation.
Weber, Karrie A; Thrash, J Cameron; Van Trump, J Ian; Achenbach, Laurie A; Coates, John D
2011-07-01
Microorganisms in diverse terrestrial surface and subsurface environments can anaerobically catalyze the oxidative dissolution of uraninite. While a limited quantity (∼5 to 12 μmol liter(-1)) of uranium is oxidatively dissolved in pure culture studies, the metabolism is coupled to electron transport, providing the potential of uraninite to support indigenous microbial populations and to solubilize uranium.
Persistence of tungsten oxide particle/fiber mixtures in artificial human lung fluids
2010-01-01
Background During the manufacture of tungsten metal for non-sag wire, tungsten oxide powders are produced as intermediates and can be in the form of tungsten trioxide (WO3) or tungsten blue oxides (TBOs). TBOs contain fiber-shaped tungsten sub-oxide particles of respirable or thoracic size. The aim of this research was to investigate whether fiber-containing TBOs had prolonged biodurability in artificial lung fluids compared to tungsten metal or WO3 and therefore potentially could pose a greater inhalation hazard. Methods Dissolution of tungsten metal, WO3, one fiber-free TBO (WO2.98), and three fiber-containing TBO (WO2.81, WO2.66, and WO2.51) powders were measured for the material as-received, dispersed, and mixed with metallic cobalt. Solubility was evaluated using artificial airway epithelial lining fluid (SUF) and macrophage phagolysosomal simulant fluid (PSF). Results Dissolution rates of tungsten compounds were one to four orders of magnitude slower in PSF compared to SUF. The state of the fiber-containing TBOs did not influence their dissolution in either SUF or PSF. In SUF, fiber-containing WO2.66 and WO2.51 dissolved more slowly than tungsten metal or WO3. In PSF, all three fiber-containing TBOs dissolved more slowly than tungsten metal. Conclusions Fiber-containing TBO powders dissolved more slowly than tungsten metal and WO3 powders in SUF and more slowly than tungsten metal in PSF. Existing pulmonary toxicological information on tungsten compounds indicates potential for pulmonary irritation and possibly fibrosis. Additional research is needed to fully understand the hazard potential of TBOs. PMID:21126345
Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes
NASA Astrophysics Data System (ADS)
Ngwack, Bernd; Sigg, Laura
1997-03-01
The dissolution of Fe(III)(hydr)oxides (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by the adsorption of metal-EDTA complexes to the surface and is followed by the dissociation of the complex at the surface and the release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to the uncomplexed EDTA. The rate decreases in the order EDTA CaEDTA ≫ PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the dissolution process: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step 1 is slower than step 2 and the dissolution rates by various metals are similar. In the case of hydrous ferric oxide, step 2 is rate-limiting and the effect of the complexed metal is very pronounced.
X-ray reflectivity study of formation of multilayer porous anodic oxides of silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Y.; Fenollosa, R.; Parkhutik, V.
1999-07-21
The paper reports data on the kinetics of anodic oxide films growth on silicon in aqueous solutions of phosphoric acids as well as a study of the morphology of the oxides grown in a special regime of the oscillating anodic potential. X-ray reflectivity measurements were performed on the samples of anodic oxides using an intense synchrotron radiation source. They have a multilayer structure as revealed by theoretical fitting of the reflectivity data. The oscillations of the anodic potential are explained in terms of synchronized oxidation/dissolution reactions at the silicon surface and accumulation of mechanic stress in the oxide film.
Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran
2017-09-13
Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.
High temperature dissolution of oxides in complexing media
NASA Astrophysics Data System (ADS)
Sathyaseelan, Valil S.; Rufus, Appadurai L.; Subramanian, Hariharan; Bhaskarapillai, Anupkumar; Wilson, Shiny; Narasimhan, Sevilimedu V.; Velmurugan, Sankaralingam
2011-12-01
Dissolution of transition metal oxides such as magnetite (Fe 3O 4), mixed ferrites (NiFe 2O 4, ZnFe 2O 4, MgFe 2O 4), bonaccordite (Ni 2FeBO 5) and chromium oxide (Cr 2O 3) in organic complexing media was attempted at higher temperatures (80-180 °C). On increasing the temperature from 80 to 180 °C, the dissolution rate of magnetite in nitrilo triacetic acid (NTA) medium increased six folds. The trend obtained for the dissolution of other oxides was ZnFe 2O 4 > NiFe 2O 4 > MgFe 2O 4 > Cr 2O 3, which followed the same trend as the lability of their metal-oxo bonds. Other complexing agents such as ethylene diamine tetra acetic acid (EDTA), pyridine dicarboxylic acid (PDCA), citric acid and reducing agents viz., oxalic acid and ascorbic acid were also evaluated for their oxide dissolution efficiency at 160 °C. EDTA showed maximum dissolution rate of 21.4 μm/h for magnetite. Addition of oxalic acid/ascorbic acid to complexing media (NTA/EDTA) showed identical effect on the dissolution of magnetite. Addition of hydrazine, another reducing agent, to NTA decreased the rate of dissolution of magnetite by 50%.
Oxidative dissolution of silver nanoparticles: A new theoretical approach.
Adamczyk, Zbigniew; Oćwieja, Magdalena; Mrowiec, Halina; Walas, Stanisław; Lupa, Dawid
2016-05-01
A general model of an oxidative dissolution of silver particle suspensions was developed that rigorously considers the bulk and surface solute transport. A two-step surface reaction scheme was proposed that comprises the formation of the silver oxide phase by direct oxidation and the acidic dissolution of this phase leading to silver ion release. By considering this, a complete set of equations is formulated describing oxygen and silver ion transport to and from particles' surfaces. These equations are solved in some limiting cases of nanoparticle dissolution in dilute suspensions. The obtained kinetic equations were used for the interpretation of experimental data pertinent to the dissolution kinetics of citrate-stabilized silver nanoparticles. In these kinetic measurements the role of pH and bulk suspension concentration was quantitatively evaluated by using the atomic absorption spectrometry (AAS). It was shown that the theoretical model adequately reflects the main features of the experimental results, especially the significant increase in the dissolution rate for lower pH. Also the presence of two kinetic regimes was quantitatively explained in terms of the decrease in the coverage of the fast dissolving oxide layer. The overall silver dissolution rate constants characterizing these two regimes were determined. Copyright © 2015 Elsevier Inc. All rights reserved.
Short-term static corrosion tests in lead-bismuth
NASA Astrophysics Data System (ADS)
Soler Crespo, L.; Martín Muñoz, F. J.; Gómez Briceño, D.
2001-07-01
Martensitic steels have been proposed to be used as structural materials and as spallation target window in hybrid systems devoted to the transmutation of radioactive waste of long life and high activity. However, their compatibility with lead-bismuth in the operating conditions of these systems depends on the existence of a protective layer such as an oxide film. The feasibility of forming and maintaining an oxide layer or maintaining a pre-oxidised one has been studied. Martensitic steel F82Hmod. (8% Cr) has been tested in lead-bismuth under static and isothermal conditions at 400°C and 600°C. In order to study the first stages of the interaction between the steel and the eutectic, short-term tests (100 and 665 h) have been carried out. Pre-oxidised and as-received samples have been tested in atmospheres with different oxidant potential. For low oxygen concentration in lead-bismuth due to unexpected oxygen consumption in the experimental device, dissolution of as-received F82Hmod. occurs and pre-oxidation does not prevent the material dissolution. For high oxygen concentration, the pre-oxidation layer seems to improve the feasibility of protecting stainless steels controlling the oxygen potential of lead-bismuth with a gas phase.
Surface protected lithium-metal-oxide electrodes
Thackeray, Michael M.; Kang, Sun-Ho
2016-04-05
A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.
Electrochemical way of molybdenum extraction from the Bimetallic systems of Mo-W
NASA Astrophysics Data System (ADS)
Kudreeva, L. K.; Nauryzbaev, M. K.; Kurbatov, A. P.; Kamysbaev, D. H.; Adilbekova, A. O.; Mukataeva, Z. S.
2015-12-01
Electrochemical dissolution of molybdenum and tungsten was investigated in water- dimethylsulfoxide (DMSO) media at different concentrations of lithium chloride and magnesium perchlorate. The terms of efficient extraction of molybdenum from bimetallic systems of Mo-W have been determined. The polarization curves of the electrooxidation of molybdenum in the solution of 0.25 M LiCl in the DMSO at the different rates of rotations and the scan rate equal to 50 mV/s were obtained. In the presence of the addition of water at the potential of 0.1-0.75 V the small area of polarizability occurs, then with increasing potentials above 1.5 V there is a sharp increase of the oxidation current. Comparison of the current values of anodic dissolution of molybdenum and tungsten showed that the rate of anodic dissolution of molybdenum significantly exceeds the rate of anodic dissolution of tungsten. In the case of molybdenum, the dissolution process is limited by diffusion, in the case of tungsten - by the passive film formation on the electrode surface.
Role of root exudates in dissolution of Cd containing iron oxides
NASA Astrophysics Data System (ADS)
Rosenfeld, C.; Martinez, C. E.
2011-12-01
Dissolved organic matter (DOM) in the rhizosphere contains organic acids, amino acids and more complex organic molecules that can substantially impact the solubility of soil solid phases. Plant roots and soil microorganisms contribute a large fraction of these organic compounds to DOM, potentially accelerating the transfer of solid phase elements into solution. In highly contaminated soils, heavy metals such as Cd are commonly found coprecipitated with common minerals (e.g. iron oxides). Introducing or changing vegetation on these contaminated soils may increase DOM levels in the soil pore fluids and thus enhance the biological and chemical weathering of soil minerals. Here, we investigate the role of root exudates on mineral dissolution and Cd mobility in contaminated soils. We hypothesize that plant exudates containing nitrogen and sulfur functional groups will dissolve Cd-containing mineral phases to a greater extent than exudates containing only oxygen functional groups, resulting in higher Cd concentrations in solution. Two different iron oxide mineral phases were utilized in a laboratory-scale model study system investigating the effects of low molecular weight, oxygen-, nitrogen-, and sulfur-containing organic compounds on mineral dissolution. Goethite (α-FeOOH) was synthesized in the laboratory with 0, 2.4, 5, and 100 theoretical mol% Cd, and franklinite (ZnFe2O4) was prepared with 0, 10, and 25 theoretical mol% Cd. Phase identity of all minerals was verified with X-ray diffraction (XRD). All minerals were reacted with 0.01 mM solutions containing one of four different organic ligands (oxalic acid, citric acid, histidine or cysteine) and aliquots of these solutions were sampled periodically over 40 days. Results from solution samples suggest that oxalic acid, citric acid, and histidine consistently increase mineral dissolution relative to the control (no organic compound present) while cysteine consistently inhibits dissolution relative to the control in all minerals. Increasing Cd substitution in the franklinite resulted in increased release of Fe and Zn to solution in the presence of these organic compounds, while increasing Cd substitution in the goethite generally limited Fe release to solution. In the case of cysteine, sulfur concentrations in solution decrease over time in the presence of Cd-containing minerals, indicating strong binding of the cysteine compound to the mineral surface, inhibiting Cd dissolution from the minerals. Our work indicates that amino acids present in biological soil exudates, in addition to organic acids, may have substantial impacts on iron oxide dissolution in soils, altering the availability of both bioessential (e.g., Fe and Zn) and non-essential, or potentially toxic, (e.g., Cd) elements.
Brown, J.G.; Glynn, P.D.
2003-01-01
The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.
This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...
Characterization of undissolved solids from the dissolution of North Anna reactor fuel
Rudisill, Tracy S.; Olson, L. C.; DiPrete, D. P.
2017-06-16
Here, samples of undissolved solids (UDS) from the dissolution of North Anna reactor fuel were characterized to investigate the effects of using air or oxygen as the oxidant during tritium removal. The UDS composition data also support the development of a waste form for disposal. There was no discernible effect of the oxidant used during the tritium removal process or the size fraction on the UDS composition. Scanning electron microscopy (SEM) and energy dispersive (x-ray) spectroscopy were used to estimate the oxygen content of the UDS and it was found to be potentially significant, on the order of 30% bymore » mass and 80% by atom.« less
Oxidation of platinum nickel nanowires to improve durability of oxygen-reducing electrocatalysts
Alia, Shaun M.; Pylypenko, Svitlana; Dameron, Arrelaine; ...
2016-01-12
In this study, the impact of heat treating platinum-coated nickel (Pt-Ni) nanowires in oxygen is examined to determine the effect on oxygen reduction (ORR) activity and durability. Pt-Ni nanowires exhibit promising ORR mass activities (3 times greater than Pt nanoparticles, 1.5 times greater than U.S. Department of Energy target) both before and after potential cycling for all but the highest annealing temperatures explored. The annealing of Pt-Ni nanowires in oxygen with increasing temperature is found to reduce surface area and ORR activity in comparison to the untreated material, but also reduces activity losses following durability testing. Following potential cycling, unannealedmore » Pt-Ni nanowires show significant losses in surface area (23%) and specific activity (18%) while Pt-Ni nanowires annealed at 200°C show modest increases in surface area (2%) and specific activity (6%) after potential cycling. Increasing annealing temperatures also show a clear trend of decreasing Ni dissolution rates. While oxygen annealing has shown the ability to improve durability of Pt-Ni nanowires, significant Ni dissolution was observed in all samples and suggests oxide passivation while showing promise for improved durability, when employed by itself is insufficient to prevent all contamination concerns involving Ni dissolution.« less
Ultrasound enhanced process for extracting metal species in supercritical fluids
Wai, Chien M.; Enokida, Youichi
2006-10-31
Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.
Direct electrochemical reduction of metal-oxides
Redey, Laszlo I.; Gourishankar, Karthick
2003-01-01
A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.
Ott, N; Beni, A; Ulrich, A; Ludwig, C; Schmutz, P
2014-03-01
Al-Cr-Fe complex metallic alloys are new intermetallic phases with low surface energy, low friction, and high corrosion resistance down to very low pH values (0-2). Flow microcapillary plasma mass spectrometry under potentiostatic control was used to characterize the dynamic aspect of passivation of an Al-Cr-Fe gamma phase in acidic electrolytes, allowing a better insight on the parameters inducing chemical stability at the oxyhydroxide-solution interface. In sulfuric acid pH 0, low element dissolution rates (in the µg cm(-2) range after 60 min) evidenced the passive state of the Al-Cr-Fe gamma phase with a preferential over-stoichiometric dissolution of Al and Fe cations. Longer air-aging was found to be beneficial for stabilizing the passive film. In chloride-containing electrolytes, ten times higher Al dissolution rates were detected at open-circuit potential (OCP), indicating that the spontaneously formed passive film becomes unstable. However, electrochemical polarization at low passive potentials induces electrical field generated oxide film modification, increasing chemical stability at the oxyhydroxide-solution interface. In the high potential passive region, localized attack is initiated with subsequent active metal dissolution. © 2013 Published by Elsevier B.V.
Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides
White, A.F.; Peterson, M.L.
1996-01-01
Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show minimum reactivity toward chromate ions. The ability of Fe(II) oxides to reduce transition metals in soils and groundwaters will be strongly dependent on the redox environment.
Reduction of aqueous transition metal species on the surfaces of Fe(II) -containing oxides
NASA Astrophysics Data System (ADS)
White, Art F.; Peterson, Maria L.
1996-10-01
Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25°C. For an aqueous transition metal m, such reactions are 3[FeFe23+]O+2/nm→4[Fe23+]O+Fe+2/nm and 3[FeTi]O+→Fe23+TiO+Fe+2/nm, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] → [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe 2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 × 10 -10 mol m -2 s -1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe 2+ is oxidized homogeneously in solution to Fe 3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show minimum reactivity toward chromate ions. The ability of Fe(II) oxides to reduce transition metals in soils and groundwaters will be strongly dependent on the redox environment.
NASA Astrophysics Data System (ADS)
Mickler, P. J.; Rivas, C.; Freeman, S.; Tan, T. W.; Baron, D.; Horton, R. A.
2015-12-01
Storage of CO2 as supercritical liquid in oil reservoirs has been proposed for enhanced oil recovery and a way to lower atmospheric CO2 levels. The fate of CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this study, core samples from three potential storage formations, the Vedder Fm. (Rio Bravo oil field), Stevens Fm. (Elk Hills oil field) and Temblor Fm. (McKittrick oil field) were reacted with a synthetic brine and CO2(sc) at reservoir temperature (110°C) and pressure (245-250 bar). A combination of petrographic, SEM-EDS and XRD analyses, brine chemistry, and PHREEQ-C modelling were used to identify geochemical reactions altering aquifer mineralogy. XRD and petrographic analyses identified potentially reactive minerals including calcite and dolomite (~2%), pyrite (~1%), and feldspars (~25-60%). Despite the low abundance, calcite dissolution and pyrite oxidation were dominant geochemical reactions. Feldspar weathering produced release rates ~1-2 orders of magnitude slower than calcite dissolution. Calcite dissolution increased the aqueous concentrations of Ca, HCO3, Mg, Mn and Sr. Silicate weathering increased the aqueous concentrations of Si and K. Plagioclase weathering likely increased aqueous Ca concentrations. Pyrite oxidation, despite attempts to remove O2 from the experiment, increased the aqueous concentration of Fe and SO4. SEM-EDS analysis of post-reaction samples identified mixed-layered illite-smectites associated with feldspar grains suggesting clay mineral precipitation in addition to calcite, pyrite and feldspar dissolution. The Vedder Fm. sample underwent complete disaggregation during the reaction due to cement dissolution. This may adversely affect Vedder Formation CCS projects by impacting injection well integrity.
Analytical Capability of Plasma Spectrometry Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallimore, David L.
2012-07-19
Samples analyzed were: (1) Pu and U metal; (2) Pu oxide for nuclear fuel; (3) {sup 238}Pu oxide for heat source; and (4) Nuclear forensic samples - filters, swipes. Sample preparations that we did were: metal dissolution, marple filter dissolution, Pu oxide closed vessel acid digestion, and column separation to remove Pu.
Ravichandran, Mahalingam; Aiken, George R.; Reddy, Michael M.; Ryan, Joseph N.
1998-01-01
Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release (up to 35 μM total dissolved mercury) from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca2+. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in DI water (pH = 6.0) had no detectable (<2.5 nM) dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates (determined by 13C NMR) correlated positively with enhanced cinnabar dissolution. ζ-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar (pHpzc = 4.0) at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.
Carbon in oxides and silicates - Dissolution versus exsolution
NASA Technical Reports Server (NTRS)
Freund, F.
1986-01-01
A theory of CO2 dissolution in the solid state is developed, using the idea proposed by Freund (1983) concerning dissolution of CO/CO2 in MgO on the basis of their experimental results obtained with an MgO-containing carbon impurity. It is shown that the dissolution mechanism may be linked to an internal redox reaction by which a certain number of lattice oxygens change their formal oxidation state from -2 to -1, while the carbon becomes reduced. The similarities between the mechanisms of CO and/or CO2 dissolution and that of H2O dissolution are pointed out. A hypothesis is proposed concerning the exsolution of reduced carbon from supersaturated solid solutions under conditions which permit C-C bond formation.
Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.
Kim, Kitae; Choi, Wonyong; Hoffmann, Michael R; Yoon, Ho-Il; Park, Byong-Kwon
2010-06-01
The availability of iron has been thought to be a main limiting factor for the productivity of phytoplankton and related with the uptake of atmospheric CO(2) and algal blooms in fresh and sea waters. In this work, the formation of bioavailable iron (Fe(II)(aq)) from the dissolution of iron oxide particles was investigated in the ice phase under both UV and visible light irradiation. The photoreductive dissolution of iron oxides proceeded slowly in aqueous solution (pH 3.5) but was significantly accelerated in polycrystalline ice, subsequently releasing more bioavailable ferrous iron upon thawing. The enhanced photogeneration of Fe(II)(aq) in ice was confirmed regardless of the type of iron oxides [hematite, maghemite (gamma-Fe(2)O(3)), goethite (alpha-FeOOH)] and the kind of electron donors. The ice-enhanced dissolution of iron oxides was also observed under visible light irradiation, although the dissolution rate was much slower compared with the case of UV radiation. The iron oxide particles and organic electron donors (if any) in ice are concentrated and aggregated in the liquid-like grain boundary region (freeze concentration effect) where protons are also highly concentrated (lower pH). The enhanced photodissolution of iron oxides should occur in this confined boundary region. We hypothesized that electron hopping through the interconnected grain boundaries of iron oxide particles facilitates the separation of photoinduced charge pairs. The outdoor experiments carried out under ambient solar radiation of Ny-Alesund (Svalbard, 78 degrees 55'N) also showed that the generation of dissolved Fe(II)(aq) via photoreductive dissolution is enhanced when iron oxides are trapped in ice. Our results imply that the ice(snow)-covered surfaces and ice-cloud particles containing iron-rich mineral dusts in the polar and cold environments provide a source of bioavailable iron when they thaw.
Formulations for iron oxides dissolution
Horwitz, Earl P.; Chiarizia, Renato
1992-01-01
A mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.
Design of sustained release tablet containing fucoidan.
Tran, Thao Truong-Dinh; Ngo, Dai Kieu-Phuong; Vo, Toi Van; Tran, Phuong Ha-Lien
2015-01-01
The study introduced a new therapeutic agent, fucoidan, which can offer potential medical treatments including anti-inflammatory and anti-coagulant activities, as well as anti-proliferative effects on cancer cells. Fucoidan was included in sustained release formulations expected for an effective plasma drug concentration for approximately 24 h. The matrices based on the two polymers hydroxypropyl methycellulose (HPMC) and polyethylene oxide (PEO) were prepared with various ratios between the polymers and fucoidan. The dissolution profiles of various matrix tablets performed in enzyme-free simulated intestinal fluid (pH 6.8) for 24 h indicated a higher potential of PEO-based matrix tablets in sustaining release of fucoidan. The swelling and erosion of the tablets were also characterized to elucidate the difference among those dissolution profiles.
Oxidative dissolution of biogenic uraninite in groundwater at Old Rifle, CO
Campbell, Kate M.; Veeramani, Harish; Ulrich, Kai-Uwe; Blue, Lisa Y.; Giammar, Dianiel E.; Bernier-Latmani, Rizlan; Stubbs, Joanne E.; Suvorova, Elena; Yabusaki, Steve; Lezama-Pacheco, Juan S.; Mehta, Apurva; Long, Philip E.; Bargar, John R.
2011-01-01
Reductive bioremediation is currently being explored as a possible strategy for uranium-contaminated aquifers such as the Old Rifle site (Colorado). The stability of U(IV) phases under oxidizing conditions is key to the performance of this procedure. An in situ method was developed to study oxidative dissolution of biogenic uraninite (UO2), a desirable U(VI) bioreduction product, in the Old Rifle, CO, aquifer under different variable oxygen conditions. Overall uranium loss rates were 50–100 times slower than laboratory rates. After accounting for molecular diffusion through the sample holders, a reactive transport model using laboratory dissolution rates was able to predict overall uranium loss. The presence of biomass further retarded diffusion and oxidation rates. These results confirm the importance of diffusion in controlling in-aquifer U(IV) oxidation rates. Upon retrieval, uraninite was found to be free of U(VI), indicating dissolution occurred via oxidation and removal of surface atoms. Interaction of groundwater solutes such as Ca2+ or silicate with uraninite surfaces also may retard in-aquifer U loss rates. These results indicate that the prolonged stability of U(IV) species in aquifers is strongly influenced by permeability, the presence of bacterial cells and cell exudates, and groundwater geochemistry.
Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics
NASA Astrophysics Data System (ADS)
Roden, Eric E.
2004-08-01
Data from studies of dissimilatory bacterial (10 8 cells mL -1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L -1) were analyzed in relation to a generalized rate law for mineral dissolution (J t/m 0 = k'(m/m 0) γ, where J t is the rate of dissolution and/or reduction at time t, m 0 is the initial mass of oxide, and m/m 0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to predict long-term patterns of reactivity toward enzymatic reduction at circumneutral pH.
Petrographic and Isotopic Evidence for Siderite Precursors to Iron Oxide Cements
NASA Astrophysics Data System (ADS)
Loope, D.
2015-12-01
The origin of iron oxide mineralization in the Navajo Sandstone on the Colorado Plateau is important because of the different forms of distinct self-organization exhibited by these systems, the potential importance of the cements as geochronometers, and their use as analogs for similar mineralization on other planets. We consider this mineralization to be the product of microbially mediated oxidation of siderite in evolving groundwater systems. Iron oxide grain coatings were dissolved and the iron precipitated as siderite during a reducing phase of diagenesis. Upon invasion by oxidizing waters, iron-oxidizing bacteria colonized the redox interface between siderite-cemented and porous sandstone. Precipitation of iron oxide at this interface generated acid that facilitated further siderite dissolution. One difficulty in testing this hypothesis is that siderite is destroyed by the cm-scale transport of iron during oxidation. There are two lines of evidence that support the presence of a siderite precursor in these systems. 1)Rhombic grains that we interpret to be iron oxide pseudomorphs after siderite occur where in-situ oxidation rather than dissolution of the siderite precursor has occurred. 2) The δ56Fe values of these iron oxide cements are typically negative. We have measured the δ56Fe value of Navajo Sandstone to be 0.2‰; a value in good agreement with previous workers (Chan et al., 2006; Busigny and Dauphas, 2007). Bleaching of the sandstones apparently results in near complete removal of Fe with little change in the δ56Fe values of the bulk sandstone. The δ56Fe values of iron oxide cements have a median value of -0.8‰; similar to the value we obtained from ferroan carbonate (-0.86‰). Iron oxide from samples that comprise largely rhombic grains has similar δ56Fe values (-0.5‰) to those obtained from cements produced by siderite dissolution and subsequent oxidation (-0.4‰). Our interpretation is that siderite precipitated from an aqueous solution in which the δ56Fe value was <0.2‰ yielding siderite with δ56Fe values that ranged upward from -1.4‰. Invasion of the Navajo by oxidizing waters resulted in microbially mediated oxidation of the siderite concretions. The strongly negative values of the Fe oxides result from the near-quantitative oxidation of the siderite in a closed system.
Mine waste rock and roaster tailings were collected from the Sulfur Bank Mercury Mine (SBMM) located in Clearlake Oaks, California. The site has been under investigation as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. Characterization an...
Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.
Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A
2015-04-22
This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.
Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products
NASA Astrophysics Data System (ADS)
Dhungana, Suraj; Anthony, Charles R.; Hersman, Larry E.
2007-12-01
Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10 -6 mol m -2 h -1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H 2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.
Fang, Ting; Guo, Hongyu; Zeng, Linghan; Verma, Vishal; Nenes, Athanasios; Weber, Rodney J
2017-03-07
Soluble transition metals in particulate matter (PM) can generate reactive oxygen species in vivo by redox cycling, leading to oxidative stress and adverse health effects. Most metals, such as those from roadway traffic, are emitted in an insoluble form, but must be soluble for redox cycling. Here we present the mechanism of metals dissolution by highly acidic sulfate aerosol and the effect on particle oxidative potential (OP) through analysis of size distributions. Size-segregated ambient PM were collected from a road-side and representative urban site in Atlanta, GA. Elemental and organic carbon, ions, total and water-soluble metals, and water-soluble OP were measured. Particle pH was determined with a thermodynamic model using measured ionic species. Sulfate was spatially uniform and found mainly in the fine mode, whereas total metals and mineral dust cations were highest at the road-side site and in the coarse mode, resulting in a fine mode pH < 2 and near neutral coarse mode. Soluble metals and OP peaked at the intersection of these modes demonstrating that sulfate plays a key role in producing highly acidic fine aerosols capable of dissolving primary transition metals that contribute to aerosol OP. Sulfate-driven metals dissolution may account for sulfate-health associations reported in past studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.
Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used tomore » analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.« less
[Solidification of volatile oil with graphene oxide].
Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao
2015-02-01
To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.
A method for preparation and cleaning of uniformly sized arsenopyrite particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parthasarathy, Hariprasad; Baltrus, John P; Dzombak, David A
The oxidative dissolution of sulfide minerals, such as arsenopyrite (FeAsS), is of critical importance in many geochemical systems. A comprehensive understanding of their dissolution rates entails careful preparation of the mineral surface. Measurements of dissolution rates of arsenic from arsenopyrite are dependent on the size and degree of oxidation of its particles, among other factors. In this work, a method was developed for preparation and cleaning of arsenopyrite particles with size range of 150–250 μm. Four different cleaning methods were evaluated for effectiveness based on the removal of oxidized species of iron (Fe), arsenic (As) and sulfur (S) from themore » surface. The percentage oxidation of the surface was determined using X-ray photoelectron spectroscopy (XPS), and surface stoichiometry was measured using scanning electron microscopy – energy dispersive X-ray spectroscopy (SEM-EDS). Results indicate that sonicating the arsenopyrite particles and then cleaning them with 12N HCl followed by 50% ethanol, and drying in nitrogen was the most effective method. This method was successful in greatly reducing the oxide species of Fe while completely removing oxides of As and S from the arsenopyrite surface. Although sonication and acid cleaning have been widely used for mineral preparation, the method described in this study can significantly reduce grain size heterogeneity as well as surface oxidation, which enables greater control in surface and dissolution experiments.« less
A method for preparation and cleaning of uniformly sized arsenopyrite particles
Parthasarathy, Hariprasad; Baltrus, John P; Dzombak, David A; ...
2014-10-11
The oxidative dissolution of sulfide minerals, such as arsenopyrite (FeAsS), is of critical importance in many geochemical systems. A comprehensive understanding of their dissolution rates entails careful preparation of the mineral surface. Measurements of dissolution rates of arsenic from arsenopyrite are dependent on the size and degree of oxidation of its particles, among other factors. In this work, a method was developed for preparation and cleaning of arsenopyrite particles with size range of 150–250 μm. Four different cleaning methods were evaluated for effectiveness based on the removal of oxidized species of iron (Fe), arsenic (As) and sulfur (S) from themore » surface. The percentage oxidation of the surface was determined using X-ray photoelectron spectroscopy (XPS), and surface stoichiometry was measured using scanning electron microscopy – energy dispersive X-ray spectroscopy (SEM-EDS). Results indicate that sonicating the arsenopyrite particles and then cleaning them with 12N HCl followed by 50% ethanol, and drying in nitrogen was the most effective method. This method was successful in greatly reducing the oxide species of Fe while completely removing oxides of As and S from the arsenopyrite surface. Although sonication and acid cleaning have been widely used for mineral preparation, the method described in this study can significantly reduce grain size heterogeneity as well as surface oxidation, which enables greater control in surface and dissolution experiments.« less
Pitting corrosion of titanium. Interim report, June-December 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casillas, N.; Charlebois, S.J.; Smyrl, W.H.
1994-01-20
The breakdown of native and anodically-grown oxide films on Ti electrodes is investigated by scanning electrochemical microscopy (SECM), video microscopy, transmission electron microscopy and voltammetry. SECM is used to demonstrate that the oxidation of Br- on Ti occurs at microscopic surface sites (10 - 50 micrometer diameter, 30 sites/sq cm) that are randomly positioned across the oxide surface. After determining the position of the active sites for Br- oxidation, breakdown of the oxide is initiated by increasing the electrode potential to more positive values. Direct correspondence is observed between the location of the electroactive sites and corrosion pits, indicating thatmore » oxide breakdown is associated with a localized site of high electrical conductivity. The potential at which pitting is observed in voltammetric experiments is found to be proportional to the average oxide thickness, for values ranging between 20 and 100 A, indicating that breakdown is determined either by the magnitude of the electric field within the oxide or by the interfacial potential at the oxide/Br- solution interface. Pitting occurs at significantly lower potentials in Br- solutions than in C 1- solutions, suggesting a strong chemical interaction between the TiO2 surface and Br-. A mechanism of oxide breakdown is proposed that is based on the potential-dependent chemical dissolution of the oxide at microscopic surface sites.« less
Chao, T.T.; Anderson, B.J.
1974-01-01
Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.
Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films
NASA Astrophysics Data System (ADS)
Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team
2014-03-01
This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.
NASA Astrophysics Data System (ADS)
Gilbert, James Andrew
Polymer electrolyte membrane fuel cells (PEMFCs) are a promising high efficiency energy conversion technology, but their cost effective implementation, especially for automotive power, has been hindered by degradation of the electrochemically-active surface area (ECA) of the Pt nanoparticle electrocatalysts. While numerous studies using ex-situ post-mortem techniques have provided insight into the effect of operating conditions on ECA loss, the governing mechanisms and underlying processes are not fully understood. Toward the goal of elucidating the electrocatalyst degradation mechanisms, we have followed particle size distribution (PSD) growth evolutions of Pt and Pt-alloy nanoparticle catalysts during potential cycling in an aqueous acidic environment (with and without flow of electrolyte) and in a fuel cell environment using in-situ anomalous small-angle X-ray scattering (ASAXS). The results of this thesis show a surface area loss mechanism of Pt nanoparticles supported on carbon to be predominantly controlled by Pt dissolution, the particle size dependence of Pt dissolution, the loss of dissolved Pt into the membrane and electrolyte, and, to a lesser extent, the re-deposition of dissolved Pt onto larger particles. The relative extent of these loss mechanisms are shown to be dependent on the environment, the temperature, and the potential cycling conditions. Correlation of ASAXS-determined particle growth with both calculated and voltammetrically-determined oxide coverages demonstrates that the oxide coverage is playing a key role in the dissolution process and in the corresponding growth of the mean Pt nanoparticle size and loss of ECA. This understanding potentially reduces the complex changes in PSDs and ECA resulting from various voltage profiles to the response to a single variable, oxide coverage. A better understanding of the degradation mechanisms of Pt and Pt-alloy nanoparticle distributions could lead to more stable electrocatalysts while simultaneously reducing the cost of the materials, thereby supporting more durable and lower cost PEMFCs.
NASA Astrophysics Data System (ADS)
Corkhill, C. L.; Wincott, P. L.; Lloyd, J. R.; Vaughan, D. J.
2008-12-01
Arsenopyrite (FeAsS) and enargite (Cu 3AsS 4) fractured in a nitrogen atmosphere were characterised after acidic (pH 1.8), oxidative dissolution in both the presence and absence of the acidophilic microorganism Leptospirillum ferrooxidans. Dissolution was monitored through analysis of the coexisting aqueous solution using inductively coupled plasma atomic emission spectroscopy and coupled ion chromatography-inductively coupled plasma mass spectrometry, and chemical changes at the mineral surface observed using X-ray photoelectron spectroscopy and environmental scanning electron microscopy (ESEM). Biologically mediated oxidation of arsenopyrite and enargite (2.5 g in 25 ml) was seen to proceed to a greater extent than abiotic oxidation, although arsenopyrite oxidation was significantly greater than enargite oxidation. These dissolution reactions were associated with the release of ˜917 and ˜180 ppm of arsenic into solution. The formation of Fe(III)-oxyhydroxides, ferric sulphate and arsenate was observed for arsenopyrite, thiosulphate and an unknown arsenic oxide for enargite. ESEM revealed an extensive coating of an extracellular polymeric substance associated with the L. ferrooxidans cells on the arsenopyrite surface and bacterial leach pits suggest a direct biological oxidation mechanism, although a combination of indirect and direct bioleaching cannot be ruled out. Although the relative oxidation rates of enargite were greater in the presence of L. ferrooxidans, cells were not in contact with the surface suggesting an indirect biological oxidation mechanism. Cells of L. ferrooxidans appear able to withstand several hundreds of ppm of As(III) and As(V).
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.
2012-01-01
Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a transgranular initiation typical to that observed in unexposed specimens.
Panda, Sandeep; Akcil, Ata; Mishra, Srabani; Erust, Ceren
2018-01-15
Simultaneous multi-metal leaching from industrial pyrite ash is reported for the first time using a novel bioreactor system that allows natural diffusion of atmospheric O 2 and CO 2 along with the required temperature maintenance. The waste containing economically important metals (Cu, Co, Zn & As) was leached using an adapted consortium of meso-acidophilic Fe 2+ and S oxidising bacteria. The unique property of the sample supported adequate growth and activity of the acidophiles, thereby, driving the (bio) chemical reactions. Oxido-reductive potentials were seen to improve with time and the system's pH lowered as a result of active S oxidation. Increase in sulphur dosage (>1g/L) and agitation speed (>150rpm) did not bear any significant effect on metal dissolution. The consortium was able to leach 94.01% Cu (11.75% dissolution/d), 98.54% Co (12.3% dissolution/d), 75.95% Zn (9.49% dissolution/d) and 60.80% As (7.6% dissolution/d) at 150rpm, 1g/L sulphur, 30°C in 8days. Copyright © 2017 Elsevier B.V. All rights reserved.
Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S
2015-01-21
The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.
PROCESS OF DISSOLVING ZIRCONIUM ALLOYS
Shor, R.S.; Vogler, S.
1958-01-21
A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.
Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Steven C.; Peper, Shane M.; Douglas, Matthew
2009-09-12
Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 inmore » 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.« less
Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; ...
2015-08-10
Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.
Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less
Wetzel, David J; Malone, Marvin A; Haasch, Richard T; Meng, Yifei; Vieker, Henning; Hahn, Nathan T; Gölzhäuser, Armin; Zuo, Jian-Min; Zavadil, Kevin R; Gewirth, Andrew A; Nuzzo, Ralph G
2015-08-26
Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.
Dissolution Behaviour of Hazardous Materials from Steel Slag with Wet Grinding Method
NASA Astrophysics Data System (ADS)
Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji
2016-06-01
Steel slag is a by-product from steel industry and it contains variety of hazardous materials. In this study, the dissolution behaviour and removal potential of hazardous materials from steel slag with the wet grinding method was investigated. The slag was wet ground in the CO2 atmosphere and the slurry produced was filtered using centrifugal separator to separate the liquid and solid sediments. Then, the concentrations of dissolved metal elements in the liquid sediment were analyzed by ICP-MS. The changes of pH during the grinding were also investigated. It was found that the pHs were decreased immediately after the CO2 gas introduced into the vessel. The pHs were ranging from 6.8 to 7.6 at the end of grinding. The dissolved concentration of Zn and Cr were ranging from 5~45 [mg/dm3] and 0.2~2.5 [mg/dm3] respectively. The ratios of Zn removal for stainless steel oxidizing and reducing slag were very high, but those from normal steel oxidizing and reducing slag were very low. It is assumed that the Zn dissolved as ZnOH+ from Zn(OH)2 that formed due to the reaction between ZnO and water. Dissolution of Cr also occurred but in very low quantity compared to the dissolution of Zn. The dissolution of Cr occurred due to the grinding process and small amount of Cr(OH)3 was formed during the grinding. This small formation of Cr(OH)3 resulted to the low dissolved concentration of Cr in the form of Cr(OH)2+. According to the XRD analysis, the Cr mostly existed in the slags as Cr(IIl) in the form of MgCr2O4 and FeCr2O4.
The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel
NASA Astrophysics Data System (ADS)
Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.
2015-09-01
For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.
NASA Astrophysics Data System (ADS)
Bralower, T. J.; Kump, L. R.; Robinson, M. M.; Self-Trail, J. M.; Zachos, J. C.
2016-12-01
Continental-shelf sediments of the US Atlantic margin experienced a brief episode of carbonate dissolution during the onset of the Paleocene-Eocene Thermal Maximum (PETM). Dissolution is represented by reduced percentages of carbonate, and calcareous microfossil distribution and preservation trends, in cores from Maryland and New Jersey. The base and the top of the dissolution zone are abrupt compared to the gradual nature of the onset of the carbon isotope excursion (CIE). The thickness of the dissolution zone varies from 9 cm in the Bass River core (outer paleoshelf) to 1.6 m in the CamDor core (middle paleoshelf). The decrease in %CaCO3 suggests dissolution locally removed 83 to 100% of the initial biogenic carbonate. Shelf-wide dissolution during the onset of the PETM may be a regional event, associated, for example, with eutrophication. Samples from across the paleoshelf contain abundant fine-grained framboidal pyrite, which suggests photic-zone euxinia occurred before, during, and after the dissolution event. Dissolution may also be associated with oxidation of this pyrite during later exposure to oxidizing groundwaters, although the restricted duration of the dissolution interval argues against this. Alternatively, the dissolution event may have global significance related to surface ocean-water acidification or shoaling of the calcite compensation depth (CCD) to shelf depths. The event began near the onset of the CIE on the shelf, whereas dissolution in deep-sea sections began later. Earlier shelf dissolution is consistent with surface ocean acidification while later deep-sea dissolution is thought to be associated with shoaling of the CCD. In our presentation, we weigh evidence for each of these possibilities and test them using the global dataset.
Biological and Environmental Transformations of Copper-Based Nanomaterials
Wang, Zhongying; Von Dem Bussche, Annette; Kabadi, Pranita K.; Kane, Agnes B.; Hurt, Robert H.
2013-01-01
Copper-based nanoparticles are an important class of materials with applications as catalysts, conductive inks, and antimicrobial agents. Environmental and safety issues are particularly important for copper-based nanomaterials because of their potential large-scale use and their high redox activity and toxicity reported from in vitro studies. Elemental nanocopper oxidizes readily upon atmospheric exposure during storage and use, so copper oxides are highly relevant phases to consider in studies of environmental and health impacts. Here we show that copper oxide nanoparticles undergo profound chemical transformations under conditions relevant to living systems and the natural environment. Copper oxide nanoparticle (CuO-NP) dissolution occurs at lysosomal pH (4-5), but not at neutral pH in pure water. Despite the near-neutral pH of cell culture medium, CuO-NPs undergo significant dissolution in media over time scales relevant to toxicity testing due to ligand-assisted ion release, in which amino acid complexation is an important contributor. Electron paramagnetic resonance (EPR) spectroscopy shows that dissolved copper in association with CuO-NPs are the primary redox-active species. CuO-NPs also undergo sulfidation by a dissolution-reprecipitation mechanism, and the new sulfide surfaces act as catalysts for sulfide oxidation. Copper sulfide NPs are found to be much less cytotoxic than CuO NPs, which is consistent with the very low solubility of CuS. Despite this low solubility of CuS, EPR studies show that sulfidated CuO continues to generate some ROS activity due to the release of free copper by H2O2 oxidation during the Fenton-chemistry-based EPR assay. While sulfidation can serve as a natural detoxification process for nanosilver and other chalcophile metals, our results suggest that sulfidation may not fully and permanently detoxify copper in biological or environmental compartments that contain reactive oxygen species. PMID:24032665
NASA Astrophysics Data System (ADS)
Uzer, B.; Birer, O.; Canadinc, D.
2017-09-01
Dissolution-reformation cycle of the passive oxide layer on the nickel-titanium (NiTi) orthodontic archwires was investigated, which has recently been recognized as one of the key parameters dictating the biocompatibility of archwires. Specifically, commercially available NiTi orthodontic archwires were immersed in artificial saliva solutions of different pH values (2.3, 3.3, and 4.3) for four different immersion periods: 1, 7, 14, and 30 days. Characterization of the virgin and tested samples revealed that the titanium oxide layer on the NiTi archwire surfaces exhibit a dissolution-reformation cycle within the first 14 days of the immersion period: the largest amount of Ni ion release occurred within the first week of immersion, while it significantly decreased during the reformation period from day 7 to day 14. Furthermore, the oxide layer reformation was catalyzed on the grooves within the peaks and valleys due to relatively larger surface energy of these regions, which eventually decreased the surface roughness significantly within the reformation period. Overall, the current results clearly demonstrate that the analyses of dissolution-reformation cycle of the oxide layer in orthodontic archwires, surface roughness, and ion release behavior constitute utmost importance in order to ensure both the highest degree of biocompatibility and an efficient medical treatment.
Platinum redispersion on metal oxides in low temperature fuel cells.
Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan
2013-03-07
We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes.
NASA Astrophysics Data System (ADS)
Mullaugh, Katherine M.; Pearce, Olivia M.
2017-04-01
The widespread use of silver nanoparticles (Ag NPs) in consumer goods has raised concerns about the release of silver in environmental waters. Of particular concern is the oxidative dissolution of Ag NPs to release Ag+ ions, which are highly toxic to many aquatic organisms. Here, we have investigated the application of differential pulse stripping voltammetry (DPSV) with carbon paste electrodes (CPEs) in monitoring the oxidation of Ag NPs. Using a commercially available, unmodified carbon paste and 60-s deposition times, a detection limit of 3 nM Ag+ could be achieved. We demonstrate its selectivity for free Ag+ ions over Ag nanoparticles, allowing for analysis of the oxidation of Ag NPs without the need for separation of ions and nanoparticles prior to analysis. We applied this approach to investigate the effect of pH in the oxidative dissolution of Ag NPs, demonstrating the usefulness of CPEs in studies of this type.
Zhao, Ling; Zhu, Nan-Wen; Wang, Xiao-Hui
2008-01-01
Bioleaching of spent Ni-Cd batteries using acidified sewage sludge was carried out in a continuous flow two-step leaching system including an acidifying reactor and a leaching reactor. Two systems operated about 30d to achieve almost complete dissolution of heavy metals Ni, Cd and Co in four Ni-Cd batteries. Ferrous sulphate and elemental sulfur were used as two different substrates to culture indigenous thiobacilli in sewage sludge. pH and ORP of the acidifying reactor was stabilized around 2.3 and 334mV for the iron-oxidizing system and 1.2 and 390mV for the sulfur-oxidizing system. It was opposite to the acidifying reactor, the pH/ORP in the leaching reactor of the iron-oxidizing system was relatively lower/higher than that of the sulphur-oxidizing system in the first 17d. The metal dissolution, in the first 12-16d, was faster in the iron-oxidizing system than in the sulphur-oxidizing system due to the lower pH. In the iron-oxidizing system, the maximum solubilization of cadmium (2500mg l(-1)) and cobalt (260mg l(-1)) can be reached at day 6-8 and the most of metal nickel was leached in the first 16d. But in the sulphur-oxidizing system there was a lag period of 4-8d to reach the maximum solubilization of cadmium and cobalt. The maximum dissolution of nickel hydroxide (1400mg l(-1)) and metallic nickel (2300mg l(-1)) occurred at about day 12 and day 20, respectively.
EQCM analysis of titanium corrosion in peroxide- or fluoride-containing solutions.
Hattori, Masayuki; Oda, Yutaka
2013-01-01
Although offering superior resistance to corrosion, titanium is unable to withstand discoloration with exposure to peroxide or fluoride. The mechanism of this discoloration, however, remains to be clarified. The purpose of this study was to investigate the mechanism underlying discoloration of titanium with immersion in peroxide- or fluoride-containing solutions based on electrochemical quartz crystal microbalance (EQCM) analysis. A 9-MHz titanium-deposited quartz crystal was used as for the electrodes. Four test solutions were prepared for immersion of the electrodes: 154 mM (0.9%) NaCl; 150 mM H2O2+154 mM NaCl (pH=4 by addition of lactic acid); 150 mM H2O2+154 mM NaCl (pH=8 by addition of sodium hydroxide solution); and 48 mM (0.2%) NaF+154 mM NaCl (pH=5.0 by addition of lactic acid). A WinEchem electrochemistry software-controlled quartz crystal analyzer (QCA922) and the Potentiostat/Galvanostat (Princeton Applied Research) on Windows XP were used to measure concurrently the resonance frequency and potential of the electrodes. The EQCM data differed among solutions. In the acidulated fluoride-containing solution, the electrode showed lower open circuit potential and a gradual increase in electrode frequency, indicating a loss of mass by titanium dissolution. In the peroxide-containing solution, although open circuit potential showed no marked difference, electrode frequency showed a gentle decrease in acidic solution, indicating a gain in mass by oxidation; but an increase in alkaline solution, indicating a loss of mass by dissolution. These results confirmed that exposure to acidulated fluoride- or alkaline peroxide-containing solutions causes dissolution-induced discoloration, while that to acidulated peroxide-containing solutions resulted in the formation of an oxide film together with discoloration.
Destruction kinetic of PCDDs/Fs in MSWI fly ash using microwave peroxide oxidation.
Chang, Yu-Min; Fang, Wen-Bin; Tsai, Kuo-Sheng; Kao, Jimmy C M; Lin, Kae-Long; Chen, Ching-Ho
2015-01-01
Microwave peroxide oxidation is a less greenhouse gas emission and energy-efficient technology to destroy toxic organic compounds in hazardous waste. The research novelty is to adopt the innovative microwave peroxide oxidation in H2SO4/HNO3 solution to efficiently destroy the polychlorinated dibenzo-p-dioxins (PCDDs)/Fs in municipal solid waste incineration fly ash. The major objective of this paper is to study dynamic destruction of PCDDs/Fs using the microwave peroxide oxidation. Almost all PCDDs/Fs in the raw fly ash can be destructed in 120 min at a temperature of 423 K using the microwave peroxide oxidation treatment. It was found that the microwave peroxide oxidation provides the potential to destruct the PCDDs/Fs content in municipal solid waste incinerator (MSWI) fly ash to a low level as a function of treatment time. A useful kinetic correlation between destruction efficiency and treatment conditions is proposed on the basis of the experimental data obtained in this study. The significance of this work in terms of practical engineering applications is that the necessary minimum treatment time can be solved using a proposed graphic illustration method, by which the minimum treatment time is obtained if the desired destruction efficiency and treatment temperature are known. Because of inorganic salt dissolution, the temperature would be a critical factor facilitating the parts of fly ash dissolution. Material loss problem caused by the microwave peroxide oxidation and the effects of treatment time and temperature are also discussed in this paper.
Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions
NASA Astrophysics Data System (ADS)
Valenti, Laura E.; Giacomelli, Carla E.
2017-05-01
Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag+ and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H2O2). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H2O2-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag+ from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.
In vitro dissolution of uranium oxide by baboon alveolar macrophages.
Poncy, J L; Metivier, H; Dhilly, M; Verry, M; Masse, R
1992-01-01
In vitro cellular dissolution tests for insoluble forms of uranium oxide are technically difficult with conventional methodology using adherent alveolar macrophages. The limited number of cells per flask and the slow dissolution rate in a large volume of nutritive medium are obvious restricting factors. Macrophages in suspension cannot be substituted because they represent different and poorly reproducible functional subtypes with regard to activation and enzyme secretion. Preliminary results on the dissolution of uranium oxide using immobilized alveolar macrophages are promising because large numbers of highly functional macrophages can be cultured in a limited volume. Cells were obtained by bronchoalveolar lavages performed on baboons (Papio papio) and then immobilized after the phagocytosis of uranium octoxide (U3O8) particles in alginate beads linked with Ca2+. The dissolution rate expressed as percentage of initial uranium content in cells was 0.039 +/- 0.016%/day for particles with a count median geometric diameter of 3.84 microns(sigma g = 1.84). A 2-fold increase in the dissolution rate was observed when the same number of particles was immobilized without macrophages. These results, obtained in vitro, suggest that the U3O8 preparation investigated should be assigned to inhalation class Y as recommended by the International Commission on Radiological Protection. Future experiments are intended to clarify this preliminary work and to examine the dissolution characteristics of other particles such as uranium dioxide. It is recommended that the dissolution rate should be measured over an interval of 3 weeks, which is compatible with the survival time of immobilized cells in culture and may reveal transformation states occurring with aging of the particles. PMID:1396447
Dissolution of Biogenic and Synthetic UO2 under Varied Reducing Conditions
ULRICH, KAI – UWE; SINGH, ABHAS; SCHOFIELD, ELEANOR J.; BARGAR, JOHN R.; VEERAMANI, HARISH; SHARP, JONATHAN O.; LATMANI, RIZLAN BERNIER -; GIAMMAR, DANIEL E.
2008-01-01
The chemical stability of biogenic UO2, a nanoparticulate product of environmental bioremediation, may be impacted by the particles’ surface free energy, structural defects, and compositional variability in analogy to abiotic UO2+x (0 ≤ x ≤ 0.25). This study quantifies and compares intrinsic solubility and dissolution rate constants of biogenic nano-UO2 and synthetic bulk UO2.00, taking molecular-scale structure into account. Rates were determined under anoxic conditions as a function of pH and dissolved inorganic carbon in continuous-flow experiments. The dissolution rates of biogenic and synthetic UO2 solids were lowest at near neutral pH and increased with decreasing pH. Similar surface area-normalized rates of biogenic and synthetic UO2 suggest comparable reactive surface site densities. This finding is consistent with the identified structural homology of biogenic UO2 and stoichiometric UO2.00. Compared to carbonate-free anoxic conditions, dissolved inorganic carbon accelerated the dissolution rate of biogenic UO2 by 3 orders of magnitude. This phenomenon suggests continuous surface oxidation of U(IV) to U(VI), with detachment of U(VI) as the rate-determining step in dissolution. Although reducing conditions were maintained throughout the experiments, the UO2 surface can be oxidized by water and radiogenic oxidants. Even in anoxic aquifers, UO2 dissolution may be controlled by surface U(VI) rather than U(IV) phases. PMID:18754482
Hankins, Matthew G [Albuquerque, NM
2009-10-06
Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.
Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles
Jiang, Chuanjia; Aiken, George R.; Hsu-Kim, Heileen
2015-01-01
The dissolution of zinc oxide (ZnO) nanoparticles (NPs) is a key step of controlling their environmental fate, bioavailability, and toxicity. Rates of dissolution often depend upon factors such as interactions of NPs with natural organic matter (NOM). We examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution using anodic stripping voltammetry to directly measure dissolved zinc concentrations. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg C L–1) for Suwannee River humic and fulvic acids and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. The findings of this study facilitate a better understanding of the fate of ZnO NPs in organic-rich aquatic environments and highlight SUVA as a facile and useful indicator of NOM interactions with metal-based nanoparticles.
