Science.gov

Sample records for oxidative injury estrogen

  1. Estrogen receptor agonists alleviate cardiac and renal oxidative injury in rats with renovascular hypertension.

    PubMed

    Özdemir Kumral, Zarife Nigâr; Kolgazi, Meltem; Üstünova, Savaş; Kasımay Çakır, Özgür; Çevik, Özge Dağdeviren; Şener, Göksel; Yeğen, Berrak Ç

    2016-01-01

    Although endogenous estrogen is known to offer cardiac and vascular protection, the involvement of estrogen receptors in mediating the protective effect of estrogen on hypertension-induced cardiovascular and renal injury is not fully explained. We aimed to investigate the effects of estrogen receptor (ER) agonists on oxidative injury, cardiovascular and renal functions of rats with renovascular hypertension (RVH). Female Sprague-Dawley rats were randomly divided as control and RVH groups, and RVH groups had either ovariectomy (OVX) or sham-OVX. Sham-OVX-RVH and OVX-RVH groups received either ERβ agonist diarylpropiolnitrile (1 mg/kg/day) or ERα agonist propyl pyrazole triol (1 mg/kg/day) for 6 weeks starting at the third week following the surgery. At the end of the 9(th) week, systolic blood pressures were recorded, cardiac functions were determined, and the contraction/relaxation responses of aortic rings were obtained. Serum creatinine levels, tissue malondialdehyde, glutathione, superoxide dismutase, catalase levels, and myeloperoxidase activity in heart and kidney samples were analyzed, and Na(+), K(+)-ATPase activity was measured in kidney samples. In both sham-OVX and OVX rats, both agonists reduced blood pressure and reversed the impaired contractile performance of the heart, while ERβ agonist improved renal functions in both the OVX and non-OVX rats. Both agonists reduced neutrophil infiltration, lipid peroxidation, and elevated antioxidant levels in the heart, but a more ERβ-mediated protective effect was observed in the kidney. Our data suggest that activation of ERβ might play a role in preserving the function of the stenotic kidney and delaying the progression of renal injury, while both receptors mediate similar cardioprotective effects. PMID:27399230

  2. Estrogen and estrogen receptors in cardiovascular oxidative stress.

    PubMed

    Arias-Loza, Paula-Anahi; Muehlfelder, Melanie; Pelzer, Theo

    2013-05-01

    The cardiovascular system of a premenopausal woman is prepared to adapt to the challenges of increased cardiac output and work load that accompany pregnancy. Thus, it is tempting to speculate whether enhanced adaptability of the female cardiovascular system might be advantageous under conditions that promote cardiovascular disease. In support of this concept, 17β-estradiol as the major female sex hormone has been shown to confer protective cardiovascular effects in experimental studies. Mechanistically, these have been partially linked to the prevention and protection against oxidative stress. Current evidence indicates that estrogens attenuate oxidative stress at two levels: first, by preventing generation of reactive oxygen species (ROS) and, second, by scavenging ROS in the myocardium and in the vasculature. The purpose of this review is to give an overview on current concepts on conditions and mechanisms by which estrogens protect the cardiovascular system against ROS-mediated cellular injury.

  3. Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2008-12-15

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. The phytoestrogen puerarin, the main isoflavone glycoside found in the root of Pueraria lobata, has been used for various medicinal purposes in traditional Chinese medicines for thousands of years. Recent studies have indicated that the estrogen receptor (ER), through interaction with p85, regulates phosphoinositide 3-kinase (PI3K) activity, revealing a physiologic, non-nuclear function of ER that may be relevant in cytoprotection. In this study, we demonstrate that the phytoestrogen puerarin inhibits tert-butyl hydroperoxide (t-BHP)-induced oxidative injury via an ER-dependent G{beta}1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of Hepa1c1c7 and HepG2 cells with puerarin significantly reduced t-BHP-induced caspase-3 activation and subsequent cell death. Also, puerarin up-regulated HO-1 expression and this expression conferred cytoprotection against oxidative injury induced by t-BHP. Moreover, puerarin induced Nrf2 nuclear translocation, which is upstream of puerarin-induced HO-1 expression, and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Puerarin-induced up-regulation of HO-1 and cytoprotection against t-BHP were abolished by silencing Nrf2 expression with specific siRNA. Also, puerarin-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that puerarin augments cellular antioxidant defense capacity through ER-dependent HO-1 induction via the G{beta}1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress.

  4. Estrogen receptor variant ER-α36 is involved in estrogen neuroprotection against oxidative toxicity.

    PubMed

    Han, S; Zhao, B; Pan, X; Song, Z; Liu, J; Gong, Y; Wang, M

    2015-12-01

    It is well known that estrogen exerts neuroprotective effect against various neuronal damages. However, the estrogen receptor (ER) that mediates estrogen neuroprotection has not been well established. In this study, we investigated the potential receptor that mediates estrogen neuroprotection and the underlying molecular mechanisms. Hydrogen peroxide (H2O2) was chosen as an agent in our study to mimic free radicals that are often involved in the pathogenesis of many degenerative diseases. We found that in human SY5Y and IMR-32 cells, the estrogen neuroprotection against H2O2 toxicity was abrogated by knockdown of a variant of estrogen receptor-α, ER-α36. We also studied the rapid estrogen signaling mediated by ER-α36 in neuroprotective effect and found the PI3K/AKT and MAPK/ERK1/2 signaling mediated by ER-α36 is involved in estrogen neuroprotection. We also found that GPER, an orphan G protein-coupled receptor, is not involved in ER-α36-mediated rapid estrogen response. Our study thus demonstrates that ER-α36-mediated rapid estrogen signaling is involved in the neuroprotection activity of estrogen against oxidative toxicity. PMID:26383254

  5. Salutary Effects of Estrogen Sulfate for Traumatic Brain Injury

    PubMed Central

    Kim, Hyunki; Cam-Etoz, Betul; Zhai, Guihua; Hubbard, William J.; Zinn, Kurt R.

    2015-01-01

    Abstract Estrogen plays an important role as a neuroprotector in the central nervous system (CNS), directly interacting with neurons and regulating physiological properties of non-neuronal cells. Here we evaluated estrogen sulfate (E2-SO4) for traumatic brain injury (TBI) using a Sprague–Dawley rat model. TBI was induced via lateral fluid percussion (LFP) at 24 h after craniectomy. E2-SO4 (1 mg/kg BW in 1 mL/kg BW) or saline (served as control) was intravenously administered at 1 h after TBI (n=5/group). Intracranial pressure (ICP), cerebral perfusion pressure (CPP), and partial brain oxygen pressure (pbtO2) were measured for 2 h (from 23 to 25 h after E2-SO4 injection). Brain edema and diffuse axonal injury (DAI) were assessed by diffusion tensor imaging (DTI), and cerebral glycolysis was measured by 18F-labeled fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging, at 1 and 7 days after E2-SO4 injection. E2-SO4 significantly decreased ICP, while increasing CPP and pbtO2 (p<0.05) as compared with vehicle-treated TBI rats. The edema size in the brains of the E2-SO4 treated group was also significantly smaller than that of vehicle-treated group at 1 day after E2-SO4 injection (p=0.04), and cerebral glycolysis of injured region was also increased significantly during the same time period (p=0.04). However, E2-SO4 treatment did not affect DAI (p>0.05). These findings demonstrated the potential benefits of E2-SO4 in TBI. PMID:25646701

  6. The protective role of endogenous estrogens in carrageenan-induced lung injury in the rat.

    PubMed Central

    Cuzzocrea, S.; Mazzon, E.; Sautebin, L.; Serraino, I.; Dugo, L.; Calabró, G.; Caputi, A. P.; Maggi, A.

    2001-01-01

    BACKGROUND: We have recently demonstrated that 17beta-estradiol (E2) inhibits the increase of inducible nitric oxide synthetase (iNOS) activity in selected model systems such as macrophages, microglia, smooth muscle cells, and proposed that this effect might be associated with an anti-inflammatory activity of this hormone. Here we investigate the effects of endogenous estrogens in rats subjected to carrageenan-induced pleurisy. MATERIALS AND METHODS: Adult female rats were ovariectomized 3 weeks before the experiments to deplete circulating estrogens. Selected inflammatory markers, landmarks of the delayed phase of carrageenan-induced pleurisy, were measured in intact (N-OVX), and ovariectomized (OVX) female rats. In addition, the effect of hormone replacement was evaluated in ovariectomized rats with intraperitoneal injection of 17beta-estradiol (E2; 50 microg/kg) 1 hr before carrageenan treatment (OVX + E2). RESULTS: Ovariectomy enhanced the carrageenan-induced degree of pleural exudation and polymorphonuclear leukocyte migration in rats subjected to carrageenan-induced pleurisy. Lung myeloperoxidase (MPO) activity and lipid peroxidation were significantly increased in estrogens-deprived rats. The iNOS in lung samples was significantly increased by the surgery. The increase of iNOS activity was correlated with a marked enhancement in the production of TNF-alpha and IL-1beta. Immunohistochemical analysis for P-selectin and ICAM-I, as well as nitrotyrosine and poly (ADP-ribose) synthetase (PARS) revealed a positive staining in lungs from carrageenan-treated rats, which was markedly enhanced in ovariectomized rats when compared to cycling rats, particularly in the estrous phase of the cycle. Estrogen replacement counteracted the effect of surgery on all of the above indicators of lung inflammation, suggesting that in the cycling rat this hormone plays a key role in the increased sensitivity to inflammatory injury observed in the OVX rat. CONCLUSION: This study

  7. MiR-22/Sp-1 Links Estrogens With the Up-Regulation of Cystathionine γ-Lyase in Myocardium, Which Contributes to Estrogenic Cardioprotection Against Oxidative Stress.

    PubMed

    Wang, Long; Tang, Zhi-Ping; Zhao, Wei; Cong, Bing-Hai; Lu, Jian-Qiang; Tang, Xiao-Lu; Li, Xiao-Han; Zhu, Xiao-Yan; Ni, Xin

    2015-06-01

    Hydrogen sulfide, generated in the myocardium predominantly via cystathionine-γ-lyase (CSE), is cardioprotective. Our previous study has shown that estrogens enhance CSE expression in myocardium of female rats. The present study aims to explore the mechanisms by which estrogens regulate CSE expression, in particular to clarify the role of estrogen receptor subtypes and the transcriptional factor responsible for the estrogenic effects. We found that either the CSE inhibitor or the CSE small interfering RNA attenuated the protective effect of 17β-estradiol (E2) against H2O2- and hypoxia/reoxygenation-induced injury in primary cultured neonatal cardiomyocytes. E2 stimulates CSE expression via estrogen receptor (ER)-α both in cultured cardiomyocytes in vitro and in the myocardium of female mice in vivo. A specificity protein-1 (Sp-1) consensus site was identified in the rat CSE promoter and was found to mediate the E2-induced CSE expression. E2 increases ERα and Sp-1 and inhibits microRNA (miR)-22 expression in myocardium of ovariectomized rats. In primary cardiomyocytes, E2 stimulates Sp-1 expression through the ERα-mediated down-regulation of miR-22. It was confirmed that both ERα and Sp-1 were targeted by miR-22. In the myocardium of ovariectomized rats, the level of miR-22 inversely correlated to CSE, ERα, Sp-1, and antioxidant biomarkers and positively correlated to oxidative biomarkers. In summary, this study demonstrates that estrogens stimulate Sp-1 through the ERα-mediated down-regulation of miR-22 in cardiomyocytes, leading to the up-regulation of CSE, which in turn results in an increase of antioxidative defense. Interaction of ERα, miR-22, and Sp-1 may play a critical role in the control of oxidative stress status in the myocardium of female rats.

  8. Sustained release of estrogens from PEGylated nanoparticles for treatment of secondary spinal cord injury

    NASA Astrophysics Data System (ADS)

    Barry, John

    Spinal Cord Injury (SCI) is a debilitating condition which causes neurological damage and can result in paralysis. SCI results in immediate mechanical damage to the spinal cord, but secondary injuries due to inflammation, oxidative damage, and activated biochemical pathways leading to apoptosis exacerbate the injury. The only currently available treatment, methylprednisolone, is controversial because there is no convincing data to support its therapeutic efficacy for SCI treatment. In the absence of an effective SCI treatment option, 17beta-estradiol has gained significant attention for its anti-oxidant, anti-inflammatory, and anti-apoptotic abilities, all events associated with secondary. Sadly, 17beta-estradiol is associated with systemic adverse effects preclude the use of free estrogen even for local administration due to short drug half-life in the body. Biodegradable nanoparticles can be used to increase half-life after local administration and to bestow sustained release. Sustained release using PEGylated biodegradable polymeric nanoparticles constructed from poly(lactic-co-glycolic acid) (PLGA) will endow a consistent, low, but effective dose to be delivered locally. This will limit systemic effects due to local administration and low dose, sustained release. PLGA was chosen because it has been used extensively for sustained release, and has a record of safety in humans. Here, we show the in vitro efficacy of PEGylated nanoparticles loaded with 17beta-estradiol for treatment of secondary SCI. We achieved a high loading efficiency and controlled release from the particles over a several day therapeutic window. The particles also show neuroprotection in two in vitro cell culture models. Both the dose and pretreatment time with nanoparticles was evaluated in an effort to translate the treatment into an animal model for further study.

  9. A kinetic study on the lactoperoxidase catalyzed oxidation of estrogens.

    PubMed

    Løvstad, Rolf A

    2006-12-01

    Lactoperoxidase, which is produced in mammary glands, is proposed to be involved in carcinogenesis, because of its ability to react with estrogenic molecules, oxidizing them to free radicals. In the present study the reactivity towards six species (estradiol, ethynylestradiol, estriol, estrone, pregnenolone and mestranol) was investigated by means of a NADH-coupled system. The enzyme activity towards estradiol, ethynylestradiol, estriol and estrone did not vary much, suggesting that the different substituents in the D-ring of the steroid had little effect on the reaction. A somewhat higher K (m)-value was obtained with estriol; possibly because of a more effective splitting of the enzyme-substrate complex into products. Pregnenolone, without resonance in the A-ring, and a methyl group in 19-position, did not react with the enzyme, in spite of having the proposed essential hydroxyl group in 3-position. Mestranol, with a methoxy group in 3-position, did not react with the enzyme either, supporting the suggestion that lactoperoxidase reacts with the 3-hydroxyl group of the estrogens.

  10. Estrogen protects the heart from ischemia-reperfusion injury via COX-2-derived PGI2.

    PubMed

    Booth, Erin Anne; Flint, RaShonda Renee; Lucas, Kathryn Louise; Knittel, Andrea Kathleen; Lucchesi, Benedict R

    2008-09-01

    There is an accumulating body of data to suggest that estrogen mediates its cardioprotective effects via cyclooxygenase activation and synthesis of prostaglandins (PG), specifically PGI2. We hypothesized that inhibition of COX-2 would prevent estrogen's cardioprotective effects after myocardial ischemia-reperfusion. Acute treatment with 17beta-estradiol (E2; 20 microg/rabbit) increased COX-2 protein expression and activity in the myocardium. To determine the effects of COX-2 inhibition on infarct size after E2 treatment, New Zealand white rabbits were anesthetized and administered the COX-2 inhibitor nimesulide (5 mg/kg) or vehicle intravenously 30 minutes before an intravenous injection of E2. Thirty minutes after estrogen treatment, the coronary artery was occluded for 30 minutes followed by 4 hours of reperfusion. E2 significantly decreased infarct size as a percent of area at risk when compared to vehicle (18.9 +/- 3.1 versus 47.0 +/- 4.1; P < 0.001). Pretreatment with nimesulide nullified the infarct size sparing effect of E2 (55.8 +/- 5.6). Treatment with the PGI2 receptor antagonist RO3244794 also abolished the protective effects of E2 (45.3 +/- 4.5). The results indicate that estrogen protects the myocardium from ischemia-reperfusion injury through increased production of COX-2-derived PGI2. The data indicate that selective COX-2 inhibitors might counteract the potential cytoprotective effects of estrogen in premenopausal or postmenopausal women.

  11. Estrogen down-regulates uncoupling proteins and increases oxidative stress in breast cancer.

    PubMed

    Sastre-Serra, Jorge; Valle, Adamo; Company, Maria Margarita; Garau, Isabel; Oliver, Jordi; Roca, Pilar

    2010-02-15

    Oxidative stress has been postulated as one of the mechanisms underlying the estrogen carcinogenic effect in breast cancer. Estrogens are known to increase mitochondrial-derived reactive oxygen species (ROS) by an unknown mechanism. Given that uncoupling proteins (UCPs) are key regulators of mitochondrial energy efficiency and ROS production, our aim was to check the presence and activity of UCPs in estrogen receptor (ER)-positive and ER-negative breast cancer cells and tumors, as well as their relation to oxidative stress. Estrogen (1 nM) induced higher oxidative stress in the ER-positive MCF-7 cell line, showing increased mitochondrial membrane potential, H(2)O(2) levels, and DNA and protein damage compared to ER-negative MDA-MB-231 cells. All isoforms of uncoupling proteins were highly expressed in ER-positive breast cancer cells and tumors compared to negative ones. ROS production in mitochondria isolated from MCF-7 was increased by inhibition of UCPs with GDP, but not in mitochondria from MDA-MB-231. Estrogen treatment decreased uncoupling protein and catalase levels in MCF-7 and decreased GDP-dependent ROS production in isolated mitochondria. On the whole, these results suggest that estrogens, through an ER-dependent mechanism, may increase mitochondrial ROS production by repressing uncoupling proteins, which offers a new perspective on the understanding of why estrogens are a risk factor for breast cancer.

  12. Using Fenton Oxidation to Simultaneously Remove Different Estrogens from Cow Manure.

    PubMed

    Sun, Minxia; Xu, Defu; Ji, Yuefei; Liu, Juan; Ling, Wanting; Li, Shunyao; Chen, Mindong

    2016-01-01

    The presence of estrogens in livestock excrement has raised concerns about their potential negative influence on animals and the overall food cycle. This is the first investigation to simultaneously remove estrogens, including estriol (E3), bisphenol A (BPA), diethylstilbestrol (DES), estradiol (E2), and ethinyl estradiol (EE2), from cow manure using a Fenton oxidation technique. Based on the residual concentrations and removal efficiency of estrogens, the Fenton oxidation reaction conditions were optimized as follows: a H₂O₂ dosage of 2.56 mmol/g, a Fe(II) to H₂O₂ molar ratio of 0.125 M/M, a solid to water mass ratio of 2 g/mL, an initial pH of 3, and a reaction time of 24 h. Under these conditions, the simultaneous removal efficiencies of E3, BPA, DES, E2, and EE2, with initial concentrations in cow manure of 97.40, 96.54, 100.22, 95.01, and 72.49 mg/kg, were 84.9%, 99.5%, 99.1%, 97.8%, and 84.5%, respectively. We clarified the possible Fenton oxidation reaction mechanisms that governed the degradation of estrogens. We concluded that Fenton oxidation technique could be effective for efficient removal of estrogens in livestock excrement. Results are of great importance for cow manure reuse in agricultural management, and can be used to reduce the threat of environmental estrogens to human health and ecological safety. PMID:27649223

  13. Using Fenton Oxidation to Simultaneously Remove Different Estrogens from Cow Manure

    PubMed Central

    Sun, Minxia; Xu, Defu; Ji, Yuefei; Liu, Juan; Ling, Wanting; Li, Shunyao; Chen, Mindong

    2016-01-01

    The presence of estrogens in livestock excrement has raised concerns about their potential negative influence on animals and the overall food cycle. This is the first investigation to simultaneously remove estrogens, including estriol (E3), bisphenol A (BPA), diethylstilbestrol (DES), estradiol (E2), and ethinyl estradiol (EE2), from cow manure using a Fenton oxidation technique. Based on the residual concentrations and removal efficiency of estrogens, the Fenton oxidation reaction conditions were optimized as follows: a H2O2 dosage of 2.56 mmol/g, a Fe(II) to H2O2 molar ratio of 0.125 M/M, a solid to water mass ratio of 2 g/mL, an initial pH of 3, and a reaction time of 24 h. Under these conditions, the simultaneous removal efficiencies of E3, BPA, DES, E2, and EE2, with initial concentrations in cow manure of 97.40, 96.54, 100.22, 95.01, and 72.49 mg/kg, were 84.9%, 99.5%, 99.1%, 97.8%, and 84.5%, respectively. We clarified the possible Fenton oxidation reaction mechanisms that governed the degradation of estrogens. We concluded that Fenton oxidation technique could be effective for efficient removal of estrogens in livestock excrement. Results are of great importance for cow manure reuse in agricultural management, and can be used to reduce the threat of environmental estrogens to human health and ecological safety. PMID:27649223

  14. Selective estrogen receptor modulators regulate reactive microglia after penetrating brain injury

    PubMed Central

    Barreto, George E.; Santos-Galindo, Maria; Garcia-Segura, Luis Miguel

    2014-01-01

    Following brain injury, microglia assume a reactive-like state and secrete pro-inflammatory molecules that can potentiate damage. A therapeutic strategy that may limit microgliosis is of potential interest. In this context, selective estrogen receptor modulators, such as raloxifene and tamoxifen, are known to reduce microglia activation induced by neuroinflammatory stimuli in young animals. In the present study, we have assessed whether raloxifene and tamoxifen are able to affect microglia activation after brain injury in young and aged animals in time points relevant to clinics, which is hours after brain trauma. Volume fraction of MHC-II+ microglia was estimated according to the point-counting method of Weibel within a distance of 350 μm from the lateral border of the wound, and cellular morphology was measured by fractal analysis. Two groups of animals were studied: (1) young rats, ovariectomized at 2 months of age; and (2) aged rats, ovariectomized at 18 months of age. Fifteen days after ovariectomy animals received a stab wound brain injury and the treatment with estrogenic compounds. Our findings indicate that raloxifene and tamoxifen reduced microglia activation in both young and aged animals. Although the volume fraction of reactive microglia was found lower in aged animals, this was accompanied by important changes in cell morphology, where aged microglia assume a bushier and hyperplasic aspect when compared to young microglia. These data suggest that early regulation of microglia activation provides a mechanism by which selective estrogen receptors modulators (SERMs) may exert a neuroprotective effect in the setting of a brain trauma. PMID:24999330

  15. Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells.

    PubMed

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2015-08-01

    The role of chronic oxidative stress in the development and aggressive growth of estrogen receptor (ER)-positive breast cancer is well known; however, the mechanistic understanding is not clear. Estrogen-independent growth is one of the features of aggressive subtype of breast cancer. Therefore, the objective of this study was to evaluate the effect of oxidative stress on estrogen sensitivity and expression of nuclear estrogen receptors in ER-positive breast cancer cells. MCF-7 cells chronically exposed to hydrogen peroxide were used as a cell model in this study, and their growth in response to 17-β estradiol was evaluated by cell viability, cell cycle, and cell migration analysis. Results were further confirmed at molecular level by analysis of gene expressions at transcript and protein levels. Histone H3 modifications, expression of epigenetic regulatory genes, and the effect of DNA demethylation were also analyzed. Loss of growth in response to estrogen with a decrease in ERα expression was observed in MCF-7 cells adapted to chronic oxidative stress. Increases in mtTFA and NRF1 in these cells further suggested the role of mitochondria-dependent redox-sensitive growth signaling as an alternative pathway to estrogen-dependent growth. Changes in expression of epigenetic regulatory genes, levels of histone H3 modifications as well as significant restorations of both ERα expression and estrogen response by 5-Aza-2'-deoxycytidine further confirmed the epigenetic basis for estrogen-independent growth in these cells. In conclusion, results of this study suggest that chronic oxidative stress can convert estrogen-dependent nonaggressive breast cancer cells into estrogen-independent aggressive form potentially by epigenetic mechanism.

  16. Estrogen Replacement Reduces Oxidative Stress in the Rostral Ventrolateral Medulla of Ovariectomized Rats

    PubMed Central

    Hao, Fan; Gu, Ying; Tan, Xing; Deng, Yu; Wu, Zhao-Tang; Xu, Ming-Juan; Wang, Wei-Zhong

    2016-01-01

    Cardiovascular disease prevalence rises rapidly after menopause, which is believed to be derived from the loss of estrogen. It is reported that sympathetic tone is increased in postmenopause. The high level of oxidative stress in the rostral ventrolateral medulla (RVLM) contributes to increased sympathetic outflow. The focus of this study was to determine if estrogen replacement reduces oxidative stress in the RVLM and sympathetic outflow in the ovariectomized (OVX) rats. The data of this study showed that OVX rat increased oxidative stress in the RVLM and sympathetic tone; estrogen replacement improved cardiovascular functions but also reduced the level of oxidative stress in the RVLM. These findings suggest that estrogen replacement decreases blood pressure and sympathoexcitation in the OVX rats, which may be associated with suppression in oxidative stress in the RVLM through downregulation of protein expression of NADPHase (NOX4) and upregulation of protein expression of SOD1. The data from this study is beneficial for our understanding of the mechanism of estrogen exerting cardiovascular protective effects on postmenopause. PMID:26640612

  17. Combination of estrogen replacement and exercise protects against HDL oxidation in post-menopausal women.

    PubMed

    Lawler, J M; Hu, Z; Green, J S; Crouse, S F; Grandjean, P W; Bounds, R G

    2002-10-01

    The incidence of atherosclerosis and cardiovascular disease (CVD) in women increases following menopause and has been associated with a reduction in circulating estrogen. Increased CVD risk is also perpetuated by sedentary lifestyle. Growing evidence indicates that oxidation of lipoproteins leads to a powerful immune response, disruption of normal lipoprotein function, and deposition of atherosclerotic plaques. For example, once high-density lipoproteins (HDL) are oxidized, they lose the ability to a) participate in reverse transport of cholesterol to the liver, and b) protect low-density lipoproteins (LDL) against oxidation. The purpose of this study was to determine the effects of combining estrogen replacement and exercise upon lipid peroxidation of the HDL fraction (HDL-ox). Blood samples were drawn from 34 post-menopausal women from four groups: women who were not receiving estrogen replacement and who were sedentary (NSD) (n = 9); women who were not receiving estrogen replacement and who were participating in regular exercise (NEX) (n = 8); women who were receiving estrogen replacement and who were sedentary (ESD) (n = 8); and women who were receiving estrogen replacement and who were participating in regular exercise (EEX) (n = 9). Total-HDL cholesterol was significantly higher (p<0.05) in EEX when compared with NEX, NSD, and ESD. HDL-ox was assessed via malondialdehyde (MDA). Mean (+/- SEM) values for HDL MDA expressed in nM are as follows: NSD = 903.3 +/- 118.4; NEX = 1226.7 +/- 247.7; ESD = 876.7 +/- 116.3; EEX = 537.4 +/- 74.8. EEX lipid peroxidation was significantly (p = 0.02) lower than NEX. Lipid peroxidation tended to be lower in EEX than in NSD and ESD (p = 0.07). These data indicate that the combination of estrogen replacement and regular exercise in post-menopausal women may be most effective in reducing oxidation of HDL in vivo.

  18. Estrogen-induced breast cancer: Alterations in breast morphology and oxidative stress as a function of estrogen exposure

    SciTech Connect

    Mense, Sarah M.; Remotti, Fabrizio; Bhan, Ashima; Singh, Bhupendra; El-Tamer, Mahmoud; Hei, Tom K.; Bhat, Hari K.

    2008-10-01

    Epidemiological evidence indicates that prolonged lifetime exposure to estrogen is associated with elevated breast cancer risk in women. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. In the present study, we investigated changes in breast morphology and oxidative stress following estrogen exposure. Female ACI rats were treated with 17{beta}-estradiol (E{sub 2}, 3 mg, s.c.) for either 7, 15, 120 or 240 days. Animals were euthanized, tissues were excised, and portions of the tissues were either fixed in 10% buffered formalin or snap-frozen in liquid nitrogen. Paraffin-embedded tissues were examined for histopathologic changes. Proliferative changes appeared in the breast after 7 days of E{sub 2} exposure. Atypical ductal proliferation and significant reduction in stromal fat were observed following 120 days of E{sub 2} exposure. Both in situ and invasive carcinomas were observed in the majority of the mammary glands from rats treated with E{sub 2} for 240 days. Palpable breast tumors were observed in 82% of E{sub 2}-treated rats after 228 days, with the first palpable tumor appearing after 128 days. No morphological changes were observed in the livers, kidneys, lungs or brains of rats treated with E{sub 2} for 240 days compared to controls. Furthermore, 8-isoprostane (8-isoPGF{sub 2{alpha}}) levels as well as the activities of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase, were quantified in the breast tissues of rats treated with E{sub 2} for 7, 15, 120 and 240 days and compared to activity levels in age-matched controls. 8-isoPGF{sub 2{alpha}} levels displayed time-dependent increases upon E{sub 2} treatment and were significantly higher than control levels at the 15, 120 and 240 day time-points. 8-isoPGF{sub 2{alpha}} observed in E{sub 2}-induced mammary tumors were significantly higher than levels found in control

  19. G-1 exerts neuroprotective effects through G protein-coupled estrogen receptor 1 following spinal cord injury in mice.

    PubMed

    Cheng, Qiang; Meng, Jia; Wang, Xin-Shang; Kang, Wen-Bo; Tian, Zhen; Zhang, Kun; Liu, Gang; Zhao, Jian-Ning

    2016-08-01

    Spinal cord injury (SCI) always occurs accidently and leads to motor dysfunction because of biochemical and pathological events. Estrogen has been shown to be neuroprotective against SCI through estrogen receptors (ERs), but the underlying mechanisms have not been fully elucidated. In the present study, we investigated the role of a newly found membrane ER, G protein-coupled estrogen receptor 1 (GPR30 or GPER1), and discussed the feasibility of a GPR30 agonist as an estrogen replacement. Forty adult female C57BL/6J mice (10-12 weeks old) were divided randomly into vehicle, G-1, E2, G-1 + G-15 and E2 + G-15 groups. All mice were subjected to SCI using a crushing injury approach. The specific GPR30 agonist, G-1, mimicked the effects of E2 treatment by preventing SCI-induced apoptotic cell death and enhancing motor functional recovery after injury. GPR30 activation regulated phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK/extracellular signal-regulated kinase (ERK) signalling pathways, increased GPR30 and anti-apoptosis proteins Bcl-2 and brain derived neurotrophic factor (BDNF), but decreased the pro-apoptosis factor Bax and cleaved caspase-3. However, the neuroprotective effects of G-1 and E2 were blocked by the specific GPR30 antagonist, G-15. Thus, GPR30 rather than classic ERs is required to induce estrogenic neuroprotective effects. Given that estrogen replacement therapy may cause unexpected side effects, especially on the reproductive system, GPR30 agonists may represent a potential therapeutic approach for treating SCI. PMID:27407175

  20. G-1 exerts neuroprotective effects through G protein-coupled estrogen receptor 1 following spinal cord injury in mice

    PubMed Central

    Cheng, Qiang; Meng, Jia; Wang, Xin-shang; Kang, Wen-bo; Tian, Zhen; Zhang, Kun; Liu, Gang; Zhao, Jian-ning

    2016-01-01

    Spinal cord injury (SCI) always occurs accidently and leads to motor dysfunction because of biochemical and pathological events. Estrogen has been shown to be neuroprotective against SCI through estrogen receptors (ERs), but the underlying mechanisms have not been fully elucidated. In the present study, we investigated the role of a newly found membrane ER, G protein-coupled estrogen receptor 1 (GPR30 or GPER1), and discussed the feasibility of a GPR30 agonist as an estrogen replacement. Forty adult female C57BL/6J mice (10–12 weeks old) were divided randomly into vehicle, G-1, E2, G-1 + G-15 and E2 + G-15 groups. All mice were subjected to SCI using a crushing injury approach. The specific GPR30 agonist, G-1, mimicked the effects of E2 treatment by preventing SCI-induced apoptotic cell death and enhancing motor functional recovery after injury. GPR30 activation regulated phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK/extracellular signal-regulated kinase (ERK) signalling pathways, increased GPR30 and anti-apoptosis proteins Bcl-2 and brain derived neurotrophic factor (BDNF), but decreased the pro-apoptosis factor Bax and cleaved caspase-3. However, the neuroprotective effects of G-1 and E2 were blocked by the specific GPR30 antagonist, G-15. Thus, GPR30 rather than classic ERs is required to induce estrogenic neuroprotective effects. Given that estrogen replacement therapy may cause unexpected side effects, especially on the reproductive system, GPR30 agonists may represent a potential therapeutic approach for treating SCI. PMID:27407175

  1. Oxidant Mechanisms in Renal Injury and Disease

    PubMed Central

    Ratliff, Brian B.; Abdulmahdi, Wasan; Pawar, Rahul

    2016-01-01

    Abstract Significance: A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. Recent Advances: Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. Critical Issues: The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. Future Directions: Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119–146. PMID:26906267

  2. Estrogen-related receptor-α (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury.

    PubMed

    LaBarge, Samuel; McDonald, Marisa; Smith-Powell, Leslie; Auwerx, Johan; Huss, Janice M

    2014-03-01

    The estrogen-related receptor-α (ERRα) regulates mitochondrial biogenesis and glucose and fatty acid oxidation during differentiation in skeletal myocytes. However, whether ERRα controls metabolic remodeling during skeletal muscle regeneration in vivo is unknown. We characterized the time course of skeletal muscle regeneration in wild-type (M-ERRαWT) and muscle-specific ERRα(-/-) (M-ERRα(-/-)) mice after injury by intramuscular cardiotoxin injection. M-ERRα(-/-) mice exhibited impaired regeneration characterized by smaller myofibers with increased centrally localized nuclei and reduced mitochondrial density and cytochrome oxidase and citrate synthase activities relative to M-ERRαWT. Transcript levels of mitochondrial transcription factor A, nuclear respiratory factor-2a, and peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1β, were downregulated in the M-ERRα(-/-) muscles at the onset of myogenesis. Furthermore, coincident with delayed myofiber recovery, we observed reduced muscle ATP content (-45% vs. M-ERRαWT) and enhanced AMP-activated protein kinase (AMPK) activation in M-ERRα(-/-) muscle. We subsequently demonstrated that pharmacologic postinjury AMPK activation was sufficient to delay muscle regeneration in WT mice. AMPK activation induced ERRα transcript expression in M-ERRαWT muscle and in C2C12 myotubes through induction of the Esrra promoter, indicating that ERRα may control gene regulation downstream of the AMPK pathway. Collectively, these results suggest that ERRα deficiency during muscle regeneration impairs recovery of mitochondrial energetic capacity and perturbs AMPK activity, resulting in delayed myofiber repair.

  3. Early, But Not Late Onset Estrogen Replacement Therapy Prevents Oxidative Stress and Metabolic Alterations Caused by Ovariectomy

    PubMed Central

    López-Grueso, Raúl; Gambini, Juan; Abdelaziz, Kheira M.; Monleón, Daniel; Díaz, Ana; El Alami, Marya; Bonet-Costa, Vicent; Borrás, Consuelo

    2014-01-01

    Abstract Aims: The usefulness of estrogen replacement therapy (ERT) in preventing oxidative stress associated with menopause is controversial. We aimed to study if there is a critical time window for effective treatment of the effects of ovariectomy with estrogens at the molecular, metabolic, and cellular level. Results: Our main finding is that early, but not late onset of ERT prevents an ovariectomy-associated increase in mitochondrial hydrogen peroxide levels, oxidative damage to lipids and proteins, and a decrease in glutathione peroxidase and catalase activity in rats. This may be due to a change in the estrogen receptor (ER) expression profile: ovariectomy increases the ER α/β ratio and immediate estrogen replacement prevents it. Positron emission tomography analysis shows that ovariectomy decreases the brain glucose uptake in vivo and that estrogen administration is beneficial, but only if administered immediately after deprivation. Ovariectomy decreases GLUT-1 and 3 glucose transporters in the brain, and only early onset estrogen administration prevents it. Plasma from rats treated with estrogens immediately after ovariectomy show similar metabolomics profiles as controls. Innovation: We provide molecular basis for the recommendation of early onset ERT and explain its lack of effectiveness if a significant time period elapses after ovariectomy and probably after the onset of menopause. Conclusion: Only early, but not late onset administration of estrogens after ovariectomy has beneficial effects at molecular levels on oxidative stress, brain glucose uptake, and metabolomic profiles. Antioxid. Redox Signal. 20, 236–246. PMID:23725100

  4. Administration of low dose estrogen attenuates gliosis and protects neurons in acute spinal cord injury in rats.

    PubMed

    Samantaray, Supriti; Das, Arabinda; Matzelle, Denise C; Yu, Shan P; Wei, Ling; Varma, Abhay; Ray, Swapan K; Banik, Naren L

    2016-03-01

    Spinal cord injury (SCI) is a debilitating condition with neurological deficits and loss of motor function that, depending on the severity, may lead to paralysis. The only treatment currently available is methylprednisolone, which is widely used and renders limited efficacy in SCI. Therefore, other therapeutic agents must be developed. The neuroprotective efficacy of estrogen in SCI was studied with a pre-clinical and pro-translational perspective. Acute SCI was induced in rats that were treated with low doses of estrogen (1, 5, 10, or 100 μg/kg) and compared with vehicle-treated injured rats or laminectomy control (sham) rats at 48 h post-SCI. Changes in gliosis and other pro-inflammatory responses, expression and activity of proteolytic enzymes (e.g., calpain, caspase-3), apoptosis of neurons in SCI, and cell death were monitored via Western blotting and immunohistochemistry. Negligible pro-inflammatory responses or proteolytic events and very low levels of neuronal death were found in sham rats. In contrast, vehicle-treated SCI rats showed profound pro-inflammatory responses with reactive gliosis, elevated expression and activity of calpain and caspase-3, elevated Bax:Bcl-2 ratio, and high levels of neuronal death in lesion and caudal regions of the injured spinal cord. Estrogen treatment at each dose reduced pro-inflammatory and proteolytic activities and protected neurons in the caudal penumbra in acute SCI. Estrogen treatment at 10 μg was found to be as effective as 100 μg in ameliorating the above parameters in injured animals. Results from this investigation indicated that estrogen at a low dose could be a promising therapeutic agent for treating acute SCI. Experimental studies with low dose estrogen therapy in acute spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes. Estrogen has been found to ameliorate several degenerative pathways following SCI. Thus, such early protective effects may even lead to functional

  5. Tocopherols inhibit oxidative and nitrosative stress in estrogen-induced early mammary hyperplasia in ACI rats.

    PubMed

    Das Gupta, Soumyasri; So, Jae Young; Wall, Brian; Wahler, Joseph; Smolarek, Amanda K; Sae-Tan, Sudathip; Soewono, Kelvin Y; Yu, Haixiang; Lee, Mao-Jung; Thomas, Paul E; Yang, Chung S; Suh, Nanjoo

    2015-09-01

    Oxidative stress is known to play a key role in estrogen-induced breast cancer. This study assessed the chemopreventive activity of the naturally occurring γ-tocopherol-rich mixture of tocopherols (γ-TmT) in early stages of estrogen-induced mammary hyperplasia in ACI rats. ACI rats provide an established model of rodent mammary carcinogenesis due to their high sensitivity to estrogen. Female rats were implanted with 9 mg of 17β-estradiol (E2) in silastic tubings and fed with control or 0.3% γ-TmT diet for 1, 3, 7, and 14 d. γ-TmT increased the levels of tocopherols and their metabolites in the serum and mammary glands of the rats. Histological analysis revealed mammary hyperplasia in the E2 treated rats fed with control or γ-TmT diet. γ-TmT decreased the levels of E2-induced nitrosative and oxidative stress markers, nitrotyrosine, and 8-oxo-dG, respectively, in the hyperplastic mammary tissues. 8-Isoprostane, a marker of oxidative stress in the serum, was also reduced by γ-TmT. Noticeably, γ-TmT stimulated Nrf2-dependent antioxidant response in the mammary glands of E2 treated rats, evident from the induced mRNA levels of Nrf2 and its downstream antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase. Therefore, inhibition of nitrosative/oxidative stress through induction of antioxidant response is the primary effect of γ-TmT in early stages of E2-induced mammary hyperplasia. Due to its cytoprotective activity, γ-TmT could be a potential natural agent for the chemoprevention of estrogen-induced breast cancer.

  6. Neonatal androgenization exacerbates alcohol-induced liver injury in adult rats, an effect abrogated by estrogen.

    PubMed

    Ellefson, Whitney M; Lakner, Ashley M; Hamilton, Alicia; McKillop, Iain H; Bonkovsky, Herbert L; Steuerwald, Nury M; Huet, Yvette M; Schrum, Laura W

    2011-01-01

    Alcoholic liver disease (ALD) affects millions of people worldwide and is a major cause of morbidity and mortality. However, fewer than 10% of heavy drinkers progress to later stages of injury, suggesting other factors in ALD development, including environmental exposures and genetics. Females display greater susceptibility to the early damaging effects of ethanol. Estrogen (E2) and ethanol metabolizing enzymes (cytochrome P450, CYP450) are implicated in sex differences of ALD. Sex steroid hormones are developmentally regulated by the hypothalamic-pituitary-gonadal (HPG) axis, which controls sex-specific cycling of gonadal steroid production and expression of hepatic enzymes. The aim of this study was to determine if early postnatal inhibition of adult cyclic E2 alters ethanol metabolizing enzyme expression contributing to the development of ALD in adulthood. An androgenized rat model was used to inhibit cyclic E2 production. Control females (Ctrl), androgenized females (Andro) and Andro females with E2 implants were administered either an ethanol or isocalorically-matched control Lieber-DeCarli diet for four weeks and liver injury and CYP450 expression assessed. Androgenization exacerbated the deleterious effects of ethanol demonstrated by increased steatosis, lipid peroxidation, profibrotic gene expression and decreased antioxidant defenses compared to Ctrl. Additionally, CYP2E1 expression was down-regulated in Andro animals on both diets. No change was observed in CYP1A2 protein expression. Further, continuous exogenous administration of E2 to Andro in adulthood attenuated these effects, suggesting that E2 has protective effects in the androgenized animal. Therefore, early postnatal inhibition of cyclic E2 modulates development and progression of ALD in adulthood.

  7. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats

    PubMed Central

    Letaif, Olavo Biraghi; Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Ferreira, Ricardo; dos Santos, Gustavo Bispo; da Rocha, Ivan Dias; Marcon, Raphael Martus

    2015-01-01

    OBJECTIVES: To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion. METHODS: In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI) at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg) immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day. RESULTS: The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers. CONCLUSIONS: Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury. PMID:26598084

  8. SERMs attenuate estrogen-induced malignant transformation of human mammary epithelial cells by upregulating detoxification of oxidative metabolites.

    PubMed

    Hemachandra, L P Madhubhani P; Patel, Hitisha; Chandrasena, R Esala P; Choi, Jaewoo; Piyankarage, Sujeewa C; Wang, Shuai; Wang, Yijin; Thayer, Emily N; Scism, Robert A; Michalsen, Bradley T; Xiong, Rui; Siklos, Marton I; Bolton, Judy L; Thatcher, Gregory R J

    2014-05-01

    The risk of developing hormone-dependent cancers with long-term exposure to estrogens is attributed both to proliferative, hormonal actions at the estrogen receptor (ER) and to chemical carcinogenesis elicited by genotoxic, oxidative estrogen metabolites. Nontumorigenic MCF-10A human breast epithelial cells are classified as ER(-) and undergo estrogen-induced malignant transformation. Selective estrogen receptor modulators (SERM), in use for breast cancer chemoprevention and for postmenopausal osteoporosis, were observed to inhibit malignant transformation, as measured by anchorage-independent colony growth. This chemopreventive activity was observed to correlate with reduced levels of oxidative estrogen metabolites, cellular reactive oxygen species (ROS), and DNA oxidation. The ability of raloxifene, desmethylarzoxifene (DMA), and bazedoxifene to inhibit this chemical carcinogenesis pathway was not shared by 4-hydroxytamoxifen. Regulation of phase II rather than phase I metabolic enzymes was implicated mechanistically: raloxifene and DMA were observed to upregulate sulfotransferase (SULT 1E1) and glucuronidase (UGT 1A1). The results support upregulation of phase II metabolism in detoxification of catechol estrogen metabolites leading to attenuated ROS formation as a mechanism for inhibition of malignant transformation by a subset of clinically important SERMs.

  9. Evaluation of activity of an estrogen-derivative as cardioprotector drug using an ischemia-reperfusion injury model

    PubMed Central

    Lauro, Figueroa-Valverde; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Marcela, Rosas-Nexticapa; Eduardo, Pool-Gómez; Maria, Lopéz-Ramos; Fernanda, Rodriguez-Hurtado; Marissa, Chan-Salvador

    2015-01-01

    Myocardial ischemia/reperfusion injury is a serious problem involved in cardiovascular diseases. There data which indicate that some steroids induce cardioprotective effects on myocardial ischemia-reperfusion injury; however their activity and the molecular mechanism involved on myocardial ischemia-reperfusion injury are very confusing. Therefore, in this study some estrogen derivatives (compound 3 to 7) were synthesized with the objective of evaluating its activity on myocardial ischemia/reperfusion injury using an isolated heart model. Additionally, molecular mechanism involved in the activity exerted by the compounds 3 to 7 on perfusion pressure and coronary resistance was evaluated by measuring left ventricular pressure in absence or presence of following compounds; prazosin, metoprolol, indomethacin and nifedipine. The results showed that 7 reduce infarct size compared with the estrone and other estrogen derivatives (compounds 3, 4, 5, and 6). Other results showed that 7 significantly increase the perfusion pressure and coronary resistance in isolated heart in comparison with estrone, 3, 4, 5, and 6. Finally, other data indicate that 7 increased the left ventricular pressure in a dose-dependent manner; however, this phenomenon was significantly inhibited by nifedipine. In conclusion, all these data suggest that 7 exert a cardioprotective effect through calcium channels activation and consequently induce changes in the left ventricular pressure levels. This phenomenon results in decrease of myocardial necrosis after ischemia and reperfusion. PMID:26550116

  10. Protective Effect of Puerarin Against Oxidative Stress Injury of Neural Cells and Related Mechanisms

    PubMed Central

    Cheng, Yuan; Leng, Wei; Zhang, Jingshu

    2016-01-01

    Background Parkinson’s disease (PD) is manifested as degeneration of dopaminergic neurons in substantia nigra compacta. The mitochondrial dysfunction induced by oxidative stress is believed to a major cause of PD. Puerarin has been widely applied due to its estrogen nature and anti-oxidative function. This study thus investigated the protective role of puerarin against oxidative stress injury on PC12 neural cells, in addition to related mechanisms. Material/Methods PC12 cells were pre-treated with gradient concentrations of puerarin, followed by the induction of 0.5 mM H2O2. MTT assay was used to detect cell viability. Enzyme-linked immunosorbent assay (ELISA) was employed to detect intracellular level of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH). Cell apoptosis was determined by Annexin-V/7-AAD double labelling. Reactive oxidative species (ROS) and lactate dehydrogenase (LDH) activities were then measured. Cellular levels of caspase-3 and caspase-9 were also determined. Results The pre-treatment using puerarin significantly reversed H2O2-induced oxidative stress injury, as it can increase proliferation, SOD and GSH activities, decrease MDA activity, suppress apoptosis of PC12 cells, and decrease ROS and LDH production (p<0.05 in all cases). Further assays showed depressed up-regulation of caspase-3 and caspase-9 after puerarin pretreatment. Conclusions Puerarin pretreatment can decrease activity of caspase-3 and caspase-9 activity in PC12 cells, thus protecting cells from oxidative injury. PMID:27074962

  11. Removal of steroid estrogens from waste activated sludge using Fenton oxidation: influencing factors and degradation intermediates.

    PubMed

    Li, Yongmei; Zhang, Ai

    2014-06-01

    The presence of endocrine disrupting compounds (EDCs) in waste activated sludge (WAS) is raising concerns about their influence on animals and the overall food cycle. Traditional sludge stabilization processes cannot remove EDCs effectively. The main objective of this work was to study the removal of four estrogens (estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2)) in waste activated sludge treated with Fenton oxidation. The effects of H₂O₂ dosage, initial pH, reaction time, and Fe(II) to H₂O₂ molar ratio were investigated. Base on both the removal of estrogens and the solubilization of WAS, the proper reaction conditions were recommended as follows: H₂O₂ dosage=15.62 mmol g(-1), initial pH=3, reaction time=60 min, Fe(II) to H₂O₂ molar ratio=0.167. Under these conditions, the removal efficiencies of E1, E2, EE2, and E3 were 70%, 90%, 84% and 98%, respectively; compared with non-Fenton treatment, a 24-fold increase in STOC was achieved, and the extent of solubilization of TSS and VSS was close to 13 and 20%, respectively. The degradation intermediates were detected using GC/MS. Results showed that the phenol structures of targets were mostly oxidized to cyclohexenone moieties and quinone-like structures, which indicated that estrogenic activity was weakened. Pregn-4-ene-3,20-dione and pregn-4-en-20-yn-3-one were observed for the first time. Fenton oxidation was shown to offer a promising alternative method of removing EDCs from sludge in pretreatment applications.

  12. Oxidative stress and anti-oxidative mobilization in burn injury.

    PubMed

    Parihar, Arti; Parihar, Mordhwaj S; Milner, Stephen; Bhat, Satyanarayan

    2008-02-01

    A severe burn is associated with release of inflammatory mediators which ultimately cause local and distant pathophysiological effects. Mediators including Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are increased in affected tissue, which are implicated in pathophysiological events observed in burn patients. The purpose of this article is to understand the role of oxidative stress in burns, in order to develop therapeutic strategies. All peer-reviewed, original and review articles published in the English language literature relevant to the topic of oxidative stress in burns in animals and human subjects were selected for this review and the possible roles of ROS and RNS in the pathophysiology of burns are discussed. Both increased xanthine oxidase and neutrophil activation appear to be the oxidant sources in burns. Free radicals have been found to have beneficial effects on antimicrobial action and wound healing. However following a burn, there is an enormous production of ROS which is harmful and implicated in inflammation, systemic inflammatory response syndrome, immunosuppression, infection and sepsis, tissue damage and multiple organ failure. Thus clinical response to burn is dependent on the balance between production of free radicals and its detoxification. Supplementation of antioxidants in human and animal models has proven benefit in decreasing distant organ failure suggesting a cause and effect relationship. We conclude that oxidative damage is one of the mechanisms responsible for the local and distant pathophysiological events observed after burn, and therefore anti-oxidant therapy might be beneficial in minimizing injury in burned patients.

  13. ATP and microfilaments in cellular oxidant injury.

    PubMed Central

    Hinshaw, D. B.; Armstrong, B. C.; Burger, J. M.; Beals, T. F.; Hyslop, P. A.

    1988-01-01

    Oxidant injury produces dramatic changes in cytoskeletal organization and cell shape. ATP synthetic pathways are major targets of oxidant injury resulting in rapid depletion of cellular ATP following oxidant exposure. The relation of ATP depletion to the changes in microfilament organization seen following H2O2 exposure were examined in the P388D1 cell line. Three hours of glucose depletion alone resulted in a decline in cellular ATP levels to less than 10% of controls, which was comparable to ATP levels in cells 30 to 60 minutes after exposure to 5 mM H2O2 in the presence of glucose. Adherent cells stained with rhodamine phalloidin, a probe specific for polymerized (F) actin, revealed a progressive shortening of microfilaments into globular aggregates within cells depleted of glucose over 3 hours, a pattern similar to earlier observations of H2O2-injured cells after 1 hour. The changes in cellular ATP associated with glucose depletion or H2O2 exposure were then correlated with G actin content measured by the DNAse 1 inhibition assay. No real differences in G actin content as a percentage of total actin were seen in P388D1 cells following 3 hours of glucose depletion or 30 to 60 minutes after exposure to 5 mM H2O2. But 2 to 3 hours after exposure to H2O2 there was a progressive decrease in G actin as a percentage of total actin within the cells. Transmission electron microscopy of cells depleted of glucose for 3 h or 1 hour after exposure to H2O2 revealed the presence of side-to-side aggregates or bundles of microfilaments within the cells. These observations suggest that declining levels of ATP either from metabolic inhibition or H2O2 injury are correlated with the fragmentation and shortening of microfilaments into aggregates. No net change in monomeric or polymeric actin was necessary for this to occur. However, at later time points after H2O2 exposure some actin assembly did occur. Images p[484]-a p481-a p482-a Figure 2 Figure 3 PMID:3414780

  14. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats.

    PubMed

    Samantaray, Supriti; Das, Arabinda; Matzelle, Denise C; Yu, Shan P; Wei, Ling; Varma, Abhay; Ray, Swapan K; Banik, Naren L

    2016-05-01

    Spinal cord injury (SCI) causes loss of neurological function and, depending upon the severity of injury, may lead to paralysis. Currently, no FDA-approved pharmacotherapy is available for SCI. High-dose methylprednisolone is widely used, but this treatment is controversial. We have previously shown that low doses of estrogen reduces inflammation, attenuates cell death, and protects axon and myelin in SCI rats, but its effectiveness in recovery of function is not known. Therefore, the goal of this study was to investigate whether low doses of estrogen in post-SCI would reduce inflammation, protect cells and axons, and improve locomotor function during the chronic phase of injury. Injury (40 g.cm force) was induced at thoracic 10 in young adult male rats. Rats were treated with 10 or 100 μg 17β-estradiol (estrogen) for 7 days following SCI and compared with vehicle-treated injury and laminectomy (sham) controls. Histology (H&E staining), immunohistofluorescence, Doppler laser technique, and Western blotting were used to monitor tissue integrity, gliosis, blood flow, angiogenesis, the expression of angiogenic factors, axonal degeneration, and locomotor function (Basso, Beattie, and Bresnahan rating) following injury. To assess the progression of recovery, rats were sacrificed at 7, 14, or 42 days post injury. A reduction in glial reactivity, attenuation of axonal and myelin damage, protection of cells, increased expression of angiogenic factors and microvessel growth, and improved locomotor function were found following estrogen treatment compared with vehicle-treated SCI rats. These results suggest that treatment with a very low dose of estrogen has significant therapeutic implications for the improvement of locomotor function in chronic SCI. Experimental studies with low dose estrogen therapy in chronic spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes that could ameliorate the degenerative pathways in chronic SCI as

  15. Estrogens and aging skin

    PubMed Central

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity. Its protective function becomes compromised and aging is associated with impaired wound healing, hair loss, pigmentary changes and skin cancer.   Skin aging can be significantly delayed by the administration of estrogen. This paper reviews estrogen effects on human skin and the mechanisms by which estrogens can alleviate the changes due to aging. The relevance of estrogen replacement, selective estrogen receptor modulators (SERMs) and phytoestrogens as therapies for diminishing skin aging is highlighted. Understanding estrogen signaling in skin will provide a basis for interventions in aging pathologies. PMID:24194966

  16. Environmental estrogen Bisphenol A adsorption/oxidation on Graphene oxide/MnO2 (GO/MnO2) nanocomposite

    NASA Astrophysics Data System (ADS)

    Bele, Sotiria I.; Deliyanni, Eleni A.

    2015-04-01

    The environmental fate and decontamination of Bisphenol A (BPA), an environmental estrogen that is used as a monomer in plastic industry, are of emerging concern. This study focused on the kinetics, influencing factors and pathways of its adsorption and oxidative decomposition by MnO2. Additionally, Graphene oxide/MnO2 (GO/MnO2) nanocomposite was prepared and tested as a kind of adsorbent and/or catalysts for oxidative decomposition of Bisphenol A (BPA). A suspension of graphene oxide/manganese sulfate (GO/MnSO4) produced by the modified Hummers method was in situ transformed into GO/MnO2 nanocomposite in combination with KMnO4. It is found that MnO2 nanoparticles are uniformly distributed in the structure of GO. The surface chemistry and the porous texture of the prepared nanocomposite were characterized by thermal analysis (DTA), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and Nitrogen adsorption (BET). The nanocomposite presented superior catalytic activities, much higher than that of the bare MnO2 for the decomposition of BPA in the presence of H2O2. The high activity of GO/MnO2 nanocomposite for the decomposition of BPA could be related to the synergistic effect of GO and MnO2 with the assistance of H2O2 according to the adsorption-oxidation-desorption mechanism.

  17. Organ-Protective Effects of Red Wine Extract, Resveratrol, in Oxidative Stress-Mediated Reperfusion Injury

    PubMed Central

    Liu, Fu-Chao; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Resveratrol, a polyphenol extracted from red wine, possesses potential antioxidative and anti-inflammatory effects, including the reduction of free radicals and proinflammatory mediators overproduction, the alteration of the expression of adhesion molecules, and the inhibition of neutrophil function. A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury. Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways. Reperfusion injury is a complex pathophysiological process that involves multiple factors and pathways. The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property. In this review, the organ-protective effects of resveratrol in oxidative stress-related reperfusion injury will be discussed. PMID:26161238

  18. Soy Isoflavone Protects Myocardial Ischemia/Reperfusion Injury through Increasing Endothelial Nitric Oxide Synthase and Decreasing Oxidative Stress in Ovariectomized Rats

    PubMed Central

    Tang, Yan; Li, Shuangyue; Zhang, Ping; Zhu, Jinbiao; Meng, Guoliang; Xie, Liping; Yu, Ying; Ji, Yong; Han, Yi

    2016-01-01

    There is a special role for estrogens in preventing and curing cardiovascular disease in women. Soy isoflavone (SI), a soy-derived phytoestrogen, has similar chemical structure to endogenous estrogen-estradiol. We investigate to elucidate the protective mechanism of SI on myocardial ischemia/reperfusion (MI/R) injury. Female SD rats underwent bilateral ovariectomy. One week later, rats were randomly divided into several groups, sham ovariectomy (control group), ovariectomy with MI/R, or ovariectomy with sham MI/R. Other ovariectomy rats were given different doses of SI or 17β-estradiol (E2). Four weeks later, they were exposed to 30 minutes of left coronary artery occlusion followed by 6 or 24 hours of reperfusion. SI administration significantly reduced myocardial infarct size and improved left ventricle function and restored endothelium-dependent relaxation function of thoracic aortas after MI/R in ovariectomized rats. SI also decreased serum creatine kinase and lactate dehydrogenase activity, reduced plasma malonaldehyde, and attenuated oxidative stress in the myocardium. Meanwhile, SI increased phosphatidylinositol 3 kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) signal pathway. SI failed to decrease infarct size of hearts with I/R in ovariectomized rats if PI3K was inhibited. Overall, these results indicated that SI protects myocardial ischemia/reperfusion injury in ovariectomized rats through increasing PI3K/Akt/eNOS signal pathway and decreasing oxidative stress. PMID:27057277

  19. Z-Bisdehydrodoisynolic acid (Z-BDDA): an estrogenic seco-steroid that enhances behavioral recovery following moderate fluid percussion brain injury in male rats.

    PubMed

    Neese, Steven L; Clough, Rich W; Banz, William J; Smith, Douglas C

    2010-11-29

    Several lines of research suggest that estrogens (and estrogenic compounds) are neuroprotective following experimental traumatic brain injury. However, therapeutic use of estrogens in this and other regards remains controversial. Therefore, analysis of estrogen-like compounds without potential problems similar to estrogens seems warranted. (±) Z-Bisdehydrodoisynolic acid (Z-BDDA) is a seco-steroid that has potent estrogenic as well as antioxidant activities in vitro and in vivo. We evaluated the therapeutic potential of Z-BDDA (300μg/0.1cc/100g body weight, sc) to promote the recovery of behavioral function following lateral fluid percussion injury (FPI) to the brain in male rats. Two hours subsequent to FPI, treatment with Z-BDDA began with a bolus subcutaneous (sc) injection followed by booster treatments given 24 and 48h later. Behavioral testing was initiated on the second day after FPI and results of Z-BDDA treatments were compared to treatment with vehicle only and to sham FPI surgery. Z-BDDA effectively enhanced recovery of coordinated limb movement assessed by locomotor placing performance across the duration of the study. Z-BDDA treated animals also performed better on a spatial memory task in the Morris water maze, showing improved learning curves across days of testing. Vestibulomotor function, measured by beam walk performance, appeared to improve in Z-BDDA treated animals, however these results did not reach statistical significance (p>0.05). Following cessation of the behavioral testing, all animals underwent assessments of gross neuroanatomical pathology. Cortical lesion size and cell death analysis with Fluoro-jade B failed to reveal Z-BDDA enhanced neuroprotection. These findings support our hypothesis that Z-BDDA can facilitate behavioral recovery following FPI in adult male rats although the mechanism(s) of these effects remain to be determined. PMID:20869954

  20. Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO2 immobilized on porous titanium sheets via thermal-chemical oxidation.

    PubMed

    Arlos, Maricor J; Liang, Robert; Hatat-Fraile, Melisa M; Bragg, Leslie M; Zhou, Norman Y; Servos, Mark R; Andrews, Susan A

    2016-11-15

    The removal of endocrine disrupting compounds (EDCs) remains a big challenge in water treatment. Risks associated with these compounds are not clearly defined and it is important that the water industry has additional options to increase the resiliency of water treatment systems. Titanium dioxide (TiO2) has potential applications for the removal of EDCs from water. TiO2 has been immobilized on supports using a variety of synthesis methods to increase its feasibility for water treatment. In this study, we immobilized TiO2 through the thermal-chemical oxidation of porous titania sheets. The efficiency of the material to degrade target EDCs under UV-LED irradiation was examined under a wide range of pH conditions. A yeast-estrogen screen assay was used to complement chemical analysis in assessing removal efficiency. All compounds but 17β-estradiol were degraded and followed a pseudo first-order kinetics at all pH conditions tested, with pH 4 and pH 11 showing the most and the least efficient treatments respectively. In addition, the total estrogenic activity was substantially reduced even with the inefficient degradation of 17β-estradiol. Additional studies will be required to optimize different treatment conditions, UV-LED configurations, and membrane fouling mitigation measures to make this technology a more viable option for water treatment. PMID:27469042

  1. Nitric Oxide as a Mediator of Oxidant Lung Injury Due to Paraquat

    NASA Astrophysics Data System (ADS)

    Berisha, Hasan I.; Pakbaz, Hedayatollah; Absood, Afaf; Said, Sami I.

    1994-08-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either N^G-nitro-L-arginine methyl ester or N^ω-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury.

  2. Removal of Estrogenic Compounds in Dairy Waste Lagoons by Ferrate (VI): Oxidation/Coagulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferrate(VI) was used to break down and/or remove steroidal estrogens (SE) from dairy waste lagoon effluent (DWLE). Dairy lagoon sites were sampled for estrogenic content (EC) and assayed using high performance liquid chromatography coupled to triple quadrupole mass spectrometry. Effects of varying...

  3. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gbeta1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gbeta1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  4. Oxidative injury in multiple sclerosis cerebellar grey matter.

    PubMed

    Kemp, Kevin; Redondo, Juliana; Hares, Kelly; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2016-07-01

    Cerebellar dysfunction is a significant contributor to disability in multiple sclerosis (MS). Both white matter (WM) and grey matter (GM) injury occurs within MS cerebellum and, within GM, demyelination, inflammatory cell infiltration and neuronal injury contribute to on-going pathology. The precise nature of cerebellar GM injury is, however, unknown. Oxidative stress pathways with ultimate lipid peroxidation and cell membrane injury occur extensively in MS and the purpose of this study was to investigate these processes in MS cerebellar GM. Post-mortem human cerebellar GM from MS and control subjects was analysed immunohistochemically, followed by semi-quantitative analysis of markers of cellular injury, lipid peroxidation and anti-oxidant enzyme expression. We have shown evidence for reduction in myelin and neuronal markers in MS GM, coupled to an increase in expression of a microglial marker. We also show that the lipid peroxidation product 4-hydroxynonenal co-localises with myelin and its levels negatively correlate to myelin basic protein levels. Furthermore, superoxide dismutase (SOD1 and 2) enzymes, localised within cerebellar neurons, are up-regulated, yet the activation of subsequent enzymes responsible for the detoxification of hydrogen peroxide, catalase and glutathione peroxidase are relatively deficient. These studies provide evidence for oxidative injury in MS cerebellar GM and further help define disease mechanisms within the MS brain. PMID:27086975

  5. Estrogen Receptor α Regulates β-Cell Formation During Pancreas Development and Following Injury.

    PubMed

    Yuchi, Yixing; Cai, Ying; Legein, Bart; De Groef, Sofie; Leuckx, Gunter; Coppens, Violette; Van Overmeire, Eva; Staels, Willem; De Leu, Nico; Martens, Geert; Van Ginderachter, Jo A; Heimberg, Harry; Van de Casteele, Mark

    2015-09-01

    Identifying pathways for β-cell generation is essential for cell therapy in diabetes. We investigated the potential of 17β-estradiol (E2) and estrogen receptor (ER) signaling for stimulating β-cell generation during embryonic development and in the severely injured adult pancreas. E2 concentration, ER activity, and number of ERα transcripts were enhanced in the pancreas injured by partial duct ligation (PDL) along with nuclear localization of ERα in β-cells. PDL-induced proliferation of β-cells depended on aromatase activity. The activation of Neurogenin3 (Ngn3) gene expression and β-cell growth in PDL pancreas were impaired when ERα was turned off chemically or genetically (ERα(-/-)), whereas in situ delivery of E2 promoted β-cell formation. In the embryonic pancreas, β-cell replication, number of Ngn3(+) progenitor cells, and expression of key transcription factors of the endocrine lineage were decreased by ERα inactivation. The current study reveals that E2 and ERα signaling can drive β-cell replication and formation in mouse pancreas.

  6. CHEMICAL MODIFICATION MODULATES ESTROGENIC ACTIVITY, OXIDATIVE REACTIVITY, & METABOLIC STABILITY IN 4′F-DMA, A NEW BENZOTHIOPHENE SELECTIVE ESTROGEN RECEPTOR MODULATOR

    PubMed Central

    Liu, Hong; Bolton, Judy L.; Thatcher, Gregory R. J.

    2008-01-01

    The benzothiophene SERMs raloxifene and arzoxifene, in the clinic or clinical trials for treatment of breast cancer and postmenopausal symptoms, are highly susceptible to oxidative metabolism and formation of electrophilic metabolites. 4′F-DMA, fluoro-substituted desmethyl arzoxifene (DMA), showed attenuated oxidation to quinoids in incubation with rat hepatocytes as well as in rat and human liver microsomes. Incubations of 4′F-DMA with hepatocytes yielded only one glucuronide conjugate and no GSH conjugates; whereas DMA underwent greater metabolism giving two glucuronide conjugates, one sulfate conjugate, and two GSH conjugates. Phase I and phase II metabolism was further evaluated in human small intestine microsomes and in human intestinal Caco-2 cells. In comparison to DMA, 4′F-DMA formed significantly less glucuronide and sulfate conjugates. The formation of quinoids was futher explored in hepatocytes in which DMA was observed to give concentration and time dependent depletion of GSH accompanied by damage to DNA which showed inverse dependence on GSH; in contrast, GSH depletion and DNA damage were almost completely abrogated in incubations with 4′F-DMA. 4′F-DMA shows ligand binding affinity to ERα and ERβ with similarity to both raloxifene and to DMA. ER-mediated biological activity was measured with the ERE-luciferase reporter system in transfected MCF-7 cells and Ishikawa cells, and in MCF-7 cells proliferation was measured. In all systems, 4′F-DMA exhibited anitestrogenic acitivty of comparable potency to raloxifene, but did not manifest estrogenic properties, mirroring previous results on inhibition of estradiol-mediated induction of alkaline phosphatase activity in Ishikawa cells. These results suggest that 4′F-DMA might be an improved benzothiophene SERM with similar antiestrogenic activity to raloxifene, but improved metabolic stability and attenuated toxicity; showing that simple chemical modification can abrogate oxidative bioactivation

  7. Age-Related Differences in Cardiac Ischemia-Reperfusion Injury: Effects of Estrogen Deficiency

    PubMed Central

    Korzick, D.H.; Lancaster, T.S.

    2013-01-01

    Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal females. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency, and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca2+ sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women. PMID:23525672

  8. Graphene oxide-based microspheres for the dispersive solid-phase extraction of non-steroidal estrogens from water samples.

    PubMed

    Wen, Yingying; Niu, Zongliang; Ma, Yanling; Ma, Jiping; Chen, Lingxin

    2014-11-14

    A modified Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method based on the dispersive solid-phase extraction (dSPE) combined with high performance liquid chromatography (HPLC) was developed for the determination of non-steroidal estrogens in water samples. In this study, graphene oxide-based silica microspheres (SiO2@GO) were used as dSPE material for the preconcentration of analytes. HPLC was used for the separation and detection. This was the first time that the synthesized SiO2@GO microspheres were used as stationary phases for the off-line preconcentration of the non-steroidal estrogens in dSPE. dSPE parameters, such as sample pH, volume and type of eluent were optimized. Application of the developed method to analyze spiked lake, reservoir and tap water samples resulted in good recoveries values ranging from 70 to 106% with relative standard deviation values lower than 7.0% in all cases. Limits of detection were in the range of 0.2-6.1 μg/L. The combined data obtained in this study recommended that the proposed method is very fast, simple, repeatable and accurate for the detection of non-steroidal estrogens. Furthermore, the SiO2@GO microspheres application could potentially be expanded to extract and pre-concentrate other compounds in various matrices.

  9. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    PubMed

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line.

  10. Estrogen overdose

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002584.htm Estrogen overdose To use the sharing features on this page, please enable JavaScript. Estrogen is a female hormone. Estrogen overdose occurs when ...

  11. CYP2E1 and Oxidative Liver Injury by Alcohol

    PubMed Central

    Lu, Yongke; Cederbaum, Arthur I.

