Science.gov

Sample records for oxidative kinetic resolution

  1. Biocatalytic Dynamic Kinetic Resolution for the Synthesis of Atropisomeric Biaryl N-Oxide Lewis Base Catalysts.

    PubMed

    Staniland, Samantha; Adams, Ralph W; McDouall, Joseph J W; Maffucci, Irene; Contini, Alessandro; Grainger, Damian M; Turner, Nicholas J; Clayden, Jonathan

    2016-08-26

    Atropisomeric biaryl pyridine and isoquinoline N-oxides were synthesized enantioselectively by dynamic kinetic resolution (DKR) of rapidly racemizing precursors exhibiting free bond rotation. The DKR was achieved by ketoreductase (KRED) catalyzed reduction of an aldehyde to form a configurationally stable atropisomeric alcohol, with the substantial increase in rotational barrier arising from the loss of a bonding interaction between the N-oxide and the aldehyde. Use of different KREDs allowed either the M or P enantiomer to be synthesized in excellent enantiopurity. The enantioenriched biaryl N-oxide compounds catalyze the asymmetric allylation of benzaldehyde derivatives with allyltrichlorosilane.

  2. Use of a palladium(II)-catalyzed oxidative kinetic resolution in synthetic efforts toward bielschowskysin.

    PubMed

    Meyer, Michael E; Phillips, John H; Ferreira, Eric M; Stoltz, Brian M

    2013-09-09

    Progress toward the cyclobutane core of bielshowskysin is reported. The core was thought to arise from a cyclopropane intermediate via a furan-mediated cyclopropane fragmentation, followed by a 1,4-Michael addition. The synthesis of the cyclopropane intermediate utilizes a Suzuki coupling reaction, an esterification with 2-diazoacetoacetic acid, and a copper catalyzed cyclopropanation. An alcohol intermediate within the synthetic route was obtained in high enantiopurity via a highly selective palladium(II)-catalyzed oxidative kinetic resolution (OKR).

  3. Polyoxometalate complexes for oxidative kinetic resolution of secondary alcohols: unique effects of chiral environment, immobilization and aggregation.

    PubMed

    Shi, Lei; Wang, Yizhan; Li, Bao; Wu, Lixin

    2014-06-28

    In this paper, the chiral surfactants bearing two long alkyl chains with hydroxyl groups at their terminals were synthesized and employed to encapsulate a catalytically efficient polyoxometalate through electrostatic interaction. The obtained chiral surfactant-encapsulated polyoxometalate complexes, in which a defined chiral microenvironment surrounds the inorganic cluster, were covalently immobilized into the silica matrix via a sol-gel process. Kinetic resolution of racemic aromatic alcohols was selected as the model reaction to evaluate the chiral supramolecular hybrid catalysts. Up to 89% enantiomeric excess was obtained by varying the reaction conditions. Importantly, the change of loading values of the chiral surfactant-encapsulated polyoxometalates leads to mutative inner microstructures ranging from uniform dispersion to subsequent formation of nanocrystalline domains in the silica matrix. Such a structural evolution differentiates the density and stability of the chiral microenvironment, resulting in a regular change of enantioselectivity of the prepared asymmetric catalysts. Moreover, the fixation of the chiral microenvironment surrounding the polyoxometalates by covalent immobilization was proved to have a promoting effect on enantioselectivity. The present research uncovers the unique effect of immobilization on the kinetic resolution. The strategy helps to understand the influencing factors of enantioselectivity, and provides a convenient and efficient approach for the construction of supramolecular asymmetric catalysts based on chiral surfactant-encapsulated polyoxometalate complexes.

  4. Structural Features and Reactivity of (sparteine)PdCl2: A Model for Selectivity in the Oxidative Kinetic Resolution of Secondary Alcohols

    PubMed Central

    Trend, Raissa M.; Stoltz, Brian M.

    2009-01-01

    The chiral ligand (−)-sparteine and PdCl2 catalyze the enantioselective oxidation of secondary alcohols to ketones and thus effect a kinetic resolution. The structural features of sparteine that led to the selectivity observed in the reaction were not clear. Substitution experiments with pyridine derivatives and structural studies of the complexes generated were carried out on (sparteine)PdCl2 that indicate the C1 symmetry of (−)-sparteine is essential to the location of substitution at the metal center. Palladium alkoxides were synthesized from secondary alcohols that are relevant steric models for the kinetic resolution. The solid state structures of the alkoxides also confirmed the results from the pyridine derivative substitution studies. A model for enantioinduction was developed with C1 symmetry and Cl− as key features. Further studies of the diastereomers of (−)-sparteine, (−)-α-iso- and (+)-β-isosparteine in the kinetic resolution showed that these C2-symmetric counterparts are inferior ligands in this stereoablative reaction.1 PMID:18975867

  5. Oxidative desulfurization: kinetic modelling.

    PubMed

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  6. Thermal oxidation kinetics of germanium

    NASA Astrophysics Data System (ADS)

    Wang, X.; Nishimura, T.; Yajima, T.; Toriumi, A.

    2017-07-01

    Thermal oxidation kinetics of Ge was investigated by the 18O tracing study and re-oxidation experiments of the SiO2/GeO2 stacked oxide-layer. The results suggest that Ge oxidation kinetics is completely different from that expected from the Deal-Grove model and that Ge is oxidized by GeO2 on Ge instead of O2 at the interface. This oxidation process forms large amounts of oxygen vacancies in GeO2, which facilitate the diffusion of oxygen atoms in GeO2. This means that oxygen atoms diffuse through GeO2 with an exchange type of process. Based on experimental results, a possible kinetics for Ge oxidation is discussed.

  7. Origin of stereocontrol in guanidine-bisurea bifunctional organocatalyst that promotes α-hydroxylation of tetralone-derived β-ketoesters: asymmetric synthesis of β- and γ-substituted tetralone derivatives via organocatalytic oxidative kinetic resolution.

    PubMed

    Odagi, Minami; Furukori, Kota; Yamamoto, Yoshiharu; Sato, Makoto; Iida, Keisuke; Yamanaka, Masahiro; Nagasawa, Kazuo

    2015-02-11

    The mechanism of asymmetric α-hydroxylation of tetralone-derived β-ketoesters with guanidine-bisurea bifunctional organocatalyst in the presence of cumene hydroperoxide (CHP) was examined by means of DFT calculations to understand the origin of the stereocontrol in the reaction. The identified transition-state model was utilized to design an enantioselective synthesis of β- or γ-substituted tetralones by catalytic oxidative kinetic resolution reaction of tetralone-derived β-ketoesters. This kinetic resolution reaction proceeded with high selectivity, and selectivity factors (s value) of up to 99 were obtained. The potential utility of this oxidative kinetic resolution method for synthesis of natural products was confirmed by applying it to achieve an enantioselective synthesis of (+)-linoxepin (13) from β-substituted tetralone rac-7 in only six steps.

  8. Multivariate curve resolution applied to kinetic-spectroscopic data matrices: Dye determination in foods by means of enzymatic oxidation.