Effect of Food Thickener on Dissolution and Laxative Activity of Magnesium Oxide Tablets in Mice.
Tomita, Takashi; Goto, Hidekazu; Yoshimura, Yuya; Kato, Kazushige; Yoshida, Tadashi; Tanaka, Katsuya; Sumiya, Kenji; Kohda, Yukinao
2016-01-01
The present study examined the dissolution of magnesium oxide (MgO) from MgO tablets placed in a food thickening agent (food thickener) and its effects on laxative activity. We prepared mixtures of MgO tablets suspended in an aqueous suspension and food thickeners in order to evaluate the dissolution of MgO. The results of the dissolution tests revealed that agar-based food thickeners did not affect the MgO dissolution. In contrast, some xanthan gum-based food-thickener products show dissolution rates with certain mixtures containing disintegrated MgO tablets suspended in a food thickener that decrease over time. However, other xanthan gum-based food-thickener products show dissolution rates that decrease immediately after mixing, regardless of the time they were allowed to stand. In order to investigate the laxative activity of MgO, we orally administered a mixture of MgO suspension and food thickener to mice and observed their bowel movements. The animal experiments showed that when agar-based food thickeners were used, the laxative activity of MgO was not affected, but it decreased when xanthan gum-based food thickeners were used.
NASA Astrophysics Data System (ADS)
Solihin, Indriani, Mubarok, M. Zaki
2018-05-01
Dolomite is one of carbonate minerals that contain magnesium. Magnesium is important element used in many aspects of life such as cofactor of many enzymes in human body, nutrient for plants, and raw material in automotive industry. Dolomite can be processed through low temperature process to obtain magnesium and calcium oxide that is needed in important applications such as base material for making drugs, raw material in the synthesize slow release fertilizer, materials for fire retardant, component for catalyst, etc. One of the important step of this low temperature process is dissolution of dolomite. Optimizing the dissolution process determines the % extraction of magnesium and calcium oxide from dolomite. The dissolution of dolomite from Gresik, East Java Provence Indonesia, in chloric acid solution has been conducted. Chloric acid concentration and pulp density are the variables that were observed. The dissolution of magnesium and calcium from Gresik dolomite was found to be very fast. The stable stage of dissolution can be reached for 5-10 seconds. The % extraction is mainly determined by the molar ratio of chloric acid / dolomite. At molar ratio of chloric acid / dolomite equal or above stoichiometric of dolomite dissolution, % extraction of magnesium is almost 100 %.
Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana.
Lee, Chang Woo; Mahendra, Shaily; Zodrow, Katherine; Li, Dong; Tsai, Yu-Chang; Braam, Janet; Alvarez, Pedro J J
2010-03-01
Phytotoxicity is an important consideration to understand the potential environmental impacts of manufactured nanomaterials. Here, we report on the effects of four metal oxide nanoparticles, aluminum oxide (nAl(2)O(3)), silicon dioxide (nSiO(2)), magnetite (nFe(3)O(4)), and zinc oxide (nZnO), on the development of Arabidopsis thaliana (Mouse-ear cress). Three toxicity indicators (seed germination, root elongation, and number of leaves) were quantified following exposure to each nanoparticle at three concentrations: 400, 2,000, and 4,000 mg/L. Among these particles, nZnO was most phytotoxic, followed by nFe(3)O(4), nSiO(2), and nAl(2)O(3), which was not toxic. Consequently, nZnO was further studied to discern the importance of particle size and zinc dissolution as toxicity determinants. Soluble zinc concentrations in nanoparticle suspensions were 33-fold lower than the minimum inhibitory concentration of dissolved zinc salt (ZnCl(2)), indicating that zinc dissolution could not solely account for the observed toxicity. Inhibition of seed germination by ZnO depended on particle size, with nanoparticles exerting higher toxicity than larger (micron-sized) particles at equivalent concentrations. Overall, this study shows that direct exposure to nanoparticles significantly contributed to phytotoxicity and underscores the need for eco-responsible disposal of wastes and sludge containing metal oxide nanoparticles.
Lezama-Pacheco, Juan S; Cerrato, José M; Veeramani, Harish; Alessi, Daniel S; Suvorova, Elena; Bernier-Latmani, Rizlan; Giammar, Daniel E; Long, Philip E; Williams, Kenneth H; Bargar, John R
2015-06-16
Oxidative dissolution controls uranium release to (sub)oxic pore waters from biogenic uraninite produced by natural or engineered processes, such as bioremediation. Laboratory studies show that uraninite dissolution is profoundly influenced by dissolved oxygen (DO), carbonate, and solutes such as Ca(2+). In complex and heterogeneous subsurface environments, the concentrations of these solutes vary in time and space. Knowledge of dissolution processes and kinetics occurring over the long-term under such conditions is needed to predict subsurface uranium behavior and optimize the selection and performance of uraninite-based remediation technologies over multiyear periods. We have assessed dissolution of biogenic uraninite deployed in wells at the Rifle, CO, DOE research site over a 22 month period. Uraninite loss rates were highly sensitive to DO, with near-complete loss at >0.6 mg/L over this period but no measurable loss at lower DO. We conclude that uraninite can be stable over decadal time scales in aquifers under low DO conditions. U(VI) solid products were absent over a wide range of DO values, suggesting that dissolution proceeded through complexation and removal of oxidized surface uranium atoms by carbonate. Moreover, under the groundwater conditions present, Ca(2+) binds strongly to uraninite surfaces at structural uranium sites, impacting uranium fate.
Molecular dynamics simulations of zinc oxide solubility: From bulk down to nanoparticles
Escorihuela, Laura; Fernández, Alberto; Rallo, Robert; ...
2017-07-20
The solubility of metal oxides is one of the key descriptors for the evaluation of their potential toxic effects, both in the bulk form and in nanoparticulated aggregates. This work presents a new methodology for the in silico assessment of the solubility of metal oxides, which is demonstrated using a well-studied system, ZnO. The calculation of the solubility is based on statistical thermodynamics tools combined with Density Functional Tight Binding theory for the evaluation of the free energy exchange during the dissolution process. We used models of small ZnO clusters to describe the final dissolved material, since the complete ionicmore » dissolution of ZnO is hindered by the formation of O 2- anions in solution, which are highly unstable. Results show very good agreement between the computed solubility values and experimental data for ZnO bulk, up to 0.5 mg L -1 and equivalents of 50 μg L -1 for the free Zn 2+ cation in solution. However, the reference model for solid nanoparticles formed by free space nanoparticles can only give a limited quantitative solubility evaluation for ZnO nanoparticles.« less
Molecular dynamics simulations of zinc oxide solubility: From bulk down to nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escorihuela, Laura; Fernández, Alberto; Rallo, Robert
The solubility of metal oxides is one of the key descriptors for the evaluation of their potential toxic effects, both in the bulk form and in nanoparticulated aggregates. Current work presents a new methodology for the in silico assessment of the solubility of metal oxides, which is demonstrated using a well-studied system, ZnO. The calculation of the solubility is based on statistical thermodynamics tools combined with Density Functional Tight Binding theory for the evaluation of the free energy exchange during the dissolution process. Models of small ZnO clusters are used for describing the final dissolved material, since the complete ionicmore » dissolution of ZnO is hindered by the formation of O2- anions in solution, which are highly unstable. Results show very good agreement between the computed solubility values and experimental data for ZnO bulk, up to 0.5 mg·L-1 and equivalents of 50 g·L-1 for the free Zn2+ cation in solution. However, the reference model for solid nanoparticles formed by free space nanoparticles can only give a limited quantitative solubility evaluation for ZnO nanoparticles.« less
Molecular dynamics simulations of zinc oxide solubility: From bulk down to nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escorihuela, Laura; Fernández, Alberto; Rallo, Robert
The solubility of metal oxides is one of the key descriptors for the evaluation of their potential toxic effects, both in the bulk form and in nanoparticulated aggregates. This work presents a new methodology for the in silico assessment of the solubility of metal oxides, which is demonstrated using a well-studied system, ZnO. The calculation of the solubility is based on statistical thermodynamics tools combined with Density Functional Tight Binding theory for the evaluation of the free energy exchange during the dissolution process. We used models of small ZnO clusters to describe the final dissolved material, since the complete ionicmore » dissolution of ZnO is hindered by the formation of O 2- anions in solution, which are highly unstable. Results show very good agreement between the computed solubility values and experimental data for ZnO bulk, up to 0.5 mg L -1 and equivalents of 50 μg L -1 for the free Zn 2+ cation in solution. However, the reference model for solid nanoparticles formed by free space nanoparticles can only give a limited quantitative solubility evaluation for ZnO nanoparticles.« less
NASA Astrophysics Data System (ADS)
Leonte, M.; Kessler, J. D.; Socolofsky, S. A.
2016-02-01
One of the largest carbon reservoirs on the planet is stored as methane (CH4) in and below the seafloor. However, a large discrepancy exists between estimated fluxes of CH4 into the water column and CH4 fluxes from the sea surface to the atmosphere, suggesting that a significant fraction of CH4 released from seafloor seeps is dissolved and potentially removed through microbial oxidation. Here we present data investigating the fate of CH4 released from the Sleeping Dragon seep site in the Gulf of Mexico. The bubble plume was followed from the seafloor until it fully dissolved using a remotely operated vehicle (ROV). Water samples were collected by the ROV at different depths as well as lateral transects through the bubble plume. These samples were analyzed for dissolved concentrations of methane, ethane, propane, and butane as well as the 13C isotopic ratio of methane. Furthermore, seep bubbles from the seafloor were also collected and analyzed for the same properties. Based on these chemical data, the rate of CH4 emission from the seafloor, oxidation in the water column, and dissolution are investigated.
Sazou, Dimitra; Pavlidou, Maria; Pagitsas, Michael
2009-10-21
This work analyses the nature of temporal patterning of the anodic potential induced by chlorides during polarization of iron under current-controlled conditions in acid solutions. It is shown that potential oscillations emerged as a result of the local chloride attack of a thin oxide layer, which covers the iron surface in its passive state. The mechanism by which both the local oxide breakdown and the subsequent localized active dissolution (pitting) occur is explained by considering a point defect model (PDM) developed to describe the oxide growth and breakdown. According to the PDM, chlorides occupy oxygen vacancies resulting in the inhibition of oxide growth and autocatalytic generation of cation vacancies that destabilize the oxide layer. Simultaneous transformation of the outer surface of the inner oxide layer to non-adherent ferrous chloride or oxo-chloride species leads to a further thinning of the oxide layer and its lifting-on from the iron surface. The process repeats again yielding sustained oscillations of the anodic potential. Analysis of the oscillatory response obtained under current-controlled conditions as a function of either the current or the time allows the suggestion of a set of alternate diagnostic criteria, which might be used to characterize localized corrosion of iron in acid solutions.
NASA Astrophysics Data System (ADS)
Lui, E. W.; Palanisamy, S.; Dargusch, M. S.; Xia, K.
2017-12-01
The oxide dissolution and oxygen diffusion during annealing of Ti-6Al-4V solid-state recycled from machining chips by equal-channel angular pressing (ECAP) have been investigated using nanoindentation and numerical modeling. The hardness profile from nanoindentation was converted into the oxygen concentration distribution using the Fleisher and Friedel model. An iterative fitting method was then employed to revise the ideal model proposed previously, leading to correct predictions of the oxide dissolution times and oxygen concentration profiles and verifying nanoindentation as an effective method to measure local oxygen concentrations. Recrystallization started at the prior oxide boundaries where local strains were high from the severe plastic deformation incurred in the ECAP recycling process, forming a band of ultrafine grains whose growth was retarded by solute dragging thanks to high oxygen concentrations. The recrystallized fine-grained region would advance with time to eventually replace the lamellar structure formed during ECAP.
Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter
2016-09-28
Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.
NASA Astrophysics Data System (ADS)
Lattanzi, Pierfranco; Da Pelo, Stefania; Musu, Elodia; Atzei, Davide; Elsener, Bernhard; Fantauzzi, Marzia; Rossi, Antonella
2008-01-01
Enargite, Cu 3AsS 4, is common in some deposit types, e.g. porphyry systems and high sulphidation epithermal deposits. It is of environmental concern as a potential source of arsenic. In this communication, we review the current knowledge of enargite oxidation, based on the existing literature and our own original data. Explicit descriptions of enargite oxidation in natural environments are scarce. The most common oxidized alteration mineral of enargite is probably scorodite, FeAsO 4.2H 2O, with iron provided most likely by pyrite, a phase almost ubiquitously associated with enargite. Other secondary minerals after enargite include arsenates such as chenevixite, Cu 2Fe 2(AsO 4) 2(OH) 4.H 2O, and ceruleite, Cu 2Al 7(AsO 4) 4.11.5H 2O, and sulphates such as brochantite, Cu 4(SO 4)(OH) 6, and posnjakite, Cu 4(SO 4)(OH) 6·H 2O. Detailed studies of enargite field alteration at Furtei, Sardinia, suggest that most alteration occurs through dissolution, as testified by the appearance of etch pits at the surface of enargite crystals. However, apparent replacement by scorodite and cuprian melanterite was observed. Bulk oxidation of enargite in air is a very slow process. However, X-ray photoelectron spectroscopy (XPS) reveals subtle surface changes. From synchrotron-based XPS it was suggested that surface As atoms react very fast, presumably by forming bonds with oxygen. Conventional XPS shows the formation, on aged samples, of a nanometer-size alteration layer with an appreciably distinct composition with respect to the bulk. Mechanical activation considerably increases enargite reactivity. In laboratory experiments at acidic to neutral pH, enargite oxidation/dissolution is slow, although it is accelerated by the presence of ferric iron and/or bacteria such as Acidithiobacillus ferrooxidans and Sulfolobus BC. In the presence of sulphuric acid and ferric iron, the reaction involves dissolution of Cu and formation of native sulphur, subsequently partly oxidized to sulphate. At alkaline pH, the reactivity of enargite is apparently slightly greater. XPS spectra of surfaces conditioned at pH 11 have been interpreted as evidence of formation of a number of surface species, including cupric oxide and arsenic oxide. Treatment with hypochlorite solutions at pH 12.5 quickly produces a coating of cupric oxide. Electrochemical oxidation of enargite typically involves low current densities, confirming that the oxidation process is slow. Important surface changes occur only at high applied potentials, e.g. + 0.74 V vs. SHE. It is confirmed that, at acidic pH, the dominant process is Cu dissolution, accompanied (at + 0.56 V vs. SHE, pH = 1) by formation of native sulphur. At alkaline pH, a number of surface products have been suggested, including copper and arsenic oxides, and copper arsenates. XPS studies of the reacted surfaces demonstrate the evolution of Cu from the monovalent to the divalent state, the formation of As-O bonds, and the oxidation of sulphur to polysulphide, sulphite and eventually sulphate. In most natural and quasi-natural (mining) situations, it is expected that enargite reactivity will be slow. Moreover, it is likely that the release of arsenic will be further slowed down by at least temporary trapping in secondary phases. Therefore, an adequate management of exposed surfaces and wastes should minimize the environmental impact of enargite-bearing deposits. In spite of an increasing body of data, there are several gaps in our knowledge of enargite oxidation. The exact nature of most mechanisms and products remains poorly constrained, and there is a lack of quantitative data on the dependence on parameters such as pH and dissolved oxygen.
Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li
2013-01-01
Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k' (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.
Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li
2013-01-01
Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k′ (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k′ and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases. PMID:24260377
XPS studies of UO 2 oxidation by alpha radiolysis of water at 100°C
NASA Astrophysics Data System (ADS)
Sunder, S.; Boyer, G. D.; Miller, N. H.
1990-12-01
The effect of alpha radiolysis of water on the oxidation and dissolution of UO 2 was studied at 100°C as a function of alpha-field strength and water chemistry using X-ray photoelectron spectroscopy. In N 2-purged solutions the oxidation of UO 2 increases with the strength of the alpha flux; an alpha flux greater than or equal to that from a 250-μ Ci americium-241 source leads to oxidation of UO 2 beyond the UO 2.33 (U 3O 7) stage, and an alpha flux equal to that from a 5-μ Ci source does not result in UO 2 oxidation beyond the UO 2.33 stage. The presence of dissolved H 2 in water, at a concentration ≥ 1.6 × 10 -4moldm-3, reduces the oxidation and dissolution of UO 2 due to alpha radiolysis at temperatures ≥ 100° C. It is concluded that the radiolysis of groundwater at ~ 100°C, due to the alpha flux associated with used CANDU fuel, is unlikely to make a significant contribution to its oxidative dissolution in the geological disposal vault planned in the Canadian Nuclear Fuel Waste Management Program. CANada Deuterium Uranium. Registered trademark.
Environmental Degradation of Materials: Surface Chemistry Related to Stress Corrosion Cracking
NASA Technical Reports Server (NTRS)
Schwarz, J. A.
1985-01-01
Parallel experiments have been performed in order to develop a comprehensive model for stress cracking (SCC) in structural materials. The central objective is to determine the relationship between the activity and selectivity of the microstructure of structural materials to their dissolution kinetics and experimentally measured SCC kinetics. Zinc was chosen as a prototype metal system. The SCC behavior of two oriented single-crystal disks of zinc in a chromic oxide/sodium sulfate solution (Palmerton solution) were determined. It was found that: (1) the dissolution rate is strongly (hkil)-dependent and proportional to the exposure time in the aggressive environment; and (2) a specific slip system is selectively active to dissolution under applied stress and this slip line controls crack initiation and propagation. As a precursor to potential microgrvity experiments, electrophoretic mobility measurements of zinc particles were obtained in solutions of sodium sulfate (0.0033 M) with concentrations of dissolved oxygen from 2 to 8 ppm. The equilibrium distribution of exposed oriented planes as well as their correlation will determine the particle mobility.
Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun
2014-01-01
Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.
Kumsa, Doe W; Montague, Fred W; Hudak, Eric M; Mortimer, J Thomas
2016-10-01
The application of a train of cathodic-first/charge-balanced/biphasic pulses applied to a platinum electrode resulted in a positive creep of the anodic phase potential that increases with increasing charge injection but reaches a steady-state value before 1000 pulses have been delivered. The increase follows from the fact that charge going into irreversible reactions occurring during the anodic phase must equal the charge going into irreversible reactions during the cathodic phase for charge-balanced pulses. In an oxygenated electrolyte the drift of the measured positive potential moved into the platinum oxidation region of the i(V e) profile when the charge injection level exceeds k = 1.75. Platinum dissolution may occur in this region and k = 1.75 defines a boundary between damaging and non-damaging levels on the Shannon Plot. In a very low oxygen environment, the positive potential remained below the platinum oxidation region for the highest charge injection values studied, k = 2.3. The results support the hypothesis that platinum dissolution is the defining factor for the Shannon limit, k = 1.75. Numerous instrumentation issues were encountered in the course of making measurements. The solutions to these issues are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, Tracy S.; Olson, L. C.; DiPrete, D. P.
Here, samples of undissolved solids (UDS) from the dissolution of North Anna reactor fuel were characterized to investigate the effects of using air or oxygen as the oxidant during tritium removal. The UDS composition data also support the development of a waste form for disposal. There was no discernible effect of the oxidant used during the tritium removal process or the size fraction on the UDS composition. Scanning electron microscopy (SEM) and energy dispersive (x-ray) spectroscopy were used to estimate the oxygen content of the UDS and it was found to be potentially significant, on the order of 30% bymore » mass and 80% by atom.« less
NASA Astrophysics Data System (ADS)
Shao, Yuyan; Kou, Rong; Wang, Jun; Viswanathan, Vilayanur V.; Kwak, Ja Hun; Liu, Jun; Wang, Yong; Lin, Yuehe
The understanding of the degradation mechanisms of electrocatalysts is very important for developing durable electrocatalysts for polymer electrolyte membrane (PEM) fuel cells. The degradation of Pt/C electrocatalysts under potential-static holding conditions (at 1.2 V and 1.4 V vs. RHE) and potential step conditions with the upper potential of 1.4 V for 150 s and lower potential limits (0.85 V and 0.60 V) for 30 s in each period [denoted as Pstep(1.4V_150s-0.85V_30s) and Pstep(1.4V_150s-0.60V_30s), respectively] were investigated. The electrocatalysts and support were characterized with electrochemical voltammetry, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Pt/C degrades much faster under Pstep conditions than that under potential-static holding conditions. Pt/C degrades under the Pstep(1.4V_150s-0.85V_30s) condition mainly through the coalescence process of Pt nanoparticles due to the corrosion of carbon support, which is similar to that under the conditions of 1.2 V- and 1.4 V-potential-static holding; however, Pt/C degrades mainly through the dissolution/loss and dissolution/redeposition process if stressed under Pstep(1.4V_150s-0.60V_30s). The difference in the degradation mechanisms is attributed to the chemical states of Pt nanoparticles: Pt dissolution can be alleviated by the protective oxide layer under the Pstep(1.4V_150s-0.85V_30s) condition and the potential-static holding conditions. These findings are very important for understanding PEM fuel cell electrode degradation and are also useful for developing fast test protocol for screening durable catalyst support materials.
NASA Astrophysics Data System (ADS)
Sathyaseelan, V. S.; Rufus, A. L.; Chandramohan, P.; Subramanian, H.; Velmurugan, S.
2015-12-01
Full system decontamination of Primary Heat Transport (PHT) system of Pressurised Heavy Water Reactors (PHWRs) resulted in low decontamination factors (DF) on stainless steel (SS) surfaces. Hence, studies were carried out with 403 SS and 410 SS that are the material of construction of "End-Fitting body" and "End-Fitting Liner tubes". Three formulations were evaluated for the dissolution of passive films formed over these alloys viz., i) Two-step process consisting of oxidation and reduction reactions, ii) Dilute Chemical Decontamination (DCD) and iii) High Temperature Process. The two-step and high temperature processes could dissolve the oxide completely while the DCD process could remove only 60%. Various techniques like XRD, Raman spectroscopy and SEM-EDX were used for assessing the dissolution process. The two-step process is time consuming, laborious while the high temperature process is less time consuming and is recommended for SS decontamination.
Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.
Wang, Jia; Huang, Qifei; Li, Ting; Xin, Baoping; Chen, Shi; Guo, Xingming; Liu, Changhao; Li, Yuping
2015-08-15
A few studies have focused on release of valuable/toxic metals from Pb/Zn smelting slag by heterotrophic bioleaching using expensive yeast extract as an energy source. The high leaching cost greatly limits the practical potential of the method. In this work, autotrophic bioleaching using cheap sulfur or/and pyrite as energy matter was firstly applied to tackle the smelting slag and the bioleaching mechanisms were explained. The results indicated autotrophic bioleaching can solubilize valuable/toxic metals from slag, yielding maximum extraction efficiencies of 90% for Zn, 86% for Cd and 71% for In, although the extraction efficiencies of Pb, As and Ag were poor. The bioleaching performance of Zn, Cd and Pb was independent of leaching system, and leaching mechanism was acid dissolution. A maximum efficiency of 25% for As was achieved by acid dissolution in sulfursulfur oxidizing bacteria (S-SOB), but the formation of FeAsO4 reduced extraction efficiency in mixed energy source - mixed culture (MS-MC). Combined works of acid dissolution and Fe(3+) oxidation in MS-MC was responsible for the highest extraction efficiency of 71% for In. Ag was present in the slag as refractory AgPb4(AsO4)3 and AgFe2S3, so extraction did not occur. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cordara, T.; Szenknect, S.; Claparede, L.; Podor, R.; Mesbah, A.; Lavalette, C.; Dacheux, N.
2017-12-01
UO2 pellets were prepared by densification of oxides obtained from the conversion of the oxalate precursor. Then characterized in order to perform a multiparametric study of the dissolution in nitric acid medium. In this frame, for each sample, the densification rate, the grain size and the specific surface area of the prepared pellets were determined prior to the final dissolution experiments. By varying the concentration of the nitric acid solution and temperature, three different and successive steps were identified during the dissolution. Under the less aggressive conditions considered, a first transient step corresponding to the dissolution of the most reactive phases was observed at the solid/solution interface. Then, for all the tested conditions, a steady state step was established during which the normalised dissolution rate was found to be constant. It was followed by a third step characterized by a strong and continuous increase of the normalised dissolution rate. The duration of the steady state, also called "induction period", was found to vary drastically as a function of the HNO3 concentration and temperature. However, independently of the conditions, this steady state step stopped at almost similar dissolved material weight loss and dissolved uranium concentration. During the induction period, no important evolution of the topology of the solid/liquid interface was evidenced authorizing the use of the starting reactive specific surface area to evaluate the normalised dissolution rates thus the chemical durability of the sintered pellets. From the multiparametric study of UO2 dissolution proposed, oxidation of U(IV) to U(VI) by nitrate ions at the solid/liquid interface constitutes the limiting step in the overall dissolution mechanism associated to this induction period.
Solubility of nano-zinc oxide in environmentally and biologically important matrices
Reed, Robert B.; Ladner, David A.; Higgins, Christopher P.; Westerhoff, Paul; Ranville, James F.
2011-01-01
Increasing manufacture and use of engineered nanoparticles (NPs) is leading to a greater probability for release of ENPs into the environment and exposure to organisms. In particular, zinc oxide (ZnO) is toxic, although it is unclear whether this toxicity is due to the zinc oxide nanoparticles (ZnO), dissolution to Zn2+, or some combination thereof. The goal of this study was to determine the relative solubilites of both commercially available and in-house synthesized ZnO in matrices used for environmental fate and transport or biological toxicity studies. Dissolution of ZnO was observed in nanopure water (7.18– 7.40 mg/L dissolved Zn, as measured by filtration) and Roswell Park Memorial Institute medium (RPMI-1640) (~5 mg/L), but much more dissolution was observed in Dulbecco’s Modified Eagle’s Medium (DMEM), where the dissolved Zn concentration exceeded 34 mg/L. Moderately hard water exhibited low zinc solubility, likely due to precipitation of a zinc carbonate solid phase. Precipitation of a zinc-containing solid phase in RPMI also appeared to limit zinc solubility. Equilibrium conditions with respect to ZnO solubility were not apparent in these matrices, even after more than 1,000 h of dissolution. These results suggest that solution chemistry exerts a strong influence on ZnO dissolution and can result in limits on zinc solubility due to precipitation of less soluble solid phases. PMID:21994124
Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie
2014-01-01
An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.
Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction
Chang, Seo Hyoung; Connell, Justin G.; Danilovic, Nemanja; ...
2014-07-25
Understanding the functional links between the stability and reactivity of oxide materials during the oxygen evolution reaction (OER) is one key to enabling a vibrant hydrogen economy capable of competing with fossil fuel-based technologies. In this work, by focusing on the surface chemistry of monometallic Ru oxide in acidic and alkaline environments, we found that the kinetics of the OER are almost entirely controlled by the stability of the Ru surface atoms. The same activity–stability relationship was found for more complex, polycrystalline and single-crystalline SrRuO 3 thin films in alkaline solutions. We propose that the electrochemical transformation of either watermore » (acidic solutions) or hydroxyl ions (alkaline solutions) to di-oxygen molecules takes place at defect sites that are inherently present on every electrode surface. During the OER, surface defects are also created by the corrosion of the Ru ions. The dissolution is triggered by the potential-dependent change in the valence state ( n) of Ru: from stable but inactive Ru 4+ to unstable but active Ru n>4+. We conclude that if the oxide is stable then it is completely inactive for the OER. As a result, a practical consequence is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate of the oxide is neither too fast nor too slow.« less
Dissolution and characterization of HEV NiMH batteries.
Larsson, Kristian; Ekberg, Christian; Ødegaard-Jensen, Arvid
2013-03-01
Metal recovery is an essential part of the recycling of hybrid electric vehicle battery waste and the first step in a hydrometallurgical treatment is dissolution of the solid material. The properties of separated battery electrode materials were investigated. Focus was put on both the solid waste and then the dissolution behaviour. The cathode contains metallic nickel that remains undissolved when utilizing non-oxidizing conditions such as hydrochloric or sulphuric acid in combination with a low oxygen atmosphere. In these conditions the cathode active electrode material is fully dissolved. Not dissolving the nickel metal saves up to 37% of the acid consumption for the cathode electrode material. In the commonly used case of oxidizing conditions the nickel metal dissolves and a cobalt-rich phase remains undissolved from the cathode active material. For the anode material a complete and rapid dissolution can be achieved at mild conditions with hydrochloric, nitric or sulphuric acid. Optimal parameters for all cases of dissolution was pH 1 with a reaction time of approximately ≥ 20,000 s. Copyright © 2012 Elsevier Ltd. All rights reserved.
Superconcentrated electrolytes for a high-voltage lithium-ion battery
Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo
2016-01-01
Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162
Billy, Emmanuel; Joulié, Marion; Laucournet, Richard; Boulineau, Adrien; De Vito, Eric; Meyer, Daniel
2018-05-04
The sustainability through the energy and environmental costs involve the development of new cathode materials, considering the material abundance, the toxicity, and the end of life. Currently, some synthesis methods of new cathode materials and a large majority of recycling processes are based on the use of acidic solutions. This study addresses the mechanistic and limiting aspects on the dissolution of the layered LiNi 1/3 Mn 1/3 Co 1/3 O 2 oxide in acidic solution. The results show a dissolution of the active cathode material in two steps, which leads to the formation of a well-defined core-shell structure inducing an enrichment in manganese on the particle surface. The crucial role of lithium extraction is discussed and considered as the source of a "self-regulating" dissolution process. The delithiation involves a cumulative charge compensation by the cationic and anionic redox reactions. The electrons generated from the compensation of charge conduct to the dissolution by the protons. The delithiation and its implications on the side reactions, by the modification of the potential, explain the structural and compositional evolutions observed toward a composite material MnO 2 ·Li x MO 2 (M = Ni, Mn, and Co). The study shows a clear way to produce new cathode materials and recover transition metals from Li-ion batteries by hydrometallurgical processes.
Hoch, A.R.; Reddy, M.M.; Drever, J.I.
1996-01-01
Dissolution experiments using augite (Mg0.87Ca0.85Fe0.19Na0.09Al0.03Si2O6) and diopside (Mg0.91Ca0.93Fe0.07Na0.03Al0.03Si2O6) were conducted in flow-through reactors (5-ml/h flow rate). A pH of 5.8 was maintained by bubbling pure CO2 through a solution of 0.01 M KHCO3 at 25°C. Two experiments were run for each pyroxene type. In one experiment dissolved O2 concentration in reactors was 0.6 (±0.1) ppm and in the second dissolved O2 was 1.5 (±0.1) ppm. After 60 days, augite dissolution rates (based on Si release) were approximately three times greater in the 1.5 ppm. dissolved O2 experiments than in the sealed experiments. In contrast, diopside dissolution rates were independent of dissolved O2 concentrations. Preliminary results from the augite experiments suggest that dissolution rate is directly related to oxidation of iron. This effect was not observed in experiments performed on iron-poor diopside. Additionally, dissolution rates of diopside were much slower than those of augite, again suggesting a relationship between Fe content, Fe oxidation and dissolution rates.
NASA Astrophysics Data System (ADS)
Yang, S.; Aoki, Y.; Habazaki, H.
2011-07-01
Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.
Dealloying, Microstructure and the Corrosion/Protection of Cast Magnesium Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieradzki, Karl; Aiello, Ashlee; McCue, Ian
The purpose of this project was to develop a greater understanding of micro-galvanic corrosion effects in cast magnesium alloys using both experimental and computational methods. Experimental accomplishments have been made in the following areas of interest: characterization, aqueous free-corrosion, atmospheric corrosion, ionic liquid dissolution, rate kinetics of oxide dissolution, and coating investigation. Commercial alloys (AZ91D, AM60, and AZ31B), binary-phase alloys (αMg-2at.%Al, αMg-5at.%Al, and Mg-8at.%Al), and component phases (Mg, Al, β-Mg, β-1%Zn, MnAl3) were obtained and characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Full immersion in aqueous chloride was used to characterize the corrosionmore » behavior of alloys. Rotating disc electrodes (RDEs) were used to observe accelerated long-term corrosion behavior. Al surface redistribution for freely corroded samples was analyzed using SEM, EDS, and lithium underpotential deposition (Li UPD). Atmospheric corrosion was observed using contact angle evolution, overnight pH monitoring, and surface pH evolution studies. Ionic liquid corrosion characterization was performed using linear sweep voltammetry and potentiostatic dissolution in 150° choline chloride-urea (cc-urea). Two surface coatings were investigated: (1) Li-carbonate and (2) cc-urea. Li-carbonate coatings were characterized using X-ray photoelectron spectroscopy (XPS), SEM, and aqueous free corrosion potential monitoring. Hydrophobic cc-urea coatings were characterized using contact angle measurements and electrochemical impedance spectroscopy. Oxide dissolution rate kinetics were studied using inductively coupled plasma mass spectroscopy (ICP-MS). Computational accomplishments have been made through the development of Kinetic Monte Carlo (KMC) simulations which model time- and composition-dependent effects on the microstructure due to spatial redistribution of alloying elements during corrosion.« less
Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.
2015-05-05
Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electronmore » donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.« less
NASA Astrophysics Data System (ADS)
Horvath, A. S.; Baldisimo, J. G.; Moreau, J. W.
2010-12-01
Arsenic contamination of groundwater poses a serious environmental and human health problem in many regions around the world. Historical groundwater chemistry data for a Western-Central Victorian gold mine (Australia) revealed a strong inverse correlation between dissolved thiocyanate and iron(II), supporting the interpretation that oxidation of thiocyanate, a major groundwater contaminant by-product of cyanide-based gold leaching, was coupled to reductive dissolution of iron ox(yhydrox)ides in tailings dam sediments. Microbial growth was observed in this study in a selective medium using SCN- as the sole carbon and nitrogen source. The potential for use of SCN- as a tracer of mining contamination in groundwater was evaluated in the context of biological SCN- oxidation potential in the aquifer. Geochemical data also revealed a high positive correlation between dissolved arsenic and manganese, indicating that sorption on manganese-oxides most likely controls arsenic mobility at this site. Samples of groundwater and sediments along a roughly straight SW-NE traverse away from a large mine tailings storage facility, and parallel to the major groundwater flow direction, were analysed for major ions and trace metals. Groundwater from wells approaching the tailings along this traverse showed a nearly five-fold increase (roughly 25-125 ppb) in dissolved arsenic concentrations relative to aqueous Mn(II) concentrations. Thus, equivalent amounts of dissolved manganese released a five-fold difference in the amount of adsorbed arsenic. The interpretation that reductive dissolution of As-bearing MnO2 at the mine site has been mediated by groundwater (or aquifer) microorganisms is consistent with our recovery of synthetic birnessite-reducing enrichment cultures that were inoculated with As-contaminated groundwaters.
NASA Astrophysics Data System (ADS)
Odorowski, Mélina; Jegou, Christophe; De Windt, Laurent; Broudic, Véronique; Jouan, Gauthier; Peuget, Sylvain; Martin, Christelle
2017-12-01
In the hypothesis of direct disposal of spent fuel in a geological nuclear waste repository, interactions between the fuel mainly composed of UO2 and its environment must be understood. The dissolution rate of the UO2 matrix, which depends on the redox conditions on the fuel surface, will have a major impact on the release of radionuclides into the environment. The reducing conditions expected for a geological disposal situation would appear to be favorable as regards the solubility and stability of the UO2 matrix, but may be disturbed on the surface of irradiated fuel. In particular, the local redox conditions will result from a competition between the radiolysis effects of water under alpha irradiation (simultaneously producing oxidizing species like H2O2, hydrogen peroxide, and reducing species like H2, hydrogen) and those of redox active species from the environment. In particular, Fe2+, a strongly reducing aqueous species coming from the corrosion of the iron canister or from the host rock, could influence the dissolution of the fuel matrix. The effect of iron on the oxidative dissolution of UO2 was thus investigated under the conditions of the French disposal site, a Callovian-Oxfordian clay formation chosen by the French National Radioactive Waste Management Agency (Andra), here tested under alpha irradiation. For this study, UO2 fuel pellets doped with a radioactive alpha emitter (238/239Pu) were leached in synthetic Callovian-Oxfordian groundwater (representative of the French waste disposal site groundwater) in the presence of a metallic iron foil to simulate the steel canister. The pellets had varying levels of alpha activity, in order to modulate the concentrations of species produced by water radiolysis on the surface and to simulate the activity of aged spent fuel after 50 and 10,000 years of alpha radioactivity decay. The experimental data showed that whatever the sample alpha radioactivity, the presence of iron inhibits the oxidizing dissolution of UO2 and leads to low uranium concentrations (between 4 × 10-10 and 4 × 10-9 M), through a reactional mechanism located in the very first microns of the UO2/water reactional interface. The mechanism involves consumption of oxidizing species, in particular of H2O2 by Fe2+ at the precise place where these species are produced, and is accompanied by the precipitation of an akaganeite-type Fe3+ hydroxide on the surface. The higher the radioactivity of the samples, the greater the precipitation induced. Modeling has been developed, coupling chemistry with transport and based on the main reactional mechanisms identified, which enables accurate reproduction of the mineralogy of the system under study, giving the nature of the phases under observation as well as the location of their precipitation. Obviously without excluding a potential contribution from the hydrogen produced by the anoxic corrosion of the iron foil, this study has shown that iron plays a major role in this oxidizing dissolution inhibition process for the system investigated (localized alpha radiolysis). This inhibitor effect associated with iron is therefore strongly dependent on the location of the redox front, which is found on the surface in the case of alpha irradiation UO2/water reactional interface.
NASA Astrophysics Data System (ADS)
Aburada, Tomohiro
2011-12-01
The effects and mechanistic roles of a minor alloying element, Ni, on the localized corrosion behavior were explored by studying (Al75Cu 17Mg8)97Ni3 and Al70Cu 18Mg12 amorphous alloys. To explore the minor alloying element limited to the outer surface layers, the corrosion behavior of Al70Cu 18Mg12 amorphous alloy in solutions with and without Ni 2+ was also studied. Both Ni alloying and Ni2+ in solution improved the localized corrosion resistance of the alloys by ennobling the pitting and repassivation potentials. Pit growth by the selective dissolution of Al and Mg was also suppressed by Ni alloying. Remaining Cu and Ni reorganized into a Cu-rich polycrystalline nanoporous structure with continuous ligaments in pits. The minor Ni alloying and Ni2+ in solution suppressed the coarsening of the ligaments in the dealloyed nanoporous structure. The presence of relatively immobile Ni atoms at the surface suppressed the surface diffusion of Cu, which reduced the coarsening of the nanoporous structure, resulting in the formation of 10 to 30 nm wide Cu ligaments. Two mechanistic roles of minor alloying elements in the improvement of the pitting corrosion resistance of the solid solution alloys are elucidated. The first role is the suppression of active dissolution by altering the atomic structure. Ni in solid solution formed stronger bonds with Al, and reduces the probability of weaker Al-Al bonds. The second role is to hinder dissolution by producing a greater negative shift of the true interfacial potential at the dissolution front under the dealloyed layer due to the greater Ohmic resistance through the finer porous structure. These effects contributed to the elevation of pitting potentials by ennobling the applied potential required to produce enough dissolution for the stabilization of pits. Scientifically, this thesis advances the state of understanding of alloy dissolution, particularly the role of minor alloying elements on preferential oxidation at the atomic, nanometer, and micrometer scales. Technological implementations of the findings of the research are also discussed, including a new route to synthesize nanoporous materials with tunable porosity and new corrosion mitigation strategies for commercial Al-based alloys containing the detrimental Al2CuMg phase.
Hydrogen suppresses UO 2 corrosion
NASA Astrophysics Data System (ADS)
Carbol, Paul; Fors, Patrik; Gouder, Thomas; Spahiu, Kastriot
2009-08-01
Release of long-lived radionuclides such as plutonium and caesium from spent nuclear fuel in deep geological repositories will depend mainly on the dissolution rate of the UO 2 fuel matrix. This dissolution rate will, in turn, depend on the redox conditions at the fuel surface. Under oxidative conditions UO 2 will be oxidised to the 1000 times more soluble UO 2.67. This may occur in a repository as the reducing deep groundwater becomes locally oxidative at the fuel surface under the effect of α-radiolysis, the process by which α-particles emitted from the fuel split water molecules. On the other hand, the groundwater corrodes canister iron generating large amounts of hydrogen. The role of molecular hydrogen as reductant in a deep bedrock repository is questioned. Here we show evidence of a surface-catalysed reaction, taking place in the H 2-UO 2-H 2O system where molecular hydrogen is able to reduce oxidants originating from α-radiolysis. In our experiment the UO 2 surface remained stoichiometric proving that the expected oxidation of UO 2.00 to UO 2.67 due to radiolytic oxidants was absent. As a consequence, the dissolution of UO 2 stopped when equilibrium was reached between the solid phase and U 4+ species in the aqueous phase. The steady-state concentration of uranium in solution was determined to be 9 × 10 -12 M, about 30 times lower than previously reported for reducing conditions. Our findings show that fuel dissolution is suppressed by H 2. Consequently, radiotoxic nuclides in spent nuclear fuel will remain immobilised in the UO 2 matrix. A mechanism for the surface-catalysed reaction between molecular hydrogen and radiolytic oxidants is proposed.
NASA Astrophysics Data System (ADS)
Ryabchikov, Yu. V.; Al-Kattan, A.; Chirvony, V.; Sanchez-Royo, J. F.; Sentis, M.; Timoshenko, V. Yu.; Kabashin, A. V.
2017-02-01
Femtosecond laser fragmentation from preliminarily prepared water-dispersed Si microcolloids was used to synthesize bare (ligand-free) spherical silicon nanoparticles (Si-NPs) with low size dispersion and controllable mean size from a few nm to several tens of nm. In order to control the oxidation state of Si-NPs, the fragmentation was performed in normal oxygen-saturated water (oxygen-rich conditions) or in water disoxygenated by pumping with noble gases (Ag, He) before and during the experiment (oxygen-free conditions). XPS and TEM studies revealed that Si-NPs were composed of Si nanocrystals with inclusions of silicon oxide species, covered by SiOx (1 < x < 2) shell, while the total oxide content depended whether Si-NPs were prepared in oxygen-rich or oxygen-free conditions. When placed into a dialysis box, waterdispersed Si-NPs rapidly dissolved, which was evidenced by TEM data. In this case, NPs prepared under oxygen-rich conditions demonstrated much faster dissolution kinetics and their complete disappearance after 7-10 days, while the dissolution process of less oxidized counterparts could last much longer (25-30 days). Much fast dissolution kinetics of more oxidized Si-NPs was attributed to more friable structure of nanoparticle core due to the presence of numerous oxidation-induced defects. Laser-synthesized Si-NPs are of paramount importance for biomedical applications.
Research on rechargeable oxygen electrodes
NASA Technical Reports Server (NTRS)
Giner, J.; Malachesky, P. A.; Holleck, G.
1971-01-01
Studies were carried out on a number of factors which may influence the behavior of the platinum electrocatalyst of oxygen electrodes for use in rechargeable metal-oxygen batteries or hydrogen-oxygen fuel cells. The effects of pretreatments for various potentials and added ionic species, which could be present in such systems, were studied with reguard to: (1) the state of surface oxidation, (2) platinum dissolution, (3) the kinetics of oxygen evolution and reduction (including the role of hydrogen peroxide), and (4) changes in porous electrode structure. These studies were carried out on smooth platinum, platinized platinum, and Teflon-bonded platinum black electrodes in carefully purified electrolyte solutions. The main factors which appear to affect rechargeable oxygen electrode performance and life are: (1) the buildup of a refractory anodic layer on extended cycling, and (2) the dissolution of platinum.
Microbial control of mineral–groundwater equilibria:Macroscale to microscale
Bennett, Philip C.; Hiebert, Franz K.; Roger, Jennifer Roberts
2000-01-01
macroscaleprocesses that perturb general groundwater chemistry and therefore mineral–water equilibria; and microscale interactions, where attached organisms locally perturb mineral–water equilibria, potentially releasing limiting trace nutrients from the dissolving mineral.In the contaminated unconfined glacio-fluvial aquifer near Bemidji, Minnesota, USA, carbonate chemistry is influenced primarily at the macroscale. Under oxic conditions, respiration by native aerobic heterotrophs produces excess carbon dioxide that promotes calcite and dolomite dissolution. Aerobic microorganisms do not colonize dolomite surfaces and few occur on calcite. Within the anoxic groundwater, calcite overgrowths form on uncolonized calcite cleavage surfaces, possibly due to the consumption of acidity by dissimilatory iron-reducing bacteria. As molecular oxygen concentration increases downgradient of the oil pool, aerobes again dominate and residual hydrocarbons and ferrous iron are oxidized, resulting in macroscale carbonate-mineral dissolution and iron precipitation.
Yang, Lin; Zhen, Shu Jun; Li, Yuan Fang; Huang, Cheng Zhi
2018-06-14
Graphene oxide (GO) exhibits distinctive Raman scattering features for its high frequency D (disordered) and tangential modes (G-band), which are characteristically sharp at 1580 cm-1 and 1350 cm-1, respectively, but are too weak for sensitive quantitation purposes. By depositing silver nanoparticles on the surface of GO in this contribution, both D and G bands of GO become enhanced. The enzyme label of this method controls the dissolution of silver nanoparticles on the surface of GO through hydrogen peroxide which is produced by the oxidation of the enzyme substrate. With the dissolution of the silver nanoparticles a greatly decreased SERS signal of GO was obtained. This strategy involves dual signal amplification of the enzyme and nanocomposites to improve the detection sensitivity. As a proof of concept, prostate specific antigen (PSA), a biomarker for prostate cancer, is successfully detected as a target by forming a sandwich structure in immunoassay. The SERS immunoassay possesses excellent analytical performance in the range 0.5 pg mL-1 to 500 pg mL-1 with a limit of detection of 0.23 pg mL-1, making the detection of PSA serum samples from prostate cancer patients satisfactory, demonstrating that the sensitive enzyme-assisted dissolved AgNPs SERS immunoassay of PSA has potential applications in clinical diagnosis.
Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991
Tribble, Gordon W.
1997-01-01
Ground water on Kwajalein Island is an important source of drinking water, particularly during periods of low rainfall. Fresh ground water is found as a thin lens underlain by saltwater. The concentration of dissolved ions increases with depth below the water table and proximity to the shoreline as high-salinity seawater mixes with fresh ground water. The maximum depth of the freshwater lens is 37 ft. Chloride is assumed to be non-reactive under the range of geochemical conditions on the atoll. The concentration of chloride thus is used as a conservative constituent to evaluate freshwater-saltwater mixing within the aquifer. Concentrations of sodium and for the most part, potassium and sulfate, also appear to be determined by conservative mixing between saltwater and rain. Concentrations of calcium, magnesium, and strontium are higher than expected from conservative mixing; these higher concentrations are a result of the dissolution of carbonate minerals. An excess in dissolved inorganic carbon results from carbonate-mineral dissolution and from the oxidation of organic matter in the aquifer; the stoichiometric difference between excess dissolved inorganic carbon and excess bivalent cations is used as a measure of the amount of organic-matter oxidation. Organic-matter oxidation also is indicated by the low concentration of dissolved oxygen, high concentrations of nutrients, and the presence of hydrogen sulfide in many of the water samples. Low levels of dissolved oxygen indicate oxic respiration, and sulfate reduction is indicated by hydrogen sulfide. The amount of dissolved inorganic carbon released during organic-matter oxidation is nearly equivalent to the amount of carbonate-mineral dissolution. Organic-matter oxidation and carbonate-mineral dissolution seem to be most active either in the unsaturated zone or near the top of the water table. The most plausible explanation is that high amounts of oxic respiration in the unsaturated zone generate carbon dioxide, which causes carbonate minerals to dissolve. Ground water contaminated by petroleum hydrocarbons had the highest levels of mineral dissolution and organic respiration (including sulfate reduction), indicating that bacteria are oxidizing the contaminants.
AFS-2 FLOWSHEET MODIFICATIONS TO ADDRESS THE INGROWTH OF PU(VI) DURING METAL DISSOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapse, K.; Rudisill, T.; O'Rourke, P.
2014-07-02
In support of the Alternate Feed Stock Two (AFS-2) PuO{sub 2} production campaign, Savannah River National Laboratory (SRNL) conducted a series of experiments concluding that dissolving Pu metal at 95°C using a 6–10 M HNO{sub 3} solution containing 0.05–0.2 M KF and 0–2 g/L B could reduce the oxidation of Pu(IV) to Pu(VI) as compared to dissolving Pu metal under the same conditions but at or near the boiling temperature. This flowsheet was demonstrated by conducting Pu metal dissolutions at 95°C to ensure that PuO{sub 2} solids were not formed during the dissolution. These dissolution parameters can be used formore » dissolving both Aqueous Polishing (AP) and MOX Process (MP) specification materials. Preceding the studies reported herein, two batches of Pu metal were dissolved in the H-Canyon 6.1D dissolver to prepare feed solution for the AFS-2 PuO{sub 2} production campaign. While in storage, UV-visible spectra obtained from an at-line spectrophotometer indicated the presence of Pu(VI). Analysis of the solutions also showed the presence of Fe, Ni, and Cr. Oxidation of Pu(IV) produced during metal dissolution to Pu(VI) is a concern for anion exchange purification. Anion exchange requires Pu in the +4 oxidation state for formation of the anionic plutonium(IV) hexanitrato complex which absorbs onto the resin. The presence of Pu(VI) in the anion feed solution would require a valence adjustment step to prevent losses. In addition, the presence of Cr(VI) would result in absorption of chromate ion onto the resin and could limit the purification of Pu from Cr which may challenge the purity specification of the final PuO{sub 2} product. Initial experiments were performed to quantify the rate of oxidation of Pu(IV) to Pu(VI) (presumed to be facilitated by Cr(VI)) as functions of the HNO{sub 3} concentration and temperature in simulated dissolution solutions containing Cr, Fe, and Ni. In these simulated Pu dissolutions studies, lowering the temperature from near boiling to 95 °C reduced the oxidation rate of Pu(IV) to Pu(VI). For 8.1 M HNO{sub 3} simulated dissolution solutions, at near boiling conditions >35% Pu(VI) was present in 50 h while at 95 °C <10% Pu(VI) was present at 50 h. At near boiling temperatures, eliminating the presence of Cr and varying the HNO{sub 3} concentration in the range of 7–8.5 M had little effect on the rate of conversion of Pu(IV) to Pu(VI). HNO{sub 3} oxidation of Pu(IV) to Pu(VI) in a pure solution has been reported previously. Based on simulated dissolution experiments, this study concluded that dissolving Pu metal at 95°C using a 6 to 10 M HNO{sub 3} solution 0.05–0.2 M KF and 0–2 g/L B could reduce the rate of oxidation of Pu(IV) to Pu(VI) as compared to near boiling conditions. To demonstrate this flowsheet, two small-scale experiments were performed dissolving Pu metal up to 6.75 g/L. No Pu-containing residues were observed in the solutions after cooling. Using Pu metal dissolution rates measured during the experiments and a correlation developed by Holcomb, the time required to completely dissolve a batch of Pu metal in an H-Canyon dissolver using this flowsheet was estimated to require nearly 5 days (120 h). This value is reasonably consistent with an estimate based on the Batch 2 and 3 dissolution times in the 6.1D dissolver and Pu metal dissolution rates measured in this study and by Rudisill et al. Data from the present and previous studies show that the Pu metal dissolution rate decreases by a factor of approximately two when the temperature decreased from boiling (112 to 116°C) to 95°C. Therefore, the time required to dissolve a batch of Pu metal in an H-Canyon dissolver at 95°C would likely double (from 36 to 54 h) and require 72 to 108 h depending on the surface area of the Pu metal. Based on the experimental studies, a Pu metal dissolution flowsheet utilizing 6–10 M HNO{sub 3} containing 0.05–0.2 M KF (with 0–2 g/L B) at 95°C is recommended to reduce the oxidation of Pu(IV) to Pu(VI) as compared to near boiling conditions. The time required to completely dissolve a batch of Pu metal will increase, however, by approximately a factor of two as compared to initial dissolutions at near boiling (assuming the KF concentration is maintained at nominally 0.1 M). By lowering the temperature to 95°C under otherwise the same operating parameters as previous dissolutions, the Pu(VI) concentration should not exceed 15% after a 120 h heating cycle. Increasing the HNO{sub 3} concentration and lowering Pu concentration are expected to further limit the amount of Pu(VI) formed.« less
Smaran, Kumar Sai; Shibata, Sae; Omachi, Asami; Ohama, Ayano; Tomizawa, Eika; Kondo, Toshihiro
2017-10-19
The electrochemical quartz crystal microbalance technique was employed to study the initial stage of the electrodeposition and dissolution of lithium utilizing three kinds of electrolyte solutions such as LiPF 6 , LiTFSI, or LiFSI in tetraglyme. The native-SEI (solid-electrolyte interphase) formed by a potential prescan before lithium deposition/dissolution in all three solutions. Simultaneous additional SEI (add-SEI) deposition and its dissolution with lithium deposition and dissolution, respectively, were observed in LiPF 6 and LiTFSI. Conversely, the add-SEI dissolution with lithium deposition and its deposition with lithium dissolution were observed in LiFSI. Additional potential precycling resulted in the accumulation of a "pre-SEI" layer over the native-SEI layer in all of the solutions. With the pre-SEI, only lithium deposition/dissolution were significantly observed in LiTFSI and LiFSI. On the basis of the potential dependences of the mass and resistance changes, the anion-dependent effects of such a pre-SEI layer presence/absence on the lithium deposition/dissolution processes were discussed.