    2008-01-01

    Ethanol-induced oxidative stress appears to play a major role in mechanisms by which ethanol causes liver injury. Many pathways have been suggested to contribute to the ability of ethanol to induce a state of oxidative stress. One central pathway appears to be the induction of cytochrome P450 2E1 (CYP2E1) by ethanol. CYP2E1 metabolizes and activates many toxicological substrates, including ethanol, to more reactive, toxic products. Levels of CYP2E1 are elevated under a variety of physiological and pathophysiological conditions, and after acute and chronic alcohol treatment. CYP2E1 is also an effective generator of reactive oxygen species such as the superoxide anion radical and hydrogen peroxide, and in the presence of iron catalysts, produces powerful oxidants such as the hydroxyl radical. This Review Article summarizes some of the biochemical and toxicological properties of CYP2E1, and briefly describes the use of cell lines developed to constitutively express CYP2E1 in assessing the actions of CYP2E1. Possible therapeutic implications for treatment of alcoholic liver injury by inhibition of CYP2E1 or CYP2E1-dependent oxidative stress will be discussed, followed by some future directions which may help to understand the actions of CYP2E1 and its role in alcoholic liver injury. PMID:18078827

  12. Aging Negatively Affects Estrogens-Mediated Effects on Nitric Oxide Bioavailability by Shifting ERα/ERβ Balance in Female Mice

    PubMed Central

    Novensà, Laura; Novella, Susana; Medina, Pascual; Segarra, Gloria; Castillo, Nadia; Heras, Magda; Hermenegildo, Carlos; Dantas, Ana Paula

    2011-01-01

    Aims Aging is among the major causes for the lack of cardiovascular protection by estrogen (E2) during postmenopause. Our study aims to determine the mechanisms whereby aging changes E2 effects on nitric oxide (NO) production in a mouse model of accelerated senescence (SAM). Methods and Results Although we found no differences on NO production in females SAM prone (SAMP, aged) compared to SAM resistant (SAMR, young), by either DAF-2 fluorescence or plasmatic nitrite/nitrate (NO2/NO3), in both cases, E2 treatment increased NO production in SAMR but had no effect in SAMP. Those results are in agreement with changes of eNOS protein and gene expression. E2 up-regulated eNOS expression in SAMR but not in SAMP. E2 is also known to increase NO by decreasing its catabolism by superoxide anion (O2-). Interestingly, E2 treatment decreased O2− production in young females, while increased O2− in aged ones. Furthermore, we observed that aging changed expression ratio of estrogen receptors (ERβ/ERα) and levels of DNA methylation. Increased ratio ERβ/ERα in aged females is associated to a lack of estrogen modulation of NO production and with a reversal in its antioxidant effect to a pro-oxidant profile. Conclusions Together, our data suggest that aging has detrimental effects on E2-mediated benefits on NO bioavailability, partially by affecting the ability of E2 to induce up regulation of eNOS and decrease of O2−. These modifications may be associated to aging-mediated modifications on global DNA methylation status, but not to a specific methylation at 5′flanking region of ERα gene. PMID:21966501

  13. Hydrogen-rich saline attenuates chemotherapy-induced ovarian injury via regulation of oxidative stress

    PubMed Central

    MENG, XIAOYIN; CHEN, HONGGUANG; WANG, GUOLIN; YU, YONGHAO; XIE, KELIANG

    2015-01-01

    Hydrogen has been reported to exert a therapeutic effect in several diseases due to its antioxidative, anti-inflammatory and anti-apoptotic properties. The aim of the present study was to investigate whether hydrogen-rich saline treatment could attenuate ovarian damage induced by cisplatin. A total of 240 adult, virgin, female Sprague Dawley rats, weighing 180–220 g, were randomly divided into four groups (n=60 per group): Control (Con), control + hydrogen-rich saline (Con + H2), cisplatin-induced ovarian injury (OI) and cisplatin-induced ovarian injury + hydrogen-rich saline (OI + H2). Cisplatin was diluted in saline immediately before use. In the OI and OI + H2 groups, the rats were administered a dose of cisplatin on the 1st and 7th days. The rats in the Con + H2 and OI + H2 groups were intraperitoneally injected with hydrogen-rich saline (10ml/kg body weight) once a day over a 2-week period. On the 14th, 28th and 42nd days (T1, T2 and T3) after the cisplatin injection, femoral vein blood was collected. At the end of the experiment, ovarian homogenates were prepared, and the samples were used for estrogen (E2), follicle-stimulating hormone (FSH), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) examination. In addition, rats (n=10 per group) were sacrificed for bilateral ovary removal; one was fixed in formalin for follicle-counting analysis, while the other was used for nuclear factor erythroid 2-related factor 2 (Nrf2) detection by western blotting. Hydrogen-rich saline attenuated the FSH release, elevated the level of E2, improved the development of follicles, and reduced the damage to the ovarian cortex at T1, T2 and T3 in the OI + H2 rats. Cisplatin induced oxidative stress by increasing the levels of oxidation products and attenuating the activity of antioxidant enzyme, which could be reversed by hydrogen-rich saline treatment. Furthermore, hydrogen-rich saline regulated the Nrf2 protein expression in rats with ovarian damage. In

  14. Interactive effects of mechanical ventilation, inhaled nitric oxide and oxidative stress in acute lung injury.

    PubMed

    Ronchi, Carlos Fernando; Ferreira, Ana Lucia Anjos; Campos, Fabio Joly; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Moraes, Marcos Aurélio; Bonatto, Rossano Cesar; Yeum, Kyung-Jin; Fioretto, Jose Roberto

    2014-01-01

    To compare conventional mechanical ventilation (CMV) and high-frequency oscillatory ventilation (HFOV), with/without inhaled nitric oxide (iNO), for oxygenation, inflammation, antioxidant/oxidative stress status, and DNA damage in a model of acute lung injury (ALI). Lung injury was induced by tracheal infusion of warm saline. Rabbits were ventilated at [Formula: see text] 1.0 and randomly assigned to one of five groups. Overall antioxidant defense/oxidative stress was assessed by total antioxidant performance assay, and DNA damage by comet assay. Ventilatory and hemodynamic parameters were recorded every 30min for 4h. ALI groups showed worse oxygenation than controls after lung injury. After 4h of mechanical ventilation, HFOV groups presented significant improvements in oxygenation. HFOV with and without iNO, and CMV with iNO showed significantly increased antioxidant defense and reduced DNA damage than CMV without iNO. Inhaled nitric oxide did not beneficially affect HFOV in relation to antioxidant defense/oxidative stress and pulmonary DNA damage. Overall, lung injury was reduced using HFOV or CMV with iNO. PMID:24148688

  15. Oxidative and inflammatory biomarkers of ischemia and reperfusion injuries.

    PubMed

    Halladin, Natalie Løvland

    2015-04-01

    Ischemia-reperfusion injuries occur when the blood supply to an organ or tissue is temporarily cut-off and then restored. Even though the restoration of blood flow is absolutely essential in preventing tissue death, the reperfusion of oxygenated blood to the oxygen-deprived areas may in itself augment the tissue damage in excess of that produced by the ischemia alone. The process of ischemia-reperfusion is multifactorial and there are several mechanisms involved in the pathogenesis. Ample evidence shows that the injury is in part caused by an excessive generation of reactive oxygen species or free radicals. The free radicals consequently initiate an inflammatory response, which in some cases may affect distant organs, thus causing remote organ injuries. Ischemia-reperfusion injuries are a common complication in many diseases (acute myocardial infarctions, stroke) or surgical settings (transplantations, tourniquet-related surgery) and they have potential detrimental and disabling consequences. The tolerance of ischemia-reperfusion has proven to be time-of-day-dependent and the size of myocardial infarctions has proven to be significantly higher when occurring in the dark-to-light period. This period is characterized by and coincides with a rapid decrease in the plasma levels of the hormone melatonin. Melatonin is the body's most potent antioxidant and is capable of both direct free radical scavenging and indirect optimization of other anti-oxidant enzymes. It also possesses anti-inflammatory properties and is known to inhibit the mitochondrial permeability transition pore during reperfusion. This inhibiting property has been shown to be of great importance in reducing ischemia-reperfusion injuries. Furthermore, melatonin is a relatively non-toxic molecule, which has proven to be safe for use in clinical trials. Thus, there is compelling evidence of melatonin's effect in reducing ischemia-reperfusion injuries in many experimental studies, but the number of human

  16. Oxidative stress and myocardial injury in the diabetic heart

    PubMed Central

    Ansley, David M.; Wang, Baohua

    2013-01-01

    Reactive oxygen or nitrogen species play an integral role in both myocardial injury and repair. This dichotomy is differentiated at the level of species type, amount, duration of free radical generated. Homeostatic mechanisms designed to prevent free radical generation in the first instance, scavenge, or enzymatically convert them to less toxic forms and water, play crucial roles in maintenance of cellular structure and function. The outcome between functional recovery and dysfunction is dependent upon the inherent ability of these homeostatic antioxidant defenses to withstand acute free radical generation, in the order of seconds to minutes. Alternatively, pre-existent antioxidant capacity (from intracellular and extracellular sources) may regulate the degree of free radical generation. This converts reactive oxygen and nitrogen species to the role of second messenger involved in cell signalling. The adaptive capacity of the cell is altered by the balance between death or survival signal converging at the level of the mitochondria, with distinct pathophysiologic consequences that extends the period of injury from hours to days and weeks. Hyperglycemia, hyperlipidemia, and insulin resistance enhance oxidative stress in diabetic myocardium that cannot adapt to ischemia reperfusion. Altered glucose flux, mitochondrial derangements and nitric oxide synthase uncoupling in the presence of decreased antioxidant defense and impaired prosurvival cell signalling may render the diabetic myocardium more vulnerable to injury, remodelling and heart failure. PMID:23011912

  17. Salvianolate Protects Hepatocytes from Oxidative Stress by Attenuating Mitochondrial Injury

    PubMed Central

    Zhao, Qiang; Peng, Yuan; Huang, Kai; Lei, Yang; Liu, Hong-Liang; Tao, Yan-Yan

    2016-01-01

    Salvianolate is widely used to treat angiocardiopathy in clinic in China, but its application in liver diseases remains unclear. Our study aims to investigate the effect of Salvianolate on rat hepatic injury by protecting hepatocyte mitochondria. To evaluate the effects of Salvianolate on injured hepatocytes, alpha mouse liver 12 (AML-12) cells were induced with hydrogen peroxide (H2O2) and treated with Salvianolate. Cell viability and MitoTracker Green for mitochondria and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazole-carbocyanide iodine (JC-1) levels and cytochrome C (Cyto-C) expressions were detected in vitro. To identify the effect of Salvianolate on protecting against mitochondria injury, male Wistar rats were injected with carbon tetrachloride (CCl4) and treated with Salvianolate (40 mg·kg−1). Serum liver function, parameters for peroxidative damage, hematoxylin and eosin (H&E) staining, and transmission electron microscope (TEM) of hepatocyte mitochondria were assayed. Our results showed that Salvianolate effectively protected hepatocytes, increased mitochondria vitality, and decreased Cyto-C expressions in vitro. Besides, Salvianolate alleviated the liver function, attenuated the indicators of peroxidation, and relieved the mitochondria injury in vivo. In conclusion, Salvianolate is effective in protecting hepatocytes from injury in vitro and in vivo, and the mechanism might be related to its protective effect on hepatocyte mitochondria against oxidative stress. PMID:27340417

  18. Expression of estrogen receptor α in human breast cancer cells regulates mitochondrial oxidative stress under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Zheng, Hong-xia; Tian, Wei-ming; Yan, Hong-ji; Jiang, Hua-dong; Liu, Shan-shan; Yue, Lei; Han, Fang; Wei, Li-jun; Chen, Xiong-biao; Li, Yu

    2012-05-01

    This study investigated intracellular oxidative stress and its underlying mechanisms in a rotary cell culture system used to achieve a simulated microgravity (SMG) environment. Experiments were conducted with human breast cancer cell lines MCF-7 (an estrogen receptor (ER) α positive cell line) and MDA-MB-231 (an ERα negative cell line) encapsulated in alginate/collagen carriers. After 48 h, SMG led to oxidative stress and DNA damage in the MDA-MB-231 cells but a significant increase in mitochondrial activity and minimal DNA damage in the MCF-7 cells. The activity of superoxide dismutase (SOD) significantly increased in the MCF-7 cells and decreased in MDA-MB-231 cells in the SMG environment compared with a standard gravity control. Moreover, SMG promoted expression of ERα and protein kinase C (PKC) epsilon in MCF-7 cells treated with PKC inhibitor Gö6983. Overall, exposure to SMG increased mitochondrial activity in ERα positive cells but induced cellular oxidative damage in ERα negative cells. Thus, ERα may play an important role in protecting cells from oxidative stress damage under simulated microgravity.

  19. Estrogen deprivation does not affect vascular heat shock response in female rats: a comparison with oxidative stress markers.

    PubMed

    Miragem, Antônio Azambuja; Ludwig, Mirna Stela; Heck, Thiago Gomes; Baldissera, Fernanda Giesel; dos Santos, Analu Bender; Frizzo, Matias Nunes; Homem de Bittencourt, Paulo Ivo

    2015-09-01

    Hot flashes, which involve a tiny rise in core temperature, are the most common complaint of peri- and post-menopausal women, being tightly related to decrease in estrogen levels. On the other hand, estradiol (E2) induces the expression of HSP72, a member of the 70 kDa family of heat shock proteins (HSP70), which are cytoprotective, cardioprotective, and heat inducible. Since HSP70 expression is compromised in age-related inflammatory diseases, we argued whether the capacity of triggering a robust heat shock (HS) response would be still present after E2 withdrawal. Hence, we studied the effects of HS treatment (hot tub) in female Wistar rats subjected to bilateral ovariectomy (OVX) after a 7-day washout period. Twelve h after HS, the animals were killed and aortic arches were surgically excised for molecular analyses. The results were compared with oxidative stress markers in the plasma (superoxide dismutase, catalase, and lipoperoxidation) because HSP70 expression is also sensitive to redox regulation. Extracellular (plasma) to intracellular HSP70 ratio, an index of systemic inflammatory status, was also investigated. The results showed that HS response was preserved in OVX animals, as inferred from HSP70 expression (up to 40% rise, p < 0.01) in the aortas, which was accompanied by no further alterations in oxidative stress, hematological parameters, and glycemic control either. This suggests that the lack of estrogen per se could not be solely ascribed as the unique source of low HSP70 expression as observed in long-term post-menopausal individuals. As a consequence, periodic evaluation of HSP70 status (iHSP70 vs. eHSP70) may be of clinical relevance because decreased HS response capacity is at the center of the onset of menopause-related dysfunctions.

  20. Estrogen Injection

    MedlinePlus

    ... forms of estrogen injection are used to treat hot flushes (hot flashes; sudden strong feelings of heat and sweating) ... If you are using estrogen injection to treat hot flushes, your symptoms should improve within 1 to ...

  1. Nongenomic effects of estrogen mediate the dose-related myocardial oxidative stress and dysfunction caused by acute ethanol in female rats

    PubMed Central

    El-Mas, Mahmoud M.

    2013-01-01

    Acute ethanol lowers blood pressure (BP) and cardiac output in proestrus and after chronic estrogen (E2) replacement in ovariectomized (OVX) female rats. However, whether rapid nongenomic effects of estrogen mediate these hemodynamic effects of ethanol remains unanswered. To test this hypothesis, we investigated the effect of ethanol (0.5 or 1.5 g/kg iv) on left ventricular (LV) function and oxidative markers in OVX rats pretreated 30 min earlier with 1 μg/kg E2 (OVXE2) or vehicle (OVX) and in proestrus sham-operated (SO) rats. In SO rats, ethanol caused significant and dose-related reductions in BP, rate of rise in LV pressure (LV dP/dtmax), and LV developed pressure (LVDP). These effects of ethanol disappeared in OVX rats and were restored in OVXE2 rats, suggesting rapid estrogen receptor signaling mediates the detrimental effects of ethanol on LV function. Ex vivo studies revealed that the estrogen-dependent myocardial dysfunction caused by ethanol was coupled with higher LV 1) generation of reactive oxygen species (ROS), 2) expression of malondialdehyde and 4-hydroxynonenal protein adducts, 3) phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinases (ERK1/2), and 4) catalase activity. ERK1/2 inhibition by PD-98059 (1 mg/kg iv) abrogated the myocardial dysfunction, hypotension, and the elevation in myocardial ROS generation caused by ethanol. We conclude that rapid estrogen receptor signaling is implicated in cellular events that lead to the generation of aldehyde protein adducts and Akt/ERK1/2 phosphorylation, which ultimately mediate the estrogen-dependent LV oxidative stress and dysfunction caused by ethanol in female rats. PMID:24368668

  2. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    PubMed Central

    Cejka, Cestmir; Cejkova, Jitka

    2015-01-01

    Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress) leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown. PMID:25861412

  3. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries.

    PubMed

    Cejka, Cestmir; Cejkova, Jitka

    2015-01-01

    Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress) leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown. PMID:25861412

  4. Nitrous oxide myelopathy posing as spinal cord injury.

    PubMed

    Ghobrial, George M; Dalyai, Richard; Flanders, Adam E; Harrop, James

    2012-05-01

    The authors describe a patient who presented with acute tetraparesis and a proposed acute traumatic spinal cord injury that was the result of nitrous oxide myelopathy. This 19-year-old man sustained a traumatic fall off a 6-ft high wall. His examination was consistent with a central cord syndrome with the addition of dorsal column impairment. Cervical MRI demonstrated an isolated dorsal column signal that was suggestive of a nontraumatic etiology. The patient's symptoms resolved entirely over the course of 48 hours. Nitrous oxide abuse is increasing in prevalence. Its toxic side effects can mask vitamin B12 and folate deficiency and central cord syndrome. The patient's history and radiographic presentation are key to establishing a diagnosis.

  5. Proteases and oxidants in experimental pulmonary inflammatory injury.

    PubMed

    Schraufstätter, I U; Revak, S D; Cochrane, C G

    1984-04-01

    We have examined various biochemical parameters of pulmonary inflammation in experimental animals. Intrabronchial instillation of glucose oxidase-glucose (GO/G) to produce oxidants or formylated norleu-leu-phe (FNLP) or phorbol myristate acetate (PMA) as leukocytic stimuli induced severe acute pulmonary injury in New Zealand white rabbits. PMA also induced inflammation when administered intravenously. Each stimulus induced transudation of protein from the vascular space into the pulmonary tissues, and an influx of leukocytes during the 4-6 h period of the experiment. Pathophysiologic changes were measured by edema formation (transudation of 125I-bovine serum albumin), and histologic examination. Biochemical analysis was performed by measuring concentrations of potentially injurious agents in bronchoalveolar lavage (BAL) fluid. Increased acid protease and myeloperoxidase levels were found in the BAL fluid after administration of either of the stimuli. Evidence of oxidant generation in vivo was obtained in two different ways. In the first, specific activities for catalase were measured in the BAL fluid in the presence or absence of 3-amino, 1,2,4 triazole (AT), injected at intervals before obtaining BAL fluid. In the presence of AT, specific activities for catalase dropped to 0.22 after a double instillation of FNLP and to 0.15 in the presence of GO/G. In neutrophil-depleted FNLP animals, catalase was not greatly inhibited by AT (sp act 0.90). In the second, intracellular levels of total glutathione (GSH + GSSG) in whole lung tissue and alveolar macrophages decreased when stimuli of neutrophils were administered. Intrabronchially instilled PMA, e.g., caused a drop of glutathione in whole lung tissue from the control value of 2.3 mumol GSH equivalent/100 mg dry wt to 0.54 mumol GSH equivalent/100 mg dry wt at 4 h. Neutrophil depletion and superoxide dismutase protected from this effect. From these results, we conclude that O-2 or its metabolites can initiate severe

  6. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  7. High-valent iron (Fe(VI), Fe(V), and Fe(IV)) species in water: characterization and oxidative transformation of estrogenic hormones.

    PubMed

    MachalováŠišková, Karolína; Jančula, Daniel; Drahoš, Bohuslav; Machala, Libor; Babica, Pavel; Alonso, Paula Godoy; Trávníček, Zdeněk; Tuček, Jiří; Maršálek, Blahoslav; Sharma, Virender K; Zbořil, Radek

    2016-07-28

    This paper presents solid state synthesis and characterization of tetra-oxy iron(iv) and iron(v) species in their salt forms (Na4FeO4-Fe(IV) and K3FeO4-Fe(V)). Stability of the synthesized salts, commonly called ferrates, in water was determined by applying the (57)Fe Mössbauer spectroscopy technique. Within 2 s in water, Fe(IV) converted into Fe(III) while Fe(V) transformed into Fe(VI) and Fe(III) at pH = 8.2. Comparatively, Fe(VI) (bought as K2FeO4) remained stable in aqueous solution during the short time period. The oxidative removal efficiency of the high-valent iron species was then tested against five environmentally important estrogenic hormones (estron (E1), 17-β-estradiol (E2), estriol (E3), 17-α-ethinylestradiol (EE2), and diethylstibestrol (DES)) in effluent water of a wastewater treatment plant. Three dosages of iron species (1, 10, and 100 mg L(-1)) were applied to the effluent water. An increase in the concentration of dosages enhanced the removal of estrogens. Both Fe(V) and Fe(VI) were effective in degrading estrogens, but Fe(IV) showed limited oxidation capacity to transform estrogens. The oxidized products of the estrogens were analyzed using Raman spectroscopy and high-performance liquid chromatography-mass spectrometry (HPLC-MS) techniques. Results demonstrated the transformation of estrogens into low molecular weight oxygenated compounds such as quinone-like and opened-aromatic ring species. A detailed study on E1 by using excess Fe(VI) showed the mineralization of the parent compound. The results demonstrate great potential of high-valent iron species in the degradation of endocrine disruptor chemicals like estrogens with several superior aspects including fast reactions, complete degradation and/or formation of benign organic species, and environmentally-acceptable iron oxide by-products. PMID:27344983

  8. Drug Targets for Oxidative Podocyte Injury in Diabetic Nephropathy

    PubMed Central

    Usman, Muhammad

    2015-01-01

    Diabetic nephropathy (DN) is one the most prevalent chronic complications of diabetes mellitus that affects as much as one-third of diabetic patients irrespective of the type of diabetes. Hyperglycemia is the key trigger for DN that initiates a number of microscopic and ultramicroscopic changes in kidney architecture. Microscopic changes include thickening of the glomerular basement membrane (GBM), tubular basement membrane (TBM), mesangial proliferation, arteriosclerosis, and glomerulotubular junction abnormalities (GTJA). Among the ultramicroscopic changes, effacement of podocytes and decrease in their density seem to be the centerpiece of DN pathogenesis. These changes in kidney architecture then produce functional deficits, such as microalbuminuria and decreased glomerular filtration rate (GFR). Among several mechanisms involved in inflicting damage to podocytes, injuries sustained by increased oxidative stress turns out to be the most important mechanism. Different variables that are included in increased production of reactive oxygen species (ROS) include a hyperglycemia-induced reduction in glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation via hyperglycemia, advanced glycation end products (AGEs), protein kinase C (PKC), and renin-angiotensin-aldosterone system (RAAS). Unfortunately, control of podocyte injury hasn’t received much attention as a treatment approach for DN. Therefore, this review article is mainly concerned with the exploration of various treatment options that might help in decreasing the podocyte injury, mainly by reducing the level of NADPH oxidase-mediated generation of ROS. This article concludes with a view that certain NADPH oxidase inhibitors, RAAS inhibitors, statins, antidiabetic drugs, and antioxidant vitamins might be useful in decreasing podocyte injury and resultant structural and functional kidney impairments in DN. PMID:26798569

  9. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha.

    PubMed

    Mosquera, Laurivette; Colón, Jennifer M; Santiago, José M; Torrado, Aranza I; Meléndez, Margarita; Segarra, Annabell C; Rodríguez-Orengo, José F; Miranda, Jorge D

    2014-05-01

    17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition.

  10. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen

    PubMed Central

    Quinteros, Fernanda A.; Duvilanski, Beatriz H.; Cabilla, Jimena P.

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary. PMID:27611913

  11. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen.

    PubMed

    Ronchetti, Sonia A; Machiavelli, Leticia I; Quinteros, Fernanda A; Duvilanski, Beatriz H; Cabilla, Jimena P

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary. PMID:27611913

  12. Alveolar Epithelial Cell Injury Due to Zinc Oxide Nanoparticle Exposure

    PubMed Central

    Kim, Yong Ho; Fazlollahi, Farnoosh; Kennedy, Ian M.; Yacobi, Nazanin R.; Hamm-Alvarez, Sarah F.; Borok, Zea; Kim, Kwang-Jin; Crandall, Edward D.

    2010-01-01

    Rationale: Although inhalation of zinc oxide (ZnO) nanoparticles (NPs) is known to cause systemic disease (i.e., metal fume fever), little is known about mechanisms underlying injury to alveolar epithelium. Objectives: Investigate ZnO NP–induced injury to alveolar epithelium by exposing primary cultured rat alveolar epithelial cell monolayers (RAECMs) to ZnO NPs. Methods: RAECMs were exposed apically to ZnO NPs or, in some experiments, to culture fluid containing ZnCl2 or free Zn released from ZnO NPs. Transepithelial electrical resistance (RT) and equivalent short-circuit current (IEQ) were assessed as functions of concentration and time. Morphologic changes, lactate dehydrogenase release, cell membrane integrity, intracellular reactive oxygen species (ROS), and mitochondrial activity were measured. Measurements and Main Results: Apical exposure to 176 μg/ml ZnO NPs decreased RT and IEQ of RAECMs by 100% over 24 hours, whereas exposure to 11 μg/ml ZnO NPs had little effect. Changes in RT and IEQ caused by 176 μg/ml ZnO NPs were irreversible. ZnO NP effects on RT yielded half-maximal concentrations of approximately 20 μg/ml. Apical exposure for 24 hours to 176 μg/ml ZnO NPs induced decreases in mitochondrial activity and increases in lactate dehydrogenase release, permeability to fluorescein sulfonic acid, increased intracellular ROS, and translocation of ZnO NPs from apical to basolateral fluid (most likely across injured cells and/or damaged paracellular pathways). Conclusions: ZnO NPs cause severe injury to RAECMs in a dose- and time-dependent manner, mediated, at least in part, by free Zn released from ZnO NPs, mitochondrial dysfunction, and increased intracellular ROS. PMID:20639441

  13. [Oxidative injury and its defense system in vivo].

    PubMed

    Niwa, Y

    1999-03-01

    We and other researchers verified that excessively produced free radicals by neutrophils induce various diseases such as Behçet's disease, MCLS, SLE (neutrophil-stimulated lymphocytes), RA (synovial fluid neutrophils), Crohn's disease, colitis ulcerosa, and dermatitis herpetiformis (Dühring). Recently, it was reported that environmental toxic agents including herbicides such as paraquat, insecticides, nitrogen oxide, and ultraviolet radiation produce free radicals. Nitrogen oxide, a main product of the combustion of petroleum, is a prominent component of exhaust from automobiles. Generation of 1O2 by ultraviolet radiation has also increased by breaks in the earth's ozone layer induced by halogenated hydrocarbon gas. Various diseases have been induced by these agents such as malignancies, severe adult atopic dermatitis, complication of cataract and retinolysis with atopic dermatitis, skin cancer, male infertility, severe collagen diseases, and lung fibrosis. It was also found that PCB, methyl-Hg and Mn, Cd induce neuropathic diseases through the increase in free radical production. On the other hand, a self-defense system exists against oxidative injuries; high-molecular-weight antioxidants such as SOD, catalase, and GSH-Px, and low-molecular-weight antioxidants such as vitamin C, E, A, polyphenols, flavonoids, and catechin. As protection from oxidative injury, various antioxidant products have been developed, however, the development of SOD injection was given up by all the pharmaceutical companies in the world on account of ineffectiveness due to rapid excretion from the kidney, low affinity to the receptor and weak penetration into the cell. A.M. Michelson, a French biochemist succeeded in developing an effective bovine liposomal-encapsulated SOD solving these problems, however, he also gave it up since French government prohibited bovine products due to the prion virus. Regarding low-molecular-weight antioxidants, synthetic products generally show low affinity

  14. Magnetic solid-phase extraction based on a triethylenetetramine-functionalized magnetic graphene oxide composite for the detection of ten trace phenolic environmental estrogens in environmental water.

    PubMed

    Chen, Xiao-Hong; Pan, Sheng-Dong; Ye, Mei-Jun; Li, Xiao-Ping; Zhao, Yong-Gang; Jin, Mi-Cong

    2016-02-01

    A novel triethylenetetramine-functionalized magnetic graphene oxide composite was prepared and used as a magnetic solid-phase extraction adsorbent for the fast detection of ten trace-level phenolic environmental estrogens in environmental water. The synthesized material was carefully characterized by scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and X-ray photoelectron spectroscopy to confirm the structure and components. The adsorption and desorption conditions of the adsorbent toward phenolic environmental estrogens were optimized in detailed to obtain the best extraction recovery and elution efficiency. Under the optimum conditions, the limits of detection of the method for ten phenolic environmental estrogens were in range of 0.15-1.5 ng/L, which was lower than the reported methods for phenolic environmental estrogens detection in literatures. This could be contributed to the unique structure and property of the as-prepared material. The developed method was successfully applied for the determination of environmental water samples with recoveries ranging from 88.5 to 105.6%. PMID:26632107

  15. Methyleugenol reduces cerebral ischemic injury by suppression of oxidative injury and inflammation.

    PubMed

    Choi, Yoo Keum; Cho, Geum-Sil; Hwang, Sunyoung; Kim, Byung Woo; Lim, Ji H; Lee, Jae-Chul; Kim, Hyoung Chun; Kim, Won-Ki; Kim, Yeong Sik

    2010-08-01

    The present study tested the cytoprotective effect of methyleugenol in an in vivo ischemia model (i.e. middle cerebral artery occlusion (MCAO) for 1.5 h and subsequent reperfusion for 24 h) and further investigated its mechanism of action in in vitro cerebral ischemic models. When applied shortly after reperfusion, methyleugenol largely reduced cerebral ischemic injury. Methyleugenol decreased the caspase-3 activation and death of cultured cerebral cortical neurons caused by oxygen-glucose deprivation (OGD) for 1 h and subsequent re-oxygenation for 24 h. Methyleugenol markedly reduced superoxide generation in the ischemic brain and decreased the intracellular oxidative stress caused by OGD/re-oxygenation. It was found that methyleugenol elevated the activities of superoxide dismutase and catalase. Further, methyleugenol inhibited the production of nitric oxide and decreased the protein expression of inducible nitric oxide synthase. Methyleugenol down-regulated the production of pro-inflammatory cytokines in the ischemic brain as well as in immunostimulated mixed glial cells. The results indicate that methyleugenol could be useful for the treatment of ischemia/inflammation-related diseases.

  16. Estrogen, nitric oxide, and hypertension differentially modulate agonist-induced contractile responses in female transgenic (mRen2)27 hypertensive rats.

    PubMed

    Brosnihan, K Bridget; Li, Ping; Figueroa, Jorge P; Ganten, Detlev; Ferrario, Carlos M

    2008-05-01

    Clinical trials revealed that estrogen may result in cardiovascular risk in patients with coronary heart disease, despite earlier studies demonstrating that estrogen provided cardiovascular protection. It is possible that the preexisting condition of hypertension and the ability of estrogen to activate the renin-angiotensin system could confound its beneficial effects. Our hypothesis is that the attenuation of estrogen to agonist-induced vasoconstrictor responses through the activation of nitric oxide (NO) synthase (NOS) is impaired by hypertension. We investigated the effects of 17beta-estradiol (E(2)) replacement in normotensive Sprague-Dawley (SD) and (mRen2)27 hypertensive transgenic (TG) rats on contractile responses to three vasoconstrictors, angiotensin II (ANG II), serotonin (5-HT), and phenylephrine (PE), and on the modulatory role of vascular NO to these responses. The aorta was isolated from ovariectomized SD and TG rats treated chronically with 5 mg E(2) or placebo (P). The isometric tension of the aortic rings was measured in organ chambers, and endothelial NOS (eNOS) in the rat aorta was detected using Western blot analysis. E(2) treatment increased eNOS expression in the SD and TG aorta and reduced ANG II- and 5-HT- but not PE-induced contractions in SD and TG rats. The inhibition of NOS with N(omega)-nitro-L-arginine methyl ester enhanced ANG II-, 5-HT-, and PE-induced contractions in P-treated and ANG II and PE responses in E(2)-treated SD and TG rats. Only the responses to 5-HT were augmented in hypertensive rats. In conclusion, this study shows that the preexisting condition of hypertension augmented the vascular responsiveness of 5-HT, whereas the attenuation of estrogen by ANG II and 5-HT vascular responses was not impaired by hypertension. The adrenergic agonist was unresponsive to estrogen treatment. The contribution of NO as a factor contributing to the relative refractoriness of the vascular responses is dependent on the nature of the

  17. Jujube promotes learning and memory in a rat model by increasing estrogen levels in the blood and nitric oxide and acetylcholine levels in the brain

    PubMed Central

    LI, BAOLI; WANG, LU; LIU, YONGXIAN; CHEN, YAHUI; ZHANG, ZHENGXIANG; ZHANG, JING

    2013-01-01

    The aim of this study was to observe the effects of jujube on learning and memory in ovariectomized rats. The effects of jujube on learning and memory in ovariectomized rats were observed using the Morris water maze method. The serum follicle-stimulating hormone (FSH), estrogen and luteinizing hormone (LH) levels, and the brain nitric oxide synthase (NOS) and acetylcholinesterase (AChE) levels of the rats were determined. The results indicated that jujube reduced the latency period and increased the number of crossings made by the ovariectomized rats in the Morris water maze test. Jujube also increased the serum estrogen level, reduced the serum FSH and corpus luteum LH levels, increased brain NOS activity and reduced AChE activity. The results indicate that jujube promoted the learning and memory of the ovariectomized rats. This effect may be correlated with the increase in the estrogen level in the blood, and the changes in the nitric oxide and acetylcholine levels in the brain. PMID:23837068

  18. Estrogen's effects on central and circulating immune cells vary with reproductive age.

    PubMed

    Johnson, Adam B; Sohrabji, Farida

    2005-01-01

    Previous work from this lab has shown that estrogen attenuates inflammatory cytokine production following brain lesions in young adult female rats, but not in older, reproductive senescent females. The present study was designed to elucidate whether these effects result from estrogen's actions on brain-resident immune cells (microglia) or on circulating immune cells recruited to the brain from blood. Microglia, harvested from the olfactory bulbs of ovariectomized young adult and reproductive senescent animals, were pretreated with 17beta-estradiol and subsequently with the bacterial endotoxin LPS. LPS treatment significantly increased the pro-inflammatory cytokine IL-1beta in microglial cultures harvested from young and senescent females, but estrogen treatment had no effect on cytokine expression in either group. In young adult-derived microglia, LPS treatment also increased nitric oxide (NO), which was attenuated by estrogen, and MMP-9, which was not affected by estrogen. Reproductive senescent-derived microglia cultures had higher basal expression of NO and MMP-9 activity as compared to those from young adult microglial cultures, although LPS did not further stimulate these inflammatory markers. In blood cultures, LPS stimulated a dose-dependent increase in the inflammatory cytokine TNF-alpha expression in both young adult and reproductive senescent animals. Estrogen replacement significantly attenuated TNF-alpha induction by LPS in blood cultures derived from young adult females. Paradoxically, estrogen replacement increased LPS-induced TNF-alpha expression in blood cultures derived from reproductive senescent animals as compared to age-matched controls. The age and estrogen dependent effects on circulating immune cells found in whole blood cultures closely mimic the effects of estrogen on cytokine expression in the young and senescent animals that we reported in vivo, supporting the hypothesis that the immunosuppressive actions of estrogen replacement on

  19. Genistein and daidzein induce cell proliferation and their metabolites cause oxidative DNA damage in relation to isoflavone-induced cancer of estrogen-sensitive organs.

    PubMed

    Murata, Mariko; Midorikawa, Kaoru; Koh, Masashi; Umezawa, Kazuo; Kawanishi, Shosuke

    2004-03-01

    The soy isoflavones, genistein (5,7,4'-trihydroxyisoflavone) and daidzein (7,4'-dihydroxyisoflavone), are representative phytoestrogens that function as chemopreventive agents against cancers, cardiovascular disease, and osteoporosis. However, recent studies indicated that genistein and/or daidzein induced cancers of reproductive organs in rodents, such as the uterus and vulva. To clarify the molecular mechanisms underlying the induction of carcinogenesis by soy isoflavones, we examined the ability of genistein, daidzein, and their metabolites, 5,7,3',4'-tetrahydroxyisoflavone (orobol), 7,3',4'-trihydroxyisoflavone (7,3',4'-OH-IF), and 6,7,4'-trihydroxyisoflavone (6,7,4'-OH-IF), to cause DNA damage and cell proliferation. An E-screen assay revealed that genistein and daidzein enhanced proliferation of estrogen-sensitive breast cancer MCF-7 cells, while their metabolites had little or no effect. A surface plasmon resonance sensor showed that binding of isoflavone-liganded estrogen receptors (ER) to estrogen response elements (ERE) was largely consistent with cell proliferative activity of isoflavones. Orobol and 7,3',4'-OH-IF significantly increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in human mammary epithelial MCF-10A cells, while genistein, daidzein, and 6,7,4'-OH-IF did not. Experiments using isolated DNA revealed a metal-dependent mechanism of oxidative DNA damage induced by orobol and 7,3',4'-OH-IF. DNA damage was enhanced by the addition of endogenous reductant NADH, formed via the redox cycle. These findings suggest that oxidative DNA damage by isoflavone metabolites plays a role in tumor initiation and that cell proliferation by isoflavones via ER-ERE binding induces tumor promotion and/or progression, resulting in cancer of estrogen-sensitive organs.

  20. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats.

    PubMed

    Bakkal, B H; Gultekin, F A; Guven, B; Turkcu, U O; Bektas, S; Can, M

    2013-09-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  1. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles.

    PubMed

    Jeong, Jiyoung; Kim, Jeongeun; Seok, Seung Hyeok; Cho, Wan-Seob

    2016-04-01

    Indium is an essential element in the manufacture of liquid crystal displays and other electronic devices, and several forms of indium compounds have been developed, including nanopowders, films, nanowires, and indium metal complexes. Although there are several reports on lung injury caused by indium-containing compounds, the toxicity of nanoscale indium oxide (In2O3) particles has not been reported. Here, we compared lung injury induced by a single exposure to In2O3 nanoparticles (NPs) to that caused by benchmark high-toxicity nickel oxide (NiO) and copper oxide (CuO) NPs. In2O3 NPs at doses of 7.5, 30, and 90 cm(2)/rat (50, 200, and 600 µg/rat) were administered to 6-week-old female Wistar rats via pharyngeal aspiration, and lung inflammation was evaluated 1, 3, 14, and 28 days after treatment. Neutrophilic inflammation was observed on day 1 and worsened until day 28, and severe pulmonary alveolar proteinosis (PAP) was observed on post-aspiration days 14 and 28. In contrast, pharyngeal aspiration of NiO NPs showed severe neutrophilic inflammation on day 1 and lymphocytic inflammation with PAP on day 28. Pharyngeal aspiration of CuO NPs showed severe neutrophilic inflammation on day 1, but symptoms were completely resolved after 14 days and no PAP was observed. The dose of In2O3 NPs that produced progressive neutrophilic inflammation and PAP was much less than the doses of other toxic particles that produced this effect, including crystalline silica and NiO NPs. These results suggest that occupational exposure to In2O3 NPs can cause severe lung injury.

  2. Levels of Oxidized LDL, Estrogens, and Progesterone in Placenta Tissues and Serum Paraoxonase Activity in Preeclampsia

    PubMed Central

    Açıkgöz, Şerefden; Özmen Bayar, Ülkü; Can, Murat; Güven, Berrak; Mungan, Görkem; Doğan, Suat; Sümbüloğlu, Vildan

    2013-01-01

    In vitro literature studies have suggested that atherosclerotic oxidized low density lipoprotein (OxLDL) inhibits trophoblast invasion. The objective of this study was to determine the levels of OxLDL and to examine the relationship between antioxidative estradiol, estriol, and prooxidative progestin in normal and preeclamptic placental tissues and measure the serum activity of antioxidative paraoxonase (PON1). The study included 30 preeclamptic and 32 normal pregnant women. OxLDL was determined with ELISA, estradiol, unconjugated estriol, and progesterone that were determined with chemiluminescence method in placental tissues. Serum PON1 activity was determined with spectrophotometric method. Levels of OxLDL (P = 0.027), estriol (P < 0.001), estradiol (P = 0.008), and progesterone (P = 0.009) were lower in the placental tissues of preeclamptic group compared to the normal pregnant women. Serum PON1 activity was higher in preeclamptic group (P = 0.040) and preeclamptic group without intrauterine growth restriction (P = 0.008) compared to normal pregnant women. Tissue estriol of preeclamptic group without/with IUGR (P < 0.001, P = 0.002) was lower than the normal group. Results of our study suggest that the events leading to fetoplacental insufficiency lead to a reduction in the levels of estriol limit deposition of OxLDL in placental tissues. The serum PON1 activity is probably important in the inhibition of OxLDL in preeclampsia. PMID:23606795

  3. Synthesis of the catechols of natural and synthetic estrogens by using 2-iodoxybenzoic acid (IBX) as the oxidizing agent.

    PubMed

    Saeed, Muhammad; Zahid, Muhammad; Rogan, Eleanor; Cavalieri, Ercole

    2005-03-01

    A method for the synthesis of 2-hydroxyestrone/estradiol, 4-hydroxyestrone/estradiol, 3'-hydroxydiethylstilbestrol, 3'-hydroxyhexestrol, and 3'-hydroxydienestrol is reported, in which 2-iodoxybenzoic acid (IBX) and the corresponding phenolic estrogen are reacted. Treatment of the natural estrogens, estrone/estradiol, with stoichiometric amounts of IBX in dimethylformamide initially yielded a mixture of estrone/estradiol-2,3- and -3,4-quinones, which were reduced in situ to the corresponding catechols by treatment with a 1 M aqueous solution of ascorbic acid. Chromatographic separation of the reaction products afforded 2- and 4-hydroxyestrone/estradiol in good overall yields (79%). In the case of the synthetic estrogens containing two identical phenolic rings, protection of one ring is a prerequisite for the synthesis of the monocatechol. Thus, diethylstilbestrol and dienestrol were protected at one phenol ring as their methyl ethers. The resulting monophenols were treated with stoichiometric amounts of IBX for 1 h, followed by treatment with 1 M aqueous ascorbic acid to obtain the corresponding catechols in more than 70% yield. Furthermore, the catechol of diethylstilbestrol, protected at one ring, was reduced by catalytic hydrogenation at the C3-C4 double bond to obtain 3'-hydroxyhexestrol in 90% yield. Removal of the protected methoxy groups of the synthetic estrogen catechols was carried out by treatment with a 1 M solution of boron tribromide in dichloromethane. This method is highly efficient for the preparative scale synthesis of catechols of both natural and synthetic estrogens.

  4. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression.

    PubMed

    Perillo, Bruno; Ombra, Maria Neve; Bertoni, Alessandra; Cuozzo, Concetta; Sacchetti, Silvana; Sasso, Annarita; Chiariotti, Lorenzo; Malorni, Antonio; Abbondanza, Ciro; Avvedimento, Enrico V

    2008-01-11

    Modifications at the N-terminal tails of nucleosomal histones are required for efficient transcription in vivo. We analyzed how H3 histone methylation and demethylation control expression of estrogen-responsive genes and show that a DNA-bound estrogen receptor directs transcription by participating in bending chromatin to contact the RNA polymerase II recruited to the promoter. This process is driven by receptor-targeted demethylation of H3 lysine 9 at both enhancer and promoter sites and is achieved by activation of resident LSD1 demethylase. Localized demethylation produces hydrogen peroxide, which modifies the surrounding DNA and recruits 8-oxoguanine-DNA glycosylase 1 and topoisomeraseIIbeta, triggering chromatin and DNA conformational changes that are essential for estrogen-induced transcription. Our data show a strategy that uses controlled DNA damage and repair to guide productive transcription. PMID:18187655

  5. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-01-01

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. PMID:27517893

  6. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-01-01

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  7. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury

    PubMed Central

    Levy, Stewart; Carrick, Matthew; Mains, Charles W.; Slone, Denetta S.

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome.

  8. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury.

    PubMed

    Bjugstad, Kimberly B; Rael, Leonard T; Levy, Stewart; Carrick, Matthew; Mains, Charles W; Slone, Denetta S; Bar-Or, David

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome. PMID:27642494

  9. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury

    PubMed Central

    Levy, Stewart; Carrick, Matthew; Mains, Charles W.; Slone, Denetta S.

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome. PMID:27642494

  10. Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury.

    PubMed

    Bjugstad, Kimberly B; Rael, Leonard T; Levy, Stewart; Carrick, Matthew; Mains, Charles W; Slone, Denetta S; Bar-Or, David

    2016-01-01

    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p ≤ 0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p < 0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p < 0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients' response to brain injury over time is a factor that determines outcome.

  11. Postanoxic oxidative injury in rat hepatocytes: lactate-dependent protection against tert-butylhydroperoxide.

    PubMed

    Kowalski, D P; Aw, T Y; Park, Y; Jones, D P

    1992-01-01

    Previous studies in this laboratory showed that hypoxia and anoxia enhance the susceptibility of hepatocytes to tert-butylhydroperoxide (TBH)-induced oxidative injury. To determine whether preceding exposure to anoxia affects postanoxic sensitivity to oxidative injury, viability was studied in hepatocytes incubated under anoxic conditions followed by reoxygenation without or with tert-butylhydroperoxide addition. Results showed that a preceding exposure to 60 min of anoxia substantially increased the vulnerability of cells to injury by the oxidant. Because substantial tissue lactate can accumulate during anoxia, the effect of increased lactate on postanoxic injury due to TBH was determined. Results showed that added lactate protected in a concentration-dependent manner. The TBH elimination rate was stimulated by lactate, and the pyruvate production rate approached the rate of TBH elimination. Thus, lactate protects against postanoxic oxidative injury by supplying reducing equivalents for peroxide reduction. This suggests that lactate accumulation during ischemia may be beneficial and that supplementation with lactate could be considered as a means to protect against postischemic injury. PMID:1563646

  12. Sodium nitrite potentiates renal oxidative stress and injury in hemoglobin exposed guinea pigs.

    PubMed

    Baek, Jin Hyen; Zhang, Xiaoyuan; Williams, Matthew C; Hicks, Wayne; Buehler, Paul W; D'Agnillo, Felice

    2015-07-01

    Methemoglobin-forming drugs, such as sodium nitrite (NaNO2), may exacerbate oxidative toxicity under certain chronic or acute hemolytic settings. In this study, we evaluated markers of renal oxidative stress and injury in guinea pigs exposed to extracellular hemoglobin (Hb) followed by NaNO2 at doses sufficient to simulate clinically relevant acute methemoglobinemia. NaNO2 induced rapid and extensive oxidation of plasma Hb in this model. This was accompanied by increased renal expression of the oxidative response effectors nuclear factor erythroid 2-derived-factor 2 (Nrf-2) and heme oxygenase-1 (HO-1), elevated non-heme iron deposition, lipid peroxidation, interstitial inflammatory cell activation, increased expression of tubular injury markers kidney injury-1 marker (KIM-1) and liver-fatty acid binding protein (L-FABP), podocyte injury, and cell death. Importantly, these indicators of renal oxidative stress and injury were minimal or absent following infusion of Hb or NaNO2 alone. Together, these results suggest that the exposure to NaNO2 in settings associated with increased extracellular Hb may potentiate acute renal toxicity via processes that are independent of NaNO2 induced erythrocyte methemoglobinemia. PMID:25891524

  13. Estrogen receptors and endothelium.

    PubMed

    Arnal, Jean-François; Fontaine, Coralie; Billon-Galés, Audrey; Favre, Julie; Laurell, Henrik; Lenfant, Françoise; Gourdy, Pierre

    2010-08-01

    Estrogens, and in particular 17beta-estradiol (E2), play a pivotal role in sexual development and reproduction and are also implicated in a large number of physiological processes, including the cardiovascular system. Both acetylcholine-induced and flow-dependent vasodilation are preserved or potentiated by estrogen treatment in both animal models and humans. Indeed, E2 increases the endothelial production of nitric oxide and prostacyclin and prevents early atheroma through endothelial-mediated mechanisms. Furthermore, whereas it prevents endothelial activation, E2 potentiates the ability of several subpopulations of the circulating or resident immune cells to produce proinflammatory cytokines. The balance between these 2 actions could determine the final effect in a given pathophysiological process. E2 also promotes endothelial healing, as well as angiogenesis. Estrogen actions are essentially mediated by 2 molecular targets: estrogen receptor-alpha (ERalpha) and ERbeta. The analysis of mouse models targeted for ERalpha or ERbeta demonstrated a prominent role of ERalpha in vascular biology. ERalpha directly modulates transcription of target genes through 2 activation functions (AFs), AF-1 and AF-2. Interestingly, an AF-1-deficient ERalpha isoform can be physiologically expressed in the endothelium and appears sufficient to mediate most of the vasculoprotective actions of E2. In contrast, AF-1 is necessary for the E2 actions in reproductive targets. Thus, it appears conceivable to uncouple the vasculoprotective and sexual actions with appropriate selective ER modulators. PMID:20631350

  14. Cellular and subcellular oxidative stress parameters following severe spinal cord injury

    PubMed Central

    Visavadiya, Nishant P.; Patel, Samir P.; VanRooyen, Jenna L.; Sullivan, Patrick G.; Rabchevsky, Alexander G.

    2015-01-01

    The present study undertook a comprehensive assessment of the acute biochemical oxidative stress parameters in both cellular and, notably, mitochondrial isolates following severe upper lumbar contusion spinal cord injury (SCI) in adult female Sprague Dawley rats. At 24 h post-injury, spinal cord tissue homogenate and mitochondrial fractions were isolated concurrently and assessed for glutathione (GSH) content and production of nitric oxide (NO•), in addition to the presence of oxidative stress markers 3-nitrotyrosine (3-NT), protein carbonyl (PC), 4-hydroxynonenal (4-HNE) and lipid peroxidation (LPO). Moreover, we assessed production of superoxide (O2•-) and hydrogen peroxide (H2O2) in mitochondrial fractions. Quantitative biochemical analyses showed that compared to sham, SCI significantly lowered GSH content accompanied by increased NO• production in both cellular and mitochondrial fractions. SCI also resulted in increased O2•- and H2O2 levels in mitochondrial fractions. Western blot analysis further showed that reactive oxygen/nitrogen species (ROS/RNS) mediated PC and 3-NT production were significantly higher in both fractions after SCI. Conversely, neither 4-HNE levels nor LPO formation were increased at 24 h after injury in either tissue homogenate or mitochondrial fractions. These results indicate that by 24 h post-injury ROS-induced protein oxidation is more prominent compared to lipid oxidation, indicating a critical temporal distinction in secondary pathophysiology that is critical in designing therapeutic approaches to mitigate consequences of oxidative stress. PMID:26760911

  15. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    PubMed

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p <  0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model. PMID:26983591

  16. Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: chemical analyses and bioanalytical tools.

    PubMed

    Wang, Guifang; Lu, Gang; Zhao, Jiandi; Yin, Pinghe; Zhao, Ling

    2016-08-01

    Landfill-concentrated leachate from membrane separation processes is a potential pollution source for the surroundings. In this study, the toxicity and estrogenicity potentials of concentrated leachate prior to and during UV-Fenton and Fenton treatments were assessed by a combination of chemical (di (2-ethylhexyl) phthalate and dibutyl phthalate were chosen as targets) and biological (Daphnia magna, Chlorella vulgaris, and E-screen assay) analyses. Removal efficiencies of measured di (2-ethylhexyl) phthalate and dibutyl phthalate were more than 97 % after treatment with the two methods. Biological tests showed acute toxicity effects on D. magna tests in untreated concentrated leachate samples, whereas acute toxicity on C. vulgaris tests was not observed. Both treatment methods were found to be efficient in reducing acute toxicity effects on D. magna tests. The E-screen test showed concentrated leachate had significant estrogenicity, UV-Fenton and Fenton treatment, especially the former, were effective methods for reducing estrogenicity of concentrated leachate. The EEQchem (estradiol equivalent concentration) of all samples could only explain 0.218-5.31 % range of the EEQbio. These results showed that UV-Fenton reagent could be considered as a suitable method for treatment of concentrated leachate, and the importance of the application of an integrated (biological + chemical) analytical approach for a comprehensive evaluation of treatment suitability. PMID:27146535

  17. Nanoparticles, Lung Injury, and the Role of Oxidant Stress

    PubMed Central

    Madl, Amy K.; Plummer, Laurel E.; Carosino, Christopher; Pinkerton, Kent E.

    2015-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties, which have been shown to induce inflammation and oxidative stress in biologic systems. Oxidative stress reflects the imbalance between the generation of reaction oxygen species (ROS) and the biochemical mechanisms to detoxify and repair resulting damage of reactive intermediates. This review examines current research incidental and engineered nanoparticles in terms of their health effects on the lungs and mechanisms by which oxidative stress via physicochemical characteristics influence toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review will also briefly discuss some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site specific fashion. PMID:24215442

  18. Biomarkers for oxidative stress in acute lung injury induced in rabbits submitted to different strategies of mechanical ventilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative damage has been said to play an important role in pulmonary injury, which is associated with the development and progression of acute respiratory distress syndrome (ARDS). We aimed to identify biomarkers to determine the oxidative stress in an animal model of acute lung injury (ALI) using ...

  19. Chemical induction of cellular antioxidants affords marked protection against oxidative injury in vascular smooth muscle cells.

    PubMed

    Cao, Zhuoxiao; Li, Yunbo

    2002-03-22

    Extensive evidence suggests that reactive oxygen species are critically involved in the pathogenesis of cardiovascular diseases, such as atherosclerosis and myocardial ischemia-reperfusion injury. Consistent with this concept, administration of exogenous antioxidants has been shown to be protective against oxidative cardiovascular injury. However, whether induction of endogenous antioxidants by chemical inducers in vasculature also affords protection against oxidative vascular cell injury has not been extensively investigated. In this study, using rat aortic smooth muscle A10 cells as an in vitro system, we have studied the induction of cellular antioxidants by the unique chemoprotector, 3H-1,2-dithiole-3-thione [corrected] (D3T) and the protective effects of the D3T-induced cellular antioxidants against oxidative cell injury. Incubation of A10 cells with micromolar concentrations of D3T for 24 h resulted in a significant induction of a battery of cellular antioxidants in a concentration-dependent manner. These included reduced glutathione (GSH), GSH peroxidase, GSSG reductase, GSH S-transferase, superoxide dismutase, and catalase. To further examine the protective effects of the induced endogenous antioxidants against oxidative cell injury, A10 cells were pretreated with D3T and then exposed to either xanthine oxidase (XO)/xanthine, 4-hydroxynonenal, or cadmium. We observed that D3T pretreatment of A10 cells led to significant protection against the cytotoxicity induced by XO/xanthine, 4-hydroxynonenal or cadmium, as determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium reduction assay. Taken together, this study demonstrates for the first time that a number of endogenous antioxidants in vascular smooth muscle cells can be induced by exposure to D3T, and that this chemical induction of cellular antioxidants is accompanied by markedly increased resistance to oxidative vascular cell injury.

  20. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  1. Red and Infrared Low-Level Laser Therapy Prior to Injury with or without Administration after Injury Modulate Oxidative Stress during the Muscle Repair Process

    PubMed Central

    Mesquita-Ferrari, Raquel Agnelli

    2016-01-01

    Introduction Muscle injury is common among athletes and amateur practitioners of sports. Following an injury, the production of reactive oxygen species (ROS) occurs, which can harm healthy muscle fibers (secondary damage) and delay the repair process. Low-level laser therapy (LLLT) administered prior to or following an injury has demonstrated positive and protective effects on muscle repair, but the combination of both administration times together has not been clarified. Aim To evaluate the effect of LLLT (660 nm and 780 nm, 10 J/cm², 40 mW, 3.2 J) prior to injury with or without the administration after injury on oxidative stress during the muscle repair process. Methods Wistar rats were divided into following groups: control; muscle injury alone; LLLT 660 nm + injury; LLLT 780 nm + injury; LLLT 660 nm before and after injury; and LLLT 780 nm before and after injury. The rats were euthanized on days 1, 3 and 7 following cryoinjury of the tibialis anterior (TA) muscle, which was then removed for analysis. Results Lipid peroxidation decreased in the 660+injury group after one day. Moreover, red and infrared LLLT employed at both administration times induced a decrease in lipid peroxidation after seven days. CAT activity was altered by LLLT in all periods evaluated, with a decrease after one day in the 780+injury+780 group and after seven days in the 780+injury group as well as an increase in the 780+injury and 780+injury+780 groups after three days. Furthermore, increases in GPx and SOD activity were found after seven days in the 780+injury+780 group. Conclusion The administration of red and infrared laser therapy at different times positively modulates the activity of antioxidant enzymes and reduces stress markers during the muscle repair process. PMID:27082964

  2. Oxidative injury is a common consequence of BMPR2 mutations.

    PubMed

    Lane, Kirk L; Talati, Megha; Austin, Eric; Hemnes, Anna R; Johnson, Jennifer A; Fessel, Joshua P; Blackwell, Tom; Mernaugh, Ray L; Robinson, Linda; Fike, Candice; Roberts, L Jackson; West, James

    2011-01-01

    BACKGROUND: Hereditary pulmonary arterial hypertension(PAH) is usually caused by mutations in BMPR2. Mutations are found throughout the gene, and common molecular consequences of different types of mutation are not known. Knowledge of common molecular consequences would provide insight into molecular etiology of disease. The objective of this study was to determine common molecular consequences across classes of BMPR2 mutation. METHODS #ENTITYSTARTX00026; RESULTS: Increased superoxide and peroxide production, and alterations in genes associated with oxidative stress were a common consequence of stable transfection of vascular smooth muscle cells with three distinct classes of BMPR2 mutation, in the ligand binding domain, the kinase domain, and the cytoplasmic tail domain. Measurement of oxidized lipids in whole lung from transgenic mice expressing a mutation in the BMPR2 cytoplasmic tail showed a 50% increase in isoprostanes and a twofold increase in isofurans, suggesting increased ROS of mitochondrial origin. Immunohistochemistry on BMPR2 transgenic mouse lung showed that oxidative stress was vascular-specific. Electron microscopy showed decreased mitochondrial size and variability in pulmonary vessels from BMPR2 mutant mice. Measurement of oxidized lipids in urine from humans with BMPR2 mutations demonstrated increased ROS, regardless of disease status. Immunohistochemistry on HPAH patient lung confirmed oxidative stress specific to the vasculature. CONCLUSIONS: Increased oxidative stress, likely of mitochondrial origin, is a common consequence of BMPR2 mutation across mutation types in cell culture, mice, and humans.

  3. Protective effect of ischemic postconditioning against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

    PubMed

    Zhang, Li; Ma, Jiangwei; Liu, Huajin

    2012-03-27

    Brief episodes of myocardial ischemia-reperfusion (IR) employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR)-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK), lactate dehydrogenase (LDH) and aspartate transaminase (AST) activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA) level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

  4. ARSENIC METHYLATION AND OXIDANT INJURY BY ESR IN VIVO AND IN VITRO

    EPA Science Inventory

    Arsenic Methylation and Oxidant Injury by ESR In Vivo and In Vitro.

    Although arsenic is naturally occurring and present in the environment, it is a serious environmental concern worldwide, because of the large number of known contaminated sites and millions of people at ri...

  5. Increase in oxidative stress biomarkers in dogs with ascending-descending myelomalacia following spinal cord injury.

    PubMed

    Marquis, Andrew; Packer, Rebecca A; Borgens, Richard B; Duerstock, Bradley S

    2015-01-01

    Multiple biochemical and immunohistochemical tests were performed to elucidate the role of oxidative stress during ascending-descending (A-D) myelomalacia by comparing dogs with this progressive terminal condition to dogs with chronic, focal spinal cord injuries (SCIs) and controls without SCI. Dogs with A-D myelomalacia exhibited increased biochemical markers for oxidative stress, including 8-isoprostane F2α and acrolein, as well as decreased endogenous glutathione with greatest changes occurring at the lesion center. Inflammation, as evident by the concentration of CD18+ phagocytes and hemorrhagic necrosis, was also exacerbated in the lesion of A-D myelomalacic spinal cord compared to focal SCI. The greatest differences in oxidative stress occurred at the lesion center and diminished distally in both spinal cords with A-D myelomalacia and focal SCIs. The spatial progression and time course of A-D myelomalacia are consistent with the development of secondary injury post-SCI. Ascending-descending myelomalacia is proposed as a clinical model that may further the understanding of the role of oxidative stress during secondary injury. Our results indicate that the pathology of A-D myelomalacia is also similar to subacute progressive ascending myelopathy in humans, which is characterized by recurrent neurodegeneration of spinal cord post-injury. PMID:25912174

  6. The effects of estrogen in ischemic stroke.

    PubMed

    Koellhoffer, Edward C; McCullough, Louise D

    2013-08-01

    Stroke is a leading cause of death and the most common cause of long-term disability in the USA. Women have a lower incidence of stroke compared with men throughout most of the lifespan which has been ascribed to protective effects of gonadal steroids, most notably estrogen. Due to the lower stroke incidence observed in pre-menopausal women and robust preclinical evidence of neuroprotective and anti-inflammatory properties of estrogen, researchers have focused on the potential benefits of hormones to reduce ischemic brain injury. However, as women age, they are disproportionately affected by stroke, coincident with the loss of estrogen with menopause. The risk of stroke in elderly women exceeds that of men and it is clear that in some settings estrogen can have pro-inflammatory effects. This review will focus on estrogen and inflammation and its interaction with aging.

  7. MicroRNA-122 is involved in oxidative stress in isoniazid-induced liver injury in mice.

    PubMed

    Song, L; Zhang, Z R; Zhang, J L; Zhu, X B; He, L; Shi, Z; Gao, L; Li, Y; Hu, B; Feng, F M

    2015-10-27

    Many studies have shown that the pathogenesis of liver injury includes oxidative stress. MicroRNA-122 may be a marker for the early diagnosis of drug-induced liver injury. However, the relationship between microRNA-122 and oxidative stress in anti-tuberculosis drug-induced liver injury remains unknown. We measured changes in tissue microRNA-122 levels and indices of oxidative stress during liver injury in mice after administration of isoniazid, a first-line anti-tuberculosis drug. We quantified microRNA-122 expression and indices of oxidative stress at 7 time points, including 1, 3, and 5 days and 1, 2, 3, and 4 weeks. The tissue microRNA-122 levels and oxidative stress significantly changed at 3 and 5 days, suggesting that isoniazid-induced liver injury reduces oxidative stress and microRNA-122 expression compared to in the control group (P < 0.05). Notably, over the time course of isoniazid-induced liver injury, mitochondrial ribosome protein S11 gene, the target of microRNA-122, began to change at 5 days (P < 0.05). The tissue microRNA-122 profile may affect oxidative stress by regulating mitochondrial ribosome protein S11 gene during isoniazid-induced liver injury, which may contribute to the response mechanisms of microRNA-122 and oxidative stress.

  8. Paraquat-induced injury of type II alveolar cells. An in vitro model of oxidant injury

    SciTech Connect

    Skillrud, D.M.; Martin, W.J.

    1984-06-01

    Paraquat, a widely used herbicide, causes severe, often fatal lung damage. In vivo studies suggest the alveolar epithelial cells (types I and II) are specific targets of paraquat toxicity. This study used /sup 51/Cr-labeled type II cells to demonstrate that paraquat (10-5 M) resulted in type II cell injury in vitro, independent of interacting immune effector agents. With /sup 51/Cr release expressed as the cytotoxic index (Cl), type II cell injury was found to accelerate with increasing paraquat concentrations (10(-5) M, 10(-4) M, and 10(-3) M, resulting in a Cl of 12.5 +/- 2.2, 22.8 +/- 1.8, and 35.1 +/- 1.9, respectively). Paraquat-induced cytotoxicity (10(-4) M, with a Cl of 22.8 +/- 1.8) was effectively reduced by catalase 1,100 U/ml (Cl 8.0 +/- 3.2, p less than 0.001), superoxide dismutase, 300 U/ml (Cl 17.4 +/- 1.7, p less than 0.05), alpha tocopherol, 10 micrograms/ml (Cl 17.8 +/- 1.6, p less than 0.05). Paraquat toxicity (10(-3) M) was potentiated in the presence of 95% O2 with an increase in Cl from 31.1 +/- 1.7 to 36.4 +/- 2.3 (p less than 0.05). Paraquat-induced type II cell injury was noted as early as 4 h incubation by electron microscopic evidence of swelling of mitochondrial cristae and dispersion of nuclear chromatin. Thus, this in vitro model indicates that paraquat-induced type II cell injury can be quantified, confirmed by morphologic ultrastructural changes, significantly reduced by antioxidants, and potentiated by hyperoxia.

  9. Gypenosides protects dopaminergic neurons in primary culture against MPP(+)-induced oxidative injury.

    PubMed

    Wang, Peng; Niu, Le; Guo, Xiao-Dong; Gao, Li; Li, Wei-Xin; Jia, Dong; Wang, Xue-Lian; Ma, Lian-Ting; Gao, Guo-Dong

    2010-10-30

    Oxidative injury has been implicated in the etiology of Parkinson's disease (PD). Gypenosides (GPs), the saponins extract derived from the Gynostemma pentaphyllum, has various bioactivities. In this study, GPs was investigated for its neuroprotective effects on the 1-methyl-4-phenylpyridinium ion (MPP(+))-induced oxidative injury of dopaminergic neurons in primary nigral culture. It was found that GPs pretreatment, cotreatment or posttreatment significantly and dose-dependently attenuated MPP(+)-induced oxidative damage, reduction of dopamine uptake, loss of tyrosine hydrolase (TH)-immunopositive neurons and degeneration of TH-immunopositive neurites. However, the preventive effect of GPs was more potential than its therapeutical effect. Most importantly, the neuroprotective effect of GPs may be attributed to GPs-induced strengthened antioxidation as manifested by significantly increased glutathione content and enhanced activity of glutathione peroxidase, catalyze and superoxide dismutase in nigral culture. The neuroprotective effects of GPs are specific for dopaminergic neurons and it may have therapeutic potential in the treatment of PD.

  10. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury

    SciTech Connect

    Eto, Hideyuki; Miyata, Masaaki . E-mail: miyatam@m3.kufm.kagoshima-u.ac.jp; Kume, Noriaki; Minami, Manabu; Itabe, Hiroyuki; Orihara, Koji; Hamasaki, Shuichi; Biro, Sadatoshi; Otsuji, Yutaka; Kita, Toru; Tei, Chuwa

    2006-03-10

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 {mu}g/mL) stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescense staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury.

  11. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium

    PubMed Central

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S.; Han, Zhong

    2016-01-01

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0–4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms. PMID:27556460

  12. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium.

    PubMed

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S; Han, Zhong

    2016-01-01

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0-4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms. PMID:27556460

  13. Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin.

    PubMed Central

    Britigan, B E; Rasmussen, G T; Cox, C D

    1997-01-01

    Pseudomonas aeruginosa causes acute and chronic infections of the human lung, with resultant tissue injury. We have previously shown that iron bound to pyochelin, a siderophore secreted by the organism to acquire iron, is an efficient catalyst for hydroxyl radical (HO.) formation and augments injury to pulmonary artery endothelial cells resulting from their exposure to superoxide (O2.) and/or H2O2. Sources for O2-. and H2O2 included phorbol myristate acetate (PMA)-stimulated neutrophils and pyocyanin. Pyocyanin, another P. aeruginosa secretory product, undergoes cell-mediated redox, thereby forming O2-. and H2O2. In P. aeruginosa lung infections, damage to airway epithelial cells is probably more extensive than that to endothelial cells. Therefore, we examined whether ferripyochelin also augments oxidant-mediated damage to airway epithelial cells. A549 cells, a human type II alveolar epithelial cell line, was exposed to H2O2, PMA-stimulated neutrophils, or pyocyanin, and injury was determined by release of 51Cr from prelabeled cells. Ferripyochelin significantly increased (> 10-fold) oxidant-mediated cell injury regardless of whether H2O2, neutrophils, or pyocyanin was employed. Apo-pyochelin was not effective, and ferripyochelin was not toxic by itself at the concentrations employed. Spin trapping with alpha-(4-pyrridyl-1-oxide)-N-t-butyl-nitrone-ethanol confirmed the generation of HO., and injury was decreased by a variety of antioxidants, including superoxide dismutase, catalase, and dimethylthiourea. These data are consistent with the hypothesis that the presence of ferripyochelin at sites of P. aeruginosa lung infection could contribute to tissue injury through its ability to promote HO.-mediated damage to airway epithelial cells. PMID:9038317

  14. Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: Assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.).

    PubMed

    Shu, Zengquan; Singh, Arvinder; Klamerth, Nikolaus; McPhedran, Kerry; Bolton, James R; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2016-09-15

    Low concentrations (ng/L-μg/L) of emerging micropollutant contaminants in municipal wastewater treatment plant effluents affect the possibility to reuse these waters. Many of those micropollutants elicit endocrine disrupting effects in aquatic organisms resulting in an alteration of the endocrine system. A potential candidate for tertiary municipal wastewater treatment of these micropollutants is ultraviolet (UV)/hydrogen peroxide (H2O2) as an advanced oxidation process (AOP) which was currently applied to treat the secondary effluent of the Gold Bar Wastewater Treatment Plant (GBWWTP) in Edmonton, AB, Canada. A new approach is presented to predict the fluence-based degradation rate constants (kf') of environmentally occurring micropollutants including carbamazepine [(0.87-1.39) × 10(-3) cm(2)/mJ] and 2,4-Dichlorophenoxyacetic acid (2,4-D) [(0.60-0.91) × 10(-3) cm(2)/mJ for 2,4-D] in a medium pressure (MP) UV/H2O2 system based on a previous bench-scale investigation. Rather than using removal rates, this approach can be used to estimate the performance of the MP UV/H2O2 process for degrading trace contaminants of concern found in municipal wastewater. In addition to the ability to track contaminant removal/degradation, evaluation of the MP UV/H2O2 process was also accomplished by identifying critical ecotoxicological endpoints (i.e., estrogenicity) of the treated wastewater. Using quantitative PCR, mRNA levels of estrogen-responsive (ER) genes ERα1, ERα2, ERβ1, ERβ2 and NPR as well as two aromatase encoding genes (CYP19a and CYP19b) in goldfish (Carassius auratus L.) were measured during exposure to the GBWWTP effluent before and after MP UV/H2O2 treatment (a fluence of 1000 mJ/cm(2) and 20 mg/L of H2O2) in spring, summer and fall. Elevated expression of estrogen-responsive genes in goldfish exposed to UV/H2O2 treated effluent (a 7-day exposure) suggested that the UV/H2O2 process may induce acute estrogenic disruption to goldfish principally because

  15. Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: Assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.).