    PubMed

    Boeris, Valeria; Arancibia, Juan A; Olivieri, Alejandro C

    2017-07-01

    In this work, the combination of chemometric techniques with kinetic-spectroscopic data allowed quantifying two dyes (tartrazine and carminic acid) in complex matrices as mustard, ketchup, asparagus soup powder, pumpkin soup powder, plum jam and orange-strawberry juice. Quantitative analysis was performed without the use of tedious sample pretreatment, due to the achievement of the second-order advantage. The results obtained showed an improvement in simplicity, speed and cost with respect to usual separation techniques, allowing to properly quantifying these dyes obtaining limits of detection below 0.6mgL(-1). In addition, to the best of our knowledge, is the first time that kinetic-spectroscopic data are obtained from the action of laccase for analytical purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Oxidation kinetics of polycrystalline silicon

    SciTech Connect

    Demirlioglu, E.K.

    1989-01-01

    Polysilicon continues to find applications in integrated circuits, both as a substrate for devices and as an actual device component. Polysilicon oxides are particularly important in the fabrication of memory devices such as EPROMs and EEPROMs. In studies of polysilicon oxidation kinetics, it has been observed that undoped and p-type polysilicon both oxidize in a manner similar to <110>-oriented single-crystal silicon. The data in the literature on n-type polysilicon oxidation, however, are limited, have been obtained under different experimental conditions, and often report contradictory results. The oxidation kinetics of doped polysilicon in dry O{sub 2} are examined at several phosphorus concentrations in the 800 to 1000{degree}C range. The oxidation rate of doped polysilicon is found to be slower than that of similarly doped <111>-oriented single-crystal silicon at dopant concentrations below the solid-solubility limit. The similarities and differences between doped polysilicon and single-crystal silicon oxidation are explained on the basis of a previously proposed parallel-oxidation model.

  10. Oxidation kinetics of aluminum diboride

    SciTech Connect

    Whittaker, Michael L.; Sohn, H.Y.; Cutler, Raymond A.

    2013-11-15

    The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time

  11. Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/alpha-Fe(2)O(3) composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck.

    PubMed

    Zhong, Diane K; Gamelin, Daniel R

    2010-03-31

    A cobalt-phosphate water oxidation catalyst ("Co-Pi") has been electrodeposited onto mesostructured alpha-Fe(2)O(3) photoanodes. The photoelectrochemical properties of the resulting composite photoanodes were optimized for solar water oxidation under frontside illumination in pH 8 electrolytes. A kinetic bottleneck limiting the performance of such photoanodes was identified and shown to be largely overcome by more sparse deposition of Co-Pi onto the alpha-Fe(2)O(3). Relative to alpha-Fe(2)O(3) photoanodes, a sustained 5-fold enhancement in the photocurrent density and O(2) evolution rate was observed at +1.0 V vs RHE with the Co-Pi/alpha-Fe(2)O(3) composite photoanodes. These results demonstrate that integration of this promising water oxidation catalyst with a photon-absorbing substrate can provide a substantial reduction in the external power needed to drive the catalyst's electrolysis chemistry.

  12. Kinetics of Supercritical Water Oxidation

    DTIC Science & Technology

    2007-11-02

    Donald R. Hardesty April 1 - June 30,1995 Project description: This project consists of experiments and theoretical modeling designed to improv...Washington. D.C., 4/95. D.R. Hardesty , "Kinetic Mechanisms of Supercritical Water Oxidation" presented at the FY95 In Progress Review. 5/95 Ft...McLean, 8300 MS9051 L. Rahn, 8351 MS9055 F. Tully, 8353 MS9056 G. Fisk, 8355 MS9052 D.R. Hardesty , 8361 Attn: Allendorf, S Allendorf, M

  13. Ultrahigh-performance liquid chromatography-ultraviolet absorbance detection-high-resolution-mass spectrometry combined with automated data processing for studying the kinetics of oxidative thermal degradation of thyroxine in the solid state.

    PubMed

    Neu, Volker; Bielow, Chris; Reinert, Knut; Huber, Christian G

    2014-12-05

    Levothyroxine as active pharmaceutical ingredient of formulations used for the treatment of hypothyroidism is distributed worldwide and taken by millions of people. An important issue in terms of compound stability is its capability to react with ambient oxygen, especially in case of long term compound storage at elevated temperature. In this study we demonstrate that ultrahigh-performance liquid chromatography coupled to UV spectrometry and high-resolution mass spectrometry (UHPLC-UV-HRMS) represent very useful approaches to investigate the influence of ambient oxygen on the degradation kinetics of levothyroxine in the solid state at enhanced degradation conditions. Moreover, the impurity pattern of oxidative degradation of levothyroxine is elucidated and classified with respect to degradation kinetics at different oxygen levels. Kinetic analysis of thyroxine bulk material at 100 °C reveals bi-phasic degradation kinetics with a distinct change in degradation phases dependent on the availability of oxygen. The results clearly show that contact of the bulk material to ambient oxygen is a key factor for fast compound degradation. Furthermore, the combination of time-resolved HRMS data and automated data processing is shown to allow insights into the kinetics and mechanism of impurity formation on individual compound basis. By comparing degradation profiles, four main classes of profiles linked to reaction pathways of thyroxine degradation were identifiable. Finally, we show the capability of automated data processing for the matching of different stressing conditions, in order to extract information about mechanistic similarities. As a result, degradation kinetics is influenced by factors like availability of oxygen, stressing time, or stressing temperature, while the degradation mechanisms appear to be conserved.

  14. Catalytic Parallel Kinetic Resolution under Homogeneous Conditions

    PubMed Central

    Duffey, Trisha A.; MacKay, James A.; Vedejs, Edwin

    2010-01-01

    Two complementary chiral catalysts, the phosphine 8d and the DMAP-derived ent-23b, are used simultaneously to selectively activate one of a mixture of two different achiral anhydrides as acyl donors under homogeneous conditions. The resulting activated intermediates 25 and 26 react with the racemic benzylic alcohol 5 to form enantioenriched esters (R)-24 and (S)-17 by fully catalytic parallel kinetic resolution (PKR). The aroyl ester (R)-24 is obtained with near-ideal enantioselectivity for the PKR process, but (S)-17 is contaminated by ca. 8% of the minor enantiomer (R)-17 resulting from a second pathway via formation of mixed anhydride 24 and its activation by 8d. PMID:20557113

  15. Kinetic resolution of racemic secondary alcohols catalyzed by chiral diaminodiphosphine-Ir(I) complexes.

    PubMed

    Li, Yan-Yun; Zhang, Xue-Qin; Dong, Zhen-Rong; Shen, Wei-Yi; Chen, Gui; Gao, Jing-Xing

    2006-11-23

    Chiral diaminodiphosphine-Ir(I) complexes were found to efficiently catalyze enantioselective oxidation of racemic secondary alcohols in acetone. In the presence of base, oxidative kinetic resolution of the alcohols proceeded smoothly with excellent enantioselectivity (up to 98% ee) under mild conditions. [reaction: see text].