Anaerobic microbial dissolution of lead and production of organic acids
Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.
1988-01-01
The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo
2015-06-24
Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmissionmore » electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.« less
Hippeli, S; Dornisch, K; Wiethege, T; Gillissen, A; Müller, K M; Elstner, E F
2001-01-01
In this study we investigated relationships between redox properties and biodurability of crocidolite asbestos fibres and three different man-made vitreous fibres (MMVF): traditional stone wool fibres (MMVF 21), glass fibres (MMVF 11) and refractory ceramic fibres (RCF). Each fibre type was incubated up to 22 weeks in four different incubation media: gamble solution (GS) pH 5.0 and pH 7.4, representing blood plasma without proteins, and surfactant-like solution (SLS) pH 5.0 and pH 7.4. During incubation time aliquots of incubation mixtures were removed and analysed in a biochemical model reaction, mimicking activated phagocytes. In addition, changes of fibre morphology and chemical composition were examined using SEM- and EDX-technology. In the presence of crocidolite asbestos fibres and MMVF 21 the formation of OH*-radicals according to the Haber-Weiss sequence could be demonstrated, whereas MMVF 11 and RCF showed no reactivity. Crocidolite asbestos fibres exhibited a significant higher activity compared with the stone wool fibres at the onset of incubation. The oxidative capacities of these fibre types were shown to depend on both specific surface area and iron content. The oxidative potentials of crocidolite asbestos fibres as well as MMVF 21 were not constant during incubation over several weeks in each incubation medium. The reactivities showed sinoidal curves including reactivities much higher than those at the onset of incubation time. These irregular changes of oxidative capacity may be explained by changes of the redox state of fibre surface-complexed iron. Furthermore our results showed clear differences between incubation of fibres in GS and SLS, respectively, indicating that phospholipids play an important part in fibre dissolution behaviour and oxidative reactivity. In conclusion we suggest, that biodurability testing procedures should not exclusively concentrate on dissolution rates of fibres. They should include fibre characteristics concerning known pathogenic mechanisms to evaluate the real toxic potential of the fibre type looking at. Secondly we suggest, that phospholipids should be constituents of incubation liquids used for standardised fibre biodurability test procedures thus representing more realistic incubation conditions.
Jarosite dissolution rates in perchlorate brine
NASA Astrophysics Data System (ADS)
Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.
2018-02-01
Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures <250 K, and may exist as metastable or stable liquids for extended time periods, even under current Mars surface conditions. Therefore, jarosite-bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.
Characterization And Dissolution Properties Of Ruthenium Oxides
Ruthenium oxides (RuO2•1.10H2O and RuO2) have been synthesized by forced hydrolysis and oxidation of ruthenium chloride. The resulting materials were extensively characterized to determine the crystallinity, surface area, and ruthenium oxidation ...
Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S
2013-06-01
Silver vanadium oxide (Ag 2 V 4 O 11 , SVO) has enjoyed widespread commercial success over the past 30 years as a cathode material for implantable cardiac defibrillator (ICD) batteries. Recently, silver vanadium phosphorous oxide (Ag 2 VO 2 PO 4 , SVPO) has been studied as possibly combining the desirable thermal stability aspects of LiFePO 4 with the electrical conductivity of SVO. Further, due to the noted insoluble nature of most phosphate salts, a lower material solubility of SVPO relative to SVO is anticipated. Thus, the first vanadium dissolution studies of SVPO in battery electrolyte solutions are described herein. The equilibrium solubility of SVPO was ~5 times less than SVO, with a rate constant of dissolution ~3.5 times less than that of SVO. The vanadium dissolution in SVO and SVPO can be adequately described with a diffusion layer model, as supported by the Noyes-Whitney equation. Cells prepared with vanadium-treated anodes displayed higher AC impedance and DC resistance relative to control anodes. These data support the premise that SVPO cells are likely to exhibit reduced cathode solubility and thus less affected by increased cell resistance due to cathode solubility compared to SVO based cells.
Microbial exudate promoted dissolution and transformation of chromium containing minerals
NASA Astrophysics Data System (ADS)
Saad, E. M.; Sun, J.; Tang, Y.
2015-12-01
Because of its utility in many industrial processes, chromium has become the second most common metal contaminant in the United States. The two most common oxidation states of chromium in nature are Cr(III), which is highly immobile, and Cr(VI), which is highly mobile and toxic. In both natural and engineered environments, the most common remediation of Cr(VI) is through reduction, which results in chromium sequestration in the low solubility mixed Cr(III)-Fe(III) (oxy)hydroxide phases. Consequently, the stability of these minerals must be examined to assess the fate of chromium in the subsurface. We examined the dissolution of mixed Cr(III)-Fe(III) (oxy)hydroxides in the presence of common microbial exudates, including the siderophore desferrioxamine B (DFOB; a common organic ligand secreted by most microbes with high affinity for ferric iron and other trivalent metal ions) and oxalate (a common organic acid produced by microbes). The solids exhibited incongruent dissolution with preferential leaching of Fe from the solid phase. Over time, this leads to a more Cr rich mineral, which is known to be more soluble than the corresponding mixed mineral phase. We are currently investigating the structure of the reacted mineral phases and soluble Cr(III) species, as well as the potential oxidation and remobilization of the soluble Cr species. Results from this study will provide insights regarding the long term transport and fate of chromium in the natural environment in the presence of microbial activities.
The oxidative dissolution of sulfide minerals leading to acid mine drainage (AMD) involves a complex interplay between microorganisms, solutions, and mineral surfaces. Consequently, models that link molecular level reactions and the microbial communities that ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulin, V. P.; Ulin, N. V.; Soldatenkov, F. Yu., E-mail: f.soldatenkov@mail.ioffe.ru
The interaction of heavily doped p- and n-type Si crystals with hydrofluoric acid in the dark with and without contact with metals having greatly differing work functions (Ag and Pd) is studied. The dependences of the dissolution rates of Si crystals in HF solutions that contain oxidizing agents with different redox potentials (FeCl{sub 3}, V{sub 2}O{sub 5} and CrO{sub 3}) on the type and level of silicon doping are determined. Analysis of the experimental data suggests that valence-band holes in silicon are not directly involved in the anodic reactions of silicon oxidation and dissolution and their generation in crystals doesmore » not limit the rate of these processes. It is also shown that the character and rate of the chemical process leading to silicon dissolution in HF-containing electrolytes are determined by the interfacial potential attained at the semiconductor–electrolyte interface. The mechanism of electrochemical pore formation in silicon crystals is discussed in terms of selfconsistent cooperative reactions of nucleophilic substitution between chemisorbed fluorine anions and coordination- saturated silicon atoms in the crystal subsurface layer. A specific feature of these reactions for silicon crystals is that vacant nonbonding d{sup 2}sp{sup 3} orbitals of Si atoms, associated with sixfold degenerate states corresponding to the Δ valley of the conduction band, are involved in the formation of intermediate complexes. According to the suggested model, the pore-formation process spontaneously develops in local regions of the interface under the action of the interfacial potential in the adsorption layer and occurs as a result of the detachment of (SiF{sub 2}){sub n} polymer chains from the crystal. Just this process leads to the preferential propagation of pores along the <100> crystallographic directions. The thermodynamic aspects of pore nucleation and the effect of the potential drop across the interface, conduction type, and free-carrier concentration in the crystal on the pore size and structure are discussed. The concepts developed in the study can consistently account for experimental facts characterizing the etching of silicon crystals with various electrical parameters under various conditions providing the anodic polarization of crystals in HF-containing solutions.« less
Dissolution of Nickel Ferrite in Aqueous Solutions Containing Oxalic Acid and Ferrous Salts.
Figueroa, Carlos A.; Sileo, Elsa E.; Morando, Pedro J.; Blesa, Miguel A.
2000-05-15
The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate-oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni(1.06)Fe(1.96)O(4). The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation; the best fitting corresponds to K(1)(ads)=25.6 mol(-1) dm(-3) and k(1)(max)=9.17x10(-7) mol m(-2) s(-1) and K(2)(ads)=37.1x10(3) mol(-1) dm(-3) and k(2)(max)=62.3x10(-7) mol m(-2) s(-1), respectively. In the second stage, Langmuir-Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite, with K(1)(ads)=20.8 mol(-1) dm(3) and K(2)(ads)=1.16x10(5) mol(-1) dm(3). For iron, k(1)(max)=1.02x10(-7) mol of Fe m(-2) s(-1) and k(2)(max)=2.38x10(-7) mol of Fe m(-2) s(-1); for nickel, the rate constants k(1)(max) and k(2)(max) are 2.4 and 1.79 times smaller, respectively. The factor 1.79 agrees nicely with the stoichiometric ratio, whereas the factor 2.4 implies the accumulation of some nickel in the residual particles. The rate of nickel dissolution in oxalic acid is higher than that in bunsenite by a factor of 8, whereas hematite is more reactive by a factor of 9 (in the absence of Fe(II)) and 27 (in the presence of Fe (II)). It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Copyright 2000 Academic Press.
A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Alan; Colbow, Vesna; Harvey, David
2013-01-01
The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stressmore » test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.« less
Oxidative Dissolution of Arsenopyrite by Mesophilic and Moderately Thermophilic Acidophiles †
Tuovinen, Olli H.; Bhatti, Tariq M.; Bigham, Jerry M.; Hallberg, Kevin B.; Garcia, Oswaldo; Lindström, E. Börje
1994-01-01
The purpose of this work was to determine solution- and solid-phase changes associated with the oxidative leaching of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans and a moderately thermoacidophilic mixed culture. Jarosite [KFe3(SO4)2(OH)6], elemental sulfur (S0), and amorphous ferric arsenate were detected by X-ray diffraction as solid-phase products. The oxidation was not a strongly acid-producing reaction and was accompanied by a relatively low redox level. The X-ray diffraction lines of jarosite increased considerably when ferrous sulfate was used as an additional substrate for T. ferroxidans. A moderately thermoacidophilic mixed culture oxidized arsenopyrite faster at 45°C than did T. ferroxidans at 22°C, and the oxidation was accompanied by a nearly stoichiometric release of Fe and As. The redox potential was initially low but subsequently increased during arsenopyrite oxidation by the thermoacidophiles. Jarosite, S0, and amorphous ferric arsenate were also formed under these conditions. PMID:16349379
Gui, Daxiang; Dai, Xing; Zheng, Tao; Wang, Xiangxiang; Silver, Mark A; Chen, Lanhua; Zhang, Chao; Diwu, Juan; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao
2018-02-05
The first heterobimetallic uranium(IV)/vanadium(III) phosphite compound, Na 2 UV 2 (HPO 3 ) 6 (denoted as UVP), was synthesized via an in situ redox-active hydrothermal reaction. It exhibits superior hydrolytic and antioxidant stability compared to the majority of structures containing low-valent uranium or vanadium, further elucidated by first-principles simulations, and therefore shows potential applications in nuclear waste management.
Dissolution of a metal oxide film during titanium carbide synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloshenko, V.N.; Bokii, V.A.; Borovinskaya, I.P.
1985-05-01
Oxygen is most difficult to remove during combustion of the mixture Ti + C. Its fundamental mass is in two states in the initial charge: part of the oxygen is dissolved in the titanium particles; the rest is bound in the metal oxide film (an insignificant part of the oxygen is in the adsorbed state in the carbon and titanium particles). On the basis of the results of vacuum annealing of specimens from a Ti + C mixture, the possibility is shown in this paper for dissolution of the intrinsic oxide film by titanium particles during residency of these particlesmore » in the heating zone of the combustion wave.« less
Tang, Jianwu; Whittecar, G Richard; Johannesson, Karen H; Daniels, W Lee
2004-01-01
Backfills of dredged sediments onto a former sand and gravel mine site in Charles City County, VA may have the potential to contaminate local groundwater. To evaluate the mobility of trace elements and to identify the potential contaminants from the dredged sediments, a sequential extraction scheme was used to partition trace elements associated with the sediments from the local aquifer and the dredged sediments into five fractions: exchangeable, acidic, reducible, oxidizable, and residual phases. Sequential extractions indicate that, for most of the trace elements examined, the residual phases account for the largest proportion of the total concentrations, and their total extractable fractions are mainly from reducible and oxidizable phases. Only Cd, Pb, and Zn have an appreciable extractable proportion from the acidic phase in the filled dredged sediments. Our groundwater monitoring data suggest that the dredged sediments are mainly subject to a decrease in pH and a series of oxidation reactions, when exposed to the atmosphere. Because the trace elements released by carbonate dissolution and the oxidation (e.g., organic matter degradation, iron sulfide and, ammonia oxidation) are subsequently immobilized by sorption to iron, manganese, and aluminum oxides, no potential contaminants to local groundwater are expected by addition of the dredged sediments to this site.
On the Existence of Our Metals-Based Civilization: I. Phase Space Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.D. Macdonald
2005-06-22
The stability of the barrier layers of bilayer passive films that form on metal and alloy surfaces, when in contact with oxidizing aqueous environments, is explored within the framework of the Point Defect Model (PDM) using phase-space analysis (PSA), in which the rate of growth of the barrier layer into the metal, (dL{sup +}/dt), and the barrier layer dissolution rate, (dL{sup -}/dt), are plotted simultaneously against the barrier layer thickness. A point of intersection of dL{sup -}/dt with dL{sup +}/dt indicates the existence of a metastable barrier layer with a steady state thickness greater than zero. If dL{sup -}/dt >more » (dL{sup +}/dt){sub L=0}, where the latter quantity is the barrier layer growth rate at zero barrier layer thickness, the barrier layer cannot exist, even as a metastable phase, as the resulting thickness would be negative. Under these conditions, the surface is depassivated and the metal may corrode at a rapid rate. Depassivation may result from a change in the oxidation state of the cation upon dissolution of the barrier layer, such that the dissolution rate becomes highly potential dependent (as in the case of transpassive dissolution of chromium-containing alloys, for example, in which the reaction Cr{sub 2}O{sub 3} + 5H{sub 2}O {yields} 2CrO{sub 4}{sup 2-} + 10H {sup +} + 6e{sup -} results in the destruction of the film), or by the action of some solution-phase species (e.g., H{sup +}, Cl{sup -}) that enhances the dissolution rate to the extent that dL{sup -}/dt > (dL{sup +}/dt){sub L=0}. The boundaries for depassivation may be plotted in potential-pH space to develop Kinetic Stability Diagrams (KSDs) as alternatives to the classical Pourbaix diagrams for describing the conditions under which metals or alloys exist in contact with an aqueous environment. The advantage of KSDs is that they provide kinetic descriptions of the state of a metal or alloy that is in much closer concert with the kinetic phenomenon of passivity and depassivation than are equilibrium thermodynamic diagrams. Thus, KSDs more accurately account for the limits of passivity in highly acidic systems, where acid depassivation occurs, and at high potentials, where transition to the transpassive state may occur in some systems. In any event, phase space analysis of the PDM permits specification of the conditions over which reactive metals will remain passive in contact with aqueous systems and hence of the conditions that must be met for the existence of our metals-based civilization.« less
Method for dissolving plutonium dioxide
Tallent, Othar K.
1978-01-01
The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.
Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction
Choi, Soo-Jin; Choy, Jin-Ho
2014-01-01
Biokinetic studies of zinc oxide (ZnO) nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins. PMID:25565844
Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa
NASA Astrophysics Data System (ADS)
Looney, E. E.; Laine, H. S.; Youssef, A.; Jensen, M. A.; LaSalvia, V.; Stradins, P.; Buonassisi, T.
2017-09-01
In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 ± 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.
Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, E. E.; Laine, H. S.; Youssef, A.
In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 +/- 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energymore » is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.« less
Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies
NASA Astrophysics Data System (ADS)
Meißner, Tobias; Oelschlägel, Kathrin; Potthoff, Annegret
2014-08-01
The increasing use of zinc oxide (ZnO) nanoparticles in sunscreens and other cosmetic products demands a risk assessment that has to be done in toxicological studies. Such investigations require profound knowledge of the behavior of ZnO in cell culture media. The current study was performed to get well-dispersed suspensions of a hydrophilic (ZnO-hydro) and a lipophilic coated (ZnO-lipo) ZnO nanomaterial for use in in vitro tests. Therefore, systematic tests were carried out with common dispersants (phosphate, lecithin, proteins) to elucidate chemical and physical changes of ZnO nanoparticles in water and physiological solutions (PBS, DMEM). Non-physiological stock suspensions were prepared using ultrasonication. Time-dependent changes of pH, conductivity, zeta potential, particle size and dissolution were recorded. Secondly, the stock suspensions were added to physiological media with or without albumin (BSA) or serum (FBS), to examine characteristics such as agglomeration and dissolution. Stable stock suspensions were obtained using phosphate as natural and physiological electrostatic stabilizing agent. Lecithin proved to be an effective wetting agent for ZnO-lipo. Although the particle size remained constant, the suspension changed over time. The pH increased as a result of ZnO dissolution and formation of zinc phosphate complexes. The behavior of ZnO in physiological media was found to depend strongly on the additives used. Applying only phosphate as additive, ZnO-hydro agglomerated within minutes. In the presence of lecithin or BSA/serum, agglomeration was inhibited. ZnO dissolution was higher under physiological conditions than in the stock suspension. Serum especially promoted this process. Using body-related dispersants (phosphate, lecithin) non-agglomerating stock suspensions of hydrophilic and lipophilic ZnO were prepared as a prerequisite to perform meaningful toxicological investigation. Both nanomaterials showed a non-negligible dissolution behavior that strongly depended on the surrounding conditions. Agglomeration of ZnO particles in physiological media is a complex function of particle coating, used dispersants and serum proteins if supplemented. The present study gives a clear guideline how to prepare and handle suspensions with ZnO for in vitro testing and allows the correlation between the chemical-physical particles behavior with findings from toxicological tests.
Zou, Xiaoyan; Li, Penghui; Lou, Jie; Fu, Xiaoyan; Zhang, Hongwu
2017-11-01
Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Ag dis ) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag + by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag 2 S due to the formation of NOM-adsorbed layers, the reduction of Ag + by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Ag dis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious environmental risks than that in oxygenated freshwaters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants
Losa-Adams, Elisabeth; F.-Dávila, Alfonso; Gago-Duport, Luis
2014-01-01
Summary The Fenton reaction is the most widely used advanced oxidation process (AOP) for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc) as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2) particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe3+ into Fe2+ and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm) with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L) and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites. PMID:24991522
Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants.
Gil-Lozano, Carolina; Losa-Adams, Elisabeth; F-Dávila, Alfonso; Gago-Duport, Luis
2014-01-01
The Fenton reaction is the most widely used advanced oxidation process (AOP) for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc) as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2) particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe(3+) into Fe(2+) and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm) with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L) and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites.
Liu, Quan; Fassihi, Reza
2008-02-04
A composite gastro-retentive matrix for zero-order delivery of highly soluble drug alfuzosin hydrochloride (10mg) has been designed and characterized. Two systems containing polyethylene oxide (PEO), hydroxypropylmethylcellulose (HPMC), sodium bicarbonate, citric acid and polyvinyl pyrrolidone were dry blended and compressed into triple layer and bi-layer composite matrices. Dissolution studies using the USP 27 paddle method at 100 and 50rpm in pH 2.0 and 6.8 were performed using UV spectroscopy at 244nm, with automatic sampling over a 24h period using a marketed product as a reference to calculate the "f(2)" factor. Textural characteristics of each layer, the composite matrix as a whole, and floatation potential were determined under conditions similar to dissolution. Percent matrix swelling and erosion along with digital images were also obtained. Both systems proved to be effective in providing prolonged floatation, zero-order release, and complete disentanglement and erosion based on the analysis of data with "f(2)" of 68 and 71 for PEO and HPMC based systems, respectively. The kinetics of drug release, swelling and erosion, and dynamics of textural changes during dissolution for the designed composite systems offer a novel approach for developing gastro-retentive drug delivery system that has potential to enhance bioavailability and site-specific delivery to the proximal small intestine.
NASA Astrophysics Data System (ADS)
de Souza, Cláudio M. D.; Carneiro, Cristine E. A.; Baú, João Paulo T.; da Costa, Antonio C. S.; Ivashita, Flávio F.; Paesano, Andrea; di Mauro, Eduardo; de Santana, Henrique; Holm, Nils G.; Neubeck, Anna; Zaia, Cássia T. B. V.; Zaia, Dimas A. M.
2013-04-01
In the present work, the interactions between forsterite-91 with distilled water and forsterite-91 with artificial seawater were studied at two pHs (2.0 and 8.0) using different techniques. A large increase in pH was observed for samples incubated at an initially acidic pH (2.0) due to the dissolution of forsterite-91 in distilled water and artificial seawater. Thus, in acidic hydrothermal vents, an increase in the amount of hydrocarbons and magnetite should be expected due to the release of Fe(II). The pHPZC decreased and the pHIEP increased when forsterite-91 was treated with distilled water and artificial seawater. The ions from the artificial seawater had an effect on zeta potential. Scanning electron microscopy (SEM) images and X-ray diffractograms showed halite in the samples of forsterite-91 mixed with artificial seawater. The presence of halite or adsorption of ions on the surface of forsterite-91 could affect the synthesis of magnetite and hydrocarbons in hydrothermal vents, due to a decrease in the dissolution rates of forsterite-91. The dissolution of forsterite-91 yields low concentrations of Fe(III) and Mn(II) as detected by electron paramagnetic resonance (EPR) spectroscopy. Microanalysis of forsterite-91 showed a higher amount of Mn, with an oxidation that was likely not +II, as Mn in supernatant solutions was only detected by EPR spectroscopy after mixing with artificial seawater at pH 2.0. As Fe(III) and Mn(II) are catalyst constituents of magnetite and manganese oxide, respectively, their presence is important for synthesis in hydrothermal vents. Etch pits were observed only in the forsterite-91 sample mixed with distilled water at pH 8.0. Na, Cl, S, Ca and K were detected in the samples mixed with artificial seawater by SEM-EDS. Si, Mg, Fe and Al were detected in almost all supernatant samples due to forsterite-91 dissolution. Cr was not dissolved in the experiments, thus Cr in the mineral could serve as an effective catalyst for Fischer Tropsch Types (FTT) reactions in hydrothermal vent systems. X-ray diffractograms of the original forsterite-91 also showed peaks arising from zeolites and clinochlore. After the samples were treated with artificial seawater, X-ray diffractograms showed the dissolution of zeolite. Experiments should be performed in the natural environment to verify the potential for zeolites to act as a catalyst in hydrothermal vents.
PEP Support: Laboratory Scale Leaching and Permeate Stability Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.
2010-05-21
This report documents results from a variety of activities requested by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The activities related to caustic leaching, oxidative leaching, permeate precipitation behavior of waste as well as chromium (Cr) leaching are: • Model Input Boehmite Leaching Tests • Pretreatment Engineering Platform (PEP) Support Leaching Tests • PEP Parallel Leaching Tests • Precipitation Study Results • Cr Caustic and Oxidative Leaching Tests. Leaching test activities using the PEP simulant provided input to a boehmite dissolution model and determined the effect of temperature on mass loss during caustic leaching, the reaction rate constantmore » for the boehmite dissolution, and the effect of aeration in enhancing the chromium dissolution during caustic leaching. Other tests were performed in parallel with the PEP tests to support the development of scaling factors for caustic and oxidative leaching. Another study determined if precipitate formed in the wash solution after the caustic leach in the PEP. Finally, the leaching characteristics of different chromium compounds under different conditions were examined to determine the best one to use in further testing.« less
Anaerobic microbial dissolution of lead and production of organic acids
Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.
1987-04-16
The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.
Extraction of manganese from electrolytic manganese residue by bioleaching.
Xin, Baoping; Chen, Bing; Duan, Ning; Zhou, Changbo
2011-01-01
Extraction of manganese from electrolytic manganese residues using bioleaching was investigated in this paper. The maximum extraction efficiency of Mn was 93% by sulfur-oxidizing bacteria at 4.0 g/l sulfur after bioleaching of 9days, while the maximum extraction efficiency of Mn was 81% by pyrite-leaching bacteria at 4.0 g/l pyrite. The series bioleaching first by sulfur-oxidizing bacteria and followed by pyrite-leaching bacteria evidently promoted the extraction of manganese, witnessing the maximum extraction efficiency of 98.1%. In the case of sulfur-oxidizing bacteria, the strong dissolution of bio-generated sulfuric acid resulted in extraction of soluble Mn2+, while both the Fe2+ catalyzed reduction of Mn4+ and weak acidic dissolution of Mn2+ accounted for the extraction of manganese with pyrite-leaching bacteria. The chemical simulation of bioleaching process further confirmed that the acid dissolution of Mn2+ and Fe2+ catalyzed reduction of Mn4+ were the bioleaching mechanisms involved for Mn extraction from electrolytic manganese residues. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Surface-enhanced raman spectra studies on roughened Zn electrode in alkaline solutions].
Shen, Xiao-ying; Liu, Guo-kun; Gu, Ren-ao; Tian, Zhong-qun
2005-09-01
Electrochemical oxidation-reduction method was employed to roughen Zn electrode for obtaining SERS, and potential dependent surface enhanced Raman spectra (SERS) of roughened Zn electrode in KOH solution of different concentration wereobserved. The spectra of Zn electrode in various solutions had obvious differences which indicated the concentration of OH- had a great effect on the dissolution and passivation of zinc. Based on our experimental results, the authors attempt to analyse the behavior of zinc in alkaline and give the mechanism of its passivation.
NASA Astrophysics Data System (ADS)
Weaver, Robert M.; Hochella, Michael F.; Ilton, Eugene S.
2002-12-01
The complex interaction between Cr IIIaq and manganite (γ-MnOOH) was systematically studied at room temperature over a pH range of 3 to 6, and within a concentration range of 10 -4 to 10 -2 M CrOH 2+aq. Solution compositional changes during batch reactions were characterized by inductively coupled plasma spectroscopy and ultraviolet-visible spectrophotometry. The manganites were characterized before and after reaction with X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), high-resolution field-emission SEM, and energy-dispersive spectroscopy analysis. Fluid-cell atomic force microscopy was used to follow these metal-mineral interactions in situ. The reactions are characterized by (1) sorption of Cr III and the surface-catalyzed microprecipitation of Cr III-hydroxy hydrate on manganite surfaces, (2) the acidic dissolution of the manganite, and (3) the simultaneous reductive dissolution of manganite coupled with the oxidation of Cr IIIaq to highly toxic Cr VIaq. Cr III-hydroxy hydrate was shown to precipitate on the manganite surface while still undersaturated in bulk solution. The rate of manganite dissolution increased with decreasing pH due both to acid-promoted and Mn-reduction-promoted dissolution. Cr oxidation also increased in the lower pH range, this as a result of its direct redox coupling with Mn reduction. Neither Mn II nor Cr VI were ever detected on manganite surfaces, even at the maximum rate of their generation. At the highest pHs of this study, Cr IIIaq was effectively removed from solution to form Cr III-hydroxy hydrate on manganite surfaces and in the bulk solution, and manganite dissolution and Cr VIaq generation were minimized. All interface reactions described above were heterogeneous across the manganite surfaces. This heterogeneity is a direct result of the heterogeneous semiconducting nature of natural manganite crystals and is also an expression of the proximity effect, whereby redox processes on semiconducting surfaces are not limited to next nearest neighbor sites.
RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE
Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...
NASA Astrophysics Data System (ADS)
Brantley, S. L.; Gu, X.; Sullivan, P. L.; Kim, H.; Stinchcomb, G. E.; Lebedeva, M.; Balashov, V. N.
2016-12-01
To first order, weathering is the reaction of rocks with oxidants (oxygen, nitrate, etc.), acids (carbonic, sulfuric, and organic acids), and water. To explore weathering we have been studying the depth intervals in soils, saprolite, and weathering rock where mineral reactions are localized - "reaction fronts". We limit the study to ridges or catchments in climates where precipitation is greater than potential evapotranspiration. For example, in the Susquehanna Shale Hills Critical Zone Observatory, we observe reaction fronts that generally define very rough surfaces in 3D that mimic the land surface topography, although with lower relief. Overall, the fronts form nested curved surfaces. In Shale Hills, the deepest reaction fronts are oxidation of pyrite, and dissolution of carbonate. The carbonate is inferred to dissolve at least partly due to the sulfuric acid produced by the pyrite. In addition to pyrite, chlorite also starts to oxidize at the water table. We hypothesize that these dissolution and oxidation reactions open pores and cause microfracturing that open the rock to infiltration of advecting meteoric waters. At much shallower depths, illite is observed to dissolve. In Shale Hills, these reaction fronts - pyrite, carbonate, illite - separate over meters beneath the ridges. Such separated reaction fronts have also been observed in other fractured lithologies where oxidation is the deepest reaction and is associated with weathering-induced fractures. In contrast, in some massive mafic rocks, reaction fronts are almost co-located. By studying the geometry of reaction fronts, it may be possible to elucidate the relative importance of how oxygen cracks rocks; carbonic, organic, and sulfuric acids dissolve rocks; and water mobilizes rock materials during weathering.
Recycling of Magnesium Alloy Employing Refining and Solid Oxide Membrane (SOM) Electrolysis
NASA Astrophysics Data System (ADS)
Guan, Xiaofei; Zink, Peter A.; Pal, Uday B.; Powell, Adam C.
2013-04-01
Pure magnesium was recycled from partially oxidized 50.5 wt pct Mg-Al scrap alloy and AZ91 Mg alloy (9 wt pct Al, 1 wt pct Zn). Refining experiments were performed using a eutectic mixture of MgF2-CaF2 molten salt (flux). During the experiments, potentiodynamic scans were performed to determine the electrorefining potentials for magnesium dissolution and magnesium bubble nucleation in the flux. The measured electrorefining potential for magnesium bubble nucleation increased over time as the magnesium content inside the magnesium alloy decreased. Potentiostatic holds and electrochemical impedance spectroscopy were employed to measure the electronic and ionic resistances of the flux. The electronic resistivity of the flux varied inversely with the magnesium solubility. Up to 100 pct of the magnesium was refined from the Mg-Al scrap alloy by dissolving magnesium and its oxide into the flux followed by argon-assisted evaporation of dissolved magnesium and subsequently condensing the magnesium vapor. Solid oxide membrane electrolysis was also employed in the system to enable additional magnesium recovery from magnesium oxide in the partially oxidized Mg-Al scrap. In an experiment employing AZ91 Mg alloy, only the refining step was carried out. The calculated refining yield of magnesium from the AZ91 alloy was near 100 pct.
Interactions between magnetite and humic substances: redox reactions and dissolution processes.
Sundman, Anneli; Byrne, James M; Bauer, Iris; Menguy, Nicolas; Kappler, Andreas
2017-10-19
Humic substances (HS) are redox-active compounds that are ubiquitous in the environment and can serve as electron shuttles during microbial Fe(III) reduction thus reducing a variety of Fe(III) minerals. However, not much is known about redox reactions between HS and the mixed-valent mineral magnetite (Fe 3 O 4 ) that can potentially lead to changes in Fe(II)/Fe(III) stoichiometry and even dissolve the magnetite. To address this knowledge gap, we incubated non-reduced (native) and reduced HS with four types of magnetite that varied in particle size and solid-phase Fe(II)/Fe(III) stoichiometry. We followed dissolved and solid-phase Fe(II) and Fe(III) concentrations over time to quantify redox reactions between HS and magnetite. Magnetite redox reactions and dissolution processes with HS varied depending on the initial magnetite and HS properties. The interaction between biogenic magnetite and reduced HS resulted in dissolution of the solid magnetite mineral, as well as an overall reduction of the magnetite. In contrast, a slight oxidation and no dissolution was observed when native and reduced HS interacted with 500 nm magnetite. This variability in the solubility and electron accepting and donating capacity of the different types of magnetite is likely an effect of differences in their reduction potential that is correlated to the magnetite Fe(II)/Fe(III) stoichiometry, particle size, and crystallinity. Our study suggests that redox-active HS play an important role for Fe redox speciation within minerals such as magnetite and thereby influence the reactivity of these Fe minerals and their role in biogeochemical Fe cycling. Furthermore, such processes are also likely to have an effect on the fate of other elements bound to the surface of Fe minerals.
Electrochemical Applications in Metal Bioleaching.
Tanne, Christoph Kurt; Schippers, Axel
2017-12-10
Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified biohydrometallurgical processing. This chapter focuses on metal sulfide dissolution via bioleaching and does not include other biohydrometallurgical processes such as microbial metal recovery from solution.
Alves, Thais F R; das Neves Lopes, Franciely C C; Rebelo, Marcia A; Souza, Juliana F; da Silva Pontes, Katiusca; Santos, Carolina; Severino, Patricia; Junior, Jose M O; Komatsu, Daniel; Chaud, Marco V
2018-01-01
The design and development of an effective medicine are, however, often faced with a number of challenges. One of them is the close relationship of drug's bioavailability with solubility, dissolution rate and permeability. The use of curcumin's (CUR) therapeutic potential is limited by its poor water solubility and low chemical stability. The purpose was to evaluate the effect of polymer and solid dispersion (SD) preparation techniques to enhance the aqueous solubility, dissolution rate and stability of the CUR. The recent patents on curcumin SD were reported as (i) curcumin with polyvinylpyrrolidone (CN20071 32500 20071214, WO2006022012 and CN20151414227 20150715), (ii) curcumin-zinc/polyvinylpyrrolidone (CN20151414227 20150715), (iii) curcumin-poloxamer 188 (CN2008171177 20080605), (iv) curcumin SD prepared by melting method (CN20161626746-20160801). SD obtained by co-preciptation or microwave fusion and the physical mixture of CUR with Poloxamer-407 (P-407), Hydroxypropylmetylcellulose-K4M (HPMC K4M) and Polyvinylpyrrolidone-K30 (PVP-K30) were prepared at the ratios of 1:2; 1:1 and 2:1. The samples were evaluated by solubility, stability, dissolution rate and characterized by SEM, PXRD, DSC and FTIR. The solubility, stability (pH 7.0) and dissolution rate were significantly greater for SD (CUR:P-407 1:2). The PXRD,SEM and DSC indicated a change in the crystalline state of CUR. The enhancement of solubility was dependent on a combination of factors including the weight ratio, preparation techniques and carrier properties. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. Thus, these SDs, specifically CUR:P-407 1:2 w/w, can overcome the barriers of poor bioavailability to reap many beneficial properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Xin, Baoping; Zhang, Di; Zhang, Xian; Xia, Yunting; Wu, Feng; Chen, Shi; Li, Li
2009-12-01
The bioleaching mechanism of Co and Li from spent lithium-ion batteries by mixed culture of sulfur-oxidizing and iron-oxidizing bacteria was investigated. It was found that the highest release of Li occurred at the lowest pH of 1.54 with elemental sulfur as an energy source, the lowest occurred at the highest pH of 1.69 with FeS(2). In contrast, the highest release of Co occurred at higher pH and varied ORP with S + FeS(2), the lowest occurred at almost unchanged ORP with S. It is suggested that acid dissolution is the main mechanism for Li bioleaching independent of energy matters types, however, apart from acid dissolution, Fe(2+) catalyzed reduction takes part in the bioleaching process as well. Co(2+) was released by acid dissolution after insoluble Co(3+) was reduced into soluble Co(2+) by Fe(2+) in both FeS(2) and FeS(2) + S systems. The proposed bioleaching mechanism mentioned above was confirmed by the further results obtained from the experiments of bioprocess-stimulated chemical leaching and from the changes in structure and component of bioleaching residues characterized by XPS, SEM and EDX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H.; Lee, S.M.; Lee, J.Y.
1999-10-01
AB{sub 2} type Zr-based Laves phase alloys have been studied for possible use as negative electrodes of Ni/MH batteries with high hydrogen storage capacity. However, these alloys have the serious problem of slow activation owing to the formation of surface oxide films. To overcome this problem, alloys with multiphase microstructures have been developed. These alloys become electrochemically active via the creation of micropores by the dissolution of soluble oxide components such as vanadium oxide. However, this phenomenon has been described based only on changes in the chemical composition of the oxide layer. In the present study, this phenomenon is approachedmore » with respect to interactions between the constituent phases. An electrochemical analysis of constituent phases showed that the second phase, resulting in localized Ni-rich pits on the alloy surface. The presence of microcracks at the periphery of the Ni-rich pits after 30 h exposure to KOH electrolyte implies that hydrogen is absorbed preferentially at Ni-rich pits, thereby forming a large active surface area. However, such multiphase alloys have poor cycle durability due to the persistent dissolution of components in the second phase. Through Cr substitution, the authors have developed a family of durable alloys to prevent this unwanted dissolution from the second phase.« less
Cravotta,, Charles A.; Dugas, Diana L.; Brady, Keith; Kovalchuck, Thomas E.
1994-01-01
A change from dragline to “selective handling” mining methods at a reclaimed surface coal mine in western Pennsylvania did not significantly affect concentrations of metals in ground water because oxidation of pyrite and dissolution of siderite were not abated. Throughout the mine, placement of pyritic material near the land surface facilitated the oxidation of pyrite, causing the consumption of oxygen (O2) and release of acid, iron, and sulfate ions. Locally in the unsaturated zone, water sampled within or near pyritic zones was acidic, with concentrations of sulfate exceeding 3,000 milligrams per liter (mg/L). However, acidic conditions generally did not persist below the water table because of neutralization by carbonate minerals. Dissolution of calcite, dolomite, and siderite in unsaturated and saturated zones produced elevated concentrations of carbon dioxide (CO2), alkalinity, calcium, magnesium, iron, and manganese. Alkalinity concentrations of 600 to 800 mg/L as CaCO3 were common in water samples from the unsaturated zone in spoil, and alkalinities of 100 to 400 mg/L as CaCO3 were common in ground-water samples from the underlying saturated zone in spoil and bedrock. Saturation indices indicated that siderite could dissolve in water throughout the spoil, but that calcite dissolution or precipitation could occur locally. Calcite dissolution could be promoted as a result of pyrite oxidation, gypsum precipitation, and calcium ion exchange for sodium. Calcite precipitation could be promoted by evapotranspiration and siderite dissolution, and corresponding increases in concentrations of alkalinity and other solutes. Partial pressures of O2 (Po2) and CO2 (Pco2) in spoil pore gas indicated that oxidation of pyrite and precipitation of ferric hydroxide, coupled with dissolution of calcite, dolomite, and siderite were the primary reactions affecting water quality. Highest vertical gradients in Po2, particularly in the near-surface zone (0-1 m), did not correlate with concentrations of total sulfur in spoil. This lack of correlation could indicate that total sulfur concentrations in spoil do not reflect the amount of reactive pyrite or that oxidation rates can be controlled more by rates of O2 diffusion than the amount of pyrite. Hence, if placed in O2-rich zones near the land surface, even small amounts of disseminated pyritic material can be relatively significant sources of acid and mineralized water.
Rufus, A L; Sathyaseelan, V S; Narasimhan, S V; Velmurugan, S
2013-06-15
Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium. Copyright © 2013 Elsevier B.V. All rights reserved.
Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material.
Huhtinen, Reeta; Sandeman, Susan; Rose, Susanna; Fok, Elsie; Howell, Carol; Fröberg, Linda; Moritz, Niko; Hupa, Leena; Lloyd, Andrew
2013-05-01
Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth.
Reductive Dissolution of Goethite and Hematite by Reduced Flavins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhi; Zachara, John M.; Wang, Zheming
2013-10-02
The abiotic reductive dissolution of goethite and hematite by the reduced forms of flavin mononucleotide (FMNH2) and riboflavin (RBFH2), electron transfer mediators (ETM) secreted by the dissimilatory iron-reducing bacterium Shewanella, was investigated under stringent anaerobic conditions. In contrast to the rapid redox reaction rate observed for ferrihydrite and lepidocrocite (Shi et al., 2012), the reductive dissolution of crystalline goethite and hematite was slower, with the extent of reaction limited by the thermodynamic driving force at circumneutral pH. Both the initial reaction rate and reaction extent increased with decreasing pH. On a unit surface area basis, goethite was less reactive thanmore » hematite between pH 4.0 and 7.0. AH2DS, the reduced form of the well-studied synthetic ETM anthraquinone-2,6-disulfonate (AQDS), yielded higher rates than FMNH2 under most reaction conditions, despite the fact that FMNH2 was a more effective reductant than AH2DS for ferryhydrite and lepidocrocite. Two additional model compounds, methyl viologen and benzyl viologen, were investigated under similar reaction conditions to explore the relationship between reaction rate and thermodynamic properties. Relevant kinetic data from the literature were also included in the analysis to span a broad range of half-cell potentials. Other conditions being equal, the surface area normalized initial reaction rate (ra) increased as the redox potential of the reductant became more negative. A non-linear, parabolic relationship was observed between log ra and the redox potential for eight reducants at pH 7.0, as predicted by Marcus theory for electron transfer. When pH and reductant concentration were fixed, log ra was positively correlated to the redox potential of four Fe(III) oxides over a wide pH range, following a non-linear parabolic relationship as well.« less
NASA Astrophysics Data System (ADS)
Gadala, Ibrahim M.; Alfantazi, Akram
2015-12-01
The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.
Tomita, Takashi; Kohda, Yukinao; Kudo, Kenzo
2018-01-01
For patients with dysphagia in medical facilities and nursing homes, food thickeners are routinely used to aid the ingestion of medicines such as tablets. However, some types of thickeners affect the disintegration and dissolution of tablets, such as rapidly-disintegrating magnesium oxide tablets and donepezil hydrochloride orally disintegrating tablets. Additionally, delayed disintegration and dissolution of tablets affect a drug's efficacy. As an example, with Voglibose orally disintegrating tablets, marked differences are observed in changes in glucose levels during glucose tolerance testing. When using food thickeners to aid tablet ingestion, it is therefore necessary to select a product that has little effect on drug disintegration, dissolution, and activity.
The Influence of Alumina Properties on its Dissolution in Smelting Electrolyte
NASA Astrophysics Data System (ADS)
Bagshaw, A. N.; Welch, B. J.
The dissolution of a wide range of commercially produced aluminas in modified cryolite bath was studied on a laboratory scale. Most of the aluminas were products of conventional refineries and smelter dry scrubbing systems; a few were produced in laboratory and pilot calciners, enabling greater flexibility in the calcination process and the final properties. The mode of alumina feeding and the size of addition approximated to the point feeder situation. Alpha-alumina content, B.E.T. surface area and median particle size had little impact on dissolution behaviour. The volatiles content, expressed as L.O.I., the morphology of the original hydrate and the mode of calcination had the most influence. Discrete intermediate oxide phases were identified in all samples; delta-alumina content impacted most on dissolution. The flow properties of an alumina affected its overall dissolution.
Foster, Andrea L.; Ashley, Roger P.; Rytuba, James J.
2011-01-01
Sub- to anoxic conditions minimize dissolution of arsenopyrite at the LCMS site, but may accelerate the dissolution of As-bearing secondary iron phases such as Fe3+-oxyhydroxides and arseniosiderite, if sufficient organic matter is present to spur anaerobic microbial activity. Oxidizing, dry conditions favor the stabilization of secondary phases, while promoting oxidative breakdown of the primary sulfides. The stability of both primary and secondary As phases is likely to be at a minimum under cyclic wet-dry conditions. Biogenic iron (hydr)oxide flocs can sequester significant amounts of arsenic; this property may be useful for treatment of perpetual sources of As such as mine adit water, but the fate of As associated with natural accumulations of floc material needs to be assessed.
NASA Astrophysics Data System (ADS)
Kressall, R.; Fedortchouk, Y.; McCammon, C. A.
2015-12-01
Composition of kimberlites is ambiguous due to assimilation and fractional crystallization. We propose that the evolution history of minerals can be used to decipher the magmatic history of kimberlites. We use Fe-Ti oxides (chromite and ilmenite) from six kimberlites from the Ekati Diamond Mine and dissolution experiments to elucidate the petrogenesis of kimberlites. Experiments at 0.1 MPa and variable ƒO2s in a diopside-anorthite melt show that the dissolution rate of ilmenite is highly sensitive to ƒO2. No significant difference was observed in chromite. Zoning in chromite is related to the Fe-content and oxidation state of the melt. Experiments at 1 GPa explore the development of chromite surface resorption features in the system Ca-Mg-Si-H-C-O. Five kimberlites contain a low abundance of ilmenite, owing to a relatively high ƒO2, though ilmenite constituted 65% of oxide macocrysts in one kimberlite. Chromite compositions evolve from Mg-chromite to magnesio-ulvöspinel-magnetite (MUM) in all but one kimberlite where chromite evolves to a pleonaste composition perhaps as a result of rapid emplacement. The high abundance of MUM spinel and low abundance of ilmenite in the matrix could be related to the change in the stable Ti-phase with increasing ƒO2. Core compositions of macrocrysts vary for different mantle sources but rims converge to a composition slightly more oxidized and Mg-rich than chromite from depleted peridotite. Ilmenite commonly has rims composed of perovskite, titanite and MUM. We suggest a model where the kimberlite melt composition is controlled by the co-dissolution and co-precipitation of silicates (predominantly orthopyroxene and olivine) to explain chromite evolution in kimberlites. Resorption-related surface features on chromite macrocrysts show trigon protrusions-depressions on {111} faces and step-like features along the crystal edges resembling products of experiments in H2O fluid. We propose predominantly H2O magmatic fluid in Ekati kimberlites.
NASA Astrophysics Data System (ADS)
Expósito, E.; Sánchez-Sánchez, C. M.; Solla-Gullón, J.; Montiel, V.
The influence of Pb 2+ ions in sulfuric acid medium on the behavior of a platinum catalyzed hydrogen diffusion electrode (HDE) in a filter press reactor has been studied. A voltammetric study of the H 2 oxidation reaction on a polyoriented platinum electrode and a platinum rotating disk electrode (RDE) in presence of lead ions in solution has also been carried out. Potential oscillations were found in galvanostatic experiments of H 2 oxidation using a HDE catalyzed with platinum when Pb 2+ ions are present in solution. This oscillatory phenomenon was also observed when hydrogen oxidation was carried out in presence of Pb 2+ ions using a platinum RDE. The oscillatory behavior observed has been attributed to an adsorption-oxidation-desorption process of lead on the platinum surface. Due to the low solubility of Pb 2+ in sulfuric acid, at high values of coverage, lead is oxidised to insoluble lead sulfate that blocks the Pt surface. The coupling of the dissolution of lead sulfate and the Pb electrochemical adsorption-oxidation processes cause the oscillatory phenomenon.
Microbial communities, processes and functions in acid mine drainage ecosystems.
Chen, Lin-xing; Huang, Li-nan; Méndez-García, Celia; Kuang, Jia-liang; Hua, Zheng-shuang; Liu, Jun; Shu, Wen-sheng
2016-04-01
Acid mine drainage (AMD) is generated from the oxidative dissolution of metal sulfides when water and oxygen are available largely due to human mining activities. This process can be accelerated by indigenous microorganisms. In the last several decades, culture-dependent researches have uncovered and validated the roles of AMD microorganisms in metal sulfides oxidation and acid generation processes, and culture-independent studies have largely revealed the diversity and metabolic potentials and activities of AMD communities, leading towards a full understanding of the microbial diversity, functions and interactions in AMD ecosystems. This review describes the diversity of microorganisms and their functions in AMD ecosystems, and discusses their biotechnological applications in biomining and AMD bioremediation according to their capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scherzad, Agmal; Meyer, Till; Kleinsasser, Norbert
2017-01-01
Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival. PMID:29240707
Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant
Horwitz, Earl P.; Chiarizia, Renato
1996-01-01
A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.
Zhang, Lili; Lu, Hailong; Yu, Juan; Wang, Zhiguo; Fan, Yimin; Zhou, Xiaofan
2017-11-08
Lignocelluloses (LCs) with various amounts of lignin (even as high as 18.4%) were successfully dissolved in N-methylmorpholine-N-oxide monohydrate (NMMO/H 2 O) solution with stirring at 85 °C within 5 h. For the developmental dissolution methods of LCs with a high lignin content in NMMO/H 2 O solution, the following two pretreatment steps of LCs were necessary: (1) glycerol swelling and (2) mechanical extrusion. The mechanical extrusion pretreatment under glycerol swelling dissociated the fiber bundles of LCs to thinner fibers and, thus, enhanced the accessibility and solubility of the LCs in NMMO/H 2 O. The crystal structure of the pretreated LCs had no significant transformation during pretreatment, while the diameters of the fiber bundles were reduced from 50-60 to 10-12 μm, as investigated by X-ray diffraction and scanning electron microscopy. After the dissolution-regeneration process of LCs, the fiber bundles of the LCs disappeared and the crystal type of cellulose in the LCs was transformed from cellulose I to cellulose II, which indicated the complete dissolution of LCs.
Sterren, Vanesa B; Aiassa, Virginia; Garnero, Claudia; Linck, Yamila Garro; Chattah, Ana K; Monti, Gustavo A; Longhi, Marcela R; Zoppi, Ariana
2017-11-01
Chloramphenicol is an old antibiotic agent that is re-emerging as a valuable alternative for the treatment of multidrug-resistant pathogens. However, it exhibits suboptimal biopharmaceutical properties and toxicity profiles. In this work, chloramphenicol was combined with essential amino acids (arginine, cysteine, glycine, and leucine) with the aim of improving its dissolution rate and reduce its toxicity towards leukocytes. The chloramphenicol/amino acid solid samples were prepared by freeze-drying method and characterized in the solid state by using Fourier transform infrared spectroscopy, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance. The dissolution properties, antimicrobial activity, reactive oxygen species production, and stability of the different samples were studied. The dissolution rate of all combinations was significantly increased in comparison to that of the pure active pharmaceutical ingredient. Additionally, oxidative stress production in human leukocytes caused by chloramphenicol was decreased in the chloramphenicol/amino acid combinations, while the antimicrobial activity of the antibiotic was maintained. The CAP:Leu binary combination resulted in the most outstanding solid system makes it suitable candidate for the development of pharmaceutical formulations of this antimicrobial agent with an improved safety profile.
Gormley, Patrick Thomas; Callaghan, Neal Ingraham; MacCormack, Tyson James; Dieni, Christopher Anthony
2016-10-01
Citrated Sprague-Dawley rat blood plasma was used as a biologically relevant exposure medium to assess the acellular toxic potential of two metal oxide engineered nanomaterials (ENMs), zinc oxide (nZnO), and cerium oxide (nCeO 2 ). Plasma was incubated at 37 °C for up to 48 h with ENM concentrations ranging between 0 and 200 mg/L. The degree of ENM-induced oxidation was assessed by assaying for reactive oxygen species (ROS) levels using dichlorofluorescein (DCF), pH, ferric reducing ability of plasma (FRAP), lipase activity, malondialdehyde (MDA), and protein carbonyls (PC). Whereas previous in vitro studies showed linear-positive correlations between ENM concentration and oxidative damage, our results suggested that low concentrations were generally pro-oxidant and higher concentrations appeared antioxidant or protective, as indicated by DCF fluorescence trends. nZnO and nCeO 2 also affected pH in a manner dependent on concentration and elemental composition; higher nZnO concentrations maintained a more alkaline pH, while nCeO 2 tended to decrease pH. No other biomarkers of oxidative damage (FRAP, MDA, PC, lipase activity) showed changes at any ENM concentration or time-point tested. Differential dissolution of the two ENMs was also observed, where as much as ∼31.3% of nZnO was instantaneously dissolved to Zn 2+ and only negligible nCeO 2 was degraded. The results suggest that the direct oxidative potential of nZnO and nCeO 2 in citrated rat blood plasma is low, and that a physiological or immune response is needed to generate appreciable damage biomarkers. The data also highlight the need for careful consideration when selecting a model for assessing ENM toxicity.
NASA Astrophysics Data System (ADS)
Postma, D.; Appelo, C. A. J.
2000-04-01
The reduction of Mn-oxide by Fe2+ was studied in column experiments, using a column filled with natural Mn-oxide coated sand. Analysis of the Mn-oxide indicated the presence of both Mn(III) and Mn(IV) in the Mn-oxide. The initial exchange capacity of the column was determined by displacement of adsorbed Ca2+ with Mg2+. Subsequently a FeCl2 solution was injected into the column causing the reduction of the Mn-oxide and the precipitation of Fe(OH)3. Finally the exchange capacity of the column containing newly formed Fe(OH)3 was determined by injection of a KBr solution. During injection of the FeCl2 solution into the column, an ion distribution pattern was observed in the effluent that suggests the formation of separate reaction fronts for Mn(III)-oxide and Mn(IV)-oxide travelling at different velocities through the column. At the proximal reaction front, Fe2+ reacts with MnO2 producing Fe(OH)3, Mn2+ and H+. The protons are transported downstream and cause the disproportionation of MnOOH at a separate reaction front. Between the two Mn reaction fronts, the dissolution and precipitation of Fe(OH)3 and Al(OH)3 act as proton buffers. Reactive transport modeling, using the code PHREEQC 2.0, was done to quantify and analyze the reaction controls and the coupling between transport and chemical processes. A model containing only mineral equilibria constraints for birnessite, manganite, gibbsite, and ferrihydrite, was able to explain the overall reaction pattern with the sequential appearance of Mn2+, Al3+, Fe3+, and Fe2+ in the column outlet solution. However, the initial breakthrough of a peak of Ca2+ and the observed pH buffering indicated that exchange processes were of importance as well. The amount of potential exchangers, such as birnessite and ferrihydrite, did vary in the course of the experiment. A model containing surface complexation coupled to varying concentrations of birnessite and ferrihydrite and a constant charge exchanger in addition to mineral equilibria provided a satisfactory description of the distribution of all solutes in time and space. However, the observed concentration profiles are more gradual than indicated by the equilibrium model. Reaction kinetics for the dissolution of MnO2 and MnOOH and dissolution of Al(OH)3 were incorporated in the model, which explained the shape of the breakthrough curves satisfactorily. The results of this study emphasize the importance of understanding the interplay between chemical reactions and transport in addition to interactions between redox, proton buffering, and adsorption processes when dealing with natural sediments. Reactive transport modeling is a powerful tool to analyze and quantify such interactions.