    PubMed

    Shu, Zengquan; Singh, Arvinder; Klamerth, Nikolaus; McPhedran, Kerry; Bolton, James R; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2016-09-15

    Low concentrations (ng/L-μg/L) of emerging micropollutant contaminants in municipal wastewater treatment plant effluents affect the possibility to reuse these waters. Many of those micropollutants elicit endocrine disrupting effects in aquatic organisms resulting in an alteration of the endocrine system. A potential candidate for tertiary municipal wastewater treatment of these micropollutants is ultraviolet (UV)/hydrogen peroxide (H2O2) as an advanced oxidation process (AOP) which was currently applied to treat the secondary effluent of the Gold Bar Wastewater Treatment Plant (GBWWTP) in Edmonton, AB, Canada. A new approach is presented to predict the fluence-based degradation rate constants (kf') of environmentally occurring micropollutants including carbamazepine [(0.87-1.39) × 10(-3) cm(2)/mJ] and 2,4-Dichlorophenoxyacetic acid (2,4-D) [(0.60-0.91) × 10(-3) cm(2)/mJ for 2,4-D] in a medium pressure (MP) UV/H2O2 system based on a previous bench-scale investigation. Rather than using removal rates, this approach can be used to estimate the performance of the MP UV/H2O2 process for degrading trace contaminants of concern found in municipal wastewater. In addition to the ability to track contaminant removal/degradation, evaluation of the MP UV/H2O2 process was also accomplished by identifying critical ecotoxicological endpoints (i.e., estrogenicity) of the treated wastewater. Using quantitative PCR, mRNA levels of estrogen-responsive (ER) genes ERα1, ERα2, ERβ1, ERβ2 and NPR as well as two aromatase encoding genes (CYP19a and CYP19b) in goldfish (Carassius auratus L.) were measured during exposure to the GBWWTP effluent before and after MP UV/H2O2 treatment (a fluence of 1000 mJ/cm(2) and 20 mg/L of H2O2) in spring, summer and fall. Elevated expression of estrogen-responsive genes in goldfish exposed to UV/H2O2 treated effluent (a 7-day exposure) suggested that the UV/H2O2 process may induce acute estrogenic disruption to goldfish principally because

  16. Vesicular antioxidants: role in age-related cerebral oxidative injury.

    PubMed

    Sarkar, Sibani; Mandal, Ardhendu Kumar; Das, Nirmalendu

    2013-01-01

    Oxidative stress, due to the generation of reactive oxygen species, is a major factor in cerebral ischemic damage and changes the activities of antioxidant enzymes and substantially influences the aging process. Free chemical antioxidant is almost ineffective to treat brain ischemia as blood-brain barrier exists in between blood and brain interstitial fluid, limiting component to pass from the circulation into cerebral region. Different compounds have been tested in vivo in different vesiculated forms to prevent cerebral ischemia. Nanoparticle-encapsulated drug treatment resulted in a significant protection of the antioxidant enzymes in both young and old rats. Nanocapsulated drug treatment causes a substantial protection against cerebral ischemia-reperfusion-induced oxidative damage to all parts of brain specifically hippocampal regions of all age groups of rat brain. PMID:23740123

  17. Estrogen Carcinogenesis

    PubMed Central

    Zhang, Qiang; Aft, Rebecca L.; Gross, Michael L.

    2009-01-01

    Prolonged exposure to estrogens correlates with increased risk for breast cancer. One explanation is that estrogen metabolites cause mutations by reacting with DNA, leading to depurination. We describe an extraction procedure and a liquid chromatographic tandem mass spectrometric (LC/MS/MS) assay to detect estrone-metabolite-modified adenine (Ade) in 100-200 mg samples of human breast tissue. To insure reliable analyses, we used a synthetic estrone-metabolite-modified, U-15N labeled Ade as an internal standard (IS). Appropriate high pressure liquid chromatography gives sharp (∼ 5 s at half height) with identical retention times for the analyte and the IS. In breast tissue from women with and without cancer, we found a co-eluting material with similar MS/MS fragmentation as the IS, providing high specificity in the identification of the modified Ade; the recovery was approximately 50%. For women with and without breast cancer, the levels of the modified Ade are in the range of 20-70 fmol/g of breast tissue from five women and not detectable in tissue from another women. The sample size and detection limits are not yet sufficient to permit distinctions between cancer and noncancer patients. PMID:18672910

  18. Nitric oxide as a mediator of gastrointestinal mucosal injury?—Say it ain't so

    PubMed Central

    Kubes, Paul

    1995-01-01

    Nitric oxide has been suggested as a contributor to tissue injury in various experimental models of gastrointestinal inflammation. However, there is overwhelming evidence that nitric oxide is one of the most important mediators of mucosal defence, influencing such factors as mucus secretion, mucosal blood flow, ulcer repair and the activity of a variety of mucosal immunocytes. Nitric oxide has the capacity to down-regulate inflammatory responses in the gastrointestinal tract, to scavenge various free radical species and to protect the mucosa from injury induced by topical irritants. Moreover, questions can be raised regarding the evidence purported to support a role for nitric oxide in producing tissue injury. In this review, we provide an overview of the evidence supporting a role for nitric oxide in protecting the gastrointestinal tract from injury. PMID:18475671

  19. 5-HMF prevents against oxidative injury via APE/Ref-1.

    PubMed

    Zhang, J-H; Di, Y; Wu, L-Y; He, Y-L; Zhao, T; Huang, X; Ding, X-F; Wu, K-W; Fan, M; Zhu, L-L

    2015-01-01

    Oxidative injury is involved in many diseases, including ischemic and neurodegenerative diseases. Antioxidant drugs can be used to relieve the oxidative injury caused by these diseases; however, there are very few antioxidant drugs available for clinical use. In this study, we found that 5-(hydroxymethyl)-2-furfural (5-HMF) protects against the oxidative damage induced by cerebral ischemia in rats or by hydrogen peroxide (H2O2) in PC12 cells. We demonstrated that 5-HMF performs this function via apurinic/apyrimidinic endonuclease/redox factor-1 (APE/Ref-1). APE/Ref-1 is a multifunctional protein involved in oxidative DNA damage repair through the base excision repair (BER) pathway and in the regulation of the DNA-binding activity of several transcription factors. The current study focused on the role of APE/Ref-1 in the antioxidative properties of 5-HMF. The results show that 5-HMF inhibited the reduction of APE/Ref-1 protein level caused by cerebral ischemia-reperfusion injury in rats or H2O2 treatment in PC12 cells. Treatment with an APE/Ref-1 inhibitor blocked 5-HMF-induced protection, suggesting that APE/Ref-1's DNA repair function contributes to antioxidation. In conclusion, this study suggests that APE/Ref-1 may be a potential target for antioxidant drugs.

  20. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    SciTech Connect

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-10-17

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK){zeta}, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGK{zeta} siRNA transfection decreased H{sub 2}O{sub 2}-induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGK{zeta} also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGK{zeta} rapidly translocated to the cytoplasm following H{sub 2}O{sub 2} treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGK{zeta}, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells.

  1. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  2. Prior exercise and antioxidant supplementation: effect on oxidative stress and muscle injury

    PubMed Central

    Bloomer, Richard J; Falvo, Michael J; Schilling, Brian K; Smith, Webb A

    2007-01-01

    Background Both acute bouts of prior exercise (preconditioning) and antioxidant nutrients have been used in an attempt to attenuate muscle injury or oxidative stress in response to resistance exercise. However, most studies have focused on untrained participants rather than on athletes. The purpose of this work was to determine the independent and combined effects of antioxidant supplementation (vitamin C + mixed tocopherols/tocotrienols) and prior eccentric exercise in attenuating markers of skeletal muscle injury and oxidative stress in resistance trained men. Methods Thirty-six men were randomly assigned to: no prior exercise + placebo; no prior exercise + antioxidant; prior exercise + placebo; prior exercise + antioxidant. Markers of muscle/cell injury (muscle performance, muscle soreness, C-reactive protein, and creatine kinase activity), as well as oxidative stress (blood protein carbonyls and peroxides), were measured before and through 48 hours of exercise recovery. Results No group by time interactions were noted for any variable (P > 0.05). Time main effects were noted for creatine kinase activity, muscle soreness, maximal isometric force and peak velocity (P < 0.0001). Protein carbonyls and peroxides were relatively unaffected by exercise. Conclusion There appears to be no independent or combined effect of a prior bout of eccentric exercise or antioxidant supplementation as used here on markers of muscle injury in resistance trained men. Moreover, eccentric exercise as used in the present study results in minimal blood oxidative stress in resistance trained men. Hence, antioxidant supplementation for the purpose of minimizing blood oxidative stress in relation to eccentric exercise appears unnecessary in this population. PMID:17915021

  3. Oxidative stress-mediated apoptosis induced by ethanolic mango seed extract in cultured estrogen receptor positive breast cancer MCF-7 cells.

    PubMed

    Abdullah, Al-Shwyeh Hussah; Mohammed, Abdulkarim Sabo; Rasedee, Abdullah; Mirghani, Mohamed Elwathig Saeed

    2015-01-01

    Breast cancer has become a global health issue requiring huge expenditures for care and treatment of patients. There is a need to discover newer cost-effective alternatives for current therapeutic regimes. Mango kernel is a waste product with potential as a source of anti-cancer phytochemicals, especially since it is non-toxic towards normal breast cell lines at concentrations for which it induces cell death in breast cancer cells. In this study, the anti-cancer effect of mango kernel extract was determined on estrogen receptor-positive human breast carcinoma (MCF-7) cells. The MCF-7 cells were cultured and treated with 5, 10 and 50 μg/mL of mango kernel extract for 12 and 24 h. In response to treatment, there were time- and dose-dependent increases in oxidative stress markers and pro-apoptotic factors; Bcl-2-like protein 4 (BAX), p53, cytochrome c and caspases (7, 8 and 9) in the MCF-7 cells treated with the extract. At the same time, there were decreases in pro-survival markers (Bcl-2 and glutathione) as the result of the treatments. The changes induced in the MCF-7 cells by mango kernel extract treatment suggest that the extract can induce cancer cell apoptosis, likely via the activation of oxidative stress. These findings need to be evaluated further to determine whether mango kernel extract can be developed as an anti-breast cancer agent.

  4. Synergistic Effect of Vaginal Trauma and Ovariectomy in a Murine Model of Stress Urinary Incontinence: Upregulation of Urethral Nitric Oxide Synthases and Estrogen Receptors

    PubMed Central

    Chen, Huey-Yi; Chen, Wen-Chi; Lin, Yu-Ning

    2014-01-01

    The molecular mechanisms underlying stress urinary incontinence (SUI) are unclear. We aimed to evaluate the molecular alterations in mice urethras following vaginal trauma and ovariectomy (OVX). Twenty-four virgin female mice were equally distributed into four groups: noninstrumented control; vaginal distension (VD) group; OVX group; and VD + OVX group. Changes in leak point pressures (LPPs), genital tract morphology, body weight gain, plasma 17β-estradiol level and expressions of neuronal nitric oxide synthase (nNOS), induced nitric oxide synthase (iNOS), and estrogen receptors (ERs—ERα and ERβ) were analyzed. Three weeks after VD, the four groups differed significantly in genital size and body weight gain. Compared with the control group, the plasma estradiol levels were significantly decreased in the OVX and VD + OVX groups, and LPPs were significantly decreased in all three groups. nNOS, iNOS, and ERα expressions in the urethra were significantly increased in the VD and VD + OVX groups, whereas ERβ expression was significantly increased only in the VD + OVX group. These results show that SUI following vaginal trauma and OVX involves urethral upregulations of nNOS, iNOS, and ERs, suggesting that NO- and ER-mediated signaling might play a role in the synergistic effect of birth trauma and OVX-related SUI pathogenesis. PMID:25258476

  5. Plasma fluorescent oxidation products and risk of estrogen receptor-negative breast cancer in the Nurses’ Health Study and Nurses’ Health Study II

    PubMed Central

    Hirko, Kelly A.; Fortner, Renée T.; Hankinson, Susan E.; Wu, Tianying; Eliassen, A. Heather

    2016-01-01

    Purpose Findings from epidemiologic studies of oxidative stress biomarkers and breast cancer have been mixed; although no studies have focused on estrogen receptor-negative (ER−) tumors, which may be more strongly associated with oxidative stress. We examined pre-diagnostic plasma fluorescent oxidation products (FlOP), a global biomarker of oxidative stress, and risk of ER− breast cancer in a nested case-control study in the Nurses’ Health Study (NHS) and NHSII. Methods ER− breast cancer cases (n=355) were matched to 355 controls on age, month/time of day of blood collection, fasting status, menopausal status and menopausal hormone use. Conditional logistic regression models were used to examine associations of plasma FlOP at three emission wavelengths (FlOP_360, FlOP_320, and FlOP_400) and risk of ER− breast cancer. Results We did not observe any significant associations between FlOP measures and risk of ER− breast cancer overall; the RRQ4vsQ1 (95%CI) =0.70 (0.43-1.13), ptrend=0.09 for FlOP_360; 0.91(0.56-1.46), ptrend=0.93 for FlOP_320; and 0.62 (0.37-1.03), ptrend=0.10 for FlOP_400. Results were similar in models additionally adjusted for total carotenoid levels, and in models stratified by age and by total carotenoids. Although, high (vs. low) levels of FIOP_360 and FIOP_400 were associated with lower risk of ER− breast cancer in lean women (body mass index (BMI)<25 kg/m2) but not in overweight/obese women, these differences were not statistically significant (pint=0.23 for FlOP_360; pint=0.37 for FlOP_400). Conclusions Our findings suggest that positive associations of plasma FlOP concentrations and ER− breast cancer risk are unlikely. PMID:27294610

  6. Mass-Spectrometry Based Oxidative Lipidomics and Lipid Imaging: Applications in Traumatic Brain Injury

    PubMed Central

    Sparvero, LJ; Amoscato, AA; Kochanek, PM; Pitt, BR; Kagan, VE; Bayır, H

    2012-01-01

    Lipids, particularly phospholipids, are fundamental to central nervous system (CNS) tissue architecture and function. Endogenous polyunsaturated fatty acid chains of phospholipids possess cis-double bonds each separated by one methylene group. These phospholipids are very susceptible to free-radical attack and oxidative modifications. A combination of analytical methods including different versions of chromatography and mass spectrometry allows obtaining detailed information on the content and distribution of lipids and their oxidation products thus constituting the newly emerging field of oxidative lipidomics. It is becoming evident that specific oxidative modifications of lipids are critical to a number of cellular functions, disease states and responses to oxidative stresses. Oxidative lipidomics is beginning to provide new mechanistic insights into traumatic brain injury (TBI) which may have significant translational potential for development of therapies in acute CNS insults. In particular, selective oxidation of a mitochondria-specific phospholipid, cardiolipin, has been associated with the initiation and progression of apoptosis in injured neurons thus indicating new drug discovery targets. Further, imaging mass-spectrometry represents an exciting new opportunity for correlating maps of lipid profiles and their oxidation products with structure and neuropathology. This review is focused on these most recent advancements in the field of lipidomics and oxidative lipidomics based on the applications of mass-spectrometry and imaging mass-spectrometry as they relate to studies of phospholipids in TBI. PMID:20950335

  7. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  8. Hepatocellular Protection by Nitric Oxide or Nitrite in Ischemia and Reperfusion Injury

    PubMed Central

    Abe, Yuta; Hines, Ian; Zibari, Gazi; Grisham, Matthew B.

    2009-01-01

    Ischemia and reperfusion (I/R)-induced liver injury occurs in several pathophysiological disorders including hemorrhagic shock and burn as well as resectional and transplantation surgery. One of the earliest events associated with reperfusion of ischemic liver is endothelial dysfunction characterized by the decreased production of endothelial cell-derived nitric oxide (NO). This rapid post-ischemic decrease in NO bioavailability appears to be due to decreased synthesis of NO, enhanced inactivation of NO by the overproduction of superoxide or both. This review presents the most current evidence supporting the concept that decreased bioavailability of NO concomitant with enhanced production of reactive oxygen species initiates hepatocellular injury and that endogenous NO or exogenous NO produced from nitrite play important roles in limiting post-ischemic tissue injury. PMID:18940177

  9. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation

    PubMed Central

    Periasamy, Srinivasan; Hsu, Dur-Zong; Fu, Yu-Hsuan; Liu, Ming-Yie

    2015-01-01

    Sleep deprivation affects all aspects of health. Adverse health effects by sleep deviation are still underestimated and undervalued in clinical practice and, to a much greater extent in monitoring human health. We hypothesized that sleep deprivation-induced mild organ injuries; oxidative stress and inflammation might play a crucial role in inducing multi-organ injury. Male C57BL/6J mice (n = 6-7) were sleep-deprived for 0-72 h using a modified multiple platform boxes method. Blood and tissue were collected. Liver, heart, kidney, lung, and pancreatic injuries were evaluated using biochemical and histological analyses. Glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total billirubin (TBIL), creatine phosphokinase (CPK), creatine phosphokinase-myocardial band (CKMB), lactic dehydrogenase (LDH), creatinine (CRE), and blood urea nitrogen (BUN) were assayed in blood. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were measured. Histology revealed mild-to-moderate liver and lung injury in sleep-deprived mice. Sleep-deprived mice had significantly higher GOT, GPT, TBIL, CPK, CKMB, LDH, BUN, and α-amylase (AMYL) levels, which indicated liver, heart, kidney, and pancreatic injuries. Serum IL-1β at 24 h and IL-6 at 72 h were significantly higher in sleep-deprived than in control mice. Hepatic TNF-α and IL-1β were significantly higher, but IL-6 significantly lower in mice that had been sleep-deprived for 72 h. Sleep deprivation-mediated inflammation may be associated with mild to moderate multi-organ damage in mice. The implication of this study indicates sleep deprivation in humans may induce multi-organ injury that negatively affects cardiovascular and gastrointestinal health. PMID:26648820

  10. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation.

    PubMed

    Periasamy, Srinivasan; Hsu, Dur-Zong; Fu, Yu-Hsuan; Liu, Ming-Yie

    2015-01-01

    Sleep deprivation affects all aspects of health. Adverse health effects by sleep deviation are still underestimated and undervalued in clinical practice and, to a much greater extent in monitoring human health. We hypothesized that sleep deprivation-induced mild organ injuries; oxidative stress and inflammation might play a crucial role in inducing multi-organ injury. Male C57BL/6J mice (n = 6-7) were sleep-deprived for 0-72 h using a modified multiple platform boxes method. Blood and tissue were collected. Liver, heart, kidney, lung, and pancreatic injuries were evaluated using biochemical and histological analyses. Glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total billirubin (TBIL), creatine phosphokinase (CPK), creatine phosphokinase-myocardial band (CKMB), lactic dehydrogenase (LDH), creatinine (CRE), and blood urea nitrogen (BUN) were assayed in blood. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were measured. Histology revealed mild-to-moderate liver and lung injury in sleep-deprived mice. Sleep-deprived mice had significantly higher GOT, GPT, TBIL, CPK, CKMB, LDH, BUN, and α-amylase (AMYL) levels, which indicated liver, heart, kidney, and pancreatic injuries. Serum IL-1β at 24 h and IL-6 at 72 h were significantly higher in sleep-deprived than in control mice. Hepatic TNF-α and IL-1β were significantly higher, but IL-6 significantly lower in mice that had been sleep-deprived for 72 h. Sleep deprivation-mediated inflammation may be associated with mild to moderate multi-organ damage in mice. The implication of this study indicates sleep deprivation in humans may induce multi-organ injury that negatively affects cardiovascular and gastrointestinal health. PMID:26648820

  11. Pentoxifylline Attenuates Nitrogen Mustard-induced Acute Lung Injury, Oxidative Stress and Inflammation

    PubMed Central

    Sunil, Vasanthi R.; Vayas, Kinal N.; Cervelli, Jessica A.; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B.; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (250 g; 8–10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histolopathological changes in the lung within 3 d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2+ and MMP-9+), and anti-inflammatory/wound repair (CD163+ and Gal-3+) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3 d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3+ macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants. PMID:24886962

  12. Targeted Deletion of Nrf2 Impairs Lung Development and Oxidant Injury in Neonatal Mice

    PubMed Central

    van Houten, Bennett; Wang, Xuting; Miller-DeGraff, Laura; Fostel, Jennifer; Gladwell, Wesley; Perrow, Ligon; Panduri, Vijayalakshmi; Kobzik, Lester; Yamamoto, Masayuki; Bell, Douglas A.; Kleeberger, Steven R.

    2012-01-01

    Abstract Aims: Nrf2 is an essential transcription factor for protection against oxidant disorders. However, its role in organ development and neonatal disease has received little attention. Therapeutically administered oxygen has been considered to contribute to bronchopulmonary dysplasia (BPD) in prematurity. The current study was performed to determine Nrf2-mediated molecular events during saccular-to-alveolar lung maturation, and the role of Nrf2 in the pathogenesis of hyperoxic lung injury using newborn Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice. Results: Pulmonary basal expression of cell cycle, redox balance, and lipid/carbohydrate metabolism genes was lower while lymphocyte immunity genes were more highly expressed in Nrf2−/− neonates than in Nrf2+/+ neonates. Hyperoxia-induced phenotypes, including mortality, arrest of saccular-to-alveolar transition, and lung edema, and inflammation accompanying DNA damage and tissue oxidation were significantly more severe in Nrf2−/− neonates than in Nrf2+/+ neonates. During lung injury pathogenesis, Nrf2 orchestrated expression of lung genes involved in organ injury and morphology, cellular growth/proliferation, vasculature development, immune response, and cell–cell interaction. Bioinformatic identification of Nrf2 binding motifs and augmented hyperoxia-induced inflammation in genetically deficient neonates supported Gpx2 and Marco as Nrf2 effectors. Innovation: This investigation used lung transcriptomics and gene targeted mice to identify novel molecular events during saccular-to-alveolar stage transition and to elucidate Nrf2 downstream mechanisms in protection from hyperoxia-induced injury in neonate mouse lungs. Conclusion: Nrf2 deficiency augmented lung injury and arrest of alveolarization caused by hyperoxia during the newborn period. Results suggest a therapeutic potential of specific Nrf2 activators for oxidative stress-associated neonatal disorders including BPD. Antioxid. Redox Signal

  13. Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Cervelli, Jessica A; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2014-08-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants.

  14. Regulation of Injury-Induced Neurogenesis by Nitric Oxide

    PubMed Central

    Carreira, Bruno P.; Carvalho, Caetana M.; Araújo, Inês M.

    2012-01-01

    The finding that neural stem cells (NSCs) are able to divide, migrate, and differentiate into several cellular types in the adult brain raised a new hope for restorative neurology. Nitric oxide (NO), a pleiotropic signaling molecule in the central nervous system (CNS), has been described to be able to modulate neurogenesis, acting as a pro- or antineurogenic agent. Some authors suggest that NO is a physiological inhibitor of neurogenesis, while others described NO to favor neurogenesis, particularly under inflammatory conditions. Thus, targeting the NO system may be a powerful strategy to control the formation of new neurons. However, the exact mechanisms by which NO regulates neural proliferation and differentiation are not yet completely clarified. In this paper we will discuss the potential interest of the modulation of the NO system for the treatment of neurodegenerative diseases or other pathological conditions that may affect the CNS. PMID:22997523

  15. Regulation of cytotoxic, non-estrogenic, oxidative stress-induced processes of zearalenone in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Mike, Nóra; Papp, Gábor; Certik, Milan; Czibulya, Zsuzsanna; Kunsági-Máté, Sándor; Ember, István; Vágvölgyi, Csaba; Pesti, Miklós; Gazdag, Zoltán

    2013-10-01

    This study investigates the non-estrogenic mode of zearalenone (ZEA) toxicity in a novel aspect via accumulation of reactive oxygen species (ROS) and the regulation of the activities of antioxidant enzymes in the Schizosaccharomyces pombe in acute toxicity tests. In comparison with the control, 500 μM ZEA treatment caused 66% decrease in the concentration of glutathione (GSH), which was a consequence, in the absence of ZEA-GSH interaction, of the GSH-consuming processes of the antioxidant system; this depletion of GSH initiated a 1.8- and 2.0-fold accumulation of the superoxide anion and hydrogen peroxide, but did not increase the concentration of the hydroxyl radical; ROS-induced adaptation processes via activation of the Pap1 transcription factor resulted in significantly increased activities of superoxide dismutases, catalase, glutathione reductase and glutathione S-transferase, and decreased activities of glutathione peroxidase and glucose-6-phosphate dehydrogenase. This treatment altered the sterol composition of the cells by inducing decreased concentrations of ergosterol, squalene and 24-methylene-24,25-hydrolanosterol, and also elevated the number of fragmented nuclei. Cells strived to correct the unbalanced redox state by regulation of the antioxidant system, but this was not enough to defend the cells from the disturbed sterol composition, the cell cycle arrest, and the fragmentation of nuclei. PMID:23896534

  16. Analysis of estrogenic activity in environmental waters in Rio de Janeiro state (Brazil) using the yeast estrogen screen.

    PubMed

    Dias, Amanda Cristina Vieira; Gomes, Frederico Wegenast; Bila, Daniele Maia; Sant'Anna, Geraldo Lippel; Dezotti, Marcia

    2015-10-01

    The estrogenicity of waters collected from an important hydrological system in Brazil (Paraiba do Sul and Guandu Rivers) was assessed using the yeast estrogen screen (YES) assay. Sampling was performed in rivers and at the outlets of conventional water treatment plants (WTP). The removal of estrogenic activity by ozonation and chlorination after conventional water treatment (clarification and sand filtration) was investigated employing samples of the Guandu River spiked with estrogens and bisphenol A (BPA). The results revealed a preoccupying incidence of estrogenic activity at levels higher than 1ngL(-1) along some points of the rivers. Another matter of concern was the number of samples from WTPs presenting estrogenicity surpassing 1ngL(-1). The oxidation techniques (ozonation and chlorination) were effective for the removal of estrogenic activity and the combination of both techniques led to good results using less amounts of oxidants. PMID:26024813

  17. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited

    PubMed Central

    Kurian, Gino A.; Rajagopal, Rashmi; Vedantham, Srinivasan; Rajesh, Mohanraj

    2016-01-01

    Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions. PMID:27313825

  18. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited.

    PubMed

    Kurian, Gino A; Rajagopal, Rashmi; Vedantham, Srinivasan; Rajesh, Mohanraj

    2016-01-01

    Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions. PMID:27313825

  19. Nitrogen Substituent Polarity Influences Dithiocarbamate-Mediated Lipid Oxidation, Nerve Copper Accumulation, and Myelin Injury

    PubMed Central

    Valentine, Holly L.; Viquez, Olga M.; Amarnath, Kalyani; Amarnath, Venkataraman; Zyskowski, Justin; Kassa, Endalkachew N.; Valentine, William M.

    2009-01-01

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture, and medicine, with new applications being investigated. Past studies have suggested that the neurotoxicity of some dithiocarbamates may result from copper accumulation, protein oxidative damage, and lipid oxidation. The polarity of a dithiocarbamate’s nitrogen substituents influences the lipophilicity of the copper complexes it generates and thus potentially determines its ability to promote copper accumulation within nerve and induce myelin injury. In the current study, a series of dithiocarbamate-copper complexes differing in their lipophilicity were evaluated for their relative abilities to promote lipid peroxidation determined by malondialdehyde levels generated in an ethyl arachidonate oil-in-water emulsion. In a second component of this study, rats were exposed to either N,N-diethyldithiocarbamate or sarcosine dithiocarbamate; both generate dithiocarbamate-copper complexes that are lipid and water soluble, respectively. Following the exposures, brain, tibial nerve, spinal cord and liver tissue copper levels were measured by inductively coupled mass spectroscopy to assess the relative abilities of these two dithiocarbamates to promote copper accumulation. Peripheral nerve injury was evaluated using grip strengths, nerve conduction velocities and morphologic changes at the light microscope level. Additionally, the protein expression levels of glutathione transferase alpha and heme-oxygenase-1 in nerve were determined and the quantity of protein carbonyls measured to assess levels of oxidative stress and injury. The data provide evidence that dithiocarbamate-copper complexes are redox active; and that the ability of dithiocarbamate complexes to promote lipid peroxidation is correlated to the lipophilicity of the complex. Consistent with neurotoxicity requiring the formation of a lipid soluble copper complex, significant increases in copper accumulation, oxidative stress and myelin

  20. An immunohistochemical panel to assess ultraviolet radiation-associated oxidative skin injury.

    PubMed

    Mamalis, Andrew; Fiadorchanka, Natallia; Adams, Lauren; Serravallo, Melissa; Heilman, Edward; Siegel, Daniel; Brody, Neil; Jagdeo, Jared

    2014-05-01

    Ultraviolet (UV) radiation results in a significant loss in years of healthy life, approximately 1.5 million disability-adjusted life years (DALYs), and is associated with greater than 60,000 deaths annually worldwide that are attributed to melanoma and other skin cancers. Currently, there are no standardized biomarkers or assay panels to assess oxidative stress skin injury patterns in human skin exposed to ionizing radiation. Using biopsy specimens from chronic solar UV-exposed and UV-protected skin, we demonstrate that UV radiation-induced oxidative skin injury can be evaluated by an immunohistochemical panel that stains 8-hydroxydeoxyguanosine (8-OH-dG) to assess DNA adducts, 4-hydroxy-2-nonenal (HNE) to assess lipid peroxidation, and advanced glycation end products (AGEs) to assess protein damage. We believe this panel contains the necessary cellular biomarkers to evaluate topical agents, such as sunscreens and anti-oxidants that are designed to prevent oxidative skin damage and may reduce UV-associated skin aging, carcinogenesis, and inflammatory skin diseases. We envision that this panel will become an important tool for researchers developing topical agents to protect against UV radiation and other oxidants and ultimately lead to reductions in lost years of healthy life, DALYs, and annual deaths associated with UV radiation.

  1. An Immunohistochemical Panel to Assess Ultraviolet Radiation Associated Oxidative Skin Injury

    PubMed Central

    Adams, L; Serravallo, M; Heilman, E; Siegel, D; Brody, N; Jagdeo, J

    2015-01-01

    Ultraviolet (UV) radiation results in a significant loss in years of healthy life, approximately 1.5 million disability-adjusted life years, and is associated with greater than 60,000 deaths annually worldwide that are attributed to melanoma and other skin cancers. Currently, there are no standardized biomarkers or assay panels to assess oxidative stress skin injury patterns in human skin exposed to ionizing radiation. Using biopsy specimens from chronic solar UV-exposed and UV-protected skin, we demonstrate that UV radiation-induced oxidative skin injury can be evaluated by an immunohistochemical panel that stains 8-hydroxydeoxyguanosine (8-OH-dG) to assess DNA adducts, 4-hydroxy-2-nonenal (HNE) to assess lipid peroxidation, and advanced glycation end products (AGEs) to assess protein damage. We believe this panel contains the necessary cellular biomarkers to evaluate topical agents, such as sunscreens and anti-oxidants that are designed to prevent oxidative skin damage and may reduce UV-associated skin aging, carcinogenesis, and inflammatory skin diseases. We envision that this panel will become an important tool for researchers developing topical agents to protect against UV radiation and other oxidants and ultimately lead to reductions in lost years of healthy life, DALYs, and annual deaths associated with UV radiation. PMID:24809881

  2. An immunohistochemical panel to assess ultraviolet radiation-associated oxidative skin injury.

    PubMed

    Mamalis, Andrew; Fiadorchanka, Natallia; Adams, Lauren; Serravallo, Melissa; Heilman, Edward; Siegel, Daniel; Brody, Neil; Jagdeo, Jared

    2014-05-01

    Ultraviolet (UV) radiation results in a significant loss in years of healthy life, approximately 1.5 million disability-adjusted life years (DALYs), and is associated with greater than 60,000 deaths annually worldwide that are attributed to melanoma and other skin cancers. Currently, there are no standardized biomarkers or assay panels to assess oxidative stress skin injury patterns in human skin exposed to ionizing radiation. Using biopsy specimens from chronic solar UV-exposed and UV-protected skin, we demonstrate that UV radiation-induced oxidative skin injury can be evaluated by an immunohistochemical panel that stains 8-hydroxydeoxyguanosine (8-OH-dG) to assess DNA adducts, 4-hydroxy-2-nonenal (HNE) to assess lipid peroxidation, and advanced glycation end products (AGEs) to assess protein damage. We believe this panel contains the necessary cellular biomarkers to evaluate topical agents, such as sunscreens and anti-oxidants that are designed to prevent oxidative skin damage and may reduce UV-associated skin aging, carcinogenesis, and inflammatory skin diseases. We envision that this panel will become an important tool for researchers developing topical agents to protect against UV radiation and other oxidants and ultimately lead to reductions in lost years of healthy life, DALYs, and annual deaths associated with UV radiation. PMID:24809881

  3. Inhaled nitric oxide protects males but not females from neonatal mouse hypoxia-ischemia brain injury.

    PubMed

    Zhu, Changlian; Sun, Yanyan; Gao, Jianfeng; Wang, Xiaoyang; Plesnila, Nikolaus; Blomgren, Klas

    2013-04-01

    It was recently discovered that while under normal conditions inhaled nitric oxide (iNO) does not affect cerebral blood flow, it selectively dilates arterioles in the ischemic penumbra during experimental cerebral ischemia, thereby increasing collateral blood flow and reducing ischemic brain damage. The mechanism was verified in multiple models, but only in male animals. Our aim was to evaluate the effects of iNO on brain injury in neonatal males and females. Nine-day-old mice were subjected to unilateral hypoxia-ischemia (HI), using 10% oxygen balanced with nitrogen, with or without 50 ppm NO. Brain injury 72 h after HI was reduced by iNO as judged by percentage of injury (-21.7%), atrophy (-23.7%), and total pathological score (-29%). The injury was significantly reduced in males (-32.4%, p<0.05) but not in females (-7.1%, n.s.). Neither the numbers nor the proliferation rates of neural stem cells in the dentate gyrus were affected by iNO. In summary, intraischemic iNO reduced neonatal HI brain injury in a gender-related manner. PMID:24323275

  4. ERβ-dependent neuroglobin up-regulation impairs 17β-estradiol-induced apoptosis in DLD-1 colon cancer cells upon oxidative stress injury.

    PubMed

    Fiocchetti, Marco; Camilli, Giulia; Acconcia, Filippo; Leone, Stefano; Ascenzi, Paolo; Marino, Maria

    2015-05-01

    Besides other mechanism(s) 17β-estradiol (E2) facilitates neuronal survival by increasing, via estrogen receptor β (ERβ), the levels of neuroglobin (NGB) an anti-apoptotic protein. In contrast, E2 could exert protective effects in cancer cells by activating apoptosis when the ERβ level prevails on that of ERα as in colon cancer cell lines. These apparently contrasting results raise the possibility that E2-induced NGB up-regulation could regulate the ERβ activities shunning this receptor subtype to trigger an apoptotic cascade in neurons but not in non-neuronal cells. Here, human colorectal adenocarcinoma cell line (DLD-1) that only expresses ERβ and HeLa cells transiently transfected with ERβ encoding vector has been used to verify this hypothesis. In addition, neuroblastoma SK-N-BE cells were used as positive control. Surprisingly, E2 also induced NGB up-regulation, in a dose- and time-dependent manner, in DLD-1 cells. The ERβ-mediated activation of p38/MAPK was necessary for this E2 effect. E2 induced NGB re-allocation in mitochondria where, subsequently to an oxidative stress injury (i.e., 100μM H2O2), NGB interacted with cytochrome c preventing its release into the cytosol and the activation of an apoptotic cascade. As a whole, these results demonstrate that E2-induced NGB up-regulation could act as an oxidative stress sensor, which does not oppose to the pro-apoptotic E2 effect in ERβ-containing colon cancer cells unless a rise of oxidative stress occurs. These results support the concept that oxidative stress plays a critical role in E2-induced carcinogenesis and further open an important scenario to develop novel therapeutic strategies that target NGB against E2-related cancers.

  5. ERβ-dependent neuroglobin up-regulation impairs 17β-estradiol-induced apoptosis in DLD-1 colon cancer cells upon oxidative stress injury.

    PubMed

    Fiocchetti, Marco; Camilli, Giulia; Acconcia, Filippo; Leone, Stefano; Ascenzi, Paolo; Marino, Maria

    2015-05-01

    Besides other mechanism(s) 17β-estradiol (E2) facilitates neuronal survival by increasing, via estrogen receptor β (ERβ), the levels of neuroglobin (NGB) an anti-apoptotic protein. In contrast, E2 could exert protective effects in cancer cells by activating apoptosis when the ERβ level prevails on that of ERα as in colon cancer cell lines. These apparently contrasting results raise the possibility that E2-induced NGB up-regulation could regulate the ERβ activities shunning this receptor subtype to trigger an apoptotic cascade in neurons but not in non-neuronal cells. Here, human colorectal adenocarcinoma cell line (DLD-1) that only expresses ERβ and HeLa cells transiently transfected with ERβ encoding vector has been used to verify this hypothesis. In addition, neuroblastoma SK-N-BE cells were used as positive control. Surprisingly, E2 also induced NGB up-regulation, in a dose- and time-dependent manner, in DLD-1 cells. The ERβ-mediated activation of p38/MAPK was necessary for this E2 effect. E2 induced NGB re-allocation in mitochondria where, subsequently to an oxidative stress injury (i.e., 100μM H2O2), NGB interacted with cytochrome c preventing its release into the cytosol and the activation of an apoptotic cascade. As a whole, these results demonstrate that E2-induced NGB up-regulation could act as an oxidative stress sensor, which does not oppose to the pro-apoptotic E2 effect in ERβ-containing colon cancer cells unless a rise of oxidative stress occurs. These results support the concept that oxidative stress plays a critical role in E2-induced carcinogenesis and further open an important scenario to develop novel therapeutic strategies that target NGB against E2-related cancers. PMID:25683270

  6. Salubrinal reduces oxidative stress, neuroinflammation and impulsive-like behavior in a rodent model of traumatic brain injury.

    PubMed

    Logsdon, Aric F; Lucke-Wold, Brandon P; Nguyen, Linda; Matsumoto, Rae R; Turner, Ryan C; Rosen, Charles L; Huber, Jason D

    2016-07-15

    Traumatic brain injury (TBI) is the leading cause of trauma related morbidity in the developed world. TBI has been shown to trigger secondary injury cascades including endoplasmic reticulum (ER) stress, oxidative stress, and neuroinflammation. The link between secondary injury cascades and behavioral outcome following TBI is poorly understood warranting further investigation. Using our validated rodent blast TBI model, we examined the interaction of secondary injury cascades following single injury and how these interactions may contribute to impulsive-like behavior after a clinically relevant repetitive TBI paradigm. We targeted these secondary pathways acutely following single injury with the cellular stress modulator, salubrinal (SAL). We examined the neuroprotective effects of SAL administration on significantly reducing ER stress: janus-N-terminal kinase (JNK) phosphorylation and C/EBP homology protein (CHOP), oxidative stress: superoxide and carbonyls, and neuroinflammation: nuclear factor kappa beta (NFκB) activity, inducible nitric oxide synthase (iNOS) protein expression, and pro-inflammatory cytokines at 24h post-TBI. We then used the more clinically relevant repeat injury paradigm and observed elevated NFκB and iNOS activity. These injury cascades were associated with impulsive-like behavior measured on the elevated plus maze. SAL administration attenuated secondary iNOS activity at 72h following repetitive TBI, and most importantly prevented impulsive-like behavior. Overall, these results suggest a link between secondary injury cascades and impulsive-like behavior that can be modulated by SAL administration. PMID:27131989

  7. Human umbilical cord blood cells or estrogen may be beneficial in treating heatstroke.

    PubMed

    Chen, Sheng-Hsien; Huang, Kuo-Feng; Lin, Mao-Tsun; Chang, Fong-Ming

    2007-03-01

    This current review summarized animal models of heatstroke experimentation that promote our current knowledge of therapeutic effects on cerebrovascular dysfunction, coagulopathy, and/or systemic inflammation with human umbilical cord blood cells (HUCBCs) or estrogen in the setting of heatstroke. Accumulating evidences have demonstrated that HUCBCs provide a promising new therapeutic method against neurodegenerative diseases, such as stroke, traumatic brain injury, and spinal cord injury as well as blood disease. More recently, we have also demonstrated that post- or pretreatment by HUCBCs may resuscitate heatstroke rats with by reducing circulatory shock, and cerebral nitric oxide overload and ischemic injury. Moreover, CD34+ cells sorted from HUCBCs may improve survival by attenuating inflammatory, coagulopathy, and multiorgan dysfunction during experimental heatstroke. Many researchers indicated pro- (e.g. tumor necrosis factor-alpha [TNF-alpha]) and anti-inflammatory (e.g. interleukin-10 [IL-10]) cytokines in the peripheral blood stream correlate with severity of circulatory shock, cerebral ischemia and hypoxia, and neuronal damage occurring in heatstroke. It has been shown that intravenous administration of CD34+ cells can secrete therapeutic molecules, such as neurotrophic factors, and attenuate systemic inflammatory reactions by decreasing serum TNF-alpha but increasing IL-10 during heatstroke. Another line of evidence has suggested that estrogen influences the severity of injury associated with cerebrovascular shock. Recently, we also successfully demonstrated estrogen resuscitated heatstroke rats by ameliorating systemic inflammation. Conclusively, HUCBCs or estrogen may be employed as a beneficial therapeutic strategy in prevention and repair of cerebrovascular dysfunction, coagulopathy, and/or systemic inflammation during heatstroke. PMID:17389184

  8. Nitric oxide and its role in ischaemic brain injury.

    PubMed

    Keynes, Robert G; Garthwaite, John

    2004-03-01

    The role of the neural messenger nitric oxide (NO) in cerebral ischaemia has been investigated extensively in the past decade. NO may play either a protective or destructive role in ischaemia and the literature is plagued with contradictory findings. Working with NO presents many unique difficulties and here we review the potential artifacts that may have contributed to discrepancies and cause future problems for the unwary investigator. Recent evidence challenges the idea that NO from neurones builds up to levels (micromolar) sufficient to directly elicit cell death during the post-ischaemic period. Concomitantly, the case is strengthened for a role of NO in delayed death mediated post-ischaemia by the inducible NO synthase. Mechanistically it seems unlikely that NO is released in high enough quantities to inhibit respiration in vivo; the formation of reactive nitrogen species, such as peroxynitrite, represents the more likely pathway to cell death. The protective and restorative properties of NO have become of increasing interest. NO from endothelial cells may, via stimulating cGMP production, protect the ischaemic brain by acutely augmenting blood flow, and by helping to form new blood vessels in the longer term (angiogenesis). Elevated cGMP production may also stop cells dying by inhibiting apoptosis and help repair damage by stimulating neurogenesis. In addition NO may act as a direct antioxidant and participate in the triggering of protective gene expression programmes that underlie cerebral ischaemic preconditioning. Better understanding of the molecular mechanisms by which NO is protective may ultimately identify new potential therapeutic targets.

  9. Oxidation of Plasma Cysteine/Cystine Redox State in Endotoxin-Induced Lung Injury

    PubMed Central

    Iyer, Smita S.; Jones, Dean P.; Brigham, Kenneth L.; Rojas, Mauricio

    2009-01-01

    Several lines of evidence indicate that perturbations in the extracellular thiol/disulfide redox environment correlate with the progression and severity of acute lung injury (ALI). Cysteine (Cys) and its disulfide Cystine (CySS) constitute the most abundant, low-molecular-weight thiol/disulfide redox couple in the plasma, and Cys homeostasis is adversely affected during the inflammatory response to infection and injury. While much emphasis has been placed on glutathione (GSH) and glutathione disulfide (GSSG), little is known about the regulation of the Cys/CySS couple in ALI. The purpose of the present study was to determine whether endotoxin administration causes a decrease in Cys and/or an oxidation of the plasma Cys/CySS redox state (Eh Cys/CySS), and to determine whether these changes were associated with changes in plasma Eh GSH/GSSG. Mice received endotoxin intraperitoneally, and GSH and Cys redox states were measured at time points known to correlate with the progression of endotoxin-induced lung injury. Eh in mV was calculated using Cys, CySS, GSH, and GSSG values by high-performance liquid chromatography and the Nernst equation. We observed distinct effects of endotoxin on the GSH and Cys redox systems during the acute phase; plasma Eh Cys/CySS was selectively oxidized early in response to endotoxin, while Eh GSH/GSSG remained unchanged. Unexpectedly, subsequent oxidation of Eh GSH/GSSG and Eh Cys/CySS occurred as a consequence of endotoxin-induced anorexia. Taken together, the results indicate that enhanced oxidation of Cys, altered transport of Cys and CySS, and decreased food intake each contribute to the oxidation of plasma Cys/CySS redox state in endotoxemia. PMID:18664641

  10. Treadmill exercise protects against pentylenetetrazol-induced seizures and oxidative stress after traumatic brain injury.

    PubMed

    Silva, Luiz Fernando Almeida; Hoffmann, Maurício Scopel; Gerbatin, Rogério da Rosa; Fiorin, Fernando da Silva; Dobrachinski, Fernando; Mota, Bibiana Castagna; Wouters, Angelica Terezinha Barth; Pavarini, Saulo Petinatti; Soares, Félix Alexandre Antunes; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2013-07-15

    Traumatic brain injury (TBI) is a major cause of acquired epilepsy, and significant resources are required to develop a better understanding of the pathologic mechanism as targets for potential therapies. Thus, we decided to investigate whether physical exercise after fluid percussion injury (FPI) protects from oxidative and neurochemical alterations as well as from behavioral electroencephalographic (EEG) seizures induced by subeffective convulsive doses of pentylenetetrazol (PTZ; 35 mg/kg). Behavioral and EEG recordings revealed that treadmill physical training increased latency to first clonic and tonic-clonic seizures, attenuated the duration of generalized seizures, and protected against the increase of PTZ-induced Racine scale 5 weeks after neuronal injury. EEG recordings also revealed that physical exercise prevented PTZ-induced amplitude increase in TBI animals. Neurochemical analysis showed that exercise training increased glutathione/oxidized glutathione ratio and glutathione levels per se. Exercise training was also effective against alterations in the redox status, herein characterized by lipid peroxidation (thiobarbituric acid reactive substances), protein carbonyl increase, as well as the inhibition of superoxide dismutase and Na⁺,K⁺-ATPase activities after FPI. On the other hand, histologic analysis with hematoxylin and eosin revealed that FPI induced moderate neuronal damage in cerebral cortex 4 weeks after injury and that physical exercise did not protect against neuronal injury. These data suggest that the ability of physical exercise to reduce FPI-induced seizures is not related to its protection against neuronal damage; however, the effective protection of selected targets, such as Na⁺/K⁺-ATPase elicited by physical exercise, may represent a new line of treatment for post-traumatic seizure susceptibility.

  11. Treadmill Exercise Protects Against Pentylenetetrazol-Induced Seizures and Oxidative Stress after Traumatic Brain Injury

    PubMed Central

    Silva, Luiz Fernando Almeida; Hoffmann, Maurício Scopel; Gerbatin, Rogério da Rosa; Fiorin, Fernando da Silva; Dobrachinski, Fernando; Mota, Bibiana Castagna; Wouters, Angelica Terezinha Barth; Pavarini, Saulo Petinatti; Soares, Félix Alexandre Antunes; Fighera, Michele Rechia

    2013-01-01

    Abstract Traumatic brain injury (TBI) is a major cause of acquired epilepsy, and significant resources are required to develop a better understanding of the pathologic mechanism as targets for potential therapies. Thus, we decided to investigate whether physical exercise after fluid percussion injury (FPI) protects from oxidative and neurochemical alterations as well as from behavioral electroencephalographic (EEG) seizures induced by subeffective convulsive doses of pentylenetetrazol (PTZ; 35 mg/kg). Behavioral and EEG recordings revealed that treadmill physical training increased latency to first clonic and tonic-clonic seizures, attenuated the duration of generalized seizures, and protected against the increase of PTZ-induced Racine scale 5 weeks after neuronal injury. EEG recordings also revealed that physical exercise prevented PTZ-induced amplitude increase in TBI animals. Neurochemical analysis showed that exercise training increased glutathione/oxidized glutathione ratio and glutathione levels per se. Exercise training was also effective against alterations in the redox status, herein characterized by lipid peroxidation (thiobarbituric acid reactive substances), protein carbonyl increase, as well as the inhibition of superoxide dismutase and Na+,K+-ATPase activities after FPI. On the other hand, histologic analysis with hematoxylin and eosin revealed that FPI induced moderate neuronal damage in cerebral cortex 4 weeks after injury and that physical exercise did not protect against neuronal injury. These data suggest that the ability of physical exercise to reduce FPI-induced seizures is not related to its protection against neuronal damage; however, the effective protection of selected targets, such as Na+/K+-ATPase elicited by physical exercise, may represent a new line of treatment for post-traumatic seizure susceptibility. PMID:23530735

  12. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    PubMed

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  13. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    PubMed Central

    SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  14. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  15. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2

    PubMed Central

    Carbone, Federico; Teixeira, Priscila Camillo; Braunersreuther, Vincent; Mach, François; Vuilleumier, Nicolas

    2015-01-01

    Abstract Significance: Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. Recent Advances: Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. Critical Issues: NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. Future Directions: Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke. Antioxid. Redox Signal. 23, 460–489. PMID:24635113

  16. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. PMID:26740181

  17. Oxidative stress disturbs energy metabolism of mitochondria in ethanol-induced gastric mucosa injury

    PubMed Central

    Pan, Jin-Shui; He, Shao-Zhen; Xu, Hong-Zhi; Zhan, Xiao-Juan; Yang, Xiao-Ning; Xiao, Hong-Min; Shi, Hua-Xiu; Ren, Jian-Lin

    2008-01-01

    AIM: To study the role of mitochondrial energy disorder in the pathogenesis of ethanol-induced gastric mucosa injury. METHODS: Wistar rats were used in this study. A gastric mucosal injury model was established by giving the rats alcohol. Gross and microscopic appearance of gastric mucosa and ultrastructure of mitochondria were evaluated. Malondiadehyde (MDA) in gastric mucosa was measured with thiobarbituric acid. Expression of ATP synthase (ATPase) subunits 6 and 8 in mitochondrial DNA (mtDNA) was determined by reverse transcription polymerase chain reaction (RT-PCR). RESULTS: The gastric mucosal lesion index was correlated with the MDA content in gastric mucosa. As the concentration of ethanol was elevated and the exposure time to ethanol was extended, the content of MDA in gastric mucosa increased and the extent of damage aggravated. The ultrastructure of mitochondria was positively related to the ethanol concentration and exposure time. The expression of mtDNA ATPase subunits 6 and 8 mRNA declined with the increasing MDA content in gastric mucosa after gavage with ethanol. CONCLUSION: Ethanol-induced gastric mucosa injury is related to oxidative stress, which disturbs energy metabolism of mitochondria and plays a critical role in the pathogenesis of ethanol-induced gastric mucosa injury. PMID:18855985

  18. Zinc Supplementation Prevents Alcoholic Liver Injury in Mice through Attenuation of Oxidative Stress

    PubMed Central

    Zhou, Zhanxiang; Wang, Lipeng; Song, Zhenyuan; Saari, Jack T.; McClain, Craig J.; Kang, Y. James

    2005-01-01

    Alcoholic liver disease is associated with zinc decrease in the liver. Therefore, we examined whether dietary zinc supplementation could provide protection from alcoholic liver injury. Metallothionein-knockout and wild-type 129/Sv mice were pair-fed an ethanol-containing liquid diet for 12 weeks, and the effects of zinc supplementation on ethanol-induced liver injury were analyzed. Zinc supplementation attenuated ethanol-induced hepatic zinc depletion and liver injury as measured by histopathological and ultrastructural changes, serum alanine transferase activity, and hepatic tumor necrosis factor-α in both metallothionein-knockout and wild-type mice, indicating a metallothionein-independent zinc protection. Zinc supplementation inhibited accumulation of reactive oxygen species, as indicated by dihydroethidium fluorescence, and the consequent oxidative damage, as assessed by immunohistochemical detection of 4-hydroxynonenal and nitrotyrosine and quantitative analysis of malondialdehyde and protein carbonyl in the liver. Zinc supplementation suppressed ethanol-elevated cytochrome P450 2E1 activity but increased the activity of alcohol dehydrogenase in the liver, without affecting the rate of blood ethanol elimination. Zinc supplementation also prevented ethanol-induced decreases in glutathione concentration and glutathione peroxidase activity and increased glutathione reductase activity in the liver. In conclusion, zinc supplementation prevents alcoholic liver injury in an metallothionein-independent manner by inhibiting the generation of reactive oxygen species (P450 2E1) and enhancing the activity of antioxidant pathways. PMID:15920153

  19. Plasma fluorescent oxidation products and risk of estrogen receptor-negative breast cancer in the Nurses' Health Study and Nurses' Health Study II.

    PubMed

    Hirko, Kelly A; Fortner, Renée T; Hankinson, Susan E; Wu, Tianying; Eliassen, A Heather

    2016-07-01

    Findings from epidemiologic studies of oxidative stress biomarkers and breast cancer have been mixed, although no studies have focused on estrogen receptor-negative (ER-) tumors which may be more strongly associated with oxidative stress. We examined prediagnostic plasma fluorescent oxidation products (FlOP), a global biomarker of oxidative stress, and risk of ER- breast cancer in a nested case-control study in the Nurses' Health Study and Nurses' Health Study II. ER- breast cancer cases (n = 355) were matched to 355 controls on age, month/time of day of blood collection, fasting status, menopausal status, and menopausal hormone use. Conditional logistic regression models were used to examine associations of plasma FlOP at three emission wavelengths (FlOP_360, FlOP_320, and FlOP_400) and risk of ER- breast cancer. We did not observe any significant associations between FlOP measures and risk of ER- breast cancer overall; the RRQ4vsQ1 (95 %CI) 0.70 (0.43-1.13), p trend = 0.09 for FlOP_360; 0.91(0.56-1.46), p trend = 0.93 for FlOP_320; and 0.62 (0.37-1.03), p trend = 0.10 for FlOP_400. Results were similar in models additionally adjusted for total carotenoid levels and in models stratified by age and total carotenoids. Although high (vs. low) levels of FIOP_360 and FIOP_400 were associated with lower risk of ER- breast cancer in lean women (body mass index (BMI) < 25 kg/m(2)) but not in overweight/obese women, these differences were not statistically significant (pint = 0.23 for FlOP_360; pint = 0.37 for FlOP_400). Our findings suggest that positive associations of plasma FlOP concentrations and ER- breast cancer risk are unlikely. PMID:27294610

  20. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    SciTech Connect

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  1. Impact of exercise training on oxidative stress in individuals with a spinal cord injury.

    PubMed

    van Duijnhoven, Noortje; Hesse, Evelyne; Janssen, Thomas; Wodzig, Will; Scheffer, Peter; Hopman, Maria

    2010-08-01

    Individuals with a spinal cord injury (SCI) have an increased cardiovascular risk. We hypothesize that (anti)oxidative imbalance is associated with the increased cardiovascular risk in SCI, while exercise can reverse this status. The aim of the study is to compare baseline levels of oxidative stress and antioxidative capacity between individuals with SCI and able-bodied (AB) subjects, and to assess acute and long-term effects of functional electrical stimulation (FES) exercise on oxidative stress and antioxidative capacity in SCI. Venous blood was taken from subjects with an SCI (n = 9) and age- and gender-matched AB subjects (n = 9) to examine oxidative stress through malondialdehyde (MDA) levels, while superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme levels represented anti-oxidative capacity. Subsequently, subjects with an SCI performed an 8-week FES exercise training period. Blood was taken before and after the first exercise bout and after the last FES session to examine the acute and chronic effect of FES exercise, respectively. Baseline levels of MDA, SOD and GPx were not different between individuals with SCI and AB subjects. SCI demonstrated a correlation between initial fitness level and MDA (R = -0.83, P = 0.05). MDA, SOD and GPx levels were neither altered by a single FES exercise bout nor by 8 weeks FES training. In conclusion, although individuals with an SCI demonstrate a preserved (anti)oxidative status, the correlation between fitness level and (anti)oxidative balance suggests that higher fitness levels are related to improved (anti)oxidative status in SCI. Nonetheless, the FES exercise stimulus was insufficient to acutely or chronically change (anti)oxidative status in individuals with an SCI.

  2. Estrogen and Osteoporosis.

    ERIC Educational Resources Information Center

    Lindsay, Robert

    1987-01-01

    This article reviews the use of estrogen in the prevention and treatment of osteoporosis. Dosage levels, interactions with other factors, side effects, and the mechanism of estrogen action are discussed. (Author/MT)

  3. Sesamin ameliorates oxidative liver injury induced by carbon tetrachloride in rat

    PubMed Central

    Lv, Dan; Zhu, Chang-Qing; Liu, Li

    2015-01-01

    Sesamin is naturally occurring lignan from sesame oil with putative antioxidant property. The present study was designed to investigate the protective role of sesamin against carbon tetrachloride induced oxidative liver injury. Male Wistar albino rats (180-200 g) were divided in to 5 groups (n=6). Hepatotoxicity was induced by the administration of CCl4 (0.1 ml/100 g bw., 50% v/v with olive oil) intraperitoneally. Sesamin was administered in two different dose (5 and 10 ml/kg bw) to evaluate the hepatoprotective activity. Sesamin significantly reduced the elevated serum liver marker enzymes (P<0.0001). Reduction of TBARS (P<0.01 and P<0.001) followed by enhancement of GSH., SOD and catalase (P<0.0001) in liver homogenate in sesamin treated groups shows the amelioration of oxidative stress induced by CCl4. Histopathological report also supported the hepatoprotection offered by sesamin. Sesamin effects in both the dose were in comparable to reference standard drug silymarin. From these above findings it has been concluded that sesamin ameliorate the oxidative liver injury in terms of reduction of lipid peroxidation and enhancement of liver antioxidant enzymes. PMID:26191289

  4. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage.

    PubMed Central

    Landry, L G; Chapple, C C; Last, R L

    1995-01-01

    We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate esters in ferulic acid hydroxylase 1 [fah1]) are more sensitive to UV-B than is the wild-type Landsberg erecta. Despite its ability to accumulate UV-absorptive flavonoid compounds, the ferulic acid hydroxylase mutant fah1 exhibits more physiological injury (growth inhibition and foliar lesions) than either wild type or tt5. The extreme UV-B sensitivity of fah1 demonstrates the importance of hydroxycinnamate esters as UV-B protectants. Consistent with the whole-plant response, the highest levels of lipid and protein oxidation products were seen in fah1. Ascorbate peroxidase enzyme activity was also increased in the leaves of UV-B-treated plants in a dose- and genotype-dependent manner. These results demonstrate that, in A. thaliana, hydroxycinnamates are more effective UV-B protectants than flavonoids. The data also indicate that A. thaliana responds to UV-B as an oxidative stress, and sunscreen compounds reduce the oxidative damage caused by UV-B. PMID:8539286

  5. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage

    SciTech Connect

    Landry, L.G.; Last, R.L.; Chapple, C.C.S.

    1995-12-01

    We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate esters in ferulic acid hydroxylase 1 [fah 1]) are more sensitive to UV-B than is the wild-type Landsberg erecta. Despite its ability to accumulate UV-absorptive flavonoid compounds, the ferulic acid hydroxylase mutant fah1 exhibits more physiological injury (growth inhibition and foliar lesions) than either wild type or tt5. The extreme UV-B sensitivity of fah1 demonstrates the importance of hydroxycinnamate esters as UV-B protectants. Consistent with the whole-plant response, the highest levels of lipid and protein oxidation products were seen in fah1. Ascorbate peroxidase enzyme activity was also increased in the leaves of UV-B-treated plants in a dose- and genotype-dependent manner. These results demonstrate that, in A. thaliana, hydryoxycinnamates are more effective UV-B protectants than flavonoids. The data also indicate that A. thaliana responds to UV-B as an oxidative stress, and sunscreen compounds reduce the oxidative damage caused by UV-B. 36 refs., 6 figs.

  6. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation

    PubMed Central

    Yuan, Dongdong; Yao, Weifeng; Zhu, Qianqian; Liu, Yue; Chen, Xi; Huang, Yong

    2016-01-01

    Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI) and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R) after high (25 mM) or low (5.5 mM) glucose culture. Cell viability, reactive oxygen species (ROS), and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC) or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system. PMID:27656261

  7. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation

    PubMed Central

    Yuan, Dongdong; Yao, Weifeng; Zhu, Qianqian; Liu, Yue; Chen, Xi; Huang, Yong

    2016-01-01

    Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI) and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R) after high (25 mM) or low (5.5 mM) glucose culture. Cell viability, reactive oxygen species (ROS), and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC) or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.

  8. Arachidonic acid-induced oxidative injury to cultured spinal cord neurons.

    PubMed

    Toborek, M; Malecki, A; Garrido, R; Mattson, M P; Hennig, B; Young, B

    1999-08-01

    Spinal cord trauma can cause a marked release of free fatty acids, in particular, arachidonic acid (AA), from cell membranes. Free fatty acids, and AA by itself, may lead to secondary damage to spinal cord neurons. To study this hypothesis, cultured spinal cord neurons were exposed to increasing concentrations of AA (0.01-10 microM). AA-induced injury to spinal cord neurons was assessed by measurements of cellular oxidative stress, intracellular calcium levels, activation of nuclear factor-KB (NF-kappaB), and cell viability. AA treatment increased intracellular calcium concentrations and decreased cell viability. Oxidative stress increased significantly in neurons exposed to 1 and 10 microM AA. In addition, AA treatment activated NF-kappaB and decreased levels of the inhibitory subunit, IKB. It is interesting that manganese superoxide dismutase protein levels and levels of intracellular total glutathione increased in neurons exposed to this fatty acid for 24 h, consistent with a compensatory response to increased oxidative stress. These results strongly support the hypothesis that free fatty acids contribute to the tissue injury observed following spinal cord trauma. PMID:10428065

  9. Flavonoids of an extract of Pterospartum tridentatum showing endothelial protection against oxidative injury.

    PubMed

    Vitor, Rute F; Mota-Filipe, Helder; Teixeira, Generosa; Borges, Carlos; Rodrigues, Ana Isabel; Teixeira, Adriano; Paulo, Alexandra

    2004-08-01

    Pterospartum tridentatum is a Leguminosae that grows spontaneously in Portugal. The flowers are used in popular medicine for the treatment of throat irritation conditions and in herbal mixtures for diabetes. Diabetic vascular complications are due, among other reasons, to increased oxidative stress and for that reason antioxidants are believed to be beneficial for the diabetic patient. The flower water extract of this herbal drug showed dose-dependent protective effect of cultured human endothelial cells against oxidative injury induced by H2O2, at concentrations > or =0.3 mg/ml. This water extract, after liquid-liquid and chromatographic fractionation afforded one new isoflavone (5,5'-dihydroxy-3'-metoxi-isoflavone-7-O-beta-glucoside) and three other known isoflavones (prunetin, genistin and sissotrin). The structural characterisation of isolated compounds was achieved by UV, NMR and MS analysis. The flavonol glycoside isoquercitrin was also identified in the extract by HPLC analysis. Isoquercitrin is one of the active antioxidant principles of the extract since it showed dose-dependent protective effect against oxidative injury at concentrations > or =0.3 mM. Isoflavones were inactive at the same concentrations. The results suggest that the water extract of this herbal drug may prevent or reduce the development of diabetic vascular complications.

  10. Role of Mitochondrial Oxidants in an In Vitro Model of Sepsis-Induced Renal Injury

    PubMed Central

    Pathak, Elina; MacMillan-Crow, Lee Ann

    2012-01-01

    Oxidative stress has been implicated to play a major role in multiorgan dysfunction during sepsis. To study the mechanism of oxidant generation in acute kidney injury (AKI) during sepsis, we developed an in vitro model of sepsis using primary cultures of mouse cortical tubular epithelial cells exposed to serum (2.5–10%) collected from mice at 4 h after induction of sepsis by cecal ligation and puncture (CLP) or Sham (no sepsis). CLP serum produced a concentration-dependent increase in nitric oxide (NO) (nitrate + nitrite) release at 6 h and cytotoxicity (lactate dehydrogenase release) at 18 h compared with Sham serum treatment. Before cytotoxicity there was a decrease in mitochondrial membrane potential, which was followed by increased superoxide and peroxynitrite levels compared with Sham serum. The role of oxidants was evaluated by using the superoxide dismutase mimetic and peroxynitrite scavenger manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin tetratosylate hydroxide (MnTmPyP). MnTmPyP (10–100 μM) produced a concentration-dependent preservation of ATP and protection against cytotoxicity. MnTmPyP blocked mitochondrial superoxide and peroxynitrite generation produced by CLP serum but had no effect on NO levels. Although MnTmPyP did not block the initial CLP serum-induced fall in mitochondrial membrane potential, it allowed mitochondrial membrane potential to recover. Data from this in vitro model suggest a time-dependent generation of mitochondrial oxidants, mitochondrial dysfunction, and renal tubular epithelial cell injury and support the therapeutic potential of manganese porphyrin compounds in preventing sepsis-induced AKI. PMID:22011433

  11. Induction of NAD(P)H-quinone oxidoreductase 1 by antioxidants in female ACI rats is associated with decrease in oxidative DNA damage and inhibition of estrogen-induced breast cancer

    PubMed Central

    Singh, Bhupendra; Bhat, Hari K.

    2012-01-01

    Exact mechanisms underlying the initiation and progression of estrogen-related cancers are not clear. Literature, evidence and our studies strongly support the role of estrogen metabolism-mediated oxidative stress in estrogen-induced breast carcinogenesis. We have recently demonstrated that antioxidants vitamin C and butylated hydroxyanisole (BHA) or estrogen metabolism inhibitor α-naphthoflavone (ANF) inhibit 17β-estradiol (E2)-induced mammary tumorigenesis in female ACI rats. The objective of the current study was to identify the mechanism of antioxidant-mediated protection against E2-induced DNA damage and mammary tumorigenesis. Female ACI rats were treated with E2 in the presence or absence of vitamin C or BHA or ANF for up to 240 days. Nuclear factor erythroid 2-related factor 2 (NRF2) and NAD(P)H-quinone oxidoreductase 1 (NQO1) were suppressed in E2-exposed mammary tissue and in mammary tumors after treatment of rats with E2 for 240 days. This suppression was overcome by co-treatment of rats with E2 and vitamin C or BHA. Time course studies indicate that NQO1 levels tend to increase after 4 months of E2 treatment but decrease on chronic exposure to E2 for 8 months. Vitamin C and BHA significantly increased NQO1 levels after 120 days. 8-Hydroxydeoxyguanosine (8-OHdG) levels were higher in E2-exposed mammary tissue and in mammary tumors compared with age-matched controls. Vitamin C or BHA treatment significantly decreased E2-mediated increase in 8-OHdG levels in the mammary tissue. In vitro studies using silencer RNA confirmed the role of NQO1 in prevention of oxidative DNA damage. Our studies further demonstrate that NQO1 upregulation by antioxidants is mediated through NRF2. PMID:22072621

  12. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    SciTech Connect

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E. . E-mail: j.p.e.spencer@reading.ac.uk

    2006-08-04

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of {gamma}-glutamylcysteine synthetase-heavy subunit ({gamma}-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis.

  13. Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury

    PubMed Central

    Chandrika, Bhavya B.; Yang, Cheng; Ou, Yang; Feng, Xiaoke; Muhoza, Djamali; Holmes, Alexandrea F.; Theus, Sue; Deshmukh, Sarika; Haun, Randy S.; Kaushal, Gur P.

    2015-01-01

    We examined whether endoplasmic reticulum (ER) stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR) injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase–3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase–3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo. PMID:26444017

  14. Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury.

    PubMed

    Chandrika, Bhavya B; Yang, Cheng; Ou, Yang; Feng, Xiaoke; Muhoza, Djamali; Holmes, Alexandrea F; Theus, Sue; Deshmukh, Sarika; Haun, Randy S; Kaushal, Gur P

    2015-01-01

    We examined whether endoplasmic reticulum (ER) stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR) injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase-3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase-3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo.

  15. Estrogens, inflammation and cognition.

    PubMed

    Au, April; Feher, Anita; McPhee, Lucy; Jessa, Ailya; Oh, Soojin; Einstein, Gillian

    2016-01-01

    The effects of estrogens are pleiotropic, affecting multiple bodily systems. Changes from the body's natural fluctuating levels of estrogens, through surgical removal of the ovaries, natural menopause, or the administration of exogenous estrogens to menopausal women have been independently linked to an altered immune profile, and changes to cognitive processes. Here, we propose that inflammation may mediate the relationship between low levels of estrogens and cognitive decline. In order to determine what is known about this connection, we review the literature on the cognitive effects of decreased estrogens due to oophorectomy or natural menopause, decreased estrogens' role on inflammation--both peripherally and in the brain--and the relationship between inflammation and cognition. While this review demonstrates that much is unknown about the intersection between estrogens, cognition, inflammation, we propose that there is an important interaction between these literatures.

  16. Nitric oxide and endothelin relationship in intestinal ischemia/reperfusion injury (II).

    PubMed

    Ozel, S K; Yüksel, M; Haklar, G; Durakbaşa, C U; Dagli, T E; Aktan, A O

    2001-01-01

    Endothelins ( ETs ) are potent vasoconstrictors derived from vascular endothelium. They have primary roles in many pathophysiologic states including ischemia/reperfusion (I/R) injury. The relationships between nitric oxide (NO) and ETs are still under investigation. In this study on rats we want to focus on the interaction of NO and ET especially in I/R injury. For this purpose ET-1 and PD-156252, a nonselective ET receptor blocker, were given in a mesenteric I/R model and reactive oxygen species were detected directly using chemiluminescence of the ileal tissue. ET administrations to sham and I/R groups caused significant increases in NO concentrations whereas, in terms of peroxynitrite, which is a highly reactive group of free radicals, its increasing effects were seen only in I/R groups. This suggests that in I/R where superoxide levels increase together with NO, the conversion to peroxynitrite is likely and this effect is augmented with ET administration. On the other hand PD administration decreases superoxide and thereby peroxynitrite levels and this study shows that the effect of PD-156252 is established through this mode of action. These data suggest therapeutic approaches that may be beneficial in the treatment of I/R injury.

  17. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats

    PubMed Central

    Palejwala, Ali H.; Fridley, Jared S.; Mata, Javier A.; Samuel, Errol L. G.; Luerssen, Thomas G.; Perlaky, Laszlo; Kent, Thomas A.; Tour, James M.; Jea, Andrew

    2016-01-01

    Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury. PMID:27625885

  18. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats

    PubMed Central

    Palejwala, Ali H.; Fridley, Jared S.; Mata, Javier A.; Samuel, Errol L. G.; Luerssen, Thomas G.; Perlaky, Laszlo; Kent, Thomas A.; Tour, James M.; Jea, Andrew

    2016-01-01

    Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury.