  16. Improved Understanding of In Situ Chemical Oxidation. Technical Objective I: Contaminant Oxidation Kinetics Contaminant Oxidation Kinetics

    DTIC Science & Technology

    2009-05-01

    decomposition by several advanced oxidation processes. Chemosphere , 41, 1271-1277. 5. Bier, E.L., Singh, J., Li, Z.M., Comfort, S.D., Shea, P.J...G.M., 2001a. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. J. Hazard. Mater., 87, 171 -186. 45...oxidation by Fenton’s reagent. Chemosphere , 45, 85-90. 22. Duesterberg, C.K., Waite, T.D., 2006. Process optimization of fenton oxidation using kinetic

  17. Kinetic modeling of oxidation of antibacterial agents by manganese oxide.

    PubMed

    Zhang, Huichun; Chen, Wan-Ru; Huang, Ching-Hua

    2008-08-01

    Several groups of popular antibacterial agents (i.e., phenols, fluoroquinolones, aromatic N-oxides, and tetracyclines) were demonstrated in earlier studies to be highly susceptible to oxidation by manganese oxides, a common oxidant in soils. However, because of the high complexity, the reaction kinetics were not fully characterized. A mechanism-based kinetic model has now been developed to successfully describe the entire range of kinetic data for a total of 21 compounds of varying structural characteristics (with R2 > 0.93). The model characterizes the reaction kinetics by two independent parameters, the reaction rate constant (k) and total reactive surface sites (S(rxn)). The model fitting indicates that the reaction kinetics of antibacterials with MnO2 are controlled by either the rate of surface precursor complex formation (for tetracyclines) or by the rate of electron transfer within the precursor complex (for phenols, fluoroquinolones, and aromatic N-oxides). The effect of reactant concentration, pH, and cosolutes on the reaction kinetics was evaluated and correlated to kand S(rxn). All the trends are consistent with the proposed rate-limiting steps. This new model improves the ability to quantitatively evaluate the kinetics of oxidative transformation of organic contaminants by manganese oxides in well-defined systems.

  18. Kinetics of soot oxidation by NO2

    SciTech Connect

    Shrivastava, ManishKumar B.; Nguyen, Anh; Zheng, Zhongqing; Wu, Hao-Wei; Jung, Hee-Jung

    2010-06-15

    Modern technologies use NO2 to promote low temperature soot oxidation for diesel particulate filter regeneration. Most previous methods studied soot oxidation with NO2 using offline methods such as thermo-gravimetric analysis (TGA). In this study, the online aerosol-technique of high-temperature oxidation tandem differential mobility analysis (HTO-TDMA) is used to study kinetics of soot oxidation with NO2 under N2 environment. This method has significant advantages over previous offline methods in reducing heat and mass transfer diffusion limitations to the soot surface. Soot particles are exposed to varying temperature and NO2 concentration inside the furnace resulting from thermal decomposition of NO2 to NO. This causes soot oxidation rates to vary throughout the furnace. In this study, variations in temperatures, NO2 concentrations and particle residence times are thoroughly accounted for the first time, and soot oxidation rates are derived. Soot oxidation rate is calculated as a function of Arrhenius rate constant Asoot, activation energy Esoot, and partial pressure of NO2 PNO2 within the furnace at temperatures ranging 500- 950 C. Results suggest Asoot and Esoot values for soot oxidation with NO2 of 1.68 nm K-0.5 s-1 (Nm-2)-n and 46.5 kJ mol-1 respectively. The activation energy for soot oxidation with NO2 is significantly lower than oxidation with air. However, ppm levels of NO2 cause soot oxidation at low temperatures suggesting NO2 is a stronger oxidant than O2. This study also shows that a semi-empirical approach with just a few kinetic parameters could represent varying soot oxidation rates in a diesel engine cylinder or on a diesel particulate filter. Further studies should be directed towards understanding synergistic effects of other oxidants as O2 and H2O in addition to NO2 using the HTO-TDMA method.

  19. Kinetic Resolution of Secondary Alcohols Using Amidine-Based Catalysts

    PubMed Central

    Li, Ximin; Jiang, Hui; Uffman, Eric W.; Guo, Lei; Zhang, Yuhua; Yang, Xing; Birman, Vladimir B.

    2012-01-01

    Kinetic resolution of racemic alcohols has been traditionally achieved via enzymatic enantioselective esterification and ester hydrolysis. However, there has long been considerable interest in devising nonenzymatic alternative methods for this transformation. Amidine-Based Catalysts (ABCs), a new class of enantioselective acyl transfer catalysts developed in our group, have demonstrated, inter alia, high efficacy in the kinetic resolution of benzylic, allylic and propargylic secondary alcohols and 2-substituted cycloalkanols, and thus provide a viable alternative to enzymes. PMID:22283696

  20. High-resolution microscopy and early-stage precipitation kinetics

    NASA Astrophysics Data System (ADS)

    Haasen, P.; Wagner, R.

    1992-07-01

    Experimental work by high-resolution microscopy is summarized to check nucleation kinetics in solid/solid phase transformations in alloys; in particular, the NiAl, CuCo, and CuTi systems are discussed. Recent theoretical work makes it possible to analyze decomposition kinetics also in the more general case that nucleation, growth, and Ostwald ripening are concomitant processes.

  1. Kinetics of soot oxidation by NO2.

    PubMed

    Shrivastava, Manish; Nguyen, Anh; Zheng, Zhongqing; Wu, Hao-Wei; Jung, Heejung S

    2010-06-15

    Modern technologies use NO(2) to promote low-temperature soot oxidation for diesel particulate filter regeneration. In this study, the online aerosol technique of high-temperature oxidation tandem differential mobility analysis is used to study kinetics of soot oxidation by NO(2). Soot particles are exposed to varying temperature and NO(2) mixing ratio inside the furnace resulting from thermal decomposition of NO(2) to NO. This causes soot oxidation rates to vary throughout the furnace. Variations in temperatures and NO(2) mixing ratio are thoroughly accounted for the first time. Soot oxidation rates are calculated as a function of frequency factor A(soot), activation energy E(soot), and concentration of NO(2) within the furnace at temperatures ranging from 500 to 950 degrees C. Results suggest A(soot) and E(soot) values for soot oxidation of 2.4 x 10(-14) (nm K(-0.5) s(-1) cm(3) molecule(-1)) and 47.1 kJ mol(-1), respectively, when reaction order to NO(2) is assumed as unity. The activation energy for soot oxidation with NO(2) is significantly lower than oxidation with air. However, parts per million levels of NO(2) cause soot oxidation at low temperatures suggesting NO(2) is a stronger oxidant than O(2).

  2. Oxidation kinetics and soot formation

    NASA Technical Reports Server (NTRS)

    Glassman, I.; Brezinsky, K.

    1983-01-01

    The research objective is to clarify the role of aromaticity in the soot nucleation process by determining the relative importance of phenyl radical/molecular oxygen and benzene/atomic oxygen reactions in the complex combustion of aromatic compounds. Three sets of chemical flow reactor experiments have been designed to determine the relative importance of the phenyl radical/molecular oxygen and benzene/atomic oxygen reactions. The essential elements of these experiments are 1) the use of cresols and anisole formed during the high temperature oxidation of toluene as chemical reaction indicators; 2) the in situ photolysis of molecular oxygen to provide an oxygen atom perturbation in the reacting aromatic system; and 3) the high temperature pyrolysis of phenol, the cresols and possibly anisole.