Bligh, Mark W; Maheshwari, Pradeep; David Waite, T
2017-11-01
Iron salts are routinely dosed in wastewater treatment as a means of achieving effluent phosphorous concentration goals. The iron oxides that result from addition of iron salts partake in various reactions, including reductive dissolution and phosphate adsorption. The reactivity of these oxides is controlled by the conditions of formation and the processes, such as aggregation, that lead to a reduction in accessible surface sites following formation. The presence of organic compounds is expected to significantly impact these processes in a number of ways. In this study, amorphous ferric oxide (AFO) reactivity and aging was investigated following the addition of ferric iron (Fe(III)) to three solution systems: two synthetic buffered systems, either containing no organic or containing alginate, and a supernatant system containing soluble microbial products (SMPs) sourced from a membrane bioreactor (MBR). Reactivity of the Fe(III) phases in these systems at various times (1-60 min) following Fe(III) addition was quantified by determining the rate constants for ascorbate-mediated reductive dissolution over short (5 min) and long (60 min) dissolution periods and for a range (0.5-10 mM) of ascorbate concentrations. AFO particle size was monitored using dynamic light scattering during the aging and dissolution periods. In the presence of alginate, AFO particles appeared to be stabilized against aggregation. However, aging in the alginate system was remarkably similar to the inorganic system where aging is associated with aggregation. An aging mechanism involving restructuring within the alginate-AFO assemblage was proposed. In the presence of SMPs, a greater diversity of Fe(III) phases was evident with both a small labile pool of organically complexed Fe(III) and a polydisperse population of stabilized AFO particles present. The prevalence of low molecular weight organic molecules facilitated stabilization of the Fe(III) oxyhydroxides formed but subsequent aging observed in the alginate system did not occur. The reactivity of the Fe(III) in the supernatant system was maintained with little loss in reactivity over at least 24 h. The capacity of SMPs to maintain high reactivity of AFO has important implications in a reactor where Fe(III) phases encounter alternating redox conditions due to sludge recirculation, creating a cycle of reductive dissolution, oxidation and precipitation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; ...
2016-05-19
A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO 3 to UO 2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO 2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang
A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO 3 to UO 2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO 2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.
Michálková, Zuzana; Komárek, Michael; Veselská, Veronika; Číhalová, Sylva
2016-06-01
An amorphous Mn oxide (AMO), nanomaghemite, and nanomagnetite were used as potential amendments reducing the mobility of As in three contrasting contaminated soils differing in origin of As contamination. Adsorption experiments and XPS analyses combined with incubation batch experiments and pH-static leaching tests were used. The AMO showed excellent adsorption capacity for As(V) reaching a maximum of 1.79 mmol g(-1) at pH 7 and 8. Interestingly, the adsorption capacity in this case decreases with decreasing pH, probably as a result of AMO dissolution at lower pH values. Chemical sorption of As(V) onto AMO was further confirmed with XPS. Both Fe nano-oxides proved the highest adsorption capacity at pH 4 reaching 11 mg g(-1) of adsorbed As(V). The AMO was also the most efficient amendment for decreasing As concentrations in soil solutions during 8 weeks of incubation. Additionally, pH-static leaching tests were performed at pH 4, 5, 6, 7, and natural pH (not adjusted) and AMO again proved the highest ability to decrease As content in leachate. On the other hand, strong dissolution of this amendment at lower pH values (especially pH 4) was observed. For that reason, AMO appears as a promising stabilizing agent for As, especially in neutral, alkaline, or slightly acidic soils, where As(V) species are expected to be more mobile.
Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; ...
2015-06-23
Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. In this study, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanismsmore » at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. Lastly, they also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.« less
Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.
2015-01-01
Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment. PMID:26157421
Thermodynamic Versus Surface Area Control of Microbial Fe(III) Oxide Reduction Kinetics
NASA Astrophysics Data System (ADS)
Roden, E. E.
2003-12-01
Recent experimental studies of synthetic and natural Fe(III) oxide reduction permit development of conceptual and quantitative models of enzymatic Fe(III) oxide reduction at circumneutral pH that can be compared to and contrasted with established models of abiotic mineral dissolution. The findings collectively support a model for controls on enzymatic reduction that differs fundamentally from those applied to abiotic reductive dissolution as a result of two basic phenomena: (1) the relatively minor influence of oxide mineralogical and thermodynamic properties on surface area-normalized rates of enzymatic reduction compared to abiotic reductive dissolution; and (2) the major limitation which sorption and/or surface precipitation of biogenic Fe(II) on residual oxide and Fe(III)-reducing bacterial cell surfaces poses to enzymatic electron transfer in the presence of excess electron donor. Parallel studies with two major Fe(III)-reducing bacteria genera (Shewanella and Geobacter) lead to common conclusions regarding the importance of these phenomena in regulating the rate and long-term extent of Fe(III) oxide reduction. Although the extent to which these phenomena can be traced to underlying kinetic vs. thermodynamic effects cannot be resolved with current information, models in which rates of enzymatic reduction are limited kinetically by the abundance of "available" oxide surface sites (as controlled by oxide surface area and the abundance of surface-bound Fe(II)) provide an adequate macroscopic description of controls on the initial rate and long-term extent of oxide reduction. In some instances, thermodynamic limitation posed by the accumulation of aqueous reaction end-products (i.e. Fe(II) and alkalinity) must also be invoked to explain observed long-term patterns of reduction. In addition, the abundance of Fe(III)-reducing microorganisms plays an important role in governing rates of reduction and needs to be considered in models of Fe(III) reduction in nonsteady-state systems, e.g. subsurface environments in which Fe(III) reduction is stimulated by contamination with organics or for the purposes of metal/radionuclide bioremediation.
Multicomponent diffusion in basaltic melts at 1350 °C
NASA Astrophysics Data System (ADS)
Guo, Chenghuan; Zhang, Youxue
2018-05-01
Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during mineral dissolution in basaltic melts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beone, G.
1963-10-01
Plates of S.A.P. (sintered Aluminum Powder) were dissolved under different conditions in a nitric acid solution containing mercuric nitrate as a catalyst. These experiments nim at establishing a head-end dissolution process for S.A.P. cladded uranium oxide fuels. The results of preliminary dissolution experiments on simulated fuel rods are also described. The behavior of S.A.P. in the mercury catalyzed nitric acid dissolutions differs strongly from the behavior of aluminum: reaction rates are very low for S.A.P. and the dissolution time borders on being unacceptable in an industrial process. Settling rates of suspended alumina are however favorable. A tentative head end flowsheetmore » lay out for PRO second core fuel elements is included. (auth)« less
In Situ Observation of Dissolution of Oxide Inclusions in Steelmaking Slags
NASA Astrophysics Data System (ADS)
Sharma, Mukesh; Mu, Wangzhong; Dogan, Neslihan
2018-05-01
Better understanding of removal of non-metallic inclusions is of importance in the steelmaking process to control the cleanliness of steel. In this study, the dissolution rate of Al2O3 and Al2TiO5 inclusions in a liquid CaO-SiO2-Al2O3 slag was measured using high-temperature confocal scanning laser microscopy (HT-CSLM) at 1550°C. The dissolution rate of inclusions is expressed as a function of the rate of decrease of the radius of solid particles with time. It is found that Al2O3 inclusions have a slower dissolution rate than that of Al2TiO5 inclusions at 1550°C. The rate-limiting steps are investigated in terms of a shrinking core model. It is shown that the rate-limiting step for dissolution of both inclusion types is mass transfer in the slag at 1550°C.
Free-Energy Landscape of the Dissolution of Gibbsite at High pH.
Shen, Zhizhang; Kerisit, Sebastien N; Stack, Andrew G; Rosso, Kevin M
2018-04-05
The individual elementary reactions involved in the dissolution of a solid into solution remain mostly speculative due to a lack of direct experimental probes. In this regard, we have applied atomistic simulations to map the free-energy landscape of the dissolution of gibbsite from a step edge as a model of metal hydroxide dissolution. The overall reaction combines kink formation and kink propagation. Two individual reactions were found to be rate-limiting for kink formation, that is, the displacement of Al from a step site to a ledge adatom site and its detachment from ledge/terrace adatom sites into the solution. As a result, a pool of mobile and labile adsorbed species, or adatoms, exists before the release of Al into solution. Because of the quasi-hexagonal symmetry of gibbsite, kink site propagation can occur in multiple directions. Overall, our results will enable the development of microscopic mechanistic models of metal oxide dissolution.
Electrochemical de-alloying in two dimensions: role of the local atomic environment
NASA Astrophysics Data System (ADS)
Damian, A.; Maroun, F.; Allongue, P.
2016-07-01
We investigate by in situ scanning tunnelling microscopy (STM) the potential dependence of the electrochemical dealloying of NiPd monoatomic layers electrodeposited on Au(111). The dealloying process is achieved by Ni selective dissolution and was studied as a function of NiPd composition: for an alloy with a Ni content >=70%, quasi-complete Ni dissolution is achieved at a potential of -0.9 VMSE whereas for a Ni content <70%, Ni dissolution at the same potential drastically slows down after the removal of small amounts of Ni. The alloy morphology at this ``passivation state'' is characterized by the presence of holes in the alloy monolayer with evidence for the Pd enrichment at the hole edges. These findings are confirmed by Monte Carlo simulations. Further Ni dissolution at passivation was achieved by applying more positive potentials which depend on the alloy composition. These results allowed us to determine the correlation between the Ni dissolution onset potential and the local Pd content.
Glass composition and solution speciation effects on stage III dissolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trivelpiece, Cory L.; Rice, Jarret A.; Pantano, Carlo G.
To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.
Unrine, Jason M; Colman, Benjamin P; Bone, Audrey J; Gondikas, Andreas P; Matson, Cole W
2012-07-03
To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures.
Heterogeneous WS x/WO 3 thorn-bush nanofiber electrodes for sodium-ion batteries
Ryu, Won -Hee; Wilson, Hope; Sohn, Sungwoo; ...
2016-01-25
Heterogeneous electrode materials with hierarchical architectures promise to enable considerable improvement in future energy storage devices. In this study, we report on a tailored synthetic strategy used to create heterogeneous tungsten sulfide/oxide core–shell nanofiber materials with vertically and randomly aligned thorn-bush features, and we evaluate them as potential anode materials for high-performance Na-ion batteries. The WS x (2 ≤ x ≤ 3, amorphous WS 3 and crystalline WS 2) nanofiber is successfully prepared by electrospinning and subsequent calcination in a reducing atmosphere. To prevent capacity degradation of the WS x anodes originating from sulfur dissolution, a facile post-thermal treatment inmore » air is applied to form an oxide passivation surface. Interestingly, WO 3 thorn bundles are randomly grown on the nanofiber stem, resulting from the surface conversion. We elucidate the evolving morphological and structural features of the nanofibers during post-thermal treatment. The heterogeneous thorn-bush nanofiber electrodes deliver a high second discharge capacity of 791 mAh g –1 and improved cycle performance for 100 cycles compared to the pristine WS x nanofiber. Lastly, we show that this hierarchical design is effective in reducing sulfur dissolution, as shown by cycling analysis with counter Na electrodes.« less
Song, Yu; Liu, Tian-Yu; Yao, Bin; Kou, Tian-Yi; Feng, Dong-Yang; Liu, Xiao-Xia; Li, Yat
2017-04-01
Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V 4+ /V 5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Odzak, Niksa; Kistler, David; Sigg, Laura
2017-07-01
Nanoparticles, such as silver (Ag-NP) and zinc oxide (ZnO-NP), are increasingly used in many consumer products. These nanoparticles (NPs) will likely be exposed to the aquatic environment (rain, river, lake water) and to light (visible and UV) in the products where they are applied, or after those products are discharged. Dissolution of Ag-NP and ZnO-NP is an important process because the dissolved Ag + and Zn 2+ are readily available and toxic for aquatic organisms. The objective of this study was to investigate the role of daylight (UV and visible) for the fate of engineered Ag-NP and ZnO-NPs in different types of natural waters. Ag-NP and ZnO-NP were exposed to rainwater, river Rhine, and lake waters (Greifen, Lucerne, Cristallina, Gruère) under different light conditions (no light, UV 300-400 nm and visible light 400-700 nm) for up to 8 days. Stronger agglomeration of Ag-NP was observed in the waters with higher ionic strength in comparison to those with lower ionic strength. Visible light tended to increase the dissolution of Ag-NP under most natural water conditions in comparison to dark conditions, whereas UV-light led to decreased dissolved Ag + after longer exposure time. These effects illustrate the dynamic interactions of Ag-NP with light, which may lead both to increased oxidation and to increased reduction of Ag + by organic compounds under UV-light. In the case of ZnO-NP, agglomeration occurred at higher ionic strength, but the effects of pH were predominant for dissolution, which occurred up to concentrations close to the solubility limit of ZnO(s) at pH around 8.2 and to nearly complete dissolution of ZnO-NP at lower pH (pH 4.8-6.5), with both visible and UV-light facilitating dissolution. This study thus shows that light conditions play an important role in the dissolution processes of nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pech-Canul, M. A.; Guía-Tello, J. C.; Pech-Canul, M. I.; Aguilar, J. C.; Gorocica-Díaz, J. A.; Arana-Guillén, R.; Puch-Bleis, J.
An aluminum automotive condenser was designed to exhibit high corrosion resistance in the seawater acetic acid test (SWAAT) combining zinc coated microchannel tubes and fins made with AA4343/AA3003(Zn)/AA4343 brazing sheet. Electrochemical measurements in SWAAT solution were carried out under laboratory conditions using tube-fin assembly and individual fin and tube samples withdrawn from the condenser core. The aim was to gain information on the protective role of the zinc sacrificial layer and about changes in corrosion behavior as a function of immersion time. External corrosion of the tube-fin system was simulated by immersion of mini-core samples under open circuit conditions. The corrosion rate increased rapidly during the first 6 h and slowly afterwards. The short time behavior was related to the dissolution of the oxide film and fast dissolution of the outermost part of the zinc diffusion layer. With the aid of cross-sectional depth corrosion potential profiles, it was shown that as the sacrificial layer gets dissolved, the surface concentration of zinc decreases and the potential shifts to less negative values. The results of galvanic coupling of tube and fins in a mini-cell showed that the tube became the anode while the fins exhibited cathodic behavior. An evolution in the galvanic interaction was observed, due to the progressive dissolution of the sacrificial zinc layer. The difference of uncoupled potentials between tube and fins decreased from 71 mV to 32 mV after 84 h of galvanic coupling. At the end of such period there was still a part of the zinc sacrificial layer remaining which would serve for protection of the tube material for even longer periods and there were indications of slight corrosion in the fins.
Manrique, Yady J; Lee, Danielle J; Islam, Faiza; Nissen, Lisa M; Cichero, Julie A Y; Stokes, Jason R; Steadman, Kathryn J
2014-01-01
To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted.
Hu, Xingyun; Yue, Yuyan; Peng, Xianjia
2018-05-01
Batch experiments were performed to derive the rate laws for the proton-promoted dissolution of the main vanadium (III, IV and V) oxides at pH 3.1-10.0. The release rates of vanadium are closely related to the aqueous pH, and several obvious differences were observed in the release behavior of vanadium from the dissolution of V 2 O 5 and vanadium(III, IV) oxides. In the first 2hr, the release rates of vanadium from V 2 O 3 were r=1.14·([H + ]) 0.269 at pH 3.0-6.0 and r=0.016·([H + ]) -0.048 at pH 6.0-10.0; the release rates from VO 2 were r=0.362·([H + ]) 0.129 at pH 3.0-6.0 and r=0.017·([H + ]) -0.097 at pH 6.0-10.0; and the release rates from V 2 O 5 were r=0.131·([H + ]) -0.104 at pH 3.1-10.0. The release rates of vanadium from the three oxides increased with increasing temperature, and the effect of temperature was different at pH 3.8, pH 6.0 and pH 7.7. The activation energies of vanadium (III, IV and V) oxides (33.4-87.5kJ/mol) were determined at pH 3.8, pH6.0 and pH 7.7, showing that the release of vanadium from dissolution of vanadium oxides follows a surface-controlled reaction mechanism. The release rates of vanadium increased with increasing vanadium oxides dose, albeit not proportionally. This study, as part of a broader study of the release behavior of vanadium, can help to elucidate the pollution problem of vanadium and to clarify the fate of vanadium in the environment. Copyright © 2017. Published by Elsevier B.V.
Hu, J.; Wu, L.; Kuttiyiel, K.; ...
2016-06-30
We describe a new class of core-shell nanoparticle catalysts having edges and vertexes covered by refractory metal oxide that preferentially segregates onto these catalyst sites. The monolayer shell is deposited on the oxidefree core atoms. The oxide on edges and vertexes induces high catalyst’s stability and activity. The catalyst and synthesis are exemplified by fabrication of Au nanoparticles doped by Ti atoms that segregate as oxide onto low–coordination sites of edges and vertexes. Pt monolayer shell deposited on Au sites has the mass and specific activities for the oxygen reduction reaction about 13 and 5 times higher than those ofmore » commercial Pt/C catalysts. The durability tests show no activity loss after 10000 potential cycles from 0.6 to 1.0V. The superior activity and durability of the Ti-Au@Pt catalyst originate from protective Ti oxide located at the most dissolution-prone edge and vertex sites, and Au-supported active and stable Pt shell.« less
Kinetics of dissolution of thorium and uranium doped britholite ceramics
NASA Astrophysics Data System (ADS)
Dacheux, N.; Du Fou de Kerdaniel, E.; Clavier, N.; Podor, R.; Aupiais, J.; Szenknect, S.
2010-09-01
In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 × 10 -2 g m -2 d -1 to 21.6 g m -2 d -1. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher RL values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.
Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard
Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E.
2002-01-01
Glacial bulk meltwaters and active-layer groundwaters were sampled from the proglacial zone of Finsterwalderbreen during a single melt season in 1999, in order to determine the geochemical processes that maintain high chemical weathering rates in the proglacial zone of this glacier. Results demonstrate that the principle means of solute acquisition is the weathering of highly reactive moraine and fluvial active-layer sediments by supra-permafrost groundwaters. Active-layer groundwater derives from the thaw of the proglacial snowpack, buried ice and glacial bulk meltwaters. Groundwater evolves by sulphide oxidation and carbonate dissolution. Evaporation- and freeze-concentration of groundwater in summer and winter, respectively produce Mg-Ca-sulphate salts on the proglacial surface. Re-dissolution of these salts in early summer produces groundwaters that are supersaturated with respect to calcite. There is a pronounced spatial pattern to the geochemical evolution of groundwater. Close to the main proglacial channel, active layer sediments are flushed diurnally by bulk meltwaters. Here, Mg-Ca-sulphate deposits become exhausted in the early season and geochemical evolution proceeds by a combination of sulphide oxidation and carbonate dissolution. At greater distances from the channel, the dissolution of Mg-Ca-sulphate salts is a major influence and dilution by the bulk meltwaters is relatively minor. The influence of sulphate salt dissolution decreases during the sampling season, as these salts are exhausted and waters become increasingly routed by subsurface flowpaths. ?? 2002 Elsevier Science B.V. All rights reserved.
Panda, Sandeep; Akcil, Ata; Mishra, Srabani; Erust, Ceren
2017-03-05
Pyrite ash, a waste by-product formed during roasting of pyrite ores, is a good source of valuable metals. The waste is associated with several environmental issues due to its dumping in sea and/or land filling. Although several other management practices are available for its utilization, the waste still awaits and calls for an eco-friendly biotechnological application for metal recovery. In the present study, chemolithotrophic meso-acidophilic iron and sulphur oxidisers were evaluated for the first time towards simultaneous mutli-metal recovery from pyrite ash. XRD and XRF analysis indicated higher amount of Hematite (Fe 2 O 3 ) in the sample. ICP-OES analysis indicated concentrations of Cu>Zn>Co>As that were considered for bioleaching. Optimization studies indicated Cu - 95%, Co - 97%, Zn - 78% and As - 60% recovery within 8days at 10% pulp density, pH - 1.75, 10% (v/v) inoculum and 9g/L Fe 2+ . The productivity of the bioleaching system was found to be Cu - 1696ppm/d (12% dissolution/d), Co - 338ppm/d (12.2% dissolution/d), Zn k 576ppm/d (9.8% dissolution/d) and As - 75ppm/d (7.5% dissolution/d). Synergistic actions for Fe 2+ - S° oxidation by iron and sulphur oxidisers were identified as the key drivers for enhanced metal dissolution from pyrite ash sample. Copyright © 2016 Elsevier B.V. All rights reserved.
Dissolution of steel slags in aqueous media.
Yadav, Shashikant; Mehra, Anurag
2017-07-01
Steel slag is a major industrial waste in steel industries, and its dissolution behavior in water needs to be characterized in the larger context of its potential use as an agent for sequestering CO 2 . For this purpose, a small closed system batch reactor was used to conduct the dissolution of steel slags in an aqueous medium under various dissolution conditions. In this study, two different types of steel slags were procured from steel plants in India, having diverse structural features, mineralogical compositions, and particle sizes. The experiment was performed at different temperatures for 240 h of dissolution at atmospheric pressure. The dissolution rates of major and minor slag elements were quantified through liquid-phase elemental analysis using an inductively coupled plasma atomic emission spectroscopy at different time intervals. Advanced analytical techniques such as field emission gun-scanning electron microscope, energy-dispersive X-ray, BET, and XRD were also used to analyze mineralogical and structural changes in the slag particles. High dissolution of slags was observed irrespective of the particle size distribution, which suggests high carbonation potential. Concentrations of toxic heavy metals in the leachate were far below maximum acceptable limits. Thus, the present study investigates the dissolution behavior of different mineral ions of steel slag in aqueous media in light of its potential application in CO 2 sequestration.
NASA Astrophysics Data System (ADS)
Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.
2014-12-01
Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged nAg. In batch experiments, the addition of tert-butyl alcohol, a reactive oxygen species scavenger, reduced nAg aggregation and dissolution by up to 50%, indicating that free radical activity played an important role in the surface coating aging. Taken in concert, these findings demonstrate the value of undertaking
NASA Astrophysics Data System (ADS)
Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.
2015-12-01
Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged nAg. In batch experiments, the addition of tert-butyl alcohol, a reactive oxygen species scavenger, reduced nAg aggregation and dissolution by up to 50%, indicating that free radical activity played an important role in the surface coating aging. Taken in concert, these findings demonstrate the value of undertaking
ARSENIC CONTAMINATION AT THE INDUSTRI-PLEX SUPERFUND SITE, WOBURN, MA
Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...
Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals
Cadmium enrichment (relative to Fe and Zn) in paddy rice grain occurs during the pre-harvest drainage of flooded soil, which causes oxidative dissolution of sulfide minerals present in reduced soil. We investigated this process over a range of environmentally realistic Cdcontain...
Lai, Yungchieh; Rutigliano, Michael N; Veser, Götz
2015-09-29
We report a straightforward and transferrable synthesis strategy to encapsulate metal oxide nanoparticles (NPs) in mesoporous ZSM-5 via the encapsulation of NPs into silica followed by conversion of the NP@silica precursor to NP@ZSM-5. The systematic bottom-up approach allows for straightforward, precise control of both the metal weight loading and size of the embedded NP and yields uniform NP@ZSM-5 microspheres composed of stacked ZSM-5 nanorods with substantial mesoporosity. Key to the synthesis is the timed release of the embedded NPs during dissolution of the silica matrix in the hydrothermal conversion step, which finely balances the rate of NP release with the rate of SiO2 dissolution and the subsequent nucleation of aluminosilicate. The synthesis approach is demonstrated for Zn, Fe, and Ni oxide encapsulation in ZSM-5 but can be expected to be broadly transferrable for the encapsulation of metal and metal oxide nanoparticles into other zeolite structures.
NASA Astrophysics Data System (ADS)
Chae, Seulki; Soon, Jiyong; Jeong, Hyejeong; Lee, Tae jin; Ryu, Ji Heon; Oh, Seung M.
2018-07-01
In this study, (pentafluorophenylpropyl)trimethoxysilane (PFPPS) is grafted on a nickel-doped manganese spinel (LiNi0.5Mn1.5O4, LNMO) surface to suppress the failure modes in the 5-V positive electrode; electrolyte oxidation/film deposition, acid generation, and metal (Ni and Mn) dissolution. Vapor-phase molecular layer deposition is used to deposit a uniformly covered PFPPS layer on the LNMO surface. When the Li/LNMO cell is cycled at 3.5-4.9 V (vs. Li/Li+), the PFPPS moiety on the LNMO surface remains intact (not oxidized) under the highly oxidizing condition. Several beneficial features are observed with the PFPPS grafting. The oxidative electrolyte decomposition is mitigated, which increases the Coulombic efficiency of the Li/LNMO cell. Consequently, the surface film deposition and cell polarization are reduced, improving the capacity retention. Moreover, the acid generation and metal dissolution are also mitigated.
Nucleation and growth of lead oxide particles in liquid lead-bismuth eutectic.
Gladinez, Kristof; Rosseel, Kris; Lim, Jun; Marino, Alessandro; Heynderickx, Geraldine; Aerts, Alexander
2017-10-18
Liquid lead-bismuth eutectic (LBE) is an important candidate to become the primary coolant of future, generation IV, nuclear fast reactors and Accelerator Driven System (ADS) concepts. One of the main challenges with the use of LBE as a coolant is to avoid its oxidation which results in solid lead oxide (PbO) precipitation. The chemical equilibria governing PbO formation are well understood. However, insufficient kinetic information is currently available for the development of LBE-based nuclear technology. Here, we report the results of experiments in which the nucleation, growth and dissolution of PbO in LBE during temperature cycling are measured by monitoring dissolved oxygen using potentiometric oxygen sensors. The metastable region, above which PbO nucleation can occur, has been determined under conditions relevant for the operation of LBE cooled nuclear systems and was found to be independent of setup geometry and thus thought to be widely applicable. A kinetic model to describe formation and dissolution of PbO particles in LBE is proposed, based on Classical Nucleation Theory (CNT) combined with mass transfer limited growth and dissolution. This model can accurately predict the experimentally observed changes in oxygen concentration due to nucleation, growth and dissolution of PbO, using the effective interfacial energy of a PbO nucleus in LBE as a fitting parameter. The results are invaluable to evaluate the consequences of oxygen ingress in LBE cooled nuclear systems under normal operating and accidental conditions and form the basis for the development of cold trap technology to avoid PbO formation in the primary reactor circuit.
Arsenic release during managed aquifer recharge (MAR)
NASA Astrophysics Data System (ADS)
Pichler, T.; Lazareva, O.; Druschel, G.
2013-12-01
The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.
Inorganic Substrates and Encapsulation Layers for Transient Electronics
2014-07-01
surface oxidation of the nitrides, the measurements were conducted shortly after oxide removal in buffered oxide etchant (BOE) 6:1 (Transene Company Inc...values for the time-dependent dissolution of thermally grown SiO2 (dry oxidation) in buffer solutions (black, pH 7.4; red, pH 8; blue, pH 10...22 5.1.3 Contractor will Identify and Measure Key Performance Characteristics of Candidate Metal Conductive Layers for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansley, P.L.; Nuccio, V.F.
Comparison of the petrology of shallow and deep oil reservoirs in the Upper Cretaceous Shannon Sandstone Beds of the Steele Member of the Cody Shale strongly suggests that organic acids have had a more significant impact on the diagenetic alteration of aluminosilicate grains and carbonate cements in the deep reservoirs than in the shallow reservoirs. In shallow reservoirs, detrital grains exhibit minor dissolution, sparse and small overgrowths, and secondary porosity created by dissolution of early calcite cement. However, deeper sandstones are characterized by extensive dissolution of detrital K-feldspar and detrital glauconite grains, and precipitation of abundant, large quartz and feldsparmore » overgrowths. Throughout the Shannon and Steele, dissolution of glauconite and degradation of kerogen were probably aided by clay mineral/organic catalysis, which caused simultaneous reduction of iron and oxidation of kerogen. This process resulted in release of ferrous iron and organic acids and was promoted in the deep reservoirs by higher formation temperatures accounting for more extensive dissolution of aluminosilicate grains. Carbonic acid produced from the dissolution of early calcite cement, decarboxylation of organic matter, and influx of meteoric water after Laramide uplift produced additional dissolution of cements and grains. Dissolution by organic acids and complexing by organic acid anions, however, best explain the intensity of diagenesis and absence of dissolution products in secondary pores and on etched surfaces of framework grains in deep reservoirs.« less
Mittermeier, Thomas; Madkikar, Pankaj; Wang, Xiaodong; Gasteiger, Hubert A.; Piana, Michele
2017-01-01
In this experimental study, we investigate various transition-metal silicides as platinum-group-metal-(PGM)-free electrocatalysts for the hydrogen oxidation reaction (HOR), and for the hydrogen evolution reaction (HER) in acidic environment for the first time. Using cyclic voltammetry in 0.1 M HClO4, we first demonstrate that the tested materials exhibit sufficient stability against dissolution in the relevant potential window. Further, we determine the HOR and HER activities for Mo, W, Ta, Ni and Mo-Ni silicides in rotating disk electrode experiments. In conclusion, for the HOR only Ni2Si shows limited activity, and the HER activity of the investigated silicides is considerably lower compared to other PGM-free HER catalysts reported in the literature. PMID:28773022
NASA Technical Reports Server (NTRS)
Wrighton, M. S.; Ellis, A. B.; Kaiser, S. W.
1977-01-01
Stabilization of n-type CdSe to photoanodic dissolution is reported. The stabilization is accomplished by the competitive oxidation of S(--) or S(n)(--) at the CdSe photoanode in an electrochemical cell. Such stabilized cells are shown to sustain the conversion of low energy (not less than 1.7 eV) visible light to electricity with good efficiency and no deterioration of the CdSe photoelectrode or of the electrolyte. The electrolyte undergoes no net chemical change because the oxidation occurring at the photoelectrode is reversed at the cathode. Conversion of monochromatic light at 633 nm to electricity is shown to be up to approximately 9% efficient with output potentials of approximately 0.4 V. Conversion of solar energy to electricity is estimated to be approximately 2% efficient.
Pokhrel, Lok R; Dubey, Brajesh; Scheuerman, Phillip R
2013-11-19
Key understanding of potential transformations that may occur on silver nanoparticle (AgNP) surface upon interaction with naturally ubiquitous organic ligands (e.g., -SH (thoil), humic acid, or -COO (carboxylate)) is limited. Herein we investigated how dissolved organic carbon (DOC), -SH (in cysteine, a well-known Ag(+) chelating agent), and -COO (in trolox, a well-known antioxidant) could alter the colloidal stability, dissolution rate, and toxicity of citrate-functionalized AgNPs (citrate-AgNPs) against a keystone crustacean Daphnia magna. Cysteine, DOC, or trolox amendment of citrate-AgNPs differentially modified particle size, surface properties (charge, plasmonic spectra), and ion release dynamics, thereby attenuating (with cysteine or trolox) or promoting (with DOC) AgNP toxicity. Except with DOC amendment, the combined toxicity of AgNPs and released Ag under cysteine or trolox amendment was lower than of AgNO3 alone. The results of this study show that citrate-AgNP toxicity can be associated with oxidative stress, ion release, and the organism biology. Our evidence suggests that specific organic ligands available in the receiving waters can differentially surface modify AgNPs and alter their environmental persistence (changing dissolution dynamics) and subsequently the toxicity; hence, we caveat to generalize that surface modified nanoparticles upon environmental release may not be toxic to receptor organisms.
Potential for microbial oxidation of ferrous iron in basaltic glass.
Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E
2015-05-01
Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and utilization of dissolved Fe(II) as an energy source is not likely to take place.
NASA Astrophysics Data System (ADS)
Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.
2015-11-01
The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.
Gilbert, James A.; Shkrob, Ilya A.; Abraham, Daniel P.
2017-01-05
Continuous operation of full cells with layered transition metal (TM) oxide positive electrodes (NCM523) leads to dissolution of TM ions and their migration and incorporation into the solid electrolyte interphase (SEI) of the graphite-based negative electrode. These processes correlate with cell capacity fade and accelerate markedly as the upper cutoff voltage (UCV) exceeds 4.30 V. At voltages ≥ 4.4 V there is enhanced fracture of the oxide during cycling that creates new surfaces and causes increased solvent oxidation and TM dissolution. Despite this deterioration, cell capacity fade still mainly results from lithium loss in the negative electrode SEI. Among TMs,more » Mn content in the SEI shows a better correlation with cell capacity loss than Co and Ni contents. As Mn ions become incorporated into the SEI, the kinetics of lithium trapping change from power to linear at the higher UCVs, indicating a large effect of these ions on SEI growth and implicating (electro)catalytic reactions. Lastly, we estimate that each Mn II ion deposited in the SEI causes trapping of ~10 2 additional Li + ions thereby hastening the depletion of cyclable lithium ions. Using these results, we sketch a mechanism for cell capacity fade, emphasizing the conceptual picture over the chemical detail.« less
Free-Energy Landscape of the Dissolution of Gibbsite at High pH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Zhizhang; Kerisit, Sebastien N.; Stack, Andrew G.
The individual elementary reactions involved in the dissolution of a solid into solution remain mostly speculative due to a lack of suitable, direct experimental probes. In this regard, we have applied atomistic simulations to map the free energy landscape of the dissolution of gibbsite from a step edge, as a model of metal hydroxide dissolution. The overall reaction combines kink site formation and kink site propagation. Two individual reactions were found to be rate-limiting for kink site formation, that is, the displacement of Al from a step site to a ledge adatom site and its detachment from ledge/terrace adatom sitesmore » into the solution. As a result, a pool of mobile and labile Al adsorbed species, or adatoms, exists before the release of Al into solution. Because of the quasi-hexagonal symmetry of gibbsite, kink site propagation can occur in multiple directions. Overall, the simulation results will enable the development of microscopic mechanistic models of metal oxide dissolution.« less
Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Carrie L.; Watson, David B.; Lester, Brian P.
2015-09-21
In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reactingmore » with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.« less
Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates
Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir
2012-11-13
The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.
Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates
Adzic, Radoslav [East Setauket, NY; Zhang, Junliang [Stony Brook, NY; Vukmirovic, Miomir [Port Jefferson Station, NY
2011-11-22
The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.
Garg, Shikha; Wang, Kai; Waite, T David
2017-05-16
Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.
Seefelt, Ellen L.; Self-Trail, Jean; Schultz, Arthur P.
2015-01-01
In an attempt to halt or reduce dissolution of calcareous nannofossils in organic and/or pyrite-rich sediments, three different methods of short-term storage preservation were tested for efficacy: vacuum packing, argon gas replacement, and buffered water. Abundance counts of calcareous nannofossil assemblages over a six month period showed that none of the three preservation methods were consistently effective in reducing assemblage loss due to dissolution. In most cases, the control slides made at the drill site had more abundant calcareous nannofossil assemblages than those slides made from sediments stored via vacuum packing, argon gas replacement, or buffered water. Thin section and XRD analyses showed that in most cases, <1% pyrite was needed to drive the oxidation-reduction reaction that resulted in dissolution, even in carbonate-rich sediments.
Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica
2012-05-30
The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.
Lewis, A C; Kilburn, M R; Papageorgiou, I; Allen, G C; Case, C P
2005-06-15
The corrosion and dissolution of high- and low-carbon CoCrMo alloys, as used in orthopedic joint replacements, were studied by immersing samples in phosphate-buffered saline (PBS), water, and synovial fluid at 37 degrees C for up to 35 days. Bulk properties were analyzed with a fine ion beam microscope. Surface analyses by X-ray photoelectron spectroscopy and Auger electron spectroscopy showed surprisingly that synovial fluid produced a thin oxide/hydroxide layer. Release of ions into solution from the alloy also followed an unexpected pattern where synovial fluid, of all the samples, had the highest Cr concentration but the lowest Co concentration. The presence of carbide inclusions in the alloy did not affect the corrosion or the dissolution mechanisms, although the carbides were a significant feature on the metal surface. Only one mechanism was recognized as controlling the thickness of the oxide/hydroxide interface. The analysis of the dissolved metal showed two mechanisms at work: (1) a protein film caused ligand-induced dissolution, increasing the Cr concentration in synovial fluid, and was explained by the equilibrium constants; (2) corrosion at the interface increased the Co in PBS. The effect of prepassivating the samples (ASTM F-86-01) did not always have the desired effect of reducing dissolution. The release of Cr into PBS increased after prepassivation. The metal-synovial fluid interface did not contain calcium phosphate as a deposit, typically found where samples are exposed to calcium rich bodily fluids. (c) 2005 Wiley Periodicals, Inc.
Dissolution behavior of MgO based inert matrix fuel for the transmutation of minor actinides
NASA Astrophysics Data System (ADS)
Mühr-Ebert, E. L.; Lichte, E.; Bukaemskiy, A.; Finkeldei, S.; Klinkenberg, M.; Brandt, F.; Bosbach, D.; Modolo, G.
2018-07-01
This study explores the dissolution properties of magnesia-based inert matrix nuclear fuel (IMF) containing transuranium elements (TRU). Pure MgO pellets as well as MgO pellets containing CeO2, as surrogate for TRU oxides, and are considered as model systems for genuine magnesia based inert matrix fuel were fabricated. The aim of this study is to identify conditions at which the matrix material can be selectively dissolved during the head-end reprocessing step, allowing a separation of MgO from the actinides, whereas the actinides remain undissolved. The dissolution behavior was studied in macroscopic batch experiments as a function of nitric acid concentration, dissolution medium volume, temperature, stirring velocity, and pellet density (85, 90, 96, and 99%TD). To mimic pellets with various burn-ups the density of the here fabricated pellets was varied. MgO is soluble even under mild conditions (RT, 2.5 mol/L HNO3). The dissolution rates of MgO at different acid concentrations are rather similar, whereas the dissolution rate is strongly dependent on the temperature. Via a microscopic approach, a model was developed to describe the evolution of the pellet surface area during dissolution and determine a surface normalized dissolution rate. Moreover, dissolution rates of the inert matrix fuel containing CeO2 were determined as a function of the acid concentration and temperature. During the dissolution of MgO/CeO2 pellets the MgO dissolves completely, while CeO2 (>99%) remains undissolved. This study intends to provide a profound understanding of the chemical performance of magnesia based IMF containing fissile material. The feasibility of the dissolution of magnesia based IMF with nitric acid is discussed.
Reduction of PCDDs/PCDFs in MSWI fly ash using microwave peroxide oxidation in H2SO4/HNO3 solution.
Chang, Yu-Min; Dai, Wen-Chien; Tsai, Kao-Shen; Chen, Shiao-Shing; Chen, Jyh-Herng; Kao, Jimmy C M
2013-05-01
Microwave peroxide oxidation (MPO) is an energy-efficient and low GHG emission technology to destroy the hazardous organic compounds in solid waste. The objective of this paper is to explore the reduction feasibility of PCDDs/Fs in MSWI fly ash using the MPO in H2SO4/HNO3 solution. Nearly all PCDDs/Fs, 99% in the original fly ash, can be reduced in 120min at the temperature of 150°C using the MPO treatment. It was also found that a change occurred in the content distribution profiles of 17 major PCDD/F congeners before and after MPO treatment. This provides the potential to reduce the actual PCDDs/Fs content more than I-TEQ contents of PCDDs/Fs. The percentile distribution profile has a tendency of higher chlorinated PCDDs/Fs moving to the lower ones. It concludes that a significant reduction efficiency of I-TEQ toxicity was achieved and showed sufficient reduction of toxic level to lower than 1.0ngI-TEQ(gdw)(-1). The treatment temperature would be a critical factor facilitating the dissolution because higher temperature leads more inorganic salt (parts of fly ash) dissolution. Some problems caused by the MPO method are also delineated in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamic leaching studies of 48 MWd/kgU UO2 commercial spent nuclear fuel under oxic conditions
NASA Astrophysics Data System (ADS)
Serrano-Purroy, D.; Casas, I.; González-Robles, E.; Glatz, J. P.; Wegen, D. H.; Clarens, F.; Giménez, J.; de Pablo, J.; Martínez-Esparza, A.
2013-03-01
The leaching of a high-burn-up spent nuclear fuel (48 MWd/KgU) has been studied in a carbonate-containing solution and under oxic conditions using a Continuously Stirred Tank Flow-Through Reactor (CSTR). Two samples of the fuel, one prepared from the centre of the pellet (labelled CORE) and another one from the fuel pellet periphery, enriched with the so-called High Burn-Up Structure (HBS, labelled OUT) have been used.For uranium and actinides, the results showed that U, Np, Am and Cm gave very similar normalized dissolution rates, while Pu showed slower dissolution rates for both samples. In addition, dissolution rates were consistently two to four times lower for OUT sample compared to CORE sample.Considering the fission products release the main results are that Y, Tc, La and Nd dissolved very similar to uranium; while Cs, Sr, Mo and Rb have up to 10 times higher dissolution rates. Rh, Ru and Zr seemed to have lower dissolution rates than uranium. The lowest dissolution rates were found for OUT sample.Three different contributions were detected on uranium release, modelled and attributed to oxidation layer, fines and matrix release.
Estimating rock and slag wool fiber dissolution rate from composition.
Eastes, W; Potter, R M; Hadley, J G
2000-12-01
A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toczydlowska, Diana; Kedra-Krolik, Karolina; Nejbert, Krzysztof
The role of surface electrostatics on the reductive dissolution of iron (III) oxides is poorly understood, despite its importance in controlling the amount of mobilized iron. We report the potentiometric titration of the a; y -Fe2O3 oxides exposed to reductants and complexing ligands (Fe(II), ascorbate, oxalate, malonate). We monitored in situ surface and potentials, the ratio of mobilized ferric to ferrous ions, and periodically analyzed nanoparticle crystal structure using X-ray diffraction. We found that addition of Fe2+ ions produces a response consistent with the iron solubilityactivity curve, whereas the presence of ascorbate significantly decreases the amount of mobilized Fe(III) duemore » to reduction to Fe(II). In addition, XRD analysis proved that y-Fe2O3 particles remain structurally unchanged along the titration pathway despite iron cycling between aqueous and solid reservoirs. Our studies, suggest that the surface redoxactivity of iron oxides is primarily governed by the balance between Fe(III) and Fe(II) ions in aqueous phase, which may be easily altered by complexing and reducing agents.« less
Research progress in formation mechanism of anodizing aluminum oxide
NASA Astrophysics Data System (ADS)
Lv, Yudong
2017-12-01
The self-ordering porous anodizing aluminum oxide (AAO) has attracted much attention because of its potential value of application. Valve metals (Al, Ti, Zr etc.) anodic studies have been conducted for more than 80 years, but the mechanism of the formation of hexagonal prismatic cell structure has so far been different. In this paper, the research results of AAO film formation mechanism are reviewed, and the growth models of several AAO films are summarized, including the field-assisted dissolution (FAD), the viscous flow model, the critical current density effect model, the bulk expansion stress model and the steady-state pore growth model and so on. It analyzed the principle of each model and its rationality. This paper will be of great help to reveal the nature of pore formation and self-ordering, and with the hope that through the study of AAO film formation mechanism, the specific effects of various oxidation parameters on AAO film morphology can be obtained.
Structure and corrosion behaviour of electrodeposited Co-Mo/TiO2 nano-composite coatings
NASA Astrophysics Data System (ADS)
Krawiec, H.; Vignal, V.; Latkiewicz, M.; Herbst, F.
2018-01-01
The structure and the corrosion behaviour in the Ringer's solution of Co-Mo/TiO2 nano-composite coatings have been investigated. They consist of aggregates of TiO2 nanoparticles uniformly distributed in a Co-Mo alloy matrix (crystallite size of about 2 nm). Both nodular (thickness less than 20 μm) and globular structures (thickness greater than 20 μm) have been observed using field-emission scanning electron microscopy. Under potentiostatic control (in Ringer's solution), oxidation of the coating first occurs followed by (with increasing applied potential) both oxidation and selective dissolution of Co. At the OCP value, Co is oxidized in the form of Co2+-based compounds (CoO, Co(OH)2 or α-CoMoO4) in the coating. This process only occurs in the outermost part of the coating. Therefore, the bulk properties of the coating are not affected after long-term ageing in the Ringer's solution at OCP.
Undoped Polyaniline/Surfactant Complex for the Corrosion Prevention
NASA Technical Reports Server (NTRS)
Liu, Lo-Min; Levon, Kalle
1998-01-01
Due to the strict regulations on the usage of heavy metals as the additives in the coating industries, the search for effective organic corrosion inhibitors in replace of those metal additives has become essential. Electrically conducting polymers have been shown to be effective for corrosion prevention but the poor solubility of these intractable polymers has been a problem. We have explored a polyaniline/4-dodecylphenol complex (PANi/DDPh) to improve the dissolution and it has been shown to be an effective organic corrosion inhibitor. With the surfactant, DDPh, PANi could be diluted into the coatings and the properties of the coatings were affected. Emeraldine base (EB) form of PANi was also found to be oxidized by the hardener. The oxidized form of polyaniline provides improved corrosion protection of metals than that of emeraldine base since the value of the standard electrode potential for the oxidized form of PANi is higher than that of EB. Additionally, the surfactant improves the wet adhesion property between the coating and the metal surface.
Surface study of films formed on copper and brass at open circuit potential
NASA Astrophysics Data System (ADS)
Procaccini, R.; Schreiner, W. H.; Vázquez, M.; Ceré, S.
2013-03-01
The corrosion resistance of Cu-Zn alloys strongly depends on the quality of the protective passive film. This study focuses on the influence of Zn on the composition of oxide films on copper and brass (Cu77Zn21Al2) in borax 0.1 mol L-1 (pH 9.2) solution, where the solubility of copper oxides is minimal. The effect of the presence of chloride ions at low concentration (0.01 mol L-1) in the electrolyte was also evaluated. Both conditions were studied using a set of different electrochemical, optical and surface techniques such as cyclic voltammetry, differential reflectance, X-ray photoelectron spectroscopy and Raman spectroscopy. A duplex Cu2O/CuO layer forms on copper at potentials positive to the open circuit potential (OCP), while in the case of brass, zinc compounds are also incorporated to the surface film. It also became evident that a surface film can be formed on these materials even at potentials negative to the OCP. Zn(II) species are the main constituents of the films growing on brass, while copper oxides are incorporated to the surface film when approaching the OCP. The presence of chloride ions at low concentrations contributes to the dissolution of the oxo-hydroxides formed during the early stages of the aging process at open circuit potential. Also, copper chloro-compounds are formed, as shown by Raman spectroscopy for both copper and brass electrodes.
CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS
Clifford, W.E.
1962-05-29
A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)
Comparative study of the biodegradability of porous silicon films in simulated body fluid.
Peckham, J; Andrews, G T
2015-01-01
The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.
Coastal Benthic Boundary Layer (CBBL) Research Program: A review of the fourth year
1998-09-01
followed by manganese oxide, nitrate , iron oxides, and sulfate. Some of these reactions produce protons, which promote the dissolution of carbonate...investigated. Specific activities during FY97 include: (1) continued multiscale analysis of Eckernförde sediments with inclusions of Key West...certain bacteria can then mediate organic matter oxidation (and obtain energy in the process) using nitrate as the terminal electron acceptor rather than
Roy, Moutusi; Martin, Jonathan B.; Smith, Christopher G.; Cable, Jaye E.
2011-01-01
Iron oxides are important terminal electron acceptors for organic carbon (OC) remineralization in subterranean estuaries, particularly where oxygen and nitrate concentrations are low. In Indian River Lagoon, Florida, USA, terrestrial Fe-oxides dissolve at the seaward edge of the seepage face and flow upward into overlying marine sediments where they precipitate as Fe-sulfides. The dissolved Fe concentrations vary by over three orders of magnitude, but Fe-oxide dissolution rates are similar across the 25-m wide seepage face, averaging around 0.21 mg/cm2/yr. The constant dissolution rate, but differing concentrations, indicate Fe dissolution is controlled by a combination of increasing lability of dissolved organic carbon (DOC) and slower porewater flow velocities with distance offshore. In contrast, the average rate constants of Fe-sulfide precipitation decrease from 21.9 × 10-8 s-1 to 0.64 × 10-8 s-1 from the shoreline to the seaward edge of the seepage face as more oxygenated surface water circulates through the sediment. The amount of OC remineralized by Fe-oxides varies little across the seepage face, averaging 5.34 × 10-2 mg/cm2/yr. These rates suggest about 3.4 kg of marine DOC was remineralized in a 1-m wide, shore-perpendicular strip of the seepage face as the terrestrial sediments were transgressed over the past 280 years. During this time, about 10 times more marine solid organic carbon (SOC) accumulated in marine sediments than were removed from the underlying terrestrial sediments. Indian River Lagoon thus appears to be a net sink for marine OC.
Nominations for the 2017 NNSA Pollution Prevention Awards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzman, Sonja L.; Ballesteros Rodriguez, Sonia; Lopez, Lorraine Bonds
In the field of nuclear forensics, one of the biggest challenges is to dissolve postdetonation debris for analysis. Debris generated after a nuclear detonation is a glassy material that is difficult to dissolve with chemicals. Traditionally, concentrated nitric acid, hydrofluoric acid, or sulfuric acid are employed during the dissolution. These acids, due to their corrosive nature, are not suitable for in-field/on-site sample preparations. Uranium oxides are commonly present in nuclear fuel processing plants and nuclear research facilities. In uranium oxides, the level of uranium isotope enrichment is a sensitive indicator for nuclear nonproliferation and is monitored closely by the Internationalmore » Atomic Energy Agency (IAEA) to ensure there is no misuse of nuclear material or technology for nuclear weapons. During an IAEA on-site inspection at a facility, environmental surface swipe samples are collected and transported to the IAEA headquarters or network of analytical laboratories for further processing. Uranium oxide particles collected on the swipe medium are typically dissolved with inorganic acids and are then analyzed for uranium isotopic compositions. To improve the responsiveness of on-site inspections, in-field detection techniques have been recently explored. However, in-field analysis is bottlenecked by time-consuming and hazardous dissolution procedures, as corrosive inorganic acids must be used. Corrosive chemicals are difficult to use in the field due to personnel safety considerations, and the transportation of such chemicals is highly regulated. It was therefore necessary to develop fast uranium oxide dissolution methods using less hazardous chemicals in support of the rapid infield detection of anomalies in declared nuclear processes.« less
Dissolution kinetics of iron-, manganese-, and copper-containing synthetic hydroxyapatites
NASA Technical Reports Server (NTRS)
Sutter, B.; Hossner, L. R.; Ming, D. W.
2005-01-01
Micronutrient-substituted synthetic hydroxyapatite (SHA) is being evaluated by the National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program for crop production on long-duration human missions to the International Space Station or for future Lunar or Martian outposts. The stirred-flow technique was utilized to characterize Ca, P, Fe, Mn, and Cu release characteristics from Fe-, Mn-, and Cu-containing SHA in deionized (DI) water, citric acid, and diethylene-triamine-pentaacetic acid (DTPA). Initially, Ca and P release rates decreased rapidly with time and were controlled by a non-SHA calcium phosphate phase(s) with low Ca/P solution molar ratios (0.91-1.51) relative to solid SHA ratios (1.56-1.64). At later times, Ca/P solution molar ratios (1.47-1.79) were near solid SHA ratios and release rates decreased slowly indicating that SHA controlled Ca and P release. Substituted SHA materials had faster dissolution rates relative to unsubstituted SHA. The initial metal release rate order was Mn >> Cu > Fe which followed metal-oxide/phosphate solubility suggesting that poorly crystalline metal-oxides/phosphates were dominating metal release. Similar metal release rates for all substituted SHA (approximately 0.01 cmol kg-1 min-1) at the end of the DTPA experiment indicated that SHA dissolution was supplying the metals into solution and that poorly crystalline metal-oxide/phosphates were not controlling metal release. Results indicate that non-SHA Ca-phosphate phases and poorly crystalline metal-oxide/phosphates will contribute Ca, P, and metals. After these phases have dissolved, substituted SHA will be the source of Ca, P, and metals for plants.