  19. Vascular Immunotargeting of Glucose Oxidase to the Endothelial Antigens Induces Distinct Forms of Oxidant Acute Lung Injury

    PubMed Central

    Christofidou-Solomidou, Melpo; Kennel, Stephen; Scherpereel, Arnaud; Wiewrodt, Rainer; Solomides, Charalambos C.; Pietra, Giuseppe G.; Murciano, Juan-Carlos; Shah, Sayed A.; Ischiropoulos, Harry; Albelda, Steven M.; Muzykantov, Vladimir R.

    2002-01-01

    Oxidative endothelial stress, leukocyte transmigration, and pulmonary thrombosis are important pathological factors in acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Vascular immunotargeting of the H2O2-generating enzyme glucose oxidase (GOX) to the pulmonary endothelium causes an acute oxidative lung injury in mice. 1 In the present study we compared the pulmonary thrombosis and leukocyte transmigration caused by GOX targeting to the endothelial antigens platelet-endothelial cell adhesion molecule (PECAM) and thrombomodulin (TM). Both anti-PECAM and anti-TM delivered similar amounts of 125I-GOX to the lungs and caused a dose-dependent, tissue-selective lung injury manifested within 2 to 4 hours by high lethality, vascular congestion, polymorphonuclear neutrophil (PMN) sequestration in the pulmonary vasculature, severe pulmonary edema, and tissue oxidation, yet at an equal dose, anti-TM/GOX inflicted more severe lung injury than anti-PECAM/GOX. Moreover, anti-TM/GOX-induced injury was accompanied by PMN transmigration in the alveolar space, whereas anti-PECAM/GOX-induced injury was accompanied by PMN degranulation within vascular lumen without PMN transmigration, likely because of PECAM blockage. Anti-TM/GOX caused markedly more severe pulmonary thrombosis than anti-PECAM/GOX, likely because of TM inhibition. These results indicate that blocking of specific endothelial antigens by GOX immunotargeting modulates important pathological features of the lung injury initiated by local generation of H2O2 and that this approach provides specific and robust models of diverse variants of human ALI/ARDS in mice. In particular, anti-TM/GOX causes lung injury combining oxidative, prothrombotic, and inflammatory components characteristic of the complex pathological picture seen in human ALI/ARDS. PMID:11891211

  20. Reappraisal of xenobiotic-induced, oxidative stress-mediated cellular injury in chronic pancreatitis: A systematic review

    PubMed Central

    Siriwardena, Ajith K

    2014-01-01

    AIM: To reappraise the hypothesis of xenobiotic induced, cytochrome P450-mediated, micronutrient-deficient oxidative injury in chronic pancreatitis. METHODS: Individual searches of the Medline and Embase databases were conducted for each component of the theory of oxidative-stress mediated cellular injury for the period from 1st January 1990 to 31st December 2012 using appropriate medical subject headings. Boolean operators were used. The individual components were drawn from a recent update on theory of oxidative stress-mediated cellular injury in chronic pancreatitis. RESULTS: In relation to the association between exposure to volatile hydrocarbons and chronic pancreatitis the studies fail to adequately control for alcohol intake. Cytochrome P450 (CYP) induction occurs as a diffuse hepatic and extra-hepatic response to xenobiotic exposure rather than an acinar cell-specific process. GSH depletion is not consistently confirmed. There is good evidence of superoxide dismutase depletion in acute phases of injury but less to support a chronic intra-acinar depletion. Although the liver is the principal site of CYP induction there is no evidence to suggest that oxidative by-products are carried in bile and reflux into the pancreatic duct to cause injury. CONCLUSION: Pancreatic acinar cell injury due to short-lived oxygen free radicals (generated by injury mediated by prematurely activated intra-acinar trypsin) is an important mechanism of cell damage in chronic pancreatitis. However, in contemporary paradigms of chronic pancreatitis this should be seen as one of a series of cell-injury mechanisms rather than a sole mediator. PMID:24659895

  1. Studies on electrochemical oxidation of estrogenic disrupting compound bisphenol AF and its interaction with human serum albumin.

    PubMed

    Wang, Xin; Yang, Jichun; Wang, Yuejiao; Li, Yanhui; Wang, Fang; Zhang, Lei

    2014-07-15

    Bisphenol AF (BPAF) is an environmental pollutant to disrupt endocrine system or cause cancer, thus the detection of trace BPAF is very important. In this study, a simple and highly sensitive electroanalytical method for the determination of BPAF was developed. In pH 6.0 phosphate buffer solutions, carboxyl functionalized multi-walled carbon nanotubes (MWCNT-COOH) modified glassy carbon electrode exhibits an enhanced effectiveness for the oxidation of BPAF. This electrode exhibited two linear relationships with BPAF concentration range of 0.02μmolL(-1) to 8.0μmolL(-1) and a detection limit of 0.0077μmolL(-1) (S/N=3). The proposed method was successfully applied to determine BPAF in real samples and the results were satisfactory. The MWCNT-COOH/GCE electrode showed good reproducibility, stability and anti-interference. The electrochemistry and spectroscopy methods are also described for the evaluation of BPAF-HSA interaction. In the presence of HSA, the peak currents of BPAF decreased linearly due to the formation of a super-molecular complex. The binding constant between BPAF and HSA, obtained by differential pulse voltammetry (DPV), was consistent with the fluorescence analysis. The molecular modeling studies were carried out to clearly describe the interaction between BPAF and HSA.

  2. [Clinical manifestation of acute pancreatitis in children with caustic ingestion injury - the role of oxidative stress].

    PubMed

    Brankov, O; Shivachev, Kh; Drebov, R; Dumanov, K

    2007-01-01

    For a 10 years period (1996-2005) 66 children with severe caustic injuries of the esophagus and stomach were admitted at the Department of Pediatric Surgery. Subject of this article are 17 children with clinical, laboratory and intraoperative proven acute pancreatitis. The patients were admitted at the clinic 12 hours to 12 days after the ingestion of the corrosive agent. Fifteen of them underwent surgery and different surgical procedures were performed - gastric resection, transhiatal esophagectomy, gastrectomy, gastrostomy. In all patients were found elevated levels of alpha-amilase in blood serum and urine as well as elevated CRP in blood serum. Clinically manifested acute pancreatitis was diagnosed on ultrasound studies and laparotomy. The newest theories about the genesis of acute pancreatitis emphasize on the role of oxidative stress. Experimental models suggest that burn trauma (thermal or chemical) cause critical increase of free oxygen radicals and lipid peroxydation products in the tissue of the damaged organ and the bloodstream. The local tissue damage leads to release of inflammatory mediators which enter the bloodstream and cause distant organs damage of - lung, liver, kidneys and pancreas. In this preliminary report the authors discuss the pathogenesis of acute pancreatitis in children with acute corrosive ingestion injury of the esophagus and stomach. We call this phenomenon " caustic " oxidative stress. This is the first scientific report on this topic in the reviewed literature.

  3. Nitrate/Nitrite as Critical Mediators to Limit Oxidative Injury and Inflammation

    PubMed Central

    Waltz, Paul; Escobar, Daniel; Botero, Ana Maria

    2015-01-01

    Abstract Significance: Nitric oxide (NO) is a critical signaling molecule marked by complex chemistry and varied biological responses depending on the context of the redox environment. In the setting of inflammation, NO can not only contribute to tissue injury and be causative of oxidative damage but can also signal as an adaptive molecule to limit inflammatory signaling in multiple cell types and tissues. Recent Advances: An advance in our understanding of NO biology was the recognition of the nitrate-nitrite-NO axis, whereby nitrate (predominantly from dietary sources) could be converted to nitrite and nitrite could be reduced to NO. Critical Issues: Intriguingly, the recognition of multiple enzymes that serve as nitrite reductases in the setting of hypoxia or ischemia established the concept of nitrite as a circulating endocrine reservoir of NO, with the selective release of NO at sites that were primed for this reaction. This review highlights the anti-inflammatory roles of nitrite in numerous clinical conditions, including ischemia/reperfusion, transplant, cardiac arrest, and vascular injury, and in gastrointestinal inflammation. Future Directions: These preclinical and clinical investigations set up further clinical trials and studies that elucidate the endogenous role this pathway plays in protection against inflammatory signaling. Antioxid. Redox Signal. 23, 328–339. PMID:26140517

  4. Taurine protected kidney from oxidative injury through mitochondrial-linked pathway in a rat model of nephrolithiasis.

    PubMed

    Li, Cheng Yang; Deng, Yao Liang; Sun, Bing Hua

    2009-08-01

    Hyperoxaluria and crystal deposition induce oxidative stress (OS) and renal epithelial cells injury, both mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase are considered as the main sources of reactive oxygen species (ROS). Taurine is known to have antioxidant activity and shows renoprotective effect. We investigate the effect of taurine treatment on renal protection, and the putative source of ROS, in a rat model of calcium oxalate nephrolithiasis. Rats were administered with 2.5% (V/V) ethylene glycol + 2.5% (W/V) ammonium chloride (4 ml/day), with restriction on intake of drinking water (20 ml/day) for 4 weeks. Simultaneous treatment with taurine (2% W/W, mixed with the chow) was performed. At the end of the study, indexes of OS and renal injury were assessed. Renal tubular ultrastructure changes were analyzed under transmission electron microscopy. Crystal deposition in kidney was scored under light microscopy. Angiotensin II in kidney homogenates was determined by radioimmunoassay. Expression of NADPH oxidase subunits p47phox and Nox-4 mRNAs in kidney was evaluated by real time-polymerase chain reaction. The data showed that oxidative injury of the kidney occurred in nephrolithiasis-induced rats. Hyperplasia of mitochondria developed in renal tubular epithelium. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in mitochondria decreased and the mitochondrial membrane showed oxidative injury. Taurine treatment alleviated the oxidative injury of the kidney, improved SOD and GSH-Px activities, as well as the mitochondrial membrane injury, with lesser crystal depositions in the kidney. We could not detect statistical changes in the renal angiotensin II level, and the renal p47phox and Nox-4 mRNAs expression in those rats. The results suggest that mitochondria but not NADPH oxidase may account for the OS and taurine protected kidney from oxidative injury through mitochondrial-linked pathway in this rat

  5. Comparison of various iron chelators and prochelators as protective agents against cardiomyocyte oxidative injury.

    PubMed

    Jansová, Hana; Macháček, Miloslav; Wang, Qin; Hašková, Pavlína; Jirkovská, Anna; Potůčková, Eliška; Kielar, Filip; Franz, Katherine J; Simůnek, Tomáš

    2014-09-01

    Oxidative stress is a common denominator of numerous cardiovascular disorders. Free cellular iron catalyzes the formation of highly toxic hydroxyl radicals, and iron chelation may thus be an effective therapeutic approach. However, using classical iron chelators in diseases without iron overload poses risks that necessitate more advanced approaches, such as prochelators that are activated to chelate iron only under disease-specific oxidative stress conditions. In this study, three cell-membrane-permeable iron chelators (clinically used deferasirox and experimental SIH and HAPI) and five boronate-masked prochelator analogs were evaluated for their ability to protect cardiac cells against oxidative injury induced by hydrogen peroxide. Whereas the deferasirox-derived agents TIP and TRA-IMM displayed negligible protection and even considerable toxicity, the aroylhydrazone prochelators BHAPI and BSIH-PD provided significant cytoprotection and displayed lower toxicity after prolonged cellular exposure compared to their parent chelators HAPI and SIH, respectively. Overall, the most favorable properties in terms of protective efficiency and low inherent cytotoxicity were observed with the aroylhydrazone prochelator BSIH. BSIH efficiently protected both H9c2 rat cardiomyoblast-derived cells and isolated primary rat cardiomyocytes against hydrogen peroxide-induced mitochondrial and lysosomal dysregulation and cell death. At the same time, BSIH was nontoxic at concentrations up to its solubility limit (600 μM) and in 72-h incubation. Hence, BSIH merits further investigation for prevention and/or treatment of cardiovascular disorders associated with a known (or presumed) component of oxidative stress.

  6. Association between Peripheral Oxidative Stress and White Matter Damage in Acute Traumatic Brain Injury

    PubMed Central

    Lin, Wei-Ming; Chen, Meng-Hsiang; Wang, Hung-Chen; Lu, Cheng-Hsien; Chen, Pei-Chin; Chen, Hsiu-Ling; Tsai, Nai-Wen; Su, Yu-Jih; Li, Shau-Hsuan; Kung, Chia-Te; Chiu, Tsui-Min; Weng, Hsu-Huei; Lin, Wei-Che

    2014-01-01

    The oxidative stress is believed to be one of the mechanisms involved in the neuronal damage after acute traumatic brain injury (TBI). However, the disease severity correlation between oxidative stress biomarker level and deep brain microstructural changes in acute TBI remains unknown. In present study, twenty-four patients with acute TBI and 24 healthy volunteers underwent DTI. The peripheral blood oxidative biomarkers, like serum thiol and thiobarbituric acid-reactive substances (TBARS) concentrations, were also obtained. The DTI metrics of the deep brain regions, as well as the fractional anisotropy (FA) and apparent diffusion coefficient, were measured and correlated with disease severity, serum thiol, and TBARS levels. We found that patients with TBI displayed lower FAs in deep brain regions with abundant WMs and further correlated with increased serum TBARS level. Our study has shown a level of anatomic detail to the relationship between white matter (WM) damage and increased systemic oxidative stress in TBI which suggests common inflammatory processes that covary in both the peripheral and central reactions after TBI. PMID:24804213

  7. Comparison of various iron chelators and prochelators as protective agents against cardiomyocyte oxidative injury

    PubMed Central

    Jansová, Hana; Macháček, Miloslav; Wang, Qin; Hašková, Pavlína; Jirkovská, Anna; Potůčková, Eliška; Kielar, Filip; Franz, Katherine J.; Šimůnek, Tomáš

    2014-01-01

    Oxidative stress is a common denominator of numerous cardiovascular disorders. Free cellular iron catalyzes formation of highly toxic hydroxyl radicals and iron chelation may thus be an effective therapeutic approach. However, using classical iron chelators in diseases without iron overload poses risks that necessitate more advanced approaches, such as prochelators that are activated to chelate iron only under disease-specific oxidative stress conditions. In this study, three cell membrane-permeable iron chelators (clinically-used deferasirox and experimental SIH and HAPI) and five boronate-masked prochelator analogs were evaluated for their ability to protect cardiac cells against oxidative injury induced by hydrogen peroxide. Whereas the deferasirox-derived agents TIP and TRA-IMM displayed negligible protection and even considerable toxicity, aroylhydrazone prochelators BHAPI and BSIH-PD provided significant cytoprotection and displayed lower toxicity following prolonged cellular exposure compared to their parent chelators HAPI and SIH, respectively. Overall, the most favorable properties in terms of protective efficiency and low inherent cytotoxicity were observed with aroylhydrazone prochelator BSIH. BSIH efficiently protected both H9c2 rat cardiomyoblast-derived cells as well as isolated primary rat cardiomyocytes against hydrogen peroxide-induced mitochondrial and lysosomal dysregulation and cell death. At the same time, BSIH was non-toxic at concentrations up to its solubility limit (600 µM) and 72-hour incubation. Hence, BSIH merits further investigation for prevention and/or treatment of cardiovascular disorders associated with a known (or presumed) component of oxidative stress. PMID:24992833

  8. Targeted Nitric Oxide Delivery by Supramolecular Nanofibers for the Prevention of Restenosis After Arterial Injury

    PubMed Central

    Bahnson, Edward S.M.; Kassam, Hussein A.; Moyer, Tyson J.; Jiang, Wulin; Morgan, Courtney E.; Vercammen, Janet M.; Jiang, Qun; Flynn, Megan E.; Stupp, Samuel I.

    2016-01-01

    Abstract Aims: Cardiovascular interventions continue to fail as a result of arterial restenosis secondary to neointimal hyperplasia. We sought to develop and evaluate a systemically delivered nanostructure targeted to the site of arterial injury to prevent neointimal hyperplasia. Nanostructures were based on self-assembling biodegradable molecules known as peptide amphiphiles. The targeting motif was a collagen-binding peptide, and the therapeutic moiety was added by S-nitrosylation of cysteine residues. Results: Structure of the nanofibers was characterized by transmission electron microscopy and small-angle X-ray scattering. S-nitrosylation was confirmed by mass spectrometry, and nitric oxide (NO) release was assessed electrochemically and by chemiluminescent detection. The balloon carotid artery injury model was performed on 10-week-old male Sprague-Dawley rats. Immediately after injury, nanofibers were administered systemically via tail vein injection. S-nitrosylated (S-nitrosyl [SNO])-targeted nanofibers significantly reduced neointimal hyperplasia 2 weeks and 7 months following balloon angioplasty, with no change in inflammation. Innovation: This is the first time that an S-nitrosothiol (RSNO)-based therapeutic was shown to have targeted local effects after systemic administration. This approach, combining supramolecular nanostructures with a therapeutic NO-based payload and a targeting moiety, overcomes the limitations of delivering NO to a site of interest, avoiding undesirable systemic side effects. Conclusion: We successfully synthesized and characterized an RSNO-based therapy that when administered systemically, targets directly to the site of vascular injury. By integrating therapeutic and targeting chemistries, these targeted SNO nanofibers provided durable inhibition of neointimal hyperplasia in vivo and show great potential as a platform to treat cardiovascular diseases. Antioxid. Redox Signal. 27, 401–418. PMID:26593400

  9. Protective Role of Nitric Oxide in Ischemia and Reperfusion Injury of the Liver

    PubMed Central

    Shimamura, Tsuyoshi; Zhu, Yue; Zhang, Shimin; Jin, Maeng Bong; Ishizaki, Naoki; Urakami, Atsushi; Totsuka, Eishi; Kishida, Akihiro; Lee, Randall; Subbotin, Vladimir; Furukawa, Hiroyuki; Starzl, Thomas E; Todo, Satoru

    2010-01-01

    Background The suppressed production of nitric oxide (NO), associated with endothelial dysfunction, is thought to be a cause of ischemia and reperfusion injury of the liver. But findings of the salutary effects of NO enhancement on such injury have been conflicting. In this study, we tested our hypothesis that NO enhancement would attenuate ischemic liver injury. For this purpose, an NO precursor, L-arginine, and a novel NO donor, FK409, were applied to a 2-hour total hepatic vascular exdusion model in dogs. Study Design L-arginine was administered IV at a dose of 100 mg/kg twice (n = 5), while 300 mg/kg twice of FK409 was infused continuously into the portal vein (n = 5). The drugs were given to the animals for 30 and 60 minutes before and after ischemia, respectively. Nontreated animals were used as the control (n = 10). Two-week survival, systemic and hepatic hemodynamics indices, liver function tests, energy metabolism, and histopathology were analyzed. Results Both treatments comparably augmented hepatic tissue blood flow, decreased liver enzyme release, and increased high-energy phosphate restoration during the reperfusion period, all of which contributed to rescuing all of the treated animals from the 2-hour total hepatic ischemia. In contrast, ischemia caused 70% mortality in the control group. Histologically, structural abnormality and neutrophil infiltration were markedly attenuated by the treatments. Systemic hypotension was observed in the animals treated with FK409, however. Conclusions Our data demonstrate that NO enhancement alleviates the liver injury caused by ischemia and reperfusion. The supplementation of L-arginine, rather than FK409, is considered more applicable to clinical use because of the absence of systemic adverse effects. PMID:9915241

  10. Role of neuronal nitric oxide synthase in the estrogenic attenuation of cannabinoid-induced changes in energy homeostasis.

    PubMed

    Borgquist, Amanda; Meza, Cecilia; Wagner, Edward J

    2015-02-01

    Since estradiol attenuates cannabinoid-induced increases in energy intake, energy expenditure, and transmission at proopiomelanocortin (POMC) synapses in the hypothalamic arcuate nucleus (ARC), we tested the hypothesis that neuronal nitric oxide synthase (nNOS) plays an integral role. To this end, whole animal experiments were carried out in gonadectomized female guinea pigs. Estradiol benzoate (EB; 10 μg sc) decreased incremental food intake as well as O2 consumption, CO2 production, and metabolic heat production as early as 2 h postadministration. This was associated with increased phosphorylation of nNOS (pnNOS), as evidenced by an elevated ratio of pnNOS to nNOS in the ARC. Administration of the cannabinoid receptor agonist WIN 55,212-2 (3 μg icv) into the third ventricle evoked hyperphagia as early as 1 h postadministration, which was blocked by EB and restored by the nonselective NOS inhibitor N-nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μg icv) when the latter was combined with the steroid. Whole cell patch-clamp recordings showed that 17β-estradiol (E2; 100 nM) rapidly diminished cannabinoid-induced decreases in miniature excitatory postsynaptic current frequency, which was mimicked by pretreatment with the NOS substrate L-arginine (30 μM) and abrogated by L-NAME (300 μM). Furthermore, E2 antagonized endocannabinoid-mediated depolarization-induced suppression of excitation, which was nullified by the nNOS-selective inhibitor N5-[imino(propylamino)methyl]-L-ornithine hydrochloride (10 μM). These effects occurred in a sizable number of identified POMC neurons. Taken together, the estradiol-induced decrease in energy intake is mediated by a decrease in cannabinoid sensitivity within the ARC feeding circuitry through the activation of nNOS. These findings provide compelling evidence for the need to develop rational, gender-specific therapies to help treat metabolic disorders such as cachexia and obesity. PMID:25392169

  11. Carvacrol and Pomegranate Extract in Treating Methotrexate-Induced Lung Oxidative Injury in Rats

    PubMed Central

    Şen, Hadice Selimoğlu; Şen, Velat; Bozkurt, Mehtap; Türkçü, Gül; Güzel, Abdulmenap; Sezgi, Cengizhan; Abakay, Özlem; Kaplan, Ibrahim

    2014-01-01

    Background This study was designed to evaluate the effects of carvacrol (CRV) and pomegranate extract (PE) on methotrexate (MTX)-induced lung injury in rats. Material/Methods A total of 32 male rats were subdivided into 4 groups: control (group I), MTX treated (group II), MTX+CRV treated (group III), and MTX+PE treated (group IV). A single dose of 73 mg/kg CRV was administered intraperitoneally to rats in group III on Day 1 of the investigation. To group IV, a dose of 225 mg/kg of PE was administered via orogastric gavage once daily over 7 days. A single dose of 20 mg/kg of MTX was given intraperitoneally to groups II, III, and IV on Day 2. The total duration of experiment was 8 days. Malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) were measured from rat lung tissues and cardiac blood samples. Results Serum and lung specimen analyses demonstrated that MDA, TOS, and OSI levels were significantly greater in group II relative to controls. Conversely, the TAC level was significantly reduced in group II when compared to the control group. Pre-administering either CRV or PE was associated with decreased MDA, TOS, and OSI levels and increased TAC levels compared to rats treated with MTX alone. Histopathological examination revealed that lung injury was less severe in group III and IV relative to group II. Conclusions MTX treatment results in rat lung oxidative damage that is partially counteracted by pretreatment with either CRV or PE. PMID:25326861

  12. Hemodynamic and oxidative mechanisms of tourniquet-induced muscle injury: near-infrared spectroscopy for the orthopedics setting

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Reid, W. Darlene; Harris, R. Luke; Jafari, Siavash; Powers, Scott K.; O'Brien, Peter J.

    2012-08-01

    During orthopedic procedures, the tourniquets used to maintain bloodless surgical fields cause ischemia and then reperfusion (I/R), leading to oxidative muscle injury. Established methods exist neither for monitoring orthopedic I/R nor for predicting the extent of tourniquet-associated oxidative injury. To develop a predictive model for tourniquet-associated oxidative muscle injury, this study combined real-time near-infrared spectroscopy (NIRS) monitoring of I/R with Western blotting (WB) for oxidized proteins. We hypothesized strong correlations between NIRS-derived I/R indices and muscle protein oxidation. In 17 patients undergoing ankle fracture repair, a thigh tourniquet was inflated on the injured limb (300 mmHg). Using a continuous-wave (CW) NIRS setup, oxygenated (O2Hb), deoxygenated (HHb), and total (tHb) hemoglobin were monitored bilaterally (tourniquet versus control) in leg muscles. Leg muscle biopsies were collected unilaterally (tourniquet side) immediately after tourniquet inflation (pre) and before deflation (post). Average ischemia duration was 43.2±14.6 min. In post-compared to pre-biopsies, muscle protein oxidation (quantified using WB) increased 172.3%±145.7% (P<0.0005). Changes in O2Hb and tHb were negatively correlated with protein oxidation (respectively: P=0.040, R2=0.25 and P=0.003, R2=0.58). Reoxygenation rate was positively correlated with protein oxidation (P=0.041, R2=0.25). These data indicate that using CW NIRS, it is possible to predict orthopedic tourniquet-associated muscle oxidative injury noninvasively.

  13. [Correlation between biochemical parameters of oxidative stress, endogenous intoxication and regulation of vascular tone in patients with burn injury].

    PubMed

    Klychnikova, E V; Tazina, E V; Smirnov, S V; Spiridonova, T G; Zhirkova, E A; Borisov, V S; Godkov, M A

    2015-01-01

    Burn injury is accompanied by the formation of reactive oxygen species (ROS). Excessive production of ROS results in oxidative stress. Peroxidation damage of proteins causes their degradation and the formation of toxic fragments con- tributing to the development of endogenous intoxication. Furthermore, burns cause pronounced inflammatory reaction in the lesion site leading to poor circulation. The purpose of this study was an investigation of relationship between disturbances in the prooxidant/antioxidant system, severity of endogenous intoxication and disturbances of endogenous vascular regulation to assess the severity and prognosis of complications in patients with burn injury. 26 patients with- burn injury were investigated; they were divided into 2 groups according to the severity of injury on the basis of Frank index (FI): group 1--FI < 60 CU and group 2--FI ≥ 60 CU. The investigation of blood serum was performed on 1-3, 7, 14, 21 and 28 day after burn injury. Malondialdehyde (MDA), total antioxidant status (TAS), the level of middle weight molecules, stable metabolites of nitric oxide (NOx) and angiotensin-converting enzyme (ACE) activity were determined in the serum. Significant increase of MDA level, decrease of TAS and NOx level were found in two groups of patients throughout the observation period. We also found a disturbance in coupled interaction of NO and ACE. These data point to the development of oxidative stress and imbalance in endogenous regulation of vascular tone. There was a trend toward more pronounced oxidative stress in group 2. Significant correlations between parameters of oxidative stress, endogenous intoxication, endogenous factors of vascular regulation, depth of burn injury and FI were obtained in two groups. MDA, TAS can serve as one of the prognostic markers of condition severity of burned patients and therapy adequacy.

  14. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    SciTech Connect

    Malaviya, Rama; Venosa, Alessandro; Hall, LeRoy; Gow, Andrew J.; Sinko, Patrick J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  15. p66Shc: A novel biomarker of tubular oxidative injury in patients with diabetic nephropathy

    PubMed Central

    Xu, Xiaoxuan; Zhu, Xuejing; Ma, Mingming; Han, Yachun; Hu, Chun; Yuan, Shuguang; Yang, Yuan; Xiao, Li; Liu, Fuyou; Kanwar, Yashpal S.; Sun, Lin

    2016-01-01

    Increased p66Shc expression has been associated with diabetic nephropathy (DN). However, whether p66Shc can serve as a potential biomarker for tubular oxidative injury in DN is unknown. We measured the expression of p66Shc in peripheral blood monocytes (PBMs) and renal biopsy tissues from DN patients and then analysed the relationship between p66Shc expression and the clinical characteristics of patients with DN. Patients were divided into 4 groups (class IIa, class IIb, class III and the control group). qPCR, Western blotting and immunohistochemistry were performed. The results showed that both p66Shc and p-p66Shc expression significantly increased in PBMs and kidney tissues of DN patients. Moreover, Spearman’s correlation and multiple regression analyses were carried out. A positive relationship between the p66Shc expression and oxidative stress was found. p66Shc and oxidative stress were significant predictors of the degree of tubular damage. In addition, p66Shc expression was positively correlated with the concentrations of β-NAG, UACR and 8-OHdG, low-density lipoprotein and blood glucose levels, and duration of diabetes in patients with DN from class IIa to class III. These data indicated that increased expression of p66Shc may serve as a therapeutic target and a novel biomarker of DN. PMID:27377870

  16. Targeting Transporters: Promoting Blood-Brain Barrier Repair in Response to Oxidative Stress Injury

    PubMed Central

    Ronaldson, Patrick T.; Davis, Thomas P.

    2015-01-01

    The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely regulates the ability of endogenous and exogenous substances to accumulate within brain tissue. It possesses structural and biochemical features (i.e., tight junction and adherens junction protein complexes, influx and efflux transporters) that work in concert to control solute permeation. Oxidative stress, a critical component of several diseases including cerebral hypoxia/ischemia and peripheral inflammatory pain, can cause considerable injury to the BBB and lead to significant CNS pathology. This suggests a critical need for novel therapeutic approaches that can protect the BBB in diseases with an oxidative stress component. Recent studies have identified molecular targets (i.e., endogenous transporters, intracellular signaling systems) that can be exploited for optimization of endothelial drug delivery or for control of transport of endogenous substrates such as the antioxidant glutathione (GSH). In particular, targeting transporters offers a unique approach to protect BBB integrity by promoting repair of cell-cell interactions at the level of the brain microvascular endothelium. This review summarizes current knowledge in this area and emphasizes those targets that present considerable opportunity for providing BBB protection and/or promoting BBB repair in the setting of oxidative stress. PMID:25796436

  17. Correlation of Oxidative and Antioxidative Processes in the Blood of Patients with Cervical Spinal Cord Injury

    PubMed Central

    Woźniak, Bartosz; Woźniak, Alina; Mila-Kierzenkowska, Celestyna; Kasprzak, Heliodor Adam

    2016-01-01

    The effect of cervical spinal cord injury (CSCI) on oxidative stress parameters was assessed. The study was conducted in 42 patients with CSCI (studied group), 15 patients with cerebral concussion, without CSCI (Control II), and 30 healthy volunteers (Control I). Blood was taken from the basilic vein: before and seven days after the spinal cord decompression surgery (mean time from CSCI to surgery: 8 hours) in the studied group and once in the controls. Thiobarbituric acid reactive substances (TBARS) and conjugated dienes (CD) concentrations, and glutathione peroxidase (GPx), catalase (CAT), and creatine kinase (CK) activities before the surgery were higher in the studied group than in the controls. Reduced glutathione concentration was similar in all groups. Superoxide dismutase (SOD) in the studied group was 16% lower (P ≤ 0.001) than in Control I. Lipid peroxidation products, and GPx and CAT activities in erythrocytes seven days after the surgery were lower (P ≤ 0.001), while SOD was 25% higher (P ≤ 0.001) than before the surgery. CK in blood plasma after the surgery was 34% lower (P ≤ 0.001) than before it. CSCI is accompanied by oxidative stress. Surgical and pharmacological treatment helps to restore the oxidant-antioxidant balance. PMID:26881034

  18. Resveratrol ameliorates cisplatin-induced oxidative injury in New Zealand rabbits.

    PubMed

    Cigremis, Yilmaz; Akgoz, Muslum; Ozen, Hasan; Karaman, Musa; Kart, Asım; Gecer, Murat; Atalan, Gultekin

    2015-08-01

    This study investigated the preventive role of resveratrol in cisplatin-induced nephrotoxicity. The study used groups of New Zealand rabbits that were treated as follows: group C (cisplatin treated), group R (resveratrol treated), group R+C (resveratrol + cisplatin treatment), and group E (control group). Kidney levels of glutathione were significantly lower in group C than in groups E and R, whereas glutathione levels in group R+C were found to be similar to the control values. Malondialdehyde levels in group C were significantly higher than in groups E and R. However, malondialdehyde levels in group R+C were similar to group E. Kidney levels of nitric oxide were significantly higher in the cisplatin group than in the control, whereas nitric oxide levels were at basal values in group R+C. Cisplatin treatment significantly reduced kidney levels of glutathione peroxidase, superoxide dismutase, and catalase activity compared with those of group E, whereas resveratrol treatment significantly increased levels of glutathione peroxidase, superoxide dismutase, and catalase activity in group R+C. However, cisplatin injection did not affect mRNA levels of glutathione peroxidase, superoxide dismutase, or catalase enzymes. Histopathological and immunohistochemical analyses indicated that cisplatin caused kidney damage, which was mostly prevented by resveratrol treatment. In conclusion, resveratrol ameliorates cisplatin-induced oxidative injury in the kidney of rabbit.

  19. Chronic Kidney Disease Induced Intestinal Mucosal Barrier Damage Associated with Intestinal Oxidative Stress Injury

    PubMed Central

    Yu, Chao; Wang, Qiang; Zhou, Chunyu; Kang, Xin; Zhao, Shuang; Liu, Shuai; Fu, Huijun; Yu, Zhen; Peng, Ai

    2016-01-01

    Background. To investigate whether intestinal mucosal barrier was damaged or not in chronic kidney disease progression and the status of oxidative stress. Methods. Rats were randomized into two groups: a control group and a uremia group. The uremia rat model was induced by 5/6 kidney resection. In postoperative weeks (POW) 4, 6, 8, and 10, eight rats were randomly selected from each group to prepare samples for assessing systemic inflammation, intestinal mucosal barrier changes, and the status of intestinal oxidative stress. Results. The uremia group presented an increase trend over time in the serum tumor necrosis factor-alpha, interleukin-6 (IL-6) and IL-10, serum D-lactate and diamine oxidase, and intestinal permeability, and these biomarkers were significantly higher than those in control group in POW 8 and/or 10. Chiu's scores in uremia group were also increased over time, especially in POW 8 and 10. Furthermore, the intestinal malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were significantly higher in uremia group when compared with those in control group in POW 8 and/or 10. Conclusions. The advanced chronic kidney disease could induce intestinal mucosal barrier damage and further lead to systemic inflammation. The underlying mechanism may be associated with the intestinal oxidative stress injury. PMID:27493661

  20. Nitric Oxide-Releasing Aspirin Suppresses NF-κB Signaling in Estrogen Receptor Negative Breast Cancer Cells in Vitro and in Vivo.

    PubMed

    Nath, Niharika; Chattopadhyay, Mitali; Rodes, Deborah B; Nazarenko, Anna; Kodela, Ravinder; Kashfi, Khosrow

    2015-01-01

    Estrogen receptor negative (ER(-)) breast cancer is aggressive, responds poorly to current treatments and has a poor prognosis. The NF-κB signaling pathway is implicated in ER(-) tumorigenesis. Aspirin (ASA) is chemopreventive against ER(+) but not for ER(-) breast cancers. Nitric oxide-releasing aspirin (NO-ASA) is a safer ASA where ASA is linked to an NO-releasing moiety through a spacer. In vitro, we investigated anti-proliferation effects of NO-ASA (para- and meta-isomers) against ER(-) breast cancer cells MDA-MB-231 and SK-BR-23, effects on NF-κB signaling, and reactive oxygen species by standard techniques. In vivo, effects of NO-ASA were evaluated in a mouse xenograft model using MDA-MB-231 cells. p-NO-ASA inhibited the growth of MDA-MB-231 and SK-BR-3 cells at 24 h, the respective IC50s were 13 ± 2 and 17 ± 2 μM; ASA had an IC50 of >3000 μM in both cell lines. The IC50s for m-NO-ASA in MDA-MB-231 and SK-BR-3 were 173 ± 15 and 185 ± 12 μM, respectively, therefore, implying p-NO-ASA as a stronger inhibitor of growth p-NO-ASA reduced cell growth by inhibiting proliferation, inducing apoptosis and causing G0/G1 cell cycle block. Activation of NF-κB was inhibited by both isomers as demonstrated by decreases in NF-κB-DNA binding and luciferase activity at 24 h, However, m-NO-ASA produced transient effects at 3 h such as increased NF-κB-DNA-binding, increased levels of nuclear p50, even though both isomers inhibited IκB degradation. Increase in nuclear p50 by m-NO-ASA was associated with translocation of p50 in to the nucleus as observed by immunoflouresence at 3 h. NO-ASA induced reactive oxygen species (ROS) as evidenced by overall increases in both H2DCFDA (2',7'-dichlorodihydrofluorescein) and DHE (dihydroethidium)-derived fluorescence. Inhibition of ROS by N-acetyl-cysteine reversed the m-NO-ASA-mediated translocation of p50 in to the nucleus. In xenografts, p-NO-ASA inhibited tumor growth by inhibiting proliferation (PCNA and tumor volume

  1. Estrogen effects in allergy and asthma

    PubMed Central

    Bonds, Rana S.; Midoro-Horiuti, Terumi

    2012-01-01

    Purpose of review Asthma prevalence and severity are greater in women than in men, and mounting evidence suggests this is in part related to female steroid sex hormones. Of these, estrogen has been the subject of much study. This review highlights recent research exploring the effects of estrogen in allergic disease. Recent findings Estrogen receptors are found on numerous immunoregulatory cells and estrogen’s actions skew immune responses toward allergy. It may act directly to create deleterious effects in asthma, or indirectly via modulation of various pathways including secretory leukoprotease inhibitor, transient receptor potential vanilloid type 1 ion channel and nitric oxide production to exert effects on lung mechanics and inflammation. Not only do endogenous estrogens appear to play a role, but environmental estrogens have also been implicated. Environmental estrogens (xenoestrogens) including bisphenol A and phthalates enhance allergic sensitization in animal models and may enhance development of atopic disorders like asthma in humans. Summary Estrogen’s role in allergic disease remains complex. As allergic diseases continue to increase in prevalence and affect women disproportionately, gaining a fuller understanding of its effects in these disorders will be essential. Of particular importance may be effects of xenoestrogens on allergic disease. PMID:23090385

  2. Preconditioning with Physiological Levels of Ethanol Protect Kidney against Ischemia/Reperfusion Injury by Modulating Oxidative Stress

    PubMed Central

    Zeng, Li; Liu, Fang; Ding, Guoshan; Kang, Yindong; Mao, Jingyan; Cai, Ming; Zhu, Youhua; Wang, Quan-xing

    2011-01-01

    Background Oxidative stress due to excessive production of reactive oxygen species (ROS) and subsequent lipid peroxidation plays a critical role in renal ischemia/reperfusion (IR) injury. The purpose of current study is to demonstrate the effect of antecedent ethanol exposure on IR-induced renal injury by modulation of oxidative stress. Materials and Methods Bilateral renal warm IR was induced in male C57BL/6 mice after ethanol or saline administration. Blood ethanol concentration, kidney function, histological damage, inflammatory infiltration, cytokine production, oxidative stress, antioxidant capacity and Aldehyde dehydrogenase (ALDH) enzymatic activity were assessed to evaluate the impact of antecedent ethanol exposure on IR-induced renal injury. Results After bilateral kidney ischemia, mice preconditioned with physiological levels of ethanol displayed significantly preserved renal function along with less histological tubular damage as manifested by the reduced inflammatory infiltration and cytokine production. Mechanistic studies revealed that precondition of mice with physiological levels of ethanol 3 h before IR induction enhanced antioxidant capacity characterized by significantly higher superoxidase dismutase (SOD) activities. Our studies further demonstrated that ethanol pretreatment specifically increased ALDH2 activity, which then suppressed lipid peroxidation by promoting the detoxification of Malondialdehyde (MDA) and 4-hydroxynonenal (HNE). Conclusions Our results provide first line of evidence indicating that antecedent ethanol exposure can provide protection for kidneys against IR-induced injury by enhancing antioxidant capacity and preventing lipid peroxidation. Therefore, ethanol precondition and ectopic ALDH2 activation could be potential therapeutic approaches to prevent renal IR injury relevant to various clinical conditions. PMID:22022451

  3. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.

    PubMed

    Fletcher, Marianne E; Boshier, Piers R; Wakabayashi, Kenji; Keun, Hector C; Smolenski, Ryszard T; Kirkham, Paul A; Adcock, Ian M; Barton, Paul J; Takata, Masao; Marczin, Nandor

    2015-06-15

    Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications.

  4. Chronic estrogen deficiency in mice alters FoxO1 signaling in a mixed fiber skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause, characterized by reduced estrogen levels, is associated with increased adiposity and metabolic pathology. Molecular mechanisms underlying this association between low estrogen status and metabolic disease are not fully elucidated. Dysregulated skeletal muscle fatty acid oxidation (FAO) pr...

  5. A Protective Hsp70-TLR4 Pathway in Lethal Oxidant Lung Injury

    PubMed Central

    Zhang, Yi; Zhang, Xuchen; Shan, Peiying; Hunt, Clayton R.; Pandita, Tej K.; Lee, Patty J.

    2013-01-01

    Administering high levels of inspired oxygen, or hyperoxia, is commonly used as a life-sustaining measure in critically ill patients. However, prolonged exposures can exacerbate respiratory failure. Our previous study showed that toll-like receptor 4 (TLR4) confers protection against hyperoxia-induced lung injury and mortality. Hsp70 has potent cytoprotective properties and has been described as a TLR4 ligand in cell lines. We sought to elucidate the relationship between TLR4 and Hsp70 in hyperoxia-induced lung injury in vitro and in vivo and to define the signaling mechanisms involved. Wild type, TLR4−/− and Trif−/− (a TLR4 adapter protein) murine lung endothelial cells (MLEC) were exposed to hyperoxia. We found markedly elevated levels of intracellular and secreted Hsp70 from mice lung and MLEC after hyperoxia. We confirmed that Hsp70 and TLR4 co-immunoprecipitate in lung tissue and MLEC. Hsp70-mediated NFκB activation appears to depend upon TLR4. In the absence of TLR4, Hsp70 loses its protective effects in endothelial cells. Furthermore, these protective properties of Hsp70 are TLR4 adapter Trif-dependent, MyD88-independent. Hsp70-deficient mice have increased mortality during hyperoxia and lung-targeted adenoviral delivery of Hsp70 effectively rescues both Hsp70-deficient and wild type mice. Our studies are the first to define an Hsp70-TLR4-Trif cytoprotective axis in the lung and endothelial cells. This pathway is a potential therapeutic target against a range of oxidant-induced lung injuries. PMID:23817427

  6. Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation

    PubMed Central

    Wang, Liangrong; Shan, Yuanlu; Chen, Lei; Lin, Bi; Xiong, Xiangqing; Lin, Lina; Jin, Lida

    2016-01-01

    Objective(s): Neutrophils play an important role in ischemia/reperfusion (IR) induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley rats were randomly allocated into three groups IR group, colchicine treated-IR (CO) group and sham operation (SM) group. Rats of both the IR and CO groups were subjected to 3 hr of ischemia by clamping the right femoral artery followed by 2 hr of reperfusion. Colchicine (1 mg/kg) was administrated intraperitoneally prior to hindlimb ischemia in the CO group. After 2 hr of reperfusion, we measured superoxide dismutase (SOD) and myeloperoxidase (MPO) activities, and malondialdehyde (MDA), tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in the muscle samples. Plasma creatinine kinase (CK) and lactate dehydrogenase (LDH) levels were measured. We also evaluated the histological damage score and wet/dry weight (W/D) ratio. Results: The histological damage score, W/D ratio, MPO activity, MDA, TNF-α and IL-1β levels in muscle tissues were significantly increased, SOD activity was decreased, and plasma CK and LDH levels were remarkably elevated in both the IR and CO groups compared to the SM group (P<0.05). Colchicine treatment significantly reduced muscle damage and edema, oxidative stress and levels of the inflammatory parameters in the CO group compared to the IR group (P<0.05). Conclusion: Colchicine attenuates IR-induced skeletal muscle injury in rats. PMID:27482349

  7. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways

    PubMed Central

    Chen, Meihui; Hou, Yu; Lin, Dingkun

    2016-01-01

    Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs) death caused by hydrogen peroxide (H2O2), imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. PMID:27022401

  8. Thymoquinone Protects against Myocardial Ischemic Injury by Mitigating Oxidative Stress and Inflammation

    PubMed Central

    Ojha, Shreesh; Azimullah, Sheikh; Mohanraj, Rajesh; Sharma, Charu; Yasin, Javed; Arya, Dharamvir S.; Adem, Abdu

    2015-01-01

    The present study was aimed at investigating the cardioprotective activity of thymoquinone (TMQ), an active principle of the herb, Nigella sativa, which is used for the management of various diseases. The present study examined the cardioprotective effect of TMQ in isoproterenol- (ISP-) induced myocardial infarction in rats. Myocardial infarction was induced by two subcutaneous injections of ISP (85 mg/kg) at an interval of 24 hr. TMQ (20 mg/kg) was administered orally for 21 days. ISP-treated rats showed depletion of antioxidants and marker enzymes from myocardium along with lipid peroxidation and enhanced levels of proinflammatory cytokines. ISP also induced histopathological alterations in myocardium. Treatment with TMQ prevented the depletion of endogenous antioxidants and myocyte injury marker enzymes and inhibited lipid peroxidation as well as reducing the levels of proinflammatory cytokines. TMQ pretreatment also reduced myonecrosis, edema, and infiltration of inflammatory cells and showed preservation of cardiomyocytes histoarchitecture. The present study results demonstrate that TMQ exerts cardioprotective effect by mitigating oxidative stress, augmenting endogenous antioxidants, and maintaining structural integrity. The results of the present study indicate that TMQ may serve as an excellent agent alone or as adjuvant to prevent the onset and progression of myocardial injury. PMID:26101531

  9. Sesamin Ameliorates High-Fat Diet–Induced Dyslipidemia and Kidney Injury by Reducing Oxidative Stress

    PubMed Central

    Zhang, Ruijuan; Yu, Yan; Deng, Jianjun; Zhang, Chao; Zhang, Jinghua; Cheng, Yue; Luo, Xiaoqin; Han, Bei; Yang, Haixia

    2016-01-01

    The study explored the protective effect of sesamin against lipid-induced renal injury and hyperlipidemia in a rat model. An animal model of hyperlipidemia was established in Sprague-Dawley rats. Fifty-five adult Sprague-Dawley rats were divided into five groups. The control group was fed a standard diet, while the other four groups were fed a high-fat diet for 5 weeks to induce hyperlipidemia. Three groups received oral sesamin in doses of 40, 80, or 160 mg/(kg·day). Seven weeks later, the blood lipids, renal function, antioxidant enzyme activities, and hyperoxide levels in kidney tissues were measured. The renal pathological changes and expression levels of collagen type IV (Col-IV) and α-smooth muscle actin (α-SMA) were analyzed. The administration of sesamin improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, apolipoprotein-B, oxidized-low-density lipoprotein, and serum creatinine levels in hyperlipidemic rats, while it increased the high-density lipoprotein cholesterol and apolipoprotein-A levels. Sesamin reduced the excretion of 24-h urinary protein and urinary albumin and downregulated α-SMA and Col-IV expression. Moreover, sesamin ameliorated the superoxide dismutase activity and reduced malondialdehyde levels in kidney tissue. Sesamin could mediate lipid metabolism and ameliorate renal injury caused by lipid metabolism disorders in a rat model of hyperlipidemia. PMID:27171111

  10. An endothelial TLR4-VEGFR2 pathway mediates lung protection against oxidant-induced injury.

    PubMed

    Takyar, Seyedtaghi; Zhang, Yi; Haslip, Maria; Jin, Lei; Shan, Peiying; Zhang, Xuchen; Lee, Patty J

    2016-03-01

    TLR4 deficiency causes hypersusceptibility to oxidant-induced injury. We investigated the role of TLR4 in lung protection, using used bone marrow chimeras; cell-specific transgenic modeling; and lentiviral delivery in vivo to knock down or express TLR4 in various lung compartments; and lung-specific VEGF transgenic mice to investigate the effect of TLR4 on VEGF-mediated protection. C57/BL6 mice were exposed to 100% oxygen in an enclosed chamber and assessed for survival and lung injury. Primary endothelial cells were stimulated with recombinant VEGF and exposed to hyperoxia or hydrogen peroxide. Endothelium-specific expression of human TLR4 (as opposed to its expression in epithelium or immune cells) increased the survival of TLR4-deficent mice in hyperoxia by 24 h and decreased LDH release and lung cell apoptosis after 72 h of exposure by 30%. TLR4 expression was necessary and sufficient for the protective effect of VEGF in the lungs and in primary endothelial cells in culture. TLR4 knockdown inhibited VEGF signaling through VEGF receptor 2 (VEGFR2), Akt, and ERK pathways in lungs and primary endothelial cells and decreased the availability of VEGFR2 at the cell surface. These findings demonstrate a novel mechanism through which TLR4, an innate pattern receptor, interacts with an endothelial survival pathway.

  11. Sesamin Ameliorates High-Fat Diet-Induced Dyslipidemia and Kidney Injury by Reducing Oxidative Stress.

    PubMed

    Zhang, Ruijuan; Yu, Yan; Deng, Jianjun; Zhang, Chao; Zhang, Jinghua; Cheng, Yue; Luo, Xiaoqin; Han, Bei; Yang, Haixia

    2016-01-01

    The study explored the protective effect of sesamin against lipid-induced renal injury and hyperlipidemia in a rat model. An animal model of hyperlipidemia was established in Sprague-Dawley rats. Fifty-five adult Sprague-Dawley rats were divided into five groups. The control group was fed a standard diet, while the other four groups were fed a high-fat diet for 5 weeks to induce hyperlipidemia. Three groups received oral sesamin in doses of 40, 80, or 160 mg/(kg·day). Seven weeks later, the blood lipids, renal function, antioxidant enzyme activities, and hyperoxide levels in kidney tissues were measured. The renal pathological changes and expression levels of collagen type IV (Col-IV) and α-smooth muscle actin (α-SMA) were analyzed. The administration of sesamin improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, apolipoprotein-B, oxidized-low-density lipoprotein, and serum creatinine levels in hyperlipidemic rats, while it increased the high-density lipoprotein cholesterol and apolipoprotein-A levels. Sesamin reduced the excretion of 24-h urinary protein and urinary albumin and downregulated α-SMA and Col-IV expression. Moreover, sesamin ameliorated the superoxide dismutase activity and reduced malondialdehyde levels in kidney tissue. Sesamin could mediate lipid metabolism and ameliorate renal injury caused by lipid metabolism disorders in a rat model of hyperlipidemia. PMID:27171111

  12. [Prognostic value of the parameters of free radical oxidation in traumatic brain injury].

    PubMed

    Lvovskaya, E I; Derginskyi, N V; Sadova, V A; Symnaya, D B

    2016-01-01

    The dynamics of lipoperoxides content and activity of antioxidant (glutathione peroxidase, superoxide dismutase, catalase) and prooxidant (xanthine oxidase) enzymes were investigated in the blood and cerebrospinal fluid of patients with traumatic brain injury of various severity depending on the left- or right-hemisphere localization of injuries. Reciprocal relationship between lipid peroxidation and oxidative modification of proteins from first to 14th day, increase of the level of total antioxidant activity, accompanied with the growth of GP and catalase activity, against the background of decrease in SOD activity from 1 to 7 day have been revealed. Were set lower "average" content of lipid peroxides in the blood and cerebrospinal fluid of patients with the subsequent development of lethal results in compare with cases of favorable outcomes, decrease of geptanofilic lipid peroxides in serum below the reference level, as well as the reduction of antioxidant activity in the blood and cerebrospinal fluid, associated with a sharp falling in superoxide dismutase activity and a significant increase of xanthine oxidase activity, which preceded the lethal results.

  13. Avermectin induced liver injury in pigeon: mechanisms of apoptosis and oxidative stress.

    PubMed

    Zhu, Wen-Jun; Li, Ming; Liu, Ci; Qu, Jian-Ping; Min, Ya-Hong; Xu, Shi-Wen; Li, Shu

    2013-12-01

    Extensive use of avermectin (AVM) can result in environment pollution, and it is important to evaluate the potential impact this antibiotic has on ecological systems. Few published literatures have discussed the liver injury mechanisms induced by AVM on birds. In this study, pigeons were exposed to feed containing AVM (0, 20, 40 and 60 mg/kg diet) for 30, 60, 90 days respectively. The results showed that AVM increased the number of apoptosis and the expression level of caspase-3, 8, fas mRNA in the liver of pigeons. Ultrastructural alterations, including mitochondrial damage and chromatin aggregation, become severe with increase exposure dose. Exposure to AVM induced significant changes in antioxidant enzyme {superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)} activities and malondialdehyde (MDA) content, augmented protein carbonyl (PCO) content and DNA-protein crosslink (DPC) coefficient, in a concentration-dependent manner in the liver of pigeons. Our results show that AVM has toxic effect in pigeon liver, and the mechanism of injury caused by AVM is closely related to apoptosis and oxidative stress.

  14. Zn(II)-curcumin protects against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism.

    PubMed

    Yu, Chuan; Mei, Xue-Ting; Zheng, Yan-Ping; Xu, Dong-Hui

    2014-03-01

    Curcumin can chelate metal ions, forming metallocomplexes. We compared the effects of Zn(II)-curcumin with curcumin against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism. Oral administration of Zn(II)-curcumin dose-dependently prevented the ethanol-induced elevation of serum malondialdehyde (MDA) content and reductions in glutathione level and superoxide dismutase (SOD) activity. Zn(II)-curcumin also inhibited ethanol-induced liver injury. Additionally, Zn(II)-curcumin dose-dependently inhibited hemorheological abnormalities, including the ethanol-induced elevation of whole blood viscosity, plasma viscosity, blood viscosity at corrected hematocrit (45%), erythrocyte aggregation index, erythrocyte rigidity index and hematocrit. Compared to curcumin at the same dose, Zn(II)-curcumin more effectively elevated SOD activity, ameliorated liver injury and improved hemorheological variables. These results suggest that Zn(II)-curcumin protected the rats from ethanol-induced liver injury and hemorheological abnormalities via the synergistic effect of curcumin and zinc.

  15. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.

    PubMed

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H; Barnes, Peter J; Adcock, Ian M; Huang, Mao; Yao, Xin

    2015-12-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  16. Ibuprofen prevents oxidant lung injury and in vitro lipid peroxidation by chelating iron.

    PubMed Central

    Kennedy, T P; Rao, N V; Noah, W; Michael, J R; Jafri, M H; Gurtner, G H; Hoidal, J R

    1990-01-01

    Because ibuprofen protects from septic lung injury, we studied the effect of ibuprofen in oxidant lung injury from phosgene. Lungs from rabbits exposed to 2,000 ppm-min phosgene were perfused with Krebs-Henseleit buffer at 50 ml/min for 60 min. Phosgene caused no increase in lung generation of cyclooxygenase metabolites and no elevation in pulmonary arterial pressure, but markedly increased transvascular fluid flux (delta W = 31 +/- 5 phosgene vs. 8 +/- 1 g unexposed, P less than 0.001), permeability to albumin (125I-HSA) lung leak index 0.274 +/- 0.035 phosgene vs. 0.019 +/- 0.001 unexposed, P less than 0.01; 125I-HSA lavage leak index 0.352 +/- 0.073 phosgene vs. 0.008 +/- 0.001 unexposed, P less than 0.01), and lung malondialdehyde (50 +/- 7 phosgene vs. 24 +/- 0.7 mumol/g dry lung unexposed, P less than 0.01). Ibuprofen protected lungs from phosgene (delta W = 10 +/- 2 g; lung leak index 0.095 +/- 0.013; lavage leak index 0.052 +/- 0.013; and malondialdehyde 16 +/- 3 mumol/g dry lung, P less than 0.01). Because iron-treated ibuprofen failed to protect, we studied the effect of ibuprofen in several iron-mediated reactions in vitro. Ibuprofen attenuated generation of .OH by a Fenton reaction and peroxidation of arachidonic acid by FeCl3 and ascorbate. Ibuprofen also formed iron chelates that lack the free coordination site required for iron to be reactive. Thus, ibuprofen may prevent iron-mediated generation of oxidants or iron-mediated lipid peroxidation after phosgene exposure. This suggests a new mechanism for ibuprofen's action. PMID:2173723

  17. Remote effect of kidney ischemia-reperfusion injury on pancreas: role of oxidative stress and mitochondrial apoptosis

    PubMed Central

    Abogresha, Noha M.; Abdelaziz, Eman Z.; Khalil, Waleed F.

    2015-01-01

    Introduction Recent studies have demonstrated remote effects of renal ischemia/reperfusion (IR) injury on some organs such as brain, liver, and lungs. Oxidative stress is reported to be the cornerstone in such ischemic conditions. Associated apoptosis is also reported in remote lung, liver and myocardial injury after acute kidney injury. So, we postulated that renal IR may affect the pancreas by its remote effect. Oxidative stress and mitochondrial mediated apoptosis may play a crucial role in this injury. We investigated the effects of kidney IR on pancreatic exocrine and endocrine functions, antioxidant enzyme activity, and apoptosis. Material and methods The protective effect of vitamin C was also investigated. The animals were submitted to non-traumatic bilateral renal IR, sham operation or treatment with vitamin C after IR. Rats were sacrificed on the 1st, 3rd, and 7th days of the experiment to evaluate the parameters of oxidative stress (catalase, lipid peroxidase, reduced glutathione and superoxide dismutase), pancreatic endocrine and exocrine function (amylase, insulin and fasting blood glucose), renal functions (serum creatinine and blood urea nitrogen), cellular injury and apoptotic markers (Bcl-2, Bax and caspase-3). Results Kidney I/R significantly increased the renal and pancreatic functions at 1, 3 and 7 days, while fasting insulin was significantly increased at day 3 after ischemia. Moreover, I/R significantly increased the studied oxidative stress markers and decreased the antioxidant capacity in pancreatic tissues. In addition, renal I/R induced numerous histopatological lesions in pancreatic tissues and increased the apoptosis-related genes. Treating the rats with vitamin C (100 mg/kg) significantly restored the renal and pancreatic functions, improved the pancreatic antioxidant capacity and protected the pancreatic tissues from apoptotic necrosis. Conclusions The results suggested that bilateral renal ischemia for 45 min caused significant

  18. Estrogen and Bazedoxifene

    MedlinePlus

    ... menstrual periods become less frequent and stop and women may experience other symptoms and body changes). Estrogen and bazedoxifene tablets are also used to prevent osteoporosis (condition in which the bones ... and break easily) in women who have undergone menopause. Estrogen is in a ...

  19. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury.

    PubMed

    Wang, Zhen; Holthoff, Joseph H; Seely, Kathryn A; Pathak, Elina; Spencer, Horace J; Gokden, Neriman; Mayeux, Philip R

    2012-02-01

    Acute kidney injury is a frequent and serious complication of sepsis. To better understand the development of sepsis-induced acute kidney injury, we performed the first time-dependent studies to document changes in renal hemodynamics and oxidant generation in the peritubular microenvironment using the murine cecal ligation and puncture (CLP) model of sepsis. CLP caused an increase in renal capillary permeability at 2 hours, followed by decreases in mean arterial pressure, renal blood flow (RBF), and renal capillary perfusion at 4 hours, which were sustained through 18 hours. The decline in hemodynamic parameters was associated with hypoxia and oxidant generation in the peritubular microenvironment and a decrease in glomerular filtration rate. The role of oxidants was assessed using the superoxide dismutase mimetic/peroxynitrite scavenger MnTMPyP [Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin]. At 10 mg/kg administered 6 hours after CLP, MnTMPyP did not alter blood pressure, but blocked superoxide and peroxynitrite generation, reversed the decline in RBF, capillary perfusion, and glomerular filtration rate, preserved tubular architecture, and increased 48-hour survival. However, MnTMPyP administered at CLP did not prevent capillary permeability or the decrease in RBF and capillary perfusion, which suggests that these early events are not mediated by oxidants. These data demonstrate that renal hemodynamic changes occur early after sepsis and that targeting the later oxidant generation can break the cycle of injury and enable the microcirculation and renal function to recover.

  20. Toll-Like Receptor 4 Reduces Oxidative Injury via Glutathione Activity in Sheep

    PubMed Central

    Deng, Shoulong; Yu, Kun; Wu, Qian; Li, Yan; Zhang, Xiaosheng; Zhang, Baolu; Liu, Guoshi; Liu, Yixun; Lian, Zhengxing

    2016-01-01

    Toll-like receptor 4 (TLR4) is an important sensor of Gram-negative bacteria and can trigger activation of the innate immune system. Increased activation of TLR4 can lead to the induction of oxidative stress. Herein, the pathway whereby TLR4 affects antioxidant activity was studied. In TLR4-overexpressing sheep, TLR4 expression was found to be related to the integration copy number when monocytes were challenged with lipopolysaccharide (LPS). Consequently, production of malondialdehyde (MDA) was increased, which could increase the activation of prooxidative stress enzymes. Meanwhile, activation of an antioxidative enzyme, glutathione peroxidase (GSH-Px), was increased. Real-time PCR showed that expression of activating protein-1 (AP-1) and the antioxidative-related genes was increased. By contrast, the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) were reduced. In transgenic sheep, glutathione (GSH) levels were dramatically reduced. Furthermore, transgenic sheep were intradermally injected with LPS in each ear. The amounts of inflammatory infiltrates were correlated with the number of TLR4 copies that were integrated in the genome. Additionally, the translation of γ-glutamylcysteine synthetase (γ-GCS) was increased. Our findings indicated that overexpression of TLR4 in sheep could ameliorate oxidative injury through GSH secretion that was induced by LPS stimulation. Furthermore, TLR4 promoted γ-GCS translation through the AP-1 pathway, which was essential for GSH synthesis. PMID:26640618

  1. Classical and remote post-conditioning effects on ischemia/reperfusion-induced acute oxidant kidney injury.

    PubMed

    Kadkhodaee, Mehri; Najafi, Atefeh; Seifi, Behjat

    2014-11-01

    The present study aimed to analyze and compare the effects of classical and remote ischemic postconditioning (POC) on rat renal ischemia/reperfusion (IR)-induced acute kidney injury. After right nephrectomy, male rats were randomly assigned into four groups (n = 8). In the IR group, 45 min of left renal artery occlusion was induced followed by 24 h of reperfusion. In the classical POC group, after induction of 45 min ischemia, 4 cycles of 10 s of intermittent ischemia and reperfusion were applied to the kidney before complete restoring of renal blood. In the remote POC group, 4 cycles of 5 min ischemia and reperfusion of left femoral artery were applied after 45 min renal ischemia and right at the time of renal reperfusion. There was a reduction in renal function (increase in blood urea and creatinine) in the IR group. Application of both forms of POC prevented the IR-induced reduction in renal function and histology. There were also significant improvements in kidney oxidative stress status in both POC groups demonstrated by a reduction in malondialdehyde (MDA) formation and preservation of antioxidant levels comparing to the IR group. We concluded that both methods of POC have protective effects on renal function and histology possibly by a reduction in IR-induced oxidative stress.

  2. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic-Ischemic Brain Injury.

    PubMed

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J

    2016-01-01

    Seizures are common following hypoxic-ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic-ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  3. Ganoderma lucidum polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress.

    PubMed

    Zhong, Dandan; Wang, Hongkai; Liu, Ming; Li, Xuechen; Huang, Ming; Zhou, Hong; Lin, Shuqian; Lin, Zhibin; Yang, Baoxue

    2015-01-01

    Ganoderma lucidum polysaccharide peptide (GLPP) scavenges oxygen free radicals that are a key factor in the pathogenesis of renal ischemia reperfusion injury (RIRI). The aim of this study was to determine whether GLPP could attenuate RIRI by counteracting the oxidative stress. The mechanism involved was assessed by an in vivo mouse RIRI model and an in vitro hypoxia/reoxygenation model, and tunicamycin-stimulated NRK-52E cells were used to explore the GLPP-mediated alleviation of ER stress. Experimental results showed that renal dysfunction and morphological damage were reduced in GLPP-treated group. The imbalance of redox status was reversed and production of ROS was reduced by GLPP. RIRI-induced mitochondrial- and ER stress-dependent apoptosis were dramatically inhibited in GLPP-treated group. Intriguingly, JNK activation in the kidney with RIRI or hypoxia/reoxygenation was inhibited by GLPP. These results suggest that the protective effect of GLPP against RIRI may be due to reducing oxidative stress, alleviating the mitochondrial and ER stress-dependent apoptosis caused by excessive ROS. PMID:26603550

  4. Toll-Like Receptor 4 Reduces Oxidative Injury via Glutathione Activity in Sheep.

    PubMed

    Deng, Shoulong; Yu, Kun; Wu, Qian; Li, Yan; Zhang, Xiaosheng; Zhang, Baolu; Liu, Guoshi; Liu, Yixun; Lian, Zhengxing

    2016-01-01

    Toll-like receptor 4 (TLR4) is an important sensor of Gram-negative bacteria and can trigger activation of the innate immune system. Increased activation of TLR4 can lead to the induction of oxidative stress. Herein, the pathway whereby TLR4 affects antioxidant activity was studied. In TLR4-overexpressing sheep, TLR4 expression was found to be related to the integration copy number when monocytes were challenged with lipopolysaccharide (LPS). Consequently, production of malondialdehyde (MDA) was increased, which could increase the activation of prooxidative stress enzymes. Meanwhile, activation of an antioxidative enzyme, glutathione peroxidase (GSH-Px), was increased. Real-time PCR showed that expression of activating protein-1 (AP-1) and the antioxidative-related genes was increased. By contrast, the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) were reduced. In transgenic sheep, glutathione (GSH) levels were dramatically reduced. Furthermore, transgenic sheep were intradermally injected with LPS in each ear. The amounts of inflammatory infiltrates were correlated with the number of TLR4 copies that were integrated in the genome. Additionally, the translation of γ-glutamylcysteine synthetase (γ-GCS) was increased. Our findings indicated that overexpression of TLR4 in sheep could ameliorate oxidative injury through GSH secretion that was induced by LPS stimulation. Furthermore, TLR4 promoted γ-GCS translation through the AP-1 pathway, which was essential for GSH synthesis. PMID:26640618

  5. Ganoderma lucidum polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress

    PubMed Central

    Zhong, Dandan; Wang, Hongkai; Liu, Ming; Li, Xuechen; Huang, Ming; Zhou, Hong; Lin, Shuqian; Lin, Zhibin; Yang, Baoxue

    2015-01-01

    Ganoderma lucidum polysaccharide peptide (GLPP) scavenges oxygen free radicals that are a key factor in the pathogenesis of renal ischemia reperfusion injury (RIRI). The aim of this study was to determine whether GLPP could attenuate RIRI by counteracting the oxidative stress. The mechanism involved was assessed by an in vivo mouse RIRI model and an in vitro hypoxia/reoxygenation model, and tunicamycin-stimulated NRK-52E cells were used to explore the GLPP-mediated alleviation of ER stress. Experimental results showed that renal dysfunction and morphological damage were reduced in GLPP-treated group. The imbalance of redox status was reversed and production of ROS was reduced by GLPP. RIRI-induced mitochondrial- and ER stress-dependent apoptosis were dramatically inhibited in GLPP-treated group. Intriguingly, JNK activation in the kidney with RIRI or hypoxia/reoxygenation was inhibited by GLPP. These results suggest that the protective effect of GLPP against RIRI may be due to reducing oxidative stress, alleviating the mitochondrial and ER stress-dependent apoptosis caused by excessive ROS. PMID:26603550

  6. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic–Ischemic Brain Injury

    PubMed Central

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J.

    2016-01-01

    Seizures are common following hypoxic–ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic–ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  7. The role of xanthine oxidase in hemodialysis-induced oxidative injury: relationship with nutritional status.

    PubMed

    Miric, Dijana; Kisic, Bojana; Stolic, Radojica; Miric, Bratislav; Mitic, Radoslav; Janicijevic-Hudomal, Snezana

    2013-01-01

    The role of xanthine oxidase (XOD) in patients undergoing chronic hemodialysis treatment (HD) is poorly understood. Geriatric nutritional risk index (GNRI) ≤ 90 could be linked with malnutrition-inflammation complex syndrome. This study measured XOD, myeloperoxidase (MPO), superoxide dismutase (SOD), lipid hydroperoxides, total free thiol groups, and advanced oxidation protein products (AOPP) in 50 HD patients before commencing (pre-HD) and immediately after completion of HD session (post-HD) and in 22 healthy controls. Pre-HD serum hydroperoxides, AOPP, XOD, and SOD were higher and total thiol groups were lower in patients than in controls (P < 0.05, resp.). Compared to baseline values, serum MPO activity was increased irrespective of GNRI status. Serum XOD activity was increasing during HD treatment in the group with GNRI ≤ 90 (P = 0.030) whilst decreasing in the group with GNRI > 90 (P = 0.002). In a multiple regression analysis, post-HD serum XOD activity was independently associated with GNRI ≤ 90 ( β ± SE: 0.398 ± 0.151; P = 0.012) and HD vintage ( β ± SE: -0.349 ± 0.139; P = 0.016). These results indicate that an upregulated XOD may be implicated in HD-induced oxidative injury contributing to accelerated protein damage in patients with GNRI ≤ 90.

  8. Dexmedetomidine Pretreatment Attenuates Kidney Injury and Oxidative Stress during Orthotopic Autologous Liver Transplantation in Rats

    PubMed Central

    Wu, Shan; Jin, Yi; Wang, Yiheng; Cai, Jun

    2016-01-01

    This paper aims to explore whether pretreatment with dexmedetomidine (Dex) has antioxidative and renal protective effects during orthotopic autologous liver transplantation (OALT) and its impact on nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Sprague-Dawley rats were randomized into groups that include sham-operated (group S), model (group M), low dose Dex (group D1), high dose Dex (group D2), atipamezole (a nonspecific α2 receptor blocker) + high dose Dex (group B1), ARC239 (a specific α2B/c receptor blocker) + high dose Dex (group B2), and BRL-44408 (a specific α2A receptor blocker) + high dose Dex (group B3). Then histopathologic examination of the kidneys and measurement of renal function, the renal Nrf2 protein expression, and oxidants and antioxidants were performed 8 hours after OALT. We found that pretreatment with Dex activated Nrf2 in glomerular cells and upregulated antioxidants but reduced oxidants (all P < 0.01, group D2 versus group M). Atipamezole and BRL-44408, but not ARC239, reversed these protective effects. In conclusion, pretreatment with Dex activates Nrf2 through α2A receptor, increases the antioxidant levels, and attenuates renal injury during OALT. PMID:26682005

  9. Sex, Stroke, and Inflammation: The potential for Estrogen-mediated immunoprotection in stroke

    PubMed Central

    Ritzel, Rodney M.; Capozzi, Lori A.; McCullough, Louise D.