  3. Hydrolytic and aminolytic kinetic resolution of terminal bis-epoxides.

    PubMed

    Bredihhina, Jevgenia; Villo, Piret; Andersons, Kārlis; Toom, Lauri; Vares, Lauri

    2013-03-15

    Hydrolytic and aminolytic kinetic resolution of terminal bis-epoxides catalyzed by (salen)Co(III) complexes affords epoxy-diols and N-protected epoxy-amino alcohols with excellent enantio- and diastereoselectivity and good yields. An operationally simple procedure gives instant access to valuable building blocks containing two remote stereocenters in highly enantioenriched form.

  4. Optically pure bulky (hetero)arylalkyl carbinols via kinetic resolution.

    PubMed

    Hu, Bin; Meng, Meng; Fossey, John S; Mo, Weimin; Hu, Xinquan; Deng, Wei-Ping

    2011-10-14

    Planar chiral nucleophilic catalyst Fc-PIP was employed in the kinetic resolution of bulky (hetero)arylalkyl carbinols delivering unreacted alcohols with extremely high enantiomeric excess (>99.0% ees) in ideal conversions ranging from 50.4-56.7%.

  5. Enzymatic kinetic resolution of racemic ibuprofen: past, present and future.

    PubMed

    José, Carla; Toledo, María Victoria; Briand, Laura E

    2016-10-01

    This review is a journey concerning the investigations of the kinetic resolution of racemic ibuprofen for the last 20 years. The relevancy of the pharmacological uses of the S( + ) enantiomer along with its higher cost compared with racemic profen are the driving forces of a variety of scientific research studies addressing the enzymatic resolution of ibuprofen through enantiomeric esterification using lipases as biocatalysts. Lipases of fungal sources such as Candida rugosa, Rhizomucor miehei and the lipase B of Candida antarctica have been extensively studied both in homogeneous and heterogeneous (immobilized on solid supports) processes. In this context, the various alcohols and organic co-solvents frequently used in the esterification of racemic ibuprofen are summarized and discussed in this review. Moreover, recent investigations using membranes as reactors coupled with the separation of the desired product and microfluidic devices are presented. Finally, some guidelines about future perspectives regarding the technology of the kinetic resolution of profens and research niches are given.

  6. Detailed Chemical Kinetic Modeling of Cyclohexane Oxidation

    SciTech Connect

    Silke, E J; Pitz, W J; Westbrook, C K; Ribaucour, M

    2006-11-10

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of cyclohexane at both low and high temperatures. Reaction rate constant rules are developed for the low temperature combustion of cyclohexane. These rules can be used for in chemical kinetic mechanisms for other cycloalkanes. Since cyclohexane produces only one type of cyclohexyl radical, much of the low temperature chemistry of cyclohexane is described in terms of one potential energy diagram showing the reaction of cyclohexyl radical + O{sub 2} through five, six and seven membered ring transition states. The direct elimination of cyclohexene and HO{sub 2} from RO{sub 2} is included in the treatment using a modified rate constant of Cavallotti et al. Published and unpublished data from the Lille rapid compression machine, as well as jet-stirred reactor data are used to validate the mechanism. The effect of heat loss is included in the simulations, an improvement on previous studies on cyclohexane. Calculations indicated that the production of 1,2-epoxycyclohexane observed in the experiments can not be simulated based on the current understanding of low temperature chemistry. Possible 'alternative' H-atom isomerizations leading to different products from the parent O{sub 2}QOOH radical were included in the low temperature chemical kinetic mechanism and were found to play a significant role.

  7. Detailed chemical kinetic modeling of cyclohexane oxidation.

    PubMed

    Silke, Emma J; Pitz, William J; Westbrook, Charles K; Ribaucour, Marc

    2007-05-17

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of cyclohexane at both low and high temperatures. Rules for reaction rate constants are developed for the low-temperature combustion of cyclohexane. These rules can be used for in chemical kinetic mechanisms for other cycloalkanes. Because cyclohexane produces only one type of cyclohexyl radical, much of the low-temperature chemistry of cyclohexane is described in terms of one potential energy diagram showing the reaction of cyclohexyl radical with O2 through five-, six-, and seven-membered-ring transition states. The direct elimination of cyclohexene and HO2 from RO2 is included in the treatment using a modified rate constant of Cavallotti et al. (Proc. Combust. Inst. 2007, 31, 201). Published and unpublished data from the Lille rapid compression machine, as well as jet-stirred reactor data, are used to validate the mechanism. The effect of heat loss is included in the simulations, an improvement on previous studies on cyclohexane. Calculations indicated that the production of 1,2-epoxycyclohexane observed in the experiments cannot be simulated according to the current understanding of low-temperature chemistry. Possible "alternative" H-atom isomerizations leading to different products from the parent O2QOOH radical were included in the low-temperature chemical kinetic mechanism and were found to play a significant role.

  8. Kinetics of boron oxide (B/sub 6/O) oxidation

    SciTech Connect

    Makarov, V.S.; Solov'ev, N.E.; Ugai, Ya.A.

    1988-02-01

    The compounds B/sub 6/O is used in nuclear engineering, as a diffusant in semiconductor instrument making, as an abrasive for metal working, and so on. The reactivity of this substance with respect to oxygen, which is the subject of this work, is an important factor for the assessment of the scopes of practical use of B/sub 6/O. Oxidation of B/sub 6/O in air in the temperature range 760-1150/sup 0/K maximizes the conversion to the level of 0.35. In the initial stages oxidation goes in the kinetic regime, in the final, in the diffusion regime, the oxidation being influenced apparently by the high viscosity of B/sub 2/O/sub 3/.

  9. A kinetic study of lipase-catalyzed reversible kinetic resolution involving verification at miniplant-scale.

    PubMed

    Berendsen, W R; Gendrot, G; Freund, A; Reuss, M

    2006-12-05

    Lipase-catalyzed kinetic resolution of racemates is a popular method for synthesis of chiral synthons. Most of these resolutions are reversible equilibrium limited reactions. For the first time, an extensive kinetic model is proposed for kinetic resolution reactions, which takes into account the full reversibility of the reaction, substrate inhibition by an acyl donor and an acyl acceptor as well as alternative substrate inhibition by each enantiomer. For this purpose, the reversible enantioselective transesterification of (R/S)-1-methoxy-2-propanol with ethyl acetate catalyzed by Candida antarctica lipase B (CAL-B) is investigated. The detailed model presented here is valid for a wide range of substrate and product concentrations. Following model discrimination and the application of Haldane equations to reduce the degree of freedom in parameter estimation, the 11 free parameters are successfully identified. All parameters are fitted to the complete data set simultaneously. Six types of independent initial rate studies provide a solid data basis for the model. The effect of changes in substrate and product concentration on reaction kinetics is discussed. The developed model is used for simulations to study the behavior of reaction kinetics in a fixed bed reactor. The typical plot of enantiomeric excess versus conversion of substrate and product is evaluated at various initial substrate mixtures. The model is validated by comparison with experimental results obtained with a fixed bed reactor, which is part of a fully automated state-of-the-art miniplant. (c) 2006 Wiley Periodicals, Inc.