NASA Astrophysics Data System (ADS)
Kostic, Danijela; Vidovic, Srđan; Obradovic, Bojana
2016-03-01
A stepwise experimental and mathematical modeling approach was used to assess silver release from nanocomposite Ag/alginate microbeads in wet and dried forms into water and into normal saline solution chosen as a simplified model for certain biological fluids (e.g., blood plasma, wound exudates, sweat, etc). Three phenomena were connected and mathematically described: diffusion of silver nanoparticles (AgNPs) within the alginate hydrogel, AgNP oxidation/dissolution and reaction with chloride ions, and diffusion of the resultant silver-chloride species. Mathematical modeling results agreed well with the experimental data with the AgNP diffusion coefficient estimated as 1.3 × 10-18 m2 s-1, while the first-order kinetic rate constant of AgNP oxidation/dissolution and diffusivity of silver-chloride species were shown to be inversely related. In specific, rapid rehydration and swelling of dry Ag/alginate microbeads induced fast AgNP oxidation/dissolution reaction with Cl- and AgCl precipitation within the microbeads with the lowest diffusivity of silver-chloride species compared to wet microbeads in normal saline. The proposed mathematical model provided an insight into the phenomena related to silver release from nanocomposite Ca-alginate hydrogels relevant for use of antimicrobial devices and established, at the same time, a basis for further in-depth studies of AgNP interactions in hydrogels in the presence of chloride ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venugopal, A.; Selvam, P.; Raja, V.S.
1997-10-01
Oxide films on Al and an Al-Sn alloy were analyzed by x-ray photoelectron spectroscopy (XPS) after immersion in 3.5% sodium chloride (NaCl) solution. Results showed Sn exhibited both Sn{sup 2+} and Sn{sup 4+} oxidation stats in the oxide film. It was proposed that incorporation of these cations in the film would result in generation of more anionic and cationic vacancies in aluminum oxide (Al{sub 2}O{sub 3}), leading to active dissolution of Al.
Composition, Respirable Fraction and Dissolution Rate of 24 Stone Wool MMVF with their Binder.
Wohlleben, Wendel; Waindok, Hubert; Daumann, Björn; Werle, Kai; Drum, Melanie; Egenolf, Heiko
2017-08-07
Man-made vitreous fibres (MMVF) are produced on a large scale for thermal insulation purposes. After extensive studies of fibre effects in the 1980ies and 1990ies, the composition of MMVF was modified to reduce the fibrotic and cancerogenic potential via reduced biopersistence. However, occupational risks by handling, applying, disposing modern MMVF may be underestimated as the conventional regulatory classification -combining composition, in-vivo clearance and effects- seems to be based entirely on MMVF after removal of the binder. Here we report the oxide composition of 23 modern MMVF from Germany, Finland, UK, Denmark, Russia, China (five different producers) and one pre-1995 MMVF. We find that most of the investigated modern MMVF can be classified as "High-alumina, low-silica wool", but several were on or beyond the borderline to "pre-1995 Rock (Stone) wool". We then used well-established flow-through dissolution testing at pH 4.5 and pH 7.4, with and without binder, at various flow rates, to screen the biosolubility of 14 MMVF over 32 days. At the flow rate and acidic pH of reports that found 47 ng/cm 2 /h dissolution rate for reference biopersistent MMVF21 (without binder), we find rates from 17 to 90 ng/cm 2 /h for modern MMVF as customary in trade (with binder). Removing the binder accelerates the dissolution significantly, but not to the level of reference biosoluble MMVF34. We finally simulated handling or disposing of MMVF and measured size fractions in the aerosol. The respirable fraction of modern MMVF is low, but not less than pre-1995 MMVF. The average composition of modern stone wool MMVF is different from historic biopersistent MMVF, but to a lesser extent than expected. The dissolution rates measured by abiotic methods indicate that the binder has a significant influence on dissolution via gel formation. Considering the content of respirable fibres, these findings imply that the risk assessment of modern stone wool may need to be revisited based on in-vivo studies of MMFV as marketed (with binder).
Lithium Assisted “Dissolution–Alloying” Synthesis of Nanoalloys from Individual Bulk Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkholtz, Heather M.; Gallagher, James R.; Li, Tao
2016-04-12
We report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (similar to 200 degrees C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, which results in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron X-ray adsorption techniques. Then, upon the conversion of metal lithium tomore » LiOH in humid air, the Pd and Pt atoms undergo an alloying process to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted "dissolution-alloying" method bypasses many complications intrinsic to conventional ion reduction-based nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less
Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi
2017-02-15
Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe 2 O 3 ) and alumina (α-Al 2 O 3 ) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe 2+ to Fe 3+ by dissolved O 2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite. Copyright © 2016 Elsevier B.V. All rights reserved.
Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment
NASA Astrophysics Data System (ADS)
Dubey, Vivekanand; Kain, Vivekanand
2017-11-01
The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures (< 240 °C), weight loss of specimens due to dissolution of iron in water occurred to a greater extent than weight gain due to oxide formation. With the increase in temperature, the extent of iron dissolution reduced and weight gain due to oxide formation increased. A similar trend was observed with the increase in pH as was observed with the increase in temperature. XRD and Raman spectroscopy confirmed the formation of magnetite. The oxide film formed by precipitation process was negligible at temperatures from 150 to 240 °C compared to that at higher temperatures (> 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.
Corrosion behaviour of stainless steels in flowing LBE at low and high oxygen concentration
NASA Astrophysics Data System (ADS)
Aiello, A.; Azzati, M.; Benamati, G.; Gessi, A.; Long, B.; Scaddozzo, G.
2004-11-01
The corrosion behaviours of austenitic steel AISI 316L and martensitic steel T91 were investigated in flowing lead-bismuth eutectic (LBE) at 400 °C. The tests were performed in the LECOR and CHEOPE III loops, which stood for the low oxygen concentration and high oxygen concentration in LBE, respectively. The results obtained shows that steels were affected by dissolution at the condition of low oxygen concentration ( C[O 2] = 10 -8-10 -10 wt%) and were oxidized at the condition of high oxygen concentration ( C[O 2] = 10 -5-10 -6 wt%). The oxide layers detected are able to protect the steels from dissolution in LBE. Under the test condition adopted, the austenitic steel behaved more resistant to corrosion induced by LBE than the martensitic steel.
NASA Astrophysics Data System (ADS)
Mudunkotuwa, Imali Ama
Nanoscience and nanotechnology offer potential routes towards addressing critical issues such as clean and sustainable energy, environmental protection and human health. Specifically, metal and metal oxide nanomaterials are found in a wide range of applications and therefore hold a greater potential of possible release into the environment or for the human to be exposed. Understanding the aqueous phase behavior of metal and metal oxide nanomaterials is a key factor in the safe design of these materials because their interactions with living systems are always mediated through the aqueous phase. Broadly the transformations in the aqueous phase can be classified as dissolution, aggregation and adsorption which are dependent and linked processes to one another. The complexity of these processes at the liquid-solid interface has therefore been one of the grand challenges that has persisted since the beginning of nanotechnology. Although classical models provide guidance for understanding dissolution and aggregation of nanoparticles in water, there are many uncertainties associated with the recent findings. This is often due to a lack of fundamental knowledge of the surface structure and surface energetics for very small particles. Therefore currently the environmental health and safety studies related to nanomaterials are more focused on understanding the surface chemistry that governs the overall processes in the liquid-solid interfacial region at the molecular level. The metal based nanomaterials focused on in this dissertation include TiO2, ZnO, Cu and CuO. These are among the most heavily used in a number of applications ranging from uses in the construction industry to cosmetic formulation. Therefore they are produced in large scale and have been detected in the environment. There is debate within the scientific community related to their safety as a result of the lack of understanding on the surface interactions that arise from the detailed nature of the surfaces. Specifically, the interactions of these metal and metal oxide nanoparticles with environmental and biological ligands in the solutions have demonstrated dramatic alterations in their aqueous phase behavior in terms of dissolution and aggregation. Dissolution and aggregation are among the determining factors of nanoparticle uptake and toxicity. Furthermore, solution conditions such as ionic strength and pH can act as controlling parameters for surface ligand adsorption while adsorbed ligands themselves undergo surface induced structural and conformational changes. Because, nanomaterials in both the environment and in biological systems are subjected to a wide range of matrix conditions they are in fact dynamic and not static entities. Thus monitoring and tracking these nanomaterials in real systems can be extremely challenging which requires a thorough understanding of the surface chemistry governing their transformations. The work presented in this dissertation attempts to bridge the gap between the dynamic processing of these nanomaterials, the details of the molecular level processes that occur at the liquid-solid interfacial region and potential environmental and biological interactions. Extensive nanomaterial characterization is an integral part of these investigations and all the materials presented here are thoroughly analyzed for particle size, shape, surface area, bulk and surface compositions. Detailed spectroscopic analysis was used to acquire molecular information of the processes in the liquid-solid interfacial region and the outcomes are linked with the macroscopic analysis with the aid of dynamic and static light scattering techniques. Furthermore, emphasis is given to the size dependent behavior and theoretical modeling is adapted giving careful consideration to the details of the physicochemical characterization and molecular information unique to the nanomaterials.
Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen
2017-01-01
The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, J; Miller, D; Stone, M
The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less
Shvartsev, B; Gelman, D; Amram, D; Ein-Eli, Y
2015-12-29
Aluminum (Al) electrochemical dissolution in organic nonaqueous media and room temperature ionic liquids (RTILs) is partially hampered by the presence of a native oxide. In this work, Al activation in EMIm(HF)2.3F RTIL is reported. It was confirmed that as a result of the interaction of Al with the RTIL, a new film is formed instead of the pristine oxide layer. Aluminum surface modifications result in a transformation from a passive state to the active behavior of the metal. This was confirmed via the employment of electrochemical methods and characterization by XPS, AFM, and TEM. It was shown that the pristine oxide surface film dissolves in EMIm(HF)2.3F, allowing an Al-O-F layer to be formed instead. This newly built up layer dramatically restricts Al corrosion while enabling high rates of Al anodic dissolution. These beneficial features allow the implementation of Al as an anode in advanced portable power sources, such as aluminum-air batteries.
Diamantis, Dimitrios A; Ramesova, Sarka; Chatzigiannis, Christos M; Degano, Ilaria; Gerogianni, Paraskevi S; Karadima, Constantina; Perikleous, Sonia; Rekkas, Dimitrios; Gerothanassis, Ioannis P; Galaris, Dimitrios; Mavromoustakos, Thomas; Valsami, Georgia; Sokolova, Romana; Tzakos, Andreas G
2018-06-07
Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry) UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H 2 O 2 -induced DNA damage. Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and oxidation profile is retained in its encapsulated state. Although the protective ability of the quercetin-2HP-β-CD complex against H 2 O 2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. The oxidation profile of a natural product once it is encapsulated in a supramolecular cyclodextrin carrier as also it was discovered that decomplexation can be triggered by a chemical stimulus. Copyright © 2018. Published by Elsevier B.V.
Stability of CoP x Electrocatalysts in Continuous and Interrupted Acidic Electrolysis of Water.
Goryachev, Andrey; Gao, Lu; Zhang, Yue; Rohling, Roderigh Y; Vervuurt, René H J; Bol, Ageeth A; Hofmann, Jan P; Hensen, Emiel J M
2018-04-11
Cobalt phosphides are an emerging earth-abundant alternative to platinum-group-metal-based electrocatalysts for the hydrogen evolution reaction (HER). Yet, their stability is inferior to platinum and compromises the large-scale applicability of CoP x in water electrolyzers. In the present study, we employed flat, thin CoP x electrodes prepared through the thermal phosphidation (PH 3 ) of Co 3 O 4 films made by plasma-enhanced atomic layer deposition to evaluate their stability in acidic water electrolysis by using a multi-technique approach. The films were found to be composed of two phases: CoP in the bulk and a P-rich surface CoP x (P/Co>1). Their performance was evaluated in the HER and the exchange current density was determined to be j 0 =-8.9 ⋅ 10 -5 A/cm 2 . The apparent activation energy of HER on CoP x ( E a =81±15 kJ/mol) was determined for the first time. Dissolution of the material in 0.5 M H 2 SO 4 was observed, regardless of the constantly applied cathodic potential, pointing towards a chemical instead of an electrochemical origin of the observed cathodic instability. The current density and HER faradaic efficiency (FE) were found to be stable during chronoamperometric treatment, as the chemical composition of the HER-active phase remained unchanged. On the contrary, a dynamic potential change performed in a repeated way facilitated dissolution of the film, yielding its complete degradation within 5 h. There, the FE was also found to be changing. An oxidative route of CoP x dissolution has also been proposed.
Kranzler, Chana; Kessler, Nivi; Keren, Nir; Shaked, Yeala
2016-12-01
Iron (Fe) bioavailability, as determined by its sources, sinks, solubility and speciation, places severe environmental constraints on microorganisms in aquatic environments. Cyanobacteria are a widespread group of aquatic, photosynthetic microorganisms with especially high iron requirements. While iron exists predominantly in particulate form, little is known about its bioavailability to cyanobacteria. Some cyanobacteria secrete iron solubilizing ligands called siderophores, yet many environmentally relevant strains do not have this ability. This work explores the bioavailability of amorphous synthetic Fe-oxides (ferrihydrite) to the non-siderophore producing, unicellular cyanobacterium, Synechocystis sp PCC 6803. Iron uptake assays with 55 ferrihydrite established dissolution as a critical prerequisite for iron transport. Dissolution assays with the iron binding ligand, desferrioxamine B, demonstrated that Synechocystis 6803 enhances ferrihydrite dissolution, exerting siderophore-independent biological influence on ferrihydrite bioavailability. Dissolution mechanisms were studied using a range of experimental conditions; both cell-particle physical proximity and cellular electron flow were shown to be important determinants of bio-dissolution by Synechocystis 6803. Finally, the effects of ferrihydrite stability on bio-dissolution rates and cell physiology were measured, integrating biological and chemical aspects of ferrihydrite bioavailability. Collectively, these findings demonstrate that Synechocystis 6803 actively dissolves ferrihydrite, highlighting a significant biological component to mineral phase iron bioavailability in aquatic environments. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Ginder-Vogel, Matthew; Landrot, Gautier; Fischel, Jason S.; Sparks, Donald L.
2009-01-01
Quantification of the initial rates of environmental reactions at the mineral/water interface is a fundamental prerequisite to determining reaction mechanisms and contaminant transport modeling and predicting environmental risk. Until recently, experimental techniques with adequate time resolution and elemental sensitivity to measure initial rates of the wide variety of environmental reactions were quite limited. Techniques such as electron paramagnetic resonance and Fourier transform infrared spectroscopies suffer from limited elemental specificity and poor sensitivity to inorganic elements, respectively. Ex situ analysis of batch and stirred-flow systems provides high elemental sensitivity; however, their time resolution is inadequate to characterize rapid environmental reactions. Here we apply quick-scanning x-ray absorption spectroscopy (Q-XAS), at sub-second time-scales, to measure the initial oxidation rate of As(III) to As(V) by hydrous manganese(IV) oxide. Using Q-XAS, As(III) and As(V) concentrations were determined every 0.98 s in batch reactions. The initial apparent As(III) depletion rate constants (t < 30 s) measured with Q-XAS are nearly twice as large as rate constants measured with traditional analytical techniques. Our results demonstrate the importance of developing analytical techniques capable of analyzing environmental reactions on the same time scale as they occur. Given the high sensitivity, elemental specificity, and time resolution of Q-XAS, it has many potential applications. They could include measuring not only redox reactions but also dissolution/precipitation reactions, such as the formation and/or reductive dissolution of Fe(III) (hydr)oxides, solid-phase transformations (i.e., formation of layered-double hydroxide minerals), or almost any other reaction occurring in aqueous media that can be measured using x-ray absorption spectroscopy. PMID:19805269
Wei, Cai-Jie; Xie, Yue-Feng; Wang, Xiao-Mao; Li, Xiao-Yan
2018-05-23
Nano scale zero-valent iron (nZVI), a promising engineering technology for in situ remediation, has been greatly limited by quick self-corrosion and low mobility in porous media. Highly reactive nZVI particles produced from the borohydride reduction method were enclosed in a releasable Ca(OH) 2 layer by the chemical deposition method. The amount of Ca(OH) 2 coated on nZVI surface were well controlled by the precursor dosage. At moderate Ca(OH) 2 dosage (R Ca/TFe = 0.25) condition, the increment of Fe 0 content for the obtained nZVI/Ca-0.25 sample was observed. The interfacial reactions between the iron oxide shell and the Ca(OH) 2 saturated environment were delicately elucidated by the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) spectrum. And the coverage of Ca(OH) 2 shell on spherical nZVI surface was found more complete and uniform for the nZVI/Ca sample obtained from the moderate precursor dosage condition (R Ca/TFe = 0.25). The Ca(OH) 2 shell before dissolution was demonstrated owning the anti-corrosion capability to slow down the oxidation of Fe 0 core in air, during ethanol storage and in aqueous environment. The mechanism of anti-corrosion capability for nZVI/Ca-0.25 particle was interestingly found to be attributed to the Ca(OH) 2 shell isolation and also be potentially due to the iron oxide shell phase transformation mediated by the outer Ca(OH) 2 shell. An improved trichloroethylene reduction performance was observed for nZVI/Ca-0.25 than bare nZVI. The mobility of nZVI/Ca particles in water-saturated porous media was moderately improved before shell dissolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
The role of fly-ash particulate material and oxide catalysts in stone degradation
NASA Astrophysics Data System (ADS)
Hutchinson, A. J.; Johnson, J. B.; Thompson, G. E.; Wood, G. C.; Sage, P. W.; Cooke, M. J.
Studies of fly-ash composition identified the presence of calcium and sulphur, indicating their potential role as sources of calcium sulphate. Residual acidity (particularly for oil fly ash) suggested the possibility of enhanced chemical reaction, and the presence of transition metals, probably as oxides, might accelerate the oxidation of SO 2 to SO 42-. Exposure tests in a laboratory-based rig simulating dry deposition on Portland and Monks Park limestone, either seeded or unseeded with fly-ash particulate material or transition metal oxide catalysts, were carried out using an SO 2-containing environment at 95% r.h. Enhanced sulphation of these seeded limestones due to the above factors was minimal; at high loadings of fly ash, there was even evidence of masking the limestone surface, reducing sulphation. However, pure CaCO 3 powder in the exposure rig showed increases in sulphation when seeded with metal oxide catalysts. Thus the limestones examined contained sufficient inherent catalysts for the oxidation of SO 2 to SO 42- to proceed at such a rate that external catalysts were superfluous. This implies that dissolution rate of SO 2 in moisture films controls the availability of species for reaction with these carbonate-based stones and that fly ash deposited from the atmosphere does not enhance the reaction.
Kornberg, Tiffany G.; Antonini, James M.; Rojanasakul, Yon; Castranova, Vincent; Rojanasakul, Liying W.
2017-01-01
Fine/micron-sized iron oxide particulates are incidentally released from a number of industrial processes, including iron ore mining, steel processing, welding, and pyrite production. Some research suggests that occupational exposure to these particulates is linked to an increased risk of adverse respiratory outcomes, whereas other studies suggest that iron oxide is biologically benign. Iron oxide nanoparticles (IONPs), which are less than 100 nm in diameter, have recently surged in use as components of novel drug delivery systems, unique imaging protocols, as environmental catalysts, and for incorporation into thermoplastics. However, the adverse outcomes associated with occupational exposure to IONPs remain relatively unknown. Relevant in vivo studies suggest that pulmonary exposure to IONPs may induce inflammation, pulmonary fibrosis, genotoxicity, and extra-pulmonary effects. This correlates well with in vitro studies that utilize relevant dose, cell type(s), and meaningful end points. A majority of these adverse outcomes are attributed to increased oxidative stress, most likely caused by particle internalization, dissolution, release of free iron ions, and disruption of iron homeostasis. However, because the overall toxicity profile of IONPs is not well understood, it is difficult to set safe exposure limit recommendations that would be adequate for the protection of at-risk workers. This review article will focus on known risks following IONPs exposure supported by human, animal, and cell culture-based studies, the potential challenges intrinsic to IONPs toxicity assessment, and how these may contribute to the poorly characterized IONPs toxicity profile. PMID:28984829
Residual waste from Hanford tanks 241-C-203 and 241-C-204. 1. Solids characterization.
Krupka, Kenneth M; Schaef, Herbert T; Arey, Bruce W; Heald, Steve M; Deutsch, William I; Lindberg, Michael J; Cantrell, Kirk J
2006-06-15
Bulk X-ray diffraction (XRD), synchrotron X-ray microdiffraction (microXRD), and scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDS) were used to characterize solids in residual sludge from single-shell underground waste tanks C-203 and C-204 at the U.S. Department of Energy's Hanford Site in southeastern Washington state. Cejkaite [Na4(UO2)(CO3)3] was the dominant crystalline phase in the C-203 and C-204 sludges. This is one of the few occurrences of cejkaite reported in the literature and may be the first documented occurrence of this phase in radioactive wastes from DOE sites. Characterization of residual solids from water leach and selective extraction tests indicates that cejkaite has a high solubility and a rapid rate of dissolution in water at ambient temperature and that these sludges may also contain poorly crystalline Na2U207 [or clarkeite Na[(UO2)O(OH)](H2O)0-1] as well as nitratine (soda niter, NaNO3), goethite [alpha-FeO(OH)], and maghemite (gamma-Fe2O3). Results of the SEM/EDS analyses indicate that the C-204 sludge also contains a solid that lacks crystalline form and is composed of Na, Al, P, O, and possibly C. Other identified solids include Fe oxides that often also contain Cr and Ni and occur as individual particles, coatings on particles, and botryoidal aggregates; a porous-looking material (or an aggregate of submicrometer particles) that typically contain Al, Cr, Fe, Na, Ni, Si, U, P, O, and C; Si oxide (probably quartz); and Na-Al silicate(s). The latter two solids probably represent minerals from the Hanford sediment, which were introduced into the tank during prior sampling campaigns or other tank operation activities. The surfaces of some Fe-oxide particles in residual solids from the water leach and selective extraction tests appear to have preferential dissolution cavities. If these Fe oxides contain contaminants of concern, then the release of these contaminants into infiltrating water would be limited by the dissolution rates of these Fe oxides, which in general have lowto very low solubilities and slow dissolution rates at near neutral to basic pH values under oxic conditions.
Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu
2016-08-15
Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications.
Fernández, Dolores; García-Gómez, Concepción; Babín, Mar
2013-05-01
Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.; ...
2017-05-19
Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonicmore » drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity seen in the distribution of elevated-As wells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.
Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonicmore » drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity seen in the distribution of elevated-As wells.« less
Lin, Mouhong; Huang, Haoliang; Liu, Zuotao; Liu, Yingju; Ge, Junbin; Fang, Yueping
2013-12-10
Magnetic nanoparticle clusters (MNCs) are a class of secondary structural materials that comprise chemically defined nanoparticles assembled into clusters of defined size. Herein, MNCs are fabricated through a one-pot solvothermal reaction featuring self-limiting assembly of building blocks and the controlled reorganization process. Such growth-dissolution-regrowth fabrication mechanism overcomes some limitations of conventional solvothermal fabrication methods with regard to restricted available feature size and structural complexity, which can be extended to other oxides (as long as one can be chelated by EDTA-2Na). Based on this method, the nanoparticle size of MNCs is tuned between 6.8 and 31.2 nm at a fixed cluster diameter of 120 nm, wherein the critical size for superparamagnetic-ferromagnetic transition is estimated from 13.5 to 15.7 nm. Control over the nature and secondary structure of MNCs gives an excellent model system to understand the nanoparticle size-dependent magnetic properties of MNCs. MNCs have potential applications in many different areas, while this work evaluates their cytotoxicity and Pb(2+) adsorption capacity as initial application study.
Savych, Iuliia; Subianto, Surya; Nabil, Yannick; Cavaliere, Sara; Jones, Deborah; Rozière, Jacques
2015-07-14
Novel platinum-catalysed, corrosion-resistant, loose-tube-structured electrocatalysts for proton exchange membrane fuel cells have been obtained using single-needle electrospinning associated with a microwave-assisted polyol method. Monodisperse platinum particles supported on Nb-SnO2 demonstrated higher electrochemical stability than conventional Pt/C electrodes during ex situ potential cycling and comparable activity in the oxygen reduction reaction. In situ fuel cell operation under accelerated stress test conditions of a membrane electrode assembly elaborated using a Pt/C anode and Pt/Nb-SnO2 cathode confirmed that the voltage loss is significantly lower for the novel cathode than for an MEA prepared using conventional Pt/C supported electrocatalysts. Furthermore, the Nb-SnO2 stabilised the supported platinum nanoparticles against dissolution, migration and reprecipitation in the membrane. Pt/Nb-SnO2 loose-tubes constitute a mitigation strategy for two known degradation mechanisms in PEMFC: corrosion of the carbon support at the cathode, and dissolution of Pt at high cell voltages.
Corrosion behavior of ODS steels with several chromium contents in hot nitric acid solutions
NASA Astrophysics Data System (ADS)
Tanno, Takashi; Takeuchi, Masayuki; Ohtsuka, Satoshi; Kaito, Takeji
2017-10-01
Oxide dispersion strengthened (ODS) steel cladding tubes have been developed for fast reactors. Tempered martensitic ODS steels with 9 and 11 wt% of chromium (9Cr-, 11Cr-ODS steel) are the candidate material in research being carried out at JAEA. In this work, fundamental immersion tests and electrochemical tests of 9 to 12Cr-ODS steels were systematically conducted in various nitric acid solutions at 95 °C. The corrosion rate decreased exponentially with effective solute chromium concentration (Creff) and nitric acid concentration. Addition of vanadium (V) and ruthenium (Ru) also decreased the corrosion rate. The combination of low Creff and dilute nitric acid could not avoid the active mass dissolution during active domain at the beginning of immersion, and the corrosion rate was high. Higher Creff decreased the partial anodic current during the active domain and assisted the passivation of the surface of the steel. Concentrated nitric acid and addition of Ru and V increased partial cathodic current and shifted the corrosion potential to noble side. These effects should have prevented the active mass dissolution and decreased the corrosion rate.
Potential for iron oxides to control metal releases in CO2 sequestration scenarios
Berger, P.M.; Roy, W.R.
2011-01-01
The potential for the release of metals into groundwater following the injection of carbon dioxide (CO2) into the subsurface during carbon sequestration projects remains an open research question. Changing the chemical composition of even the relatively deep formation brines during CO2 injection and storage may be of concern because of the recognized risks associated with the limited potential for leakage of CO2-impacted brine to the surface. Geochemical modeling allows for proactive evaluation of site geochemistry before CO2 injection takes place to predict whether the release of metals from iron oxides may occur in the reservoir. Geochemical modeling can also help evaluate potential changes in shallow aquifers were CO2 leakage to occur near the surface. In this study, we created three batch-reaction models that simulate chemical changes in groundwater resulting from the introduction of CO2 at two carbon sequestration sites operated by the Midwest Geological Sequestration Consortium (MGSC). In each of these models, we input the chemical composition of groundwater samples into React??, and equilibrated them with selected mineral phases and CO 2 at reservoir pressure and temperature. The model then simulated the kinetic reactions with other mineral phases over a period of up to 100 years. For two of the simulations, the water was also at equilibrium with iron oxide surface complexes. The first model simulated a recently completed enhanced oil recovery (EOR) project in south-central Illinois in which the MGSC injected into, and then produced CO2, from a sandstone oil reservoir. The MGSC afterwards periodically measured the brine chemistry from several wells in the reservoir for approximately two years. The sandstone contains a relatively small amount of iron oxide, and the batch simulation for the injection process showed detectable changes in several aqueous species that were attributable to changes in surface complexation sites. After using the batch reaction configuration to match measured geochemical changes due to CO2 injection, we modeled potential changes in groundwater chemistry at the Illinois Basin - Decatur Project (IBDP) site in Decatur, Illinois, USA. At the IBDP, the MGSC will inject 1 million tonnes of CO2 over the course of three years at a depth of about 2 km below the surface into the Mt. Simon Formation. Sections of the Mt. Simon Formation contain up to 10 percent iron oxide, and therefore surface complexes on iron oxides should play a major role in controlling brine chemistry. The batch simulation of this system showed a significant decrease in pH after the injection of CO2 with corresponding changes in brine chemistry resulting from both mineral precipitation/dissolution reactions and changes in the chemistry on iron oxide surfaces. To ensure the safety of shallow drinking water sources, there are several shallow monitoring wells at the IBDP that the MGSC samples regularly to determine baseline chemical concentrations. Knowing what geochemical parameters are most sensitive to CO2 disturbances allows us to focus monitoring efforts. Modeling a major influx of CO2 into the shallow groundwater allowed us to determine that were an introduction of CO2 to occur, the only immediate effect will be dolomite dissolution and calcite precipitation. ?? 2011 Published by Elsevier Ltd.
Milosev, I; Minović, A
2001-01-01
The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.
NASA Astrophysics Data System (ADS)
Postma, Dieke; Pham, Thi Kim Trang; Sø, Helle Ugilt; Hoang, Van Hoan; , Mai Lan, Vi; Nguyen, Thi Thai; Larsen, Flemming; Pham, Hung Viet; Jakobsen, Rasmus
2016-12-01
Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content.
Trang, Pham Thi Kim; Sø, Helle Ugilt; Van Hoan, Hoang; Lan, Vi Mai; Thai, Nguyen Thi; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus
2016-01-01
Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content. PMID:27867210
Yahia, L H; Lombardi, S; Piron, D; Klemberg-Sapieha, J E; Wertheimer, M R
NiTi alloy specimens were plasma cleaned and then coated with a thin film of plasma-polymerized tetrafluoroethylene (TFE) in a Radio-Frequency reactor. The corrosion protection provided by these films was studied by potentiodynamic tests performed in Hank's physiological solution. Surface properties which determine biocompatibility were characterized by X-ray photoelectron spectroscopy (XPS). The results showed that the surface of untreated NiTi was mostly composed by oxygen, carbon, titanium oxide (TiO2) with traces of nickel oxides (NiO and Ni2O3) and metallic Ni. The passivity of untreated NiTi was found to be unstable in the simulated human body media. After plasma treatment, the NiTi surface contained only carbon and fluor. The plasma-polymerized thin film was found to stabilize the NiTi passivity and to increase its pitting potential. This treatment provides a good protection against dissolution of nickel from NiTi alloys.
NASA Astrophysics Data System (ADS)
Shibata, Takayuki; Yamamoto, Kota; Sasano, Junji; Nagai, Moeto
2017-09-01
This paper presents a nanofabrication technique based on the electrochemically assisted chemical dissolution of zinc oxide (ZnO) single crystals in water at room temperature using a catalytically active Pt-coated atomic force microscopy (AFM) probe. Fabricated grooves featured depths and widths of several tens and several hundreds of nanometers, respectively. The material removal rate of ZnO was dramatically improved by controlling the formation of hydrogen ions (H+) on the surface of the catalytic Pt-coated probe via oxidation of H2O molecules; this reaction can be enhanced by applying a cathodic potential to an additional Pt-wire working electrode in a three-electrode configuration. Consequently, ZnO can be dissolved chemically in water as a soluble Zn2+ species via a reaction with H+ species present in high concentrations in the immediate vicinity of the AFM tip apex.
Extraction of uranium from tailings by sulfuric acid leaching with oxidants
NASA Astrophysics Data System (ADS)
Huang, Jing; Li, Mi; Zhang, Xiaowen; Huang, Chunmei; Wu, Xiaoyan
2017-06-01
Recovery of uranium have been performed by leaching uranium-containing tailings in sulfuric acid system with the assistance of HF, HClO4, H2O2 and MnO2. The effect of reagent dosage, sulfuric acid concentration, Liquid/solid ratio, reaction temperature and particle size on the leaching of uranium were investigated. The results show that addiction of HF, HClO4, H2O2 and MnO2 significantly increased the extraction of uranium under 1M sulphuric acid condition and under the optimum reaction conditions a dissolution fraction of 85% by HClO4, 90% by HF, 95% by H2O2 can be reached respectively. The variation of technological mineralogy properites of tailings during leaching process show that the assistants can break gangue effectively. These observations suggest that optimum oxidants could potentially influence the extraction of uranium from tailings even under dilute acid condition.
Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada
Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.
2009-01-01
Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdelbasir, S. M.; El-Sheikh, S. M.; Rashad, M. M.; Rayan, D. A.
2018-03-01
Cuprous oxide Cu2O nanopowders were purposefully synthesised from waste electric cables (WECs) via a simple precipitation route at room temperature using lactose as a reducing agent. In this regard, dimethyl sulfoxide (DMSO) was first applied as an organic solvent for the dissolution of the cable insulating materials. Several parameters were investigated during dissolution of WECs such as dissolution temperature, time and solid/liquid ratio to determine the dissolution percentage of the insulating materials in DMSO. The morphology and the optical properties of the formed Cu2O particles were investigated using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy and UV-visible-near IR spectrophotometer. XRD data confirmed the presence of single crystalline phase of Cu2O nanoparticles. FE-SEM and TEM images revealed spherical, cubic and octahedral shapes with the various particle sizes ranged from 16 to 57 nm depending on the synthesis conditions. A possible mechanism explaining the Cu2O nanostructures formation was proposed. The band gap energies of the Cu2O nanostructures were estimated and the values were located between 1.5 and 2.08 eV. Photoluminescence spectroscopy analysis clearly showed a noticeably blue-shifted emission for the synthesized samples compared to spectrum of the bulk. Eventually, magnetic properties of the synthesized nanoparticles have been measured by vibrating sample magnetometer and the attained results implied that the synthesized particles are weakly ferromagnetic in nature at normal temperature.
Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin
2014-01-01
The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.
Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H.; Baer, Donald R.; Smith, Jordan N.; Liu, Chongxuan; Kodali, Vamsi; Thrall, Brian D.; Chen, Shu; Porter, Alexandra E.; Ryan, Mary P.
2015-01-01
Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies. PMID:26178265
Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H; Baer, Donald R; Smith, Jordan N; Liu, Chongxuan; Kodali, Vamsi; Thrall, Brian D; Chen, Shu; Porter, Alexandra E; Ryan, Mary P
2015-09-15
Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies.
Kang, Minkyung; Bullions, Erin
2017-01-01
Single nanoparticle (NP) electrochemical impacts is a rapidly expanding field of fundamental electrochemistry, with applications from electrocatalysis to electroanalysis. These studies, which involve monitoring the electrochemical (usually current–time, I–t) response when a NP from solution impacts with a collector electrode, have the scope to provide considerable information on the properties of individual NPs. Taking the widely studied oxidative dissolution of individual silver nanoparticles (Ag NPs) as an important example, we present measurements with unprecedented noise (< 5 pA) and time resolution (time constant 100 μs) that are highly revealing of Ag NP dissolution dynamics. Whereas Ag NPs of diameter, d = 10 nm are mostly dissolved in a single event (on the timescale of the measurements), a wide variety of complex processes operate for NPs of larger diameter (d ≥ 20 nm). Detailed quantitative analysis of the I–t features, consumed charge, event duration and impact frequency leads to a major conclusion: Ag NPs undergo sequential partial stripping (oxidative dissolution) events, where a fraction of a NP is electrochemically oxidized, followed by the NP drifting away and back to the tunnelling region before the next partial stripping event. As a consequence, analysis of the charge consumed by single events (so-called “impact coulometry”) cannot be used as a general method to determine the size of colloidal NPs. However, a proper analysis of the I–t responses provides highly valuable information on the transient physicochemical interactions between NPs and polarized surfaces. PMID:28553474
Reduction of graphene oxide by aniline with its concomitant oxidative polymerization.
Xu, Li Qun; Liu, Yi Liang; Neoh, Koon-Gee; Kang, En-Tang; Fu, Guo Dong
2011-04-19
Graphene oxide (GO) nanosheets are readily reduced by aniline above room temperature in an aqueous acid medium, with the aniline simultaneously undergoing oxidative polymerization to produce the reduced graphene oxide-polyaniline nanofiber (RGO-PANi) composites. The resulting RGO-PANi composites and RGO (after dissolution of PANi) were characterized by XPS, XRD analysis, TGA, UV-visible absorption spectroscopy, and TEM. It was also found that the RGO-PANi composites exhibit good specific capacitance during galvanostatic charging-discharging when used as capacitor electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems
Martinez, Ulises; Dumont, Joseph H.; Holby, Edward F.; ...
2016-03-18
Graphitic materials are very essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction. We demonstrate that removal of intercalated water using simple solvent treatments causes significant structural reorganization, substantially affecting the oxygen reduction reaction (ORR) activity and stability of nitrogen-doped graphitic systems. Amid contrasting reports describing the ORR activity of GN-based catalysts in alkaline electrolytes, we demonstratemore » superior activity in an acidic electrolyte with an onset potential of ~0.9 V, a half-wave potential (E ½) of 0.71 V, and a selectivity for four-electron reduction of >95%. Finally and further, durability testing showed E ½ retention >95% in N 2- and O 2-saturated solutions after 2000 cycles, demonstrating the highest ORR activity and stability reported to date for GN-based electrocatalysts in acidic media.« less
Electrocoagulation for the treatment of textile industry effluent--a review.
Khandegar, V; Saroha, Anil K
2013-10-15
Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu
2014-02-01
Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.
Sittig, C; Textor, M; Spencer, N D; Wieland, M; Vallotton, P H
1999-01-01
The biocompatibility of commercially pure titanium and its alloys is closely related to their surface properties, with both the composition of the protecting oxide film and the surface topography playing an important role. Surfaces of commercially pure titanium and of the two alloys Ti-6Al-7Nb and Ti-6Al-4V (wt %) have been investigated following three different pretreatments: polishing, nitric acid passivation and pickling in nitric acid-hydrogen fluoride. Nitric acid treatment is found to substantially reduce the concentration of surface contaminants present after polishing. The natural 4-6 nm thick oxide layer on commercially pure titanium is composed of titanium oxide in different oxidation states (TiO2, Ti2O3 and TiO), while for the alloys, aluminium and niobium or vanadium are additionally present in oxidized form (Al2O3, Nb2O5 or V-oxides). The concentrations of the alloying elements at the surface are shown to be strongly dependent on the pretreatment process. While pickling increases the surface roughness of both commercially pure titanium and the alloys, different mechanisms appear to be involved. In the case of commercially pure titanium, the dissolution rate depends on grain orientation, whereas in the case of the two alloys, selective alpha-phase dissolution and enrichment of the beta-phase appears to occur. Copyright 1999 Kluwer Academic Publishers
Evaluation of extemporaneous oral itraconazole suspensions by dissolution profiles mapping.
Tong, Henry H Y; Chan, Hokman; Du, Zhen; Zheng, Ying
2010-01-01
The objective of this study was to evaluate by dissolution profiles mapping five extemporaneous oral itraconazole suspensions reported in the literature. Dissolution profiles of the extemporaneous oral itraconazole preparations were mapped and correlated with their reported clinical data therein. Four out of five extemporaneous preparations had either too early or insufficient release of itraconazole during the dissolution study, potentially limiting the in vivo oral bioavailability in patients. Dissolution profiles in the remaining extemporaneous preparation was closely similar to that in commercial itraconazole capsules. Based on the reported clinical data and dissolution results in this study, the extemporaneous preparation proposed in a study by Ong and Fobes seems to be the most reasonable choice for our patients. Dissolution profile evaluation is an important quality-control parameter during the evaluation of extemporaneous preparations by pharmacists.
Hot corrosion of silicon carbide and silicon nitride at 1000 C
NASA Technical Reports Server (NTRS)
Fox, Dennis S.; Jacobson, Nathan S.; Smialek, James L.
1990-01-01
The sodium sulfate hot corrosion of silicon-based ceramics at 1000 C has been extensively studied. Deposition of the sodium sulfate corrodant from combustion products is discussed in relation to sodium air impurity and sulfur fuel impurity content. Corrosion occurs by the combined processes of oxidation to form protective silica scales and dissolution of these scales to form nonprotective sodium silicates. The chemical corrosion mechanisms are presented in terms of acidic/basic dissolution of oxides in molten salts. The reactions are strongly influenced by the presence of free carbon in the ceramic. Strength reductions have been measured and are attributed to pitting in SiC and grain boundary attack in Si3N4. Initial results of burner corrosion of two ceramic matrix composites are consistent with the models developed for monolithic ceramics.
Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.
Pradhan, Debabrata; Kim, Dong J; Roychaudhury, Gautam; Lee, Seoung W
2010-01-01
Bioleaching studies of spent petroleum catalyst containing Ni, V and Mo were carried out using iron oxidizing bacteria. Various leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size were studied to evaluate their effects on the leaching efficiency as well as the kinetics of dissolution. The percentage of leaching of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH(4))Fe(3)(SO(4))(2)(OH)(6). Apart from this, the lower leaching efficiency of Mo was due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst. The diffusivities of the attacking species for Ni, V and Mo were also calculated.
Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient
NASA Astrophysics Data System (ADS)
Gómez Briceño, D.; Martín Muñoz, F. J.; Soler Crespo, L.; Esteban, F.; Torres, C.
2001-07-01
Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400°C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases.
Kim, Miae; Corkhill, Claire L; Hyatt, Neil C; Heo, Jong
2018-03-28
Calcium-aluminoborate (CAB) glasses were developed to sequester new waste compositions made of several rare-earth oxides generated from the pyrochemical reprocessing of spent nuclear fuel. Several important wasteform properties such as waste loading, processability and chemical durability were evaluated. The maximum waste loading of the CAB compositions was determined to be ~56.8 wt%. Viscosity and the electrical conductivity of the CAB melt at 1300 °C were 7.817 Pa·s and 0.4603 S/cm, respectively, which satisfies the conditions for commercial cold-crucible induction melting (CCIM) process. Addition of rare-earth oxides to CAB glasses resulted in dramatic decreases in the elemental releases of B and Ca in aqueous dissolution experiments. Normalized elemental releases from product consistency standard chemical durability test were <3.62·10 -5 g·m -2 for Nd, 0.009 g·m -2 for Al, 0.067 g·m -2 for B and 0.073 g·m -2 for Ca (at 90, after 7 days, for SA/V = 2000m -1 ); all meet European and US regulation limits. After 20 d of dissolution, a hydrated alteration layer of ~ 200-nm-thick, Ca-depleted and Nd-rich, was formed at the surface of CAB glasses with 20 mol% Nd 2 O 3 whereas boehmite [AlO(OH)] secondary crystalline phases were formed in pure CAB glass that contained no Nd 2 O 3 .
10 CFR 960.4-2-6 - Dissolution.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Dissolution. 960.4-2-6 Section 960.4-2-6 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-6 Dissolution. (a) Qualifying condition. The site shall be...
The influence of pH on biotite dissolution and alteration kinetics at low temperature
Acker, James G.; Bricker, O.P.
1992-01-01
Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.
Polgari, Marta; Szabo, Zoltan; Szabo-Drubina, Magda; Hein, James R.; Yeh, Hsueh-Wen
2005-01-01
The mineralogical, chemical, and isotopic compositions were determined for a white tripoli from the footwall of the Jurassic Úrkút Mn-oxide ore deposit in the Bakony Mountains, Hungary. The tripoli consists of quartz and chalcedony, with SiO2 contents up to 100 wt.%; consequently, trace-element contents are very low. Oxygen isotopes and quartz crystallinity indicate a low-temperature diagenetic origin for this deposit. The tripoli was formed by dissolution of the carbonate portion of the siliceous (sponge spicules) Isztimér Limestone. Dissolution of the carbonate was promoted by inorganic and organic acids generated during diagensis and left a framework composed of diagenetic silica that preserved the original volume of the limestone layer. The relative enrichment of silica and high porosity is the result of that carbonate dissolution. The silty texture of this highly friable rock is due to the structurally weak silica framework.
Kinetics of dissolution of sapphire in melts in the CaO-Al2O3-SiO2 system
NASA Astrophysics Data System (ADS)
Shaw, Cliff S. J.; Klausen, Kim B.; Mao, Huahai
2018-05-01
The dissolution rate of sapphire in melts in the CAS system of varying silica activity, viscosity and degree of alumina saturation has been determined at 1600 °C and 1.5 GPa. After an initiation period of up to 1800 s, dissolution is controlled by diffusion of cations through the boundary layer adjacent to the dissolving sapphire. The dissolution rate decreases with increasing silica activity, viscosity and molar Al2O3/CaO. The calculated diffusion matrix for each solvent melt shows that CAS 1 and 9 which have molar Al2O3/CaO of 0.33 and 0.6 and dissolution rate constants of 0.65 × 10-6 and 0.59 × 10-6 m/s0.5 have similar directions and magnitudes of diffusive coupling: DCaO-Al2O3 and DAl2O3-CaO are both negative are approximately equal. The solvent with the fastest dissolution rate: CAS 4, which has a rate constant of 1.5 × 10-6 m/s0.5 and Al2O3/CaO of 0.31 has positive DCaO-Al2O3 and negative DAl2O3-CaO and the absolute values vary by a factor of 4. Although many studies show that aluminium is added to the melts via the reaction: Si4+ =Al3+ + 0.5Ca2+ the compositional profiles show that this reaction is not the only one involved in accommodating the aluminium added during sapphire dissolution. Rather, aluminium is incorporated as both tetrahedrally coordinated Al charge balanced by Ca and as aluminium not charge balanced by Ca (termed Alxs). This reaction: AlIV -Ca =Alxs +CaNBO where CaNBO is a non-bridging oxygen associated with calcium, may involve the formation of aluminium triclusters. The shape of the compositional profiles and oxide-oxide composition paths is controlled by the aluminium addition reaction. When Alxs exceeds 2%, CaO diffusion becomes increasingly anomalous and since the bond strength of Alxs correlates with CaO/CaO + Al2O3, the presence of more than 2% Alxs leads to significantly slower dissolution than when Alxs is absent or at low concentration. Thus, dissolution is controlled by diffusion of cations through the boundary layer, but this diffusion is itself controlled by the structural modifications required by the addition of new components to the melt. Comparison of quartz dissolution rates in similar melts shows that dissolution is much faster for quartz than for sapphire and that dissolution rates show the same correlation with silica activity and viscosity. We suggest that diffusive fluxes are related to changes in melt structure and the nature of the reaction that incorporates the added component. For the slow eigendirection, SiO2 addition occurs by a single reaction whereas Al2O3 addition requires a more complex two part reaction in which Al is accommodated by charge balance with Ca until Al is in excess of that which can be charge balanced. The Alxs incorporation reaction, is slower than the Si incorporation reaction which inhibits sapphire dissolution relative to quartz in melts of the same composition.
A mechanistic modelling approach to polymer dissolution using magnetic resonance microimaging.
Kaunisto, Erik; Abrahmsen-Alami, Susanna; Borgquist, Per; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders
2010-10-15
In this paper a computationally efficient mathematical model describing the swelling and dissolution of a polyethylene oxide tablet is presented. The model was calibrated against polymer release, front position and water concentration profile data inside the gel layer, using two different diffusion models. The water concentration profiles were obtained from magnetic resonance microimaging data which, in addition to the previously used texture analysis method, can help to validate and discriminate between the mechanisms of swelling, diffusion and erosion in relation to the dissolution process. Critical parameters were identified through a comprehensive sensitivity analysis, and the effect of hydrodynamic shearing was investigated by using two different stirring rates. Good agreement was obtained between the experimental results and the model. Copyright © 2010 Elsevier B.V. All rights reserved.
What controls silicon isotope fractionation during dissolution of diatom opal?
NASA Astrophysics Data System (ADS)
Wetzel, F.; de Souza, G. F.; Reynolds, B. C.
2014-04-01
The silicon isotope composition of opal frustules from photosynthesising diatoms is a promising tool for studying past changes in the marine silicon cycle, and indirectly that of carbon. Dissolution of this opal may be accompanied by silicon isotope fractionation that could disturb the pristine silicon isotope composition of diatom opal acquired in the surface ocean. It has previously been shown that dissolution of fresh and sediment trap diatom opal in seawater does fractionate silicon isotopes. However, as the mechanism of silicon isotope fractionation remained elusive, it is uncertain whether opal dissolution in general is associated with silicon isotope fractionation considering that opal chemistry and surface properties are spatially and temporally (i.e. opal of different age) diverse. In this study we dissolved sediment core diatom opal in 5 mM NaOH and found that this process is not associated with significant silicon isotope fractionation. Since no variability of the isotope effect was observed over a wide range of dissolution rates, we can rule out the suggestion that back-reactions had a significant influence on the net isotope effect. Similarly, we did not observe an impact of temperature, specific surface area, or degree of undersaturation on silicon isotope partitioning during dissolution, such that these can most likely also be ruled out as controlling factors. We discuss the potential impacts of the chemical composition of the dissolution medium and age of diatom opal on silicon isotope fractionation during dissolution. It appears most likely that the controlling mechanism of silicon isotope fractionation during dissolution is related to the reactivity, or potentially, aluminium content of the opal. Such a dependency would imply that silicon isotope fractionation during dissolution of diatom opal is spatially and temporally variable. However, since the isotope effects during dissolution are small, the silicon isotope composition of diatom opal appears to be robust against dissolution in the deep sea sedimentary environment.
Analysis of engineered nanomaterials in the environment
NASA Astrophysics Data System (ADS)
Reed, Robert Bruce
With increasing incorporation of engineered nanoparticles (NPs) into consumer products, there is concern that these materials will be released to the environment with unknown ecological effects. Methods for detection and characterization of these materials at environmentally relevant concentrations are crucial to understanding this potential risk. A relatively new method, single particle inductively coupled plasma mass spectrometry (spICPMS), was applied to analysis of metal oxide NPs such as ZnO, CeO2, and TiO2, as well as silver nanowires and carbon nanotubes. A lack of nanoparticulate "pulses" in spICPMS analysis of nano-ZnO led to a study on ZnO NP solubility in a variety of matrices. Dissolution of nano-ZnO was observed in nanopure water (7.18 - 7.40 mg/L dissolved Zn, as measured by filtration) and Roswell Park Memorial Institute medium (RPMI-1640) (~5 mg/L), but much more dissolution was observed in Dulbecco's Modified Eagle's Medium (DMEM), where the dissolved Zn concentration exceeded 34 mg/L. These results suggest that solution chemistry exerts a strong influence on ZnO NP dissolution and can result in limits on zinc solubility due to precipitation of less soluble solid phases. Detection and sizing of metal-containing NPs was achieved at concentrations predicted for environmental samples (part-per trillion levels) using spICPMS. Sizing of silver nanowires, titanium dioxide and cerium oxide NPs was done by correlating ICP-MS response (pulses) from NPs entering the plasma to mass of metal in dissolved standards. The ratio of NP pulse detections to the total number of readings during analysis was optimized at 2.5% or less to minimize coincident pulses while still allowing definition of a size distribution. Detection of single walled carbon nanotubes (CNTs) was performed using spICPMS. This study focuses on using trace catalytic metal nanoparticles intercalated in the CNT structure as proxies for the nanotubes. The small, variable, amount of trace metal in each CNT makes separation from instrumental background challenging, and multiple approaches to this problem were attempted. To highlight the potential of spICPMS in environmental studies the release of CNTs from polymer nanocomposites into solution was monitored, showcasing the technique's ability to detect changes in released CNT concentrations as a function of CNT loading.
Mhlanga, Nikiwe; Ray, Suprakas Sinha
2015-01-01
For decades, studies on drug-release kinetics have been an important topic in the field of drug delivery because they provide important insights into the mechanism of drug release from carriers. In this work, polylactide (PLA), doxorubicin (DOX), and metal oxide (MO) (titanium dioxide, magnetic iron oxide, and zinc oxide) spheres were synthesised using the solvent-evaporation technique and were tested for sustained drug release. The efficacy of a dosage system is determined by its ability to deliver the drug at a sustained rate, afford an increased plasma half-life, a minimum exposure of toxic drugs to healthy cells and a high drug pay load. Mathematical models were used to elucidate the release mechanism of the drug from the spheres. The release fitted a zero-order model with a correlation coefficient in the range of 0.9878-0.9891 and the release mechanism followed an anomalous release, meaning drug release was afforded through both diffusion and the dissolution of PLA. Therefore, PLA/DOX/MO released the same amount of drug per unit time. Consequently, the potential for PLA use as a carrier was ascertained. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of the oxidation front penetration on in-clad hydrogen migration
NASA Astrophysics Data System (ADS)
Feria, F.; Herranz, L. E.
2018-03-01
In LWR fuel claddings the embrittlement due to hydrogen precipitates (i.e., hydrides) is a degrading mechanism that concerns in nuclear safety, particularly in dry storage. A relevant factor is the radial distribution of the hydrogen absorbed, especially the hydride rim formed. Thus, a reliable assessment of fuel performance should account for hydrogen migration. Based on the current state of modelling of hydrogen dynamics in the cladding, a 1D radial model has been derived and coupled with the FRAPCON code. The model includes the effect of the oxidation front progression on in-clad hydrogen migration, based on experimental observations found (i.e., dissolution/diffusion/re-precipitation of the hydrogen in the matrix ahead of the oxidation front). A remarkable quantitative impact of this new contribution has been shown by analyzing the hydrogen profile across the cladding of several high burnup fuel scenarios (>60 GW d/tU); other potential contributions like thermodiffusion and diffusion in the hydride phase hardly make any difference. Comparisons against PIE measurements allow concluding that the model accuracy notably increases when the effect of the oxidation front is accounted for in the hydride rim formation. In spite of the promising results, further validation would be needed.
Influence of oxygen, albumin and pH on copper dissolution in a simulated uterine fluid.