    2012-01-01

    Stroke is the third leading cause of death and the primary cause of disability in the developed world. Experimental and clinical data indicate that stroke is a sexually dimorphic disease, with males demonstrating an enhanced intrinsic sensitivity to ischemic damage throughout most of their lifespan. The neuroprotective role of estrogen in the female brain is well established, however, estrogen exposure can also be deleterious, especially in older women. The mechanisms for this remain unclear. Our current understanding is based on studies examining estrogen as it relates to neuronal injury, yet cerebral ischemia also induces a robust sterile inflammatory response involving local and systemic immune cells. Despite the potent anti-inflammatory effects of estrogen, few studies have investigated the contribution of estrogen to sex differences in the inflammatory response to stroke. This review examines the potential role for estrogen-mediated immunoprotection in ischemic injury. PMID:22561337

  10. Differential Fmo3 Gene Expression in Various Liver Injury Models Involving Hepatic Oxidative Stress in Mice

    PubMed Central

    Rudraiah, Swetha; Moscovitz, Jamie E.; Donepudi, Ajay C.; Campion, Sarah N.; Slitt, Angela L.; Aleksunes, Lauren M.; Manautou, José E.

    2015-01-01

    Flavin-containing monooxygenase-3 (FMO3) catalyzes metabolic reactions similar to cytochrome P450 monooxygenase however, most metabolites of FMO3 are considered non-toxic. Recent findings in our laboratory demonstrated Fmo3gene induction following toxic acetaminophen (APAP) treatment in mice.The goal of this study was to evaluate Fmo3gene expression in diverseother mouse models of hepatic oxidative stress and injury. Fmo3 gene regulation by Nrf2 was also investigated using Nrf2 knockout (Nrf2 KO) mice. In our studies, male C57BL/6J mice were treated with toxic dosesof hepatotoxicants or underwent bile duct ligation (BDL, 10d). Hepatotoxicants included APAP (400 mg/kg, 24 to 72h), alpha-naphthylisothiocyanate (ANIT; 50 mg/kg, 2 to 48h), carbontetrachloride (CCl4;10 or 30 μL/kg, 24 and 48h) and allyl alcohol (AlOH; 30 or 60 mg/kg, 6 and 24h). Because oxidative stress activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2), additional studies investigated Fmo3 gene regulation by Nrf2 using Nrf2 knockout (Nrf2 KO) mice. At appropriate time-points, blood and liver samples were collected for assessment of plasma alanine aminotransferase (ALT) activity, plasma and hepatic bile acid levels, as well as liver Fmo3 mRNA and protein expression. Fmo3 mRNA expression increased significantly by 43-fold at 12h after ANIT treatment,and this increase translates to a 4-fold change in protein levels. BDL also increased Fmo3 mRNA expression by 1899-fold, but with no change in protein levels. Treatment of mice with CCl4decreased liver Fmo3gene expression, whileno change in expression was detected with AlOH treatment. Nrf2 KO mice are more susceptible to APAP (400 mg/kg, 72h) treatment compared to their wild-type (WT) counterparts, which is evidenced by greater plasma ALT activity. Fmo3 mRNA and protein expression increased in Nrf2 KO mice after APAP treatment. Collectively, not all hepatotoxicantsthat produce oxidative stress alter Fmo3gene expression. Along with APAP, toxic ANIT

  11. Protease-cleaved iron-transferrin augments oxidant-mediated endothelial cell injury via hydroxyl radical formation.

    PubMed Central

    Miller, R A; Britigan, B E

    1995-01-01

    Previous work has shown that the Pseudomonas-derived protease, pseudomonas elastase (PAE), can modify transferrin to form iron complexes capable of catalyzing the formation of hydroxyl radical (.OH) from neutrophil (PMN)-derived superoxide (.O2-) and hydrogen peroxide (H2O2). As the lung is a major site of Pseudomonas infection, the ability of these iron chelates to augment oxidant-mediated pulmonary artery endothelial cell injury via release of 51Cr from prelabeled cells was examined. Diferrictransferrin previously cleaved with PAE significantly enhanced porcine pulmonary artery endothelial cell monolayer injury from 2.3-6.3 to 15.8-17.0% of maximum, resulting from exposure to H2O2, products of the xanthine/xanthine oxidase reaction, or PMA-stimulated PMNs. Iron associated with transferrin appeared to be responsible for cell injury. Spin trapping and the formation of thiobarbituric acid-reactive 2-deoxyribose oxidation products demonstrated the production of .OH in this system. The addition of catalase, dimethyl thiourea, and the hydrophobic spin trap, alpha-phenyl-n-terbutyl-nitrone, offered significant protection from injury (27.8-58.2%). Since sites of Pseudomonas infection contain other proteases, the ability of porcine pancreatic elastase and trypsin to substitute for PAE was examined. Results were similar to those observed with PAE. We conclude .OH formation resulting from protease alteration of transferrin may serve as a mechanism of tissue injury at sites of bacterial infection and other processes characterized by increased proteolytic activity. Images PMID:7769095

  12. Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis.

    PubMed

    Gökce, Emre Cemal; Kahveci, Ramazan; Gökce, Aysun; Cemil, Berker; Aksoy, Nurkan; Sargon, Mustafa Fevzi; Kısa, Üçler; Erdoğan, Bülent; Güvenç, Yahya; Alagöz, Fatih; Kahveci, Ozan

    2016-06-01

    OBJECTIVE Ischemia-reperfusion (I/R) injury of the spinal cord following thoracoabdominal aortic surgery remains the most devastating complication, with a life-changing impact on the patient. Thymoquinone (TQ), the main constituent of the volatile oil from Nigella sativa seeds, is reported to possess strong antioxidant, antiinflammatory, and antiapoptotic properties. This study investigated the effects of TQ administration following I/R injury to the spinal cord. METHODS Thirty-two rats were randomly allocated into 4 groups. Group 1 underwent only laparotomy. For Group 2, aortic clip occlusion was introduced to produce I/R injury. Group 3 was given 30 mg/kg of methylprednisolone intraperitoneally immediately after the I/R injury. Group 4 was given 10 mg/kg of TQ intraperitoneally for 7 days before induction of spinal cord I/R injury, and administration was continued until the animal was euthanized. Locomotor function (Basso, Beattie, and Bresnahan scale and inclined plane test) was assessed at 24 hours postischemia. Spinal cord tissue samples were harvested to analyze tissue concentrations of malondialdehyde, nitric oxide, tumor necrosis factor-α, interleukin-1, superoxide dismutase, glutathione-peroxidase, catalase, and caspase-3. In addition, histological and ultrastructural evaluations were performed. RESULTS Thymoquinone treatment improved neurological outcome, which was supported by decreased levels of oxidative products (malondialdehyde and nitric oxide) and proinflammatory cytokines (tumor necrosis factor-α and interleukin-1), increased activities of antioxidant enzymes (superoxide dismutase, glutathione-peroxidase, and catalase), as well as reduction of motor neuron apoptosis. Light microscopy and electron microscopy results also showed preservation of tissue structure in the treatment group. CONCLUSIONS As shown by functional, biochemical, histological, and ultrastructural analysis, TQ exhibits an important protective effect against I/R injury of the

  13. Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis.

    PubMed

    Gökce, Emre Cemal; Kahveci, Ramazan; Gökce, Aysun; Cemil, Berker; Aksoy, Nurkan; Sargon, Mustafa Fevzi; Kısa, Üçler; Erdoğan, Bülent; Güvenç, Yahya; Alagöz, Fatih; Kahveci, Ozan

    2016-06-01

    OBJECTIVE Ischemia-reperfusion (I/R) injury of the spinal cord following thoracoabdominal aortic surgery remains the most devastating complication, with a life-changing impact on the patient. Thymoquinone (TQ), the main constituent of the volatile oil from Nigella sativa seeds, is reported to possess strong antioxidant, antiinflammatory, and antiapoptotic properties. This study investigated the effects of TQ administration following I/R injury to the spinal cord. METHODS Thirty-two rats were randomly allocated into 4 groups. Group 1 underwent only laparotomy. For Group 2, aortic clip occlusion was introduced to produce I/R injury. Group 3 was given 30 mg/kg of methylprednisolone intraperitoneally immediately after the I/R injury. Group 4 was given 10 mg/kg of TQ intraperitoneally for 7 days before induction of spinal cord I/R injury, and administration was continued until the animal was euthanized. Locomotor function (Basso, Beattie, and Bresnahan scale and inclined plane test) was assessed at 24 hours postischemia. Spinal cord tissue samples were harvested to analyze tissue concentrations of malondialdehyde, nitric oxide, tumor necrosis factor-α, interleukin-1, superoxide dismutase, glutathione-peroxidase, catalase, and caspase-3. In addition, histological and ultrastructural evaluations were performed. RESULTS Thymoquinone treatment improved neurological outcome, which was supported by decreased levels of oxidative products (malondialdehyde and nitric oxide) and proinflammatory cytokines (tumor necrosis factor-α and interleukin-1), increased activities of antioxidant enzymes (superoxide dismutase, glutathione-peroxidase, and catalase), as well as reduction of motor neuron apoptosis. Light microscopy and electron microscopy results also showed preservation of tissue structure in the treatment group. CONCLUSIONS As shown by functional, biochemical, histological, and ultrastructural analysis, TQ exhibits an important protective effect against I/R injury of the

  14. Endothelial nitric oxide synthase mediates arteriolar vasodilatation after traumatic brain injury in mice.

    PubMed

    Schwarzmaier, Susanne M; Terpolilli, Nicole A; Dienel, Ari; Gallozzi, Micaela; Schinzel, Reinhard; Tegtmeier, Frank; Plesnila, Nikolaus

    2015-05-15

    Brain edema and increased cerebral blood volume (CBV) contribute to intracranial hypertension and hence to unfavorable outcome after traumatic brain injury (TBI). The increased post-traumatic CBV may be caused in part by arterial vasodilatation. The aim of the current study was to uncover the largely unknown mechanisms of post-traumatic arteriolar vasodilatation. The diameter of pial arterioles and venules was monitored by intravital fluorescence microscopy before (baseline) and for 30 min after controlled cortical impact in C57BL/6 and endothelial nitric oxide synthase (eNOS)-/- mice (n=5-6/group) and in C57BL/6 mice (n=6/group) receiving vehicle (phosphate-buffered saline [PBS]) or 4-amino-tetrahydro-L-biopterine (VAS203), a NOS inhibitor previously shown to reduce post-traumatic intracranial hypertension. Temperature, end-tidal partial pressure of carbon dioxide (pCO₂), and mean arterial blood pressure were kept within the physiological range throughout the experiments. Arteriolar diameters were stable during baseline monitoring but increased significantly in C57BL/6 mice after controlled cortical impact (136±7% of baseline; p<0.001 vs. baseline). This response was reduced by 78% in eNOS-/- mice (108±3% of baseline; p<0.005 vs. wild-type). Application of VAS203, a NOS inhibitor, or PBS did not affect vessels diameter before TBI. After trauma, however, administration of VAS203 reduced arteriolar diameter to 92±2% of baseline (p<0.05). The diameter of pial veins was not affected. Our results suggest that arteriolar vasodilatation after TBI is largely mediated by excess production of endothelial nitric oxide. Accordingly, our data may explain the beneficial effects of the NOS inhibitor VAS203 in the early phase after TBI and suggest that inhibition of excess endothelial nitric oxide production may represent a novel therapeutic strategy following TBI.

  15. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    SciTech Connect

    Han, Jae Yun; Cho, Seung Sik; Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho; Park, Da Eon; Bang, Joon Seok; Jung, Young Suk; Ki, Sung Hwan

    2015-08-15

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  16. Pregnancy Augments G Protein Estrogen Receptor (GPER) Induced Vasodilation in Rat Uterine Arteries via the Nitric Oxide - cGMP Signaling Pathway

    PubMed Central

    Tropea, Teresa; De Francesco, Ernestina Marianna; Rigiracciolo, Damiano; Maggiolini, Marcello; Wareing, Mark; Osol, George; Mandalà, Maurizio

    2015-01-01

    Background The regulation of vascular tone in the uterine circulation is a key determinant of appropriate uteroplacental blood perfusion and successful pregnancy outcome. Estrogens, which increase in the maternal circulation throughout pregnancy, can exert acute vasodilatory actions. Recently a third estrogen receptor named GPER (G protein-coupled estrogen receptor) was identified and, although several studies have shown vasodilatory effects in several vascular beds, nothing is known about its role in the uterine vasculature. Aim The aim of this study was to determine the function of GPER in uterine arteries mainly during pregnancy. Uterine arteries were isolated from nonpregnant and pregnant rats. Methods Vessels were contracted with phenylephrine and then incubated with incremental doses (10−12–10−5 M) of the selective GPER agonist G1. Results G1 induced a dose-dependent vasodilation which was: 1) significantly increased in pregnancy, 2) endothelium-dependent, 3) primarily mediated by NO/cGMP pathway and 4) unaffected by BKca channel inhibition. Conclusion This is the first study to show the potential importance of GPER signaling in reducing uterine vascular tone during pregnancy. GPER may therefore play a previously unrecognized role in the regulation of uteroplacental blood flow and normal fetus growth. PMID:26536245

  17. Gender and cataract--the role of estrogen.

    PubMed

    Zetterberg, Madeleine; Celojevic, Dragana

    2015-02-01

    There is evidence from epidemiologic data that cataract is more common in women than men. This is not solely due to a higher rate of cataract extraction in women, as is the case in the western world, but several population-based studies show that females have a higher prevalence of lens opacities, especially cortical. There is no firm evidence that lifestyle-related factors are the cause of this gender discrepancy. Focus has therefore been directed towards the role of estrogen in cataract formation. Although data on endogenous and exogenous estrogen involvement in cataractogenesis are conflicting, some studies have indicated that hormone therapy may decrease the risk of cataract and thus be protective. It has been hypothesized that the decrease in estrogen at menopause cause increased risk of cataract in women, i.e. not strictly the concentration of estrogen, but more the withdrawal effect. Estrogens are known to exert several anti-aging effects that may explain the longer lifespan in women, including metabolically beneficial effects, neuroprotection, preservation of telomeres and anti-oxidative properties. Since oxidative stress is considered important in cataractogenesis, studies have investigated the effects of estrogens on lens epithelial cells in culture or in animal models. Several investigators have found protection by physiological concentrations of 17β-estradiol against oxidative stress induced by H2O2 in cultured lens epithelial cells. Although both main types of estrogen receptors, ERα and ERβ, have been demonstrated in lens epithelium, most studies so far indicate that the estrogen-mediated protection in the lens is exerted through non-genomic, i.e. receptor-independent mechanisms, possibly through phosphorylation of extracellular signal-regulated kinase (ERK1/ERK2), a member of the mitogen-activated protein kinase (MAPK)-signaling pathway. Further studies are needed, both epidemiologic as to the role of hormone therapies, and laboratory studies

  18. A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation.

    PubMed

    Meade, Maureen O; Granton, John T; Matte-Martyn, Andrea; McRae, Karen; Weaver, Bruce; Cripps, Paula; Keshavjee, Shaf H

    2003-06-01

    Inhalation of nitric oxide (NO) has been advocated as a method to prevent ischemia-reperfusion injury after lung transplantation. We enrolled 84 patients into a concealed, randomized, placebo-controlled trial to evaluate the effect of inhaled NO (20 ppm NO or nitrogen) initiated 10 minutes after reperfusion on outcomes after lung transplantation. The groups (n = 42) were balanced with respect to age, sex, lung disease, procedure, and total ischemic times. PaO2/FIO2 ratios were similar on admission to the intensive care unit (ICU) (NO 361 +/- 134; control patients 357 +/- 132), and over the duration of the study. There were no differences in hemodynamics between the two groups. Severe reperfusion injury (PaO2/FIO2 < 150) was present at the time of admission to the ICU in 14.6% NO patients versus 9.5% of control patients (p = 0.48). The groups had similar median times to first successful trial of unassisted breathing (25 vs. 27 hours; p = 0.76), successful extubation (32 vs. 34 hours; p = 0.65), ICU discharge (3.0 days for both groups), and hospital discharge (27 vs. 29 days; p = 0.563). Five NO versus six control patients died during their hospital stay. Adjusting for age, sex, lung disease etiology, presence of pulmonary hypertension, and total ischemic time did not alter these results. In conclusion, we did not detect a significant effect of inhaled NO administered 10 minutes after reperfusion on physiologic variables or outcomes in lung transplant patients.

  19. Is Estrogen a Therapeutic Target for Glaucoma?

    PubMed

    Dewundara, Samantha S; Wiggs, Janey L; Sullivan, David A; Pasquale, Louis R

    2016-01-01

    This article's objective is to provide an overview of the association between estrogen and glaucoma. A literature synthesis was conducted of articles published in peer-reviewed journals screened through May 5, 2015, using the PubMed database. Keywords used were "estrogen and glaucoma," "reproductive factors and glaucoma," and "estrogen, nitric oxide and eye." Forty-three journal articles were included. Results indicated that markers for lifetime estrogen exposure have been measured by several studies and show that the age of menarche onset, oral contraceptive (OC) use, bilateral oophorectomy, age of menopause onset and duration between menarche to menopause are associated with primary open-angle glaucoma (POAG) risk. The Blue Mountain Eye Study found a significantly increased POAG risk with later (>13 years) compared with earlier (≤12 years) age of menarche. Nurses' Health Study (NHS) investigators found that OC use of greater than 5 years was associated with a 25% increased risk of POAG. The Mayo Clinic Cohort Study of Oophorectomy and Aging found that women who underwent bilateral oophorectomy before age 43 years had an increased risk of glaucoma. The Rotterdam Study found that women who went through menopause before reaching the age of 45 years had a higher risk of open-angle glaucoma (2.6-fold increased risk), while the NHS showed a reduced risk of POAG among women older than 65 who entered menopause after age ≥ 54 years. Increased estrogen states may confer a reduced risk of glaucoma or glaucoma-related traits such as reduced intraocular pressure (IOP). Pregnancy, a hyperestrogenemic state, is associated with decreased IOP during the third trimester. Though the role of postmenopausal hormone (PMH) use in the reduction of IOP is not fully conclusive, PMH use may reduce the risk of POAG. From a genetic epidemiologic perspective, estrogen metabolic pathway single nucleotide polymorphisms (SNPs) were associated with POAG in women and polymorphisms in

  20. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury.

    PubMed

    Cao, Zhuoxiao; Li, Yunbo

    2004-04-01

    Resveratrol is known to be protective against oxidative cardiovascular disorders. However, the underlying mechanisms remain unclear. This study was undertaken to determine if resveratrol could increase endogenous antioxidants and phase 2 enzymes in cardiomyocytes, and if such increased cellular defenses could provide protection against oxidative and electrophilic cell injury. Incubation of cardiac H9C2 cells with low micromolar resveratrol resulted in a significant induction of a scope of cellular antioxidants and phase 2 enzymes in a concentration- and/or time-dependent fashion. To investigate the protective effects of the resveratrol-induced cellular defenses on oxidative and electrophilic cell injury, H9C2 cells were first incubated with resveratrol, and then exposed to xanthine oxidase (XO)/xanthine, 4-hydroxy-2-nonenal or doxorubicin. We observed that resveratrol pretreatment afforded a marked protection against the above agent-mediated cytotoxicity in H9C2 cells. Moreover, the resveratrol pretreatment led to a great reduction in XO/xanthine-induced intracellular accumulation of ROS. Taken together, this study demonstrates that resveratrol induces antioxidants and phase 2 enzymes in cardiomyocytes, which is accompanied by increased resistance to oxidative and electrophilic cell injury.

  1. Apocynin Attenuates Cardiac Injury in Type 4 Cardiorenal Syndrome via Suppressing Cardiac Fibroblast Growth Factor-2 With Oxidative Stress Inhibition

    PubMed Central

    Liu, Yang; Liu, Yu; Liu, Xun; Chen, Jie; Zhang, Kun; Huang, Feifei; Wang, Jing-Feng; Tang, Wanchun; Huang, Hui

    2015-01-01

    Background Type 4 cardiorenal syndrome (CRS) refers to the cardiac injury induced by chronic kidney disease. We aimed to assess oxidative stress and cardiac injury in patients with type 4 CRS, determine whether the antioxidant apocynin attenuated cardiac injury in rats with type 4 CRS, and explore potential mechanisms. Methods and Results A cross-sectional study was conducted among patients with type 4 CRS (n=17) and controls (n=16). Compared with controls, patients with type 4 CRS showed elevated oxidative stress, which was significantly correlated with cardiac hypertrophy and decreased ejection fraction. In vivo study, male Sprague-Dawley rats underwent 5/6 subtotal nephrectomy and sham surgery, followed with apocynin or vehicle treatment for 8 weeks. Eight weeks after surgery, the 5/6 subtotal nephrectomy rats mimicked type 4 CRS, showing increased serum creatinine, cardiac hypertrophy and fibrosis, and decreased ejection fraction compared with sham-operated animals. Cardiac malondialdehyde, NADPH oxidase activity, fibroblast growth factor-2, and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation increased significantly in the 5/6 subtotal nephrectomy rats. These changes were significantly attenuated by apocynin. In vitro study showed that apocynin reduced angiotensin II–induced NADPH oxidase–dependent oxidative stress, upregulation of fibroblast growth factor-2 and fibrosis biomarkers, and ERK1/2 phosphorylation in cardiac fibroblasts. Importantly, the ERK1/2 inhibitor U0126 reduced the upregulation of fibroblast growth factor-2 and fibrosis biomarkers in angiotensin II–treated fibroblasts. Conclusions Oxidative stress is a candidate mediator for type 4 CRS. Apocynin attenuated cardiac injury in type 4 CRS rats via inhibiting NADPH oxidase–dependent oxidative stress-activated ERK1/2 pathway and subsequent fibroblast growth factor-2 upregulation. Our study added evidence to the beneficial effect of apocynin in type 4 CRS. PMID:26109504

  2. Traumatic Brain Injury Disrupts Cerebrovascular Tone Through Endothelial Inducible Nitric Oxide Synthase Expression and Nitric Oxide Gain of Function

    PubMed Central

    Villalba, Nuria; Sonkusare, Swapnil K.; Longden, Thomas A.; Tran, Tram L.; Sackheim, Adrian M.; Nelson, Mark T.; Wellman, George C.; Freeman, Kalev

    2014-01-01

    Background Traumatic brain injury (TBI) has been reported to increase the concentration of nitric oxide (NO) in the brain and can lead to loss of cerebrovascular tone; however, the sources, amounts, and consequences of excess NO on the cerebral vasculature are unknown. Our objective was to elucidate the mechanism of decreased cerebral artery tone after TBI. Methods and Results Cerebral arteries were isolated from rats 24 hours after moderate fluid‐percussion TBI. Pressure‐induced increases in vasoconstriction (myogenic tone) and smooth muscle Ca2+ were severely blunted in cerebral arteries after TBI. However, myogenic tone and smooth muscle Ca2+ were restored by inhibition of NO synthesis or endothelium removal, suggesting that TBI increased endothelial NO levels. Live native cell NO, indexed by 4,5‐diaminofluorescein (DAF‐2 DA) fluorescence, was increased in endothelium and smooth muscle of cerebral arteries after TBI. Clamped concentrations of 20 to 30 nmol/L NO were required to simulate the loss of myogenic tone and increased (DAF‐2T) fluorescence observed following TBI. In comparison, basal NO in control arteries was estimated as 0.4 nmol/L. Consistent with TBI causing enhanced NO‐mediated vasodilation, inhibitors of guanylyl cyclase, protein kinase G, and large‐conductance Ca2+‐activated potassium (BK) channel restored function of arteries from animals with TBI. Expression of the inducible isoform of NO synthase was upregulated in cerebral arteries isolated from animals with TBI, and the inducible isoform of NO synthase inhibitor 1400W restored myogenic responses following TBI. Conclusions The mechanism of profound cerebral artery vasodilation after TBI is a gain of function in vascular NO production by 60‐fold over controls, resulting from upregulation of the inducible isoform of NO synthase in the endothelium. PMID:25527626

  3. Inhibition of Rho-Kinase Improves Erectile Function, Increases Nitric Oxide Signaling and Decreases Penile Apoptosis in a Rat Model of Cavernous Nerve Injury

    PubMed Central

    Hannan, Johanna L.; Albersen, Maarten; Kutlu, Omer; Gratzke, Christian; Stief, Christian G.; Burnett, Arthur L.; Lysiak, Jeffrey J.; Hedlund, Petter; Bivalacqua, Trinity J.

    2014-01-01

    Purpose Bilateral cavernous nerve injury results in up-regulation of ROCK signaling in the penis. This is linked to erectile dysfunction in an animal model of post-prostatectomy erectile dysfunction. We evaluated whether daily treatment with the ROCK inhibitor Y-27632 (Tocris Bioscience, Ellisville, Missouri) would prevent erectile dysfunction in a rat model of bilateral cavernous nerve injury. Materials and Methods Sprague-Dawley® rats underwent surgery to create sham (14) or bilateral (27) cavernous nerve injury. In the injury group 13 rats received treatment with Y-27632 (5 mg/kg twice daily) and 14 received vehicle. At 14 days after injury, rats underwent cavernous nerve stimulation to determine erectile function. Penes were assessed for neuronal and nitric oxide synthase membrane-endothelial nitric oxide synthase. ROCK2 was assessed by Western blot. Cyclic guanosine monophosphate was determined by enzyme-linked immunosorbent assay. Cavernous homogenates were tested for ROCK and protein kinase G enzymatic activity. Penile apoptosis was evaluated using the Apostain technique (Alexis, San Diego, California). Data were analyzed on ROCK using ANOVA and the t test. Results While erectile function was decreased in rats with bilateral cavernous nerve injury, daily administration of Y-27632 improved erectile responses. Injury decreased neuronal and nitric oxide synthase membrane-endothelial nitric oxide synthase but ROCK2 was significantly increased. Y-27632 treatment restored neuronal nitric oxide synthase, nitric oxide synthase membrane-endothelial nitric oxide synthase and cyclic guanosine monophosphate levels, and protein kinase G activity. Treatment significantly decreased ROCK2 protein and ROCK activity. There were significantly fewer apoptotic cells after treatment than in injured controls. Conclusions These results provide evidence for up-regulation of the RhoA/ROCK signaling pathway with detrimental effects on erectile function after bilateral cavernous nerve

  4. Selective Rac1 inhibition protects renal tubular epithelial cells from oxalate-induced NADPH oxidase-mediated oxidative cell injury.

    PubMed

    Thamilselvan, Vijayalakshmi; Menon, Mani; Thamilselvan, Sivagnanam

    2012-08-01

    Oxalate-induced oxidative cell injury is one of the major mechanisms implicated in calcium oxalate nucleation, aggregation and growth of kidney stones. We previously demonstrated that oxalate-induced NADPH oxidase-derived free radicals play a significant role in renal injury. Since NADPH oxidase activation requires several regulatory proteins, the primary goal of this study was to characterize the role of Rac GTPase in oxalate-induced NADPH oxidase-mediated oxidative injury in renal epithelial cells. Our results show that oxalate significantly increased membrane translocation of Rac1 and NADPH oxidase activity of renal epithelial cells in a time-dependent manner. We found that NSC23766, a selective inhibitor of Rac1, blocked oxalate-induced membrane translocation of Rac1 and NADPH oxidase activity. In the absence of Rac1 inhibitor, oxalate exposure significantly increased hydrogen peroxide formation and LDH release in renal epithelial cells. In contrast, Rac1 inhibitor pretreatment, significantly decreased oxalate-induced hydrogen peroxide production and LDH release. Furthermore, PKC α and δ inhibitor, oxalate exposure did not increase Rac1 protein translocation, suggesting that PKC resides upstream from Rac1 in the pathway that regulates NADPH oxidase. In conclusion, our data demonstrate for the first time that Rac1-dependent activation of NADPH oxidase might be a crucial mechanism responsible for oxalate-induced oxidative renal cell injury. These findings suggest that Rac1 signaling plays a key role in oxalate-induced renal injury, and may serve as a potential therapeutic target to prevent calcium oxalate crystal deposition in stone formers and reduce recurrence.

  5. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress.

    PubMed

    Zhang, Bo; Wang, Bing; Cao, Shuhua; Wang, Yongqiang

    2015-11-01

    Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47(phox) translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress. PMID:26557015

  6. Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity

    PubMed Central

    Guan, SP; Tee, W; Ng, DSW; Chan, TK; Peh, HY; Ho, WE; Cheng, C; Mak, JC; Wong, WSF

    2013-01-01

    Background and Purpose Cigarette smoke is a major cause for chronic obstructive pulmonary disease (COPD). Andrographolide is an active biomolecule isolated from the plant Andrographis paniculata. Andrographolide has been shown to activate nuclear factor erythroid-2-related factor 2 (Nrf2), a redox-sensitive antioxidant transcription factor. As Nrf2 activity is reduced in COPD, we hypothesize that andrographolide may have therapeutic value for COPD. Experimental Approach Andrographolide was given i.p. to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage fluid and lungs were collected for analyses of cytokines, oxidative damage markers and antioxidant activities. BEAS-2B bronchial epithelial cells were exposed to cigarette smoke extract (CSE) and used to study the antioxidant mechanism of action of andrographolide. Key Results Andrographolide suppressed cigarette smoke-induced increases in lavage fluid cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Andrographolide promoted inductions of glutathione peroxidase (GPx) and glutathione reductase (GR) activities in lungs from cigarette smoke-exposed mice. In BEAS-2B cells, andrographolide markedly increased nuclear Nrf2 accumulation, promoted binding to antioxidant response element (ARE) and total cellular glutathione level in response to CSE. Andrographolide up-regulated ARE-regulated gene targets including glutamate-cysteine ligase catalytic (GCLC) subunit, GCL modifier (GCLM) subunit, GPx, GR and heme oxygenase-1 in BEAS-2B cells in response to CSE. Conclusions Andrographolide possesses antioxidative properties against cigarette smoke-induced lung injury probably via augmentation of Nrf2 activity and may have therapeutic potential for treating COPD. PMID:23146110

  7. Protective Actions of 17β-Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds

    PubMed Central

    Ishihara, Yasuhiro; Takemoto, Takuya; Yamazaki, Takeshi

    2015-01-01

    Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury. PMID:25815107

  8. Alveolar type I cells protect rat lung epithelium from oxidative injury

    PubMed Central

    Chen, Jiwang; Chen, Zhongming; Chintagari, Narendranath Reddy; Bhaskaran, Manoj; Jin, Nili; Narasaraju, Telugu; Liu, Lin

    2006-01-01

    The lung alveolar surface is covered by two morphologically and functionally distinct cells: alveolar epithelial cell types I and II (AEC I and II). The functions of AEC II, including surfactant release, cell differentiation and ion transport, have been extensively studied. However, relatively little is known regarding the physiological functions of AEC I. Global gene expression profiling of freshly isolated AEC I and II revealed that many genes were differentially expressed in AEC I. These genes have a diversity of functions, including cell defence. Nine out of 10 selected genes were verified by quantitative real-time PCR. Two genes, apolipoprotein E (Apo E) and transferrin, were further characterized and functionally studied. Immunohistochemistry indicated that both proteins were specifically localized in AEC I. Up-regulation of Apo E and transferrin was observed in hyperoxic lungs. Functionally, Apo E and transferrin play a protective role against oxidative stress in an animal model. Our studies suggest that AEC I is not just a simple barrier for gas exchange, but a functional cell that protects alveolar epithelium from injury. PMID:16497717

  9. Arsenate-induced Apoptosis in Murine Embryonic Maxillary Mesenchymal Cells via Mitochondrial Mediated Oxidative Injury

    PubMed Central

    Singh, Saurabh; Greene, Robert M.; Pisano, M. Michele

    2009-01-01

    Background Arsenic is a ubiquitous element that is a potential carcinogen and teratogen and can cause adverse developmental outcomes. Arsenic exerts its toxic effects through the generation of reactive oxygen species (ROS) that include hydrogen peroxide (H2O2), superoxide-derived hydroxyl ion, and peroxyl radicals. However, the molecular mechanisms by which arsenic induces cytotoxicity in murine embryonic maxillary mesenchymal (MEMM) cells are undefined. Methods MEMM cells in culture were treated with different concentrations of pentavalent sodium arsenate [As (V)] for 24 or 48 hours and various end points measured. Results We show that treatment of MEMM cells with the pentavalent form of inorganic arsenic resulted in caspase-mediated apoptosis, accompanied by generation of ROS and disruption of mitochondrial membrane potential. Treatment with caspase inhibitors markedly blocked apoptosis. In addition, the free radical scavenger N-acetylcysteine dramatically attenuated arsenic-mediated ROS production and apoptosis, and exposure to arsenate increased Bax and decreased Bcl protein levels in MEMM cells. Conclusions Taken together, these findings suggest that in MEMM cells, arsenate-mediated oxidative injury acts as an early and upstream initiator of the cell death cascade, triggering cytotoxicity, mitochondrial dysfunction, altered Bcl/Bax protein ratios, and activation of caspase-9. PMID:19739150

  10. Nitric oxide in microgravity-induced orthostatic intolerance: relevance to spinal cord injury

    NASA Technical Reports Server (NTRS)

    Vaziri, N. D.; Purdy, R. E. (Principal Investigator)

    2003-01-01

    Prolonged exposure to microgravity results in cardiovascular deconditioning which is marked by orthostatic intolerance in the returning astronauts and recovering bed-ridden patients. Recent studies conducted in our laboratories at University of California, Irvine have revealed marked elevation of nitric oxide (NO) production in the kidney, heart, brain, and systemic arteries coupled with significant reduction of NO production in the cerebral arteries of microgravity-adapted animals. We have further demonstrated that the observed alteration of NO metabolism is primarily responsible for the associated cardiovascular deconditioning. Recovery from acute spinal cord injury (SCI) is frequently complicated by orthostatic intolerance that is due to the combined effects of the disruption of efferent sympathetic pathway and cardiovascular deconditioning occasioned by prolonged confinement to bed. In this presentation, I will review the nature of altered NO metabolism and its role in the pathogenesis of microgravity-induced cardiovascular deconditioning. The possible relevance of the new findings to orthostatic intolerance in patients with acute SCI and its potential therapeutic implications will be discussed.

  11. The Effects of Testosterone on Oxidative Stress Markers in Mice with Spinal Cord Injuries

    PubMed Central

    Choobineh, Hamid; Sadighi Gilani, Mohammad Ali; Pasalar, Parvin; Jahanzad, Issa; Ghorbani, Rostam; Hassanzadeh, Gholamreza

    2016-01-01

    Background Spinal cord injury (SCI) causes infertility in male patients through erectile dysfunction, ejaculatory dysfunction, semen and hormone abnormalities. Oxidative stress (OS) is involved in poor semen quality and subsequent infertility in males with SCI. The aim of this study is to examine the effects of SCI on the level of testosterone hormone. Materials and Methods In this experimental study, we evaluated the effects of exogenous testosterone on the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) as well as the levels of malondialdehyde (MDA) and protein carbonylation (PCO), as markers of OS, in 10 groups of SCI mice. Total antioxidant capacity (TAC) was determined using the 2,29-azinobis-(3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) radical cation assay. Results Exogenous testosterone administration in mice with SCI significantly reduced SOD and GPx enzyme activities and MDA level. There was no significant decrease in PCO content. In addition, TAC remarkably increased in the sham and SCI groups not treated with testosterone but remained unchanged in all other experimental groups. Exogenous testosterone also reduced serum testosterone levels in all groups except the positive control group. Conclusion Our cumulative data indicated that SCI could cause sterility by disturbing the plasmatic testosterone balance. The normal level of endogenous testosterone was not completely restored by exogenous testosterone administration. PMID:27123205

  12. A case of chemical scalp burns after hair highlights: experimental evidence of oxidative injuries.

    PubMed

    Bertani, Roberta; Sgarbossa, Paolo; Pendolino, Flavio; Facchin, Giangiacomo; Snenghi, Rossella

    2016-12-01

    Hair highlights are quite common procedures carried out in hair salons by using a mixture of a lightening powder containing persulfates with a suspension containing hydrogen peroxide: a representative case of chemical scalp burns is described as a consequence of this treatment. The aim of the paper is to demonstrate the strict relationship between the scalp damage and the commercial products used in a case of hair highlighting. The results of some chemical analyses have been reported, showing, in particular, that the chemical reactivity of the mixture changes in the time, thus strongly suggesting that the procedure for the application of the mixture is critical for the occurrence of possible accidents. The presence in the powder of chemical compounds bearing aliphatic chains as surfactants explains the appearance of dramatic symptoms after days due to a slow dissolution of the oxidant compounds in the stratum corneum of skin with no effect in reducing injury of palliative treatments. Safety suggestions and recommendations for producers and workers are also included.

  13. Effectiveness of nitric oxide during spontaneous breathing in experimental lung injury.

    PubMed

    Dembinski, Rolf; Hochhausen, Nadine; Terbeck, Sandra; Bickenbach, Johannes; Stadermann, Frederik; Rossaint, Rolf; Kuhlen, Ralf

    2010-04-01

    Inhaled nitric oxide (iNO) improves gas exchange in about 60% of patients with acute respiratory distress syndrome (ARDS). Recruitment of atelectatic lung areas may improve responsiveness and preservation of spontaneous breathing (SB) may cause recruitment. Accordingly, preservation of SB may improve effectiveness of iNO. To test this hypothesis, iNO was evaluated in experimental acute lung injury (ALI) during SB. In 24 pigs with ALI, effects of 10 ppm iNO were evaluated during controlled mechanical ventilation (CMV) and SB in random order. Preservation of SB was provided by 4 different modes: Unassisted SB was enabled by biphasic positive airway pressure (BIPAP), moderate inspiratory assist was provided by pressure support (PS) and volume-assured pressure support (VAPS), maximum assist was ensured by assist control (A/C). Statistical analysis did not reveal gas exchange improvements due to SB alone. Significant gas exchange improvements due to iNO were only achieved during unassisted SB with BIPAP (P <.05) but not during CMV or assisted SB. The authors conclude that effectiveness of iNO may be improved by unassisted SB during BIPAP but not by assisted SB. Thus combined iNO and unassisted SB is possibly most effective to improve gas exchange in severe hypoxemic ARDS.

  14. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress.

    PubMed

    Sha, BaoYong; Gao, Wei; Wang, ShuQi; Li, Wei; Liang, Xuan; Xu, Feng; Lu, Tian Jian

    2013-08-01

    Heart diseases, which are related to oxidative stress (OS), negatively affect millions of people from kids to the elderly. Titanium dioxide (TiO2) has widespread applications in our daily life, especially nanoscale TiO2. Compared to the high risk of particulate matter (≤2.5μm) in air to heart disease patients, related research of TiO2 on diseased body is still unknown, which suggest us to explore the potential effects of nanoscale and microscale TiO2 to heart under OS conditions. Here, we used alloxan to induce OS conditions in rat, and investigated the response of heart tissue to TiO2 in healthy and alloxan treated rats. Compared with NMs treatment only, the synergistic interaction between OS conditions and nano-TiO2 significantly reduced the heart-related function indexes, inducing pathological changes of myocardium with significantly increased levels of cardiac troponin I and creatine kinase-MB. In contrast with the void response of micro-TiO2 to heart functions in alloxan treated rats, aggravation of OS conditions might play an important role in cardiac injury after alloxan and nano-TiO2 dual exposure. Our results demonstrated that OS conditions enhanced the adverse effects of nano-TiO2 to heart, suggesting that the use of NMs in stressed conditions (e.g., drug delivery) needs to be carefully monitored. PMID:23665316

  15. Sensorineural hearing loss and ischemic injury: Development of animal models to assess vascular and oxidative effects.

    PubMed

    Olivetto, E; Simoni, E; Guaran, V; Astolfi, L; Martini, A

    2015-09-01

    Hearing loss may be genetic, associated with aging or exposure to noise or ototoxic substances. Its aetiology can be attributed to vascular injury, trauma, tumours, infections or autoimmune response. All these factors could be related to alterations in cochlear microcirculation resulting in hypoxia, which in turn may damage cochlear hair cells and neurons, leading to deafness. Hypoxia could underlie the aetiology of deafness, but very few data about it are presently available. The aim of this work is to develop animal models of hypoxia and ischemia suitable for study of cochlear vascular damage, characterizing them by electrophysiology and gene/protein expression analyses. The effects of hypoxia in infarction were mimicked in rat by partial permanent occlusion of the left coronary artery, and those of ischemia in thrombosis by complete temporary carotid occlusion. In our models both hypoxia and ischemia caused a small but significant hearing loss, localized at the cochlear apex. A slight induction of the coagulation cascade and of oxidative stress pathways was detected as cell survival mechanism, and cell damages were found on the cuticular plate of outer hair cells only after carotid ischemia. Based on these data, the two developed models appear suitable for in vivo studies of cochlear vascular damage.

  16. Oxidative Damage and Mitochondrial Injuries Are Induced by Various Irrigation Pressures in Rabbit Models of Mild and Severe Hydronephrosis

    PubMed Central

    Cao, Zhixiu; Yu, Weimin; Li, Wei; Cheng, Fan; Rao, Ting; Yao, Xiaobing; Zhang, Xiaobin; Larré, Stéphane

    2015-01-01

    Objective We aimed to study whether tolerance to irrigation pressure could be modified by evaluating the oxidative damage of obstructed kidneys based on rabbit models experiencing different degrees of hydronephrosis. Methods A total of 66 rabbits were randomly divided into two experimental groups and a control group. In the experimental groups, the rabbits underwent a surgical procedure inducing mild (group M, n=24) or severe (group S, n=24) hydronephrosis. In each experimental group, the rabbits were then randomly divided into 4 subgroups (M0-M3 and S0-S3) consisting of 6 rabbits each. Group 0 received no perfusion. Groups 1 through 3 were perfused with 20, 60 and 100 mmHg fluid, respectively. For the control group, after a sham operation was performed, the rabbits were divided into 4 subgroups and were perfused with fluid at 0, 20, 60 or 100 mmHg of pressure. Kidney injuries was evaluated by neutrophil gelatinase associated lipocalin (NGAL). Oxidative damage was assessed by analyzing superoxide dismutase (Mn-SOD) activity, malondialdehyde (MDA) levels, glutathione reductase (GR), catalase (CAT) and peroxide (H2O2) levels, mitochondrial injuries was assessed by mitochondrial membrane potential (MMP), the mitochondrial ultrastructure and tubular cell apoptosis. Results In the experimental groups, all results were similar for groups 0 and 1. In group 2, abnormalities were observed in the S group only, and the kidneys of rabbits in group 3 suffered oxidative damage and mitochondrial injuries with increased NGAL, decreased Mn-SOD, GR and CAT,increased MDA and H2O2, lower levels of MMP, mitochondrial vacuolization and an increased apoptotic index. Conclusion In rabbits, severely obstructed kidneys were more susceptible to oxidative damage and mitochondrial injury than mildly obstructed kidneys when subjected to higher degrees of kidney perfusion pressure. PMID:26090815

  17. Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response: Role of Silent Information Regulator 1

    PubMed Central

    Yu, Liming; Li, Qing; Yu, Bo; Yang, Yang; Jin, Zhenxiao; Duan, Weixun; Zhao, Guolong; Zhai, Mengen; Liu, Lijun; Yi, Dinghua; Chen, Min; Yu, Shiqiang

    2016-01-01

    Berberine (BBR) exerts potential protective effect against myocardial ischemia/reperfusion (MI/R) injury. Activation of silent information regulator 1 (SIRT1) signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl) and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91phox expression, malondialdehyde (MDA) level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD) level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process. PMID:26788242

  18. Effect of environmental particulates on cultured human and bovine endothelium. Cellular injury via an oxidant-dependent pathway

    SciTech Connect

    Garcia, J.G.; Dodson, R.F.; Callahan, K.S.

    1989-07-01

    The effects of respirable environmental fibers on cultures of human umbilical vein and bovine pulmonary artery endothelial cell monolayers were studied. Interaction among endothelial cell monolayers and amosite and chrysotile asbestos, attapulgite, fiberglass, or latex beads resulted in rapid phagocytosis of the particulates. A gradient of time-dependent and concentration-dependent endothelial cell injury (measured by specific 51Cr release) was observed with amosite and attapulgite being markedly toxic. Chrysotile and fiberglass were much less toxic, and latex beads were not significantly injurious at any time or dose examined. Responses of bovine pulmonary artery and human endothelial vein endothelial cells to fiber phagocytosis and fiber-induced injury were similar. In human umbilical cell monolayers, fiber-mediated stimulation of the arachidonate metabolite prostacyclin paralleled endothelial cell injury; i.e. amosite and attapulgite were stimulatory, whereas fiberglass (0-500 micrograms/ml) and latex beads (10(9) beads/ml) did not significantly increase prostacyclin generation. Although chrysotile was only weakly cytotoxic, significant stimulation of prostacyclin was observed at the highest dose tested (500 micrograms/ml). To investigate whether toxic oxygen species may be involved in fiber-induced cytotoxicity, oxidant scavengers or inhibitors were used in injury studies. Both superoxide dismutase (a scavenger of O2-) and catalase (an inhibitor of H2O2) produced significant protection against fiber-mediated endothelial cell injury. In addition, chelation by deferoxamine of elemental Fe present in the fiber preparations was also protective, suggesting Fe, via the modified Haber-Weiss reaction, may promote hydroxyl radical formation and contribute to endothelial cell injury induced by these particulates.

  19. The effect of CAPE on lipid peroxidation and nitric oxide levels in the plasma of rats following thermal injury.

    PubMed

    Hoşnuter, Mübin; Gürel, Ahmet; Babucçu, Orhan; Armutcu, Ferah; Kargi, Eksal; Işikdemir, Ahmet

    2004-03-01

    Both experimental and clinical studies have shown that oxygen-derived free radicals rise in the plasma after thermal injury and participate in the pathogenesis of tissue damage. Hence, various antioxidant molecules have been used in treatment of burn injury both experimentally and clinically. Caffeic acid phenethyl ester (CAPE), an active component of propolis from honeybee hives, is known to have potent antioxidant property. The purpose of the present study was to investigate the effects of CAPE on oxidative stress in plasma of burned rats. Experiment was designed in three groups of rats with 20% full-thickness burn: (a) sham burn (n = 7); (b) burn only (n = 22); (c) burn + treatment with CAPE (n = 22). Plasma levels of malondialdehyde (MDA), nitric oxide (NO) and the activities of xanthine oxidase (XO), and superoxide dismutase (SOD) were used as both bio-indicators of oxidant status and determinant of antioxidant effect of CAPE. They were assessed by biochemical methods at 1st, 3rd, 7th, and 14th post-burn days. In conclusion, CAPE was shown to possess antioxidant activity by saving SOD activity, preventing XO activity and decreasing the levels of MDA, and NO. Our study showed that CAPE may be beneficial in burn injury.

  20. Vascular Aging in Women: is Estrogen the Fountain of Youth?

    PubMed

    Novella, Susana; Dantas, Ana Paula; Segarra, Gloria; Medina, Pascual; Hermenegildo, Carlos

    2012-01-01

    Aging is associated with structural and functional changes in the vasculature, including endothelial dysfunction, arterial stiffening and remodeling, impaired angiogenesis, and defective vascular repair, and with increased prevalence of atherosclerosis. Cardiovascular risk is similar for older men and women, but lower in women during their fertile years. This age- and sex-related difference points to estrogen as a protective factor because menopause is marked by the loss of endogenous estrogen production. Experimental and some clinical studies have attributed most of the protective effects of estrogen to its modulatory action on vascular endothelium. Estrogen promotes endothelial-derived NO production through increased expression and activity of endothelial nitric oxide synthase, and modulates prostacyclin and thromboxane A(2) release. The thromboxane A(2) pathway is key to regulating vascular tone in females. Despite all the experimental evidence, some clinical trials have reported no cardiovascular benefit from estrogen replacement therapy in older postmenopausal women. The "Timing Hypothesis," which states that estrogen-mediated vascular benefits occur only before the detrimental effects of aging are established in the vasculature, offers a possible explanation for these discrepancies. Nevertheless, a gap remains in current knowledge of cardiovascular aging mechanisms in women. This review comprises clinical and experimental data on the effects of aging, estrogens, and hormone replacement therapy on vascular function of females. We aim to clarify how menopause and aging contribute jointly to vascular aging and how estrogen modulates vascular response at different ages. PMID:22685434

  1. Vascular Aging in Women: is Estrogen the Fountain of Youth?

    PubMed Central

    Novella, Susana; Dantas, Ana Paula; Segarra, Gloria; Medina, Pascual; Hermenegildo, Carlos

    2012-01-01

    Aging is associated with structural and functional changes in the vasculature, including endothelial dysfunction, arterial stiffening and remodeling, impaired angiogenesis, and defective vascular repair, and with increased prevalence of atherosclerosis. Cardiovascular risk is similar for older men and women, but lower in women during their fertile years. This age- and sex-related difference points to estrogen as a protective factor because menopause is marked by the loss of endogenous estrogen production. Experimental and some clinical studies have attributed most of the protective effects of estrogen to its modulatory action on vascular endothelium. Estrogen promotes endothelial-derived NO production through increased expression and activity of endothelial nitric oxide synthase, and modulates prostacyclin and thromboxane A2 release. The thromboxane A2 pathway is key to regulating vascular tone in females. Despite all the experimental evidence, some clinical trials have reported no cardiovascular benefit from estrogen replacement therapy in older postmenopausal women. The “Timing Hypothesis,” which states that estrogen-mediated vascular benefits occur only before the detrimental effects of aging are established in the vasculature, offers a possible explanation for these discrepancies. Nevertheless, a gap remains in current knowledge of cardiovascular aging mechanisms in women. This review comprises clinical and experimental data on the effects of aging, estrogens, and hormone replacement therapy on vascular function of females. We aim to clarify how menopause and aging contribute jointly to vascular aging and how estrogen modulates vascular response at different ages. PMID:22685434

  2. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene.

    PubMed

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    injury was through the oxidative stress, inhibition of oxidative stress after RK exposure may be urgently needed.

  3. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene

    PubMed Central

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    injury was through the oxidative stress, inhibition of oxidative stress after RK exposure may be urgently needed. PMID:26191256

  4. The protective role of MnTBAP in Oxidant-mediated injury and inflammation following Lung Contusion

    PubMed Central

    Suresh, Madathilparambil V; Yu, Bi; Lakshminrusimha, Satyan; Machado-Aranda, D; Talarico, Nicholas; Zeng, Lixia; Davidson, Bruce A.; Pennathur, Subramaniam; Raghavendran, Krishnan

    2013-01-01

    Background Lung contusion (LC) is a unique direct and focal insult that is considered a major risk factor for initiation of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). We have recently shown that consumption of Nitric oxide (NO)(due to excess superoxide) resulting in peroxynitrite formation leads to diminished vascular reactivity after LC. Here, we set to determine if superoxide scavenger Mn (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) plays a protective role in alleviating acute inflammatory response and injury in LC. Methods Non-lethal closed-chest bilateral lung contusion was induced in a rodent model. Administration of superoxide dismutase (SOD) mimetic-MnTBAP, concurrently with LC in rats was performed and bronchoalveolar lavage (BAL) and lung samples were analyzed for degree of injury and inflammation at 5 and 24 h following the insult. The extent of injury was assessed by the measurement of cells and albumin with cytokine levels in the BAL and lungs. Lung samples were subjected to H&E and superoxide staining with dihydro-ethidium (DHE). Protein-bound dityrosine and nitrotyrosine levels were quantified in lung tissue by tandem mass spectrometry. Results The degree of lung injury after LC as determined by BAL albumin levels were significantly reduced in the MnTBAP administered rats at all the time points, when compared to the corresponding controls. The release of pro-inflammatory cytokines and BAL neutrophils were significantly lower in the MnTBAP administered rats after LC. Pathological examination revealed that administration of MnTBAP reduced tissue damage with decreased necrosis and neutrophil-rich exudate at the 24 h time point. Staining for superoxide anions showed significantly higher intensity in the lung samples from LC group compared to LC+ MnTBAP. Liquid chromatography/tandem mass spectrometry [HPLC/MS/MS] revealed that MnTBAP treatment significantly attenuated dityrosine and nitrotyrosine levels

  5. Removal of estrogens and estrogenicity through drinking water treatment.

    PubMed

    Schenck, Kathleen; Rosenblum, Laura; Wiese, Thomas E; Wymer, Larry; Dugan, Nicholas; Williams, Daniel; Mash, Heath; Merriman, Betty; Speth, Thomas

    2012-03-01

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drinking waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conventional drinking water treatment using a natural water. Bench-scale studies utilizing chlorine, alum coagulation, ferric chloride coagulation, and powdered activated carbon (PAC) were conducted using Ohio River water spiked with three estrogens, 17β-estradiol, 17α-ethynylestradiol, and estriol. Treatment of the estrogens with chlorine, either alone or with coagulant, resulted in approximately 98% reductions in the concentrations of the parent estrogens, accompanied by formation of by-products. The MVLN reporter gene and MCF-7 cell proliferation assays were used to characterize the estrogenic activity of the water before and after treatment. The observed estrogenic activities of the chlorinated samples showed that estrogenicity of the water was reduced commensurate with removal of the parent estrogen. Therefore, the estrogen chlorination by-products did not contribute appreciably to the estrogenic activity of the water. Coagulation alone did not result in significant removals of the estrogens. However, addition of PAC, at a typical drinking water plant dose, resulted in removals ranging from approximately 20 to 80%. PMID:22361701

  6. Neuroprotective effect of allicin against traumatic brain injury via Akt/endothelial nitric oxide synthase pathway-mediated anti-inflammatory and anti-oxidative activities.

    PubMed

    Chen, Wei; Qi, Jun; Feng, Feng; Wang, Mao-de; Bao, Gang; Wang, Tuo; Xiang, Mu; Xie, Wan-Fu

    2014-03-01

    Allicin, one of the main biologically active compounds derived from garlic, has been shown to exert various anti-oxidative and anti-inflammatory activities in in vitro and in vivo studies. Here, we sought to investigate the potential neuroprotective effects of allicin against traumatic brain injury (TBI) in rats. We found that allicin treatment (10 and 50mg/kg, not 1mg/kg) significantly reduced brain edema and motor functional deficits, as well as apoptotic neuronal cell death in injured cortex. These protective effects could be observed even if the administration was delayed to 4h after injury. Moreover, allicin treatment decreased the expression levels of MDA and protein carbonyl, preserved the endogenous antioxidant enzyme activities, and suppressed the expression of inflammatory cytokines. The results of Western blot analysis showed that allicin increased the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS). Blocking Akt/eNOS pathway activation by specific inhibitor LY294002 (10μL, 10mmol/L) or L-NIO (0.5mg/kg) partly reversed the protective effects of allicin and its anti-inflammatory activities. The allicin induced anti-oxidative activity was partly prevented by LY294002, but not L-NIO. In summary, our data strongly suggested that allicin treatment at an appropriate dose can exert protective effect against TBI through Akt/eNOS pathway-mediated anti-inflammatory and anti-oxidative activities.

  7. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    SciTech Connect

    Li, Weixin; Wu, Mingchai; Tang, Longguang; Pan, Yong; Liu, Zhiguo; Zeng, Chunlai; Wang, Jingying; Wei, Tiemin; Liang, Guang

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  8. The Histone Methyltransferase Enzyme Enhancer of Zeste Homolog 2 Protects against Podocyte Oxidative Stress and Renal Injury in Diabetes.

    PubMed

    Siddiqi, Ferhan S; Majumder, Syamantak; Thai, Kerri; Abdalla, Moustafa; Hu, Pingzhao; Advani, Suzanne L; White, Kathryn E; Bowskill, Bridgit B; Guarna, Giuliana; Dos Santos, Claudia C; Connelly, Kim A; Advani, Andrew

    2016-07-01

    Epigenetic regulation of oxidative stress is emerging as a critical mediator of diabetic nephropathy. In diabetes, oxidative damage occurs when there is an imbalance between reactive oxygen species generation and enzymatic antioxidant repair. Here, we investigated the function of the histone methyltransferase enzyme enhancer of zeste homolog 2 (EZH2) in attenuating oxidative injury in podocytes, focusing on its regulation of the endogenous antioxidant inhibitor thioredoxin interacting protein (TxnIP). Pharmacologic or genetic depletion of EZH2 augmented TxnIP expression and oxidative stress in podocytes cultured under high-glucose conditions. Conversely, EZH2 upregulation through inhibition of its regulatory microRNA, microRNA-101, downregulated TxnIP and attenuated oxidative stress. In diabetic rats, depletion of EZH2 decreased histone 3 lysine 27 trimethylation (H3K27me3), increased glomerular TxnIP expression, induced podocyte injury, and augmented oxidative stress and proteinuria. Chromatin immunoprecipitation sequencing revealed H3K27me3 enrichment at the promoter of the transcription factor Pax6, which was upregulated on EZH2 depletion and bound to the TxnIP promoter, controlling expression of its gene product. In high glucose-exposed podocytes and the kidneys of diabetic rats, the lower EZH2 expression detected coincided with upregulation of Pax6 and TxnIP. Finally, in a gene expression array, TxnIP was among seven of 30,854 genes upregulated by high glucose, EZH2 depletion, and the combination thereof. Thus, EZH2 represses the transcription factor Pax6, which controls expression of the antioxidant inhibitor TxnIP, and in diabetes, downregulation of EZH2 promotes oxidative stress. These findings expand the extent to which epigenetic processes affect the diabetic kidney to include antioxidant repair.

  9. Inducible Nitric Oxide Synthase Deficiency Impairs Matrix Metalloproteinase-9 Activity and Disrupts Leukocyte Migration in Hepatic Ischemia/Reperfusion Injury

    PubMed Central

    Hamada, Takashi; Duarte, Sergio; Tsuchihashi, Seiichiro; Busuttil, Ronald W.; Coito, Ana J.

    2009-01-01

    Matrix metalloproteinase 9 (MMP-9) is a critical mediator of leukocyte migration in hepatic ischemia/reperfusion (I/R) injury. To test the relevance of inducible nitric oxide synthase (iNOS) expression on the regulation of MMP-9 activity in liver I/R injury, our experiments included both iNOS-deficient mice and mice treated with ONO-1714, a specific iNOS inhibitor. The inability of iNOS-deficient mice to generate iNOS-derived nitric oxide (NO) profoundly inhibited MMP-9 activity and depressed leukocyte migration in livers after I/R injury. While macrophages expressed both iNOS and MMP-9 in damaged wild-type livers, neutrophils expressed MMP-9 and were virtually negative for iNOS; however, exposure of isolated murine neutrophils and macrophages to exogenous NO increased MMP-9 activity in both cell types, suggesting that NO may activate MMP-9 in leukocytes by either autocrine or paracrine mechanisms. Furthermore, macrophage NO production through the induction of iNOS was capable of promoting neutrophil transmigration across fibronectin in a MMP-9-dependent manner. iNOS expression in liver I/R injury was also linked to liver apoptosis, which was reduced in the absence of MMP-9. These results suggest that MMP-9 activity induced by iNOS-derived NO may also lead to detachment of hepatocytes from the extracellular matrix and cell death, in addition to regulating leukocyte migration across extracellular matrix barriers. These data provide evidence for a novel mechanism by which MMP-9 can mediate iNOS-induced liver I/R injury. PMID:19443702

  10. Caffeic Acid, a Phenol Found in White Wine, Modulates Endothelial Nitric Oxide Production and Protects from Oxidative Stress-Associated Endothelial Cell Injury

    PubMed Central

    Mannari, Claudio; Bertelli, Alberto A. E.; Medica, Davide; Quercia, Alessandro Domenico; Navarro, Victor; Scatena, Alessia; Giovannini, Luca; Biancone, Luigi; Panichi, Vincenzo

    2015-01-01

    Introduction Several studies demonstrated that endothelium dependent vasodilatation is impaired in cardiovascular and chronic kidney diseases because of oxidant stress-induced nitric oxide availability reduction. The Mediterranean diet, which is characterized by food containing phenols, was correlated with a reduced incidence of cardiovascular diseases and delayed progression toward end stage chronic renal failure. Previous studies demonstrated that both red and white wine exert cardioprotective effects. In particular, wine contains Caffeic acid (CAF), an active component with known antioxidant activities. Aim of the study The aim of the present study was to investigate the protective effect of low doses of CAF on oxidative stress-induced endothelial injury. Results CAF increased basal as well as acetylcholine—induced NO release by a mechanism independent from eNOS expression and phosphorylation. In addition, low doses of CAF (100 nM and 1 μM) increased proliferation and angiogenesis and inhibited leukocyte adhesion and endothelial cell apoptosis induced by hypoxia or by the uremic toxins ADMA, p-cresyl sulfate and indoxyl sulfate. The biological effects exerted by CAF on endothelial cells may be at least in part ascribed to modulation of NO release and by decreased ROS production. In an experimental model of kidney ischemia-reperfusion injury in mice, CAF significantly decreased tubular cell apoptosis, intraluminal cast deposition and leukocyte infiltration. Conclusion The results of the present study suggest that CAF, at very low dosages similar to those observed after moderate white wine consumption, may exert a protective effect on endothelial cell function by modulating NO release independently from eNOS expression and phosphorylation. CAF-induced NO modulation may limit cardiovascular and kidney disease progression associated with oxidative stress-mediated endothelial injury. PMID:25853700

  11. Effects of triterpenoid from Schisandra chinensis on oxidative stress in alcohol-induced liver injury in rats.

    PubMed

    Li, Bin; Zhu, Lijie; Wu, Ting; Zhang, Jiachen; Jiao, Xinyao; Liu, Xiuying; Wang, Yanqun; Meng, Xianjun

    2015-03-01

    Alcohol-induced oxidative stress plays a crucial role in the pathological development of alcoholic liver disease. The aim of this study was to investigate the effects of triterpenoid from Schisandra chinensis on oxidative stress in alcohol-induced liver injury in rats. We found that the administration of triterpenoid attenuated alcohol-induced oxidative stress in multiple organs including liver. Moreover, the impaired liver function and histological changes resulted from alcohol consumption was improved by triterpenoid treatment. Finally, we found that pretreatment with triterpenoid from Schisandra chinensis to alcohol-fed rats increased the expression level of haem oxygenase-1 (HO-1) while inhibited the induction of cytochrome P-450 2E1 (CYP2E1) in liver microsomes. Further assays revealed that the microsomal activity of HO-1 was accordingly induced whereas CYP2E1 was suppressed in rats received triterpenoid intervention. Our findings suggest that triterpenoid from Schisandra chinensis may protect against alcohol-induced liver injury through ameliorating oxidative stress in rats.

  12. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia.

    PubMed

    Zheng, Yong-Qiu; Liu, Jian-Xun; Wang, Jan-Nong; Xu, Li

    2007-03-23

    This paper studied the effects of crocin, a pharmacologically active component of Crocus sativus L., on ischemia/reperfusion (I/R) injury in mice cerebral microvessels. Transient global cerebral ischemia (20 min), followed by 24 h of reperfusion, significantly promoted the generation of nitric oxide (NO) and malondialdehyde (MDA) in cortical microvascular homogenates, as well as markedly reduced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) and promoted the activity of nitric oxide synthase (NOs). Reperfusion for 24 h led to serous edema with substantial microvilli loss, vacuolation, membrane damage and mitochondrial injuries in cortical microvascular endothelial cells (CMEC). Furthermore, enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and decreased expression of matrix metalloproteinase-9 (MMP-9) were detected in cortical microvessels after I (20 min)/R (24 h). Reperfusion for 24 h also induced membrane (functional) G protein-coupled receptor kinase 2 (GRK2) expression, while it reduced cytosol GRK2 expression. Pretreatment with crocin markedly inhibited oxidizing reactions and modulated the ultrastructure of CMEC in mice with 20 min of bilateral common carotid artery occlusion (BCCAO) followed by 24 h of reperfusion in vivo. Furthermore, crocin inhibited GRK2 translocation from the cytosol to the membrane and reduced ERK1/2 phosphorylation and MMP-9 expression in cortical microvessels. We propose that crocin protects the brain against excessive oxidative stress and constitutes a potential therapeutic candidate in transient global cerebral ischemia.

  13. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats

    PubMed Central

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    Background. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. Methods. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. Results. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and •OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. Conclusions. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  14. The ameliorative effect of thymol against hydrocortisone-induced hepatic oxidative stress injury in adult male rats.

    PubMed

    Aboelwafa, Hanaa R; Yousef, Hany N

    2015-08-01

    The aim of the present study was to investigate whether hydrocortisone induces oxidative stress in hepatocytes and to evaluate the possible ameliorative effect of thymol against such hepatic injury. Twenty-four adult male rats were divided into control, thymol, hydrocortisone, and hydrocortisone+thymol groups. The 4 groups were treated daily for 15 days. Hydrocortisone significantly induced oxidative stress in the liver tissues, marked by increased serum levels of alanine transaminase (ALT), aspartate transaminase (AST), total oxidative capacity (TOC), and tumor necrosis factor-alpha (TNF-α) accompanied by marked decline of serum levels of total protein, albumin, and total antioxidant capacity (TAC). Also, marked elevation in the levels of the thiobarbituric acid reactive substances (TBARS) and TNF-α, beside significant decrease in the level of glutathione (GSH) in hepatic tissues were recorded. These biochemical alterations were accompanied by histopathological changes marked by destruction of the normal hepatic architecture, in addition to ultrastructural alterations represented by degenerative features covering almost all the cytoplasmic organelles of the hepatocytes. Supplementation of hydrocortisone-treated rats with thymol reversed most of the biochemical, histological, and ultrastructural alterations. The results of our study confirm that thymol has strong ameliorative effect against hydrocortisone-induced oxidative stress injury in hepatic tissues. PMID:25821896

  15. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats.

    PubMed

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    BACKGROUND. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. METHODS. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. RESULTS. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and (•)OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. CONCLUSIONS. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  16. Homer1a attenuates glutamate-induced oxidative injury in HT-22 cells through regulation of store-operated calcium entry

    PubMed Central

    Rao, Wei; Peng, Cheng; Zhang, Lei; Su, Ning; Wang, Kai; Hui, Hao; Dai, Shu-hui; Yang, Yue-fan; Luo, Peng; Fei, Zhou

    2016-01-01

    Calcium disequilibrium is extensively involved in oxidative stress-induced neuronal injury. Although Homer1a is known to regulate several neuronal calcium pathways, its effects on, or its exact relationship with, oxidative stress-induced neuronal injury has not yet been fully elucidated. We found that Homer1a protected HT-22 cells from glutamate-induced oxidative stress injury by inhibiting final-phase intracellular calcium overload and mitochondrial oxidative stress. In these cells, stromal interactive molecule 1 (STIM1) puncta, but not the protein level, was significantly increased after glutamate treatment. Store-operated calcium entry (SOCE) inhibitors and cells in which a key component of SOCE (STIM1) was knocked out were used as glutamate-induced oxidative stress injury models. Both models demonstrated significant improvement of HT-22 cell survival after glutamate treatment. Additionally, increased Homer1a protein levels significantly inhibited SOCE and decreased the association of STIM1-Orai1 triggered by glutamate. These results suggest that up-regulation of Homer1a can protect HT-22 cells from glutamate-induced oxidative injury by disrupting the STIM1-Oria1 association, and then by inhibiting the SOCE-mediated final-phrase calcium overload. Thus, regulation of Homer1a, either alone or in conjunction with SOCE inhibition, may serve as key therapeutic interventional targets for neurological diseases in which oxidative stress is involved in the etiology or progression of the disease. PMID:27681296

  17. Estrogen in Cardiovascular Disease during Systemic Lupus Erythematosus

    PubMed Central

    Gilbert, Emily L.; Ryan, Michael J.

    2015-01-01

    Purpose Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. Methods PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. Findings The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against

  18. Protective effects of hydrogen enriched saline on liver ischemia reperfusion injury by reducing oxidative stress and HMGB1 release

    PubMed Central

    2014-01-01

    Background The nuclear protein high-mobility group box 1 (HMGB1) is a key trigger for the inflammatory reaction during liver ischemia reperfusion injury (IRI). Hydrogen treatment was recently associated with down-regulation of the expression of HMGB1 and pro-inflammatory cytokines during sepsis and myocardial IRI, but it is not known whether hydrogen has an effect on HMGB1 in liver IRI. Methods A rat model of 60 minutes 70% partial liver ischemia reperfusion injury was used. Hydrogen enriched saline (2.5, 5 or 10 ml/kg) was injected intraperitoneally 10 minutes before hepatic reperfusion. Liver injury was assessed by serum alanine aminotransferase (ALT) enzyme levels and histological changes. We also measured malondialdehyde (MDA), hydroxynonenal (HNE) and 8-hydroxy-guanosine (8-OH-G) levels as markers of the peroxidation injury induced by reactive oxygen species (ROS). In addition, pro-inflammatory cytokines including TNF-α and IL-6, and high mobility group box B1 protein (HMGB1) were measured as markers of post ischemia-reperfusion inflammation. Results Hydrogen enriched saline treatment significantly attenuated the severity of liver injury induced by ischemia-reperfusion. The treatment group showed reduced serum ALT activity and markers of lipid peroxidation and post ischemia reperfusion histological changes were reduced. Hydrogen enriched saline treatment inhibited HMGB1 expression and release, reflecting a reduced local and systemic inflammatory response to hepatic ischemia reperfusion. Conclusion These results suggest that, in our model, hydrogen enriched saline treatment is protective against liver ischemia-reperfusion injury. This effect may be mediated by both the anti-oxidative and anti-inflammatory effects of the solution. PMID:24410860

  19. Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain

    SciTech Connect

    Lin, Anya M.Y.; Chao, P.L.; Fang, S.F.; Chi, C.W.; Yang, C.H.

    2007-10-15

    The mechanism underlying sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat brain. Arsenite was locally infused in the substantia nigra (SN) of anesthetized rat. Seven days after infusion, lipid peroxidation in the infused SN was elevated and dopamine level in the ipsilateral striatum was reduced in a concentration-dependent manner (0.3-5 nmol). Furthermore, local infusion of arsenite (5 nmol) decreased GSH content and increased expression of heat shock protein 70 and heme oxygenase-1 in the infused SN. Aggregation of {alpha}-synuclein, a putative pathological protein involved in several CNS neurodegenerative diseases, was elevated in the arsenite-infused SN. From the breakdown pattern of {alpha}-spectrin, both necrosis and apoptosis were involved in the arsenite-induced neurotoxicity. Pyknotic nuclei, cellular shrinkage and cytoplasmic disintegration, indicating necrosis, and TUNEL-positive cells and DNA ladder, indicating apoptosis was observed in the arsenite-infused SN. Arsenite-induced apoptosis was mediated via two different organelle pathways, mitochondria and endoplasmic reticulum (ER). For mitochondrial activation, cytosolic cytochrome c and caspase-3 levels were elevated in the arsenite-infused SN. In ER pathway, arsenite increased activating transcription factor-4, X-box binding protein 1, C/EBP homologues protein (CHOP) and cytosolic immunoglobulin binding protein levels. Moreover, arsenite reduced procaspase 12 levels, an ER-specific enzyme in the infused SN. Taken together, our study suggests that arsenite is capable of inducing oxidative injury in CNS. In addition to mitochondria, ER stress was involved in the arsenite-induced apoptosis. Arsenite-induced neurotoxicity clinically implies a pathophysiological role of arsenite in CNS neurodegeneration.