  10. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    PubMed Central

    Ebner, David C.; Bagdanoff, Jeffrey T.; Ferreira, Eric M.; McFadden, Ryan M.; Caspi, Daniel D.; Trend, Raissa M.

    2010-01-01

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (−)-sparteine as chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of base and hydrogen bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 °C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good to excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones. PMID:19904777

  11. Exploiting Enzymatic Dynamic Reductive Kinetic Resolution (DYRKR) in Stereocontrolled Synthesis

    PubMed Central

    Applegate, Gregory A.; Berkowitz, David B.

    2015-01-01

    Over the past two decades, the domains of both frontline synthetic organic chemistry and process chemistry and have seen an increase in crosstalk between asymmetric organic/organometallic approaches and enzymatic approaches to stereocontrolled synthesis. This review highlights the particularly auspicious role for dehydrogenase enzymes in this endeavor, with a focus on dynamic reductive kinetic resolutions (DYRKR) to “deracemize” building blocks, often setting two stereocenters in so doing. The scope and limitations of such dehydrogenase-mediated processes are overviewed, as are future possibilities for the evolution of enzymatic DYRKR. PMID:26622223

  12. Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution.

    PubMed

    Choi, Won Jae

    2009-08-01

    Enantiopure epoxides are high value-added synthons for the production of pharmaceuticals, agrochemicals, as well as versatile fine chemicals and have broad scope of market demand for their applications. A major challenge in conventional organic synthesis is to generate such compounds in high enantiopurity with reasonable yield. Among possible chemical and biological technologies for enantiopure epoxide preparation, enzymatic kinetic resolution has been paid much attention with respect to its high enantioselectivity. Epoxide hydrolase (EH) has shown promising characteristics for the preparation of enantiopure epoxides and vicinal diols during enantioselective hydrolysis of racemic epoxides. EH is readily available from microbial resources thus it is being employed for biohydrolysis of a variety of epoxides. Recent technical progress in EH-catalyzed enantioselective hydrolysis is summarized in terms of exploration of novel EH, its functional improvement, high throughput assay, and preparative scale resolution process.

  13. Kinetic model for phenolic compound oxidation by Fenton's reagent.

    PubMed

    De Heredia, J B; Torregrosa, J; Dominguez, J R; Peres, J A

    2001-10-01

    A kinetic model is developed for the oxidation of phenolic compounds by Fenton's reagent. In the first stage a rigorous kinetic model is applied to calculate the different kinetic rate constants for the oxidation process of p-hydroxybenzoic acid. In a second phase a competitive method is applied to calculate these kinetic constants for another 10 phenolic compounds present in agroindustrial and pulp paper wastewaters. These 10 phenolic compounds were: beta-resorcylic acid, 3-(4-hydroxyphenyl)-propionic acid, ferulic acid, protocatechuic acid, caffeic acid, p-coumaric acid, vanillic acid, syringic acid, veratric acid and 3,4,5-trimethoxybenzoic acid.

  14. IMPACT OF OXYGEN MEDIATED OXIDATIVE COUPLING ON ADSORPTION KINETICS

    EPA Science Inventory

    The presence of molecular oxygen in the test environment promotes oxidative coupling (polymer formation) of phenolic compounds on the surface of granular activated carbon (GAC). Both adsorption equilibria and adsorption kinetics are affected by these chemical reactions. Lack of...

  15. IMPACT OF OXYGEN MEDIATED OXIDATIVE COUPLING ON ADSORPTION KINETICS

    EPA Science Inventory

    The presence of molecular oxygen in the test environment promotes oxidative coupling (polymer formation) of phenolic compounds on the surface of granular activated carbon (GAC). Both adsorption equilibria and adsorption kinetics are affected by these chemical reactions. Lack of...

  16. Stereoelectronic basis for the kinetic resolution of N-heterocycles with chiral acylating reagents.

    PubMed

    Hsieh, Sheng-Ying; Wanner, Benedikt; Wheeler, Philip; Beauchemin, André M; Rovis, Tomislav; Bode, Jeffrey W

    2014-06-10

    The kinetic resolution of N-heterocycles with chiral acylating agents reveals a previously unrecognized stereoelectronic effect in amine acylation. Combined with a new achiral hydroxamate, this effect makes possible the resolution of various N-heterocycles by using easily prepared reagents. A transition-state model to rationalize the stereochemical outcome of this kinetic resolution is also proposed.

  17. Oxidation kinetics of ferrous sulfate over active carbon

    SciTech Connect

    Roennholm, M.R.; Waernaa, J.; Salmi, T.; Turunen, I.; Luoma, M.

    1999-07-01

    Catalyzed oxidation kinetics of dissolved Fe{sup 2+} ions to Fe{sup 3+} over active carbon in concentrated H{sub 2}SO{sub 4}-FeSO{sub 4} solutions was studied with isothermal and isobaric experiments carried out in a laboratory-scale pressurized autoclave. The experiments were performed at temperatures between 60 and 130 C, and the pressure of oxygen (O{sub 2}) was varied between 4 and 10 bar. The kinetic results revealed that the oxidation rate was enhanced by increasing the temperature and pressure and that the catalytic and noncatalytic oxidations proceed as parallel processes. A rate equation was obtained for the catalytic oxidation process, based on the assumption that the oxidation of Fe{sup 2+} with adsorbed oxygen is rate determining. The total oxidation rate was simulated by including a previously determined rate equation for the noncatalytic oxidation into the global model, from which the kinetic parameters of the catalytic oxidation rate were determined. A comparison of the model fit with the experimental data revealed that the proposed rate equation is applicable for the prediction of the Fe{sup 2+} oxidation kinetics in acidic ferrous sulfate solutions.

  18. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  19. General solutions for the oxidation kinetics of polymers

    SciTech Connect

    Gillen, K.T.; Clough, R.L.; Wise, J.

    1996-08-01

    The simplest general kinetic schemes applicable to the oxidation of polymers are presented, discussed and analyzed in terms of the underlying kinetic assumptions. For the classic basic autoxidation scheme (BAS), which involves three bimolecular termination steps and is applicable mainly to unstabilized polymers, typical assumptions used singly or in groups include (1) long kinetic chain length, (2) a specific ratio of the termination rate constants and (3) insensitivity to the oxygen concentration (e.g., domination by a single termination step). Steady-state solutions for the rate of oxidation are given in terms of one, two, three, or four parameters, corresponding respectively to three, two, one, or zero kinetic assumptions. The recently derived four-parameter solution predicts conditions yielding unusual dependencies of the oxidation rate on oxygen concentration and on initiation rate, as well as conditions leading to some unusual diffusion-limited oxidation profile shapes. For stabilized polymers, unimolecular termination schemes are typically more appropriate than bimolecular. Kinetics incorporating unimolecular termination reactions are shown to result in very simple oxidation expressions which have been experimentally verified for both radiation-initiated oxidation of an EPDM and thermoxidative degradation of nitrile and chloroprene elastomers.