Bastidas, D M; Cano, E; Mora, E M
2005-06-01
The aim of this paper is to study the influence of albumin content, from 5 to 45 g/L, on copper dissolution and compounds composition in a simulated uterine solution. Experiments were performed in atmospheric pressure conditions and with an additional oxygen pressure of 0.2 atmospheres, at 6.3 and 8.0 pH values, and at a temperature of 37 +/- 0.1 degrees C for 1, 3, 7, and 30 days experimentation time. The copper dissolution rate has been determined using absorbance measurements, finding the highest value for pH 8.0, 35 g/L albumin, and with an additional oxygen pressure of 0.2 atmospheres: 674 microg/day for 1 day, and 301 microg/day for 30 days. X-ray photoelectron spectroscopy (XPS) results show copper(II) as the main copper oxidation state at pH 8.0; and copper(I) and metallic copper at pH 6.3. The presence of albumin up to 35 g/L, accelerates copper dissolution. For high albumin content a stabilisation on the copper dissolution takes place. Corrosion product layer morphology is poorly protective, showing paths through which copper ions can release.
Discoloration of the wetted surface in the 6.1D dissolver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.; Mickalonis, J.; Crapse, K.
During a camera inspection of a failed coil in the 6.1D dissolver, an orange discoloration was observed on a portion of the dissolver wall and coils. At the request of H-Canyon Engineering, the inspection video of the dissolver was reviewed by SRNL to assess if the observed condition (a non-uniform, orange-colored substance on internal surfaces) was a result of corrosion. Although the dissolver vessel and coil corrode during dissolution operations, the high acid conditions are not consistent with the formation of ferrous oxides (i.e., orange/rust-colored corrosion products). In a subsequent investigation, SRNL performed dissolution experiments to determine if residues frommore » the nylon bags used for Pu containment could have generated the orange discoloration following dissolution. When small pieces of a nylon bag were placed in boiling 8 M nitric acid solutions containing other components representative of the H-Canyon process, complete dissolution occurred almost immediately. No residues were obtained even when a nylon mass to volume ratio greater than 100 times the 6.1D dissolver value was used. Degradation products from the dissolution of nylon bags are not responsible for the discoloration observed in the dissolver.« less
Mathematical modeling of drug dissolution.
Siepmann, J; Siepmann, F
2013-08-30
The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sø, Helle Ugilt; Postma, Dieke; , Mai Lan, Vi; Pham, Thi Kim Trang; Kazmierczak, Jolanta; Dao, Viet Nga; Pi, Kunfu; Koch, Christian Bender; Pham, Hung Viet; Jakobsen, Rasmus
2018-03-01
Water-sediment interactions were investigated in arsenic contaminated Holocene aquifers of the Red River floodplain, Vietnam, in order to elucidate the origin of the spatial variability in the groundwater arsenic concentration. The investigated aquifers are spread over an 8 × 13 km field area with sediments that varied in burial age from <1 kyr to 11 kyr. The groundwater age ranged from less than 2 yr, up to a maximum near 90 yr. Groundwater As concentrations are between 0 and 6.5 μM and there are no simple correlations between the As concentration and groundwater age or aquifer sediment burial age. The aquifers are anoxic with up to 2 mM CH4 and up to 0.5 mM DOC. The downward advective DOC flux is too small to support both methanogenesis and the reduction of As-containing Fe-oxides and sedimentary carbon is therefore considered the main carbon source for the redox processes. The groundwater H2 concentration ranged between 0.1 and 4 nM. These values are intermediate between ranges characteristic for Fe-oxide reduction and methanogenesis and suggest that both processes take place simultaneously. The groundwater pe was calculated from the H2/H+ and CH4/CO2 redox couples, giving almost similar results that apparently reflects the pe of the bulk groundwater. The pe calculated for the As(III)/As(V) redox couple was found in disequilibrium with the other redox couples. Using the pe calculated from the CH4/CO2 redox couple we show that the groundwater has a reducing potential towards Fe-oxides ranging from ferrihydrite to poorly crystalline goethite, but not for well crystalline goethite or hematite. Hematite and poorly crystalline goethite were identified as the Fe-oxides present in the sediments. Reductive dissolution experiments identify two phases releasing Fe(II); one rapidly dissolving that also contains As and a second releasing Fe(II) more slowly but without As. The initial release of Fe and As occurs at a near constant As/Fe ratio that varied from site to site between 1.2 and 0.1 mmol As/mol Fe. Siderite (FeCO3) is the main sink for Fe(II), based on saturation calculations as well as the identification of siderite in the sediment. Most of the carbonate incorporated in siderite originates from the dissolution of sedimentary CaCO3. Over time the CaCO3 content of the sediments diminishes and FeCO3 appears instead. No specific secondary phases that incorporate arsenite could be identified. Alternatively, the amount of arsenic mobilized during the dissolution of reactive phases can be contained in the pool of adsorbed arsenite. Combining groundwater age with aquifer sediment age allows the calculation of the total number of pore volumes flushed through the aquifer. Comparison with groundwater chemistry shows the highest arsenic concentration to be present within the first 200 pore volumes flushed through the aquifer. These results agree with reactive transport modeling combining a kinetic description of reductive dissolution of As-containing Fe-oxide with adsorption and desorption of arsenite. Understanding variability in groundwater arsenic concentration requires appreciating the coupling of the chemical processes to both sedimentary and hydrogeological cycling.
Short-time dissolution mechanisms of kaolinitic tropical soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malengreau, N.; Sposito, Garrison
1996-03-01
Previous research on the short-time dissolution behavior of kaolinitic Oxisols suggested pH-dependent kinetics involving ligand-promoted dissolution, metal readsorption, and colloidal dispersion, with soil organic matter conjectured to play a decisive role. A novel combination of spectroscopy, lightscattering, and batch dissolution experiments, conducted at controlled pH and ionic strength over five dissolution periods ranging from 1 to 12 h, was applied to evaluate this mechanism for samples of a representative kaolinitic Oxisol; collected at both forested and cultivated field sites (leading to significant differences in organic matter content and field soil pH). The overall characteristics of the pH-dependent net release kineticsmore » of Al, Fe, and Si by the soil samples, for any dissolution period in the range investigated, were determined by the pH value at which colloid dispersion commenced, which decreased significantly as the soil organic matter content increased. Plots of log(Si/Al released) (or Si/Fe released) vs. -log [H+] ([H+] is proton concentration) were superimposable for all dissolution periods studied, rising to a plateau value above the point of zero net charge of the soils (pH 3.2). Light-scattering and X-ray diffraction data showed conclusively that this plateau represented the release of siliceous colloids containing kaolinite and X-ray amorphous material. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and electron spin resonance spectroscopy, applied to the soil samples before and after dissolution, and after conventional chemical extractions to remove Al, C, Fe, and Si, showed that kaolinite and iron oxide phases (the latter being highly Al-substituted and present in both coatings and occlusions) were essentially unaltered by dissolution, even at -log [H+] = 2, whereas substantial dissolution loss of soil quartz occurred. Diffuse reflectance spectroscopy gave strong evidence that C in these soils occurs principally in discrete solid phases, not as a reactive coating on mineral surfaces.« less
Transient changes in shallow groundwater chemistry during the MSU ZERT CO2 injection experiment
Apps, J.A.; Zheng, Lingyun; Spycher, N.; Birkholzer, J.T.; Kharaka, Y.; Thordsen, J.; Kakouros, E.; Trautz, R.
2011-01-01
Food-grade CO2 was injected into a shallow aquifer through a perforated pipe placed horizontally 1-2 m below the water table at the Montana State University Zero Emission Research and Technology (MSU-ZERT) field site at Bozeman, Montana. The possible impact of elevated CO2 levels on groundwater quality was investigated by analyzing 80 water samples taken before, during, and following CO2 injection. Field determinations and laboratory analyses showed rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of trace element species. The geochemical data were first evaluated using principal component analysis (PCA) in order to identify correlations between aqueous species. The PCA findings were then used in formulating a geochemical model to simulate the processes likely to be responsible for the observed increases in the concentrations of dissolved constituents. Modeling was conducted taking into account aqueous and surface complexation, cation exchange, and mineral precipitation and dissolution. Reasonable matches between measured data and model results suggest that: (1) CO2 dissolution in the groundwater causes calcite to dissolve. (2) Observed increases in the concentration of dissolved trace metals result likely from Ca+2-driven ion exchange with clays (smectites) and sorption/desorption reactions likely involving Fe (hydr)oxides. (3) Bicarbonate from CO2 dissolution appears to compete for sorption with anionic species such as HAsO4-2, potentially increasing dissolved As levels in groundwater. ?? 2011 Published by Elsevier Ltd.
Impacts of metal and metal oxide nanoparticles on marine organisms.
Baker, Tony J; Tyler, Charles R; Galloway, Tamara S
2014-03-01
Increasing use of metal and metal oxide nanoparticles [Me(O)NPs] in products means many will inevitably find their way into marine systems. Their likely fate here is sedimentation following hetero-aggregation with natural organic matter and/or free anions, putting benthic, sediment-dwelling and filter feeding organisms most at risk. In marine systems, Me(O)NPs can absorb to micro-organisms with potential for trophic transfer following consumption. Filter feeders, especially bivalves, accumulate Me(O)NPs through trapping them in mucus prior to ingestion. Benthic in-fauna may directly ingest sedimented Me(O)NPs. In fish, uptake is principally via the gut following drinking, whilst Me(O)NPs caught in gill mucus may affect respiratory processes and ion transport. Currently, environmentally-realistic Me(O)NP concentrations are unlikely to cause significant adverse acute health problems, however sub-lethal effects e.g. oxidative stresses have been noted in many organisms, often deriving from dissolution of Ag, Cu or Zn ions, and this could result in chronic health impacts. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Decoupling the Impacts of Heterotrophy and Autotrophy on Sulfuric Acid Speleogenesis
NASA Astrophysics Data System (ADS)
Jones, A. A.; Bennett, P.
2013-12-01
Within caves such as Movile Caves (Romania), the Frasassi Caves (Italy), and Lower Kane Cave (LKC, Wyoming, USA) the combination of abiotic autoxidation and microbiological oxidation of H2S produces SO42- and H+ that promotes limestone dissolution through sulfuric-acid speleogenesis (SAS). Microbial sulfide oxidation by sulfur-oxidizing bacteria (SOB) has been shown recently to be the dominant process leading to speleogenesis in these caves. However, due to the inherently large diversity of microbial communities within these environments, there are a variety of metabolic pathways that can impact limestone dissolution and carbon cycling to varying degrees. In order to investigate these variations we outfitted a continuous flow bioreactor with a Picarro Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS) that continuously monitored and logged 12CO2 and 13CO2 at ppmv sensitivity and isotope ratios at <0.3‰ precision in simulated cave atmospheres. Bioreactors containing Madison Limestone were inoculated with either a monoculture of the mixotrophic sulfur-oxidizing Thiothrix unzii or a mixed environmental (LKC) sulfur-metabolizing community. Ca2+ and pH were also continuously logged in order to quantify the impact of microbial metabolism on limestone dissolution rate. We found an order of magnitude of variability in limestone dissolution rates that were closely tied to microbial metabolism. In monocultures, limestone dissolution was inhibited by excessive reduced sulfur as T. unzii prefers to store sulfur internally as So under these conditions, generating no acidity. The headspace was depleted in 13C when sulfur was being stored as So and enriched in 13C when sulfur was being converted to SO42-. This suggests a preference for a heterotrophy during periods of high sulfur input and autotrophy when sulfur input is low. This was corroborated by an increase in SO42- during low sulfide input and microscope images showed loss of internal sulfur within the filaments during these periods. In both monoculture and LKC environmental cultures, dissolution rates were highest when sulfur-substrate was limited and CO2 was supplied with no organic carbon. Under these conditions δ13C values were as much as 20‰ higher than abiotic conditions and signifies autotrophic carbon fixation which discriminates against 13C. 16S rRNA sequences confirm that autotrophic SOB dominate within this reactor. In contrast, when acetate was supplied with no supplied CO2, δ13C was relatively constant, maintaining values between -31‰ and as low as -37‰. This signifies heterotrophic metabolism where lighter 12C is preferentially consumed resulting in lighter CO2 in the headspace. 16S rRNA sequences confirm that heterotrophic sulfur-reducing bacteria dominate the community within this reactor. When both acetate and CO2 were supplied the heterotrophic behavior appeared to dominate the system which resulted in a significant drop (15‰) in δ13C and a correlative drop in limestone dissolution rate. These results suggest that chemoautotrophy increases the rate of SAS and CO2 flux within the cave environment while heterotrophy leads to slower SAS or even calcite precipitation. Furthermore, changes in carbon substrate (CO2 vs. Acetate) or sulfur substrate concentrations caused an immediate microbial response that could be observed in all measured chemical variables.
1983-03-01
network dissolution, electron beam simulated desorption, electron signal decay, oxidation, oxide layer , growth kinetics, silicon carbide, assivation...surface layers on silicate glasses are reviewed. A type IIIB glass surface is proposed. The mechanisms of hydrothermal attack of two phase lithia...method to make reliable lifetime predictions. Use of electron beam techniques is essential for understanding surface layers formed on glasses (Section III
NASA Astrophysics Data System (ADS)
Joulié, M.; Laucournet, R.; Billy, E.
2014-02-01
A hydrometallurgical process is developed to recover valuable metals of the lithium nickel cobalt aluminum oxide (NCA) cathodes from spent lithium-ion batteries (LIBs). Effect of parameters such as type of acid (H2SO4, HNO3 and HCl), acid concentration (1-4 mol L-1), leaching time (3-18 h) and leaching temperature (25-90 °C) with a solid to liquid ratio fixed at 5% (w/v) are investigated to determine the most efficient conditions of dissolution. The preliminary results indicate that HCl provides higher leaching efficiency. In optimum conditions, a complete dissolution is performed for Li, Ni, Co and Al. In the nickel and cobalt recovery process, at first the Co(II) in the leaching liquor is selectively oxidized in Co(III) with NaClO reagent to recover Co2O3, 3H2O by a selective precipitation at pH = 3. Then, the nickel hydroxide is precipitated by a base addition at pH = 11. The recovery efficiency of cobalt and nickel are respectively 100% and 99.99%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng
Due to the favorable operating power, endurance, speed, and density., transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physiocochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resettingmore » the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horlait, D.; Clavier, N.; Szenknect, S.
2012-03-15
The dissolution of Ce{sub 1-x}Ln{sub x}O{sub 2-x/2} solid solutions was undertaken in various acid media in order to evaluate the effects of several physicochemical parameters such as chemical composition, temperature, and acidity on the reaction kinetics. The normalized dissolution rates (R{sub L,0}) were found to be strongly modified by the trivalent lanthanide incorporation rate, due to the presence of oxygen vacancies decreasing the samples cohesion. Conversely, the nature of the trivalent cation considered only weakly impacted the R{sub L,0} values. The dependence of the normalized dissolution rates on the temperature then appeared to be of the same order of magnitudemore » than that of chemical composition. Moreover, it allowed determining the corresponding activation energy (E{sub A} ≅ 60-85 kJ.mol{sup -1}) which accounts for a dissolution driven by surface-controlled reactions. A similar conclusion was made regarding the acidity of the solution: the partial order related to (H{sub 3}O{sup +}) reaching about 0.7. Finally, the prevailing effect of the incorporation of aliovalent cations in the fluorite-type CeO{sub 2} matrix on the dissolution kinetics precluded the observation of slight effects such as those linked to the complexing agents or to the crystal structure of the samples. (authors)« less
Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions.
Dopson, Mark; Holmes, David S; Lazcano, Marcelo; McCredden, Timothy J; Bryan, Christopher G; Mulroney, Kieran T; Steuart, Robert; Jackaman, Connie; Watkin, Elizabeth L J
2016-01-01
Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of "biomining." A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans . Ac. prosperus had optimum iron oxidation at 20 g L -1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L -1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F 0 F 1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl - with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans , respectively.
Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions
Dopson, Mark; Holmes, David S.; Lazcano, Marcelo; McCredden, Timothy J.; Bryan, Christopher G.; Mulroney, Kieran T.; Steuart, Robert; Jackaman, Connie; Watkin, Elizabeth L. J.
2017-01-01
Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of “biomining.” A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L−1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L−1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl− with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans, respectively. PMID:28111571
Crouch, Garrison M; Han, Donghoon; Fullerton-Shirey, Susan K; Go, David B; Bohn, Paul W
2017-05-23
Nanoscale conductive filaments, usually associated with resistive memory or memristor technology, may also be used for chemical sensing and nanophotonic applications; however, realistic implementation of the technology requires precise knowledge of the conditions that control the formation and dissolution of filaments. Here we describe and characterize an addressable direct-write nanoelectrochemical approach to achieve repeatable formation/dissolution of Ag filaments across a ∼100 nm poly(ethylene oxide) (PEO) film containing either Ag + alone or Ag + together with 50 nm Ag-nanoparticles acting as bipolar electrodes. Using a conductive AFM tip, formation occurs when the PEO film is subjected to a forward bias, and dissolution occurs under reverse bias. Formation-dissolution kinetics were studied for three film compositions: Ag|PEO-Ag + , Ag|poly(ethylene glycol) monolayer-PEO-Ag + , and Ag|poly(ethylene glycol) monolayer-PEO-Ag + /Ag-nanoparticle. Statistical analysis shows that the distribution of formation times exhibits Gaussian behavior, and the fastest average initial formation time occurs for the Ag|PEO-Ag + system. In contrast, formation in the presence of Ag nanoparticles likely proceeds by a noncontact bipolar electrochemical mechanism, exhibiting the slowest initial filament formation. Dissolution times are log-normal for all three systems, and repeated reformation of filaments from previously formed structures is characterized by rapid regrowth. The direct-write bipolar electrochemical deposition/dissolution strategy developed here presents an approach to reconfigurable, noncontact in situ wiring of nanoparticle arrays-thereby enabling applications where actively controlled connectivity of nanoparticle arrays is used to manipulate nanoelectronic and nanophotonic behavior. The system further allows for facile manipulation of experimental conditions while simultaneously characterizing surface conditions and filament formation/dissolution kinetics.
Dissolution of fluorapatite by Pseudomonas fluorescens P35 resulting in fluorine release
Zhou, Jianping; Wang, Hongmei; Cravotta, Charles A.; Dong, Qiang; Xiang, Xing
2017-01-01
Chemical weathering of fluorine-bearing minerals is widely accepted as the main mechanism for the release of fluorine (F) to groundwater. Here, we propose a potential mechanism of F release via microbial dissolution of fluorapatite (Ca5(PO4)3F), which has been neglected previously. Batch culture experiments were conducted at 30°C with a phosphate-solubilizing bacteria strain, Pseudomonas fluorescens P35, and rock phosphates as the sole source of phosphate for microbial growth in parallel with abiotic controls. Rock phosphates consisted of 55–91% of fluorapatite and 5–10% of dolomite before microbial dissolution as indicated by X-ray diffraction (XRD). Mineral composition and morphology changed after microbial dissolution characterized by the disappearance of dolomite and the development of etched cavities on rock phosphate surfaces. The pH of media used was approximately 7.4 at the beginning and increased gradually to 7.7 in abiotic controls; with the inoculum, the pH decreased to acidic values of 3.7–3.8 after 27 h. Phosphate, calcium, and fluoride were released from the rock phosphate to the acidified medium. At 42 h, the concentration of F reached 8.1–10.3 mg L−1. The elevated F concentration was two times higher than the F levels in groundwater in regions diagnosed with fluorosis, and was toxic to the bacteria, as demonstrated by a precipitous decrease in live cells. Geochemical modeling demonstrated that the oxidation of glucose (the carbon source for microbial growth in the medium) to gluconic acid could decrease the pH to 3.7–3.8 and result in the dissolution of fluorapatite and dolomite. Dolomite and fluorapatite remained unsaturated, while concentrations of dissolved phosphorus (P), calcium (Ca), and F increased throughout the time course Fluorite reached saturation [saturation index (SI) 0.22–0.42] after 42 h in rock phosphate–amended biotic systems. However, fluorite was not detected in XRD patterns of the final residue from microcosms. Given that phosphate-solubilizing bacteria are ubiquitous in soil and groundwater ecosystems, they could play an important role in fluorapatite dissolution and the release of F to groundwater.
Discoloration of titanium alloy in acidic saline solutions with peroxide.
Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka
2013-01-01
The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion.
Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations
Aydogan, E.; Almirall, N.; Odette, G. R.; ...
2017-01-10
We produced a nanostructured ferritic alloy (NFA), 14YWT, in the form of thin walled tubing. The stability of the nano-oxides (NOs) was determined under 3.5 MeV Fe +2 irradiations up to a dose of ~585 dpa at 450 °C. Transmission electron microscopy (TEM) and atom probe tomography (APT) show that severe ion irradiation results in a ~25% reduction in size between the unirradiated and irradiated case at 270 dpa while no further reduction within the experimental error was seen at higher doses. Conversely, number density increased by ~30% after irradiation. Moreover, this ‘inverse coarsening’ can be rationalized by the competitionmore » between radiation driven ballistic dissolution and diffusional NO reformation. There were no significant changes in the composition of the matrix or NOs observed after irradiation. Modeling the experimental results also indicated a dissolution of the particles.« less
Modeling low-temperature geochemical processes: Chapter 2
Nordstrom, D. Kirk; Campbell, Kate M.
2014-01-01
This chapter provides an overview of geochemical modeling that applies to water–rock interactions under ambient conditions of temperature and pressure. Topics include modeling definitions, historical background, issues of activity coefficients, popular codes and databases, examples of modeling common types of water–rock interactions, and issues of model reliability. Examples include speciation, microbial redox kinetics and ferrous iron oxidation, calcite dissolution, pyrite oxidation, combined pyrite and calcite dissolution, dedolomitization, seawater–carbonate groundwater mixing, reactive-transport modeling in streams, modeling catchments, and evaporation of seawater. The chapter emphasizes limitations to geochemical modeling: that a proper understanding and ability to communicate model results well are as important as completing a set of useful modeling computations and that greater sophistication in model and code development is not necessarily an advancement. If the goal is to understand how a particular geochemical system behaves, it is better to collect more field data than rely on computer codes.
Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects.
Johnson, D Barrie; Kanao, Tadayoshi; Hedrich, Sabrina
2012-01-01
Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed.
Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects
Johnson, D. Barrie; Kanao, Tadayoshi; Hedrich, Sabrina
2012-01-01
Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed. PMID:22438853
Bernhard, C.
2017-01-01
TiN and Ti2O3 are the predominant inclusion types in Ti-alloyed ferritic chromium stainless steels. In order to ensure the required steel cleanness level, an effective removal of such inclusions in the slag during secondary metallurgy is essential. This inclusion removal predominantly takes place via dissolution of the inclusion in the slag. The dissolution behavior of TiN and Ti2O3 in CaO-SiO2-Al2O3-MgO slags as well as their agglomeration behavior in the liquid steel is investigated using High Temperature Laser Scanning Confocal Microscopy and Tammann Furnace experiments. Thermodynamic calculations are performed using FactSage 7.0. The behavior of TiN is observed to be completely different to that of oxides. Ti2O3 dissolves quickly in slags, and its dissolution behavior is comparable to that of other already well examined oxides. In contrast, TiN shows a very intense gas reaction which is attributed to the release of nitrogen during contact with slag. Slags with higher SiO2 content show a significantly higher ability for the dissolution of TiN as compared to Al2O3-rich slags. The gas reaction is found to also significantly influence the final steel cleanness. Despite the easy absorption of TiN in the slag, the formed nitrogen supports the formation of pinholes in the steel. PMID:29109805
Effect of Phosphate on the Oxidation of Hydroxysulfate Green Rust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benali, Omar; Abdelmoula, Mustapha; Genin, Jean-Marie R.
During Hydroxysulfate green rust GR(SO{sub 4}{sup 2}) oxidation, lepidocrocite and goethite were formed. The oxidation of GR(SO{sub 4}{sup 2-}) in the presence of phosphate ions, also involved the formation of poorly crystallized lepidocrocite but not that of goethite. The dissolution of lepidocrocite is inhibited by adsorption of phosphate ions as confirmed by X-ray photoelectron spectroscopy. The formation of the poorly crystallized protective layer against corrosion is effectively due to the phosphate ions which adsorb on the surface of lepidocrocite, and prevents it to turn into a well crystallized oxide.
Mineral sources and transport pathways for arsenic release in a coastal watershed, USA
Foley, Nora K.; Ayuso, Robert A.
2008-01-01
Metasedimentary bedrock of coastal Maine contains a diverse suite of As-bearing minerals that act as significant sources of elements found in ground and surface waters in the region. Arsenic sources in the Penobscot Formation include, in order of decreasing As content by weight: löllingite and realgar (c.70%), arsenopyrite, cobaltite, glaucodot, and gersdorffite (in the range of 34–45%), arsenian pyrite (<4%), and pyrrhotite (<0.15%). In the Penobscot Formation, the relative stability of primary As-bearing minerals follows a pattern where the most commonly observed highly altered minerals are pyrrhotite, realgar, niccolite, löllingite > glaucodot, arsenopyrite-cobaltian > arsenopyrite, cobaltite, gersdorffite, fine-grained pyrite, Ni-pyrite > coarse-grained pyrite. Reactions illustrate that oxidation of Fe-As disulphide group and As-sulphide minerals is the primary release process for As. Liberation of As by carbonation of realgar and orpiment in contact with high-pH groundwaters may contribute locally to elevated contents of As in groundwater, especially where As is decoupled from Fe. Released metals are sequestered in secondary minerals by sorption or by incorporation in crystal structures. Secondary minerals acting as intermediate As reservoirs include claudetite (c.75%), orpiment (61%), scorodite (c. 45%), secondary arsenopyrite (c. 46%), goethite (<4490 ppm), natrojarosite (<42 ppm), rosenite, melanterite, ferrihydrite, and Mn-hydroxide coatings. Some soils also contain Fe-Co-Ni-arsenate, Ca-arsenate, and carbonate minerals. Reductive dissolution of Fe-oxide minerals may govern the ultimate release of iron and arsenic – especially As(V) – to groundwater; however, dissolution of claudetite (arsenic trioxide) may directly contribute As(III). Processes thought to explain the release of As from minerals in bedrock include oxidation of arsenian pyrite or arsenopyrite, or carbonation of As-sulphides, and most models based on these generally rely on discrete minerals or on a fairly limited series of minerals. In contrast, in the Penobscot Formation and other metasedimentary rocks of coastal Maine, oxidation of As-bearing Fe-cobalt-nickel-sulphide minerals, dissolution (by reduction) of As-bearing secondary As and Fe hydroxide and sulphate minerals, carbonation and/or oxidation of As-sulphide minerals, and desorption of As from Fe-hydroxide mineral surfaces are all thought to be involved. All of these processes contribute to the occurrence of As in groundwaters in coastal Maine, as a result of variability in composition and in stability of the As source minerals. Arsenic contents of soils and groundwater thus reflect the predominant influence and integration of a spectrum of primary mineral reservoirs (instead of single or unique mineral reservoirs). Cycling of As through metasedimentary bedrock aquifers may therefore depend on consecutive stages of carbonation, oxidation and reductive dissolution of primary and secondary As host minerals.
Atomistic Computer Simulations of Water Interactions and Dissolution of Inorganic Glasses
Du, Jincheng; Rimsza, Jessica
2017-09-01
Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less
Application of fuel cell for pyrite and heavy metal containing mining waste
NASA Astrophysics Data System (ADS)
Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.
2015-12-01
Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.
Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.
Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata
2009-07-30
Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.
Maxi- and mini-ferritins: minerals and protein nanocages.
Bevers, Loes E; Theil, Elizabeth C
2011-01-01
Ferritins synthesize ferric oxide biominerals and are central to all life for concentrating iron and protection against oxidative stress from the ferrous and oxidant chemistry. The ferritin protein nanocages and biomineral synthesis are discussed in terms of wide biological distribution of the maxi-ferritins (24 subunit ± heme) and mini-ferritins (Dps) (12 subunit), conservations of the iron/oxygen catalytic sites in the protein cages, mineral formation (step i. Fe(II) entry and binding, step ii. O(2) or H(2)O(2) binding and formation of transition intermediates, step iii. release of differric oxo mineral precursors from active sites, step iv. nucleation and mineralization) properties of the minerals, and protein control of mineral dissolution and release of Fe(II). Pores in ferritin protein cages control iron entry for mineralization and iron exit after mineral dissolution. The relationship between phosphate or the presence of catalytically inactive subunits (animal L subunits) and ferritin iron mineral disorder is developed based on new information about contributions of ferritin protein cage structure to nucleation in protein cage subunit channels that exit close enough to those of other subunits and exiting mineral nuclei to facilitate bulk mineral formation. How and where protons move in and out of the protein during mineral synthesis and dissolution, how ferritin cage assembly with 12 or 24 subunits is encoded in the widely divergent ferritin amino acid sequences, and what is the role of the protein in synthesis of the bulk mineral are all described as problems requiring new approaches in future investigations of ferritin biominerals.
NASA Astrophysics Data System (ADS)
Benali, Omar; Abdelmoula, Mustapha; Refait, Philippe; Génin, Jean-Marie Robert
2001-06-01
Hydroxycarbonate green rust GR(CO 32-) has been synthesized by oxidation of aqueous suspensions of Fe(OH) 2 by aeration at the air-liquid interface, in the presence of HCO 3- ions at pH 7.5 to 9. During the oxidation of GR(CO 32-), ferrihydrite formed first and then turned into goethite by dissolution and precipitation. The oxidation of GR(CO 32-) in the presence of orthophosphate ions, which were added as Na 2HPO 4 · 7H 2O salt, also involved the formation of ferrihydrite but not that of goethite, because the dissolution of ferrihydrite is inhibited by the adsorption of phosphate ions on its surface. The oxidation was slowed down because of the suppression of the catalytic effect of iron(III) hydroxide on the oxidation of Fe(II). In anoxic conditions without phosphate, a mixture of GR(CO 32-), goethite, and ferrihydrite was observed to transform spontaneously into a mixture of siderite and magnetite. It is thermodynamically consistent, which shows that GR(CO 32-) is metastable with respect to the two-phase system FeCO 3-Fe 3O 4. In the presence of phosphate, this transformation was inhibited and GR(CO 32-) did not transform in anoxic conditions. Anionic phosphate species dissolved in solution did not give rise to a corresponding GR, i.e., phosphate species did not substitute for carbonate inside the interlayers of the GR. Moreover, iron phosphates did not appear, neither during the oxidation of GR(CO 32-) in the presence of oxygen nor in anoxic conditions.
Arafa, Mona F; El-Gizawy, Sanaa A; Osman, Mohamed A; El Maghraby, Gamal M
2018-06-01
Dissolution enhancement is a promising strategy for improving drug bioavailability. Co-crystallization of drugs with inert material can help in this direction. The benefit will become even greater if the inert material can form co-crystal while maintaining its main function as excipient. Accordingly, the objective of the current study was to investigate xylitol as a potential co-crystal co-former for felodipine with the goal of preparing felodipine sublingual tablets. Co-crystallization was achieved by wet co-grinding of the crystals deposited from methanolic solutions containing felodipine with increasing molar ratios of xylitol (1:1, 1:2 and 1:3). The developed co-crystals were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) before monitoring drug dissolution. These results reflected the development of new crystalline species depending on the relative proportions of felodipine and xylitol with complete co-crystallization of felodipine being achieved in the presence of double its molar concentration of xylitol. This co-crystal formulation was compressed into sublingual tablet with ultrashort disintegration time with subsequent fast dissolution. Co-crystal formation was associated with enhanced dissolution with the optimum formulation producing the fastest dissolution rate. In conclusion, xylitol can be considered as a co-crystal co-former for enhanced dissolution rate of drugs.
Essa, Ebtessam A; Elmarakby, Amira O; Donia, Ahmed M A; El Maghraby, Gamal M
2017-09-01
The aim of this work was to investigate the potential of controlled precipitation of flurbiprofen on solid surface, in the presence or absence of hydrophilic polymers, as a tool for enhanced dissolution rate of the drug. The work was extended to develop rapidly disintegrated tablets. This strategy provides simple technique for dissolution enhancement of slowly dissolving drugs with high scaling up potential. Aerosil was dispersed in ethanolic solution of flurbiprofen in the presence and absence of hydrophilic polymers. Acidified water was added as antisolvent to produce controlled precipitation. The resultant particles were centrifuged and dried at ambient temperature before monitoring the dissolution pattern. The particles were also subjected to FTIR spectroscopic, X-ray diffraction and thermal analyses. The FTIR spectroscopy excluded any interaction between flurbiprofen and excipients. The thermal analysis reflected possible change in the crystalline structure and or crystal size of the drug after controlled precipitation in the presence of hydrophilic polymers. This was further confirmed by X-ray diffraction. The modulation in the crystalline structure and size was associated with a significant enhancement in the dissolution rate of flurbiprofen. Optimum formulations were successfully formulated as rapidly disintegrating tablet with subsequent fast dissolution. Precipitation on a large solid surface area is a promising strategy for enhanced dissolution rate with the presence of hydrophilic polymers during precipitation process improving the efficiency.
Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.
2008-01-01
In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (???2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ??V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 A??, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 ?? 10-14 mol biotite m-2 s-1. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 ??m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 ?? 10-13 mol hornblende m-2 s-1: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O2 at the bedrock-saprolite interface. ?? 2008 Elsevier Ltd. All rights reserved.
Okibe, Naoko; Gericke, Mariekie; Hallberg, Kevin B.; Johnson, D. Barrie
2003-01-01
Microorganisms were enumerated and isolated on selective solid media from a pilot-scale stirred-tank bioleaching operation in which a polymetallic sulfide concentrate was subjected to biologically accelerated oxidation at 45°C. Four distinct prokaryotes were isolated: three bacteria (an Acidithiobacillus caldus-like organism, a thermophilic Leptospirillum sp., and a Sulfobacillus sp.) and one archaeon (a Ferroplasma-like isolate). The relative numbers of these prokaryotes changed in the three reactors sampled, and the Ferroplasma isolate became increasingly dominant as mineral oxidation progressed, eventually accounting for >99% of plate isolates in the third of three in-line reactors. The identities of the isolates were confirmed by analyses of their 16S rRNA genes, and some key physiological traits (e.g., oxidation of iron and/or sulfur and autotrophy or heterotrophy) were examined. More detailed studies were carried out with the Leptospirillum and Ferroplasma isolates. The data presented here represent the first quantitative study of the microorganisms in a metal leaching situation and confirm that mixed cultures of iron- and sulfur-oxidizing prokaryotic acidophiles catalyze the accelerated dissolution of sulfidic minerals in industrial tank bioleaching operations. The results show that indigenous acidophilic microbial populations change as mineral dissolution becomes more extensive. PMID:12676667
The analysis of magnesium oxide hydration in three-phase reaction system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xiaojia; Guo, Lin; Chen, Chen
In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phasemore » system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.« less
Opposing effects of humidity on rhodochrosite surface oxidation.
Na, Chongzheng; Tang, Yuanzhi; Wang, Haitao; Martin, Scot T
2015-03-03
Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) μm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.
Nworie, Obinna Elijah; Qin, Junhao; Lin, Chuxia
2017-08-21
A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated elements, respectively. The solubilisation of iron oxides by the organic acids appears to play a critical role in mobilizing other trace metals and As. Apart from acidification and complexation, reductive dissolution played a dominant role in the dissolution of iron oxides in the presence of oxalic acid, while acidification tended to be more important for dissolving iron oxides in the presence of other organic acids. The unique capacity of oxalic acid to solubilize iron oxides tended to affect the mobilization of other elements in different ways. For Cu, Mn, and Zn, acidification-driven mobilization was likely to be dominant while complexation might play a major role in Pb mobilization. The formation of soluble Fe and Pb oxalate complexes could effectively prevent arsenate or arsenite from combining with these metals to form solid phases of Fe or Pb arsenate or arsenite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefken, L.J.
1999-01-01
Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from abovemore » on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown.« less
Toxic Compounds in Our Food: Arsenic Uptake By Rice and Potential Mitigation By Silicon
NASA Astrophysics Data System (ADS)
Seyfferth, A.; Gill, R.; Penido, E.
2014-12-01
Arsenic is a ubiquitous element in soils worldwide and has the potential to negatively impact human and ecosystem health under certain biogeochemical conditions. While arsenic is relatively immobile in most oxidized soils due to a high affinity for soil solids, arsenic becomes mobilized under reduced soil conditions due to the reductive dissolution of iron(III) oxides thereby releasing soil-bound arsenic. Since arsenic is a well-known carcinogen, this plant-soil process has the potential to negatively impact the lives of billions of rice consumers worldwide upon plant uptake and grain storage of released arsenic. Moreover, arsenic uptake by rice is excacerbated by the use of As-laden groundwater for rice irrigation. One proposed strategy to decrease arsenic uptake by rice plants is via an increase in dissolved silicon in paddy soil solution (pore-water), since silicic acid and arsenous acid share an uptake pathway. However, several soil processes that influence arsenic cycling may be affected by silicon including desorption from bulk soil, formation and mineralogy of iron(III) oxide plaque, and adsorption/desorption onto/from iron plaque; the effect of silicon on these soil processes will ultimately dictate the effectiveness of altered dissolved silicon in decreasing arsenic uptake at the root, which in turn dictates the concentration of arsenic found in grains. Furthermore, the source of silicon may impact carbon cycling and, in particular, methane emissions. Here, impacts of altered dissolved silicon on processes that affect rhizospheric biogeochemical cycling of arsenic and subsequent plant-uptake, and how it influences other biogeochemical cycles such as carbon and iron are investigated. We show that silicon can decrease arsenic uptake and grain storage under certain conditions, and that altered silicon affects the type of iron (III) oxide that comprises iron plaque.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, Michelle M.; Rosso, Kevin M.
Despite decades of research on the reactivity and stable isotope properties of Fe oxides, the ability to describe the redox behavior of Fe oxides in the environment is still quite limited. This is due, in large part, to the analytical and spatial complexities associated with studying microscopic processes at the Fe oxide-water interface. This project had the long-term vision of filling this gap by developing a detailed understanding of the relationship between interfacial ET processes, surface structure and charge, and mineral semiconducting properties. We focused on the Fe(III)-oxides and oxyhydroxides because of their geochemical preponderance, versatility in synthesis of compositionally,more » structurally, and morphologically tailored phases, and because they are amenable to a wide range of surface and bulk properties characterization. In particular, reductive transformation of phases such as hematite (α-Fe 2O 3) and goethite (α-FeOOH) in aqueous solution can serve as excellent model systems for studies of electron conduction processes, as well as provide valuable insights into effect of nanoscale conductive materials on contaminant fate at DOE sites. More specifically, the goal of the Iowa component of this project was to use stable Fe isotope measurements to simultaneously measure isotope specific oxidation states and concentrations of Fe at the hematite-water and goethite-water interface. This work builds on our previous work where we used an innovative combination of 57Fe Mössbauer spectroscopy and high precision isotope ratio measurements (MC-ICP-MS) to probe the dynamics of the reaction of aqueous Fe(II) with goethite. Mössbauer spectroscopy detects 57Fe only among all other Fe isotopes and we have capitalized on this to spectroscopically demonstrate Fe(II)-Fe(III) electron transfer between sorbed Fe(II) and Fe(III) oxides (Handler, et al., 2009; Gorski, et al. 2010; Rosso et al., 2010). By combining the Mössbauer spectroscopy and stable isotopes measurements, we have been able to simultaneously track the oxidation state and isotope concentration of the bulk Fe oxide and aqueous Fe. One of our most compelling findings is that despite the apparent stability of the Fe(II)-goethite system, there is actually a tremendous amount of Fe atom cycling occurring between the aqueous phase and the bulk goethite as indicated by the isotopic composition of both phases approaching the mass balance average (Handler et al., 2009). How such extensive re-crystallization and Fe atom exchange can occur with no significant morphological change is a fascinating question. Based on previous work from PI Rosso’s group showing that a potential gradient across hematite crystal faces leads to conduction through hematite and growth and dissolution at separate crystal faces we proposed that a redox-driven recrystallization could be occurring that would explain the extensive mixing observed with the isotope data. From our previous studies utilizing Mössbauer spectroscopy, we know that sorption of Fe(II) onto goethite results in electron transfer between the sorbed Fe(II) and the structural Fe(III) in goethite. Oxidation of the sorbed Fe(II) produces growth of goethite on goethite (i.e., homoepitaxy), as well as injection of an electron into goethite. It is possible that electron transfer from sorbed Fe(II) occurs across a potential gradient, and that Fe(II) atoms are dissolved at a different location on the goethite surface. These newly-reduced Fe(II) atoms could then dissolve into the aqueous phase, exposing fresh Fe(III) goethite to the aqueous phase. Through a repeated series of these five steps of sorption–electron transfer–crystal growth–conduction– dissolution, a redox-driven conveyor belt, could be established that would allow all of the goethite to be eventually exposed to the aqueous phase and exchanged. This surface-mediated recrystallization process would result in similar Fe isotope distributions in the aqueous phase and goethite particle, as we have observed here. It would also result in a stable aqueous Fe(II) concentration, if there were equal rates of goethite growth and dissolution.« less
Size effects in MgO cube dissolution.
Baumann, Stefan O; Schneider, Johannes; Sternig, Andreas; Thomele, Daniel; Stankic, Slavica; Berger, Thomas; Grönbeck, Henrik; Diwald, Oliver
2015-03-10
Stability parameters and dissolution behavior of engineered nanomaterials in aqueous systems are critical to assess their functionality and fate under environmental conditions. Using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we investigated the stability of cubic MgO particles in water. MgO dissolution proceeding via water dissociation at the oxide surface, disintegration of Mg(2+)-O(2-) surface elements, and their subsequent solvation ultimately leads to precipitation of Mg(OH)2 nanosheets. At a pH ≥ 10, MgO nanocubes with a size distribution below 10 nm quantitatively dissolve within few minutes and convert into Mg(OH)2 nanosheets. This effect is different from MgO cubes originating from magnesium combustion in air. With a size distribution in the range 10 nm ≤ d ≤ 1000 nm they dissolve with a significantly smaller dissolution rate in water. On these particles water induced etching generates (110) faces which, above a certain face area, dissolve at a rate equal to that of (100) planes.1 The delayed solubility of microcrystalline MgO is attributed to surface hydroxide induced self-inhibition effects occurring at the (100) and (110) microplanes. The present work underlines the importance of morphology evolution and surface faceting of engineered nanomaterials particles during their dissolution.
Zupančič, Špela; Potrč, Tanja; Baumgartner, Saša; Kocbek, Petra; Kristl, Julijana
2016-12-01
Nanofibers combined with an antimicrobial represent a powerful strategy for treatment of various infections. Local infections usually have a low fluid volume available for drug release, whereas pharmacopoeian dissolution tests include a much larger receptor volume. Therefore, the development of novel drug-release methods that more closely resemble the in-vivo conditions is necessary. We first developed novel biocompatible and biodegradable chitosan/polyethylene oxide nanofibers using environmentally friendly electrospinning of aqueous polymer solutions, with the inclusion of the antimicrobial metronidazole. Here, the focus is on the characterization of these nanofibers, which have high potential for bioadhesion and retention at the site of application. These can be used where prolonged retention of the delivery system at an infected target site is needed. Drug release was studied using three in-vitro methods: a dissolution apparatus (Apparatus 1 of the European Pharmacopoeia), vials, and a Franz diffusion cell. In contrast to other studies, here the Franz diffusion cell method was modified to introduce a small volume of medium with the nanofibers in the donor compartment, where the nanofibers swelled, eroded, and released the metronidazole, which then diffused into the receptor compartment. This set-up with nanofibers in a limited amount of medium released the drug more slowly compared to the other two in-vitro methods that included larger volumes of medium. These findings show that drug release from nanofibers strongly depends on the release method used. Therefore, in-vitro test methods should closely resemble the in-vivo conditions for more accurate prediction of drug release at a therapeutic site. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.
2014-01-01
We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734
Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I; Nel, Andre E
2012-05-22
We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.
Debnath, Smita; Predecki, Paul; Suryanarayanan, Raj
2004-01-01
The purpose of this study was (i) to develop glancing angle x-ray powder diffractometry (XRD) as a method for profiling phase transformations as a function of tablet depth; and (ii) to apply this technique to (a) study indomethacin crystallization during dissolution of partially amorphous indomethacin tablets and to (b) profile anhydrate --> hydrate transformations during dissolution of theophylline tablets. The intrinsic dissolution rates of indomethacin and theophylline were determined after different pharmaceutical processing steps. Phase transformations during dissolution were evaluated by various techniques. Transformation in the bulk and on the tablet surface was characterized by conventional XRD and scanning electron microscopy, respectively. Glancing angle XRD enabled us to profile these transformations as a function of depth from the tablet surface. Pharmaceutical processing resulted in a decrease in crystallinity of both indomethacin and theophylline. When placed in contact with the dissolution medium, while indomethacin recrystallized, theophylline anhydrate rapidly converted to theophylline monohydrate. Due to intimate contact with the dissolution medium, drug transformation occurred to a greater extent at or near the tablet surface. Glancing angle XRD enabled us to depth profile the extent of phase transformations as a function of the distance from the tablet surface. The processed sample (both indomethacin and theophylline) transformed more rapidly than did the corresponding unprocessed drug. Several challenges associated with the glancing angle technique, that is, the effects of sorbed water, phase transformations during the experimental timescale, and the influence of phase transformation on penetration depth, were addressed. Increased solubility, and consequently dissolution rate, is one of the potential advantages of metastable phases. This advantage is negated if, during dissolution, the metastable to stable transformation rate > dissolution rate. Glancing angle XRD enabled us to quantify and thereby profile phase transformations as a function of compact depth. The technique has potential utility in monitoring surface reactions, both chemical decomposition and physical transformations, in pharmaceutical systems.
Hydrogeochemistry and microbiology of mine drainage: An update
Nordstrom, D. Kirk; Blowes, D.W; Ptacek, C.J.
2015-01-01
The extraction of mineral resources requires access through underground workings, or open pit operations, or through drillholes for solution mining. Additionally, mineral processing can generate large quantities of waste, including mill tailings, waste rock and refinery wastes, heap leach pads, and slag. Thus, through mining and mineral processing activities, large surface areas of sulfide minerals can be exposed to oxygen, water, and microbes, resulting in accelerated oxidation of sulfide and other minerals and the potential for the generation of low-quality drainage. The oxidation of sulfide minerals in mine wastes is accelerated by microbial catalysis of the oxidation of aqueous ferrous iron and sulfide. These reactions, particularly when combined with evaporation, can lead to extremely acidic drainage and very high concentrations of dissolved constituents. Although acid mine drainage is the most prevalent and damaging environmental concern associated with mining activities, generation of saline, basic and neutral drainage containing elevated concentrations of dissolved metals, non-metals, and metalloids has recently been recognized as a potential environmental concern. Acid neutralization reactions through the dissolution of carbonate, hydroxide, and silicate minerals and formation of secondary aluminum and ferric hydroxide phases can moderate the effects of acid generation and enhance the formation of secondary hydrated iron and aluminum minerals which may lessen the concentration of dissolved metals. Numerical models provide powerful tools for assessing impacts of these reactions on water quality.
Lu, Xiaonan; Deng, Lu; Huntley, Caitlin; Ren, Mengguo; Kuo, Po-Hsuen; Thomas, Ty; Chen, Jonathan; Du, Jincheng
2018-03-08
Boron-containing bioactive glasses display a strong potential in various biomedical applications lately due to their controllable dissolution rates. In this paper, we prepared a series of B 2 O 3 /SiO 2 -substituded 45S5 bioactive glasses and performed in vitro biomineralization tests with both simulated body fluid and K 2 HPO 4 solutions to evaluate the bioactivities of these glasses as a function of boron oxide to silica substitution. The samples were examined with scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometry after immersing them in the two solutions (simulated body fluid and K 2 HPO 4 ) up to 3 weeks. It was found that introduction of boron oxide delayed the formation of hydroxyapatite, but all the glasses were shown to be bioactive. Molecular dynamics (MD) simulations were used to complement the experimental efforts to understand the structural changes due to boron oxide to silica substitution by using newly developed partial charge composition-dependent potentials. Local structures around the glass network formers, medium-range structural information, network connectivity, and self-diffusion coefficients of ions were elucidated from MD simulation. Relationships between boron content and glass properties such as structure, density, glass transition temperature, and in vitro bioactivity were discussed in light of both experimental and simulation results.
NASA Astrophysics Data System (ADS)
Solihin; Mursito, Anggoro Tri; Dida, Eki N.; Erlangga, Bagus D.; Widodo
2017-07-01
Silica mineral, which comes along with geothermal fluid in Dieng, is a product of erosion, decomposition and dissolution of silicon oxide based mineral, which is followed by precipitation to form silica mineral. This silica cell structure is non crystalline, and it contains 85,60 % silicon oxide, 6.49 volatile elements, and also other oxide elements. Among the direct potential application of this silica is as raw material in slow release fertilizer. Silica in compacted slow release fertilizer is able control the release rate of fertilizer elements. Two type of slow release fertilizer has been made by using silica as the matrix in these slow release fertilizer. The first type is the mixing of ordinary solid fertilizer with Dieng silica, whereas the second one is the mixing of disposal leach water with Dieng silica. The release test shows that both of these modified fertilizers have slow release fertilizer characteristic. The release rate of fertilizer elements (magnesium, potassium, ammonium, and phosphate) can be significantly reduced. The addition of kaolin in the first type of slow release fertilizer makes the release rate of fertilizer elements can be more slowed down. Meanwhile in the second type of slow release fertilizer, the release rate is determined by ratio of silica/hydrogel. The lowest release rate is achieved by sample that has highest ratio of silica/hydrogel.
NASA Astrophysics Data System (ADS)
Dia, A.; Davranche, M.; Fakih, M.; Nowack, B.; Morin, G.; Gruau, G.
2009-04-01
Iron (III) oxides are ubiquitous components of soils, sediments, aquifers and geological materials. Trace metals associate with Fe (III) oxides as adsorbed or co-precipitated species and, consequently the biogeochemical cycles of Fe and trace metals are closely linked. Using a new monitoring tool recently developed, this study was dedicated to understand how do interplay biological and mineralogical (crystallographic and specific surface area) controls in the Fe oxyhydroxide reductive dissolution within soils and which can be the consequences on associated trace metal release. For this purpose, polymer slides covered by synthetic As-spiked ferrihydrite (As-Fh) or As-spiked lepidocrocite (As-Lp) were inserted into an organic-rich wetland soil in non conventional columns system under anaerobic conditions. This technique was developed to allow the insertion of slides into a structured soil without significant disturbance and to avoid the mechanical abrasion of oxides from slides that would occur in an equilibrium batch system under stirring. Slides were recovered after different periods of time to evaluate (i) the impact of (bio)reduction on both Fe-oxide dissolution and secondary mineral precipitation and, (ii) the subsequent effects on As mobility. XRF analyses of the slides were conducted before and after contact with the soil to determine the amount of Fe and associated As remaining on the slides. Fe(II), acetate, nitrate, sulphate and total metals of the soil solution was followed through time by ion chromatography and ICP-MS measurements. The important bacterial colonization and occurrence of biofilm evidenced by SEM analyses of the slides suggested the presence of biologically mediated processes. As previously shown elsewhere the kinetics of the suspected occurring bacterial reduction differ significantly from abiotic reduction data from literature. The important point is that conversely to what has been observed in published experimental data, the dissolution rates remained here fairly constant through time since the organic matter present in the interacting solution complexed the released Fe(II), which was therefore not able to accumulate onto the bacterial cell surfaces. The organic matter mediated complexation of Fe(II) prevented thus the progressive inhibition of the enzymatic reduction to occur as elsewhere evidenced with other experimental conditions. As expected, the reductive dissolution of the less crystallized ferrihydrite started quicker than that of lepidocrocite. The newly formed minerals were mostly composed of Fe-sulphides. Iron(II) complexation by organic molecules in solution likely prevented formation of secondary Fe(II, III)-rich minerals. The relative proportion of As(III) increased with time on the As-Fh slides, and was combined with a decrease of the Fe/As ratio, suggesting a partial adsorption of As(III) onto minerals. By contrast, for lepidocrocite, the Fe/As ratio increased, suggesting that As(III) was less readsorbed due the lower available site number and the deletion of As adsorption sites on the reduced lepidocrocite surface. Only a weak proportion of As(III) was sequestered by readsorption onto unreduced Fe-oxides and possibly on secondary Fe-sulphide minerals, especially when the iron oxide had a low surface area. Therefore, wetlands and their waterlogged soils could be a non negligible source of As within soils, migrating first through soil solutions and then to the whole hydrosystem.
Theodorou, Ioannis G.; Ruenraroengsak, Pakatip; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Tetley, Teresa D.; Ryan, Mary P.; Porter, Alexandra E.