  20. Is oxidative stress primarily involved in reperfusion injury of the ischemic heart

    SciTech Connect

    Nohl, H.; Stolze, K.; Napetschnig, S.; Ishikawa, T. )

    1991-01-01

    Reperfusion injury of ischemic organs is suggested to result from metabolic derangements initiating an imbalanced formation of free oxygen radicals. Most investigators in this field have used the spin-trap 5,5'-dimethyl-N-pyrroline-N-oxide (DMPO) to stabilize these short-lived radicals and make them visible by means of the electron spin resonance (ESR) technique. ESR signals obtained from intravascular DMPO were reported to indicate the formation of free OH. radicals and, in some cases, also carbon-centered radicals. We were unable to confirm these findings. Carbon-centered radicals were not obtained irrespectively of conditions studied, while oxygen-centered DMPO-adducts could only be detected in minor amounts. Instead, we observed an ascorbyl-related ESR signal. The addition of ethylenediaminetetraacetic acid (EDTA), which was used by many investigators in this field, was found to greatly influence ESR-spectra of the reperfusion fluid. The ascorbyl radical concentration was clearly reduced and the DMPO-OH. adduct became more prominent. The addition of iron further stimulated this change eliciting a Fenton-type reaction responsible for DMPO-OH.-related ESR spectra in the perfusate after ischemia. Accordingly, we observed the release of iron and ascorbic acid into the perfusate as a consequence of ischemia. We could demonstrate that iron in the presence of ascorbate and EDTA causes both types of radicals detected in the perfusate. DMPO-OH. generation in the presence of EDTA was found to result from free OH. radicals that were not generated in the absence of EDTA.

  1. Apigenin Attenuates Oxidative Injury in ARPE-19 Cells thorough Activation of Nrf2 Pathway

    PubMed Central

    Li, Min; Chen, Weiwei; Yu, Haitao; Yang, Yan; Hang, Li

    2016-01-01

    The current study was aimed at evaluating the therapeutic implication of apigenin and to elucidate the underlying mechanism. The tert-butyl hydroperoxide (t-BHP) at 200 μM was used to induce oxidative stress-associated injury in ARPE-19 cells. Apigenin at concentrations less than 800 μM did not cause cytotoxic effects on ARPE-19 cells. Cell viability assay showed that apigenin at 200 μM significantly promoted cell survival in t-BHP-treated ARPE-19 cells. Additionally, apigenin at 100 μM significantly protected ARPE-19 cells from t-BHP-induced apoptosis. Molecular examinations demonstrated that apigenin at 400 μM significantly upregulated the mRNA and protein expression of Nrf2 and stimulated its nuclear translocation in ARPE-19 cells treated with or without t-BHP. Apigenin 400 μM also significantly elevated the expression of HO-1, NQO1, and GCLM at both mRNA and protein levels in the presence or absence of t-BHP. Furthermore, apigenin at 400 μM significantly increased the activities of SOD, CAT, GSH-PX, and T-AOC and reduced the levels of ROS and MDA in t-BHP-treated ARPE-19 cells. However, these effects of apigenin were all abolished by being transfected with Nrf2 siRNA. Collectively, our current data indicated that apigenin exerted potent antioxidant properties in ARPE-19 cells challenged with t-BHP, which were dependent on activation of Nrf2 signaling.

  2. Apigenin Attenuates Oxidative Injury in ARPE-19 Cells thorough Activation of Nrf2 Pathway

    PubMed Central

    Li, Min; Chen, Weiwei; Yu, Haitao; Yang, Yan; Hang, Li

    2016-01-01

    The current study was aimed at evaluating the therapeutic implication of apigenin and to elucidate the underlying mechanism. The tert-butyl hydroperoxide (t-BHP) at 200 μM was used to induce oxidative stress-associated injury in ARPE-19 cells. Apigenin at concentrations less than 800 μM did not cause cytotoxic effects on ARPE-19 cells. Cell viability assay showed that apigenin at 200 μM significantly promoted cell survival in t-BHP-treated ARPE-19 cells. Additionally, apigenin at 100 μM significantly protected ARPE-19 cells from t-BHP-induced apoptosis. Molecular examinations demonstrated that apigenin at 400 μM significantly upregulated the mRNA and protein expression of Nrf2 and stimulated its nuclear translocation in ARPE-19 cells treated with or without t-BHP. Apigenin 400 μM also significantly elevated the expression of HO-1, NQO1, and GCLM at both mRNA and protein levels in the presence or absence of t-BHP. Furthermore, apigenin at 400 μM significantly increased the activities of SOD, CAT, GSH-PX, and T-AOC and reduced the levels of ROS and MDA in t-BHP-treated ARPE-19 cells. However, these effects of apigenin were all abolished by being transfected with Nrf2 siRNA. Collectively, our current data indicated that apigenin exerted potent antioxidant properties in ARPE-19 cells challenged with t-BHP, which were dependent on activation of Nrf2 signaling. PMID:27656262

  3. Effect of inhaled nitric oxide on pulmonary hemodynamics after acute lung injury in dogs

    SciTech Connect

    Romand, J.A.; Pinsky, M.R.; Firestone, L.; Zar, H.A.; Lancaster, J.R. Jr. )

    1994-03-01

    Increased pulmonary vascular resistance (PVR) and mismatch in ventilation-to-perfusion ratio characterize acute lung injury (ALI). Pulmonary arterial pressure (Ppa) decreases when nitric oxide (NO) is inhaled during hypoxic pulmonary vasoconstriction (HPV); thus NO inhalation may reduce PVR and improve gas exchange in ALI. The authors studied the hemodynamic and gas exchange effects of NO inhalation during HPV and then ALI in eight anesthetized open-chest mechanically ventilated dogs. Right atrial pressure, Ppa, and left ventricular and arterial pressures were measured, and cardiac output was estimated by an aortic flow probe. Shunt and dead space were also estimated. The effect of 5-min exposures to 0, 17, 28, 47, and 0 ppm inhaled NO was recorded during hyperoxia, hypoxia, and oleic acid-induced ALI. During ALI, partial [beta]-adrenergic blockage (propanolol, 0.15 mg/kg iv) was induced and 74 ppm NO was inhaled. Nitrosylhemoglobin (NO-Hb) and methemoglobin (MetHb) levels were measured. During hyperoxia, NO inhalation had no measurable effects. Hypoxia increased Ppa and calculated PVR, both of which decreased with 17 ppm NO. ALI decreased arterial Po[sub 2] and increased airway pressure, shunt, and dead space ventilation. Ppa and PVR were greater during ALI than during hyperoxia. NO inhalation had no measurable effect during ALI before or after [beta]-adrenergic blockage. MetHb remained low, and NO-Hb was unmeasurable. Bolus infusion of nitroglycerin (15 [mu]g) induced an immediate decrease in Ppa and PVR during ALI. Short-term NO inhalation does not affect PVR or gas exchange in dogs with oleic acid-induced ALI, nor does it increase NO-Hb or MetHb. In contrast, NO can diminish hypoxia-induced elevations in pulmonary vascular tone. These data suggest that NO inhalation selectively dilates the pulmonary circulation and specifically reduces HPV but not oleic acid-induced increases in pulmonary vasomotor tone. 28 refs., 3 figs., 2 tabs.

  4. Neuronal oxidative injury and dendritic damage induced by carbofuran: Protection by memantine

    SciTech Connect

    Gupta, Ramesh C. . E-mail: ramesh.gupta@murraystate.edu; Milatovic, Snjezana; Dettbarn, Wolf-D.; Aschner, Michael; Milatovic, Dejan

    2007-03-15

    Carbamate insecticides mediate their neurotoxicity by acetylcholinesterase (AChE) inactivation. Male Sprague-Dawley rats acutely intoxicated with the carbamate insecticide carbofuran (1.5 mg/kg, sc) developed hypercholinergic signs within 5-7 min of exposure, with maximal severity characterized by seizures within 30-60 min, lasting for about 2 h. At the time of peak severity, compared with controls, AChE was maximally inhibited (by 82-90%), radical oxygen species (ROS) markers (F{sub 2}-isoprostanes, F{sub 2}-IsoPs; and F{sub 4}-neuroprostanes, F{sub 4}-NeuroPs) were elevated 2- to 3-fold, and the radical nitrogen species (RNS) marker citrulline was elevated 4- to 8-fold in discrete brain regions (cortex, amygdala, and hippocampus). In addition, levels of high-energy phosphates (HEPs) were significantly reduced (ATP, by 43-56%; and phosphocreatine, by 37-48%). Values of total adenine nucleotides and total creatine compounds declined markedly (by 41-56% and 35-45%, respectively), while energy charge potential remained unchanged. Quantitative morphometric analysis of pyramidal neurons of the hippocampal CA1 region revealed significant decreases in dendritic lengths (by 64%) and spine density (by 60%). Pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist memantine (18 mg/kg, sc), in combination with atropine sulfate (16 mg/kg, sc), significantly attenuated carbofuran-induced changes in AChE activity and levels of F{sub 2}-IsoPs and F{sub 4}-NeuroPs, declines in HEPs, as well as the alterations in morphology of hippocampal neurons. MEM and ATS pretreatment also protected rats from carbofuran-induced hypercholinergic behavioral activity, including seizures. These findings support the involvement of ROS and RNS in seizure-induced neuronal injury and suggest that memantine by preventing carbofuran-induced neuronal hyperactivity blocks pathways associated with oxidative damage in neurons.

  5. Effect of hypoxia on tert-butylhydroperoxide-induced oxidative injury in hepatocytes

    SciTech Connect

    Tribble, D.L.; Jones, D.P.; Edmondson, D.E.

    1988-09-01

    Toxicity of t-butylhydroperoxide (t-BuOOH) was studied at different steady state O2 concentrations under conditions at which O2 deficiency alone did not cause cell death. t-BuOOH-induced cell death was more rapid in hypoxic than normoxic cells; the maximal rate of cell death occurred in anoxic cells. t-BuOOH elimination was independent of O2 concentration and was complete within 15 min; t-Butanol was produced at the same rate and was the only product detected by gas chromatography. Measurement of radical production by formation of adducts of the spin-trapping agent N-tert-butylphenylnitrone showed that the amount of radicals trapped was 0.02% of the amount of peroxide added and was the same under anoxic and oxygenated (214 microM O2) conditions. These results show that the O2 dependence of t-BuOOH-induced toxicity is not related to quantitative alterations in its metabolism. Lipid peroxidation was lowest in anoxic cells and increased as the O2 concentration was increased to 1.07 mM O2, showing that enhanced toxicity during hypoxia and anoxia was not due to enhanced lipid peroxidation. In contrast, O2 deficiency impaired the ability of cells to maintain and recovery GSH and NADPH pools after addition of t-BuOOH. GSH was decreased to a greater extent in anoxic cells than in normoxic cells, and the GSH content remained lower in these cells for up to 30 min. This decrease was due both to a decrease in the rate of synthesis and to decreased supply of the NADPH needed for the reduction of GSSG. Taken together, these results show that O2 deficiency has little effect on metabolism of t-BuOOH but impairs the ability of cells to maintain cellular GSH and renders them more susceptible to injury from oxidizing agents.

  6. Removal of Estrogens and Estrogenicity through Drinking Water Treatment

    EPA Science Inventory

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drining waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conven...

  7. A review of oxidative stress in acute kidney injury: protective role of medicinal plants-derived antioxidants.

    PubMed

    Palipoch, Sarawoot

    2013-01-01

    Acute kidney injury (AKI) is the common clinical syndrome which is associated with increased morbidity and mortality. The severity extends from less to more advanced spectrums which link to biological, physical and chemical agents. Oxidative stress (OS)-related AKI has demonstrated the increasing of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the decreasing of endogenous antioxidants. Medicinal plants-derived antioxidants can be ameliorated oxidative stress-related AKI through reduction of lipid peroxidation (LPO) and enhancement of activities and levels of endogenous antioxidants. Therefore, medicinal plants are good sources of exogenous antioxidants which might be considered the important remedies to ameliorate pathological alterations in oxidative stress-related AKI.

  8. Health Risks of Space Exploration: Targeted and Nontargeted Oxidative Injury by High-Charge and High-Energy Particles

    PubMed Central

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M.; Pain, Debkumar

    2014-01-01

    Abstract Significance: During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Recent Advances: Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. Critical Issues: The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Future Directions: Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer. Antioxid. Redox Signal. 20, 1501–1523. PMID:24111926

  9. Oxidative injury to blood vessels and glia of the pre-laminar optic nerve head in human glaucoma.

    PubMed

    Feilchenfeld, Zac; Yücel, Yeni H; Gupta, Neeru

    2008-11-01

    Glaucoma is a leading cause of irreversible world blindness. Oxidative damage and vascular injury have been implicated in the pathogenesis of this disease. The purpose of this study was to determine in human primary open angle glaucoma whether oxidative injury occurs in pre-laminar optic nerve blood vessels and glial cells. Following IRB approval, sections from post-mortem primary open angle glaucoma eyes (n=5) with mean age of 77 +/- 9 yrs (+/-SD) were compared to normal control eyes (n=4) with mean age 70 +/- 9 yrs (Eye Bank of Canada). Immunostaining with nitrotyrosine, a footprint for peroxynitrite-mediated injury, was performed and sections were double-labeled with markers for vascular endothelial cells, perivascular smooth muscle cells, and astrocytes with CD34, smooth muscle actin (SMA), and glial fibrillary acidic protein (GFAP), respectively. Immunostaining was captured in a masked fashion using confocal microscopy, and defined regions of interest for blood vessels and glial tissue. Intensity measurements of supra-threshold area in pixels as percent of the total number of pixels were calculated using ImageJ (NIH) and compared using two-tailed Mann-Whitney nonparametric tests between glaucoma and control groups. Colocalization coefficients with cell-specific markers were determined and compared with random coefficients of correlation. Increased nitrotyrosine immunoreactivity was observed in pre-laminar optic nerve head blood vessels of primary open angle glaucoma eyes compared to controls and this difference was statistically significant (1.35 +/- 1.11% [+/-SD] vs. 0.01 +/- 0.01%, P=0.016). NT-immunoreactivity was also increased in the glial tissue surrounding the pre-laminar optic nerve head in the glaucoma group and compared to controls, and this difference was statistically significant (18.37 +/-12.80% vs. 0.08 +/- 0.04%, P=0.016). Colocalization studies demonstrated nitrotyrosine staining in vascular endothelial and smooth muscle cells, in addition to

  10. Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis.

    PubMed

    Zhou, X J; Laszik, Z; Wang, X Q; Silva, F G; Vaziri, N D

    2000-12-01

    Chronic iron (Fe) overload is associated with a marked increase in renal tissue iron content and injury. It is estimated that 10% of the American population carry the gene for hemochromatosis and 1% actually suffer from iron overload. The mechanism of iron overload-associated renal damage has not been fully elucidated. Iron can accelerate lipid peroxidation leading to organelle membrane dysfunction and subsequent cell injury/death. Iron-catalyzed generation of reactive oxygen species (ROS) is responsible for initiating the peroxidatic reaction. We investigated the possible association of oxidative stress and its impact on nitric oxide (NO) metabolism in iron-overload-associated renal injury. Rats were randomized into Fe-loaded (given 0.5 g elemental iron/kg body weight as iron dextran; i.v.), Fe-depleted (given an iron-free diet for 20 weeks), and control groups. Renal histology, tissue expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS), renal tissue expression of nitrotyrosine, plasma, and renal tissue lipid peroxidation product, malondialdehyde (MDA), and plasma and urinary NO metabolites (NOx) were examined. Iron overload was associated with mild proteinuria, tissue iron deposition together with significant glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Rare focal glomerulosclerosis and tubulointerstitial changes were noted in normal controls. No renal lesions were observed in Fe-depleted rats. Iron deposits were seen in glomeruli, proximal tubules, and interstitium. The iron staining in the distal tubules was negligible. Both plasma and renal tissue MDA and renal tissue nitrotyrosine were increased significantly in Fe-loaded rats compared with control rats. In contrast, Fe-depleted animals showed a marked reduction in plasma and renal tissue MDA and nitrotyrosine together with significant elevation of urinary NOx excretion. In addition, iron-overload was associated with up-regulation of renal eNOS and i

  11. Astaxanthin Attenuates Early Acute Kidney Injury Following Severe Burns in Rats by Ameliorating Oxidative Stress and Mitochondrial-Related Apoptosis

    PubMed Central

    Guo, Song-Xue; Zhou, Han-Lei; Huang, Chun-Lan; You, Chuan-Gang; Fang, Quan; Wu, Pan; Wang, Xin-Gang; Han, Chun-Mao

    2015-01-01

    Early acute kidney injury (AKI) is a devastating complication in critical burn patients, and it is associated with severe morbidity and mortality. The mechanism of AKI is multifactorial. Astaxanthin (ATX) is a natural compound that is widely distributed in marine organisms; it is a strong antioxidant and exhibits other biological effects that have been well studied in various traumatic injuries and diseases. Hence, we attempted to explore the potential protection of ATX against early post burn AKI and its possible mechanisms of action. The classic severe burn rat model was utilized for the histological and biochemical assessments of the therapeutic value and mechanisms of action of ATX. Upon ATX treatment, renal tubular injury and the levels of serum creatinine and neutrophil gelatinase-associated lipocalin were improved. Furthermore, relief of oxidative stress and tubular apoptosis in rat kidneys post burn was also observed. Additionally, ATX administration increased Akt and Bad phosphorylation and further down-regulated the expression of other downstream pro-apoptotic proteins (cytochrome c and caspase-3/9); these effects were reversed by the PI3K inhibitor LY294002. Moreover, the protective effect of ATX presents a dose-dependent enhancement. The data above suggested that ATX protects against early AKI following severe burns in rats, which was attributed to its ability to ameliorate oxidative stress and inhibit apoptosis by modulating the mitochondrial-apoptotic pathway, regarded as the Akt/Bad/Caspases signalling cascade. PMID:25871290

  12. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury.

    PubMed

    Imai, Yumiko; Kuba, Keiji; Neely, G Greg; Yaghubian-Malhami, Rubina; Perkmann, Thomas; van Loo, Geert; Ermolaeva, Maria; Veldhuizen, Ruud; Leung, Y H Connie; Wang, Hongliang; Liu, Haolin; Sun, Yang; Pasparakis, Manolis; Kopf, Manfred; Mech, Christin; Bavari, Sina; Peiris, J S Malik; Slutsky, Arthur S; Akira, Shizuo; Hultqvist, Malin; Holmdahl, Rikard; Nicholls, John; Jiang, Chengyu; Binder, Christoph J; Penninger, Josef M

    2008-04-18

    Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.

  13. Capsaicin protects endothelial cells and macrophage against oxidized low-density lipoprotein-induced injury by direct antioxidant action.

    PubMed

    Chen, Kuo-Shuen; Chen, Pei-Ni; Hsieh, Yih-Shou; Lin, Chin-Yin; Lee, Yi-Hsun; Chu, Shu-Chen

    2015-02-25

    Atherosclerosis is a chronic inflammatory vascular disease. It is characterized by endothelial dysfunction, lipid accumulation, leukocyte activation, and the production of inflammatory mediators and reactive oxygen species (ROS). Capsaicin, a biologically active compound of the red pepper and chili pepper, has several anti-oxidant, anti-inflammatory, anti-cancer, and hypolipidemic biological effects. However, its protective effects on foam cell formation and endothelial injury induced by oxidized low-density lipoprotein (oxLDL) remain unclear. In this study, we evaluated the anti-oxidative activity of capsaicin, and determined the mechanism by which capsaicin rescues human umbilical vein endothelial cells (HUVECs) from oxLDL-mediated dysfunction. The anti-oxidative activity of capsaicin was defined by Apo B fragmentation and conjugated diene production of the copper-mediated oxidation of LDL. Capsaicin repressed ROS generation, as well as subsequent mitochondrial membrane potential collapse, cytochrome c expression, chromosome condensation, and caspase-3 activation induced by oxLDL in HUVECs. Capsaicin also protected foam cell formation in macrophage RAW 264.7 cells. Our results suggest that capsaicin may prevent oxLDL-induced cellular dysfunction and protect RAW 264.7 cells from LDL oxidation. PMID:25603234

  14. N-Acetyl-Serotonin Protects HepG2 Cells from Oxidative Stress Injury Induced by Hydrogen Peroxide

    PubMed Central

    Jiang, Jiying; Yu, Shuna; Jiang, Zhengchen; Liang, Cuihong; Yu, Wenbo; Li, Jin; Du, Xiaodong; Wang, Hailiang; Gao, Xianghong; Wang, Xin

    2014-01-01

    Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity. PMID:25013541

  15. Capsaicin protects endothelial cells and macrophage against oxidized low-density lipoprotein-induced injury by direct antioxidant action.

    PubMed

    Chen, Kuo-Shuen; Chen, Pei-Ni; Hsieh, Yih-Shou; Lin, Chin-Yin; Lee, Yi-Hsun; Chu, Shu-Chen

    2015-02-25

    Atherosclerosis is a chronic inflammatory vascular disease. It is characterized by endothelial dysfunction, lipid accumulation, leukocyte activation, and the production of inflammatory mediators and reactive oxygen species (ROS). Capsaicin, a biologically active compound of the red pepper and chili pepper, has several anti-oxidant, anti-inflammatory, anti-cancer, and hypolipidemic biological effects. However, its protective effects on foam cell formation and endothelial injury induced by oxidized low-density lipoprotein (oxLDL) remain unclear. In this study, we evaluated the anti-oxidative activity of capsaicin, and determined the mechanism by which capsaicin rescues human umbilical vein endothelial cells (HUVECs) from oxLDL-mediated dysfunction. The anti-oxidative activity of capsaicin was defined by Apo B fragmentation and conjugated diene production of the copper-mediated oxidation of LDL. Capsaicin repressed ROS generation, as well as subsequent mitochondrial membrane potential collapse, cytochrome c expression, chromosome condensation, and caspase-3 activation induced by oxLDL in HUVECs. Capsaicin also protected foam cell formation in macrophage RAW 264.7 cells. Our results suggest that capsaicin may prevent oxLDL-induced cellular dysfunction and protect RAW 264.7 cells from LDL oxidation.

  16. Ethanol extract of propolis protects endothelial cells from oxidized low density lipoprotein-induced injury by inhibiting lectin-like oxidized low density lipoprotein receptor-1-mediated oxidative stress.

    PubMed

    Fang, Yongqi; Li, Jinguo; Ding, Mingde; Xu, Xiaoyan; Zhang, Jiajun; Jiao, Peng; Han, Ping; Wang, Jiafu; Yao, Shutong

    2014-12-01

    Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), as the primary oxidized low-density lipoprotein (ox-LDL) receptor on endothelial cells, plays a crucial role in endothelial injury, which is a driving force in the initiation and development of atherosclerosis. Our previous studies have shown that ethanol extract of propolis (EEP) promotes reverse cholesterol transport and inhibits atherosclerotic lesion development. However, the protective effects of EEP against ox-LDL-induced injury in endothelial cells and the underlying mechanisms are still unknown. This study was designed to test the hypothesis that EEP attenuates ox-LDL-induced endothelial oxidative injury via modulation of LOX-1-mediated oxidative stress. Our results showed that exposure of human umbilical vein endothelial cells (HUVECs) to ox-LDL (100 mg/L) led to the decrease in cell viability and increase in lactate dehydrogenase (LDH) release, caspase-3 activation, and apoptosis, whereas pretreatment with EEP (7.5, 15 and 30 mg/L) protected against such damages in a dose-dependent manner. In addition, EEP mitigated ox-LDL uptake by HUVECs and attenuated ox-LDL-upregulated LOX-1 expression both at the mRNA and protein levels. Moreover, EEP suppressed the ox-LDL-induced oxidative stress as assessed by decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, reactive oxygen species (ROS), and malondialdehyde (MDA) generation as well as increased antioxidant enzyme activities. Similar results were observed in the anti-LOX-1 antibody or diphenyleneiodonium (DPI)-pretreated HUVECs. These data indicate that EEP may protect HUVECs from ox-LDL-induced injury and that the mechanism at least partially involves its ability to inhibit endothelial LOX-1 upregulation and subsequent oxidative stress.

  17. The Role of Estrogen in the Treatment of Men with Schizophrenia

    PubMed Central

    Kulkarni, Jayashri; Gavrilidis, Emmy; Worsley, Roisin; Van Rheenen, Tamsyn; Hayes, Emily

    2013-01-01

    Schizophrenia is a debilitating and pervasive mental illness with devastating effects on many aspects of psychological, cognitive and social wellbeing. Epidemiological and life-cycle data point to significant differences in the incidence and course of schizophrenia between men and women, suggesting that estrogen plays a “protective” role . Adjunctive estrogen therapy has been shown to be effective in enhancing the treatment of schizophrenia in women. In men, consideration of estrogen therapy has been impacted by concerns of feminisation, however, clinical trials using estrogen to treat prostate cancer, bone density loss and even aggression in men with dementia or traumatic brain injury, show estrogen to be a safe and effective therapy. Findings do, however, suggest that further exploration of a therapeutic role for adjunctive estradiol treatment in men with schizophrenia is warranted. The development of the new estrogen compounds - Selective Estrogen Receptor Modulators (SERMs) which do not cause feminisation - opens up the possibility of using a different type of estrogen for a longer period of time at higher doses. Estrogen could therefore prove to be an important component in the treatment of psychotic symptoms in men with schizophrenia. This review explains the scientific rationale behind the estrogen hypothesis and how it can be clinically utilised to address concerns unique to the care of men with schizophrenia. PMID:24348584

  18. Activation of the Nrf2 defense pathway contributes to neuroprotective effects of phloretin on oxidative stress injury after cerebral ischemia/reperfusion in rats.

    PubMed

    Liu, Yu; Zhang, Lei; Liang, Jiangjiu

    2015-04-15

    Oxidative stress is considered a major contributing factor in cerebral ischemia/reperfusion injury. Phloretin, a dihydrochalcone belonging to the flavonoid family, is particularly rich in apples and apple-derived products. A large body of evidence demonstrates that phloretin exhibits anti-oxidant properties, and phloretin has potential implications for treating oxidative stress injuries in cerebral ischemia/reperfusion. Therefore, the neuroprotective and antioxidant effects of phloretin against ischemia/reperfusion injury, as well as related probable mechanisms, were investigated. The cerebral ischemic/reperfusion injury model was reproduced in male Sprague-Dawley rats through middle cerebral artery occlusion. At 24h after reperfusion, neurological score, infarct volume, and brain water content were assessed. Oxidative stress was evaluated by superoxide dismutases (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels. Nrf2 expression was measured by RT-PCR and western blot. Consequently, results showed that phloretin pretreatment for 14days significantly reduced infarct volume and brain edema, and ameliorated neurological scores in focal cerebral ischemia/reperfusion rats. SOD, GSH and GSH-Px activities were greatly decreased, and MDA levels significantly increased after ischemia/reperfusion injury. However, phloretin pretreatment dramatically suppressed these oxidative stress processes. Furthermore, phloretin upregulated Nrf2 mRNA and protein expression of in ischemia/reperfusion brain tissue. Taken together, phloretin exhibited neuroprotective effects in cerebral ischemia/reperfusion, and the mechanisms are associated with oxidative stress inhibition and Nrf2 defense pathway activation. PMID:25770876

  19. Lycium Barbarum Polysaccharides Reduce Neuronal Damage, Blood-Retinal Barrier Disruption and Oxidative Stress in Retinal Ischemia/Reperfusion Injury

    PubMed Central

    Li, Suk-Yee; Yang, Di; Yeung, Chung-Man; Yu, Wing-Yan; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2011-01-01

    Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R) injuries. Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are good for “eye health” according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), poly(ADP-ribose) (PAR) and nitrotyrosine (NT) were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB) was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL) and the inner nuclear layer (INL) of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature. PMID:21298100

  20. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury

    PubMed Central

    Zhang, Yi; Jiang, Ge; Sauler, Maor; Lee, Patty J.

    2013-01-01

    The lung endothelium is a major target for inflammatory and oxidative stress. Heme oxygenase-1 (HO-1) induction is a crucial defense mechanism during oxidant challenges, such as hyperoxia. The role of lung endothelial HO-1during hyperoxia in vivo is not well defined. We engineered lentiviral vectors with microRNA (miRNA) sequences controlled by vascular endothelium cadherin (VE-cad) to study the specific role of lung endothelial HO-1. Wild-type (WT) murine lung endothelial cells (MLECs) or WT mice were treated with lentivirus and exposed to hyperoxia (95% oxygen). We detected HO-1 knockdown (∼55%) specifically in the lung endothelium. MLECs and lungs showed approximately a 2-fold increase in apoptosis and ROS generation after HO-1 silencing. We also demonstrate for the first time that silencing endothelial HO-1 has the same effect on lung injury and survival as silencing HO-1 in multiple lung cell types and that HO-1 regulates caspase 3 activation and autophagy in endothelium during hyperoxia. These studies demonstrate the utility of endothelial-targeted gene silencing in vivo using lentiviral miRNA constructs to assess gene function and that endothelial HO-1 is an important determinant of survival during hyperoxia.—Zhang, Y., Jiang, G., Sauler, M., Lee, P. J. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. PMID:23771928

  1. Protective Effect of Thalidomide on Liver Injury in Rats with Acute Pancreatitis via Inhibition of Oxidative Stress.

    PubMed

    Lv, Peng; Fan, Li-Juan; Li, Hong-Yun; Meng, Qing-Shun; Liu, Jie

    2015-01-01

    This study was designed to investigate the preventive effect of thalidomide on acute pancreatitis-associated liver injury in the rat and analyze its relationship with oxidative stress. The acute pancreatitis of rats was induced by the retrograde injection of 5% sodium taurocholate into the biliopancreatic duct. Thalidomide (100 mg/kg) was given daily via the intragastric route for 8 days before this injection. The levels of oxidative stress parameters including superoxide dismutase (SOD), glutathione peroxidase (GSHpx), and malondialdehyde (MDA) in the liver were detected by biochemical assay. Nuclear factor-κB p65 (NF-κBp65), tumor necrosis factor α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1) protein and mRNA levels in the liver were detected using western blots and reverse transcriptase polymerase chain reaction, respectively. Compared with the untreated model group, liver histopathology, SOD, GSHpx, MDA levels, NF-κBp65, TNF-α, ICAM-1 protein, and mRNA levels in the liver of rats given thalidomide were improved significantly. Results demonstrate that thalidomide may exert its effects on oxidative stress to attenuate the progression of acute pancreatitis-associated liver injury in rats.

  2. Diallyl trisulfide inhibits naphthalene-induced oxidative injury and the production of inflammatory responses in A549 cells and mice.

    PubMed

    Zhang, Fang; Zhang, Yongchun; Wang, Kaiming; Zhu, Xiaosong; Lin, Guimei; Zhao, Zhongxi; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2015-12-01

    Diallyl trisulfide (DATS) is a garlic organosulfide that may have a therapeutic potential in the treatment of some diseases. We sought to determine whether DATS could inhibit naphthalene-induced oxidative injury and the production of inflammatory responses in vitro and in vivo. A549 cells were either pre-treated (PreTx, prevention) or concurrently treated (CoTx, treatment) with 20μM naphthalene and either 5 or 10μM DATS. PreTx and CoTx showed the prevention and the treatment potential of DATS to inhibit the generation of naphthalene-induced reactive oxygen species (ROS) in the A549 cells. DATS showed antioxidative activity by elevating the SOD activities in the low dose groups. The mechanistic study showed that the DATS-mediated inhibition of naphthalene-induced oxidative injury and the production of inflammatory responses (i.e., TNF-α, IL-6, and IL-8) were attributed to inhibiting the activity of nuclear factor-kappa B (NF-κB). In addition, DATS inhibited the production of serum nitric oxide NO and myeloperoxidase (MPO) in the lungs of Kunming mice. The histological analysis results indicate that DATS inhibited the naphthalene-induced lung damage, which is consistent with the in vitro study results. The in vivo and in vitro results suggest that DATS may be an effective attenuator of naphthalene-induced lung damage.

  3. Troxerutin protects the mouse kidney from d-galactose-caused injury through anti-inflammation and anti-oxidation.

    PubMed

    Fan, Shao-Hua; Zhang, Zi-Feng; Zheng, Yuan-Lin; Lu, Jun; Wu, Dong-Mei; Shan, Qun; Hu, Bin; Wang, Yan-Yan

    2009-01-01

    This study was carried out to investigate the protective effect of troxerutin against D-galactose (D-gal)-induced renal injury in mice. Hematoxylin and eosin (H&E) stained sections of kidneys revealed D-gal could cause renal injury and troxerutin could significantly attenuate the injury. We further investigated the mechanisms involved in the protective effects of troxerutin on mouse kidney. The following antioxidant defense enzymes were measured: cytosolic Cu/Zn superoxide dismutase (SOD-1), catalase (CAT) and glutathione peroxidase (GPx). The content of the lipid peroxidation product malondialdehyde (MDA) was also analyzed. In D-gal-treated mice, antioxidant enzymes activities were significantly decreased and the level of MDA was significantly higher than those in the vehicle controls. Our results indicated that the protective effect of troxerutin against D-gal induced renal injury might be caused, at least in part, by increasing the activity of antioxidant enzymes with a reduction in lipid peroxidation product. Furthermore, we also examined the inflammatory signal mediators of nuclear factor-kappaB (NF-kappaB), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostanoid receptor subtype EP2 by Western blot. After treatment with D-gal, the NF-kappaB p65, iNOS, COX-2 and EP2 were markedly upregulated. Upon co-treatment with the troxerutin, however, the expressions of the NF-kappaB p65, iNOS, COX-2 and EP2 markedly reduced, compared to D-gal treatment alone. These results indicated that troxerutin has significantly inhibitory effects on the NF-kappaB-mediated inflammatory response. These findings suggest troxerutin could attenuate renal injury induced by D-gal probably through its antioxidant and anti-inflammation properties.

  4. Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2{sup +/-} mice: Two-stage oxidative injury

    SciTech Connect

    Lee, Y.H. |; Chung, Maxey C.M. | Lin Qingsong; Boelsterli, Urs A. ||

    2008-08-15

    The determinants of susceptibility to troglitazone-induced idiosyncratic liver injury have not yet been determined; however, troglitazone has been shown to target mitochondria and induce mitochondria-mediated hepatocellular injury in vitro. The aim of this study was to use a systems approach to analyze the dynamics of mitochondrial changes at the proteome level and more clearly define the mechanisms and time course of troglitazone hepatotoxicity by using a previously characterized mouse model that is highly sensitized to troglitazone hepatotoxicity. Mice heterozygous in mitochondrial superoxide dismutase-2 (Sod2{sup +/-}) were injected intraperitoneally with troglitazone (30 mg/kg/day) or vehicle daily for 2 or 4 weeks. Hepatic mitochondria were isolated, purified, and subjected to two-dimensional difference gel electrophoresis (2D-DIGE). We found that among the {approx} 1500 resolved hepatic mitochondrial proteins, 70 exhibited significantly altered abundance after troglitazone treatment. MALDI-TOF/TOF MS/MS analysis revealed that early changes (2 weeks) included increased levels of heat shock protein family members (mortalin, HSP7C), Lon protease, and catalase, indicating induction of a mitochondrial stress response. In contrast, after 4 weeks, a number of critical proteins including ATP synthase {beta}-subunit, aconitase-2, and catalase exhibited decreased abundance, and total protein carbonyls were significantly increased, suggesting uncompensated oxidative damage. Aconitase-2 (ACO2) was decreased at both time points, making this protein a potential sensitive and early biomarker for mitochondrial oxidant stress. These results show that, in this murine model of underlying clinically silent mitochondrial stress, superimposed troglitazone induces a two-stage response: an initial adaptive response, followed by a toxic response involving oxidant injury to mitochondrial proteins.

  5. Underlying mitochondrial dysfunction triggers flutamide-induced oxidative liver injury in a mouse model of idiosyncratic drug toxicity

    SciTech Connect

    Kashimshetty, Rohini; Desai, Varsha G.; Kale, Vijay M.; Lee, Taewon; Moland, Carrie L.; Branham, William S.; New, Lee S.; Chan, Eric C.Y.; Younis, Husam; Boelsterli, Urs A.

    2009-07-15

    Flutamide, a widely used nonsteroidal anti-androgen, but not its bioisostere bicalutamide, has been associated with idiosyncratic drug-induced liver injury. Although the susceptibility factors are unknown, mitochondrial injury has emerged as a putative hazard of flutamide. To explore the role of mitochondrial sensitization in flutamide hepatotoxicity, we determined the effects of superimposed drug stress in a murine model of underlying mitochondrial abnormalities. Male wild-type or heterozygous Sod2{sup +/-} mice were injected intraperitoneously with flutamide (0, 30 or 100 mg/kg/day) for 28 days. A kinetic pilot study revealed that flutamide (100 mg/kg/day) caused approximately 10-fold greater exposure than the reported therapeutic mean plasma levels. Mutant (5/10), but not wild-type, mice in the high-dose group exhibited small foci of hepatocellular necrosis and an increased number of apoptotic hepatocytes. Hepatic GSSG/GSH, protein carbonyl levels, and serum lactate levels were significantly increased, suggesting oxidant stress and mitochondrial dysfunction. Measurement of mitochondrial superoxide in cultured hepatocytes demonstrated that mitochondria were a significant source of flutamide-enhanced oxidant stress. Indeed, mitochondria isolated from flutamide-treated Sod2{sup +/-} mice exhibited decreased aconitase activity as compared to vehicle controls. A transcriptomics analysis using MitoChips revealed that flutamide-treated Sod2{sup +/-} mice exhibited a selective decrease in the expression of all complexes I and III subunits encoded by mitochondrial DNA. In contrast, Sod2{sup +/-} mice receiving bicalutamide (50 mg/kg/day) did not reveal any hepatic changes. These results are compatible with our concept that flutamide targets hepatic mitochondria and exerts oxidant stress that can lead to overt hepatic injury in the presence of an underlying mitochondrial abnormality.

  6. Dioclea violacea lectin ameliorates oxidative stress and renal dysfunction in an experimental model of acute kidney injury

    PubMed Central

    Freitas, Flavia PS; Porto, Marcella L; Tranhago, Camilla P; Piontkowski, Rogerio; Miguel, Emilio C; Miguel, Thaiz BAR; Martins, Jorge L; Nascimento, Kyria S; Balarini, Camille M; Cavada, Benildo S; Meyrelles, Silvana S; Vasquez, Elisardo C; Gava, Agata L

    2015-01-01

    Acute kidney injury (AKI) is characterized by rapid and potentially reversible decline in renal function; however, the current management for AKI is nonspecific and associated with limited supportive care. Considering the need for more novel therapeutic approaches, we believe that lectins from Dioclea violacea (Dvl), based on their anti-inflammatory properties, could be beneficial for the treatment of AKI induced by renal ischemia/reperfusion (IR). Dvl (1 mg/kg, i.v.) or vehicle (100 µL) was administered to Wistar rats prior to the induction of bilateral renal ischemia (45 min). Following 24 hours of reperfusion, inulin and para-aminohippurate (PAH) clearances were performed to determine glomerular filtration rate (GFR), renal plasma flow (RPF), renal blood flow (RBF) and renal vascular resistance (RVR). Renal inflammation was assessed using myeloperoxidase (MPO) activity. Kidney sections were stained with hematoxylin-eosin to evaluate morphological changes. Intracellular superoxide anions, hydrogen peroxide, peroxynitrite, nitric oxide and apoptosis were analyzed using flow cytometry. IR resulted in diminished GFR, RPF, RBF, and increased RVR; however, these changes were ameliorated in rats receiving Dvl. AKI-induced histomorphological changes, such as tubular dilation, tubular necrosis and proteinaceous casts, were attenuated by Dvl administration. Treatment with Dvl resulted in diminished renal MPO activity, oxidative stress and apoptosis in rats submitted to IR. Our data reveal that Dvl has a protective effect in the kidney, improving renal function after IR injury, probably by reducing neutrophil recruitment and oxidative stress. These results indicate that Dvl can be considered a new therapeutic approach for AKI-induced kidney injury. PMID:26885258

  7. Chronic estrogen treatment in female transgenic (mRen2)27 hypertensive rats augments endothelium-derived nitric oxide release.

    PubMed

    Li, P; Ferrario, C M; Ganten, D; Brosnihan, K B

    1997-06-01

    Postmenopausal estrogen replacement therapy is associated with a reduction in cardiovascular events in women, but the mechanisms for this protection are unclear, especially in hypertensive subjects. In this study we investigated the effects of 17beta-estradiol (E2) treatment on blood pressure and endothelial function of transgenic [(mRen2)27] hypertensive and normotensive rats. Thirty female transgenic negative [Tg(-)] and hypertensive positive [Tg(+)] rats were ovariectomized and received either E2 (1.5 mg/rat, subcutaneously, for 3 weeks) or placebo. Chronic 17beta-estradiol treatment lowered mean blood pressure in both Tg hypertensive (159 +/- 4 v 145 +/- 4 mm Hg, P < .05, placebo v E2) and normotensive rats (119 +/- 4 v 108 +/- 2 mm Hg, P < .05, placebo v E2). Pressor responses to intravenous injection of phenylephrine were augmented in the Tg(+) as compared with Tg(-) rats. With chronic E2 treatment the pressor responses to phenylephrine were attenuated in both groups. Isometric tension of aortic rings was measured in vitro in organ chambers. The acetylcholine (Ach)-induced endothelium-dependent vascular relaxation was less potent in Tg(+) versus Tg(-) rats. E2 treatment significantly enhanced the Ach-induced relaxation of both Tg(+) and Tg(-) groups (ED50: 55.5 +/- 11.7 v 10.3 +/- 2.6; 23.8 +/- 6.5 v 5.1 +/- 1.2 nmol/L, placebo v E2 in Tg(+) and Tg(-), respectively). After E2 treatment the ED50 response in Tg(+) rats was no different from Tg(-) rats. However, the maximum vasodilation elicited by Ach was attenuated in Tg(+) as compared with Tg(-) rats. The calcium ionophore (A23187)-induced endothelium-dependent relaxation was less potent in Tg(+) as compared to Tg(-) rats and was enhanced by E2 treatment only in Tg(+) animals. There were no differences in the vasodilator responses elicited by sodium nitroprusside. Removal of endothelium and blockade of NO production abolished the endothelium-dependent vasodilation. The selective NO synthase inhibitor, N

  8. Pressure ulcer-induced oxidative organ injury is ameliorated by beta-glucan treatment in rats.

    PubMed

    Sener, Göksel; Sert, Gülten; Ozer Sehirli, A; Arbak, Serap; Uslu, Bahar; Gedik, Nursal; Ayanoglu-Dulger, Gül

    2006-05-01

    Pressure ulcers (PU) cause morphological and functional alterations in the skin and visceral organs. In this study we investigated the role of oxidative damage in PUs and the probable beneficial effect of beta-glucan treatment against this damage. beta-glucan is known to have immunomodulatory effects. Experiments were carried on Wistar albino rats. PU was induced by applying magnets over steel plates that were implanted under the skin, to compress the skin and cause ischemia where removing the magnets cause reperfusion of the tissue. Within the first 12 h, rats were subjected to 5 cycles of ischemia/reperfusion (I/R), followed by 12 h ischemia. This protocol was repeated for 3 days. In treatment groups, twice a day during reperfusion periods, beta-glucan was either applied locally (25 mg/kg) as an ointment on skin, or administered orally (50 mg/kg) as a gavage. At the end of the experimental periods, tissue samples (skin, liver, kidney, lung, stomach, and ileum) were taken for the measurement of malondialdehyde (MDA)--an index of lipid peroxidation--and glutathione (GSH)--a key antioxidant--levels. Neutrophil infiltration was evaluated by the measurement of tissue myeloperoxidase activity, while collagen contents were measured for the evaluation of tissue fibrosis. Skin tissues were also examined microscopically. Liver and kidney functions were assayed in serum samples. Local treatment with beta-glucan inhibited the increase in MDA and MPO levels and the decrease in GSH in the skin induced by PU, but was less efficient in preventing the damage in visceral organs. However, systemic treatment prevented the damage in the visceral organs. Significant increases in creatinine, BUN, ALT, AST, LDH and collagen levels in PU group were prevented by beta-glucan treatment. The light microscopic examination exhibited significant degenerative changes in dermis and epidermis in the PU group. Tissue injury was decreased especially in the locally treated group. Thus, supplementing

  9. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy

    PubMed Central

    2012-01-01

    Background Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI) and enhanced generation of nitric oxide (NO). We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS), which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Methods Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT) of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8) keeping VT and FiO2 unchanged, respiratory rate (RR) 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8) and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI) 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8). We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI). We measured plasma nitrite/nitrate (NOx) levels and examined lung biopsies for lung injury score (LIS). Results Both the injuriously ventilated groups demonstrated a 2–3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Conclusion Inhibition of nNOS improved gas exchange, but did not

  10. Antidepressant effects of estrogen.

    PubMed

    Price, W A; Giannini, A J

    1985-11-01

    The authors present a case report that provides support for a relationship between estrogen and the menstrual cycle on the 1 hand and affective disorders on the other. The patient in this case, a 35-year old woman, suffered from a rapid cycling affective disorder that was severely affected by her menstrual cycle and responded positively to oral contraceptives (OCs). The patient had a 24-year history of numerous manic and depressive episodes, the 1st of which coincided with menarche. She had noted that, 4 days before menses, she would experience symptoms of premenstrual tension syndrome (PMS) and often the onset of an affective episode. Treatment with a series of psychotropic agents had not been effective in controlling the number of episodes. However, the patient reported that there had been an 8-9-month period in the past when she had taken OCs and had fewer symptoms. Thus, the patient was placed on Ortho-Novum as well as imipramine. At the 9-month follow-up, she reported there had been no further episodes of depression or mania. The exact mechanism behind estrogen's psychotropic effect is unclear, although it increases the central availability of norepinephrine and induces changes in dopaminergic, noradrenergic, and serotonergic receptors. Beta-endorphin levels covary with estrogen levels, and estrogen seems to affect every major neurotransmitter system. The fact that estrogen has not consistently been shown to be effective in this regard may only signify the existence of a distinct subclass of affective disorders closely linked to the menstrual cycle. This subclass may have some type of dysfunction within the hypothalamic-pituitary-gonadal axis that contributes to mood swings.

  11. Estrogens and autoimmune diseases.

    PubMed

    Cutolo, Maurizio; Capellino, Silvia; Sulli, Alberto; Serioli, Bruno; Secchi, Maria Elena; Villaggio, Barbara; Straub, Rainer H

    2006-11-01

    Sex hormones are implicated in the immune response, with estrogens as enhancers at least of the humoral immunity and androgens and progesterone (and glucocorticoids) as natural immune-suppressors . Several physiological, pathological, and therapeutic conditions may change the serum estrogen milieu and/or peripheral conversion rate, including the menstrual cycle, pregnancy, postpartum period, menopause, being elderly, chronic stress, altered circadian rhythms, inflammatory cytokines, and use of corticosteroids, oral contraceptives, and steroid hormonal replacements, inducing altered androgen/estrogen ratios and related effects. In particular, cortisol and melatonin circadian rhythms are altered, at least in rheumatoid arthritis (RA), and partially involve sex hormone circadian synthesis and levels as well. Abnormal regulation of aromatase activity (i.e., increased activity) by inflammatory cytokine production (i.e., TNF-alpha, IL-1, and IL-6) may partially explain the abnormalities of peripheral estrogen synthesis in RA (i.e., increased availability of 17-beta estradiol and possible metabolites in synovial fluids) and in systemic lupus erythematosus, as well as the altered serum sex-hormone levels and ratio (i.e., decreased androgens and DHEAS). In the synovial fluids of RA patients, the increased estrogen concentration is observed in both sexes and is more specifically characterized by the hydroxylated forms, in particular 16alpha-hydroxyestrone, which is a mitogenic and cell proliferative endogenous hormone. Local effects of sex hormones in autoimmune rheumatic diseases seems to consist mainly in modulation of cell proliferation and cytokine production (i.e., TNF-alpha, Il-1, IL-12). In this respect, it is interesting that male patients with RA seem to profit more from anti-TNFalpha strategies than do female patients. PMID:17261796

  12. HDAC6 Regulates the Chaperone-Mediated Autophagy to Prevent Oxidative Damage in Injured Neurons after Experimental Spinal Cord Injury

    PubMed Central

    Su, Min; Guan, Huaqing; Zhang, Fan; Gao, Yarong; Teng, Xiaomei; Yang, Weixin

    2016-01-01

    Hypoxia-ischemia- (HI-) induced oxidative stress plays a role in secondary pathocellular processes of acute spinal cord injury (SCI) due to HI from many kinds of mechanical trauma. Increasing evidence suggests that the histone deacetylase-6 (HDAC6) plays an important role in cell homeostasis in both physiological and abnormal, stressful, pathological conditions. This paper found that inhibition of HDAC6 accelerated reactive oxygen species (ROS) generation and cell apoptosis in response to the HI. Deficiency of HDAC6 hindered the chaperone-mediated autophagy (CMA) activity to resistance of HI-induced oxidative stress. Furthermore, this study provided the experimental evidence for the potential role of HDAC6 in the regulation of CMA by affecting HSP90 acetylation. Therefore, HDAC6 plays an important role in the function of CMA pathway under the HI stress induced by SCI and it may be a potential therapeutic target in acute SCI model. PMID:26649145

  13. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    SciTech Connect

    Milatovic, Dejan; Gupta, Ramesh C.; Yu, Yingchun; Zaja-Milatovic, Snjezana; Aschner, Michael

    2011-11-15

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p < 0.01) increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 {mu}M) for 2 h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F{sub 2}-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 h. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 {mu}g/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F{sub 2}-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic

  14. Increased ANG II sensitivity following recovery from acute kidney injury: role of oxidant stress in skeletal muscle resistance arteries

    PubMed Central

    Phillips, Shane A.; Pechman, Kimberly R.; Leonard, Ellen C.; Friedrich, Jessica L.; Bian, Jing-Tan; Beal, Alisa G.

    2010-01-01

    Ischemia-reperfusion (I/R)-induced acute kidney injury (AKI) results in prolonged impairment of peripheral (i.e., nonrenal) vascular function since skeletal muscle resistance arteries derived from rats 5 wk post-I/R injury, show enhanced responses to ANG II stimulation but not other constrictors. Because vascular superoxide increases ANG II sensitivity, we hypothesized that peripheral responsiveness following recovery from AKI was attributable to vascular oxidant stress. Gracilis arteries (GA) isolated from post-I/R rats (∼5 wk recovery) showed significantly greater superoxide levels relative to sham-operated controls, as detected by dihydroeithidium, which was further augmented by acute ANG II stimulation in vitro. Hydrogen peroxide measured by dichlorofluorescein was not affected by ANG II. GA derived from postischemic animals manifested significantly greater constrictor responses in vitro to ANG II than GA from sham-operated controls. The addition of the superoxide scavenging reagent Tempol (10−5 M) normalized the response to values similar to sham-operated controls. Apocynin (10−6 M) and endothelial denudation nearly abrogated all ANG II-stimulated constrictor activity in GA from post-AKI rats, suggesting an important role for an endothelial-derived source of peripheral oxidative stress. Apocynin treatment in vivo abrogated GA oxidant stress and attenuated ANG II-induced pressor responses post-AKI. Interestingly, gene expression studies in GA vessels indicated a paradoxical reduction in NADPH oxidase subunit and AT1-receptor genes and no effect on several antioxidant genes. Taken together, this study demonstrates that AKI alters peripheral vascular responses by increasing oxidant stress, likely in the endothelium, via an undefined mechanism. PMID:20335375

  15. Angiotensin-(1-7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats.

    PubMed

    Lu, W; Kang, J; Hu, K; Tang, S; Zhou, X; Yu, S; Li, Y; Xu, L

    2016-01-01

    Obstructive sleep apnea is associated with inflammation and oxidative stress in lung tissues and can lead to metabolic abnormalities. We investigated the effects of angiotensin1-7 [Ang-(1-7)] on lung injury in rats induced by chronic intermittent hypoxia (CIH). We randomly assigned 32 male Sprague-Dawley rats (180-200 g) to normoxia control (NC), CIH-untreated (uCIH), Ang-(1-7)-treated normoxia control (N-A), and Ang-(1-7)-treated CIH (CIH-A) groups. Oxidative stress biomarkers were measured in lung tissues, and expression of NADPH oxidase 4 (Nox4) and Nox subunits (p22phox, and p47phox) was determined by Western blot and reverse transcription-polymerase chain reaction. Pulmonary pathological changes were more evident in the uCIH group than in the other groups. Enzyme-linked immunosorbent assays and immunohistochemical staining showed that inflammatory factor concentrations in serum and lung tissues in the uCIH group were significantly higher than those in the NC and N-A groups. Expression of inflammatory factors was significantly higher in the CIH-A group than in the NC and N-A groups, but was lower than in the uCIH group (P<0.01). Oxidative stress was markedly higher in the uCIH group than in the NC and N-A groups. Expression of Nox4 and its subunits was also increased in the uCIH group. These changes were attenuated upon Ang-(1-7) treatment. In summary, treatment with Ang-(1-7) reversed signs of CIH-induced lung injury via inhibition of inflammation and oxidative stress. PMID:27599201

  16. Angiotensin-(1–7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats

    PubMed Central

    Lu, W.; Kang, J.; Hu, K.; Tang, S.; Zhou, X.; Yu, S.; Li, Y.; Xu, L.

    2016-01-01

    Obstructive sleep apnea is associated with inflammation and oxidative stress in lung tissues and can lead to metabolic abnormalities. We investigated the effects of angiotensin1–7 [Ang-(1–7)] on lung injury in rats induced by chronic intermittent hypoxia (CIH). We randomly assigned 32 male Sprague-Dawley rats (180–200 g) to normoxia control (NC), CIH-untreated (uCIH), Ang-(1–7)-treated normoxia control (N-A), and Ang-(1–7)-treated CIH (CIH-A) groups. Oxidative stress biomarkers were measured in lung tissues, and expression of NADPH oxidase 4 (Nox4) and Nox subunits (p22phox, and p47phox) was determined by Western blot and reverse transcription-polymerase chain reaction. Pulmonary pathological changes were more evident in the uCIH group than in the other groups. Enzyme-linked immunosorbent assays and immunohistochemical staining showed that inflammatory factor concentrations in serum and lung tissues in the uCIH group were significantly higher than those in the NC and N-A groups. Expression of inflammatory factors was significantly higher in the CIH-A group than in the NC and N-A groups, but was lower than in the uCIH group (P<0.01). Oxidative stress was markedly higher in the uCIH group than in the NC and N-A groups. Expression of Nox4 and its subunits was also increased in the uCIH group. These changes were attenuated upon Ang-(1–7) treatment. In summary, treatment with Ang-(1-7) reversed signs of CIH-induced lung injury via inhibition of inflammation and oxidative stress. PMID:27599201

  17. Anti-inflammatory and Anti-oxidative Effects of Dexpanthenol on Lipopolysaccharide Induced Acute Lung Injury in Mice.

    PubMed

    Li-Mei, Wan; Jie, Tan; Shan-He, Wan; Dong-Mei, Meng; Peng-Jiu, Yu

    2016-10-01

    The aim of this study is to investigate the effects of dexpanthenol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). Lung injury was induced by exposure to atomized LPS. Mice were randomly divided into four groups: control group; Dxp (500 mg/kg) group; LPS group; LPS + Dxp (500 mg/kg) group. The effects of dexpanthenol on LPS-induced neutrophil recruitment, cytokine levels, total protein concentration, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) contents were examined. Additionally, lung tissue was examined by histology to investigate the changes in pathology in the presence and absence of dexpanthenol. In LPS-challenged mice, dexpanthenol significantly improved lung edema. Dexpanthenol also markedly inhibited the LPS-induced neutrophiles influx, protein leakage, and release of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Furthermore, dexpanthenol attenuated MPO activity and MDA contents and increased SOD and GSH activity in the LPS-challenged lung tissue. These data suggest that dexpanthenol protects mice from LPS-induced acute lung injury by its anti-inflammatory and anti-oxidative activities. PMID:27469104

  18. Inhibition of Acute Lung Injury by TNFR-Fc through Regulation of an Inflammation-Oxidative Stress Pathway

    PubMed Central

    Yujie, Hu; Weifeng, Li; Zhenhui, Guo; Wenjie, Huang

    2016-01-01

    Background Acute lung injury (ALI), characterized by disruption of the lung alveolar-capillary membrane barrier and resultant pulmonary edema, and associated with a proteinaceous alveolar exudate, is a leading cause of morbidity and mortality. Currently, inflammation-oxidative stress interaction between TNF-α and NF-κB was identified as a key pathway of ALI. We hypothesized that a TNFR-Fc fusion protein would have beneficial effects in experimental ALI, and sought to test this idea in mice by blocking TNF-α. Methods and Results Intratracheal instillation of lipopolysaccharide (LPS) into the lungs of ALI mice led to histiocyte apoptosis, and detection of serum and bronchoalveolar lavage fluid (BALF) cytokines, feedback between NF-κB and TNF-α, lung albumin leakage, lung damage, IκB kinase (IKK) and NF-κB activation, I-κB degradation, and oxidative injury. LPS administration raised pulmonary inflammation as reflected by increased inflammatory cytokines, alveoli protein concentration, and ALI scores. IKK is phosphorylated following LPS challenge, leading to I-κB degradation and NF-κB p65 phosphorylation. Furthermore, NF-κB is translocated into the nucleus and up-regulates TNF-α gene transcription. Infusion of TNFR-Fc 24h before LPS challenge significantly abrogated the increase of inflammatory cytokines, especially serum TNF-α concentration, as well as pulmonary alveoli protein levels, and diminished IKK and NF-κB activation and I-κB degradation. The nuclear translocation of NF-κB was inhibited, following by down-regulation of TNF-α gene transcription. In addition, LPS intratracheal instillation induced marked oxidative damage, such as a decrease in total anti-oxidation products and an increase in malondialdehyde (MDA), as well as up-regulation of oxidation enzymes. Histologic analysis and apoptosis scores revealed that the extent of tissue lesions was significantly reduced, but not abrogated, by TNF-α blockade. Conclusion Treatment with LPS alone

  19. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress and brain injury in mice with ischemic stroke and bone fracture

    PubMed Central

    Han, Zhenying; Li, Li; Wang, Liang; Degos, Vincent; Maze, Mervyn; Su, Hua

    2014-01-01

    Bone fracture at the acute stage of stroke exacerbates stroke injury by increasing neuroinflammation. We hypothesize that activation of α-7 nicotinic acetylcholine (α-7 nAchR) agonist attenuates neuroinflammation and oxidative stress, and reduces brain injury in mice with bone fracture and stroke. Permanent middle cerebral artery occlusion (pMCAO) was performed in C57BL/6J mice followed by tibia fracture 1 day later. Mice were treated with 0.8 mg/kg PHA568487 (PHA, α-7 nAchR-specific agonist), 6 mg/kg Methyllycaconitine (MLA, α-7 nAchR antagonist), or saline 1 and 2 days after pMCAO. Behavior was tested 3 days after pMCAO. Neuronal injury, CD68+, M1 (pro-inflammatory) and M2 (anti-inflammatory) microglia/macrophages, phosphorylated p65 component of NF-kb in microglia/macrophages, oxidative and anti-oxidant gene expression were quantified. Compared to saline-treated mice, PHA-treated mice performed better in behavioral tests, had fewer apoptotic neurons (NeuN+TUNEL+), fewer CD68+ and M1 macrophages, and more M2 macrophages. PHA increased anti-oxidant gene expression and decreased oxidative stress and phosphorylation of NF-κb p65. MLA had the opposite effects. Our data indicate that α-7 nAchR agonist treatment reduces neuroinflammation and oxidative stress, which are associated with reduced brain injury in mice with ischemic stroke plus tibia fracture. PMID:25040630

  20. The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice

    PubMed Central

    Niatsetskaya, Zoya V.; Sosunov, Sergei A.; Matsiukevich, Dzmitry; Utkina-Sosunova, Irina V.; Ratner, Veniamin I.; Starkov, Anatoly A.; Ten, Vadim S.

    2012-01-01

    Oxidative stress and Ca++ toxicity are mechanisms of hypoxic-ischemic (HI) brain injury. This work investigates if partial inhibition of mitochondrial respiratory chain protects HI-brain by limiting generation of oxidative radicals during reperfusion. HI-insult was produced in p10 mice treated with complex-I (C-I) inhibitor, pyridaben (P), or vehicle. Administration of P significantly decreased extent of HI injury. Mitochondria isolated from the ischemic hemisphere in P-treated animals showed reduced H2O2 emission, less oxidative damage to the mitochondrial matrix, and increased tolerance to Ca++ triggered opening of permeability transition pore. Protective effect of P administration was also observed when the reperfusion-driven oxidative stress was augmented by the exposure to 100% O2 which exacerbated brain injury only in V-treated mice. In vitro, intact brain mitochondria dramatically increased H2O2 emission in response to hyperoxia, resulting in substantial loss of Ca++ buffering capacity. However, in the presence of C-I inhibitor, rotenone, or antioxidant, catalase, these effects of hyperoxia were abolished. Our data suggest that the reperfusion-driven recovery of C-I dependent mitochondrial respiration contributes not only to the cellular survival, but also causes an oxidative damage to the mitochondria, potentiating a loss of Ca++ buffering capacity. This highlights a novel neuroprotective strategy against HI-brain injury where the major therapeutic principle is a pharmacological attenuation, rather than an enhancement of mitochondrial oxidative metabolism during early reperfusion. PMID:22378894

  1. Ameliorative Effects of 5-Hydroxymethyl-2-furfural (5-HMF) from Schisandra chinensis on Alcoholic Liver Oxidative Injury in Mice

    PubMed Central

    Li, Wei; Qu, Xin-Nan; Han, Ye; Zheng, Si-Wen; Wang, Jia; Wang, Ying-Ping

    2015-01-01

    The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF) on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg) for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase), AST (aspartate transaminase), TC (total cholesterol), TG (triglyceride), L-DLC (low density lipoprotein) in serum and the levels of MDA (malondialdehyde) in liver tissue, decreased significantly (p < 0.05) in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase), GSH-Px (glutathione peroxidase), and GSH SOD (superoxide dismutase) were markedly elevated in liver tissue treated with 5-HMF (p < 0.05). Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were significantly suppressed (p < 0.05). Histopathological examination revealed that 5-HMF (30 mg/kg) pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties. PMID:25622257

  2. Ameliorative effects of 5-hydroxymethyl-2-furfural (5-HMF) from Schisandra chinensis on alcoholic liver oxidative injury in mice.

    PubMed

    Li, Wei; Qu, Xin-Nan; Han, Ye; Zheng, Si-Wen; Wang, Jia; Wang, Ying-Ping

    2015-01-22

    The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF) on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg) for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase), AST (aspartate transaminase), TC (total cholesterol), TG (triglyceride), L-DLC (low density lipoprotein) in serum and the levels of MDA (malondialdehyde) in liver tissue, decreased significantly (p < 0.05) in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase), GSH-Px (glutathione peroxidase), and GSH SOD (superoxide dismutase) were markedly elevated in liver tissue treated with 5-HMF (p < 0.05). Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were significantly suppressed (p < 0.05). Histopathological examination revealed that 5-HMF (30 mg/kg) pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  3. Beneficial effects of quercetin on renal injury and oxidative stress caused by ciprofloxacin in rats: A histological and biochemical study.

    PubMed

    Elbe, H; Dogan, Z; Taslidere, E; Cetin, A; Turkoz, Y

    2016-03-01

    Ciprofloxacin is a broad-spectrum quinolone antibiotic commonly used in clinical practice. Quercetin is an antioxidant belongs to flavonoid group. It inhibits the production of superoxide anion. In this study, we aimed to evaluate the effects of quercetin on renal injury and oxidative stress caused by ciprofloxacin. Twenty-eight female Wistar albino rats were divided into four groups: control, quercetin (20 mg kg(-1) day(-1) gavage for 21 days), ciprofloxacin (20 mg kg(-1) twice a day intraperitoneally for 10 days), and ciprofloxacin + quercetin. Samples were processed for histological and biochemical evaluations. Malondialdehyde (MDA) and glutathione (GSH) levels, superoxide dismutase (SOD), and catalase (CAT) activities were measured in kidney tissue. The ciprofloxacin group showed histopathological changes such as infiltration, dilatation in tubules, tubular atrophy, reduction of Bowman's space, congestion, hemorrhage, and necrosis. In the ciprofloxacin + quercetin group, these histopathological changes markedly reduced. MDA levels increased in the ciprofloxacin group and decreased in the ciptofloxacin + quercetin group. SOD and CAT activities and GSH levels significantly decreased in the ciprofloxacin group. On the other hand, in the ciprofloxacin + quercetin group, SOD and CAT activities and GSH levels significantly increased with regard to the ciprofloxacin group. We concluded that quercetin has antioxidative and therapeutic effects on renal injury and oxidative stress caused by ciprofloxacin in rats.

  4. Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats

    PubMed Central

    2013-01-01

    This study investigated the protective effects of melatonin and folic acid against carbon tetrachloride (CCl4)-induced hepatic injury in rats. Oxidative stress, liver function, liver histopathology and serum lipid levels were evaluated. The levels of protein kinase B (Akt1), interferon gamma (IFN-γ), programmed cell death-receptor (Fas) and Tumor necrosis factor-alpha (TNF-α) mRNA expression were analyzed. CCl4 significantly elevated the levels of lipid peroxidation (MDA), cholesterol, LDL, triglycerides, bilirubin and urea. In addition, CCl4 was found to significantly suppress the activity of both catalase and glutathione (GSH) and decrease the levels of serum total protein and HDL-cholesterol. All of these parameters were restored to their normal levels by treatment with melatonin, folic acid or their combination. An improvement of the general hepatic architecture was observed in rats that were treated with the combination of melatonin and folic acid along with CCl4. Furthermore, the CCl4-induced upregulation of TNF-α and Fas mRNA expression was significantly restored by the three treatments. Melatonin, folic acid or their combination also restored the baseline levels of IFN-γ and Akt1 mRNA expression. The combination of melatonin and folic acid exhibited ability to reduce the markers of liver injury induced by CCl4 and restore the oxidative stability, the level of inflammatory cytokines, the lipid profile and the cell survival Akt1 signals. PMID:23374533

  5. Eriodictyol attenuates cisplatin-induced kidney injury by inhibiting oxidative stress and inflammation.

    PubMed

    Li, Cheng-zhen; Jin, Hai-hong; Sun, Hong-xin; Zhang, Zhong-zhe; Zheng, Jia-xin; Li, Shu-hua; Han, Seong-ho

    2016-02-01

    Eriodictyol, a flavonoid present in citrus fruits, has been reported to have antioxidant and anti-inflammatory effects. In this study, the protective effects of eriodictyol on cisplatin (CP)-induced kidney injury were detected. CP-induced kidney injury model was established by administration of CP (20mg/kg). The results showed that treatment of eriodictyol inhibited the production of blood urea nitrogen (BUN), creatinine, MDA, TBARS, reactive oxygen species (ROS), as well as the production of TNF-α, and IL-1β in kidney tissues induced by CP. Eriodictyol also up-regulated the activities of SOD, CAT, and GSH-PX decreased by CP. Furthermore, eriodictyol was found to up-regulate the expression of Nrf2/HO-1 and inhibited CP-induced NF-κB activation in kidney tissues. In conclusion, eriodictyol protected against CP-induced kidney injury through activating Nrf2 and inhibiting NF-κB activation.

  6. Advanced Glycation End Product Receptor-1 Transgenic Mice Are Resistant to Inflammation, Oxidative Stress, and Post-Injury Intimal Hyperplasia

    PubMed Central

    Torreggiani, Massimo; Liu, Huixian; Wu, Jin; Zheng, Feng; Cai, Weijing; Striker, Gary; Vlassara, Helen

    2009-01-01

    The high levels of oxidative stress (OS) and inflammation associated with cardiovascular disease are linked to pro-oxidants such as advanced glycation end products (AGEs). AGEs interact with multiple receptors, including receptor 1 (AGER1), which promotes AGE removal and blocks OS and inflammation, and RAGE, which enhances inflammation. In this study, we evaluated metabolic and vascular changes in AGER1 transgenic mice (AGER1-tg) subjected to an atherogenic diet and arterial wire-injury. Both baseline and postatherogenic diet serum and tissue AGEs as well as plasma 8-isoprostane levels were lower in AGER1-tg mice than in wild-type mice. The levels of injected 125I-AGE in tissues were decreased as well in AGER1-tg mice. After ingesting a high-fat diet, AGER1-tg mice had a normal glucose tolerance and only 7% were hyperglycemic, whereas 53% of wild-type mice had stable hyperglycemia. After wire-injury, intimal lesions in AGER1-tg mice were small, whereas wild-type mice had diffuse intimal hyperplasia, a high intima/media ratio, and inflammatory cell infiltrates. In addition, AGER1 staining, prominent in AGER1-tg mice, was attenuated in 30 to 40% of wild-type cells, although all cells were strongly positive for AGEs. Thus, AGER1 overexpression in mice reduces basal levels of AGEs and OS, enhances resistance to diet-induced hyperglycemia and OS, and protects against injury-induced arterial intimal hyperplasia and inflammation, providing protection against OS and inflammation induced by AGEs and high-fat diets in vivo. PMID:19779136

  7. γ-Glutamylcysteine Ameliorates Oxidative Injury in Neurons and Astrocytes In Vitro and Increases Brain Glutathione In Vivo

    PubMed Central

    Le, Truc M.; Jiang, Haiyan; Cunningham, Gary R.; Magarik, Jordan A.; Barge, William S.; Cato, Marilyn C.; Farina, Marcelo; Rocha, Joao B. T.; Milatovic, Dejan; Lee, Eunsook; Aschner, Michael; Summar, Marshall L.