  20. Enzyme kinetics of oxidative metabolism: cytochromes P450.

    PubMed

    Korzekwa, Ken

    2014-01-01

    The cytochrome P450 enzymes (CYPs) are the most important enzymes in the oxidative metabolism of hydrophobic drugs and other foreign compounds (xenobiotics). The versatility of these enzymes results in some unusual kinetic properties, stemming from the simultaneous interaction of multiple substrates with the CYP active site. Often, the CYPs display kinetics that deviate from standard hyperbolic saturation or inhibition kinetics. Non-Michaelis-Menten or "atypical" saturation kinetics include sigmoidal, biphasic, and substrate inhibition kinetics (see Chapter 3 ). Interactions between substrates include competitive inhibition, noncompetitive inhibition, mixed inhibition, partial inhibition, activation, and activation followed by inhibition (see Chapter 4 ). Models and equations that can result in these kinetic profiles will be presented and discussed.

  1. Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes

    PubMed Central

    2017-01-01

    The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution. PMID:28735533

  2. The kinetics of sulfation of calcium oxide

    SciTech Connect

    Sarofim, A.F.; Longwell, J.P.

    1990-03-28

    The objectives of this study are to determine the intrinsic kinetics and the product layer diffusion rate by minimizing the resistances to gas-phase pore diffusion, and eliminating complications due to pore filling. In the report, a grain model was used to introduce the various potentially rate-limiting processes. It was compared with results obtained with a distributed pore model by Bhatia Perlmutter (1981). Comparing the predicted behavior of the surface areas with conversion, it was even possible to compare experimental results with other models. The conclusion of this study was that, even thought the kinetic parameters obtained with different samples differed much more if product layer diffusion assumed rate-limiting rather than the surface reaction, the shape of the predicted curve approached the experimental findings so much better, that product layer diffusion is indeed most likely to be rate-limiting. (VC)

  3. The kinetics of sulfation of calcium oxide

    SciTech Connect

    Sarofim, A.F.; Longwell, J.P.

    1990-01-01

    The rate of sulfation of a CaO surface is rapid at first, limited by the intrinsic kinetics, but slows down with increasing conversion as a consequence of the increased resistance to diffusion through the product layer. The objectives of this study are to determine the intrinsic kinetics and the product layer diffusion pate by minimizing the resistances to gas-phase pore diffusion, and eliminating complications due to pore filling. This is achieved by the use of nonporous CaO. A wide range of particle sizes are used to change the relative importance of the regimes in which the intrinsic kinetics and product layer diffusion control. The assumption of constant product layer diffusivity can then be tested and the variables that determine this diffusivity independently studied. Information on product layer diffusion can also be obtained from studies of porous particles after the pore mouths are all plugged and a uniform surface coating is obtained. This information on diffusion rate and intrinsic reactivity can then be combined with a geometrical model to describe the rate of reaction over the entire range of conversions and is particularly useful in treating the effect of particle size on conversion history.

  4. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation

    NASA Astrophysics Data System (ADS)

    Sabourin, Justin L.

    Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications. In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions. This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and

  5. Kinetics and stoichiometry of sulfide oxidation by sewer biofilms.

    PubMed

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2005-10-01

    Oxidation of sulfide under aerobic conditions by biofilms grown on municipal wastewater in 6 identical pipe reactors was investigated. The biofilms were grown at pH 7.6 and temperatures of 20 and 25 degrees C under aerobic-anaerobic transient conditions with pulse dosing of sulfide in the bulk water. The pulse dosing of sulfide served to simulate conditions in a gravity sewer located downstream of a pressure main. During growth of the biofilms, sulfide was pulse dosed in concentrations of 0, 0.5, 2.0 and 5.0 g Sm(-3) with a frequency of 1h(-1). Based on a series of batch experiments, kinetics and stoichiometry of sulfide oxidation by the sewer biofilms was investigated and a rate equation and a stoichiometric constant proposed. Sulfide oxidation kinetics was significantly faster for biofilms grown at sulfide loadings of 0.5, 2.0 and 5.0 g Sm(-3)h(-1) than for biofilms grown in the absence of sulfide. However, the kinetics of sulfide oxidation was relatively constant for biofilms grown at sulfide loadings above 0.5 g Sm(-3)h(-1). Mass balance calculations of dissolved oxygen and sulfur compounds suggested the oxidation product to be elemental sulfur. Further oxidation of elemental sulfur could not be documented.

  6. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  7. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  8. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    ERIC Educational Resources Information Center

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  9. On the Simultaneous Iron Oxide Reduction and Carburization Kinetics

    NASA Astrophysics Data System (ADS)

    D'Abreu, Jose Carlos; Kohler, Helio Marques; Falero, Edelink Efrain Tinoco; Otaviano, Mauricio Marcos

    Nowadays the most important Direct Reduction — DR processes in shaft furnaces has to deal with carbon fines precipitation and DRI carburization issues. Based in a cooperative research program joining Catholic University (PUC-Rio) and SAMARCO Mining Co, a project dealing with pellets reduction and those two phenomena was established. This work analyzes kinetically the three reactions mentioned before, considering typical values for the operational variables temperature, flowrate, pressure and gas composition, parameters commonly used to control the DRI formation in the Reduction Zone — RZ of the shaft furnaces. From laboratories experimental results, the kinetic equations for those reactions were established and, using the superposition principle, generated a specific global kinetic model for the iron oxide reduction and the soot formation. Finally, using those experimental results and applying a planned statistical factorial analysis for the experiments, the numerical coefficients for each equation were calculated and the correlation factor determined for the proposed global kinetic equation.

  10. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    SciTech Connect

    Coloma Ribera, R. Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  11. [Kinetics on ethanethiol oxidation by potassium permanganate in drinking water].

    PubMed

    Liu, Yao; Zhang, Xiao-Jian; Dai, Ji-Sheng; Xu, Huan

    2008-05-01

    Reaction kinetics of ethanethiol oxidation with potassium permanganate in water was studied, and the effect of ethanethiol oxidation in raw water under coagulation condition has been investigated. The results showed that the oxidation reaction of ethanethiol by potassium permanganate was very efficient, the removing effect could be more than 90%. The rate of ethanethiol decomposition by potassium permanganate in aqueous solution followed second-order kinetics. When potassium permanganate was excessive, pseudo-first-order rate and concentration of potassium permanganate followed the equation: k' = 0.025 [KMnO4] - 0.008. And then, the second-order reaction rate constant was k = 0.025 L/(min x mg). The removal of ethanethiol in raw water by potassium permanganate under coagulation condition was poorer than in pure water condition, So predicted concentration of potassium permanganate was lower than real concentration.

  12. Kinetics of methane oxidation in selected mineral soils

    NASA Astrophysics Data System (ADS)

    Walkiewicz, A.; Bulak, P.; Brzeziñska, M.; Włodarczyk, T.; Polakowski, C.