2017-01-01
Inhaled nanoparticles have high deposition rates in the alveolar region of the lung but the effects of pulmonary surfactant (PS) on nanoparticle bioreactivity are unclear. Here, the impact of PS on the stability and dissolution of ZnO nanowires (ZnONWs) was investigated, and linked with their bioreactivity in vitro with human alveolar epithelial type 1-like cells (TT1). Pre-incubation of ZnONWs with Curosurf® (a natural porcine PS) decreased their dissolution at acidic pH, through the formation of a phospholipid corona. Confocal live cell microscopy confirmed that Curosurf® lowered intracellular dissolution, thus delaying the onset of cell death compared to bare ZnONWs. Despite reducing dissolution, Curosurf® significantly increased the uptake of ZnONWs within TT1 cells, ultimately increasing their toxicity after 24h. Although serum, improved ZnONW dispersion in suspension similar to Curosurf®, it had no effect on ZnONW internalization and toxicity, indicating a unique role of PS in promoting particle uptake. In the absence of PS, ZnONW length had no effect on dissolution kinetics or degree of cellular toxicity, indicating a less important role of length in determining ZnONW bioreactivity. This work provides unique findings on the effects of PS on the stability and toxicity of ZnONWs, which could be important in the study of pulmonary toxicity and epithelial-endothelial translocation of nanoparticles in general. PMID:27441789
NASA Astrophysics Data System (ADS)
Seo, Youngmi; Kim, Jung Hyeun
2011-06-01
Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.
The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions
NASA Astrophysics Data System (ADS)
Boehnstedt, W.
1980-09-01
The paper describes the effect of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions. The dissolution is accelerated by the addition of small quantities of gallium or indium ions to the electrolyte indicated by the shift of the zero current potential by about 250 mV on the current-potential curve. Scanning electron microscope studies showed that gallium ions produce many small cracks in the aluminum electrode and collect at the grain boundary areas, increasing the electrode surface; this enlargement, in combination with increased electrolyte agitation due to greater hydrogen evolution, provides higher current densities at the same potential. It is concluded that this process will widen the possibilities of using aluminum and its alloys in high-rate batteries.
Potter, Russell M; Olang, Nassreen
2013-04-12
The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating.
2013-01-01
The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating. PMID:23587247
Glube, Natalie; Moos, Lea von; Duchateau, Guus
2013-01-01
Purpose In vitro disintegration and dissolution are routine methods used to assess the performance and quality of oral dosage forms. The purpose of the current work was to determine the potential for interaction between capsule shell material and a green tea extract and the impact it can have on the release. Methods A green tea extract was formulated into simple powder-in-capsule formulations of which the capsule shell material was either of gelatin or HPMC origin. The disintegration times were determined together with the dissolution profiles in compendial and biorelevant media. Results All formulations disintegrated within 30 min, meeting the USP criteria for botanical formulations. An immediate release dissolution profile was achieved for gelatin capsules in all media but not for the specified HPMC formulations. Dissolution release was especially impaired for HPMCgell at pH 1.2 and for both HPMC formulations in FeSSIF media suggesting the potential for food interactions. Conclusions The delayed release from studied HPMC capsule materials is likely attributed to an interaction between the catechins, the major constituents of the green tea extract, and the capsule shell material. An assessment of in vitro dissolution is recommended prior to the release of a dietary supplement or clinical trial investigational product to ensure efficacy. PMID:25755998
Glube, Natalie; Moos, Lea von; Duchateau, Guus
2013-01-01
In vitro disintegration and dissolution are routine methods used to assess the performance and quality of oral dosage forms. The purpose of the current work was to determine the potential for interaction between capsule shell material and a green tea extract and the impact it can have on the release. A green tea extract was formulated into simple powder-in-capsule formulations of which the capsule shell material was either of gelatin or HPMC origin. The disintegration times were determined together with the dissolution profiles in compendial and biorelevant media. All formulations disintegrated within 30 min, meeting the USP criteria for botanical formulations. An immediate release dissolution profile was achieved for gelatin capsules in all media but not for the specified HPMC formulations. Dissolution release was especially impaired for HPMCgell at pH 1.2 and for both HPMC formulations in FeSSIF media suggesting the potential for food interactions. The delayed release from studied HPMC capsule materials is likely attributed to an interaction between the catechins, the major constituents of the green tea extract, and the capsule shell material. An assessment of in vitro dissolution is recommended prior to the release of a dietary supplement or clinical trial investigational product to ensure efficacy.
NASA Technical Reports Server (NTRS)
Wittmann, A.; Willay, G.
1986-01-01
For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.
A comparison of the effectiveness of chloroform and eucalyptus oil in dissolving root canal sealers.
Schäfer, Edgar; Zandbiglari, Tannaz
2002-05-01
The solubility of 8 different root canal sealers in chloroform and in eucalyptus oil was compared. For standardized samples (n=12), ring molds were filled with mixed sealers based on epoxy resin, silicone, calcium hydroxide, zinc oxide-eugenol, glass ionomer, and polyketone. These samples were immersed in chloroform or eucalyptus oil for 30 seconds, 1 minute, 2 minutes, 5 minutes, 10 minutes, and 20 minutes. Then, the mean weight loss was determined and statistically analyzed. With the exception of the silicone, all the sealers showed significantly higher solubilities (P <.05) in chloroform than in eucalyptus oil. Epoxy resin was the most soluble sealer in chloroform. In eucalyptus oil, calcium hydroxide, and zinc oxide-eugenol showed the highest solubility. Under the conditions of this study, chloroform was a far more effective solvent of root canal sealers than eucalyptus oil. Because of the potential hazards of chloroform, further studies on the dissolution of root canal sealers in different solvents seem to be necessary.
Superhydrophilicity of novel anodic alumina nanofibers films and their formation mechanism
NASA Astrophysics Data System (ADS)
Peng, Rong; Yang, Wulin; Fu, Licai; Zhu, Jiajun; Li, Deyi; Zhou, Lingping
2017-06-01
A novel anodic alumina nanofibers structure, which is different from the traditional porous anodic structure, has been quickly fabricated via anodizing in a new electrolyte, pyrophosphoric acid. The effects of the solution concentration and the anodizing time on the formation of the anodic alumina nanofibers were analyzed. The results show that the nanostructure of anodic alumina can change to the nanofiber oxide from the porous oxide by increasing the solution concentration. Prolonging the anodizing time is beneficial to obtain alumina nanofibers at high solution concentration. Growth behavior of the alumina nanofibers was also discussed by scanning electron microscopy observations. Owing to the unique hexagonal structure of anodic alumina as well as the preferential chemical dissolution between the porous anodic alumina and the anodic alumina nanotips, the slightly soluble anodic alumina nanotips could form novel alumina nanofibers during anodizing. The results show that the nanofibers-covered aluminum surface exhibits superhydrophilic property, with a near-zero water contact angle. Such alumina nanofibers with superhydrophilic property could be used for various potential applications.
New trends in encapsulation of liposoluble vitamins.
Gonnet, M; Lethuaut, L; Boury, F
2010-09-15
Liposoluble vitamins (A, D, E, and K) and carotenoids have many benefits on health. They are provided mainly by foods. At pharmacological doses, they can also be used to treat skin diseases, several types of cancer or decrease oxidative stress. These molecules are sensitive to oxidation, thus encapsulation might constitute an appropriate mean to preserve their properties during storage and enhance their physiological potencies. Formulation processes have been adapted for sensitive molecule, limiting their exposure to high temperature, light or oxygen. Each administration pathway, oral, systemic, topical, transdermal and local, requires different particle sizes and release profile. Encapsulation can lead to greater efficiency allowing smaller administration doses thus diminishing potential hypervitaminosis syndrome appearance and side effects. Carrier formulation can be based on vitamin dissolution in lipid media and its stabilization by surfactant mixture, on its entrapment in a matrix or molecular system. Suitability of each type of carrier will be discussed for each pathway. 2010 Elsevier B.V. All rights reserved.
REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Koopman, D.
2009-08-01
A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previousmore » review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high aluminum sludge heels may be appropriate as a means of reducing oxalic acid usage. Reagents other than oxalic acid may also be needed for removing actinide elements from the tank heels. A systems engineering evaluation (SEE) was performed on the various alternative chemical cleaning reagents and organic oxidation technologies discussed in the literature review. The objective of the evaluation was to develop a short list of chemical cleaning reagents and oxalic acid destruction methods that should be the focus of further research and development. The results of the SEE found that eight of the thirteen organic oxidation technologies scored relatively close together. Six of the chemical cleaning reagents were also recommended for further investigation. Based on the results of the SEE and plan set out in the TTQAP the following broad areas are recommended for future study as part of the AECC task: (1) Basic Chemistry of Sludge Dissolution in Oxalic Acid: A better understanding of the variables effecting dissolution of sludge species is needed to efficiently remove sludge heels while minimizing the use of oxalic acid or other chemical reagents. Tests should investigate the effects of pH, acid concentration, phase ratios, temperature, and kinetics of the dissolution reactions of sludge components with oxalic acid, mineral acids, and combinations of oxalic/mineral acids. Real waste sludge samples should be characterized to obtain additional data on the mineral phases present in sludge heels. (2) Simulant Development Program: Current sludge simulants developed by other programs for use in waste processing tests, while compositionally similar to real sludge waste, generally have more hydrated forms of the major metal phases and dissolve more easily in acids. Better simulants containing the mineral phases identified by real waste characterization should be developed to test chemical cleaning methods. (3) Oxalic Acid Oxidation Technologies: The two Mn based oxidation methods that scored highly in the SEE should be studied to evaluate long term potential. One of the AOP's (UV/O{sub 3}/Solids Separator) is currently being implemented by the SRS liquid waste organization for use in tank heel chemical cleaning. (4) Corrosion Issues: A program will be needed to address potential corrosion issues from the use of low molarity mineral acids and mixtures of oxalic/mineral acids in the waste tanks for short durations. The addition of corrosion inhibitors to the acids to reduce corrosion rates should be investigated.« less
Welsch, E.P.
1985-01-01
The proposed method uses a lithium metaborate fusion, dissolution of the fusion bead in 15% v v hydrochloric acid, extraction into a 4% solution of trioctylphosphine oxide in methyl isobutyl ketone, and aspiration into a nitrous oxide-acetylene flame. The limits of detection for tin and molybdenum are 1.0 and 0.5 ppm, respectively. Approximately 50 samples can be analysed per day. ?? 1985.
Goldcamp, Michael J; Goldcamp, Diane M; Ashley, Kevin; Fernback, Joseph E; Agrawal, Anoop; Millson, Mark; Marlow, David; Harrison, Kenneth
2009-12-01
Beryllium exposure can cause a number of deleterious health effects, including beryllium sensitization and the potentially fatal chronic beryllium disease. Efficient methods for monitoring beryllium contamination in workplaces are valuable to help prevent dangerous exposures to this element. In this work, performance data on the extraction of beryllium from various size fractions of high-fired beryllium oxide (BeO) particles (from < 32 microm up to 212 microm) using dilute aqueous ammonium bifluoride (ABF) solution were obtained under various conditions. Beryllium concentrations were determined by fluorescence using a hydroxybenzoquinoline fluorophore. The effects of ABF concentration and volume, extraction temperature, sample tube types, and presence of filter or wipe media were examined. Three percent ABF extracts beryllium nearly twice as quickly as 1% ABF; extraction solution volume has minimal influence. Elevated temperatures increase the rate of extraction dramatically compared with room temperature extraction. Sample tubes with constricted tips yield poor extraction rates owing to the inability of the extraction medium to access the undissolved particles. The relative rates of extraction of Be from BeO of varying particle sizes were examined. Beryllium from BeO particles in fractions ranging from less than 32 microm up to 212 microm were subjected to various extraction schemes. The smallest BeO particles are extracted more quickly than the largest particles, although at 90 degrees C even the largest BeO particles reach nearly quantitative extraction within 4 hr in 3% ABF. Extraction from mixed cellulosic-ester filters, cellulosic surface-sampling filters, wetted cellulosic dust wipes, and cotton gloves yielded 90% or greater recoveries. Scanning electron microscopy of BeO particles, including partially dissolved particles, shows that dissolution in dilute ABF occurs not just on the exterior surface but also via accessing particles' interiors due to porosity of the BeO material. Comparison of dissolution kinetics data shows that as particle diameter approximately doubles, extraction time is increased by a factor of about 1.5, which is consistent with the influence of porosity on dissolution.
Li, Qingguang; Wu, Pan; Zha, Xuefang; Li, Xuexian; Wu, Linna; Gu, Shangyi
2018-04-24
The generation of acid mine drainage (AMD) may accelerate watershed erosion and promote the migration of heavy metals, then threaten local ecosystems such as aquatic life and even human health. Previous studies have focused primarily on influence of AMD in surface environment. In order to reveal the acidizing processes in karst high-sulfur coalfield in Southwest China, this study, by contrast, focused on the hydrogeochemical evolution process and acidification mechanism of mine water in Zhijin coalfield, western Guizhou Province. The oxidation of pyrite and other sulfides induced strong acidification of mine water according to the water chemical analysis. As a result, a series of geochemical processes such as dissolution of carbonates and silicates, hydrolysis of metal ions, and degassing of CO 2 complicated water chemical evolution. The dissolution of silicates controlled the chemical composition of mine water, but more carbonates might be dissolved during the acidification of mine water. The sources of sulfate are quite different in water samples collected from the two selected mine. According to sulfur isotope analysis, the dissolution of gypsum is the primary source of sulfate in samples from Hongfa mine, whereas sulfide oxidation contributed a large amount of sulfate to the mine water in Fenghuangshan mine. The dissolution of carbonates should be an important source of DIC in mine water and CO 2 originating from organic mineralization might also have a certain contribution. This study elucidated the groundwater chemical evolution processes in high-sulfur coal-bearing strata and provided a foundation for further study of carbonates erosion and carbon emission during acidification of mine water.
Theil, Elizabeth C; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina
2014-06-01
Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3·H2O minerals from Fe(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe(2+)/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe(2+) + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3·H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.
Theil, Elizabeth C.; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina
2014-01-01
Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3•H2O minerals from Fe2+, for metabolic iron concentrates and oxidant protection; biomineral order varies in different ferritin proteins. The conserved 4, 3, 2 geometric symmetry of ferritin protein cages, parallels subunit dimer, trimer and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self- assembling ferritin nanocages have functional relationships to cage symmetry such as Fe2+ transport though ion channels (3-fold symmetry), biomineral nucleation/order (4-fold symmetry) and mineral dissolution (3-fold symmetry) studied in ferritin variants. Cage subunit dimers (2-fold symmetry) influence iron oxidation and mineral dissolution, based on effects of natural or synthetic subunit dimer crosslinks. 2Fe2+/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n=3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of 3 subunits. Here, we study 2Fe2+ + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3•H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein 2-fold and 3-fold cage axes to show function at ferritin 4-fold cage axes. Here, conserved amino acids facilitate dissolution of ferritin protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage 4-fold symmetry and solid state mineral properties remain largely unexplored. PMID:24504941
NASA Astrophysics Data System (ADS)
Xie, Jinchuan; Lin, Jianfeng; Wang, Yu; Li, Mei; Zhang, Jihong; Zhou, Xiaohua; He, Yifeng
2015-01-01
The fate and transport of colloidal contaminants in natural media are complicated by physicochemical properties of the contaminants and heterogeneous characteristics of the media. Size and charge exclusion are two key microscopic mechanisms dominating macroscopic transport velocities. Faster velocities of colloid-associated actinides than that of 3H2O were consistently indicated in many studies. However, dissociation/dissolution of these sorbed actinides (e.g., Pu and Np), caused by their redox reactions on mineral surfaces, possibly occurred under certain chemical conditions. How this dissolution is related to transport velocities remains unanswered. In this study, aging of the colloid-associated Pu (pseudo-colloid) at room temperature and transport through the saturated coarse-grained granites were performed to study whether Pu could exhibit slower velocity than that of 3H2O (UPu/UT < 1). The results show that oxidative dissolution of Pu(IV) associated with the surfaces of colloidal granite particles took place during the aging period. The relative velocity of UPu/UT declined from 1.06 (unaged) to 0.745 (135 d) over time. Size exclusion limited to the uncharged nano-sized particles could not explain such observed UPu/UT < 1. Therefore, the decline in UPu/UT was ascribed to the presence of electrostatic attraction between the negatively charged wall of granite pore channels and the Pu(V)O2+, as evidenced by increasing Pu(V)O2+ concentrations in the suspensions aged in sealed vessels. As a result of this attraction, Pu(V)O2+ was excluded from the domain closer to the centerline of pore channels. This reveals that charge exclusion played a more important role in dominating UPu than the size exclusion under the specific conditions, where oxidative dissolution of colloid-associated Pu(IV) was observed in the aged suspensions.
Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms.
Deng, Sha; Gu, Guohua; Wu, Ziteng; Xu, Xiongyi
2017-10-01
Arsenic is a critical environmental pollutant associated with acid mine drainage. Arsenopyrite is one of the major arsenic sulfide minerals whose weathering lead to the contamination of arsenic. In this study, the leaching behaviors of arsenopyrite by two mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms (Ferroplasma thermophilum and Acidithiobacillus caldus, Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus) were investigated, accompanying with community structure analysis of free microorganisms. The ratio of F. thermophilum to A. caldus of 1/1 showed a more favorable effect on the arsenic leaching than other ratios, and F. thermophilum played a dominant role in the solution all the leaching time. While adding A. caldus in the S. thermosulfidooxidans bioleaching system, the dissolution of arsenopyrite was suppressed. Notably, when the ratio of S. thermosulfidooxidans to A. caldus was 2/1, the arsenic extraction was accelerated at the early stage, but later it slowed down. The reason was because A. caldus was the predominant species at the later stage which made the redox potential decrease faster. XRD demonstrated that the proper addition of A. caldus could eliminate the sulfur passivation and promote the leaching in a degree. These studies are helpful to evaluate the environmental impact of arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.
2014-06-01
This paper reports a solid oxide membrane (SOM) electrolysis experiment using an LSM(La0.8Sr0.2MnO3-δ)-Inconel inert anode current collector for production of magnesium and oxygen directly from magnesium oxide at 1423 K (1150 °C). The electrochemical performance of the SOM cell was evaluated by means of various electrochemical techniques including electrochemical impedance spectroscopy, potentiodynamic scan, and electrolysis. Electronic transference numbers of the flux were measured to assess the magnesium dissolution in the flux during SOM electrolysis. The effects of magnesium solubility in the flux on the current efficiency and the SOM stability during electrolysis are discussed. An inverse correlation between the electronic transference number of the flux and the current efficiency of the SOM electrolysis was observed. Based on the experimental results, a new equivalent circuit of the SOM electrolysis process is presented. A general electrochemical polarization model of SOM process for magnesium and oxygen gas production is developed, and the maximum allowable applied potential to avoid zirconia dissociation is calculated as well. The modeling results suggest that a high electronic resistance of the flux and a relatively low electronic resistance of SOM are required to achieve membrane stability, high current efficiency, and high production rates of magnesium and oxygen.
Lead Speciation and In Vitro Bioaccessibility of Compost-Amended Urban Garden Soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attanayake, Chammi P.; Hettiarachchi, Ganga M.; Ma, Qing
In situ soil amendments can modify the Pb bioavailability by changing soil Pb speciation. Urban soils from three vegetable gardens containing different total Pb concentrations were used. The study evaluated how compost amendment and aging of soil-compost mixture in situ affected the following: (i) soil Pb speciation in the field and (ii) change of soil Pb speciation during an in vitro bioaccessibility extraction mimicking gastric phase dissolution at pH 2.5. X-ray absorption fine structure spectroscopy was used to determine Pb speciation in amended and nonamended soils and residues left after in vitro bioaccessibility extraction of those soils. Compost amendment andmore » aging of compost in the field had a negligible effect on Pb bioaccessibility in the soils. Major Pb species in the soils were Pb sorbed to Fe oxy(hydr)oxide (Pb-Fh) and to soil organic C (Pb-Org). The fraction of Pb-Org was increased as soil-compost mixture aged in the field. During the in vitro extraction, the fraction of Pb-Fh was decreased, the fraction of Pb-Org was increased, and hydroxypyromorphite was formed in both amended and nonamended soils. Freshly incorporated compost enhanced the dissolution of Pb-Fh during the extraction. As soil-compost mixture aged in the field, the dissolution of Pb-Fh was low, demonstrating more stability of the Pb-Fh during the extraction. Compost amendment showed potential to contribute to reduced bioaccessibility of Pb as compost aged in the soil by increasing Pb-Org fraction in the field and stability of Pb-Fh during the in vitro bioaccessibility extraction.« less
Mechanisms of Arsenic Mobilization and Attenuation in Subsurface Sediments
NASA Astrophysics Data System (ADS)
O'Day, P. A.; Illera, V.; Root, R.; Choi, S.; Vlassopoulos, D.
2007-12-01
This talk will review molecular mechanisms of As mobilization and attenuation in subsurface sediments using examples from recent field studies that represent a range in oxidation-redox (redox) potential. As a ubiquitous trace element in sediments, As speciation and fate is linked to the abundance and biogeochemical behavior of the generally more abundant redox-active elements Fe, S, and Mn. All four elements are subject to oxidation, reduction, and pH-dependent processes such as sorption, desorption, precipitation, and dissolution, and which may include both biotic and abiotic reaction steps. We have used spectroscopic interrogation and geochemical modeling to characterize As speciation in subsurface sediments in several contrasting environments, including high and low S and Fe settings. Aquifers most at risk for contamination by As include those that are rich in organic matter and nutrients, stimulating high rates of microbial reduction and creating anoxic conditions, but limited in labile or available S and/or Fe that remove As by precipitation or adsorption. In subsurface sediments with low labile S and Fe, laboratory experiments and spectroscopic studies suggest that sediment Mn minerals are important in the oxidation of sorbed As(III) to As(V), but that they have a limited oxidation capacity. Arsenic attenuation and mobilization in the subsurface are affected by seasonal variations when hydraulic conditions are influenced by surface infiltration, which may induce transitions from oxidized to reduced conditions (or vice versa) in porewater.
NASA Astrophysics Data System (ADS)
Carbonaro, Richard F.; Gray, Benjamin N.; Whitehead, Charles F.; Stone, Alan T.
2008-07-01
Anthropogenic chelating agents and biological chelating agents produced by indigenous organisms may dissolve Cr III (hydr)oxides in soils and sediments. The resulting dissolved Cr III-chelating agent complexes are more readily transported through porous media, thereby spreading contamination. With this work, we examine chelating agent-assisted dissolution of amorphous chromium hydroxide (ACH) by the (amino)carboxylate chelating agents iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), tricarballylic acid (TCA), citric acid (CIT), ethylenediaminetetraacetic acid (EDTA), trans-1,2-cyclohexanediaminetetraacetic acid (CDTA), and trimethylenediaminetetraacetic acid (TMDTA). The extent of chelating agent adsorption onto ACH increased quickly over the first few hours, and then increased more gradually until a constant extent was attained. The extent of chelating agent adsorption versus pH followed "ligand-like" behavior. All chelating agents with the exception of TCA and IDA effectively dissolved significant amounts of ACH within 10 days from pH 4.0 to 9.4. IDA dissolved ACH below pH 6.5 and above pH 7.5. Rates of ACH dissolution normalized to the extent of chelating agent adsorption were pH dependent. IDA, NTA, CIT, and CDTA exhibited an increase in normalized dissolution rate with decreasing pH. EDTA and TMDTA exhibited a maximum in normalized dissolution rate near pH 8.5. Use of acetic acid as a pH buffer in experiments decreased the extent of chelating agent adsorption for IDA, NTA, and CIT but increased normalized rates of chelating agent-assisted dissolution for all chelating agents except EDTA. The results from this study provide the necessary information to calculate the extents and time scales of ACH dissolution in the presence of (amino)carboxylate chelating agents.
A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.
ERIC Educational Resources Information Center
Goss, Lisa M.
2003-01-01
Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)
Hong, Yong Seok; Kinney, Kerry A; Reible, Danny D
2011-03-01
Sediment from the Anacostia River (Washington, DC, USA) was suspended in aerobic artificial river water for 14 d to investigate the dynamics of dissolved metals release and related parameters including pH, acid volatile sulfides (AVS), and dissolved/solid phase Fe(2+). To better understand and predict the underlying processes, a mathematical model is developed considering oxidation of reduced species, dissolution of minerals, pH changes, and pH-dependent metals' sorption to sediment. Oxidation rate constants of elemental sulfur and zinc sulfide, and a dissolution rate constant of carbonate minerals, were adjusted to fit observations. The proposed model and parameters were then applied, without further calibration, to literature-reported experimental observations of resuspension in an acid sulfate soil collected in a coastal flood plain. The model provided a good description of the dynamics of AVS, Fe(2+), S(0)((s)), pH, dissolved carbonates concentrations, and the release of Ca((aq)), Mg((aq)), and Zn((aq)) in both sediments. Accurate predictions of Mn((aq)) release required adjustment of sorption partitioning coefficient, presumably due to the presence of Mn scavenging by phases not accounted for in the model. The oxidation of AVS (and the resulting release of sulfide-bound metals) was consistent with a two-step process, a relatively rapid AVS oxidation to elemental sulfur (S(0)((s))) and a slow oxidation of S(0)((s)) to SO(4)(2-)((aq)), with an associated decrease in pH from neutral to acidic conditions. This acidification was the dominant factor for the release of metals into the aqueous phase. Copyright © 2010 SETAC.
LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, C.
2012-02-03
A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate.more » Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.« less
Toxicity of inorganic nanomaterials in biomedical imaging.
Li, Jinxia; Chang, Xueling; Chen, Xiaoxia; Gu, Zhanjun; Zhao, Feng; Chai, Zhifang; Zhao, Yuliang
2014-01-01
Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Chemical Dissolution of Simulant FCA Cladding and Plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, G.; Pierce, R.; O'Rourke, P.
The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO 3-KF) flowsheets ofmore » H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.« less
NASA Astrophysics Data System (ADS)
Miotliński, Konrad; Postma, Dieke; Kowalczyk, Andrzej
2012-01-01
SummaryThe changes in groundwater quality occurring in a buried valley aquifer following a reduction in groundwater exploitation and enhanced infiltration due to extensive flooding of the Odra River in 1997 were investigated. Long-time series data for the chemical composition of groundwater in a large well field for drinking water supply indicated the deterioration of groundwater quality in the wells capturing water from the flooded area, which had been intensively cultivated since the 1960s. Infiltration of flooded river water into the aquifer is suggested by an elevated chloride concentration, although salt flushing from the rewatered unsaturated zone due to the enhanced recharge event is much more feasible. Concomitantly with chloride increases in the concentrations of sulphate, ferrous iron, manganese, and nickel imply the oxidation of pyrite (FeS 2) which is abundant in the aquifer. The proton production resulting from pyrite oxidation is buffered by the dissolution of calcite, while the Ca:SO 4 stoichiometry of the groundwater indicates that pyrite oxidation coupled with nitrate reduction is the dominant process occurring in the aquifer. The pyritic origin of SO42- is confirmed by the sulphur isotopic composition. The resultant Fe 2+ increase induces Mn-oxide dissolution and the mobilisation of Ni 2+ previously adsorbed to Mn-oxide surfaces. The study has a major implication for groundwater quality prediction studies where there are considerable variations in water level associated with groundwater management and climate change issues.
Anisotropic growth of NiO nanorods from Ni nanoparticles by rapid thermal oxidation.
Koga, Kenji; Hirasawa, Makoto
2013-09-20
NiO nanorods with extremely high crystallinity were grown by rapid thermal oxidation through exposure of Ni nanoparticles (NPs) heated above 400° C to oxygen. Oxidation proceeds by nucleation of a NiO island on a Ni NP that grows anisotropically to produce a NiO nanorod. This process differs completely from that under mild oxidation conditions, where the surface of the NPs is completely covered with an oxide film during the early stage of oxidation. The observed novel behaviour strongly suggests an interfacial oxidation mechanism driven by the dissolution of adsorbed oxygen into the Ni NP sub-surface region, subsequent diffusion and reaction at the NiO/Ni interface. The early oxidation conditions of metal NPs impose a significant influence on the entire oxidation process at the nanoscale and are therefore inherently important for the precise morphological control of oxidized NPs to design functional nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ying, E-mail: yingzou@jwri.osaka-u.ac.jp; Ueji, Rintaro; Fujii, Hidetoshi
The double-shielded advanced A-TIG (AA-TIG) welding method was adopted in this study for the welding of the SUS329J4L duplex stainless steel with the shielding gases of different oxygen content levels. The oxygen content in the shielding gas was controlled by altering the oxygen content in the outer layer gas, while the inner layer remained pure argon to suppress oxidation on the tungsten electrode. As a result, a deep weld penetration was obtained due to the dissolution of oxygen into the weld metals. Additionally, the microstructure of the weld metal was changed by the dissolution of oxygen. The austenite phase atmore » the ferrite grain boundary followed a Kurdjumov–Sachs (K–S) orientation relationship with the ferrite matrix phase at any oxide content. On the other hand, the orientation relationship between the intragranular austenite phase and the ferrite matrix phase exhibited different patterns under different oxygen content levels. When there was little oxide in the fusion zone, only a limited part of the intragranular austenite phase and the ferrite matrix phase followed the K–S orientation relationship. With the increase of the oxide, the correspondence of the K–S relationship increased and fit very well in the 2.5% O{sub 2} shielded sample. The investigation of this phenomenon was carried out along with the nucleation mechanisms of the intragranular austenite phases. - Highlights: • Weld penetration increased with the increase of the oxygen content. • Average diameter and number density of oxide were changed by the oxygen content. • K-S relationship of Widmanstätten austenite/ferrite wasn’t varied by oxide. • Orientation relationship of intragranular austenite/ferrite was varied by oxide.« less
Reactive solute transport in streams: A surface complexation approach for trace metal sorption
Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.
1999-01-01
A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.
HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyser, E. A.; King, W. D.
2012-07-31
Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Usemore » of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after ~4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.« less
HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyser, E.; King, W.
2012-04-25
Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Usemore » of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.« less
NASA Astrophysics Data System (ADS)
Kurniawan, Mubarok, M. Zaki
2018-04-01
The aim of this work was to observe the dissolution behaviour of Cu, Fe and Zn from gold sulfide concentrate during preoxidation with ozone as the oxidant and distillation water as the media. The preoxidation experiments were carried out in five-necked reactor with variations of retention time, percent solid, particle size and oxygen dosage injected to ozone generator. The retention time was varied at 6 hours, 8 hours, 12 hours and 24 hours. The percent solid was varied at 10%, 20% and 30% while the particle size was varied at P80 -75 mesh dan P80 -20 mesh. The dosage of oxygen injection to ozone generator was varried at 1 liter per minute and 2 liter per minute. The ozone gas was produced by using ozone generator type OZ-03 and injected to the slurry by using Mazzei injector. The soluble Cu, Fe and Zn were measured by using Atomic Absorption Spectrophotometry (AAS). The concentrates were characterized by X-Ray Diffraction (XRD), mineragraphy, fire assay and Inductively Coupled Plasma (ICP). Fire assay, ICP and XRD were used to analyse the residues and froth. The solubilition of metals (Cu, Fe and Zn) was obtained through the formation of sulphate ion and H+ which decreased the pH, released a number of heat and then was continued by the formation of elemental sulphur (S°). The interaction of particles and gas yielded the formation of froth. The highest dissolution percentage of Cu, Fe and Zn was achieved through 24 hours oxidation at 20% (w/w), P80 -20 mesh and one liter per minute of oxygen injection dosage by 83.016%, 24.7303% and 91.6808%, respectively.
Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits
NASA Astrophysics Data System (ADS)
Smith, Abigail M.; Nelson, Campbell S.
2003-10-01
Cool-water shelf carbonates differ from tropical carbonates in their sources, modes, and rates of deposition, geochemistry, and diagenesis. Inorganic precipitation, marine cementation, and sediment accumulation rates are absent or slow in cool waters, so that temperate carbonates remain longer at or near the sea bed. Early sea-floor processes, occurring between biogenic calcification and ultimate deposition, thus take on an important role, and there is the potential for considerable taphonomic loss of skeletal information into the fossilised record of cool-water carbonate deposits. The physical breakdown processes of dissociation, breakage, and abrasion are mediated mainly by hydraulic regime, and are always destructive. Impact damage reduces the size of grains, removes structure and therefore information, and ultimately may transform skeletal material into anonymous particles. Abrasion is highly selective amongst and within taxa, their skeletal form and structure strongly influencing resistance to mechanical breakdown. Dissolution and precipitation are the end-members of a two-way chemical equilibrium operating in sea water. In cool waters, inorganic precipitation is rare. There is conflicting opinion about the importance of diagenetic dissolution of carbonate skeletons on the temperate sea floor, but test maceration and early loss of aragonite in particular are reported. Dissolution may relate to undersaturated acidic pore waters generated locally by a combination of microbial metabolisation of organic matter, strong bioturbation, and oxidation of solid phase sulphides immediately beneath the sea floor in otherwise very slowly accumulating skeletal deposits. Laboratory experiments demonstrate that surface-to-volume ratio and skeletal mineralogy are both important in determining skeletal resistance to dissolution. Biological processes on the sea floor include encrustation and bioerosion. Encrustation, a constructive process, may be periodic or seasonal, and can be reversed. It produces both information and material. Bioerosion, in contrast, is destructive and permanent. In temperate areas bioerosion may destroy even very large shells during their long residence at the sea floor, on the order of hundreds to thousands of years. Overall, processes on the temperate sea floor may combine to destroy more carbonate than they produce, and the preservation potential of temperate shelf carbonate into the rock record may be significantly affected. Where preservation does occur in such a destructive regime, the effects of early sea-floor processes will be key determinants of the deposit, resulting in a "taphofacies" characteristic of temperate shelf carbonate sediments.
NASA Astrophysics Data System (ADS)
Aquilina, Luc; Marçais, Jean; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Ben; Vergnaud, Virginie; Walter, Christian; Viville, Daniel; Chabaux, François; Pinay, Gilles
2017-04-01
Agricultural pollution is a matter of political and scientific concern throughout the world. Intensive agriculture can cause nutrient contamination of groundwater and surface water. Nutrient pollution causes eutrophication in freshwater and estuarine ecosystems. A secondary effect of agricultural intensification is river acidification. Oxidation of chemical fertilizers such as ammonium (NH4+) to nitrate (NO3-) produces H+ ions that cause leaching of cations from soil and deeper material to maintain charge balance. Monitoring of various rivers in Brittany (western France) revealed that agriculture intensification has led to increased cation export starting in the 1980s. From the cation ratios, we deduced that cation increase comes approximately equally from dissolution of carbonate added to soil (liming practices) and silicate dissolution. Cation export represented about 30% of the soil cation exchange potential. If compensated by liming, it may constitute a non-negligible source to atmospheric CO2 (Aquilina et al., 2012). We further investigated the potential for silicate dissolution through the use of groundwater dating in various sites of Brittany. Coupling chemical analyses to groundwater ages in a large range of aquifers and a large range of depths (down to 110m) allowed us to reconstruct a chronicle for the last 50 yrs of the cation concentrations of groundwater. It clearly shows a contemporaneous increase in sodium and nitrate and a decrease in calcium, with the most dramatic changes occurring during the 70s and 80s. Using groundwater dating, we were also able to determine a silica production geochronometer. A tight and linear relationship between silica concentration and groundwater age (Figure) was observed and allowed a production rate in groundwater to be determined. Except for short residence-times (Kerrien), the silica production rate for different granitic catchments was consistent, ranging from 0.3 to 0.4 mg.L-1.yr-1. To assess the role of anthropogenic activity in silica production rate, we compared production rates from Brittany with catchments in the Vosges Mountains, a relatively pristine area. Dissolution rates were much higher in the Brittany catchments, indicating the effect of human activities on chemical weathering and cation export at the catchment scale. Aquilina L. et al., 2012 - Long-term effects of high nitrogen loads on cation and carbon riverine export in agricultural catchments. Env. Sci & Technology 46-17, 9447-9455..
Sedimentary reservoir oxidation during geologic CO2 sequestration
NASA Astrophysics Data System (ADS)
Lammers, Laura N.; Brown, Gordon E.; Bird, Dennis K.; Thomas, Randal B.; Johnson, Natalie C.; Rosenbauer, Robert J.; Maher, Katharine
2015-04-01
Injection of carbon dioxide into subsurface geologic reservoirs during geologic carbon sequestration (GCS) introduces an oxidizing supercritical CO2 phase into a subsurface geologic environment that is typically reducing. The resulting redox disequilibrium provides the chemical potential for the reduction of CO2 to lower free energy organic species. However, redox reactions involving carbon typically require the presence of a catalyst. Iron oxide minerals, including magnetite, are known to catalyze oxidation and reduction reactions of C-bearing species. If the redox conditions in the reservoir are modified by redox transformations involving CO2, such changes could also affect mineral stability, leading to dissolution and precipitation reactions and alteration of the long-term fate of CO2 in GCS reservoirs. We present experimental evidence that reservoirs with reducing redox conditions are favorable environments for the relatively rapid abiotic reduction of CO2 to organic molecules. In these experiments, an aqueous suspension of magnetite nanoparticles was reacted with supercritical CO2 under pressure and temperature conditions relevant to GCS in sedimentary reservoirs (95-210 °C and ∼100 bars of CO2). Hydrogen production was observed in several experiments, likely caused by Fe(II) oxidation either at the surface of magnetite or in the aqueous phase. Heating of the Fe(II)-rich system resulted in elevated PH2 and conditions favorable for the reduction of CO2 to acetic acid. Implications of these results for the long-term fate of CO2 in field-scale systems were explored using reaction path modeling of CO2 injection into reservoirs containing Fe(II)-bearing primary silicate minerals, with kinetic parameters for CO2 reduction obtained experimentally. The results of these calculations suggest that the reaction of CO2 with reservoir constituents will occur in two primary stages (1) equilibration of CO2 with organic acids resulting in mineral-fluid disequilibrium, and (2) gradual dissolution of primary minerals promoting significant CO2 reduction through the release of Fe(II). The reduction of CO2 is identified as a new trapping mechanism that could significantly enhance the long-term stability of GCS reservoirs. Identification of reservoir characteristics that promote CO2 redox transformations could be used as an additional factor in screening geologic reservoirs for GCS.
The role of halide ions on the electrochemical behaviour of iron in alkali solutions
NASA Astrophysics Data System (ADS)
Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed
2008-02-01
Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Lan; Harburg, Daniel V.; Rogers, John A., E-mail: jrogers@illinois.edu
Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formedmore » with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.« less
Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system.
Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan
2014-05-21
Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn(2+) in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.
On the neutralization of acid rock drainage by carbonate and silicate minerals
NASA Astrophysics Data System (ADS)
Sherlock, E. J.; Lawrence, R. W.; Poulin, R.
1995-02-01
The net result of acid-generating and-neutralizing reactions within mining wastes is termed acid rock drainage (ARD). The oxidation of sulfide minerals is the major contributor to acid generation. Dissolution and alteration of various minerals can contribute to the neutralization of acid. Definitions of alkalinity, acidity, and buffer capacity are reviewed, and a detailed discussion of the dissolution and neutralizing capacity of carbonate and silicate minerals related to equilibium conditions, dissolution mechanism, and kinetics is provided. Factors that determine neutralization rate by carbonate and silicate minerals include: pH, PCO 2, equilibrium conditions, temperature, mineral composition and structure, redox conditions, and the presence of “foreign” ions. Similar factors affect sulfide oxidation. Comparison of rates shows sulfides react fastest, followed by carbonates and silicates. The differences in the reaction mechanisms and kinetics of neutralization have important implications in the prediction, control, and regulation of ARD. Current static and kinetic prediction methods upon which mine permitting, ARD control, and mine closure plans are based do not consider sample mineralogy or the kinetics of the acid-generating and-neutralizing reactions. Erroneous test interpretations and predictions can result. The importance of considering mineralogy for site-specific interpretation is highlighted. Uncertainty in prediction leads to difficulties for the mine operator in developing satisfactory and cost-effective control and remediation measures. Thus, the application of regulations and guidelines for waste management planning need to beflexible.
NASA Technical Reports Server (NTRS)
Raiswell, R.; Canfield, D. E.; Berner, R. A.
1994-01-01
Measurements of degree of pyritisation require an estimate of sediment iron which is capable of reaction with dissolved sulphide to form pyrite, either directly or indirectly via iron monosulphide precursors. Three dissolution techniques (buffered dithionite, cold 1 M HCl, boiling 12 M HCl) were examined for their capacity to extract iron from a variety of iron minerals, and iron-bearing sediments, as a function of different extraction times and different grain sizes. All the iron oxides studied are quantitatively extracted by dithionite and boiling HCl (but not by cold HCl). Both HCl techniques extract more iron from silicates than does dithionite but probably about the same amounts as are potentially capable of sulphidation. Modern sediment studies indicate that most sedimentary pyrite is formed rapidly from iron oxides, with smaller amounts formed more slowly from iron silicates (if sufficient geologic time is available). It is therefore recommended that the degree of pyritisation be defined with respect to the dithionite-extractable (mainly iron oxide) pool and/or the boiling HCl-extractable pool (which includes some silicate iron) for the recognition of iron-limited pyritisation.
Medina Ramos, Jonnathan; Zhang, Weiwei; Yoon, Kichul; ...
2018-03-08
Bismuth electrodes undergo distinctive electrochemically induced structural changes in nonaqueous imidazolium ([Im])(+))-based ionic liquid solutions under cathodic polarization. In situ X-ray reflectivity (XR) studies have been undertaken to probe well-ordered Bi (001) films which originally contain a native Bi 2O 3 layer. This oxide layer gets reduced to Bi(0)during the first cyclic voltammetry (CV) scan in acetonitrile solutions containing 1-butyl-3-methylimidazolium ([BMIM](+)) electrolytes. Approximately 60% of the Bi (001) Bragg peak reflectivity is lost during a potential sweep between -1.5 and -1.9 V vs Ag/AgCI due to a similar to 4-10% thinning and a similar to 40% decrease in lateral sizemore » of Bi (001) domains, which are mostly reversed during the anodic scan. Repeated potential cycling enhances the thinning and roughening of the films, suggesting that partial dissolution of Bi ensues during negative polarization. The mechanism of this behavior is understood through molecular dynamics simulations using ReaxFF and density functional theory (DFT) calculations. Both approaches indicate that [Im] + cations bind to the metal surface more strongly than tetrabutylammonium (TBA +) as the potential and the charge on the Bi surface become more negative. ReaxFF simulations predict a higher degree of disorder for a negatively charged Bi (001) slab in the presence of the [Im](+)cations and substantial migration of Bi atoms from the surface. DFT simulations show the formation of Bi center dot center dot center dot[Im] + complexes that lead to the dissolution of Bi atoms from step edges on the Bi (001) surface at potentials between -1.65 and -1.95 V. Bi desorption from a flat terrace requires a potential of approximately -2.25 V. Together, these results suggest the formation of a Bi center dot center dot center dot[Im] + complex through partial cathodic corrosion of the Bi film under conditions (potential and electrolyte composition) that favor the catalytic reduction of CO 2 .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina Ramos, Jonnathan; Zhang, Weiwei; Yoon, Kichul
Bismuth electrodes undergo distinctive electrochemically induced structural changes in nonaqueous imidazolium ([Im])(+))-based ionic liquid solutions under cathodic polarization. In situ X-ray reflectivity (XR) studies have been undertaken to probe well-ordered Bi (001) films which originally contain a native Bi 2O 3 layer. This oxide layer gets reduced to Bi(0)during the first cyclic voltammetry (CV) scan in acetonitrile solutions containing 1-butyl-3-methylimidazolium ([BMIM](+)) electrolytes. Approximately 60% of the Bi (001) Bragg peak reflectivity is lost during a potential sweep between -1.5 and -1.9 V vs Ag/AgCI due to a similar to 4-10% thinning and a similar to 40% decrease in lateral sizemore » of Bi (001) domains, which are mostly reversed during the anodic scan. Repeated potential cycling enhances the thinning and roughening of the films, suggesting that partial dissolution of Bi ensues during negative polarization. The mechanism of this behavior is understood through molecular dynamics simulations using ReaxFF and density functional theory (DFT) calculations. Both approaches indicate that [Im] + cations bind to the metal surface more strongly than tetrabutylammonium (TBA +) as the potential and the charge on the Bi surface become more negative. ReaxFF simulations predict a higher degree of disorder for a negatively charged Bi (001) slab in the presence of the [Im](+)cations and substantial migration of Bi atoms from the surface. DFT simulations show the formation of Bi center dot center dot center dot[Im] + complexes that lead to the dissolution of Bi atoms from step edges on the Bi (001) surface at potentials between -1.65 and -1.95 V. Bi desorption from a flat terrace requires a potential of approximately -2.25 V. Together, these results suggest the formation of a Bi center dot center dot center dot[Im] + complex through partial cathodic corrosion of the Bi film under conditions (potential and electrolyte composition) that favor the catalytic reduction of CO 2 .« less
Weiss, J.V.; Emerson, D.; Megonigal, J.P.
2004-01-01
We compared the reactivity and microbial reduction potential of Fe(III) minerals in the rhizosphere and non-rhizosphere soil to test the hypothesis that rapid Fe(III) reduction rates in wetland soils are explained by rhizosphere processes. The rhizosphere was defined as the area immediately adjacent to a root encrusted with Fe(III)-oxides or Fe plaque, and non-rhizosphere soil was 0.5 cm from the root surface. The rhizosphere had a significantly higher percentage of poorly crystalline Fe (66??7%) than non-rhizosphere soil (23??7%); conversely, non-rhizosphere soil had a significantly higher proportion of crystalline Fe (50??7%) than the rhizosphere (18??7%, P<0.05 in all cases). The percentage of poorly crystalline Fe(III) was significantly correlated with the percentage of FeRB (r=0.76), reflecting the fact that poorly crystalline Fe(III) minerals are labile with respect to microbial reduction. Abiotic reductive dissolution consumed about 75% of the rhizosphere Fe(III)-oxide pool in 4 h compared to 23% of the soil Fe(III)-oxide pool. Similarly, microbial reduction consumed 75-80% of the rhizosphere pool in 10 days compared to 30-40% of the non-rhizosphere soil pool. Differences between the two pools persisted when samples were amended with an electron-shuttling compound (AQDS), an Fe(III)-reducing bacterium (Geobacter metallireducens), and organic carbon. Thus, Fe(III)-oxide mineralogy contributed strongly to differences in the Fe(III) reduction potential of the two pools. Higher amounts of poorly crystalline Fe(III) and possibly humic substances, and a higher Fe(III) reduction potential in the rhizosphere compared to the non-rhizosphere soil, suggested the rhizosphere is a site of unusually active microbial Fe cycling. The results were consistent with previous speculation that rapid Fe cycling in wetlands is due to the activity of wetland plant roots. ?? 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Pollastri, Simone; D'Acapito, Francesco; Trapananti, Angela; Colantoni, Ivan; Andreozzi, Giovanni B; Gualtieri, Alessandro F
2015-11-15
Although asbestos represents today one of the most harmful contaminant on Earth, in 72% of the countries worldwide only amphiboles are banned while controlled use of chrysotile is allowed. Uncertainty on the potential toxicity of chrysotile is due to the fact that the mechanisms by which mineral fibres induces cyto- and geno-toxic damage are still unclear. We have recently started a long term project aimed at the systematic investigation of the crystal-chemistry, bio-interaction and toxicity of the mineral fibres. This work presents a systematic structural investigation of iron in asbestos and erionite (considered the most relevant mineral fibres of social and/or economic-industrial importance) using synchrotron X-ray absorption and Mössbauer spectroscopy. In all investigated mineral fibres, iron in the bulk structure is found in octahedral sites and can be made available at the surface via fibre dissolution. We postulate that the amount of hydroxyl radicals released by the fibers depends, among other factors, upon their dissolution rate; in relation to this, a ranking of ability of asbestos fibres to generate hydroxyl radicals, resulting from available surface iron, is advanced: amosite > crocidolite ≈ chrysotile > anthophyllite > tremolite. Erionite, with a fairly high toxicity potential, contains only octahedrally coordinated Fe(3+). Although it needs further experimental evidence, such available surface iron may be present as oxide nanoparticles coating and can be a direct cause of generation of hydroxyl radicals when such coating dissolves. Copyright © 2015 Elsevier B.V. All rights reserved.
Total RNA concentration as an index of microbial activity and oxygen supply in an oxidation ditch.
Kanazawa, Nobuhiro; Urushigawa, Yoshikuni; Yato, Yumio
2005-06-01
Total RNA and chromosomal DNA concentrations at a municipal wastewater treatment plant with an oxidation ditch (OD) were monitored for 1.5 years using commercial extraction kits for DNA and RNA. No parameters correlated with the chromosomal DNA concentration. The total RNA concentration exhibited better correlation than the solids retention time and the mixed liquor suspended solids with the removal rate of total organic carbon, and can be regarded as an index of microbial activity. The total RNA concentration varied with a cycle of one year and increased at lower water temperatures in this OD. When diffusion theory was taken into account, it was found that the oxygen dissolution rate increased at lower temperature, and a small change in the oxygen dissolution rate caused a large variation in microbial activity and also affected nitrification and denitrification. The information was insufficient to clarify the various reaction relationships, but total RNA concentration will likely be useful as an index of microbial activity in actual wastewater treatment reactors.
Pyroprocess for processing spent nuclear fuel
Miller, William E.; Tomczuk, Zygmunt
2002-01-01
This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.
Precipitates and boundaries interaction in ferritic ODS steels
NASA Astrophysics Data System (ADS)
Sallez, Nicolas; Hatzoglou, Constantinos; Delabrouille, Fredéric; Sornin, Denis; Chaffron, Laurent; Blat-Yrieix, Martine; Radiguet, Bertrand; Pareige, Philippe; Donnadieu, Patricia; Bréchet, Yves
2016-04-01
In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels.
Dissolution Flowsheet for High Flux Isotope Reactor Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.; Rudisill, T. S.; O'Rourke, P. E.
2016-09-27
As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U 3O 8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H 2. The HFIR fuel cores will be dissolved and the recovered U will be down-blendedmore » into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H 2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H 2 and other permanent gases in the dissolution offgas, allowing the development of H 2 generation rate profiles. The H 2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the calculated lower flammability limit (LFL) for H 2 at a given Hg concentration. Complete dissolution of the Al 1100 and Al 6061 T6 alloys up to a final Al concentration of 2 M was obtained using a 7 M HNO 3 solution containing a 0.002 M Hg catalyst. However, following the dissolutions, solids were observed in the solution. The solids were amorphous, but likely originated from the Si present in the alloys. No crystalline materials, such as Al(NO 3) 3 were observed. During the course of the dissolution experiments, it was determined that delaying the addition of Hg once the HNO 3 solution reached the boiling point can reduce the total offgas and H 2 generation rates. The delay in starting the Hg addition is not necessary for HFIR fuel dissolution, but could be useful in other research reactor dissolution campaigns. The potential to generate flammable concentrations of H 2 in the offgas during a HFIR fuel dissolution was evaluated using the experimental data. The predicted H 2 concentration in the dissolver offgas stream was compared with 60% of the calculated H 2 LFL at 200 °C using several prototypical experiments. The calculations showed that a full HFIR core can be dissolved using nominally 0.002 M Hg to catalyze the dissolution. The margin between the predicted H 2 concentration and the calculated LFL was greater when the solution was allowed to boil for 45 min prior to initiating the Hg addition. When the Hg was increased to 0.004 M, the predicted H 2 concentration exceeded the calculated LFL early in the dissolution. The dissolution experiments also demonstrated that additional Hg (beyond the initial 0.002 M) could be added as the Al concentration increases. The ability to add more Hg during a HFIR fuel dissolution could be beneficial if slow dissolution rates are observed at high Al concentrations. Experimental data were used to demonstrate that the predicted H 2 concentration in a dissolver was below 60% of the calculated LFL at 200 °C when 0.004 M Hg was used to catalyze the dissolution if the Al concentration is conservatively greater than 0.5 M. Data also show that the Hg concentration during a HFIR fuel dissolution can be increased from 0.002 to 0.008 M at an Al concentration of 1.3 M.« less
Thermodynamics of dissolved nitrogen, nitrous oxide, and ammonia in perfluorodecalin
NASA Astrophysics Data System (ADS)
Moshnyaga, A. V.; Khoroshilov, A. V.; Selivanova, D. I.; Aksenova, D. M.
2017-11-01
The solubility of N2, N2O, and NH3 is studied in different organic solvents. The best dissolution (0.27 ppm) is found to be for N2O in perfluorodecalin at 291 K and a pressure of 99 kPa. The dependence of N2O solubility in perfluorodecalin on pressure is studied at 291 K. The Gibbs energy of the solubility of nitrogen, nitrous oxide, and ammonia in perfluorodecalin is calculated.
Thomas L. Eberhardt; Stan Lebow; Karen G. Reed
2012-01-01
A cellulose solvent system based on lithium chloride (LiCl) in N-methyl-2-pyrrolidinone (NMP) was used to assess the merits of partial dissolutions of coarsely ground wood samples. Alkaline Copper Quaternary (ACQ)-treated pine wood was of particular interest for treatment given the potential to generate a copper- rich stream apart from solid and/or liquid...