    2011-01-01

    γ-Glutamylcysteine (γ-GC) is an intermediate molecule of the glutathione (GSH) synthesis pathway. In the present study, we tested the hypothesis that γ-GC pretreatment in cultured astrocytes and neurons protects against hydrogen peroxide (H2O2)-induced oxidative injury. We demonstrate that pretreatment with γ-GC increases the ratio of reduced:oxidized GSH levels in both neurons and astrocytes and increases total GSH levels in neurons. In addition, γ-GC pretreatment decreases isoprostane formation both in neurons and astrocytes, as well as nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation in astrocytes in response to H2O2-induced oxidative stress. Furthermore, GSH and isoprostane levels significantly correlate with increased neuron and astrocyte viability in cells pretreated with γ-GC. Finally, we demonstrate that administration of a single intravenous injection of γ-GC to mice significantly increases GSH levels in the brain, heart, lungs, liver, and in muscle tissues in vivo. These results support a potential therapeutic role for γ-GC in the reduction of oxidant stress-induced damage in tissues including the brain. PMID:21159318

  8. Methane attenuates myocardial ischemia injury in rats through anti-oxidative, anti-apoptotic and anti-inflammatory actions.

    PubMed

    Chen, Ouyang; Ye, Zhouheng; Cao, Zhiyong; Manaenko, Anatol; Ning, Ke; Zhai, Xiao; Zhang, Rongjia; Zhang, Ting; Chen, Xiao; Liu, Wenwu; Sun, Xuejun

    2016-01-01

    Myocardial infarction (MI) remains the most frequent cardiovascular disease with high mortality. Recently, methane has been shown protective effects on small intestinal ischemia-reperfusion injury. We hypothesized that methane-rich saline (MS) could protect the myocardium again MI via its anti-oxidative, anti-apoptotic and anti-inflammatory effects. In experiment 1, tetrazolium chloride staining and detection of myocardial enzymes and oxidative and inflammatory parameters were performed at 12h after MI to determine the optimal dose at which intraperitoneal MS exerted the best protective effects on MI. In experiment 2, rats were treated with 10 ml/kg MS. Myocyte apoptosis was detected 72 h after MI, and cardiac function and myocardial remodeling were evaluated 4 weeks after MI. Results showed different dose of MS reduced infarct area, decreased myocardial enzymes, inhibited inflammation and oxidative stress following MI. The optimal dose of MS was 10 mg/kg. Moreover, treatment with 10mg/kg MS for 3 days significantly reduced myocyte apoptosis, improved cardiac function and inhibited myocardial remodeling (reduced anterior wall thickness, attenuated myocyte hypertrophy, and decreased myocardial collagen). MS protects the myocardium of MI rats via its anti-oxidative, anti-inflammatory, anti-apoptotic and anti-remodeling activities. Thus, MS provides a novel and promising strategy for the treatment of ischemic heart diseases. PMID:26585905

  9. Estrogen and cerebrovascular regulation in menopause.

    PubMed

    Raz, Limor

    2014-05-25

    Estrogen (E2), classically viewed as a reproductive steroid hormone, has non-reproductive functions throughout the body including in the brain and vasculature. Studies report diminished neuroprotection with declining E2 levels, corresponding with higher incidence of cerebrovascular and neurological disease. However, the effects of menopausal hormone therapy (MHT) on the cerebral vasculature and brain function remain controversial. This review will focus on evidence of 17β-estradiol actions in the cerebral vasculature, with a particular emphasis on the vasoactive, anti-inflammatory, anti-oxidant, metabolic and molecular properties. Controversies surrounding MHT in relation to cerebrovascular disease and stroke risk will be discussed, particularly the emerging evidence from clinical trials supporting the critical period hypothesis of estrogen protection.

  10. Preconditioning induced by gentamicin protects against acute kidney injury: The role of prostaglandins but not nitric oxide

    SciTech Connect

    Pessoa, Edson A.; Convento, Marcia B.; Ribas, Otoniel S.; Tristao, Vivian R.; Reis, Luciana Aparecida; Borges, Fernanda T.; Schor, Nestor

    2011-05-15

    Nephrotoxicity is the main side effect of gentamicin (GENTA). Preconditioning (PC) refers to a situation in which an organ subjected to an injury responds less intensely when exposed to another injury. The aim of this study was to evaluate the effect of PC with GENTA on nephrotoxic acute kidney injury (AKI). GENTA group rats were injected daily with GENTA (40 mg/kg/BW) for 10 days. PC animals were injected with GENTA for 3 days (40 mg/kg/BW/daily) and, after one rest week, were injected daily with GENTA for 10 days. Animals of the L-NAME and DICLO groups were preconditioned for 3 days and then received daily injections of GENTA for 10 days; they were concomitantly treated with L-NAME (10 mg/kg/BW) and diclofenac (DICLO, 5 mg/kg/BW) for 13 days. Blood and urine were collected for measurement of serum creatinine, urea, urine sodium, protein, hydroperoxides, lipid peroxidation and nitric oxide (NO). The animals were killed; kidneys were removed for histology and immunohistochemistry for apoptosis and cell proliferation. GENTA group rats showed an increase in plasma creatinine, urea, urine sodium, hydroperoxides, lipid peroxidation, proteinuria, necrosis and apoptosis, characterizing nephrotoxic AKI. PC animals showed a decrease in these parameters and increased proliferation. The blockade of NO synthesis by L-NAME potentiated the protective effect, suggesting that NO contributed to the injury caused by GENTA. The blockade of prostaglandin synthesis with DICLO increased serum and urinary parameters, blunting the protective effect of PC. Our data suggest that PC could be a useful tool to protect against nephrotoxic AKI.

  11. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide.

    PubMed Central

    Marks, D S; Vita, J A; Folts, J D; Keaney, J F; Welch, G N; Loscalzo, J

    1995-01-01

    Endothelium-derived relaxing factor is important for vascular homeostasis and possesses qualities that may modulate vascular injury, including vasodilation, platelet inhibition, and inhibition of smooth muscle proliferation. S-nitrososerum albumin is a naturally occurring adduct of nitric oxide (NO) with a prolonged biologic half-life and is a potent vasodilator and platelet inhibitor. Given the avidity of serum albumin for subendothelial matrix and the antiproliferative effects of NO, we investigated the effects of locally delivered S-nitroso-bovine serum albumin (S-NO-BSA) and a polythiolated form of bovine serum albumin (pS-BSA) modified to carry several S-nitrosothiol groups (pS-NO-BSA) on neointimal responses in an animal model of vascular injury. Locally delivered S-NO-BSA bound preferentially to denuded rabbit femoral vessels producing a 26-fold increase in local concentration compared with uninjured vessels (P = 0.029). pS-NO-BSA significantly reduced the intimal/medial ratio (P = 0.038) and did so in conjunction with elevations in platelet (P < 0.001) and vascular cGMP content (P < or = 0.001). pS-NO-BSA treatment also inhibited platelet deposition (P = 0.031) after denuding injury. Comparison of BSA, S-NO-BSA, pS-NO-BSA, and control revealed a dose-response relationship between the amount of displaceable NO delivered and the extent of inhibition of neointimal proliferation at 2 wk (P < or = 0.001). Local administration of a stable protein S-nitrosothiol inhibits intimal proliferation and platelet deposition after vascular arterial balloon injury. This strategy for the local delivery of a long-lived NO adduct has potential for preventing restenosis after angioplasty. Images PMID:8675628

  12. Lazaroid compounds prevent early but not late stages of oxidant-induced cell injury: potential explanation for the lack of efficacy of lazaroids in clinical trials.

    PubMed

    Huang, H; Patel, P B; Salahudeen, A K

    2001-01-01

    Earlier in vitro studies demonstrated the remarkable potency of the lazaroid compounds to prevent oxidant-induced early cell injury. However, the ability of lazaroid compounds to limit oxidative injury in vivo(including renal ischemia-reperfusion) has been less certain, and the early clinical trials using lazaroids to limit CNS injury or organ injury in the setting of transplantation have not been promising. Lazaroid compounds are potent inhibitors of lipid peroxidation, and their inability to influence other key injury processes, particularly during the late stages of cell injury, might partly explain the limited clinical efficacy. To test this, renal tubular (LLC-PK1) cells were incubated with 250 micromH(2)O(2)for 135 min, in the presence or absence of 2-methyl aminochroman (2-MAC, U-83836E), a lazaroid with potent ability to inhibit lipid peroxidation, or desferrioxamine, (DFO) an iron chelator with broader antioxidant efficacy. Cell injury, lipid peroxidation, DNA damage and ATP depletion were measured in the early (immediately after H(2)O(2)incubation) and late (24 h after H(2)O(2)incubation) stages of cell injury. In the early stage, 2-MAC suppressed H(2)O(2)-induced lipid peroxidation and LDH release, but not the DNA damage, ATP depletion or loss of cell replication. In contrast, DFO suppressed all of the measurements. In the late stages, despite continued suppression of lipid peroxidation, only DFO maintained significant cytoprotection against H(2)O(2), and this was accompanied by reduced DNA damage, higher ATP levels and preservation of cell proliferation. Thus, the inability of the lazaroid compound 2-MAC to sustain cytoprotection in the later stages of cell injury might provide at least a partial explanation for the inefficiency of lazaroids to limit tissue injury in clinical and certain in vivo settings. PMID:11207066

  13. A high-fat diet increases oxidative renal injury and protein glycation in D-galactose-induced aging rats and its prevention by Korea red ginseng.

    PubMed

    Park, Sok; Kim, Chan-Sik; Min, Jinah; Lee, Soo Hwan; Jung, Yi-Sook

    2014-01-01

    Declining renal function is commonly observed with age. Obesity induced by a high-fat diet (HFD) may reduce renal function. Korean red ginseng (KRG) has been reported to ameliorate oxidative tissue injury and have an anti-aging effect. This study was designed to investigate whether HFD would accelerate the D-galactose-induced aging process in the rat kidney and to examine the preventive effect of KRG on HFD and D-galactose-induced aging-related renal injury. When rats with D-galactose-induced aging were fed an HFD for 9 wk, enhanced oxidative DNA damage, renal cell apoptosis, protein glycation, and extracellular high mobility group box 1 protein (HMGB1), a signal of tissue damage, were observed in renal glomerular cells and tubular epithelial cells. However, treatment of rats with HFD- plus D-galactose-induced aging with KRG restored all of these renal changes. Our data suggested that a long-term HFD may enhance D-galactose-induced oxidative renal injury in rats and that this age-related renal injury could be suppressed by KRG through the repression of oxidative injury. PMID:25078371

  14. Effects of LY117018 and the estrogen analogue, 17alpha-ethinylestradiol, on vascular reactivity, platelet aggregation, and lipid metabolism in the insulin-resistant JCR:LA-cp male rat: role of nitric oxide.

    PubMed

    Russell, J C; McKendrick, J D; Dubé, P J; Dolphin, P J; Radomski, M W

    2001-01-01

    The JCR:LA-cp rat is obese and insulin resistant and develops a major vasculopathy, with associated ischemic damage to the heart. Male rats were treated with 17alpha-ethinylestradiol (EE), LY117018, and/or the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME). LY117018 decreased plasma cholesterol esters, with a 40% reduction in total cholesterol. EE increased triglyceride levels and modestly decreased cholesterol esters. L-NAME increased blood pressure and aortic contractile sensitivity to phenylephrine and inhibited acetylcholine-induced relaxation. LY117018 decreased the force of contraction. The L-NAME-mediated increase in force of contraction and decrease in response to acetylcholine was inhibited by LY117018. L-NAME-induced hypertension was prevented by LY117018. Platelet aggregation was not different between obese and lean rats and was unaffected by L-NAME. LY117018, both in the absence and presence of L-NAME, inhibited platelet aggregation. The effects of LY117018 are apparently mediated through both NO-dependent and -independent mechanisms. The changes induced by EE and LY117018 may reflect the activation of multiple mechanisms, both estrogen receptor-dependent and -independent. The changes induced by LY117018 are significant and may prove to be cardioprotective in the presence of the insulin resistance syndrome.

  15. Inducible Nitric Oxide Synthase in Heart Tissue and Nitric Oxide in Serum of Trypanosoma cruzi-Infected Rhesus Monkeys: Association with Heart Injury

    PubMed Central

    Carvalho, Cristiano Marcelo Espinola; Silverio, Jaline Coutinho; da Silva, Andrea Alice; Pereira, Isabela Resende; Coelho, Janice Mery Chicarino; Britto, Constança Carvalho; Moreira, Otacílio Cruz; Marchevsky, Renato Sergio; Xavier, Sergio Salles; Gazzinelli, Ricardo Tostes; da Glória Bonecini-Almeida, Maria; Lannes-Vieira, Joseli

    2012-01-01

    Background The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO) levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2) is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2−/−) mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. Methodology Rhesus monkeys and C57BL/6 and Nos2−/− mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG), echocardiogram (ECHO), creatine kinase heart isoenzyme (CK-MB) activity levels in serum and connexin 43 (Cx43) expression in the cardiac tissue. Results Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC). Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2−/− mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. Conclusion T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute to CCC

  16. Mn (III) Tetrakis (4-Benzoic Acid) Porphyrin Protects Against Neuronal and Glial Oxidative Stress and Death after Spinal Cord Injury

    PubMed Central

    Valluru, Lokanatha; Diao, Yao; Hachmeister, Jorge E.; Liu, Danxia

    2014-01-01

    This study explores the ability of a catalytic antioxidant, Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), to protect against neuronal and glial oxidative stress and death after spinal cord injury (SCI). Nine different doses of MnTBAP were administered into the intrathecal space of the rat spinal cord immediately following moderate SCI to establish dose - response curves for prevention of lipid peroxidation and neuron death. An optimal dose was determined by comparing the effectiveness of MnTBAP protection among doses. The optimal dose was then administered and the cords were removed 24 h post-administration and processed for staining. The cells in the cord sections at different distances from the epicenter were counted to obtain the spatial profiles of MnTBAP protection. Comparison of the counts between MnTBAP- and vehicle-treated groups in the sections double immuno-fluorescence-stained with oxidative and cellular markers demonstrated that MnTBAP significantly reduced numbers of nitrotyrosine- and DNP-positive (stained with an antibody against 2,4-dinitrophenyl hydrazine (DNPH)-labeled protein carbonyls) neurons, astrocytes, and oligodendrocytes. Comparison of the counts between the two treatments in the sections immuno-stained with cellular markers revealed that MnTBAP significantly increased numbers of neurons, motoneurons, astrocytes, and oligodendrocytes. MnTBAP more effectively reduced neuronal than glial cell death. Post-injury treatment with the optimal dose of MnTBAP at 6, 12, 24, 48, and 72 h post-SCI demonstrated that the effective time window for reducing protein nitration and neuron death was at least 12 h. Our results demonstrated that MnTBAP combats oxidative stress, thereby attenuating all types of cell death after SCI. PMID:22483303

  17. Effect of Regular Exercise on the Histochemical Changes of d-Galactose-Induced Oxidative Renal Injury in High-Fat Diet-Fed Rats

    PubMed Central

    Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun

    2013-01-01

    Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden. PMID:24023395

  18. Exercise, Eating, Estrogen, and Osteoporosis.

    ERIC Educational Resources Information Center

    Brown, Jim

    1986-01-01

    Osteoporosis affects millions of people, especially women. Three methods for preventing or managing osteoporosis are recommended: (1) exercise; (2) increased calcium intake; and (3) estrogen replacement therapy. (CB)

  19. Let-7a modulates particulate matter (≤ 2.5 μm)-induced oxidative stress and injury in human airway epithelial cells by targeting arginase 2.

    PubMed

    Song, Lei; Li, Dan; Gu, Yue; Li, Xiaoping; Peng, Liping

    2016-10-01

    Epidemiological studies show that particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm (PM2.5) is associated with cardiorespiratory diseases via the induction of excessive oxidative stress. However, the precise mechanism underlying PM2.5-mediated oxidative stress injury has not been fully elucidated. Accumulating evidence has indicated the microRNA let-7 family might play a role in PM-mediated pathological processes. In this study, we investigated the role of let-7a in oxidative stress and cell injury in human bronchial epithelial BEAS2B (B2B) cells after PM2.5 exposure. The let-7a level was the most significantly decreased in B2B cells after PM2.5 exposure. The overexpression of let-7a suppressed intracellular reactive oxygen species levels and the percentage of apoptotic cells after PM2.5 exposure, while the let-7a level decreased arginase 2 (ARG2) mRNA and protein levels in B2B cells by directly targeting the ARG2 3'-untranslated region. ARG2 expression was upregulated in B2B cells during PM2.5 treatment, and ARG2 knockdown could remarkably reduce oxidative stress and cellular injury. Moreover, its restoration could abrogate the protective effects of let-7a against PM2.5-induced injury. In conclusion, let-7a decreases and ARG2 increases resulting from PM2.5 exposure may exacerbate oxidative stress, cell injury and apoptosis of B2B cells. The let-7a/ARG2 axis is a likely therapeutic target for PM2.5-induced airway epithelial injury. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Vaccarin attenuates the human EA.hy926 endothelial cell oxidative stress injury through inhibition of Notch signaling.

    PubMed

    Xie, Fengshan; Cai, Weiwei; Liu, Yanling; Li, Yue; Du, Bin; Feng, Lei; Qiu, Liying

    2015-01-01

    Endothelial cell injury is an essential component of atherosclerosis and hypertension. Atherosclerosis and other macrovascular diseases are the most common complications of diabetes. Vaccarin is a major flavonoid glycoside in Vaccariae semen, and is expected to be useful in the treatment of vascular diseases. The aim of the present study was to evaluate the possible effects of vaccarin in human umbilical vein endothelial cells (EA.hy926) induced by hydrogen peroxide (H2O2) and its underlying mechanism in the prevention and treatment of H2O2 injury. In this study, the EA.hy926 cells were exposed to 250, 500 and 1000 µM H2O2 for 2 and 4 h in the absence or presence of vaccarin, and the cell injury induced by H2O2 was examined via SRB. Cell migratory ability, lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA) levels and decreasing superoxide dismutase (SOD) activity were evaluated by the wound healing assay and corresponding assay kits. Cell apoptosis was detected by flow cytometry with Annexin V-fluorescein isothiocyanate/propidium iodide Apoptosis Detection kit and Hoechst staining. Furthermore, western blot detected the protein expressions of Notch1, Hes1 and caspase-3. Following treatment with H2O2, it was found that H2O2 stimulated cell injury in a dose-dependent manner, including reducing cell viability and cell migratory ability, increasing LDH leakage and MDA levels, and decreasing SOD activity. H2O2 further accelerated cell apoptosis via activation of Notch1 and the downstream molecule Hes1. Preincubation with vaccarin was found to protect EA.hy926 cells from H2O2-induced cell oxidative stress injury, which promoted cell viability and cell migratory ability, inhibited the level of LDH and MDA, but enhanced the activity of SOD. In particular, in addition to downregulation Notch signaling, vaccarin treatments also downregulated caspase-3, a cell apoptotic pathway-related protein. These findings indicated that vaccarin may be able to selectively protect

  1. Antioxidant properties and neuroprotective effects of isocampneoside II on hydrogen peroxide-induced oxidative injury in PC12 cells.

    PubMed

    Si, Chuan-Ling; Shen, Ting; Jiang, Yun-Yao; Wu, Lei; Yu, Guo-Jing; Ren, Xiao-Dan; Xu, Guang-Hui; Hu, Wei-Cheng

    2013-09-01

    Oxidative stress has been considered as a major cause of cell damage in various neurodegenerative disorders. One of the reasonable strategies for delaying the disease's progression is to prevent reactive oxygen species (ROS) mediated cellular injury by dietary or pharmaceutical augmentation of free radical scavengers. Isocampneoside II (ICD) is an active phenylethanoid glycoside isolated from the medicinal hardwood genus Paulownia. This study was designed to explore free radical scavenging potential of ICD in different in vitro systems and its protective role in hydrogen peroxide (H₂O₂)-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. The results showed ICD eliminated approximately 80.75% superoxide radical at the concentration of 0.1mg/ml and inhibited metal chelating by 22.07% at 8 mg/ml. Additionally, ICD showed a strong ability on reducing power and provided protection against oxidative protein damage induced by hydroxyl radicals. Pretreatment of PC12 cells with ICD prior to H₂O₂ exposure elevated cell viability, enhanced activity of superoxide dismutase and catalase, and decreased levels of malondialdehyde and intracellular ROS. Furthermore, ICD inhibited cell apoptosis and Bax/Bcl-2 ratio induced by H₂O₂. These findings suggested ICD may be considered as a potential antioxidant agent and should encourage for further research in neurodegenerative diseases. PMID:23770344

  2. Inhibition of inflammation and oxidative stress by an imidazopyridine derivative X22 prevents heart injury from obesity.

    PubMed

    Qian, Yuanyuan; Zhang, Yali; Zhong, Peng; Peng, Kesong; Xu, Zheng; Chen, Xuemei; Lu, Kongqin; Chen, Gaozhi; Li, Xiaokun; Liang, Guang

    2016-08-01

    Inflammation and oxidative stress plays an important role in the development of obesity-related complications and cardiovascular disease. Benzimidazole and imidazopyridine compounds are a class of compounds with a variety of activities, including anti-inflammatory, antioxidant and anti-cancer. X22 is an imidazopyridine derivative we synthesized and evaluated previously for anti-inflammatory activity in lipopolysaccharide-stimulated macrophages. However, its ability to alleviate obesity-induced heart injury via its anti-inflammatory actions was unclear. This study was designed to evaluate the cardioprotective effects of X22 using cell culture studies and a high-fat diet rat model. We observed that palmitic acid treatment in cardiac-derived H9c2 cells induced a significant increase in reactive oxygen species, inflammation, apoptosis, fibrosis and hypertrophy. All of these changes were inhibited by treatment with X22. Furthermore, oral administration of X22 suppressed high-fat diet-induced oxidative stress, inflammation, apoptosis, hypertrophy and fibrosis in rat heart tissues and decreased serum lipid concentration. We also found that the anti-inflammatory and anti-oxidative actions of X22 were associated with Nrf2 activation and nuclear factor-kappaB (NF-κB) inhibition, respectively, both in vitro and in vivo. The results of this study indicate that X22 may be a promising cardioprotective agent and that Nrf2 and NF-κB may be important therapeutic targets for obesity-related complications. PMID:27019072

  3. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats

    SciTech Connect

    El-Mas, Mahmoud M. Abdel-Rahman, Abdel A.

    2015-09-15

    Evidence suggests that male rats are protected against the hypotensive and myocardial depressant effects of ethanol compared with females. We investigated whether E{sub 2} modifies the myocardial and oxidative effects of ethanol in male rats. Conscious male rats received ethanol (0.5, 1 or 1.5 g/kg i.v.) 30-min after E{sub 2} (1 μg/kg i.v.) or its vehicle (saline), and hearts were collected at the conclusion of hemodynamic measurements for ex vivo molecular studies. Ethanol had no effect in vehicle-treated rats, but it caused dose-related reductions in LV developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of rise in LV pressure (dP/dt{sub max}) and systolic (SBP) and diastolic (DBP) blood pressures in E{sub 2}-pretreated rats. These effects were associated with elevated (i) indices of reactive oxygen species (ROS), (ii) malondialdehyde (MDA) protein adducts, and (iii) phosphorylated death-associated protein kinase-3 (DAPK3), Akt, and extracellular signal-regulated kinases (ERK1/2). Enhanced myocardial anti-oxidant enzymes (heme oxygenase-1, catalase and aldehyde dehydrogenase 2) activities were also demonstrated. In conclusion, E{sub 2} promotes ethanol-evoked myocardial oxidative stress and dysfunction in male rats. The present findings highlight the risk of developing myocardial dysfunction in men who consume alcohol while receiving E{sub 2} for specific medical conditions. - Highlights: • Ethanol lowers blood pressure and causes LV dysfunction in E{sub 2}-treated rats. • E{sub 2}/ethanol aggravates cardiac oxidative state via of DAPK3/Akt/ERK activation. • E{sub 2}/ethanol causes a feedback increase in cardiac HO-1, catalase and ALDH2. • Alcohol might increase risk of myocardial dysfunction in men treated with E{sub 2}.

  4. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats.

    PubMed

    El-Mas, Mahmoud M; Abdel-Rahman, Abdel A

    2015-09-15

    Evidence suggests that male rats are protected against the hypotensive and myocardial depressant effects of ethanol compared with females. We investigated whether E2 modifies the myocardial and oxidative effects of ethanol in male rats. Conscious male rats received ethanol (0.5, 1 or 1.5g/kg i.v.) 30-min after E2 (1μg/kg i.v.) or its vehicle (saline), and hearts were collected at the conclusion of hemodynamic measurements for ex vivo molecular studies. Ethanol had no effect in vehicle-treated rats, but it caused dose-related reductions in LV developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of rise in LV pressure (dP/dtmax) and systolic (SBP) and diastolic (DBP) blood pressures in E2-pretreated rats. These effects were associated with elevated (i) indices of reactive oxygen species (ROS), (ii) malondialdehyde (MDA) protein adducts, and (iii) phosphorylated death-associated protein kinase-3 (DAPK3), Akt, and extracellular signal-regulated kinases (ERK1/2). Enhanced myocardial anti-oxidant enzymes (heme oxygenase-1, catalase and aldehyde dehydrogenase 2) activities were also demonstrated. In conclusion, E2 promotes ethanol-evoked myocardial oxidative stress and dysfunction in male rats. The present findings highlight the risk of developing myocardial dysfunction in men who consume alcohol while receiving E2 for specific medical conditions.

  5. Neuronal Nitric Oxide Signaling Regulates Erection Recovery after Cavernous Nerve Injury

    PubMed Central

    Sezen, Sena F.; Lagoda, Gwen; Burnett, Arthur L.

    2015-01-01

    Purpose NO is the major neuronal mediator of penile erection, but its role in EF status after CN injury is uncertain. This study aimed to determine the function of neuronal NO signaling in the pathobiology of EF recovery after partial CN injury using both genetic and pharmacologic mouse experimental paradigms. Materials and Methods EF was evaluated in WT and nNOS−/− mice (n=5–7/group) at 1, 3 and 7 days after UCI or sham injury and at day 7 in WT mice treated with the NO synthase inhibitor, L-NAME at baseline and for 6 days following UCI. Apoptosis in the penis was evaluated by Western blot analysis of p-Akt-S473, 3-NT, and caspase-3 expressions after BCI. Results ICP was significantly decreased at 1, 3 and 7 days in WT mice but only at day 1 in nNOS−/− mice after UCI compared with sham treatment values (p<0.05). L-NAME-treated WT mice had improved EF compared with the vehicle-treated group response at day 7 following UCI (p<0.05). p-Akt-S473 expression in penes was significantly decreased in vehicle-treated (p<0.05) but not L-NAME-treated WT mice. 3-NT expression in penes was significantly decreased in L-NAME-treated WT and vehicle-treated nNOS−/− mice (p<0.05). Caspase-3 expression in penes was significantly increased in vehicle-treated (p<0.05) but not L-NAME-treated WT mice and vehicle-treated nNOS−/− mice. Conclusions Neuronal NO signaling regulates EF recovery early after partial CN injury, exerting an inhibitory role via induction of apoptotic changes in penile tissue. Therapeutic strategies to improve EF recovery after RP may consider targeting pathogenic sites of NO neurobiology. PMID:22177198

  6. The impact of acute lung injury, ECMO and transfusion on oxidative stress and plasma selenium levels in an ovine model.

    PubMed

    McDonald, Charles I; Fung, Yoke Lin; Shekar, Kiran; Diab, Sara D; Dunster, Kimble R; Passmore, Margaret R; Foley, Samuel R; Simonova, Gabriela; Platts, David; Fraser, John F

    2015-04-01

    The purpose of this study was to determine the effects of smoke induced acute lung injury (S-ALI), extracorporeal membrane oxygenation (ECMO) and transfusion on oxidative stress and plasma selenium levels. Forty ewes were divided into (i) healthy control (n=4), (ii) S-ALI control (n=7), (iii) ECMO control (n=7), (iv) S-ALI+ECMO (n=8) and (v) S-ALI+ECMO+packed red blood cell (PRBC) transfusion (n=14). Plasma thiobarbituric acid reactive substances (TBARS), selenium and glutathione peroxidase (GPx) activity were analysed at baseline, after smoke injury (or sham) and 0.25, 1, 2, 6, 7, 12 and 24h after initiation of ECMO. Peak TBARS levels were similar across all groups. Plasma selenium decreased by 54% in S-ALI sheep (1.36±0.20 to 0.63±0.27μmol/L, p<0.0001), and 72% in sheep with S-ALI+ECMO at 24h (1.36±0.20 to 0.38±0.19, p<0.0001). PRBC transfusion had no effect on TBARS, selenium levels or glutathione peroxidase activity in plasma. While ECMO independently increased TBARS in healthy sheep to levels which were similar to the S-ALI control, the addition of ECMO after S-ALI caused a negligible increase in TBARS. This suggests that the initial lung injury was the predominant feature in the TBARS response. In contrast, the addition of ECMO in S-ALI sheep exacerbated reductions in plasma selenium beyond that of S-ALI or ECMO alone. Clinical studies are needed to confirm the extent and duration of selenium loss associated with ECMO.

  7. Licorice treatment prevents oxidative stress, restores cardiac function, and salvages myocardium in rat model of myocardial injury.

    PubMed

    Ojha, Shreesh Kumar; Sharma, Charu; Golechha, Mahaveer Jain; Bhatia, Jagriti; Kumari, Santosh; Arya, Dharamvir Singh

    2015-02-01

    The present study examined the effects of licorice on antioxidant defense, functional impairment, histopathology, and ultrastructural alterations in isoproterenol (ISP)-induced myocardial injury in rats. Myocardial necrosis was induced by two subcutaneous injection of ISP (85 mg/kg) at an interval of 24 h. Licorice was administered orally for 30 days in the doses of 100, 200, 400, or 800 mg/kg. ISP-treated rats showed impaired hemodynamics, left ventricular dysfunction, and caused depletion of antioxidants and marker enzymes along with lipid peroxidation from myocardium. ISP also induced histopathological and ultrastructural alterations in myocardium. Pretreatment with licorice prevented the depletion of endogenous antioxidants and myocyte injury marker enzymes, inhibited lipid peroxidation, and showed recovery of hemodynamic and ventricular functions. Licorice treatment also reduced myonecrosis, edema, and infiltration of inflammatory cells and showed preservation of subcellular and ultrastructural components. Our results demonstrate that licorice exerts cardioprotection by reducing oxidative stress, augmenting endogenous antioxidants, and restoring functional parameters as well as maintaining structural integrity.

  8. Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism.

    PubMed

    Lu, Qing; Harris, Valerie A; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M

    2015-12-01

    We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation.

  9. Neuroprotective effects of sevoflurane against electromagnetic pulse-induced brain injury through inhibition of neuronal oxidative stress and apoptosis.

    PubMed

    Deng, Bin; Xu, Hao; Zhang, Jin; Wang, Jin; Han, Li-Chun; Li, Li-Ya; Wu, Guang-Li; Hou, Yan-Ning; Guo, Guo-Zhen; Wang, Qiang; Sang, Han-Fei; Xu, Li-Xian

    2014-01-01

    Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis.

  10. OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM)

    EPA Science Inventory

    OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...

  11. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury

    PubMed Central

    LIU, HONGWEI; HUA, NING; XIE, KELIANG; ZHAO, TINGTING; YU, YONGHAO

    2015-01-01

    Overactivation of poly (ADP-ribose) polymerase 1 (PARP-1), as a result of sustained DNA oxidation in ischemia-reperfusion injury, triggers programmed cell necrosis and apoptosis. The present study was conducted to demonstrate whether hydrogen-rich saline (HRS) has a neuroprotective effect on retinal ischemia reperfusion (RIR) injury through inhibition of PARP-1 activation. RIR was induced by transient elevation of intraocular pressure in rats. HRS (5 ml/kg) was administered peritoneally every day from the beginning of reperfusion in RIR rats until the rats were sacrificed. Retinal damage and cell death was determined using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. DNA oxidative stress was evaluated by immunofluorescence staining of 8-hydroxy-2-deoxyguanosine. In addition, the expression of PARP-1 and caspase-3 was investigated by western blot analysis and/or immunohistochemical staining. The results demonstrated that HRS administration improved morphological alterations and reduced apoptosis following RIR injury. Furthermore, the present study found that HRS alleviated DNA oxidation and PARP-1 overactivation in RIR rats. HRS can protect RIR injury by inhibition of PARP-1, which may be involved in DNA oxidative stress and caspase-3-mediated apoptosis. PMID:25954991

  12. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury.

    PubMed

    Liu, Hongwei; Hua, Ning; Xie, Keliang; Zhao, Tingting; Yu, Yonghao

    2015-08-01

    Overactivation of poly (ADP-ribose) polymerase 1 (PARP-1), as a result of sustained DNA oxidation in ischemia-reperfusion injury, triggers programmed cell necrosis and apoptosis. The present study was conducted to demonstrate whether hydrogen-rich saline (HRS) has a neuroprotective effect on retinal ischemia reperfusion (RIR) injury through inhibition of PARP-1 activation. RIR was induced by transient elevation of intraocular pressure in rats. HRS (5 ml/kg) was administered peritoneally every day from the beginning of reperfusion in RIR rats until the rats were sacrificed. Retinal damage and cell death was determined using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. DNA oxidative stress was evaluated by immunofluorescence staining of 8-hydroxy-2-deoxyguanosine. In addition, the expression of PARP-1 and caspase-3 was investigated by western blot analysis and/or immunohistochemical staining. The results demonstrated that HRS administration improved morphological alterations and reduced apoptosis following RIR injury. Furthermore, the present study found that HRS alleviated DNA oxidation and PARP-1 overactivation in RIR rats. HRS can protect RIR injury by inhibition of PARP-1, which may be involved in DNA oxidative stress and caspase-3-mediated apoptosis.

  13. Oxidized phospholipids protect against lung injury and endothelial barrier dysfunction caused by heat-inactivated Staphylococcus aureus.

    PubMed

    Meliton, Angelo Y; Meng, Fanyong; Tian, Yufeng; Sarich, Nicolene; Mutlu, Gokhan M; Birukova, Anna A; Birukov, Konstantin G

    2015-03-15

    Increased endothelial cell (EC) permeability and vascular inflammation along with alveolar epithelial damage are key features of acute lung injury (ALI). Products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) showed protective effects against inflammatory signaling and vascular EC barrier dysfunction induced by gram-negative bacterial wall lipopolysaccharide (LPS). We explored the more general protective effects of OxPAPC and investigated whether delayed posttreatment with OxPAPC boosts the recovery of lung inflammatory injury and EC barrier dysfunction triggered by intratracheal injection of heat-killed gram-positive Staphylococcus aureus (HKSA) bacteria. HKSA-induced pulmonary EC permeability, activation of p38 MAP kinase and NF-κB inflammatory cascades, secretion of IL-8 and soluble ICAM1, fibronectin deposition, and expression of adhesion molecules ICAM1 and VCAM1 by activated EC were significantly attenuated by cotreatment as well as posttreatment with OxPAPC up to 16 h after HKSA addition. Remarkably, posttreatment with OxPAPC up to 24 h post-HKSA challenge dramatically accelerated lung recovery by restoring lung barrier properties monitored by Evans blue extravasation and protein content in bronchoalveolar lavage (BAL) fluid and reducing inflammation reflected by decreased MIP-1, KC, TNF-α, IL-13 levels and neutrophil count in BAL samples. These studies demonstrate potent in vivo and in vitro protective effects of posttreatment with anti-inflammatory oxidized phospholipids in the model of ALI caused by HKSA. These results warrant further investigations into the potential use of OxPAPC compounds combined with antibiotic therapies as a treatment of sepsis and ALI induced by gram-positive bacterial pathogens.

  14. Protection against Myocardial Ischemia-Reperfusion Injury at Onset of Type 2 Diabetes in Zucker Diabetic Fatty Rats Is Associated with Altered Glucose Oxidation

    PubMed Central

    Povlsen, Jonas Agerlund; Løfgren, Bo; Dalgas, Christian; Birkler, Rune Isak Dupont; Johannsen, Mogens; Støttrup, Nicolaj Brejnholt; Bøtker, Hans Erik

    2013-01-01

    Background Inhibition of glucose oxidation during initial reperfusion confers protection against ischemia-reperfusion (IR) injury in the heart. Mitochondrial metabolism is altered with progression of type 2 diabetes (T2DM). We hypothesized that the metabolic alterations present at onset of T2DM induce cardioprotection by metabolic shutdown during IR, and that chronic alterations seen in late T2DM cause increased IR injury. Methods Isolated perfused hearts from 6 (prediabetic), 12 (onset of T2DM) and 24 (late T2DM) weeks old male Zucker diabetic fatty rats (ZDF) and their age-matched heterozygote controls were subjected to 40 min ischemia/120 min reperfusion. IR injury was assessed by TTC-staining. Myocardial glucose metabolism was evaluated by glucose tracer kinetics (glucose uptake-, glycolysis- and glucose oxidation rates), myocardial microdialysis (metabolomics) and tissue glycogen measurements. Results T2DM altered the development in sensitivity towards IR injury compared to controls. At late diabetes ZDF hearts suffered increased damage, while injury was decreased at onset of T2DM. Coincident with cardioprotection, oxidation of exogenous glucose was decreased during the initial and normalized after 5 minutes of reperfusion. Metabolomic analysis of citric acid cycle intermediates demonstrated that cardioprotection was associated with a reversible shutdown of mitochondrial glucose metabolism during ischemia and early reperfusion at onset of but not at late type 2 diabetes. Conclusions The metabolic alterations of type 2 diabetes are associated with protection against IR injury at onset but detrimental effects in late diabetes mellitus consistent with progressive dysfunction of glucose oxidation. These findings may explain the variable efficacy of cardioprotective interventions in individuals with type 2 diabetes. PMID:23704975

  15. Evidence of oxidative injury of the spinal cord in 2 horses with equine degenerative myeloencephalopathy.

    PubMed

    Wong, D M; Ghosh, A; Fales-Williams, A J; Haynes, J S; Kanthasamy, A G

    2012-11-01

    The cervical spinal cords of 2 horses with equine degenerative myeloencephalopathy (EDM) were evaluated for evidence of oxidative damage to the central nervous system (CNS) using immunohistochemical staining for 3-nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE). Neurons of the CNS from horses with EDM had positive immunohistochemical staining, whereas control samples did not, thus supporting the theory that oxidative damage is a potential underlying factor in horses with EDM. In addition, serum vitamin E concentration was low in both EDM-affected horses, and vitamin E concentration was also deficient in the cerebrospinal fluid in 1 EDM horse, further supporting the association between low vitamin E concentrations and oxidative damage to the CNS. Continued research is necessary to further define the pathophysiologic mechanisms of EDM.

  16. Grape seed and skin extract protects kidney from doxorubicin-induced oxidative injury.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safwen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2016-05-01

    The study investigated the protective effect of grape seed and skin extract (GSSE) against doxorubicin-induced renal toxicity in healthy rats. Animals were treated with GSSE or not (control), for 8 days, administered with doxorubicin (20mg/kg) in the 4th day, and renal function as well as oxidative stress parameters were evaluated. Data showed that doxorubicin induced renal toxicity by affecting renal architecture and plasma creatinine. Doxorubicin also induced an oxidative stress characterized by an increase in malondialdehyde (MDA), calcium and H(2)O(2) and a decrease in catalase (CAT) and superoxide dismutase (SOD). Unexpectedly doxorubicin increased peroxidase (POD) and decreased carbonyl protein and plasma urea. Treatment with GSSE counteracted almost all adverse effects induced by doxorubicin. Data suggest that doxorubicin induced an oxidative stress into rat kidney and GSSE exerted antioxidant properties, which seem to be mediated by the modulation of intracellular calcium. PMID:27166540

  17. Grape seed and skin extract protects kidney from doxorubicin-induced oxidative injury.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safwen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2016-05-01

    The study investigated the protective effect of grape seed and skin extract (GSSE) against doxorubicin-induced renal toxicity in healthy rats. Animals were treated with GSSE or not (control), for 8 days, administered with doxorubicin (20mg/kg) in the 4th day, and renal function as well as oxidative stress parameters were evaluated. Data showed that doxorubicin induced renal toxicity by affecting renal architecture and plasma creatinine. Doxorubicin also induced an oxidative stress characterized by an increase in malondialdehyde (MDA), calcium and H(2)O(2) and a decrease in catalase (CAT) and superoxide dismutase (SOD). Unexpectedly doxorubicin increased peroxidase (POD) and decreased carbonyl protein and plasma urea. Treatment with GSSE counteracted almost all adverse effects induced by doxorubicin. Data suggest that doxorubicin induced an oxidative stress into rat kidney and GSSE exerted antioxidant properties, which seem to be mediated by the modulation of intracellular calcium.

  18. Selective Estrogen Receptor Modulators.

    PubMed

    An, Ki-Chan

    2016-08-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  19. Selective Estrogen Receptor Modulators

    PubMed Central

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  20. Burn injury induces skeletal muscle degeneration, inflammatory host response, and oxidative stress in wistar rats.

    PubMed

    da Silva, Nathalia Trasmonte; Quintana, Hananiah Tardivo; Bortolin, Jeferson André; Ribeiro, Daniel Araki; de Oliveira, Flavia

    2015-01-01

    Burn injuries (BIs) result in both local and systemic responses distant from the site of thermal injury, such as skeletal muscle. The purpose of this study was to investigate the expression of cyclooxygenase-2 (COX-2) and hydroxy-2'-deoxyguanosine (8-OHdG) as a result of inflammation and reactive oxygen species production, respectively. A total of 16 male rats were distributed into two groups: control (C) and submitted to BI. The medial part of gastrocnemius muscle formed the specimens, which were stained with hematoxylin and eosin and were evaluated. COX-2 and 8-OHdG expressions were assessed by immunohistochemistry, and cell profile area and density of muscle fibers (number of fibers per square millimeter) were evaluated by morphometric methods. The results revealed inflammatory infiltrate associated with COX-2 immunoexpression in BI-gastrocnemius muscle. Furthermore, a substantial decrease in the muscle cell profile area of BI group was noticed when compared with the control group, whereas the density of muscle fibers was higher in the BI group. 8-OHdG expression in numerous skeletal muscle nuclei was detected in the BI group. In conclusion, the BI group is able to induce skeletal muscle degeneration as a result of systemic host response closely related to reactive oxygen species production and inflammatory process.

  1. Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose.

    PubMed

    Zhang, Zi-feng; Fan, Shao-hua; Zheng, Yuan-lin; Lu, Jun; Wu, Dong-mei; Shan, Qun; Hu, Bin

    2009-09-01

    Troxerutin, a trihydroxyethylated derivative of rutin, has been well-demonstrated to exert hepatoprotective properties. In the present study, we attempted to explore whether the antioxidant and anti-inflammatory mechanisms were involved in troxerutin-mediated protection from D-gal-induced liver injury. The effects of troxerutin on liver lipid peroxidation, antioxidant enzymatic activities, and the expression of inflammatory mediator were investigated in D-gal-treated mice. The results showed that troxerutin largely attenuated the D-gal-induced TBARS content increase and also markedly renewed the activities of Cu, Zn-SOD, CAT, and GPx in the livers of D-gal-treated mice. Furthermore, troxerutin inhibited the upregulation of the expression of NF-kappaB p65, iNOS, and COX-2 induced by D-gal. D-Gal-induced tissue architecture changes and serum ALT and AST increases were effectively suppressed by troxerutin. In conclusion, these results suggested that troxerutin could protect the mouse liver from D-gal-induced injury by attenuating lipid peroxidation, renewing the activities of antioxidant enzymes and suppressing inflammatory response. This study provided novel insights into the mechanisms of troxerutin in the protection of the liver.

  2. PPAR{alpha} agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity

    SciTech Connect

    Hou, Xiaoyang; Shen, Ying H.; Li, Chuanbao; Wang, Fei; Zhang, Cheng; Bu, Peili; Zhang, Yun

    2010-04-09

    Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors {alpha} (PPAR{alpha}) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs. Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.

  3. Resveratrol mitigates hepatic injury in rats by regulating oxidative stress, nuclear factor-kappa B, and apoptosis

    PubMed Central

    Seif el-Din, Sayed Hassan; El-Lakkany, Naglaa Mohamed; Salem, Maha Badr; Hammam, Olfat Ali; Saleh, Samira; Botros, Sanaa Sabet

    2016-01-01

    Resveratrol is a naturally occurring polyphenol, possesses several pharmacological activities including anticancer, antioxidant, antidiabetic, antinociceptive, and antiasthmatic activity. Little is known about its hepatoprotective action mechanisms. This study was conceived to explore the possible protective mechanisms of resveratrol compared with the hepatoprotective silymarin in thioacetamide (TAA)-induced hepatic injury in rats. Thirty-two rats were equally divided into four groups; normal control (i), TAA (100 mg/kg) (ii), TAA + silymarin (50 mg/kg) (iii), and TAA + resveratrol (10 mg/kg) (iv). Liver function and histopathology, pro-inflammatory cytokines, oxidative stress, and apoptotic markers were examined. Data were analyzed using ANOVA test followed by Tukey post hoc test. Compared to TAA-intoxicated group, resveratrol mitigated liver damage, and inflammation as noted by less inflammatory infiltration, hydropic degeneration with decreased levels of tumor necrosis factor-alpha, interleukin-6, and interferon-gamma by 78.83, 18.12, and 64.49%, respectively. Furthermore, it reduced (P < 0.05) alanine and aspartate aminotransferases by 36.64 and 48.09%, respectively, restored hepatic glutathione content and normalized superoxide dismutase and malondialdehyde levels. While it inhibited nuclear factor-kappa B, cytochrome 2E1, and enhanced apoptosis of necrotic hepatocytes via increasing caspase-3 activity. Our findings indicated that the potential hepatoprotective mechanisms of resveratrol are associated with inhibition of inflammation, enhancing the apoptosis of necrotic hepatocytes, and suppression of oxidative stress. PMID:27429929

  4. Bazhen Decoction Protects against Acetaminophen Induced Acute Liver Injury by Inhibiting Oxidative Stress, Inflammation and Apoptosis in Mice

    PubMed Central

    Song, Erqun; Fu, Juanli; Xia, Xiaomin; Su, Chuanyang; Song, Yang

    2014-01-01

    Bazhen decoction is a widely used traditional Chinese medicinal decoction, but the scientific validation of its therapeutic potential is lacking. The objective of this study was to investigate corresponding anti-oxidative, anti-inflammatory and anti-apoptosis activities of Bazhen decoction, using acetaminophen-treated mice as a model system. A total of 48 mice were divided into four groups. Group I, negative control, treated with vehicle only. Group II, fed with 500 mg/kg/day Bazhen decoction for 10 continuous days. Group III, received a single dose of 900 mg/kg acetaminophen. Group IV, fed with 500 mg/kg/day Bazhen decoction for 10 continuous days and a single dose of 900 mg/kg acetaminophen 30 min before last Bazhen decoction administration. Bazhen decoction administration significantly decrease acetaminophen-induced serum ALT, AST, ALP, LDH, TNF-α, IL-1β, ROS, TBARS and protein carbonyl group levels, as well as GSH depletion and loss of MMP. Bazhen decoction restore SOD, CAT, GR and GPx activities and depress the expression of pro-inflammatory factors, such as iNOS, COX-2, TNF-α, NF-κB, IL-1β and IL-6, respectively. Moreover, Bazhen decoction down-regulate acetaminophen-induced Bax/Bcl-2 ratio, caspase 3, caspase 8 and caspase 9. These results suggest the anti-oxidative, anti-inflammatory and anti-apoptosis properties of Bazhen decoction towards acetaminophen-induced liver injury in mice. PMID:25222049

  5. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  6. CARDIOVASCULAR DISEASES, SUSCEPTIBILITY TO OXIDATIVE INJURY AND COMPENSATORY MECHANISMS: INSIGHTS FROM RODENT MODELS

    EPA Science Inventory

    Cardiovascular diseases (CVD) are the number one cause for human mortality and nearly 25% of the population develops chronic CVD at an age of 65 years or older. Environmental and genetic interactions govern pathogenesis. Increased oxidative stress and compromised antioxidant stat...

  7. HIV-1 antiretrovirals induce oxidant injury and increase intima-media thickness in an atherogenic mouse model

    PubMed Central

    Jiang, Bo; Hebert, Valeria Y.; Khandelwal, Alok R.; Stokes, Karen Y.; Dugas, Tammy R.

    2009-01-01

    A growing body of evidence suggests HIV patients are at a greater risk for developing atherosclerosis. However, clinical investigations have generated conflicting results with regard to whether antiretrovirals are independently involved in the development of HIV-associated atherosclerosis. By administering antiretrovirals in an atherogenic mouse model, we determined whether two commonly prescribed antiretrovirals, the protease inhibitor indinavir and the nucleoside reverse transcriptase inhibitor AZT, can induce premature atherosclerosis. C57BL/6 mice were administered an atherogenic diet ± AZT, indinavir, or AZT plus indinavir for 20 weeks. Aortic intima-media thickness (IMT) and cross-sectional area (CSA) were determined. Compared to controls, treatment with AZT, indinavir or AZT plus indinavir, significantly increased aortic IMT and CSA. This suggests that antiretrovirals can directly exacerbate atherogenesis, in the absence of interaction with a retroviral infection. To elucidate the role of oxidant injury in the drug-induced initiation of atherosclerosis, a separate group of mice were treated for two weeks with an atherogenic diet ± AZT, indinavir or AZT plus indinavir. Aortic reactive oxygen species (ROS) production and glutathione/glutathione disulfide (GSH/GSSG) ratios, as well as plasma levels of 8-isoprostanes (8-iso-PGF2α and lipids were determined. At 2 weeks, aortic ROS was increased and GSH/GSSG ratios were decreased in all antiretroviral treatment groups. Plasma 8-iso-PGF2α was increased in the AZT and AZT plus indinavir treated groups. At 20 weeks, increased ROS production was maintained for the AZT and indinavir treatment groups, and increased 8-iso-PGF2α levels remained elevated in the AZT treatment group. Cholesterol levels were moderately elevated in the AZT and AZT plus indinavir treated groups at 2 but not 20 weeks. Conversely, indinavir treatment increased plasma cholesterol at 20 but not 2 weeks. Thus, though effects on plasma lipid

  8. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model

    PubMed Central

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Jung Shim, Hyun; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  9. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    PubMed

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  10. Iron and Oxidative Stress in Parkinson’s Disease: An Observational Study of Injury Biomarkers

    PubMed Central

    Medeiros, Marcio S.; Schumacher-Schuh, Arthur; Cardoso, Andreia Machado; Bochi, Guilherme Vargas; Baldissarelli, Jucimara; Kegler, Aline; Santana, Daniel; Chaves, Carolina Maria Martins Behle Soares; Schetinger, Maria Rosa Chitolina; Moresco, Rafael Noal; Rieder, Carlos R. M.; Fighera, Michele Rechia

    2016-01-01

    Parkinson's disease (PD) is characterized by progressive motor impairment attributed to progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta. In addition to an accumulation of iron, there is also an increased production of reactive oxygen/nitrogen species (ROS/RNS) and inflammatory markers. These observations suggest that iron dyshomeostasis may be playing a key role in neurodegeneration. However, the mechanisms underlying this metal-associated oxidative stress and neuronal damage have not been fully elucidated. To determine peripheral levels of iron, ferritin, and transferrin in PD patients and its possible relation with oxidative/nitrosative parameters, whilst attempting to identify a profile of peripheral biomarkers in this neurological condition. Forty PD patients and 46 controls were recruited to compare serum levels of iron, ferritin, transferrin, oxidative stress markers (superoxide dismutase (SOD), catalase (CAT), nitrosative stress marker (NOx), thiobarbituric acid reactive substances (TBARS), non-protein thiols (NPSH), advanced oxidation protein products (AOPP), ferric reducing ability of plasma (FRAP) and vitamin C) as well as inflammatory markers (NTPDases, ecto-5’-nucleotidase, adenosine deaminase (ADA), ischemic-modified albumin (IMA) and myeloperoxidase). Iron levels were lower in PD patients, whereas there was no difference in ferritin and transferrin. Oxidative stress (TBARS and AOPP) and inflammatory markers (NTPDases, IMA, and myeloperoxidase) were significantly higher in PD, while antioxidants FRAP, vitamin C, and non-protein thiols were significantly lower in PD. The enzymes SOD, CAT, and ecto-5’-nucleotidase were not different among the groups, although NOx and ADA levels were significantly higher in the controls. Our data corroborate the idea that ROS/RNS production and neuroinflammation may dysregulate iron homeostasis and collaborate to reduce the periphery levels of this ion, contributing to alterations

  11. Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers.

    PubMed

    Medeiros, Marcio S; Schumacher-Schuh, Arthur; Cardoso, Andreia Machado; Bochi, Guilherme Vargas; Baldissarelli, Jucimara; Kegler, Aline; Santana, Daniel; Chaves, Carolina Maria Martins Behle Soares; Schetinger, Maria Rosa Chitolina; Moresco, Rafael Noal; Rieder, Carlos R M; Fighera, Michele Rechia

    2016-01-01

    Parkinson's disease (PD) is characterized by progressive motor impairment attributed to progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta. In addition to an accumulation of iron, there is also an increased production of reactive oxygen/nitrogen species (ROS/RNS) and inflammatory markers. These observations suggest that iron dyshomeostasis may be playing a key role in neurodegeneration. However, the mechanisms underlying this metal-associated oxidative stress and neuronal damage have not been fully elucidated. To determine peripheral levels of iron, ferritin, and transferrin in PD patients and its possible relation with oxidative/nitrosative parameters, whilst attempting to identify a profile of peripheral biomarkers in this neurological condition. Forty PD patients and 46 controls were recruited to compare serum levels of iron, ferritin, transferrin, oxidative stress markers (superoxide dismutase (SOD), catalase (CAT), nitrosative stress marker (NOx), thiobarbituric acid reactive substances (TBARS), non-protein thiols (NPSH), advanced oxidation protein products (AOPP), ferric reducing ability of plasma (FRAP) and vitamin C) as well as inflammatory markers (NTPDases, ecto-5'-nucleotidase, adenosine deaminase (ADA), ischemic-modified albumin (IMA) and myeloperoxidase). Iron levels were lower in PD patients, whereas there was no difference in ferritin and transferrin. Oxidative stress (TBARS and AOPP) and inflammatory markers (NTPDases, IMA, and myeloperoxidase) were significantly higher in PD, while antioxidants FRAP, vitamin C, and non-protein thiols were significantly lower in PD. The enzymes SOD, CAT, and ecto-5'-nucleotidase were not different among the groups, although NOx and ADA levels were significantly higher in the controls. Our data corroborate the idea that ROS/RNS production and neuroinflammation may dysregulate iron homeostasis and collaborate to reduce the periphery levels of this ion, contributing to alterations

  12. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid.

    PubMed

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C

    2008-03-01

    Arsenic, one of the most harmful metalloids, is ubiquitous in the environment. The present study has been carried out to investigate the protective role of a triterpenoid saponin, arjunolic acid (AA) against arsenic-induced cardiac oxidative damage. In the study, NaAsO2 was chosen as the source of arsenic. The free radical scavenging activity and the effect of AA on the intracellular antioxidant power were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of NaAsO2 at a dose of 10 mg/kg body weight for 2 days caused significant accumulation of arsenic in cardiac tissues of the experimental mice in association with the reduction in cardiac antioxidant enzymes activities, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase. Arsenic intoxication also decreased the cardiac glutathione (GSH) and total thiol contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products and protein carbonyl content. Treatment with AA at a dose of 20 mg/kg body weight for 4 days prior to NaAsO2 intoxication protected the cardiac tissue from arsenic-induced oxidative impairment. In addition to oxidative stress, arsenic administration increased total cholesterol level as well as the reduced high-density lipoprotein cholesterol level in the sera of the experimental mice. AA pretreatment, however, could prevent this hyperlipidemia. Histological studies on the ultrastructural changes in cardiac tissue supported the protective activity of AA also. Combining all, results suggest that AA could protect cardiac tissues against arsenic-induced oxidative stress probably due to its antioxidant property. PMID:18197399

  13. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid.

    PubMed

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C

    2008-03-01

    Arsenic, one of the most harmful metalloids, is ubiquitous in the environment. The present study has been carried out to investigate the protective role of a triterpenoid saponin, arjunolic acid (AA) against arsenic-induced cardiac oxidative damage. In the study, NaAsO2 was chosen as the source of arsenic. The free radical scavenging activity and the effect of AA on the intracellular antioxidant power were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of NaAsO2 at a dose of 10 mg/kg body weight for 2 days caused significant accumulation of arsenic in cardiac tissues of the experimental mice in association with the reduction in cardiac antioxidant enzymes activities, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase. Arsenic intoxication also decreased the cardiac glutathione (GSH) and total thiol contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products and protein carbonyl content. Treatment with AA at a dose of 20 mg/kg body weight for 4 days prior to NaAsO2 intoxication protected the cardiac tissue from arsenic-induced oxidative impairment. In addition to oxidative stress, arsenic administration increased total cholesterol level as well as the reduced high-density lipoprotein cholesterol level in the sera of the experimental mice. AA pretreatment, however, could prevent this hyperlipidemia. Histological studies on the ultrastructural changes in cardiac tissue supported the protective activity of AA also. Combining all, results suggest that AA could protect cardiac tissues against arsenic-induced oxidative stress probably due to its antioxidant property.

  14. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose

    PubMed Central

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-01-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  15. Critical roles for nitric oxide and ERK in the completion of prosurvival autophagy in 4OHTAM-treated estrogen receptor-positive breast cancer cells.

    PubMed

    Duan, Lei; Danzer, Brian; Levenson, Victor V; Maki, Carl G

    2014-10-28

    Autophagy is a mechanism of tamoxifen (TAM) resistance in ER-positive (ER+) breast cancer cells. In this study, we showed in ER+ MCF7 cells that 4-hydroxytamoxifen (4OHTAM) induced cellular nitric oxide (NO) that negatively regulates cellular superoxide (O2-) and cytotoxicity. 4OHTAM stimulated LC3 lipidation and formation of monodansylcadaverine (MDC)-labeled autophagic vesicles dependent on O2-. Depletion of NO increased O2- and LC3 lipidation, yet reduced formation of MDC-labeled autophagic vesicles. Instead, NO-depleted cells formed remarkably large vacuoles with rims decorated by LC3. The vacuoles were not labeled by MDC or the acidic lysosome-specific fluorescence dye acridine orange (AO). The vacuoles were increased by the late stage autophagy inhibitor chloroquine, which also increased LC3 lipidation. These results suggest NO is required for proper autophagic vesicle formation or maturation at a step after LC3 lipidation. In addition, 4OHTAM induced O2--dependent activation of ERK, inhibition of which destabilized lysosomes/autolysosomes upon 4OHTAM treatment and together with depletion of NO led to necrotic cell death. These results suggest an essential role for endogenous NO and ERK activation in the completion of pro-survival autophagy.

  16. Estrogen receptor signaling during vertebrate development

    PubMed Central

    Bondesson, Maria; Hao, Ruixin; Lin, Chin-Yo; Williams, Cecilia; Gustafsson, Jan-Åke

    2014-01-01

    Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. PMID:24954179

  17. Protective effect of white tea extract against acute oxidative injury caused by adriamycin in different tissues.

    PubMed

    Espinosa, Cristóbal; López-Jiménez, José Ángel; Cabrera, Lorena; Larqué, Elvira; Almajano, María Pilar; Arnao, Marino B; Zamora, Salvador; Pérez-Llamas, Francisca

    2012-10-15

    Adriamycin (ADR) is an anticancer agent that increases oxidative stress in cells. We evaluated the protective effect of the long term consumption of white tea at two different doses against this drug. For this purpose rats were given distilled water (controls), 0.15 mg (Dose 1) or 0.45 mg (Dose 2) of solid tea extract/kg body weight for 12 months. All the animals received an injection of ADR, except half of the control group, which were given an injection of saline solution. This gave four experimental groups: Control (C), C+ADR, Dose 1+ADR, and Dose 2+ADR. The antioxidant activity (in liver, heart and brain microsomes) was analysed. White tea consumption for 12 months, at a non-pharmacological dose, reversed the oxidative damage caused by ADR, on both protein and lipid levels in all three organs. The heart recovered its antioxidant activity only at the highest dose of tea.

  18. Kefir administration reduced progression of renal injury in STZ-diabetic rats by lowering oxidative stress.

    PubMed

    Punaro, Giovana R; Maciel, Fabiane R; Rodrigues, Adelson M; Rogero, Marcelo M; Bogsan, Cristina S B; Oliveira, Marice N; Ihara, Silvia S M; Araujo, Sergio R R; Sanches, Talita R C; Andrade, Lucia C; Higa, Elisa M S

    2014-02-15

    This study aimed at assessing the effects of Kefir, a probiotic fermented milk, on oxidative stress in diabetic animals. The induction of diabetes was achieved in adult male Wistar rats using streptozotocin (STZ). The animals were distributed into four groups as follows: control (CTL); control Kefir (CTLK); diabetic (DM) and diabetic Kefir (DMK). Starting on the 5th day of diabetes, Kefir was administered by daily gavage at a dose of 1.8 mL/day for 8 weeks. Before and after Kefir treatment, the rats were placed in individual metabolic cages to obtain blood and urine samples to evaluate urea, creatinine, proteinuria, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and C-reactive protein (CRP). After sacrificing the animals, the renal cortex was removed for histology, oxidative stress and NOS evaluation. When compared to CTL rats, DM rats showed increased levels of glycemia, plasmatic urea, proteinuria, renal NO, superoxide anion, TBARS, and plasmatic CRP; also demonstrated a reduction in urinary urea, creatinine, and NO. However, DMK rats showed a significant improvement in most of these parameters. Despite the lack of differences observed in the expression of endothelial NO synthase (eNOS), the expression of inducible NO synthase (iNOS) was significantly lower in the DMK group when compared to DM rats, as assessed by Western blot analysis. Moreover, the DMK group presented a significant reduction of glycogen accumulation within the renal tubules when compared to the DM group. These results indicate that Kefir treatment may contribute to better control of glycemia and oxidative stress, which is associated with the amelioration of renal function, suggesting its use as a non-pharmacological adjuvant to delay the progression of diabetic complications.

  19. Increased sensitivity of apolipoprotein E knockout mice to copper-induced oxidative injury to the liver.

    PubMed

    Chen, Yuan; Li, Bin; Zhao, Ran-ran; Zhang, Hui-feng; Zhen, Chao; Guo, Li

    2015-04-10

    Apolipoprotein E (ApoE) genotypes are related to clinical presentations in patients with Wilson's disease, indicating that ApoE may play an important role in the disease. However, our understanding of the role of ApoE in Wilson's disease is limited. High copper concentration in Wilson's disease induces excessive generation of free oxygen radicals. Meanwhile, ApoE proteins possess antioxidant effects. We therefore determined whether copper-induced oxidative damage differ in the liver of wild-type and ApoE knockout (ApoE(-/-)) mice. Both wild-type and ApoE(-/-) mice were intragastrically administered with 0.2 mL of copper sulfate pentahydrate (200 mg/kg; a total dose of 4 mg/d) or the same volume of saline daily for 12 weeks, respectively. Copper and oxidative stress markers in the liver tissue and in the serum were assessed. Our results showed that, compared with the wild-type mice administered with copper, TBARS as a marker of lipid peroxidation, the expression of oxygenase-1 (HO-1), NAD(P)H dehydrogenase, and quinone 1 (NQO1) significantly increased in the ApoE(-/-) mice administered with copper, meanwhile superoxide dismutase (SOD) activity significantly decreased. Thus, it is concluded that ApoE may protect the liver from copper-induced oxidative damage in Wilson's disease.

  20. Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries.

    PubMed

    Castangia, Ines; Caddeo, Carla; Manca, Maria Letizia; Casu, Laura; Latorre, Ana Catalan; Díez-Sales, Octavio; Ruiz-Saurí, Amparo; Bacchetta, Gianluigi; Fadda, Anna Maria; Manconi, Maria

    2015-12-10

    Liquorice extract, obtained by percolation in ethanol of Glycyrrhiza glabra L. roots, was incorporated in liposomes and hyalurosomes, new phospholipid-sodium hyaluronate vesicles, and their protective effect against oxidative stress skin damages was probed. As a comparison, raw glycyrrhizin was also tested. All the vesicles were small in size (≤ 100 nm), with a highly negative zeta potential ensuring long-term stability, and able to incorporate a high amount of the extract. In vitro tests showed that the liquorice extract loaded in vesicles was able to scavenge DPPH free radical (80% inhibition) and to protect 3T3 fibroblasts against H2O2-induced oxidative stress, restoring the normal conditions. By contrast, glycyrrhizin showed poor antioxidant activity, and was not able to efficiently counteract the oxidative effect of H2O2. In addition, the incorporation of the liquorice extract into the vesicular systems promoted the proliferation and migration of 3T3 fibroblasts, favouring the closure of the scratched area. In vivo anti-inflammatory tests on mice confirmed the ability of the proposed nanosystems to improve the local efficacy of the extract, favouring the re-epitelization process.

  1. Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury

    SciTech Connect

    Jung, Michaela; Sola, Anna

    2009-01-15

    The mitochondria are a critical target for cisplatin-associated nephrotoxicity. Though nitric oxide formation has been implicated in the toxicity of cisplatin, this formation has not so far been related to a possible activation of mitochondrial nitric oxide synthase (mNOS). We show here that the upregulation of oxide mNOS and peroxynitrite formation in cisplatin treatment are key events that influence the development of the harmful parameters described in cisplatin-associated kidney failure. We confirm this by isolating the mitochondrial fraction of the kidney and across different access routes such as the use of a specific inhibitor of neuronal NOS, L-NPA, a peroxynitrite scavenger, FeTMPyP, and a peroxynitrite donor, SIN-1. The in vitro studies corroborated the information obtained in the in vivo experiments. The administration of cisplatin reveals a clear upregulation in the transcription of neuronal NOS and an increase in the levels of nitrites in the mitochondrial fractions of the kidneys. The upregulated transcription directly affects the cytoskeleton structure and the apoptosis. The inhibition of neuronal NOS reduces the levels of nitrites, cell death, and cytoskeleton derangement. Peroxynitrite is involved in the mechanism promoting the NOS transcription. In addition, in controls SIN-1 imitates the effects of cisplatin. In summary, we demonstrate that upregulation of mNOS in cisplatin treatment is a key component in both the initiation and the spread of cisplatin-associated damage in the kidney. Furthermore, peroxynitrite formation is directly involved in this process.

  2. Increased sensitivity of apolipoprotein E knockout mice to copper-induced oxidative injury to the liver.

    PubMed

    Chen, Yuan; Li, Bin; Zhao, Ran-ran; Zhang, Hui-feng; Zhen, Chao; Guo, Li

    2015-04-10

    Apolipoprotein E (ApoE) genotypes are related to clinical presentations in patients with Wilson's disease, indicating that ApoE may play an important role in the disease. However, our understanding of the role of ApoE in Wilson's disease is limited. High copper concentration in Wilson's disease induces excessive generation of free oxygen radicals. Meanwhile, ApoE proteins possess antioxidant effects. We therefore determined whether copper-induced oxidative damage differ in the liver of wild-type and ApoE knockout (ApoE(-/-)) mice. Both wild-type and ApoE(-/-) mice were intragastrically administered with 0.2 mL of copper sulfate pentahydrate (200 mg/kg; a total dose of 4 mg/d) or the same volume of saline daily for 12 weeks, respectively. Copper and oxidative stress markers in the liver tissue and in the serum were assessed. Our results showed that, compared with the wild-type mice administered with copper, TBARS as a marker of lipid peroxidation, the expression of oxygenase-1 (HO-1), NAD(P)H dehydrogenase, and quinone 1 (NQO1) significantly increased in the ApoE(-/-) mice administered with copper, meanwhile superoxide dismutase (SOD) activity significantly decreased. Thus, it is concluded that ApoE may protect the liver from copper-induced oxidative damage in Wilson's disease. PMID:25749341

  3. North American ginseng protects the heart from ischemia and reperfusion injury via upregulation of endothelial nitric oxide synthase.

    PubMed

    Wu, Yan; Lu, Xiangru; Xiang, Fu-Li; Lui, Edmund M K; Feng, Qingping

    2011-09-01

    Emerging evidence suggests ginseng has therapeutic potential in cardiovascular disease. The aim of this study was to investigate the role of endothelial nitric oxide synthase (eNOS) in the cardioprotective effects of ginseng during myocardial ischemia and reperfusion (I/R). Treatment with ginseng extract significantly increased Akt phosphorylation and eNOS protein levels in cultured neonatal cardiomyocytes. Upregulation of eNOS was blocked by LY294002, a PI3-kinase inhibitor, suggesting a PI3-kinase/Akt-dependent mechanism. To simulate I/R, cultured neonatal cardiomyocytes from eNOS(-/-) and wild-type (WT) mice were subjected to anoxia and reoxygenation (A/R). Ginseng treatment inhibited A/R-induced apoptosis in WT, but not in either eNOS(-/-) cardiomyocytes or WT cardiomyocytes treated with LY294002. To further study the cardioprotective effects of ginseng in vivo, WT and eNOS(-/-) mice were pretreated with ginseng extract (50mg/kg/day, oral gavage) for 7 days before they were subjected to myocardial I/R. Treatment with ginseng significantly increased Akt phosphorylation and eNOS protein levels in the myocardium. Furthermore, ginseng-induced myocardial eNOS expression was inhibited by LY294002. Strikingly, ginseng treatment significantly decreased infarct size and myocardial apoptosis following I/R in WT mice, but not in either eNOS(-/-) mice or WT mice treated with LY294002. We conclude that ginseng treatment protects the heart from I/R injury via upregulation of eNOS expression. Our study suggests that ginseng may serve as a potential therapeutic agent to limit myocardial I/R injury.

  4. Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress.