    2012-10-01

    The kinetic parameters of methane oxidation in three mineral soils were measured under laboratory conditions. Incubationswere preceded by a 24-day preincubationwith 10%vol. of methane. All soils showed potential to the consumption of added methane. None of the soils, however, consumed atmospheric CH4. Methane oxidation followed the Michaelis-Menten kinetics, with relatively low values of parameters for Eutric Cambisol, while high values for Haplic Podzol, and especially for Mollic Gleysol which showed the highest methanotrophic activity and much lower affinity to methane. The high values of parameters for methane oxidation are typical for organic soils and mineral soils from landfill cover. The possibility of the involvement of nitrifying microorganisms, which inhabit the ammonia-fertilized agricultural soils should be verified.

  13. Oxidation kinetics of pentachlorophenol by manganese dioxide.

    PubMed

    Zhao, Ling; Yu, Zhiqiang; Peng, Pingán; Huang, Weilin; Feng, Shunqing; Zhou, Haiyan

    2006-11-01

    This study examined the abiotic transformation kinetics of pentachlorophenol (PCP) by manganese dioxide (MnO2) at different solution chemistry and initial concentrations of PCP and MnO2. The measured PCP transformation rates were found to be on the order of 1.07 with respect to [PCP] and 0.91 and 0.87 with respect to [MnO2] and [H+], respectively. Dissolved Mn2+ and Ca2+ as background electrolytes considerably decreased the reaction rate because of their adsorption and hence blocking of active sites on MnO2 surfaces. The dechlorination number, 0.59 chloride ions per transformed PCP after a 1-h reaction, suggests that a fraction of the transformed PCP was not dechlorinated and may be coupled directly to dimeric products. Gas chromatography/ mass spectrometry and liquid chromatography/mass spectrometry/mass spectrometry techniques were used to identify two isomeric nonachlorohydroxybiphenylethers as major products and 2,3,5,6-tetrachloro-1,4-hydroquinone and tetrachlorocatechol as minor products. Product identification suggested that the reaction may include two parallel reactions to form either dimers or 2,3,5,6-tetrachloro-1,4-hydroquinone and tetrachlorocatechol via simultaneous dehydrochlorination and hydroxylation.

  14. The kinetics of sulfation of calcium oxide

    SciTech Connect

    Sarofim, A.F.; Longwell, J.P.

    1989-01-01

    Studies of the sulfation rate behavior show an initial fast rate followed by a rate decrease. It is generally agreed that product layer diffusion limitations are the explanation for this behavior. Many investigators tried to model this observed rate change, more or less successfully. No agreement has been reached, however, as to the value of the produce layer diffusivity. Hence, in this work we want to investigate the mechanism of this process. In addition to understanding the initial kinetics, two questions will be focused on. First, we should understand what is diffusing. It appears that the driving force for this diffusion phenomenon is not first order with the SO{sub 2} concentration in the gas. This would indicate that some other, intermediary step is occurring. The second question concerns the composition of the product layer. Different conditions at the start of the reaction were observed to produce different diffusion rates at a later stage. The microscopic appearance of the product layer also appeared to be different.

  15. Oxidation of kinetically trapped thiols by protein disulfide isomerase.

    PubMed

    Walker, K W; Gilbert, H F

    1995-10-17

    The formation of a stabilized structure during oxidative protein folding can severely retard disulfide formation if the structure must be disrupted to gain access to buried cysteines. These kinetic traps can slow protein folding and disulfide bond formation to the extent that unassisted folding is too slow to be kinetically competent in the cell. Protein disulfide isomerase (PDI) facilitates the oxidation of a kinetically trapped state of RTEM-1 beta-lactamase in which two cysteines that form the single disulfide bond in the native protein are buried and approximately 500-fold less reactive than exposed cysteines. Under second-order conditions, PDI-dependent oxidation of reduced, folded beta-lactamase is 500-fold faster than GSSG-dependent oxidation. The rate difference observed between PDI and GSSG can be accounted for by the 520-fold higher kinetic reactivity of PDI as an oxidant. Noncovalent interactions between PDI (35 microM) and beta-lactamase increase the reactivity or unfolding of beta-lactamase in the steady-state by less than 3-fold. At high concentrations of PDI or alkylating agents, the reaction of beta-lactamase cysteines approaches a constant rate, limited by the spontaneous unfolding of the protein (kunfold = 0.024 +/- 0.005 min-1). PDI does not substantially increase the rate of beta-lactamase unfolding; however, once beta-lactamase spontaneously unfolds, PDI at concentrations greater than 44 +/- 4 microM, oxidizes the unfolded substrate before it can refold (kfold = 1.5 +/- 0.2 min-1).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Kinetics and mechanism of the oxidation of amaranth with hypochlorite.

    PubMed

    Nadupalli, S; Koorbanally, N; Jonnalagadda, S B

    2011-07-14

    The reaction mechanism of the oxidation of Amaranth dye (2-hydroxy-1-(4-sulfonato-1-naphthylazo) naphthalene-3,6-disulfonate) with hypochlorite under varied pH conditions was elucidated by a kinetic approach. Under excess concentration of oxidant, the reaction followed pseudo-first-order kinetics with respect to Amaranth, and the oxidation was found to occur through two competitive reactions, initiated by hypochlorite and hypochlorous acid. The reaction order with respect to both OCl(-) ion and HOCl was unity. While the latter reaction was fast, the significance of the oxidation paths depended on the relative concentration of the two oxidizing species, which was dictated by the reaction pH. The role of the H(+) ion in the reaction was established. For the hypochlorite ion and hypochlorous acid facilitated reactions, the second-order rate coefficients were 1.9 and 23.2 M(-1) s(-1), respectively. The energy parameters were E(a) = 33.7 kJ mol(-1), ΔH(‡) = 31.2 kJ mol(-1) and ΔS(‡) = -190.6 J K(-1) mol(-1) for the OCl(-) ion-driven oxidation, and E(a) = 26.9 kJ mol(-1), ΔH(‡) = 24.3 kJ mol(-1) and ΔS(‡) = -222.8 J K(-1) mol(-1) for the reaction with HOCl-initiated oxidation. The major oxidation products for both the pathways were 3,4-dihydroxy naphthalene-2,7-disulfonic sodium salt (P(1)), dichloro-1,4-naphthoquione (P(2)) and naphtha(2,3)oxirene-2, 3-dione (P(3)). On the basis of the primary salt effect and other kinetic data, the rate law for the overall reaction and probable reaction mechanism was elucidated. The proposed mechanism was validated by simulations using Simkine-2.