Liu, Tiaotiao; Hao, Jingqiang; Yang, Baixue; Hu, Beibei; Cui, Zhixiang; Li, Sanming
2018-05-01
The addition of surfactant in tablet was a well-defined approach to improve drug dissolution rate. While the selected surfactant played a vital role in improving the wettability of tablet by medium, it was equally important to improve the dissolution rate by permeation effect due to production of pores or the reduced inter-particle adhesion. Furthermore, understanding the mechanism of dissolution rate increased was significant. In this work, contact angle measurement was taken up as an alternative approach for understanding the dissolution rate enhancement for tablet containing surfactant. Ethylcellulose, as a substrate, was used to prepare tablet. Four surfactants, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DTAB), and sodium lauryl sulfonate (SLS), were used. Berberine hydrochloride, metformin hydrochloride, and rutin were selected as model drugs. The contact angle of tablet in the absence and presence of surfactant was measured to explore the mechanism. The dissolution test was investigated to verify the mechanism and to establish a correlation with the contact angle. The result showed that the mechanism was the penetration effect rather than the wetting effect. The dissolution increased with a reduction in the contact angle. DTAB was found to obtain the highest level of dissolution enhancement and the lowest contact angle, while SDS, SDBS, and SLS were found to be the less effective in both dissolution enhancement and contact angle decrease. Therefore, contact angle was a good indicator for dissolution behavior besides exploring the mechanism of increased dissolution, which shows great potential in formula screening.
Iwamuro, Masaya; Urata, Haruo; Higashi, Reiji; Nakagawa, Masahiro; Ishikawa, Shin; Shiraha, Hidenori; Okada, Hiroyuki
To investigate the mechanism of phytobezoar dissolution by Coca-Cola(®), persimmon phytobezoar pieces removed from a 60-year-old Japanese woman were analyzed by energy dispersive X-ray spectroscopy. The amount of calcium significantly decreased after dissolution treatment using Coca-Cola(®), suggesting a potential contribution of calcium to dissolution mechanisms. Moreover, immersion in Coca-Cola(®) for 120 hours on the exterior surface revealed that Coca-Cola(®) did not permeate persimmon phytobezoars. This is the first study to investigate the mechanisms of persimmon phytobezoar permeability and dissolution induced by Coca-Cola(®).
Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.
Bae, Sungjun; Hanna, Khalil
2015-09-01
While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).
Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system
NASA Astrophysics Data System (ADS)
Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan
2014-04-01
Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05687b
Microbial dissolution of calcite at T = 28 °C and ambient pCO 2
NASA Astrophysics Data System (ADS)
Jacobson, Andrew D.; Wu, Lingling
2009-04-01
This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species ( Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO 2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH 4+ as an N source, and H 2PO 4- as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H 2O-CO 2-CaCO 3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH 4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H 2CO 3 generated by dissolution of atmospheric CO 2 (H 2CO 3 + CaCO 3 → Ca 2+ + 2HCO 3-) and H + released during NH 4+ uptake (H + + CaCO 3 → Ca 2+ + HCO 3-). Reaction with H 2CO 3 and H + supplied ˜45% and 55% of the total Ca 2+ and ˜60% and 40% of the total HCO 3-, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH 4+ was ˜2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H 2CO 3. In lactate bearing reactors, most H + generated by NH 4+ uptake reacted with HCO 3- produced by lactate oxidation to yield CO 2 and H 2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H 2CO 3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because the solubility and dissolution rate of calcite inversely correlate with pH, heterotrophic microbial growth in the presence of nonionic organic matter and NH 4+ appears to have the greatest potential for enhancing calcite weathering relative to abiotic conditions.
Interactions between manganese oxides and multiple-ringed aromatic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, G.; Sims, R.C.
1992-08-01
Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ''humic-like'' material precipitated,more » indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.« less
Interactions between manganese oxides and multiple-ringed aromatic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, G.; Sims, R.C.
1992-08-01
Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment? Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ``humic-like`` material precipitated,more » indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.« less
NASA Astrophysics Data System (ADS)
Dixon, Emily M.; Elwood Madden, Andrew S.; Hausrath, Elisabeth M.; Elwood Madden, Megan E.
2015-04-01
Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295-298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures.
Lifetime and dissolution kinetics of zinc oxide nanoparticles in aqueous media
NASA Astrophysics Data System (ADS)
Wang, Ning; Tong, Tiezheng; Xie, Minwei; Gaillard, Jean-François
2016-08-01
We have assessed the persistence and lifetime of ZnO nanoparticles (ZnO-NPs) by performing dissolution experiments in three different aqueous media. These experiments were performed at ZnO-NP concentration levels close to the solubility of zincite (˜8 μM or 650 μg l-1 of ZnO)—a concentration that is orders of magnitude higher than current estimated relevant environmental concentrations. The kinetics were followed by voltammetry, while maintaining the pH at about 7.5 using a CO2/N2 gas mixture to remove di-oxygen interference. Our results show that, under these conditions, ZnO-NPs readily dissolve with a lifetime expectancy that does not exceed 90 min. Water chemistry, especially the presence of dissolved organic matter (DOM), plays an important role in ZnO-NP dissolution. Dissolution rates significantly increase in the presence of strong chelating agents, EDTA and L-cysteine, while the addition of polymeric DOM, such as sodium alginate, has the opposite effect. Our results suggest that ZnO-NPs are unlikely to persist in natural aqueous media and that the toxicity should be primarily related to the released Zn2+ ions rather than effects commonly associated to the presence of nanoparticles.
Lee, Yoon Kyeung; Yu, Ki Jun; Song, Enming; Barati Farimani, Amir; Vitale, Flavia; Xie, Zhaoqian; Yoon, Younghee; Kim, Yerim; Richardson, Andrew; Luan, Haiwen; Wu, Yixin; Xie, Xu; Lucas, Timothy H; Crawford, Kaitlyn; Mei, Yongfeng; Feng, Xue; Huang, Yonggang; Litt, Brian; Aluru, Narayana R; Yin, Lan; Rogers, John A
2017-12-26
The chemistry that governs the dissolution of device-grade, monocrystalline silicon nanomembranes into benign end products by hydrolysis serves as the foundation for fully eco/biodegradable classes of high-performance electronics. This paper examines these processes in aqueous solutions with chemical compositions relevant to groundwater and biofluids. The results show that the presence of Si(OH) 4 and proteins in these solutions can slow the rates of dissolution and that ion-specific effects associated with Ca 2+ can significantly increase these rates. This information allows for effective use of silicon nanomembranes not only as active layers in eco/biodegradable electronics but also as water barriers capable of providing perfect encapsulation until their disappearance by dissolution. The time scales for this encapsulation can be controlled by introduction of dopants into the Si and by addition of oxide layers on the exposed surfaces.The former possibility also allows the doped silicon to serve as an electrical interface for measuring biopotentials, as demonstrated in fully bioresorbable platforms for in vivo neural recordings. This collection of findings is important for further engineering development of water-soluble classes of silicon electronics.
In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)
Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.
2001-01-01
The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.
Kumar, Manish; Das, Nilotpal; Goswami, Ritusmita; Sarma, Kali Prasad; Bhattacharya, Prosun; Ramanathan, A L
2016-12-01
The present work is an attempt to study As and F+ coevality using laboratory based assays which couples fractionation and batch dissolution experiments. Sequential extraction procedure (SEP) resulting into five "operationally defined phases", was performed on sediment and soil samples collected from the Brahmaputra flood plains, Assam, India. High correlation between the Fe (hydr)oxide fraction and total As content of the soil/sediment sample indicates the involvement of Fe (hydr)oxides as the principal source of As. F - being an anion has high potential to be sorbed onto positively charged surfaces. Findings of the SEP were used to design the batch desorption experiments by controlling the Fe (hydr)oxide content of the soil/sediment. Desorption of As and F - was observed under acidic, neutral and alkaline pH from untreated and Fe (hydr)oxide removed samples. Highest amount of As and F - were found to be released from untreated samples under alkaline pH, while the amount leached from samples with no Fe (hydr)oxide was low. The study showed that the Fe (hydr)oxide fraction commonly found in the soils and sediments, had high affinity for negatively charged species like F - oxyanions of As, AsO 4 3- (arsenate) and AsO 3 3- (arsenite). Fe (hydr)oxide fraction was found to play the major role in co-evolution of As and F - . Two sorption coefficients were proposed based on easily leachable fraction and As present in the groundwater of sampling location for understanding of contamination vulnerability from the leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hermans, Andre; Abend, Andreas M; Kesisoglou, Filippos; Flanagan, Talia; Cohen, Michael J; Diaz, Dorys A; Mao, Y; Zhang, Limin; Webster, Gregory K; Lin, Yiqing; Hahn, David A; Coutant, Carrie A; Grady, Haiyan
2017-11-01
This manuscript represents the perspective of the Dissolution Analytical Working Group of the IQ Consortium. The intent of this manuscript is to highlight the challenges of, and to provide a recommendation on, the development of clinically relevant dissolution specifications (CRS) for immediate release (IR) solid oral dosage forms. A roadmap toward the development of CRS for IR products containing active ingredients with a non-narrow therapeutic window is discussed, within the context of mechanistic dissolution understanding, supported by in-human pharmacokinetic (PK) data. Two case studies present potential outcomes of following the CRS roadmap and setting dissolution specifications. These cases reveal some benefits and challenges of pursuing CRS with additional PK data, in light of current regulatory positions, including that of the US Food and Drug Administration (FDA), who generally favor this approach, but with the understanding that both industry and regulatory agency perspectives are still evolving in this relatively new field. The CRS roadmap discussed in this manuscript also describes a way to develop clinically relevant dissolution specifications based primarily on dissolution data for batches used in pivotal clinical studies, acknowledging that not all IR product development efforts need to be supported by additional PK studies, albeit with the associated risk of potentially unnecessarily tight manufacturing controls. Recommendations are provided on what stages during the life cycle investment into in vivo studies may be valuable. Finally, the opportunities for CRS within the context of post-approval changes, Modeling and Simulation (M&S), and the application of biowaivers, are briefly discussed.
Caffeine: a potential complexing agent for solubility and dissolution enhancement of celecoxib.
Shakeel, Faiyaz; Faisal, Mohammed S
2010-01-01
Complexation of caffeine with the drug celecoxib was used to enhance its solubility as well as in vitro dissolution in the present investigation. Caffeine was extracted from tea leaves using the sublimation method. A molecular complex (1:1) of caffeine-celecoxib was prepared using the solubility method. The solubility of celecoxib in distilled water and the caffeine complex was determined using a HPLC method at a wavelength of 250 nm. Dissolution studies of pure celecoxib, a marketed capsule (Celebrex), and the complex were performed using USP dissolution apparatus I for pure celecoxib and the complex and apparatus II for the capsule in distilled water. The highest solubility (48.32 mg/mL) as well as percent dissolution (90.54%) of celecoxib was obtained with the caffeine-celecoxib complex. The results for solubility and dissolution were highly significant as compared to pure celecoxib and the marketed capsule (p < 0.01). These results suggest that caffeine is a promising complexing agent for solubility as well as dissolution enhancement of the poorly soluble drug celecoxib.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buss, H.L.; Sak, P.B.; Webb, S.M.
2009-05-12
In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers ({approx}2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive {Delta}V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion inmore » d (0 0 1) from 10.0 to 10.5 {angstrom}, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 x 10{sup -14} mol biotite m{sup -2} s{sup -1}. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 {micro}m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 x 10{sup -13} mol hornblende m{sup -2} s{sup -1}: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O{sub 2} at the bedrock-saprolite interface.« less
Reductive dissolution of iron oxyhydr(oxides) and release of adsorbed or coprecipitated arsenic is often implicated as a key process that controls the mobility and bioavailability of arsenic in anoxic environments. Yet a complete assessment of arsenic transport and fate requires...
Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin
2017-06-06
The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.
Internal oxidation phenomenon in pure copper
NASA Astrophysics Data System (ADS)
Rudolf, Rebeka; Anžel, Ivan
2009-04-01
This paper presents two special kinds of internal oxidation phenomenon that can take place in pure metals containing a high concentration of non-equilibrium defects. These processes are Internal Oxidation (IO) and Internal Carbonisation (IC). Both processes start with the dissolution of oxidant (O or C) into the pure metal at the free surfaces, and continue with the diffusion of oxidant atoms into the metal matrix volume, where they are trapped at numerous defects within the crystal lattice. Increasing oxidant activity at these places causes local oxidation of the matrix and, consequently, precipitation of fine oxide or graphite particles. The IO and IC processes were tested on the rapidly solidified pure copper which was produced by the Chill-Block Melt Spinning Technique. Analysis of the IO process showed the formation of Cu-Cu2O, and the formation of Cu-C composite from the IC process.
Son, Jino; Vavra, Janna; Li, Yusong; Seymour, Megan; Forbes, Valery
2015-04-01
The preparation of a stable nanoparticle stock suspension is the first step in nanotoxicological studies, but how different preparation methods influence the physicochemical properties of nanoparticles in a solution, even in Milli-Q water, is often under-appreciated. In this study, a systematic approach using a central composite design (CCD) was employed to investigate the effects of sonication time and suspension concentration on the physicochemical properties (i.e. hydrodynamic diameter, zeta potential and ion dissolution) of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) and to identify optimal conditions for suspension preparation in Milli-Q water; defined as giving the smallest particle sizes, highest suspension stability and lowest ion dissolution. Indeed, all the physicochemical properties of AgNPs and CuONPs varied dramatically depending on how the stock suspensions were prepared and differed profoundly between nanoparticle types, indicating the importance of suspension preparation. Moreover, the physicochemical properties of AgNPs and CuONPs, at least in simple media (Milli-Q water), behaved in predictable ways as a function of sonication time and suspension concentration, confirming the validity of our models. Overall, the approach allows systematic assessment of the influence of various factors on key properties of nanoparticle suspensions, which will facilitate optimization of the preparation of nanoparticle stock suspensions and improve the reproducibility of nanotoxicological results. We recommend that further attention be given to details of stock suspension preparation before conducting nanotoxicological studies as these can have an important influence on the behavior and subsequent toxicity of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Volland, Moritz; Hampel, Miriam; Katsumiti, Alberto; Yeste, María Pilar; Gatica, José Manuel; Cajaraville, Miren; Blasco, Julián
2018-06-01
Copper oxide (CuO) nanoparticles (NPs) are increasingly investigated, developed and produced for a wide range of industrial and consumer products. Notwithstanding their promising novel applications, concern has been raised that their increased use and disposal could consequently increase their release into marine systems and potentially affect species within. To date the understanding of factors and mechanisms of CuO (nano-) toxicity to marine invertebrates is still limited. Hence, we studied the characteristics and behaviour of two commercially available CuO NPs of similar size, but produced employing distinct synthesis methods, under various environmentally and experimentally relevant conditions. In addition, cell viability and DNA damage, as well as gene expression of detoxification, oxidative stress, inflammatory response, DNA damage repair and cell death mediator markers were studied in primary cultures of hemocytes from the marine clam Ruditapes philippinarum and, where applicable, compared to bulk CuO and ionic Cu (as CuSO 4 ) behaviour and effects. We found that the synthesis method can influence particle characteristics and behaviour, as well as the toxicity of CuO NPs to Ruditapes philippinarum hemocytes. Our results further indicate that under the tested conditions aggregating behaviour influences the toxicity of CuO NPs by influencing their rate of extra- and intracellular dissolution. In addition, gene expression analysis identified similar transcriptional de-regulation for all tested copper treatments for the here measured suite of genes. Finally, our work highlights various differences in the aggregation and dissolution kinetics of CuO particles under environmental (marine) and cell culture exposure conditions that need consideration when extrapolating in vitro findings. Copyright © 2018 Elsevier B.V. All rights reserved.
Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA
NASA Astrophysics Data System (ADS)
Losh, Steven; Rague, Ryan
2018-02-01
Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this mineralization is hypogene. The association of oxidation with epithermal conditions constrains the oxidation and subsequent mineralization to have taken place during the Precambrian, the only time when these rocks would have experienced the necessary temperatures. The mineralization at Fayal Reserve shows little supergene overprint: pyrite is largely unoxidized. Hydrothermal oxidation in both mines was likely produced by basinal fluids that were expelled during the 1.83-1.87 Ga Penokean Orogeny, and mixing with meteoric fluids along faults, although a 1.1 Ga rift-related fluid flow event is also possible. Later supergene overprinting of the iron formation was minor.
Maghsoodi, Maryam
2015-01-01
Crystallization is often used for manufacturing drug substances. Advances of crystallization have achieved control over drug identity and purity, but control over the physical form remains poor. This review discusses the influence of solvents used in crystallization process on crystal habit and agglomeration of crystals with potential implication for dissolution. According to literature it has been known that habit modification of crystals by use of proper solvents may enhance the dissolution properties by changing the size, number and the nature of crystal faces exposed to the dissolution medium. Also, the faster dissolution rate of drug from the agglomerates of crystals compared with the single crystals may be related to porous structure of the agglomerates and consequently their better wettability. It is concluded from this review that in-depth understanding of role of the solvents in crystallization process can be applied to engineering of crystal habit or crystal agglomeration, and predictably dissolution improvement in poorly soluble drugs. PMID:25789214
Costo, Rocio; Bello, Valentina; Robic, Caroline; Port, Marc; Marco, Jose F; Puerto Morales, M; Veintemillas-Verdaguer, Sabino
2012-01-10
A considerable increase in the saturation magnetization, M(s) (40%), and initial susceptibility of ultrasmall (<5 nm) iron oxide nanoparticles prepared by laser pyrolysis was obtained through an optimized acid treatment. Moreover, a significant enhancement in the colloidal properties, such as smaller aggregate sizes in aqueous media and increased surface charge densities, was found after this chemical protocol. The results are consistent with a reduction in nanoparticle surface disorder induced by a dissolution-recrystallization mechanism.
Membrane-less hybrid flow battery based on low-cost elements
NASA Astrophysics Data System (ADS)
Leung, P. K.; Martin, T.; Shah, A. A.; Mohamed, M. R.; Anderson, M. A.; Palma, J.
2017-02-01
The capital cost of conventional redox flow batteries is relatively high (>USD 200/kWh) due to the use of expensive active materials and ion-exchange membranes. This paper presents a membrane-less hybrid organic-inorganic flow battery based on the low-cost elements zinc (
Thierry, B; Tabrizian, M; Trepanier, C; Savadogo, O; Yahia, L
2000-09-15
Nickel-titanium (NiTi) alloy derives its biocompatibility and good corrosion resistance from a homogeneous oxide layer mainly composed of TiO(2), with a very low concentration of nickel. In this article, we described the corrosion behavior of NiTi alloys after mechanical polishing, electropolishing, and sterilization processes using cyclic polarization and atomic absorption. As a preparative surface treatment, electropolishing decreased the amount of nickel on the surface and remarkably improved the corrosion behavior of the alloy by increasing the mean breakdown potential value and the reproducibility of the results (0.99 +/- 0.05 V/SCE vs. 0.53 +/- 0. 42). Ethylene oxide and Sterrad(R) sterilization techniques did not modify the corrosion resistance of electropolished NiTi, whereas a steam autoclave and, to a lesser extent, peracetic acid sterilization produced scattered breakdown potential. In comparing the corrosion resistance of common biomaterials, NiTi ranked between 316L stainless steel and Ti6A14V even after sterilization. Electropolished NiTi and 316L stainless-steel alloys released similar amounts of nickel after a few days of immersion in Hank's solution. Measurements by atomic absorption have shown that the amount of released nickel from passive dissolution was below the expected toxic level in the human body. Auger electron spectroscopy analyses indicated surface contamination by Ca and P on NiTi during immersion, but no significant modification in oxide thickness was observed.
Laverock, B.; Kitidis, V.; Tait, K.; Gilbert, J. A.; Osborn, A. M.; Widdicombe, S.
2013-01-01
Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH ≤ 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79–97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms. PMID:23980243
The exposure of readily soluble components of overburden materials from surface coal mining to air and water results in mineral oxidation and carbonate mineral dissolution, thus increasing coal mine water conductivity. A conductivity benchmark of 300 µS/cm for mine water dischar...
LOW-LEVEL DETERMINATION OF PERCHLORATE IN DRINKING WATER USING ION CHROMATOGRAPHY MASS SPECTROMETRY
Perchlorate is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag inflators, and i...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Effects of Uranium Oxides on Some of the Algae Native to Eglin Air Force Base, Florida.
1982-06-01
Chlorella , and Selenastrum were not identified from the collections after microscopic examination. 4. MOBILITY OF DEPLETED URANIUM BY DISSOLUTION IN NATURAL...processes. A similar finding nas been previously reported for Chlorella regularis (Sakaguchi, Horikoshi, and Nakajima, 1978). In addition, uranium
Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media.
Heikkinen, A T; DeClerck, L; Löbmann, K; Grohganz, H; Rades, T; Laitinen, R
2015-07-01
Co-amorphous formulations, particularly binary drug-amino acid mixtures, have been shown to provide enhanced dissolution for poorly-soluble drugs and improved physical stability of the amorphous state. However, to date the dissolution properties (mainly intrinsic dissolution rate) of the co-amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamide-serine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed in biorelevant media suggesting that a dissolution advantage observed in aqueous buffers may overestimate the advantage in vivo. However, the results show that, in addition to stability advantage shown earlier, co-amorphous drug-amino acid formulations provide dissolution advantage over crystalline drugs in both aqueous and biorelevant conditions.
Chutipongtanate, Somchai; Chaiyarit, Sakdithep; Thongboonkerd, Visith
2012-08-15
Dissolution therapy of calcium oxalate monohydrate (COM) kidney stone disease has not yet been implemented due to a lack of well characterized COM dissolution agents. The present study therefore aimed to identify potential COM crystal dissolution compounds. COM crystals were treated with deionized water (negative control), 5 mM EDTA (positive control), 5 mM sodium citrate, or 5mM sodium phosphate. COM crystal dissolution activities of these compounds were evaluated by phase-contrast and video-assisted microscopic examinations, semi-quantitative analysis of crystal size, number and total mass, and spectrophotometric oxalate-dissolution assay. In addition, effects of these compounds on detachment of COM crystals, which adhered tightly onto renal tubular cell surface, were also investigated. The results showed that citrate, not phosphate, had a significant dissolution effect on COM crystals as demonstrated by significant reduction of crystal size (approximately 37% decrease), crystal number (approximately 53% decrease) and total crystal mass (approximately 72% decrease) compared to blank and negative controls. Spectrophotometric oxalate-dissolution assay successfully confirmed the COM crystal dissolution property of citrate. Moreover, citrate could detach up to 85% of the adherent COM crystals from renal tubular cell surface. These data indicate that citrate is better than phosphate for dissolution and detachment of COM crystals. Copyright © 2012 Elsevier B.V. All rights reserved.
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite
NASA Astrophysics Data System (ADS)
Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott
2010-02-01
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II) (aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III) (s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.
Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocar, B.; Borch, T; Fendorf, S
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II){sub (aq)} concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III){sub (s)} depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less
NASA Astrophysics Data System (ADS)
Hasani, M.; Khodadadi, A.; Koleini, S. M. J.; Saeedi, A. H.; Meléndez, A. M.
2017-01-01
Dissolution of platinum group metals (PGM; herein Pt, Pd and Rh) in different chloride-based leaching systems from spent auto catalysts was performed. Response surface methodology and a five-level-five-factor central composite design were used to evaluate the effects of 1) temperature, 2) liquid-to-solid ratio, 3) stirring speed, 4) acid concentration and 5) particle size on extraction yield of PGM by aqua regia. Analysis of variance was used to determine the optimum conditions and most significant factors affecting the overall metal extraction. In the optimum conditions, leaching of Pt, Pd and Rh was 91.58%, 93.49% and 60.15%, respectively. The effect of different oxidizing agents on the PGM dissolution in chloride medium was studied comparatively in the following leaching systems: a) aqua regia/sulfuric acid mixture, b) hydrogen peroxide in sulfuric acid (piranha solution), c) sodium hypochlorite and d) copper(II). Dissolution of Rh is increased in both aqua regia and hydrogen peroxide/hydrochloric acid solutions by adding sulfuric acid.
NASA Astrophysics Data System (ADS)
Kurata, Y.; Futakawa, M.; Saito, S.
2005-08-01
Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 °C and 550 °C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 °C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 °C. Corrosion depth of ferritic/martensitic steels also decreases at 550 °C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 °C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 °C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr.
NASA Astrophysics Data System (ADS)
Pan, Chih-Hung; Chang, Ting-Chang; Tsai, Tsung-Ming; Chang, Kuan-Chang; Chu, Tian-Jian; Lin, Wen-Yan; Chen, Min-Chen; Sze, Simon M.
2016-09-01
In this letter, we demonstrate completely different characteristics with different operating modes and analyze the electrical field effect to confirm the filament dissolution behavior. The device exhibited a larger memory window when using a single voltage sweep method during reset process rather than the traditional double sweep method. The phenomenon was verified by using fast I-V measurement to simulate the two operating methods. A better high resistance state (HRS) will be obtained with a very short rising time pulse, but quite notably, lower power consumption was needed. We proposed the electrical field effect to explain the phenomenon and demonstrate distribution by COMSOL simulation.
Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N.; Holcomb, H.P.
1994-01-01
A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.
Thermodynamics of Titanium-Aluminum-Oxygen Alloys Studied
NASA Technical Reports Server (NTRS)
Copland, Evan H.; Jacobson, Nathan S.
2001-01-01
Titanium-aluminum alloys are promising intermediate-temperature alloys for possible compressor applications in gas-turbine engines. These materials are based on the a2-Ti3Al + g-TiAl phases. The major issue with these materials is high oxygen solubility in a2-Ti3Al, and oxidation of unsaturated alloys generally leads to mixed non-protective TiO2+Al2O3 scales. From phase diagram studies, oxygen saturated a2-Ti3Al(O) is in equilibrium with Al2O3; however, oxygen dissolution has a detrimental effect on mechanical properties and cannot be accepted. To better understand the effect of oxygen dissolution, we examined the thermodynamics of titanium-aluminum-oxygen alloys.
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils.
LeMonte, Joshua J; Stuckey, Jason W; Sanchez, Joshua Z; Tappero, Ryan; Rinklebe, Jörg; Sparks, Donald L
2017-06-06
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions. We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils
LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.; ...
2017-05-04
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less
Effect of strong acids on red mud structural and fluoride adsorption properties.
Liang, Wentao; Couperthwaite, Sara J; Kaur, Gurkiran; Yan, Cheng; Johnstone, Dean W; Millar, Graeme J
2014-06-01
The removal of fluoride using red mud has been improved by acidifying red mud with hydrochloric, nitric and sulphuric acid. The acidification of red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the amount of available iron and aluminium oxide/hydroxide sites that are accessible for the adsorption of fluoride. However, concentrated acids have a negative effect on adsorption due to the dissolution of these iron and aluminium oxide/hydroxide sites. The removal of fluoride is dependent on the charge of iron and aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡SOH2(+) and ≡SOH. Optimum removal is obtained when the majority of surface sites are in the form ≡SOH2(+) as the substitution of a fluoride ion does not cause a significant increase in pH. This investigation shows the importance of having a low and consistent pH for the removal of fluoride from aqueous solutions using red mud. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, Yan; Sun, He-yun; Tan, Qiao-yi; Gao, Hong-shan; Feng, Xing-liang; Ruan, Ren-man
2018-03-01
The effects of temperature on chalcocite/pyrite oxidation and the microbial population in the bioleaching columns of a low-grade chalcocite ore were investigated in this study. Raffinate from the industrial bioleaching heap was used as an irrigation solution for columns operated at 20, 30, 45, and 60°C. The dissolution of copper and iron were investigated during the bioleaching processes, and the microbial community was revealed by using a high-throughput sequencing method. The genera of Ferroplasma, Acidithiobacillus, Leptospirillum, Acidiplasma, and Sulfobacillus dominated the microbial community, and the column at a higher temperature favored the growth of moderate thermophiles. Even though microbial abundance and activity were highest at 30°C, the column at a higher temperature achieved a much higher Cu leaching efficiency and recovery, which suggested that the promotion of chemical oxidation by elevated temperature dominated the dissolution of Cu. The highest pyrite oxidation percentage was detected at 45°C. Higher temperature resulted in precipitation of jarosite in columns, especially at 60°C. The results gave implications to the optimization of heap bioleaching of secondary copper sulfide in both enhanced chalcocite leaching and acid/iron balance, from the perspective of leaching temperature and affected microbial community and activity.
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less
NASA Astrophysics Data System (ADS)
Pang, Shengli; Xu, Kaijie; Wang, Yonggang; Shen, Xiangqian; Wang, Wenzhi; Su, Yanjing; Zhu, Meng; Xi, Xiaoming
2017-10-01
Li-rich layered oxides are promising cathode materials for advanced Li-ion batteries because of their high specific capacity and operating potential. In this work, the Li-rich layered oxide Li1·2Mn0·54Ni0·13Co0·13O2 (LMNC), is modified via a carbonization-reduction process (yielding the corresponding reduced compound denoted LMNC-R). Compared to the pristine oxide, LMNC-R delivers significantly enhanced initial discharge capacity/columbic efficiency, remarkably improved rate performance with an accelerated Li+ diffusion rate, and significantly increased capacity/voltage retention. The specific energy density and energy retention after 100 cycles increase from 378.2 Wh kg-1 and 47.7% for LMNC to 572.0 Wh kg-1 and 71.3%, respectively, for LMNC-R. The enhancement in the electrochemical performance of LMNC-R can be attributed to the synchronous formation of the oxygen non-stoichiometric Li2MnO3-δ component and to the carbon/spinel double coating layer in the material that resulted from the post-treatment process. Thus, the carbonization-reduction modification process can be used to tailor the structural evolution procedure and to suppress the metal ion dissolution of the Li-rich layered oxide during cycling.
Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans
Makita, Mario; Esperón, Margarita; Pereyra, Benito; López, Alejandro; Orrantia, Erasmo
2004-01-01
Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS). Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield) of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS) was totally oxidized too, anglesite (PbSO4) formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1). Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight) of arsenic removal. Further studies are needed to determine other factors that influence specifically the solubilization of arsenic in the bioleaching system such as: pH, dissolved oxygen concentration, redox potentials, nature of concentrate and temperature among others. At. ferrooxidans was able to completely oxidize the minerals present during the arsenic bioleaching. Other elements present originally in the concentrate such as Zn, Sb, and Cu were also solubilized. The process of bioleaching is expected to be influenced by mechanisms that still need to be established due to the diversity of the minerals involved and by the presence of traces of metals in the concentrate. The increase in pulp density generates a decrease in the dissolved arsenic concentration. This decrease is greater in runs where air was not injected to the system. The maximum rate of arsenic dissolution in the concentrate was found using; small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. The effect of addition of ferric chloride during the arsenic bioleaching resulted in a decrease of the solubilized arsenic in the system. The presence of CO2 is associated to the decrease in arsenic dissolution. PMID:15482595
Tao, Xinyong; Wang, Jianguo; Liu, Chong; ...
2016-04-05
Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance.more » Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Lastly, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.« less
NASA Astrophysics Data System (ADS)
Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi
2016-04-01
Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.
Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi
2016-04-05
Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.
Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi
2016-01-01
Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides. PMID:27046216
Zhang, Q B; Hua, Y X
2014-12-28
The electrochemical nucleation and growth kinetics of copper nanoparticles on a Ni electrode have been studied with cyclic voltammetry and chronoamperometry in the choline chloride (ChCl)-urea based deep eutectic solvent (DES). The copper source was introduced into the solvent by the dissolution of Cu(I) oxide (Cu2O). Cyclic voltammetry indicates that the electroreduction of Cu(I) species in the DES is a diffusion-controlled quasi-reversible process. The analysis of the chronoamperometric transient behavior during electrodeposition suggests that the deposition of copper on the Ni electrode at low temperatures follows a progressive nucleation and three-dimensional growth controlled by diffusion. The effect of temperature on the diffusion coefficient of Cu(I) species that is present in the solvent and electron transfer rate constant obeys the Arrhenius law, according to which the activation energies are estimated to be 49.20 and 21.72 kJ mol(-1), respectively. The initial stage of morphological study demonstrates that both electrode potential and temperature play important roles in controlling the nucleation and growth kinetics of the nanocrystals during the electrodeposition process. Electrode potential is observed to affect mainly the nucleation process, whereas temperature makes a major contribution to the growth process.
NASA Astrophysics Data System (ADS)
Velasco-Vélez, J. J.; Jones, Travis E.; Pfeifer, Verena; Dong, Chung-Li; Chen, Yu-Xun; Chen, Chieh-Ming; Chen, Hsin-Yu; Lu, Ying-Rui; Chen, Jin-Ming; Schlögl, R.; Knop-Gericke, A.; Chuang, C.-H.
2017-01-01
We activated gold electrodes for their use as electrocatalyst for water splitting by electrodepositing Cu, Ni and Co. A combination of operando x-ray absorption spectroscopy and potentiometric control under aqueous conditions revealed the trends in reactivity yielded by these electrodes, which are directly associated with the cross- and overpotentials as well as the occupancy of the 3d orbitals. It was found that under anodic polarization the materials electrodeposited on gold suffer from a lack of stability, while under cathodic polarization they exhibit stable behavior. The observed activity is strongly related to the lack of stability shown by these composites under anodic polarization revealing a dynamic process ruled by corrosion. By operando x-ray absorption, we established that the overall enhancement of the activity for the oxygen evolution reaction is directly attributable to the cross-potential and corrosion process of the electrodeposited materials. It is associated with the high potential deposition, which is the origin of the incipient oxidation-corrosion resistance of the lattice. We conclude that the observed trends in the total current are directly associated with the loss of oxygen in the metal-oxide lattice and the subsequent dissolution of metallic ions in the electrolyte under anodic polarization.
Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Catalano, Jeffrey G.
2012-03-26
Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less
Predicting the dissolution kinetics of silicate glasses using machine learning
NASA Astrophysics Data System (ADS)
Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu
2018-05-01
Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.
One-step synthesis of magnetic chitosan for controlled release of 5-hydroxytryptophan
NASA Astrophysics Data System (ADS)
Santos Menegucci, Jucély dos; Santos, Mac-Kedson Medeiros Salviano; Dias, Diego Juscelino Santos; Chaker, Juliano Alexandre; Sousa, Marcelo Henrique
2015-04-01
In this work, nanoparticles of chitosan embedded with 25% (w/w) of iron oxide magnetic nanoparticles (magnetite/maghemite) with narrow size-distribution and with a loading efficiency of about 80% for 5-hydroxytryptophan (5-HTP), which is a chemical precursor in the biosynthesis of important neurotransmitters as serotonin, were synthesized with an initial mass ratio of 5-HTP/magnetic chitosan=1.2, using homogeneous precipitation by urea decomposition, in an efficient one-step procedure. Characterization of morphology, structure and surface were performed by XRD, TEM, FTIR, TGA, magnetization and zeta potential measurements, while drug loading and drug releasing were investigated using UV-vis spectroscopy. Kinetic drug release experiments under different pH conditions revealed a pH-sensitivecontrolled-release system, ruled by polymer swelling and/or particle dissolution.
Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node
NASA Astrophysics Data System (ADS)
Yin, Lan; Bozler, Carl; Harburg, Daniel V.; Omenetto, Fiorenzo; Rogers, John A.
2015-01-01
Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.
NASA Astrophysics Data System (ADS)
Nave, Maryana I.; Kornev, Konstantin G.
2017-03-01
Tungsten is one of the most attractive metals in applications where materials are subject to high temperature and strong fields. However, in harsh aqueous environment, tungsten is prone to corrosion. Control of tungsten corrosion in aqueous solutions is a challenging task: as a transition metal, tungsten is able to produce a vast variety of oxides and hydrates. To reveal the thermodynamic pathway of corrosion at different conditions, the 3D Pourbaix diagrams relating the reduction potential, pH, and concentration of different tungsten-based compounds were constructed. These diagrams allow one to identify the most thermodynamically stable tungsten-based compounds. The 3D Pourbaix diagrams were used to explain different regimes of anodic dissolution of tungsten in aqueous solutions of potassium hydroxide.
High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures
NASA Astrophysics Data System (ADS)
Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor
2015-04-01
Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.
Arsenic mobilization and immobilization in paddy soils
NASA Astrophysics Data System (ADS)
Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.
2010-05-01
Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).
Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities
Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.
2012-01-01
The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561
Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species
NASA Astrophysics Data System (ADS)
Eitel, Eryn M.; Taillefert, Martial
2017-10-01
Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li-Fang; Ou, Chin-Ching; Striebel, Kathryn A.
The goal of this research was to measure Mn dissolution from a thin porous spinel LiMn{sub 2}O{sub 4} electrode by rotating ring-disk collection experiments. The amount of Mn dissolution from the spinel LiMn{sub 2}O{sub 4} electrode under various conditions was detected by potential step chronoamperometry. The concentration of dissolved Mn was found to increase with increasing cycle numbers and elevated temperature. The dissolved Mn was not dependent on disk rotation speed, which indicated that the Mn dissolution from the disk was under reaction control. The in situ monitoring of Mn dissolution from the spinel was carried out under various conditions.more » The ring currents exhibited maxima corresponding to the end-of-charge (EOC) and end-of-discharge (EOD), with the largest peak at EOC. The results suggest that the dissolution of Mn from spinel LiMn{sub 2}O{sub 4} occurs during charge/discharge cycling, especially in a charged state (at >4.1 V) and in a discharged state (at <3.1 V). The largest peak at EOC demonstrated that Mn dissolution took place mainly at the top of charge. At elevated temperatures, the ring cathodic currents were larger due to the increase of Mn dissolution rate.« less
Huang, Jinheng; Lin, Huaqing; Peng, Bingxin; Huang, Qianfeng; Shuai, Fangzhou; Xie, Yanxian
2018-04-30
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f 2 ) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.
NASA Astrophysics Data System (ADS)
Borowski, Susan C.; Biswakarma, Jagannath; Kang, Kyounglim; Schenkeveld, Walter D. C.; Hering, Janet G.; Kubicki, James D.; Kraemer, Stephan M.; Hug, Stephan J.
2018-04-01
Oxalate, together with other ligands, plays an important role in the dissolution of iron(hdyr)oxides and the bio-availability of iron. The formation and properties of oxalate surface complexes on lepidocrocite were studied with a combination of infrared spectroscopy (IR), density functional theory (DFT) calculations, dissolution, and photochemical experiments. IR spectra measured as a function of time, concentration, and pH (50-200 μM oxalate, pH 3-7) showed that several surface complexes are formed at different rates and in different proportions. Measured spectra could be separated into three contributions described by Gaussian line shapes, with frequencies that agreed well with the theoretical frequencies of three different surface complexes: an outer-sphere complex (OS), an inner-sphere monodentate mononuclear complex (MM), and a bidentate mononuclear complex (BM) involving one O atom from each carboxylate group. At pH 6, OS was formed at the highest rate. The contribution of BM increased with decreasing pH. In dissolution experiments, lepidocrocite was dissolved at rates proportional to the surface concentration of BM, rather than to the total adsorbed concentration. Under UV-light (365 nm), BM was photolyzed at a higher rate than MM and OS. Although the comparison of measured spectra with calculated frequencies cannot exclude additional possible structures, the combined results allowed the assignment of three main structures with different reactivities consistent with experiments. The results illustrate the importance of the surface speciation of adsorbed ligands in dissolution and photochemical reactions.
Oxidative dissolution potential of biogenic and abiogenic TcO 2 in subsurface sediments
NASA Astrophysics Data System (ADS)
Fredrickson, James K.; Zachara, John M.; Plymale, Andrew E.; Heald, Steve M.; McKinley, James P.; Kennedy, David W.; Liu, Chongxuan; Nachimuthu, Ponnusamy
2009-04-01
Technetium-99 (Tc) is an important fission product contaminant associated with sites of nuclear fuels reprocessing and geologic nuclear waste disposal. Tc is highly mobile in its most oxidized state [Tc(VII)O4-] and less mobile in the reduced form [Tc(IV)O 2· nH 2O]. Here we investigate the potential for oxidation of Tc(IV) that was heterogeneously reduced by reaction with biogenic Fe(II) in two sediments differing in mineralogy and aggregation state; unconsolidated Pliocene-age fluvial sediment from the upper Ringold (RG) Formation at the Hanford Site and a clay-rich saprolite from the Field Research Center (FRC) background site on the Oak Ridge Site. Both sediments contained Fe(III) and Mn(III/IV) as redox active phases, but FRC also contained mass-dominant Fe-phyllosilicates of different types. Shewanella putrefaciens CN32 reduced Mn(III/IV) oxides and generated Fe(II) that was reactive with Tc(VII) in heat-killed, bioreduced sediment. After bioreduction and heat-killing, biogenic Fe(II) in the FRC exceeded that in RG by a factor of two. More rapid reduction rates were observed in the RG that had lower biogenic Fe(II), and less particle aggregation. EXAFS measurements indicated that the primary reduction product was a TcO 2-like phase in both sediments. The biogenic redox product Tc(IV) oxidized rapidly and completely in RG when contacted with air. Oxidation, in contrast, was slow and incomplete in the FRC, in spite of similar molecular scale speciation of Tc compared to RG. X-ray microprobe, electron microprobe, X-ray absorption spectroscopy, and micro X-ray diffraction were applied to the whole sediment and isolated Tc-containing particles. These analyses revealed that non-oxidizable Tc(IV) in the FRC existed as complexes with octahedral Fe(III) within intra-grain domains of 50-100 μm-sized, Fe-containing micas presumptively identified as celadonite. The markedly slower oxidation rates in FRC as compared to RG were attributed to mass-transfer-limited migration of O 2 into intra-aggregate and intraparticle domains where Tc(IV) existed; and the formation of unique, oxidation-resistant, intragrain Tc(IV)-Fe(III) molecular species.
McKnight, Diane M.; Bencala, K.E.
1989-01-01
A pH perturbation experiment was conducted in an acidic, metal-enriched, mountain stream to identify relative rates of chemical and hydrologic processes as they influence iron transport. During the experiment the pH was lowered from 4.2 to 3.2 for three hours by injection of sulfuric acid. Amorphous iron oxides are abundant on the streambed, and dissolution and photoreduction reactions resulted in a rapid increase in the dissolved iron concentration. The increase occurred simultaneously with the decrease in pH. Ferrous iron was the major aqueous iron species. The changes in the iron concentration during the experiment indicate that variation exists in the solubility properties of the hydrous iron oxides on the streambed with dissolution of at least two compartments of hydrous iron oxides contributing to the iron pulse. Spatial variations of the hydrologic properties along the stream were quantified by simulating the transport of a coinjected tracer, lithium. A simulation of iron transport, as a conservative solute, indicated that hydrologie transport had a significant role in determining downstream changes in the iron pulse. The rapidity of the changes in iron concentration indicates that a model based on dynamic equilibrium may be adequate for simulating iron transport in acid streams. A major challenge for predictive solute transport models of geochemical processes may be due to substantial spatial and seasonal variations in chemical properties of the reactive hydrous oxides in such streams, and in the physical and hydrologic properties of the stream. ?? 1989.
NASA Astrophysics Data System (ADS)
Warnock, Jonathan P.; Scherer, Reed P.
2015-07-01
Taphonomic processes alter diatom assemblages in sediments, thus potentially negatively impacting paleoclimate records at various rates across space, time, and taxa. However, quantitative taphonomic data is rarely included in diatom-based paleoenvironmental reconstructions and no objective standard exists for comparing diatom dissolution in sediments recovered from marine depositional settings, including the Southern Ocean's opal belt. Furthermore, identifying changes to diatom dissolution through time can provide insight into the efficiency of both upper water column nutrient recycling and the biological pump. This is significant in that reactive metal proxies (e.g. Al, Ti) in the sediments only account for post-depositional dissolution, not the water column where the majority of dissolution occurs. In order to assess the range of variability of responses to dissolution in a typical Southern Ocean diatom community and provide a quantitative guideline for assessing taphonomic variability in diatoms recovered from core material, a sediment trap sample was subjected to controlled, serial dissolution. By evaluating dissolution-induced changes to diatom species' relative abundance, three preservational categories of diatoms have been identified: gracile, intermediate, and robust. The relative abundances of these categories can be used to establish a preservation grade for diatom assemblages. However, changes to the relative abundances of diatom species in sediment samples may reflect taphonomic or ecological factors. In order to address this complication, relative abundance changes have been tied to dissolution-induced morphological change to the areolae of Fragilariopsis curta, a significant sea-ice indicator in Southern Ocean sediments. This correlation allows differentiation between gracile species loss to dissolution versus ecological factors or sediment winnowing. These results mirror a similar morphological dissolution index from a parallel study utilizing Fragilariopsis kerguelensis, suggesting that results are applicable to a broad spectrum of diatoms typically preserved in the sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goix, Sylvaine; UMR 5245 CNRS-INP-UPS, EcoLab; Lévêque, Thibaut
2014-08-15
This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score duemore » to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.« less
Potential Lifestyles in Ancient Environments of Gusev Crater, Mars
NASA Technical Reports Server (NTRS)
DesMarais, David J.
2006-01-01
Habitable environments must sustain liquid water at least intermittently and also provide both chemical building blocks and useful sources of energy for life. Observations by Spirit rover indicate that conditions have probably been too dry to sustain life, at least since the emplacement of the extensive basalts that underlie the plains around the Columbia Memorial Station landing site. Local evidence of relatively minor aqueous alteration probably occurred under conditions where the activity of water was too low to sustain biological processes as we know them. In contrast, multiple bedrock units in West Spur and Husband Hill in the Columbia Wills have been extensively altered, probably by aqueous processes. The Fe in several of these units has been extensively oxidized, indicating that, in principle, any microbiota present during the aqueous alteration of these rocks could have obtained energy from Fe oxidation. Spirit discovered oliving-rich ultramafic rocks during her descent from Husband Hill southward into Inner Basin. Alteration of similar ultramafic rocks on Earth can yield H2 that can provide both energy and reducing power for microorganisms. Spirit s discovery of "salty" soil horizons rich in Fe and/or Mg is consistent with the aqueous dissolution and/or alteration of olivine. Such processes can oxidize Fe and also yield H2 under appropriate conditions. Very high S concentrations in these salty deposits indicate that soluble salts were mobilized by water and/or that S oxidation, a potential energy source for life, occurred. The Athena team has not yet established whether these salt components were deposited as large beds in ancient water bodies or, for example, were concentrated by more recent groundwater activity. Collectively these observations are consistent with the possibility that habitable environments existed at least intermittently in the distant geologic past.
Evaluation of cell wall damage by dimethyl sulfoxide in Candida species.
León-García, María Cristina; Ríos-Castro, Emmanuel; López-Romero, Everardo; Cuéllar-Cruz, Mayra
2017-10-01
Studies dealing with the response of microorganisms to oxidative stress require the dissolution of oxidant agents in an appropriate solvent. A commonly used medium is dimethyl sulfoxide, which has been considered as an innocuous polar solvent. However, we have observed significant differences between control, untreated cells and those receiving increasing amounts of the oxidant and hence increasing amounts of DMSO, to the maximum allowed of 1%. Here we show that, while this solvent does not influence yeast cell viability, it does affect expression of cell wall proteins as well as catalase activity. Therefore, its use in future studies of oxidative stress as an innocuous solvent should be reconsidered. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen
The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deepmore » cycles at 0.1 C.« less
NASA Astrophysics Data System (ADS)
Mittelman, Anjuliee M.
Nanomaterials will be subjected to various surface transformations in the environment and within water and wastewater treatment systems. A comprehensive understanding of the fate and transport behavior of "aged" nanomaterials in both natural and engineered porous media is required in order to accurately quantify ecological and human health risks. This research sought to (1) evaluate the impact of ultraviolet (UV) light aging on nanoparticle transport in water-saturated porous media; and (2) assess the effects of influent water quality on silver nanoparticle retention and dissolution in ceramic water filters. Additionally, the value of quartz crystal microbalance (QCM-D) data in nanoparticle fate and transport studies was evaluated by comparing deposition behavior in complementary QCM-D and sand columns experiments. Silver (nAg) and iron oxide nanoparticles exposed to UV light were up to 50% more strongly retained in porous media compared with freshly prepared suspensions due to less negative surface charge and larger aggregate sizes. UV-aged nAg were more prone to dissolution in sand columns, resulting in effluent Ag+ concentrations as high as 1.2 mg/L. In ceramic water filters, dissolution and cation exchange processes controlled silver release into treated water. The use of acidic, high salinity, or high hardness water accelerated oxidative dissolution of the silver coating and resulted in effluent silver concentrations 5-10 times above international drinking water guidelines. Results support the recommendation for a regular filter replacement or silver re-application schedule to ensure ongoing efficacy. Taken in concert, these research findings suggest that oxidative aging of nanomaterial surfaces (either through exposure to UV light or aggressive water chemistries) will alter the fate of nanomaterials in the environment and may decrease the effective lifetime of devices which utilize nanotechnology. Corresponding QCM-D and column experiments revealed that nanoparticles were generally more mobile in QCM-D due to reduced diffusive transport of larger aggregates to the sensor surface and high primary energy barriers to deposition. While QCM-D may be used to provide qualitative data, direct comparisons of deposition rates in QCM-D with attachment rates obtained from column experiments may prove difficult due to differences in flow geometry and surface characteristics between the two systems.
Emsbo, P.; Hofstra, A.H.
2003-01-01
The final event in a complicated hydrothermal history at the Meikle gold deposit was gold deficient but caused extensive postore dissolution of carbonate, collapse brecciation, and precipitation of calcite and barite crystals in the resulting cavities. Although previously interpreted to be part of the Carlin-type hydrothermal system, crosscutting relationships and U-Th-Pb geochronology constrain this hydrothermal event to late Pliocene time (ca. 2 Ma), nearly 36 Ma after ore formation. Mineralogic, fluid inclusion, and stable isotope data indicate that postore hydrothermal fluids were reduced, H2S-rich, unevolved meteoric waters ((??18O = -17???) of low temperature (ca. 65??C). The ??18O values of barite and calcite indicate that these minerals were in isotopic equilibrium, requiring that barite SO4 was derived from the oxidation of reduced sulfur; however, preexisting sulfides in breccia cavities were not oxidized. The ??34S (15???) values of barite are higher than those of local bulk sulfide and supergene alunite indicating that SO4 was not derived from supergene oxidation of local sulfide minerals. The 15 per mil ??34S value suggests that the H2S in the fluids may have been leached from sulfur-rich organic matter in the local carbonaceous sedimentary rocks. A reduced H2S-rich fluid is also supported by the bright cathodoluminescence of calcite which indicates that it is Mn rich and Fe poor. Calcite has a narrow range of ??13C values (0.3-1.8???) that are indistinguishable from those of the host Bootstrap limestone, indicating that CO2 in the fluid was from dissolution of the local limestone. These data suggest that dissolution and brecciation of the Bootstrap limestone occurred where H2S-rich fluids encountered more oxidizing fluids and formed sulfuric acid (H2SO4). Intense fracturing in the mine area by previous structural and hydrothermal events probably provided conduits for the descent of oxidized surface water which mixed with the underlying H2S-rich waters to form the dissolving acid. The surface-derived fluid apparently contained sufficient oxygen to produce H2SO4 from H2S but not enough to alter pyrite to Fe oxide. Although H2S is an important gold-transporting ligand, the temperature was too low to transport a significant amount of gold. The presence of analogous calcite- and barite-lined cavities in other Carlin-type deposits suggests that the generation (and oxidation) of H2S-rich meteoric waters was a common phenomenon in north-central Nevada. Previous sulfur isotope studies have also shown that the Paleozoic sedimentary rocks were the principal source of H2S in Devonian sedimentary exhalative-type, Jurassic intrusion-related, Eocene Carlin-type, and Miocene low-sulfidation gold deposits in the region. The similar sulfur source in all of these systems suggests that basin brines, magmatic fluids, and meteoric waters all evolved to be H2S-rich ore fluids by circulation through Paleozoic sedimentary rocks. Thus, although not directly related to gold mineralization, the recent hydrologic history of the deposit provides important clues to earlier ore-forming processes that were responsible for gold mineralization.
NASA Astrophysics Data System (ADS)
Van De Ven, C. J. C.; Mumford, K. G.
2016-12-01
The environmental impact and potential human health implications, specifically from the contamination of groundwater sources, has sparked controversy around shale gas extraction in North America. It is clear that understanding the effects of hydraulic fracturing on shallow fresh water aquifers is of great importance, including the threat of stray gas (also referred to as fugitive methane) on groundwater quality. Faulty wells provide a preferential pathway for free gas phase (mostly methane) to migrate from deeper gas-bearing formations of natural gas to shallow aquifers, followed by its dissolution into the surrounding groundwater. An increased understanding of the fate of fugitive methane in shallow aquifers is required to assess the potential risks associated with current and future operations, as well as to better link gas migration, dissolution and the deterioration of groundwater quality. In this study, a series of laboratory experiments were performed using carbon dioxide (CO2) gas as a surrogate for methane to improve our understanding of gas dissolution in groundwater systems. Using CO2, a novel laboratory technique was developed that allows the measurement of dissolved CO2 concentrations using image analysis alongside visualization of free gas mobilization. The technique is based on the acidification of water during CO2 dissolution, which causes a colour change in an indicator dye. The colour change is recorded using a visual light transmission technique, in which digital images are used to track dissolved concentrations at high spatial (1 mm) and temporal (5 s) resolutions in a two-dimensional (25 × 25 × 1 cm3) flow cell. The experiments were completed in both homogeneous sand packs and sand packs containing layered heterogeneities to investigate the dissolution of both gas fingers and gas pools. The results demonstrate the potential of this novel technique for investigating gas dissolution, and showed significant tailing of dissolved CO2 and persistence of other gas phase components. This technique will aid in the development of conceptual models to link fugitive methane to groundwater contamination and provide detailed data required for the validation of numerical models that account for gas-water mass transfer; both of which are required for the development of sound monitoring techniques.