    PubMed

    Su, Zu-Qing; Mo, Zhi-Zhun; Liao, Jin-Bin; Feng, Xue-Xuan; Liang, Yong-Zhuo; Zhang, Xie; Liu, Yu-Hong; Chen, Xiao-Ying; Chen, Zhi-Wei; Su, Zi-Ren; Lai, Xiao-Ping

    2014-10-01

    Usnic acid is a dibenzofuran derivative found in several lichen species, which has been shown to possess several activities, including antiviral, antibiotic, antitumoral, antipyretic, analgesic, antioxidative and anti-inflammatory activities. However, there were few reports on the effects of usnic acid on LPS-induced acute lung injury (ALI). The aim of our study was to explore the effect and possible mechanism of usnic acid on LPS-induced lung injury. In the present study, we found that pretreatment with usnic acid significantly improved survival rate, pulmonary edema. In the meantime, protein content and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) significantly decreased, and the levels of MPO, MDA, and H2O2 in lung tissue were markedly suppressed after treatment with usnic acid. Meanwhile, the activities of SOD and GSH in lung tissue significantly increased after treatment with usnic acid. Additionally, to evaluate the anti-inflammatory activity of usnic acid, the expression of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and anti-inflammatory cytokine IL-10, and chemokines interleukin-8 (IL-8) and macrophage inflammatory protein-2 (MIP-2) in BALF were studied. The results in the present study indicated that usnic acid attenuated the expression of TNF-α, IL-6, IL-8 and MIP-2. Meanwhile, the improved level of IL-10 in BALF was observed. In conclusion, these data showed that the protective effect of usnic acid on LPS-induced ALI in mice might relate to the suppression of excessive inflammatory responses and oxidative stress in lung tissue. Thus, it was suggested that usnic acid might be a potential therapeutic agent for ALI.

  5. Apurinic/Apyrimidinic Endonuclease 1 Upregulation Reduces Oxidative DNA Damage and Protects Hippocampal Neurons from Ischemic Injury

    PubMed Central

    Leak, Rehana K.; Li, Peiying; Zhang, Feng; Sulaiman, Hassan H.; Weng, Zhongfang; Wang, Guohua; Stetler, R. Anne; Shi, Yejie; Cao, Guodong

    2015-01-01

    Abstract Aims: Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme that participates in base-excision repair of oxidative DNA damage and in the redox activation of transcription factors. We tested the hypothesis that APE1 upregulation protects neuronal structure and function against transient global cerebral ischemia (tGCI). Results: Upregulation of APE1 by low-dose proton irradiation (PI) or by transgene overexpression protected hippocampal CA1 neurons against tGCI-induced cell loss and reduced apurinic/apyrimidinic sites and DNA fragmentation. Conversely, APE1 knockdown attenuated the protection afforded by PI and ischemic preconditioning. APE1 overexpression inhibited the DNA damage response, as evidenced by lower phospho-histone H2A and p53-upregulated modulator of apoptosis levels. APE1 overexpression also partially rescued dendritic spines and attenuated the decrease in field excitatory postsynaptic potentials in hippocampal CA1. Presynaptic and postsynaptic markers were reduced after tGCI, and this effect was blunted in APE1 transgenics. The Morris water maze test revealed that APE1 protected against learning and memory deficits for at least 27 days post-injury. Animals expressing DNA repair-disabled mutant APE1 (D210A) exhibited more DNA damage than wild-type controls and were not protected against tGCI-induced cell loss. Innovation: This is the first study that thoroughly characterizes structural and functional protection against ischemia after APE1 upregulation by measuring synaptic markers, electrophysiological function, and long-term neurological deficits in vivo. Furthermore, disabling the DNA repair activity of APE1 was found to abrogate its protective impact. Conclusion: APE1 upregulation, either endogenously or through transgene overexpression, protects DNA, neuronal structures, synaptic function, and behavioral output from ischemic injury. Antioxid. Redox Signal. 22, 135–148. PMID:24180454

  6. A traditional Chinese medicine JiuHuangLian (Rhizoma coptidis steamed with rice wine) reduces oxidative stress injury in type 2 diabetic rats.

    PubMed

    Li, Jia-chuan; Shen, Xiao-fei; Meng, Xian-li

    2013-09-01

    Oxidative stress and oxidative stress mediated β-cell injury are the initial factors of diabetes pathogenesis. Traditional Chinese medicine believes that JiuHuangLian (JHL, Rhizoma Coptidis steamed with rice wine) is an effective agent on diabetes treatment. In present study, we evaluated the antioxidant and lightening β-cell injury of JHL in streptozotocin and a high-glucose/high-fat diet-induced diabetic rats. After 30 days treatment with JHL, glucose tolerance and insulin tolerance of diabetic rats were improved significantly. JHL also could decrease fasting blood glucose and glycosylated hemoglobin levels, increase insulin level and insulin sensitivity index. Moreover, lipid metabolism disorder also adjusted, which manifested as decreased total cholesterol, total glyceride and free fatty acid levels. Meanwhile, a significant increase in superoxide dismutase activity and glutathione content were observed in JHL treated rats, oxidative stress markers such as reactive oxygen species, malondialdehyde and nitric oxide also were decreased by JHL treatment. Furthermore, low expression of caspase-3 were shown in pancreatic immunohistochemistry of JHL treated rats, which exhibited anti-apoptosis effect of β-cell. The histological evidence suggests that JHL effectively rescues the islet atrophied from oxidative stress-mediated β-cell damage. These findings demonstrate the β-cell functional protective nature of JHL by attenuating oxidative stress and inhibiting β-cell damage.

  7. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice

    PubMed Central

    Das, Jayanta Kumar; Sarkar, Sibani; Hossain, Sk Ugir; Chakraborty, Pramita; Das, Rajat Kumar; Bhattacharya, Sudin

    2013-01-01

    Background & objectives: Malachite green (MG), an environmentally hazardous material, is used as a non permitted food colouring agent, especially in India. Selenium (Se) is an essential nutritional trace element required for animals and humans to guard against oxidative stress induced by xenobiotic compounds of diverse nature. In the present study, the role of the selenium compound diphenylmethyl selenocyanate (DMSE) was assessed on the oxidative stress (OS) induced by a food colouring agent, malachite green (MG) in vivo in mice. Methods: Swiss albino mice (Mus musculus) were intraperitoneally injected with MG at a standardized dose of 100 μg/ mouse for 30 days. DMSE was given orally at an optimum dose of 3 mg/kg b.w. in pre (15 days) and concomitant treatment schedule throughout the experimental period. The parameters viz. ALT, AST, LPO, GSH, GST, SOD, CAT, GPx, TrxR, CA, MN, MI and DNA damage have been evaluated. Results: The DMSE showed its potential to protect against MG induced hepatotoxicity by controlling the serum alanine aminotransferase and aspartate amino transferase (ALT and AST) levels and also ameliorated oxidative stress by modulating hepatic lipid peroxidation and different detoxifying and antioxidative enzymes such as glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and also the selenoenzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) and reduced glutathione level which in turn reduced DNA damage. Interpretation & conclusions: The organo-selenium compound DMSE showed significant protection against MG induced heptotoxicity and DNA damage in murine model. Better protection was observed in pretreatment group than in the concomitant group. Further studies need to be done to understand the mechanism of action. PMID:23852297

  8. Quercitrin offers protection against brain injury in mice by inhibiting oxidative stress and inflammation.

    PubMed

    Ma, Jie-Qiong; Luo, Rong-Zhen; Jiang, Hai-Xia; Liu, Chan-Min

    2016-01-01

    Quercitrin is one of the primary flavonoid compounds present in vegetables and fruits. The aim of the present study was to evaluate the effects of quercitrin against carbon tetrachloride (CCl4) induced brain injury and further to elucidate its probable mechanisms. ICR mice received CCl4 intraperitoneally with or without quercitrin co-administration for 4 weeks. Our data showed that quercitrin significantly suppressed the elevation of reactive oxygen species (ROS) production and malondialdehyde (MDA) content, reduced tissue plasminogen activator (t-PA) activity, enhanced the antioxidant enzyme activities and abrogated cytochrome P450 2E1 (CYP2E1) induction in mouse brains. Quercitrin also prevented CCl4 induced cerebral function disorders associated with its ability to inhibit the activities of monoamine oxidase (MAO), acetylcholine esterase (AChE) and the N-methyl-d-aspartate receptor 2B subunit (NR2B). In addition, western blot analysis showed that quercitrin suppressed the release of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). Taken together, our findings suggested that quercitrin may be a potential candidate to be developed as a neuroprotective agent.

  9. AP39, A Mitochondrially Targeted Hydrogen Sulfide Donor, Exerts Protective Effects in Renal Epithelial Cells Subjected to Oxidative Stress in Vitro and in Acute Renal Injury in Vivo.

    PubMed

    Ahmad, Akbar; Olah, Gabor; Szczesny, Bartosz; Wood, Mark E; Whiteman, Matthew; Szabo, Csaba

    2016-01-01

    This study evaluated the effects of AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl) phenoxy)decyl) triphenyl phosphonium bromide], a mitochondrially targeted donor of hydrogen sulfide (H2S) in an in vitro model of hypoxia/oxidative stress injury in NRK-49F rat kidney epithelial cells (NRK cells) and in a rat model of renal ischemia-reperfusion injury. Renal oxidative stress was induced by the addition of glucose oxidase, which generates hydrogen peroxide in the culture medium at a constant rate. Glucose oxidase (GOx)-induced oxidative stress led to mitochondrial dysfunction, decreased intracellular ATP content, and, at higher concentrations, increased intracellular oxidant formation (estimated by the fluorescent probe 2, 7-dichlorofluorescein, DCF) and promoted necrosis (estimated by the measurement of lactate dehydrogenase release into the medium) of the NRK cells in vitro. Pretreatment with AP39 (30-300 nM) exerted a concentration-dependent protective effect against all of the above effects of GOx. Most of the effects of AP39 followed a bell-shaped concentration-response curve; at the highest concentration of GOx tested, AP39 was no longer able to afford cytoprotective effects. Rats subjected to renal ischemia/reperfusion responded with a marked increase (over four-fold over sham control baseline) blood urea nitrogen and creatinine levels in blood, indicative of significant renal damage. This was associated with increased neutrophil infiltration into the kidneys (assessed by the myeloperoxidase assay in kidney homogenates), increased oxidative stress (assessed by the malondialdehyde assay in kidney homogenates), and an increase in plasma levels of IL-12. Pretreatment with AP39 (0.1, 0.2, and 0.3 mg/kg) provided a dose-dependent protection against these pathophysiological alterations; the most pronounced protective effect was observed at the 0.3 mg/kg dose of the H2S donor; nevertheless, AP39 failed to achieve a complete normalization of any of the injury

  10. Reduction of oxidative stress and liver injury following silymarin and praziquantel treatment in mice with Mesocestoides vogae (Cestoda) infection.

    PubMed

    Velebný, Samuel; Hrčkova, Gabriela; Königová, Alžbeta

    2010-12-01

    Oxidative stress is a common mechanism contributing to hepatic damage and fibrogenesis in a variety of liver disorders. The liver is the target organ for many parasitic infections, hence there is a great demand for the development of novel treatment strategies. In the present study conducted on mice infected with larval stage of Mesocestoides vogae, we investigated effects of therapy with praziquantel (PZQ) alone and in combination with silymarin on liver GSH content, lipid peroxidation and larval reduction. Proliferation of liver cells by means of BrdU incorporation into DNA and production of superoxide anions by peritoneal adherent cells was measured to assess the antioxidant activity of silymarin. Drug administration was carried on from day 15 post infection (p.i.) for ten consecutive days and examination was performed during 20 days of follow-up the therapy. Larval M. vogae infection caused liver damage and triggered extensive oxidative stress, resulting in the abolishment of GSH redox balance and ROS-induced lipid peroxidation. PZQ administration caused short-term decline of GSH levels in healthy mice. Low GSH levels in infected mice were elevated gradually in response to the drug, but respiratory burst in cells was not reduced. Silymarin in combination with PZQ showed strong direct antioxidant capacity and stimulated the larvicidal effect of praziquantel. Treatment with PZQ and silymarin downregulated the generation of superoxide anions, prevented lipid peroxidation, stimulated GSH synthesis and proliferation of hepatocytes in infected livers. These findings demonstrated that silymarin can markedly decrease the liver injury and its co-administration with PZQ potentiate effect of therapy, probably due to the down-regulation of fibrogenesis.

  11. The potential role of Punica granatum treatment on murine malaria-induced hepatic injury and oxidative stress.

    PubMed

    Hafiz, Taghreed A; Mubaraki, Murad A; Al-Quraishy, Saleh; Dkhil, Mohamed A

    2016-04-01

    Malaria is a health burden disease where the world harnessed the power of expertise and innovation to understand the biology of the parasite and the pathogenesis of the disease as well as to discover effective drugs. However, the treatment of malaria remains a challenging task and inadequate to address today's perplexing problem, the emergence of resistant strains. Historically, traditional medicine has been a mainstay for remediation and still retains its importance with the presence of potent natural products. Pomegranate has been used as antioxidant and anti-inflammatory against a range of diseases. Therefore, pomegranate peel extract (PPE) was used in this study to examine its effect on Plasmodium chabaudi-induced hepatic inflammation. Animals were allocated into three groups: a vehicle control group, a group infected with 10(6) P. chabaudi-parasitized erythrocytes and a pomegranate-treated group infected with 10(6) P. chabaudi-parasitized erythrocytes. This group received 100 μl of 300 mg/kg PPE after infection. The results showed the effectiveness of PPE on reversing the anaemic signs that have been provoked by P. chabaudi infection through instating the haemoglobin concentration and erythrocyte count back to normal values. Moreover, PPE exhibited hepatoprotective activities upon histopathological examination and liver function tests. These data were further confirmed by the significant reduction of the hepatic oxidative markers, glutathione, nitric oxide and malondialdehyde, in mice infected with P. chabaudi. Based on these outcomes, pomegranate could be used as a hepatoprotective agent against P. chabaudi-induced hepatic injury. However, further studies are needed in order to determine the mode of action of pomegranate upon infection. PMID:26670312

  12. Chrysin Suppressed Inflammatory Responses and the Inducible Nitric Oxide Synthase Pathway after Spinal Cord Injury in Rats

    PubMed Central

    Jiang, Yong; Gong, Fu-Liang; Zhao, Guang-Ben; Li, Jie

    2014-01-01

    Chrysin (CH), a natural plant flavonoid, has shown a variety of beneficial effects. Our present study was conducted to evaluate the therapeutic potential of CH three days after spinal cord injury (SCI) in rats and to probe the underlying neuroprotective mechanisms. SCI was induced using the modified weight-drop method in Wistar rats. Then, they were treated with saline or CH by doses of 30 and 100 mg/kg for 26 days. Neuronal function was assessed with the Basso Beattle Bresnahan locomotor rating scale (BBB). The water content of spinal cord was determined after traumatic SCI. The NF-κB p65 unit, TNF-α, IL-1β and IL-6 in serums, as well as the apoptotic marker, caspase-3, of spinal cord tissues were measured using commercial kits. The protein level and activity of inducible nitric oxide synthase (iNOS) were detected by western blot and a commercial kit, respectively. NO (nitric oxide) production was evaluated by the determination of nitrite concentration. The rats with SCI showed marked reductions in BBB scores, coupled with increases in the water content of spinal cord, the NF-κB p65 unit, TNF-α, IL-1β, IL-6, iNOS, NO production and caspase-3. However, a CH supplement dramatically promoted the recovery of neuronal function and suppressed the inflammatory factors, as well as the iNOS pathway in rats with SCI. Our findings disclose that CH improved neural function after SCI in rats, which might be linked with suppressing inflammation and the iNOS pathway. PMID:25014398

  13. Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury

    PubMed Central

    Pálóczi, János; Varga, Zoltán V.; Szebényi, Kornélia; Sarkadi, Balázs; Madonna, Rosalinda; De Caterina, Raffaele; Csont, Tamás; Eschenhagen, Thomas; Ferdinandy, Péter; Görbe, Anikó

    2016-01-01

    Background and Aims. Human embryonic stem cell- (hESC-) derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP) in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days) and then on more differentiated cardiomyocytes (6 + 24 days), both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following treatments were applied during simulated ischemia in differentiated EBs: the NO-donor S-nitroso-N-acetylpenicillamine (SNAP) (10−7, 10−6, and 10−5 M), BNP (10−9, 10−8, and 10−7 M), and the nonspecific NO synthase inhibitor Nω-nitro-L-arginine (L-NNA, 10−5 M). Results. SNAP (10−6, 10−5 M) significantly attenuated cell death in differentiated EBs. However, simulated ischemia/reperfusion-induced cell death was not affected by BNP or by L-NNA. In separate experiments, SNAP (10−6 M) also protected hESC-derived cardiomyocytes. Conclusions. We conclude that SNAP, but not BNP, protects differentiated EBs or cardiomyocytes derived from hESCs against simulated ischemia/reperfusion injury. The present screening platform is a useful tool for discovery of cardiocytoprotective molecules and their cellular mechanisms. PMID:27403231

  14. Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats.

    PubMed

    Flora, Swaran J S; Chouhan, Swapnila; Kannan, Gurusamy M; Mittal, Megha; Swarnkar, Harimohan

    2008-01-01

    Arsenic is a naturally occurring element that is ubiquitously present in the environment. High concentration of naturally occurring arsenic in drinking water is a major health problem in different parts of the world. Despite arsenic being a health hazard and a well documented carcinogen, no safe, effective and specific preventive or therapeutic measures are available. Among various recent strategies adopted, administration of an antioxidant has been reported to be the most effective. The present study was designed to evaluate the therapeutic efficacy of monoisoamyl dimercaptosuccinic acid (MiADMSA), administered either individually or in combination with taurine post chronic arsenic exposure in rats. Arsenic exposed male rats (25 ppm, sodium arsenite in drinking water for 24 weeks) were treated with taurine (100 mg/kg, i.p., once daily), monoisoamyl dimercaptosuccinic acid (MiADMSA) (50 mg/kg, oral, once daily) either individually or in combination for 5 consecutive days. Biochemical variables indicative of oxidative stress along-with arsenic concentration in blood, liver and kidney were measured. Arsenic exposure significantly reduced blood delta-aminolevulinic acid dehydratase (ALAD) activity, a key enzyme involved in the heme biosynthesis and enhanced zinc protoporphyrin (ZPP) level. Clinical hematological variables like white blood cells (WBC), mean cell hemoglobin (MCH), and mean cell hemoglobin concentration (MCHC) showed significant decrease with a significant elevation in platelet (PLT) count. These changes were accompanied by significant decrease in superoxide dismutase (SOD) activity and increased catalase activity. Arsenic exposure caused a significant decrease in hepatic and renal glutathione (GSH) level and an increase in oxidized glutathione (GSSG). These biochemical changes were correlated with an increased uptake of arsenic in blood, liver and kidney. Administration of taurine significantly reduced hepatic oxidative stress however co

  15. Limited effect of testosterone treatment for erectile dysfunction caused by high-estrogen levels in rats.

    PubMed

    Kataoka, T; Hotta, Y; Ohno, M; Maeda, Y; Kimura, K

    2013-01-01

    Some studies suggest that high-estrogen levels lead to erectile dysfunction (ED); high-estrogen levels are known to decrease testosterone levels. However, no study has examined whether testosterone replacement can improve the ED induced by high-estrogen levels. We investigated the effects of testosterone on ED caused by high-estrogen levels in rats. Rats were distributed in the following groups: (1) control (vehicle for 2 weeks), (2) the estrogen-treated group (ES; estradiol (3 μg kg(-1) day(-1)) for 2 weeks), and (3) the estrogen- and testosterone-treated group (ES+TE; estradiol (3 μg kg(-1) day(-1)) and testosterone (3 mg kg(-1) day(-1)) for 2 weeks). We measured smooth muscle function via isometric tension and erectile function by measuring the intracavernosal pressure on cavernous nerve stimulation. In the ES group, the contraction of the corpus cavernosum smooth muscle increased in response to noradrenalin, and its relaxation decreased in response to the nitric oxide donor, sodium nitroprusside. Further, the erectile function was significantly decreased. In the ES+TE group, neither smooth muscle function nor erectile function was significantly improved. In conclusion, a high-estrogen milieu affected erectile function in rats, and testosterone treatment did not improve the ED caused by high-estrogen levels.

  16. Tongxinluo Protects against Hypertensive Kidney Injury in Spontaneously-Hypertensive Rats by Inhibiting Oxidative Stress and Activating Forkhead Box O1 Signaling

    PubMed Central

    Luo, Wei-min; Kong, Jing; Gong, Yan; Liu, Xiao-qiong; Yang, Rui-xue; Zhao, Yu-xia

    2015-01-01

    Hypertension is an independent risk factor for the progression of chronic renal failure, and oxidative stress plays a critical role in hypertensive renal damage. Forkbox O1(FoxO1) signaling protects cells against oxidative stress and may be a useful target for treating oxidative stress-induced hypertension. Tongxinluo is a traditional Chinese medicine with cardioprotective and renoprotective functions. Therefore, this study aimed to determine the effects of Tongxinluo in hypertensive renal damage in spontaneously hypertensive rats(SHRs)and elucidate the possible involvement of oxidative stress and FoxO1 signaling in its molecular mechanisms. SHRs treated with Tongxinluo for 12 weeks showed a reduction in systolic blood pressure. In addition to increasing creatinine clearance, Tongxinluo decreased urinary albumin excretion, oxidative stress injury markers including malondialdehyde and protein carbonyls, and expression of nicotinamide adenine dinucleotide phosphate oxidase subunits and its activity in SHR kidneys. While decreasing phosphorylation of FoxO1, Tongxinluo also inhibited the phosphorylation of extracellular signal-regulated kinase1/2 and p38 and enhanced manganese superoxide dismutase and catalase activities in SHR kidneys. Furthermore, histology revealed attenuation of glomerulosclerosis and renal podocyte injury, while Tongxinluo decreased the expression of α-smooth muscle actin, extracellular matrixprotein, transforming growth factor β1 and small mothers against decapentaplegic homolog 3,and improved tubulointerstitial fibrosis in SHR kidneys. Finally, Tongxinluo inhibited inflammatory cell infiltration as well as expression of tumor necrosis factor-α and interleukin-6. In conclusion, Tongxinluo protected SHRs against hypertension-induced renal injury by exerting antioxidant, antifibrotic, and anti-inflammatory activities. Moreover, the underlying mechanisms of these effects may involve inhibition of oxidative stress and functional activation of Fox

  17. Propofol Protects Against H2O2-Induced Oxidative Injury in Differentiated PC12 Cells via Inhibition of Ca(2+)-Dependent NADPH Oxidase.

    PubMed

    Chen, Xiao-Hui; Zhou, Xue; Yang, Xiao-Yu; Zhou, Zhi-Bin; Lu, Di-Han; Tang, Ying; Ling, Ze-Min; Zhou, Li-Hua; Feng, Xia

    2016-05-01

    Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91(phox) (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca(2+) channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca(2+)-dependent NADPH oxidase.

  18. Protective Role of Dietary Curcumin in the Prevention of the Oxidative Stress Induced by Chronic Alcohol with respect to Hepatic Injury and Antiatherogenic Markers

    PubMed Central

    Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C.; Reyes-Gordillo, Karina; Shah, Ruchi; Lakshman, M. Raj

    2016-01-01

    Curcumin, an antioxidant compound found in Asian spices, was evaluated for its protective effects against ethanol-induced hepatosteatosis, liver injury, antiatherogenic markers, and antioxidant status in rats fed with Lieber-deCarli low menhaden (2.7% of total calories from ω-3 polyunsaturated fatty acids (PUFA)) and Lieber-deCarli high menhaden (13.8% of total calories from ω-3 PUFA) alcohol-liquid (5%) diets supplemented with or without curcumin (150 mg/kg/day) for 8 weeks. Treatment with curcumin protected against high ω-3 PUFA and ethanol-induced hepatosteatosis and increase in liver injury markers, alanine aminotransferase, and aspartate aminotransferase. Curcumin upregulated paraoxonase 1 (PON1) mRNA and caused significant increase in serum PON1 and homocysteine thiolactonase activities as compared to high ω-3 PUFA and ethanol group. Moreover, treatment with curcumin protected against ethanol-induced oxidative stress by increasing the antioxidant glutathione and decreasing the lipid peroxidation adduct 4-hydroxynonenal. These results strongly suggest that chronic ethanol in combination with high ω-3 PUFA exacerbated hepatosteatosis and liver injury and adversely decreases antiatherogenic markers due to increased oxidative stress and depletion of glutathione. Curcumin supplementation significantly prevented these deleterious actions of chronic ethanol and high ω-3 PUFA. Therefore, we conclude that curcumin may have therapeutic potential to protect against chronic alcohol-induced liver injury and atherosclerosis. PMID:26881029

  19. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    SciTech Connect

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin . E-mail: pplin@nhri.org.tw

    2007-05-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17{beta}-estradiol (E{sub 2}) resulted from an interaction between TCDD and E{sub 2} could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE{sub 2}), especially 4-MeOE{sub 2}, accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E{sub 2}. In the present study, we demonstrate unique accumulation of 4-MeOE{sub 2}, as a result of TCDD/E{sub 2} interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE{sub 2}-treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE{sub 2}-treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE{sub 2} were unaffected by NAC. We concluded that 4-MeOE{sub 2} accumulation resulting from TCDD and E{sub 2} interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD.

  20. Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress.

    PubMed

    Bessa, Artur L; Oliveira, Vanessa N; Agostini, Guilherme G; Oliveira, Renato J S; Oliveira, Ana C S; White, Gillian E; Wells, Greg D; Teixeira, David N S; Espindola, Foued S

    2016-02-01

    Biomarkers of inflammation, muscle damage, and oxidative stress after high-intensity exercise have been described previously; however, further understanding of their role in the postexercise recovery period is necessary. Because these markers have been implicated in cell signaling, they may be specifically related to the training adaptations induced by high-intensity exercise. Thus, a clear model showing their responses to exercise may be useful in characterizing the relative recovery status of an athlete. The purpose of this study was twofold: (a) to investigate the time course of markers of muscle damage and inflammation in the blood from 3 to 72 hours after combined training exercises and (b) to investigate indicators of oxidative stress and damage associated with increased reactive oxygen species production during high-intensity exercise in elite athletes. Nineteen male athletes performed a combination of high-intensity aerobic and anaerobic training exercises. Samples were acquired immediately before and at 3, 6, 12, 24, 48, and 72 hours after exercise. The appearance and clearance of creatine kinase and lactate dehydrogenase in the blood occurred faster than previous studies have reported. The neutrophil/lymphocyte ratio summarizes the mobilization of 2 leukocyte subpopulations in a single marker and may be used to predict the end of the postexercise recovery period. Further analysis of the immune response using serum cytokines indicated that high-intensity exercise performed by highly trained athletes only generated inflammation that was localized to the skeletal muscle. Biomarkers are not a replacement for performance tests, but when used in conjunction, they may offer a better indication of metabolic recovery status. Therefore, the use of biomarkers can improve a coach's ability to assess the recovery period after an exercise session and to establish the intensity of subsequent training sessions.

  1. N-acetylcysteine protects Chinese Hamster ovary cells from oxidative injury and apoptosis induced by microcystin-LR

    PubMed Central

    Xue, Lijian; Li, Jinhui; Li, Yang; Chu, Chu; Xie, Guantao; Qin, Jin; Yang, Mingfeng; Zhuang, Donggang; Cui, Liuxin; Zhang, Huizhen; Fu, Xiaoli

    2015-01-01

    This study aimed to investigate the MC-LR induced oxidative injury and apoptosis in Chinese hamster ovary (CHO) cells, and the protective effects of N-acetylcysteine (NAC) on these cells. Cell viability was determined by MTT assay after exposure to NAC at various concentrations (0, 1, 5, 10, 20, 30, 40, 50, 60 and 80 mmol/L) alone, or NAC (0, 1 and 5 mmol/L) plus MC-LR (0, 2.5, 5 and 10 μg/ml) for 24 h. The reactive oxygen species (ROS) in CHO cells were measured by DCFH-DA, mitochondrial membrane potential (MMP) by fluorescence probe JC-1 staining, and apoptosis index determined by Annexin V-PI staining. Results showed, following exposure to NAC alone for 24 h, cell viability remains higher than 80% at 1 and 5 mmol/L. After exposure to NAC at different concentrations plus MC-LR, cell viability increased, ROS decreased, MMP elevated, and apoptosis index reduced to a certain extent. In conclusion, MC-LR may induce the apoptosis of CHO cells by inducing ROS production which is protected by NAC. PMID:26131064

  2. Evaluation of Ischemia-Modified Albumin, Malondialdehyde, and Advanced Oxidative Protein Products as Markers of Vascular Injury in Diabetic Nephropathy

    PubMed Central

    Ahmad, Afzal; Manjrekar, Poornima; Yadav, Charu; Agarwal, Ashish; Srikantiah, Rukmini Mysore; Hegde, Anupama

    2016-01-01

    AIM This study aimed at evaluation of ischemia-modified albumin (IMA), malondialdehyde (MDA), and advanced oxidative protein products (AOPP) as markers of vascular injury in diabetic nephropathy (DN) with derivation of cutoff values for the same. MATERIALS AND METHODS Study population comprised 60 diabetes patients and 30 controls, with diabetes patients further categorized into three groups based on urine albumin/creatinine ratio (UACR) of <30 mg/g (diabetes without microalbuminuria), 30–300 mg/g (early DN), and >300 mg/g of creatinine (overt DN). Serum IMA, MDA, and AOPP were estimated by enzyme-linked immunosorbent assay; HbA1c, serum creatinine, urine albumin, and urine creatinine were estimated using automated analyzers. Statistical analysis was done using analysis of variance, Pearson’s correlation coefficient, and receiver-operating characteristic curve. RESULTS A statistically significant difference was found in the levels of IMA among patients with early DN (154 ng/mL), diabetes without nephropathy (109.4 ng/mL), and healthy controls (45.7 ng/mL), with highest levels in early DN cases. Similar increase was seen in AOPP as well. A significant correlation was observed between IMA and UACR in diabetes without nephropathy (r = 0.448). CONCLUSION The present study postulates serum IMA as a novel biomarker for the assessment of disease progression in diabetes even before microalbuminuria, and a cutoff point ≥99 ng/mL can be used for detection of early DN. PMID:27158221

  3. Protective Effects of Panax notoginseng Saponins against High Glucose-Induced Oxidative Injury in Rat Retinal Capillary Endothelial Cells.

    PubMed

    Fan, Yue; Qiao, Yuan; Huang, Jianmei; Tang, Minke

    2016-01-01

    Diabetic retinopathy, a leading cause of visual loss and blindness, is characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for diabetic retinopathy and is associated with increased oxidative stress in the retina. In this study, we investigated the potential protective effects of Panax notoginseng Saponins (PNS) in retinal capillary endothelial cells (RCECs) exposed to high glucose conditions. We found a pronounced increase in cell viability in rat RCECs incubated with both PNS and high glucose (30 mM) for 48 h or 72 h. The increased viability was accompanied by reduced intracellular hydrogen peroxide (H2O2) and superoxide (O2 (-)), decreased mitochondrial reactive oxygen species (ROS), and lowered malondialdehyde (MDA) levels. PNS also increased the activities of total superoxide dismutase (SOD), MnSOD, catalase (CAT), and glutathione peroxidase (GSH-PX). The glutathione (GSH) content also increased after PNS treatment. Furthermore, PNS reduced NADPH oxidase 4 (Nox4) expression. These results indicate that PNS exerts a protective effect against high glucose-induced injury in RCECs, which may be partially attributed to its antioxidative function. PMID:27019662

  4. N-acetylcysteine protects Chinese Hamster ovary cells from oxidative injury and apoptosis induced by microcystin-LR.

    PubMed

    Xue, Lijian; Li, Jinhui; Li, Yang; Chu, Chu; Xie, Guantao; Qin, Jin; Yang, Mingfeng; Zhuang, Donggang; Cui, Liuxin; Zhang, Huizhen; Fu, Xiaoli

    2015-01-01

    This study aimed to investigate the MC-LR induced oxidative injury and apoptosis in Chinese hamster ovary (CHO) cells, and the protective effects of N-acetylcysteine (NAC) on these cells. Cell viability was determined by MTT assay after exposure to NAC at various concentrations (0, 1, 5, 10, 20, 30, 40, 50, 60 and 80 mmol/L) alone, or NAC (0, 1 and 5 mmol/L) plus MC-LR (0, 2.5, 5 and 10 μg/ml) for 24 h. The reactive oxygen species (ROS) in CHO cells were measured by DCFH-DA, mitochondrial membrane potential (MMP) by fluorescence probe JC-1 staining, and apoptosis index determined by Annexin V-PI staining. Results showed, following exposure to NAC alone for 24 h, cell viability remains higher than 80% at 1 and 5 mmol/L. After exposure to NAC at different concentrations plus MC-LR, cell viability increased, ROS decreased, MMP elevated, and apoptosis index reduced to a certain extent. In conclusion, MC-LR may induce the apoptosis of CHO cells by inducing ROS production which is protected by NAC. PMID:26131064

  5. Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects.

    PubMed

    Malik, Salma; Bhatia, Jagriti; Suchal, Kapil; Gamad, Nanda; Dinda, Amit Kumar; Gupta, Yogender Kumar; Arya, Dharamvir Singh

    2015-01-01

    Cisplatin is an effective anti-cancer drug which causes remarkable toxicity to kidney by generating reactive oxygen species and by stimulating inflammatory and apoptotic pathway. Citrus flavonoid, like nobiletin has been reported to possess anti-oxidant, anti-inflammatory and anti-apoptotic properties. Hence, the present study was aimed to evaluate these properties of nobiletin, a polymethoxy flavone in cisplatin-induced acute renal injury. Adult male albino Wistar rats were divided into 6 groups. Nobiletin was administered at the dose of 1.25, 2.5 and 5mg/kg for a period of 10 days. On 7th day, a single injection of cisplatin (8 mg/kg) was injected to rats. Cisplatin administration resulted in renal dysfunction as evident by increase in serum creatinine and BUN levels. Oxidative stress in cisplatin group was reflected by increase in MDA level, and depletion of anti-oxidants such as glutathione, superoxide dismutase and catalase in renal tissue. Furthermore, cisplatin increased the expressions of Bax, caspase-3 and DNA damage along with decreased expression of Bcl-2 in the renal tissue. Histological analysis also revealed acute tubular necrosis. However, pretreatment with nobiletin preserved renal function and restored anti-oxidant status. Nobiletin supplementation inhibited activation of apoptotic pathways and DNA damage. It also attenuated tubular injury histologically. Collectively, the result of this study suggests the nephroprotective potential of nobiletin which may be related to its anti-oxidant, anti-apoptotic and anti-inflammatory effects.

  6. Nigella sativa oil reduces aluminium chloride-induced oxidative injury in liver and erythrocytes of rats.

    PubMed

    Bouasla, Ihcene; Bouasla, Asma; Boumendjel, Amel; Messarah, Mahfoud; Abdennour, Cherif; Boulakoud, Mohamed Salah; El Feki, Abdelfattah

    2014-12-01

    The present study was planned to investigate the protective effects of Nigella sativa oil (NSO) supplementation against aluminium chloride (AlCl3)-induced oxidative damage in liver and erythrocytes of rats. Simultaneously, a preliminary phytochemical study was affected in order to characterize the bioactive components containing in the NSO using chemical assays. The antioxidant capacities of NSO were evaluated by DPPH assay. The results showed that NSO was found to contain large amounts of total phenolics, flavonoids and tannins. Twenty-four rats were equally divided into two groups, in which group A received standard diet, whereas group B treated daily with an oral gavage dose of 2 ml NSO/kg body weight. After 5 weeks pretreatment, both groups were divided again into two subgroups (A and B) of six animals each and treated for other 3 weeks. Therefore, subgroup A1 was served as a control which received standard diet, but subgroup A2 received AlCl3 (34 mg/kg bw mixed with food). Subgroup B1 received both AlCl3 and NSO; however, subgroup B2 received NSO only. Results showed that AlCl3 exhibited an increase in white blood cell counts and a marked decrease in erythrocyte counts and haemoglobin content. Plasma aspartate transaminase, alanine transaminase, alkaline phosphatase and lactate dehydrogenase activities and total bilirubin concentration were higher in AlCl3 group than those of the control, while albumin and total protein concentration were significantly lower. Compared to the control, a significant raise of hepatic and erythrocyte malondialdehyde level associated with a decrease in reduced glutathione content, glutathione peroxidase, superoxide dismutase and catalase, activities of AlCl3 treated rats. However, the administration of NSO alone or combined with AlCl3 has improved the status of all parameters studied. It can be concluded that AlCl3 has induced the oxidative stress, altered the biochemical parameters and the hepatic histological profile, but the

  7. Nrf2 protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced oxidative injury and steatohepatitis

    SciTech Connect

    Lu Hong; Cui Wei; Klaassen, Curtis D.

    2011-10-15

    Previous studies demonstrate that Nrf2, a master regulator of antioxidative responses, is essential in mediating induction of many antioxidative enzymes by acute activation of the AhR. However, the role of Nrf2 in protecting against oxidative stress and DNA damage induced by sustained activation of the AhR remains unknown and was investigated herein. Tissue and blood samples were collected from wild-type (WT) and Nrf2-null mice 21 days after administration of a low-toxic dose (10 {mu}g/kg ip) of TCDD. Only Nrf2-null mice lost body weight after TCDD treatment; however, blood levels of ALT were not markedly changed in either genotype, indicating a lack of extensive necrosis. Compared to livers of TCDD-treated WT mice, livers of TCDD-treated Nrf2-null mice had: 1) degenerated hepatocytes, lobular inflammation, marked fat accumulation, and higher mRNA expression of inflammatory and fibrotic genes; 2) depletion of glutathione, elevation in lipid peroxidation and marker of DNA damage; 3) attenuated induction of phase-II enzymes Nqo1, Gsta1/2, and Ugt2b35 mRNAs, but higher induction of cytoprotective Ho-1, Prdx1, Trxr1, Gclc, and Epxh1 mRNAs; 4) higher mRNA expression of Fgf21 and triglyceride-synthesis genes, but down-regulation of bile-acid-synthesis genes and cholesterol-efflux transporters; and 5) trend of induction/activation of c-jun and NF-kB. Additionally, TCDD-treated Nrf2-null mice had impaired adipogenesis in white adipose tissue. In conclusion, Nrf2 protects livers of mice against oxidative stress, DNA damage, and steatohepatitis induced by TCDD-mediated sustained activation of the AhR. The aggravated hepatosteatosis in TCDD-treated Nrf2-null mice is due to increased lipogenesis in liver and impaired lipogenesis in white adipose tissue. - Highlights: > TCDD causes hepatosteatosis and induction of Nrf2-target genes in wild-type mice. > TCDD causes weight loss, oxidative injury, and steatohepatitis in Nrf2-null mice. > Livers of TCDD-treated Nrf2-null mice have

  8. Neuropathophysiology of Brain Injury.

    PubMed

    Quillinan, Nidia; Herson, Paco S; Traystman, Richard J

    2016-09-01

    Every year in the United States, millions of individuals incur ischemic brain injury from stroke, cardiac arrest, or traumatic brain injury. These acquired brain injuries can lead to death or long-term neurologic and neuropsychological impairments. The mechanisms of ischemic and traumatic brain injury that lead to these deficiencies result from a complex interplay of interdependent molecular pathways, including excitotoxicity, acidotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis. This article reviews several mechanisms of brain injury and discusses recent developments. Although much is known from animal models of injury, it has been difficult to translate these effects to humans. PMID:27521191

  9. Zinc administration modulates radiation-induced oxidative injury in lens of rat

    PubMed Central

    Taysi, Seyithan; Okumus, Seydi; Akyuz, Mehmet; Uzun, Naim; Aksoy, Adnan; Demir, Elif; Orkmez, Mustafa; Tarakcioglu, Mehmet; Adli, Mustafa

    2012-01-01

    Background: The aim of this study was to evaluate the antioxidant role of zinc (Zn) against radiation-induced cataract in the rat lens after total cranial irradiation with a single 5 Gray (Gy) dose of gamma irradiation. Materials and Methods: Twenty-one Sprague-Dawley rats were used for the experiment. The control group did not receive Zn or irradiation but received 1-ml saline orally plus sham-irradiation. The irradiation (IR) group received 5 Gy gamma irradiation to the total cranium as a single dose plus 0.1 ml physiological saline intraperitoneally. The IR plus Zn group received irradiation to total cranium plus 10 mg/kg/day Zn intraperitoneally. Biochemical parameters measured in rat lenses were carried out using spectrophotometric techniques. Results: Lens total (enzymatic plus non-enzymatic) superoxide scavenger activity (TSSA), glutathione reductase (GRD), and glutathione-S-transferase (GST) activities significantly increased in the IR plus Zn groups when compared with the IR group. However, TSSA, GRD and GST activities were significantly lower in the IR group when compared with the control group. Lens non-enzymatic superoxide scavenger activity (NSSA) in the IR plus Zn group was significantly increased compared to that of the IR group. Lens xanthine oxidase (XO) activity in the IR group significantly increased compared to that of both the control and IR plus Zn groups. Conclusion: Zn has clear antioxidant properties and prevented oxidative stress by scavenging free radicals generated by ionizing radiation in rat lenses. PMID:24082625

  10. Spirulina exhibits hepatoprotective effects against lead induced oxidative injury in newborn rats.

    PubMed

    Gargouri, M; Ben Saad, H; Ben Amara, I; Magné, C; El Feki, A

    2016-01-01

    Lead is a toxic metal that induces a wide range of biochemical and physiological effects. The present investigation was designed at evaluating the toxic effects of a prenatal exposure to lead of mothers on hepatic tissue of newborn rats, and potent protective effects of spirulina. Female rats were randomly divided into 4 groups which were given a normal diet (control),a diet enriched with spirulina (S), lead acetate administered through drinking water (Pb), or a diet enriched with spirulina and lead contaminated water (S Pb), respectively. The duration of treatments was from the 5th day of gestation to 14 days postpartum. Lead toxicity was assessed by measuring body and liver weights, blood and stomach lead levels, hepatic DNA, RNA and protein amounts, blood enzyme activities (AST and ALT), as well as lipid peroxidation level and activities of antioxidant enzymes in hepatic tissues of neonates. Lead intoxication of mothers caused reduction of liver weight as well as of hepatic DNA, mRNA and protein levels in newborns. Moreover, oxidative stress and changes in antioxidant enzyme activities were recorded. Conversely, supplementation of mothers with spirulina mitigated these effects induced by lead. These results substantiated the potential hepatoprotective and antioxidant activity of spirulina. PMID:27609480

  11. Comparison of imatinib, nilotinib and silymarin in the treatment of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis

    SciTech Connect

    Shaker, Mohamed E.; Zalata, Khaled R.; Mehal, Wajahat Z.; Shiha, Gamal E.; Ibrahim, Tarek M.

    2011-04-15

    Effective and well-tolerated anti-fibrotic drugs are currently lacking. Therefore, this study was carried out to investigate the potential anti-fibrotic effects of imatinib, nilotinib and silymarin on established hepatic fibrosis in the carbon tetrachloride (CCl{sub 4}) rat model. Male Wistar rats received intraperitoneal injections of CCl{sub 4} twice weekly for 8 weeks, as well as daily intraperitoneal treatments of imatinib (10 and 20 mg/kg), nilotinib (10 and 20 mg/kg) and silymarin (100 mg/kg) during the last 4 weeks of CCl{sub 4}-intoxication. At the end of the study, hepatic damage was evaluated by analysis of liver function tests and hepatic oxidative stress parameters. Hepatic fibrosis was evaluated by histopathology and morphometry, as well as collagen and 4-hydroxyproline contents. Nilotinib (20 mg/kg) was the most effective treatment to counteract CCl{sub 4}-induced hepatic injury as indicated by liver function tests and histopathology. Nilotinib (10 mg/kg), nilotinib (20 mg/kg) and silymarin (100 mg/kg) treatments reduced the mean score of hepatic fibrosis by 31%, 68% and 47%, respectively, and hepatic collagen content by 47%, 49% and 18%, respectively in CCl{sub 4}-treated rats. Hepatic morphometric evaluation and 4-hydroxyproline content revealed that CCl{sub 4}-induced fibrosis was ameliorated significantly by nilotinib (20 mg/kg) and imatinib (20 mg/kg). Unlike nilotinib, imatinib (20 mg/kg) showed some sort of hepatic injury evidenced by elevation of serum aminotransferases and total bilirubin levels, and hepatic total nitrate/nitrite content, as well as characteristic anisonucleosis visualized with the hematoxylin-eosin staining. In conclusion, this study provides the evidence that nilotinib exerts anti-fibrotic activity and suggests that it may be valuable in the treatment of hepatic fibrosis in humans. - Graphical abstract: Display Omitted Research Highlights: > The anti-fibrotic effects of imatinib, nilotinib and silymarin were compared

  12. Injury severity and serum amyloid A correlate with plasma oxidation-reduction potential in multi-trauma patients: a retrospective analysis

    PubMed Central

    2009-01-01

    Background In critical injury, the occurrence of increased oxidative stress or a reduced antioxidant status has been observed. The purpose of this study was to correlate the degree of oxidative stress, by measuring the oxidation-reduction potential (ORP) of plasma in the critically injured, with injury severity and serum amyloid A (SAA) levels. Methods A total of 140 subjects were included in this retrospective study comprising 3 groups: healthy volunteers (N = 21), mild to moderate trauma (ISS < 16, N = 41), and severe trauma (ISS ≥ 16, N = 78). For the trauma groups, plasma was collected on an almost daily basis during the course of hospitalization. ORP analysis was performed using a microelectrode, and ORP maxima were recorded for the trauma groups. SAA, a sensitive marker of inflammation in critical injury, was measured by liquid chromatography/mass spectrometry. Results ORP maxima were reached on day 3 (± 0.4 SEM) and day 5 (± 0.5 SEM) for the ISS < 16 and ISS ≥ 16 groups, respectively. ORP maxima were significantly higher in the ISS < 16 (-14.5 mV ± 2.5 SEM) and ISS ≥ 16 groups (-1.1 mV ± 2.3 SEM) compared to controls (-34.2 mV ± 2.6 SEM). Also, ORP maxima were significantly different between the trauma groups. SAA was significantly elevated in the ISS ≥ 16 group on the ORP maxima day compared to controls and the ISS < 16 group. Conclusion The results suggest the presence of an oxidative environment in the plasma of the critically injured as measured by ORP. More importantly, ORP can differentiate the degree of oxidative stress based on the severity of the trauma and degree of inflammation. PMID:19925664

  13. Dose related effects of nicotine on oxidative injury in young, adult and old rats.

    PubMed

    Jain, Anshu; Flora, S J S

    2012-03-01

    Nicotine affects a variety of cellular process ranging from induction of gene expression to secretion of hormones and modulation of enzymatic activities. The objective of the present study was to study the dose dependent toxicity of nicotine on the oxidative stress in young, adult and old rats which were administered 0.75, 3 and 6 mg kg(-1) nicotine as nicotine hydrogen tartarate intraperitoneally for a period of seven days. No changes were observed in blood catalase (CAT) activity and level of blood reactive oxygen species (ROS) in any of the age group at the lowest dose of nicotine. However, at the highest dose (6 mg kg(-1) nicotine) ROS level increased significantly from 1.17 to 1.41 microM ml(-1) in young rats and from 1.13 to 1.40 microM ml(-1) in old rats. However, no change was observed in blood ROS levels of adult rats. Administration of 3 mg kg(-1) nicotine resulted in an increase in level of reduced glutathione (GSH) in rats of all the age groups. The young animals were the most sensitive as a dose of 6 mg kg(-1) resulted in decline in the levels of reduced GSH to 0.89 mg ml(-1) as compared to normal control (1.03 mg ml(-1)). The antioxidant enzymes SOD and CAT were sensitive to a dose of 6 mg kg(-1) as it resulted in decline of the enzymatic activity in all age group animals. Also, administration of nicotine at a lower dose of 3 mg kg(-1) inhibited SOD activity from 1.48 to 1.20 units min(-1) mg(-1) protein in old rats. Catalase activity showed a similar trend at a dose of 3 mg kg(-1). Administration of nicotine also increased the blood lipid peroxidation levels at all three doses in young and old rats dose dependently. Nicotine exposure also increased ROS in brain at the doses of 3 and 6 mg kg(-1) in all the three age groups. Brain GSH decreased significantly at high dose of nicotine (6 mg kg(-1) b.wt.) in adult rats (4.27 mg g(-1)) and old rats (3.68 mg g(-1)) but in young rats level increased to 4.40 mg g(-1) at the lower dose (0.75 mg kg nicotine

  14. G Protein-Coupled Estrogen Receptor 1 Mediates Acute Estrogen-Induced Cardioprotection via MEK/ERK/GSK-3β Pathway after Ischemia/Reperfusion

    PubMed Central

    Kabir, Mohammad E.; Singh, Harpreet; Lu, Rong; Olde, Bjorn; Leeb-Lundberg, L. M. Fredrik; Bopassa, Jean Chrisostome

    2015-01-01

    Three types of estrogen receptors (ER) exist in the heart, Esr1, Esr2 and the G protein-coupled estrogen receptor 1, Gper1. However, their relative importance in mediating estrogen protective action is unknown. We found that, in the male mouse ventricle, Gper1 transcripts are three- and seventeen-fold more abundant than Esr1 and Esr2 mRNAs, respectively. Analysis of the three ER knockouts (Esr1-/-, Esr2-/- and Gper1-/-) showed that only the Gper1-/- hearts lost their ability to be protected by 40 nM estrogen as measured by heart function, infarct size and mitochondrial Ca2+ overload, an index of mitochondrial permeability transition pore (mPTP) activity. Analysis of Akt, ERK1/2 and GSK-3β salvage kinases uncovered Akt and ERK1/2 transient activation by estrogen whose phosphorylation increased during the first 5 min of non-ischemic perfusion. All these increase in phosphorylation effects were abrogated in Gper1-/-. Inhibition of MEK1/2/ERK1/2 (1 μM U0126) and PI-3K/Akt (10 μM LY294002) signaling showed that the MEK1/2/ERK1/2 pathway via GSK-3β exclusively was responsible for cardioprotection as an addition of U0126 prevented estrogen-induced GSK-3β increased phosphorylation, resistance to mitochondrial Ca2+-overload, functional recovery and protection against infarction. Further, inhibiting PKC translocation (1 μM chelerythrin-chloride) abolished estrogen-induced cardioprotection. These data indicate that estrogen-Gper1 acute coupling plays a key role in cardioprotection against ischemia/reperfusion injury in male mouse via a cascade involving PKC translocation, ERK1/2/GSK-3β phosphorylation leading to the inhibition of the mPTP opening. PMID:26356837

  15. Androgens and estrogens in skeletal sexual dimorphism.

    PubMed

    Laurent, Michaël; Antonio, Leen; Sinnesael, Mieke; Dubois, Vanessa; Gielen, Evelien; Classens, Frank; Vanderschueren, Dirk

    2014-01-01

    Bone is an endocrine tissue expressing androgen and estrogen receptors as well as steroid metabolizing enzymes. The bioactivity of circulating sex steroids is modulated by sex hormone-binding globulin and local conversion in bone tissue, for example, from testosterone (T) to estradiol (E2) by aromatase, or to dihydrotestosterone by 5α-reductase enzymes. Our understanding of the structural basis for gender differences in bone strength has advanced considerably over recent years due to increasing use of (high resolution) peripheral computed tomography. These microarchitectural insights form the basis to understand sex steroid influences on male peak bone mass and turnover in cortical vs trabecular bone. Recent studies using Cre/LoxP technology have further refi ned our mechanistic insights from global knockout mice into the direct contributions of sex steroids and their respective nuclear receptors in osteoblasts, osteoclasts, osteocytes, and other cells to male osteoporosis. At the same time, these studies have reinforced the notion that androgen and estrogen defi ciency have both direct and pleiotropic effects via interaction with, for example, insulin-like growth factor 1, inflammation, oxidative stress, central nervous system control of bone metabolism, adaptation to mechanical loading, etc., This review will summarize recent advances on these issues in the fi eld of sex steroid actions in male bone homeostasis.

  16. Total Flavonoids from Rosa laevigata Michx Fruit Ameliorates Hepatic Ischemia/Reperfusion Injury through Inhibition of Oxidative Stress and Inflammation in Rats

    PubMed Central

    Tao, Xufeng; Sun, Xiance; Xu, Lina; Yin, Lianhong; Han, Xu; Qi, Yan; Xu, Youwei; Zhao, Yanyan; Wang, Changyuan; Peng, Jinyong

    2016-01-01

    The effects of total flavonoids (TFs) from Rosa laevigata Michx fruit against liver damage and cerebral ischemia/reperfusion (I/R) injury have been reported, but its action on hepatic I/R injury remains unknown. In this work, the effects and possible mechanisms of TFs against hepatic I/R injury were examined using a 70% partial hepatic warm ischemia rat model. The results demonstrated TFs decreased serum aspartate transaminase (AST), alanine aminotransferase (ALT), myeloperoxidase (MPO), and lactate dehydrogenase (LDH) activities, improved liver histopathology and ultrastructure through hematoxylin-eosin (HE) staining and electron microscope observation. In addition, TFs significantly decreased malondialdehyde (MDA) and increased the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which indicated that TFs alleviated oxidative stress caused by I/R injury. RT-PCR results proved that TFs downregulated the gene levels of inflammatory factors including interleukin-1 beta (IL-1β), interleukin-1 (IL-6), and tumor necrosis factor alpha (TNF-α). Further research indicated that TF-induced hepatoprotection was completed through inhibiting TLR4/MyD88 and activating Sirt1/Nrf2 signaling pathways. Blockade of the TLR4 pathway by TFs inhibited NF-κB and AP-1 transcriptional activities and inflammatory reaction. Activation of Sirt1/Nrf2 pathway by TFs increased the protein levels of HO-1 and GST to improve oxidative stress. Collectively, these findingsconfirmed the potent effects of TFs against hepatic I/R injury, which should be developed as a candidate for the prevention of this disease. PMID:27399769

  17. Total Flavonoids from Rosa laevigata Michx Fruit Ameliorates Hepatic Ischemia/Reperfusion Injury through Inhibition of Oxidative Stress and Inflammation in Rats.

    PubMed

    Tao, Xufeng; Sun, Xiance; Xu, Lina; Yin, Lianhong; Han, Xu; Qi, Yan; Xu, Youwei; Zhao, Yanyan; Wang, Changyuan; Peng, Jinyong

    2016-01-01

    The effects of total flavonoids (TFs) from Rosa laevigata Michx fruit against liver damage and cerebral ischemia/reperfusion (I/R) injury have been reported, but its action on hepatic I/R injury remains unknown. In this work, the effects and possible mechanisms of TFs against hepatic I/R injury were examined using a 70% partial hepatic warm ischemia rat model. The results demonstrated TFs decreased serum aspartate transaminase (AST), alanine aminotransferase (ALT), myeloperoxidase (MPO), and lactate dehydrogenase (LDH) activities, improved liver histopathology and ultrastructure through hematoxylin-eosin (HE) staining and electron microscope observation. In addition, TFs significantly decreased malondialdehyde (MDA) and increased the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which indicated that TFs alleviated oxidative stress caused by I/R injury. RT-PCR results proved that TFs downregulated the gene levels of inflammatory factors including interleukin-1 beta (IL-1β), interleukin-1 (IL-6), and tumor necrosis factor alpha (TNF-α). Further research indicated that TF-induced hepatoprotection was completed through inhibiting TLR4/MyD88 and activating Sirt1/Nrf2 signaling pathways. Blockade of the TLR4 pathway by TFs inhibited NF-κB and AP-1 transcriptional activities and inflammatory reaction. Activation of Sirt1/Nrf2 pathway by TFs increased the protein levels of HO-1 and GST to improve oxidative stress. Collectively, these findingsconfirmed the potent effects of TFs against hepatic I/R injury, which should be developed as a candidate for the prevention of this disease. PMID:27399769

  18. Marijuana: interaction with the estrogen receptor.

    PubMed

    Sauer, M A; Rifka, S M; Hawks, R L; Cutler, G B; Loriaux, D L

    1983-02-01

    Crude marijuana extract competed with estradiol for binding to the estrogen receptor of rat uterine cytosol. Condensed marijuana smoke also competed with estradiol for its receptor. Pure delta 9-tetrahydrocannabinol, however, did not interact with the estrogen receptor. Ten delta 9-tetrahydrocannabinol metabolites also failed to compete with estradiol for its receptor. Of several other common cannabinoids tested, only cannabidiol showed any estrogen receptor binding. This was evident only at very high concentrations of cannabidiol. Apigenin, the aglycone of a flavinoid phytoestrogen found in cannabis, displayed high affinity for the estrogen receptor. To assess the biological significance of these receptor data, estrogen activity was measured in vivo with the uterine growth bioassay, using immature rats. Cannabis extract in large doses exhibited neither estrogenic nor antiestrogenic effects. Thus, although estrogen receptor binding activity was observed in crude marijuana extract, marijuana smoke condensate and several known components of cannabis, direct estrogenic activity of cannabis extract could not be demonstrated in vivo.

  19. Mixture interactions of xenoestrogens with endogenous estrogens.

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to water sources contaminated with estrogens and the potential impact on reproductive health. These environmental estrogens originate from various sources including concentrated animal feedlot operations (CAFO), m...

  20. Breast Cancer and Estrogen-Alone Update

    MedlinePlus

    ... Research News From NIH Breast Cancer and Estrogen-Alone Update Past Issues / Summer 2006 Table of Contents ... of this page please turn Javascript on. Estrogen-alone hormone therapy does not increase the risk of ...

  1. Pain-related behavior following REM sleep deprivation in the rat: influence of peripheral nerve injury, spinal glutamatergic receptors and nitric oxide.

    PubMed

    Wei, Hong; Zhao, Wenjuan; Wang, Yong-Xiang; Pertovaara, Antti

    2007-05-01

    We assessed whether pain-related behavior in neuropathic or control rats is changed following rapid eye movement sleep deprivation (REMSD). Furthermore, we determined the contribution of spinal glutamatergic receptors and nitric oxide to sensitivity changes following REMSD versus peripheral nerve injury. Pain behavior was assessed in Sprague-Dawley (SD) and Hannover-Wistar (HW) rats with a spinal nerve ligation or a sham operation. Nerve ligation produced mechanical hypersensitivity of the injured dermatome in all animals. Baseline sensitivity to mechanical stimulation was higher in the HW than the SD group, independent of nerve injury. In both strains, mechanical sensitivity of neuropathic and sham-operated animals was increased following 48 h of REMSD. Heat sensitivity of an uninjured dermatome was not different among experimental conditions. Reversal of mechanical hypersensitivity was attempted in HW rats by spinal administration of an antagonist of the metabotropic glutamate receptor 5 (mGluR(5)) or the NMDA receptor and a nitric oxide synthase (NOS) inhibitor. Mechanical hypersensitivity induced by REMSD in unoperated rats was attenuated by all three drugs, while in neuropathic animals the mechanical anti-hypersensitive effect was most pronounced with the antagonist of the mGluR(5) or a NOS inhibitor. The results indicate that the strain of the animals markedly influences baseline withdrawal threshold to mechanical stimulation. Mechanical hypersensitivity following REMSD, however, is similarly increased in HW and SD strains, and the REMSD-associated increase in mechanical sensitivity is independent of nerve injury. Furthermore, mechanical hypersensitivities following REMSD and peripheral nerve injury share common spinal mechanisms involving, at least, the mGluR(5) and nitric oxide.

  2. Estrogen actions in the cardiovascular system.

    PubMed

    Mendelsohn, M E

    2009-01-01

    This brief review summarizes the current state of the field for estrogen receptor actions in the cardiovascular system and the cardiovascular effects of hormone replacement therapy (HRT). It is organized into three parts: a short Introduction and overview of the current view of how estrogen works on blood vessels; a summary of the current status of clinical information regarding HRT and cardiovascular effects; and an update on state-of-the-art mouse models of estrogen action using estrogen receptor knockout mice.

  3. Ultratrace Level Determination and Quantitative Analysis of Kidney Injury Biomarkers in Patient Samples Attained by Zinc Oxide Nanorods

    PubMed Central

    Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E.; Wang, Weiwei; Reeves, W. Brian; Hahm, Jong-in

    2016-01-01

    Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg/mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of

  4. Isoflurane Favorably Modulates Guanosine Triphosphate Cyclohydrolase-1 and Endothelial Nitric Oxide Synthase during Myocardial Ischemia and Reperfusion Injury in Rats

    PubMed Central

    Baotic, Ines; Weihrauch, Dorothee; Procknow, Jesse; Vasquez-Vivar, Jeanette; Ge, Zhi-Dong; Sudhakaran, Shaan; Warltier, David C.; Kersten, Judy R.

    2015-01-01

    Background We investigated the hypothesis that isoflurane modulates NO synthesis and protection against myocardial infarction through time-dependent changes in expression of key NO regulatory proteins, guanosine triphosphate cyclohydrolase (GTPCH) -1, the rate-limiting enzyme involved in the biosynthesis of tetrahydrobiopterin and endothelial nitric oxide synthase (eNOS). Methods Myocardial infarct size, NO production (ozone-mediated chemiluminescence), GTPCH-1 and eNOS expression (real-time reverse transcriptase polymerase chain reaction and western blotting), were measured in male Wistar rats with or without APC (1.0 minimum alveolar concentration isoflurane for 30 min) and in the presence or absence of an inhibitor of GTPCH-1, 2,4-diamino-6-hydroxypyrimidine. Results NO−2 production (158±16 and 150±13 pmol/mg protein at baseline in control and APC groups, respectively) was significantly (P<0.05) increased 1.5±0.1 and 1.4±0.1 fold by APC (n=4) at 60 and 90 min of reperfusion, concomitantly, with increased expression of GTPCH-1 (1.3±0.3 fold; n=5) and eNOS (1.3±0.2 fold; n=5). In contrast, total NO (NO−2 and NO−3) was decreased after reperfusion in control experiments. Myocardial infarct size was decreased [43±2% of the area at risk for infarction; n=6] by APC as compared to control experiments (57±1%; n=6). 2, 4-Diamino-6-hydroxypyrimidine decreased total NO production at baseline (221±25 and 175±31 pmol/mg protein at baseline in control and APC groups, respectively), abolished isoflurane-induced increases in NO at reperfusion, and prevented reductions of myocardial infarct size by APC (60±2%; n=6). Conclusions APC favorably modulated a NO biosynthetic pathway by upregulating GTPCH-1 and eNOS, and this action contributed to protection of myocardium against ischemia and reperfusion injury. PMID:26192027

  5. Resveratrol Mitigates Rat Retinal Ischemic Injury: The Roles of Matrix Metalloproteinase-9, Inducible Nitric Oxide, and Heme Oxygenase-1

    PubMed Central

    Liu, Xiao-Qian; Wu, Bing-Jhih; Pan, Wynn H.T.; Liu, Jorn-Hon; Chen, Mi-Mi; Chao, Fang-Ping

    2013-01-01

    Abstract Purpose Retinal ischemia-associated ocular disorders, such as retinal occlusive disorders, neovascular age-related macular degeneration, proliferative diabetic retinopathy, and glaucoma are vision-threatening. In this study, we examined whether and by what mechanisms resveratrol, a polyphenol found in red wine, is able to protect against retinal ischemia/reperfusion injury. Methods In vivo rat retinal ischemia was induced by high intraocular pressure (HIOP), namely, 120 mmHg for 60 min. The mechanism and management was evaluated by electroretinogram (ERG) b-wave amplitudes measurement, immunohistochemistry, and real-time polymerase chain reaction. Results The HIOP-induced retinal ischemic changes were characterized by a decrease in ERG b-wave amplitudes, a loss of choline acetyltransferase immunolabeling of amacrine cell bodies/neuronal processes, and increased vimentin immunoreactivity, which is a marker of Müller cells, together with upregulation of matrix metalloproteinase-9 (MMP-9), heme oxygenase-1 (HO-1), and inducible nitric oxide (iNOS), and downregulation of Thy-1, both at the mRNA level. The detrimental effects due to the ischemia were concentration-dependent (weaker effect at 0.05 nmole) and/or significantly (at 0.5 nmole) altered when resveratrol was applied 15 min before or after retina ischemia. Conclusion This study supports the hypothesis that resveratrol may be able to protect the retina against ischemia by downregulation of MMP-9 and iNOS, and upregulation of HO-1. PMID:23075401

  6. Ultratrace level determination and quantitative analysis of kidney injury biomarkers in patient samples attained by zinc oxide nanorods.

    PubMed

    Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E; Wang, Weiwei; Reeves, W Brian; Hahm, Jong-in

    2016-02-28

    Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification

  7. Role of sulphated polysaccharides from Sargassum Wightii in Cyclosporine A-induced oxidative liver injury in rats

    PubMed Central

    Josephine, Anthony; Nithya, Kalaiselvam; Amudha, Ganapathy; Veena, Coothan Kandaswamy; Preetha, Sreenivasan P; Varalakshmi, Palaninathan

    2008-01-01

    Background Seaweeds or marine algae have long been made up a key part of the Asian diet, and as an antioxidant, sulphated polysaccharides have piqued the interest of many researchers as one of the ocean's greatest treasures. The present investigation suggests the therapeutic potential of sulphated polysaccharides from marine brown algae "Sargassum wightii" in Cyclosporine A (CsA)- induced liver injury. CsA is a potent immunosuppressive agent used in the field of organ transplantations and various autoimmune disorders. However, hepatotoxicity due to CsA remains to be one of the major clinical challenges. Methods The effect of sulphated polysaccharides on CsA-induced hepatotoxicity was studied in adult male albino rats of Wistar strain, and the animals were randomized into four groups with six rats in each. Group I served as vehicle control. Group II rats were given CsA at a dosage of 25 mg/kg body weight, orally for 21 days. Group III rats were given sulphated polysaccharides at a dosage of 5 mg/kg body weight, subcutaneously for 21 days. Group IV rats were given sulphated polysaccharides simultaneously along with CsA, as mentioned in Group II for 21 days. Results CsA provoked hepatotoxicity was evident from the decreased activities of hepatic marker enzymes. A significant rise in the level of oxidants, along with a striking decline in both the enzymic and non-enzymic antioxidants, marks the severity of oxidative stress in CsA-induced rats. This in turn led to enhanced levels of lipid peroxidation, 8-hydroxy-2-deoxy guanosine and protein carbonyls, along with a decrease in ATPase activities and alterations in lipid profile. Histopathological changes also strongly support the above aberrations. However, concomitant treatment with sulphated polysaccharides restored the above deformities to near control and prevented the morphological alterations significantly. Conclusion Thus, the present study highlights that sulphated polysaccharides can act therapeutically against

  8. [Role of estrogen in male reproduction].

    PubMed

    Pan, Yi-Qing; Xu, Chen

    2005-11-01

    Estrogen plays an essential role in male reproduction. In human and other mammalians, a number of tissues express aromatase and hence synthesize estrogen. ERs and aromatase are present at all developmental stages of the male reproductive organs in many mammalian species. Estrogen is important in different aspects in male reproductive physiology, including its effects on germ cells, Sertoli cells, Leydig cells and epididymal functions.

  9. Protective effects of probiotic Lactobacillus casei Zhang against endotoxin- and d-galactosamine-induced liver injury in rats via anti-oxidative and anti-inflammatory capacities.

    PubMed

    Wang, Yuzhen; Li, Yunxu; Xie, Jiming; Zhang, Yong; Wang, Jinling; Sun, Xiaolin; Zhang, Heping

    2013-01-01

    Lactobacillus casei Zhang (LcZ) has been recently isolated from the traditional Mongolian beverage koumiss and has a set of favorable probiotic properties, including aciduricity, bile resistance and ability to colonize the gastrointestinal tract. We have previously reported the anti-oxidative properties of LcZ in the hyperlipidemic rats. In this study, the hepatoprotective effects of LcZ against lipopolysaccharide (LPS) and d-galactosamine (D-GalN)-induced liver injury were investigated. We found that pretreatment with LcZ significantly improved survival of rats challenged with LPS/D-GalN. In addition, pretreatment with LcZ significantly decreased alanine transaminase (ALT) and aspartate aminotransferase (AST) levels in LPS/D-GalN-challenged rats, which were accompanied by diminished liver injuries, reduced malondialdehyde (MDA) content and increased superoxide dismutase (SOD) activity in liver homogenates. Pretreatment with LcZ also markedly reduced LPS/D-GalN-induced production of hepatic nitric oxide (NO), activation of inducible nitric oxide synthase (iNOS) and expression of tumor necrosis factor-α (TNF-α). Furthermore, hepatic toll-like receptor 4 (TLR4) mRNA and protein levels, the phosphorylation of I-κB and translocation of nuclear factor κB (NF-κB) were significantly down-regulated by pretreatment with LcZ. These results suggest that pretreatment with LcZ protects against LPS/D-GalN-induced liver injury in rats via its anti-oxidative and anti-inflammatory capacities. The hepatoprotective effects of LcZ are associated with an inhibition of TLR4 expression and TLR4 signaling. PMID:23146349

  10. Prodigiosin inhibits gp91(phox) and iNOS expression to protect mice against the oxidative/nitrosative brain injury induced by hypoxia-ischemia.

    PubMed

    Chang, Chia-Che; Wang, Yea-Hwey; Chern, Chang-Ming; Liou, Kuo-Tong; Hou, Yu-Chang; Peng, Yu-Ta; Shen, Yuh-Chiang

    2011-11-15

    This study aimed to explore the mechanisms by which prodigiosin protects against hypoxia-induced oxidative/nitrosative brain injury induced by middle cerebral artery occlusion/reperfusion (MCAo/r) injury in mice. Hypoxia in vitro was modeled using oxygen-glucose deprivation (OGD) followed by reoxygenation of BV-2 microglial cells. Our results showed that treatment of mice that have undergone MCAo/r injury with prodigiosin (10 and 100μg/kg, i.v.) at 1h after hypoxia ameliorated MCAo/r-induced oxidative/nitrosative stress, brain infarction, and neurological deficits in the mice, and enhanced their survival rate. MCAo/r induced a remarkable production in the mouse brains of reactive oxygen species (ROS) and a significant increase in protein nitrosylation; this primarily resulted from enhanced expression of NADPH oxidase 2 (gp91(phox)), inducible nitric oxide synthase (iNOS), and the infiltration of CD11b leukocytes due to breakdown of blood-brain barrier (BBB) by activation of nuclear factor-kappa B (NF-κB). All these changes were significantly diminished by prodigiosin. In BV-2 cells, OGD induced ROS and nitric oxide production by up-regulating gp91(phox) and iNOS via activation of the NF-κB pathway, and these changes were suppressed by prodigiosin. In conclusion, our results indicate that prodigiosin reduces gp91(phox) and iNOS expression possibly by impairing NF-κB activation. This compromises the activation of microglial and/or inflammatory cells, which then, in turn, mediates prodigiosin's protective effect in