  17. AN EQUIVALENT ELECTRIC CIRCUIT APPROACH TO THE STUDY OF HYDROCARBON OXIDATION KINETICS.

    DTIC Science & Technology

    HYDROCARBONS, *OXIDATION), (*PROPANE, OXIDATION), (*FUEL CELLS, ELECTROCHEMISTRY), ELECTRIC DOUBLE LAYER, PLATINUM, ELECTRODES, REACTION KINETICS, ACETIC ACID , ELECTROLYTES, HALOGENATED HYDROCARBONS, FLUORINE COMPOUNDS

  18. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-20

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  19. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-17

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  20. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2008-08-15

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet-stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels. (author)

  1. Kinetics of ethylene oxide desorption from sterilized materials.

    PubMed

    Mendes, Gisela C; Brandão, Teresa R S; Silva, Cristina L M

    2013-01-01

    Ethylene oxide gas is commonly used to sterilize medical devices, and concerns about using this agent on biological systems are well-established. Medical devices sterilized by ethylene oxide must be properly aerated to remove residual gas and by-products. In this work, kinetics of ethylene oxide desorption from different sterilized materials were studied in a range of aeration temperatures. The experimental data were well-described by a Fickian diffusion mass transfer behavior, and diffusivities were estimated for two textile and two polymeric materials within the temperature range of 1.5 to 59.0 degrees C. The results will allow predictions of ethylene oxide desorption, which is a key step for the design of sterilization/aeration processes, contributing to an efficient removal of residual ethylene oxide content.

  2. Neptunium_Oxide_Precipitation_Kinetics_AJohnsen

    SciTech Connect

    Johnsen, A M; Roberts, K E; Prussin, S G

    2012-06-08

    We evaluate the proposed NpO{sub 2}{sup +}(aq)-NpO{sub 2}(cr) reduction-precipitation system at elevated temperatures to obtain primary information on the effects of temperature, ionic strength, O{sub 2} and CO{sub 2}. Experiments conducted on unfiltered solutions at 10{sup -4} M NpO{sub 2}{sup +}(aq), neutral pH, and 200 C indicated that solution colloids strongly affect precipitation kinetics. Subsequent experiments on filtered solutions at 200, 212, and 225 C showed consistent and distinctive temperature-dependent behavior at reaction times {le} 800 hours. At longer times, the 200 C experiments showed unexpected dissolution of neptunium solids, but experiments at 212 C and 225 C demonstrated quasi steady-state neptunium concentrations of 3 x 10{sup -6} M and 6 x 10{sup -6} M, respectively. Solids from a representative experiment analyzed by X-ray diffraction were consistent with NpO{sub 2}(cr). A 200 C experiment with a NaCl concentration of 0.05 M showed a dramatic increase in the rate of neptunium loss. A 200 C experiment in an argon atmosphere resulted in nearly complete loss of aqueous neptunium. Previously proposed NpO{sub 2}{sup +}(aq)-NpO{sub 2}(cr) reduction-precipitation mechanisms in the literature specified a 1:1 ratio of neptunium loss and H{sup +} production in solution over time. However, all experiments demonstrated ratios of approximately 0.4 to 0.5. Carbonate equilibria can account for only about 40% of this discrepancy, leaving an unexpected deficit in H+ production that suggests that additional chemical processes are occurring.

  3. Kinetics and spectroscopic observations of atrazine dealkylation on manganese oxides

    SciTech Connect

    Malengreau, N.; Sposito, G.; Cheney, M.A.; Crowley, D.E.

    1997-12-31

    Abiotic transformations of organic pollutants are often neglected in remediation scenarios but nonetheless can contribute significantly to detoxification. Mn oxide minerals are capable of degrading organic pollutants adsorbed to their surfaces by both redox and proton-promoted mechanisms. Concurrently with calorimetric, gas-pressure, chromatographic, and ESR methods, we used ICP, DRS, DRIFT, and FTIR spectroscopies to investigate atrazine degradation on three Mn oxides. We found that N-dealkylation can occur abiotically, leading to the formation of deethylatrazine and deisopropylatrazine. The Mn extractability after degradation of atrazine was highly dependent on the Mn oxide. Extractable Mn increased with time for cryptomelane, was constant for pyrolusite, and remained very low for birnessite. The extractable Mn is Mn(II). UV signatures of atrazine by-products were different from one another and were used to trace degradation products at the Mn oxide surface. Mechanistic interpretation of the in situ reaction kinetics and thermodynamics will be discussed.

  4. Kinetics of magnetite oxidation under non-isothermal conditions

    NASA Astrophysics Data System (ADS)

    Sardari, Aref; Alamdari, Eskandar Keshavarz; Noaparast, Mohammad; Shafaei, Sied Ziaedin

    2017-05-01

    Oxidation of magnetite concentrates, which occurs during the pellet induration process, must be deeply understood to enable the appropriate design of induration machines. In the present paper, the kinetics of the magnetite oxidation reaction was studied. Primary samples were obtained from the Gol-e-Gohar iron ore deposit. Magnetic separation and flotation decreased the sulfur content in the samples to be approximately 0.1wt%. Thermogravimetric analysis was used to measure mass changes during the oxidation of magnetite and, consequently, the conversion values. The aim of this study was to use isoconversional methods to calculate the kinetic parameters. The Coats-Redfern method was also used to obtain the activation energy. Thermogravimetric analyses were run at three different heating rates. The Coats-Redfern results were too ambiguous for a meaningful interpretation. In the case of the isoconversional method, however, the mean activation energy and pre-exponential factor of the oxidation reaction were obtained as 67.55 kJ and 15.32 × 108 min-1, respectively. Such a large activation energy implies that temperature strongly affects the reaction rate. The oxidation reaction exhibits a true multi-step nature that is predominantly controlled by chemical reaction and diffusion mechanisms.

  5. Oxidation characteristics of gasoline direct-injection (GDI) engine soot: Catalytic effects of ash and modified kinetic correlation

    SciTech Connect

    Choi, Seungmok; Seong, Heeje

    2015-03-02

    In this paper, experimental analyses are conducted into the GDI soot oxidation characteristics as dependent on engine operating conditions. Soot is sampled at various engine operating conditions of a commercial 2.4 L GDI engine with a naturally aspirated, homogeneous, and stoichiometric operation strategy. The oxidation reactivity, ash composition, and carbon nanostructure of the GDI soot samples are analyzed using thermogravimetric analysis (TGA), scanning electron microscope–energy-dispersive spectroscopy (SEM-EDS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. Based on the analyses, a global GDI soot oxidation mechanism is proposed which includes the effects of soluble organic fractions (SOF)/weakly bonded carbon (WBC), and three types of ash on GDI soot oxidation. The results show that GDI soot contains an order of magnitude higher ash fraction than does conventional diesel soot, and oxidation reactivity is significantly enhanced by the catalytic effects of ash, as a function of ash content in soot. A modified empirical kinetic correlation for GDI soot oxidation is suggested on the basis of the results, and the modified kinetic correlation predicts the GDI soot oxidation rate accurately for various engine operation points at wide ranges of soot conversion and temperature without modifying kinetic parameters. The kinetic parameters are determined from isothermal and non-isothermal thremogravimetric analysis (TGA) soot oxidation tests; the methods are elucidated in detail.

  6. Oxidation characteristics of gasoline direct-injection (GDI) engine soot: Catalytic effects of ash and modified kinetic correlation

    DOE PAGES

    Choi, Seungmok; Seong, Heeje

    2015-03-02

    In this paper, experimental analyses are conducted into the GDI soot oxidation characteristics as dependent on engine operating conditions. Soot is sampled at various engine operating conditions of a commercial 2.4 L GDI engine with a naturally aspirated, homogeneous, and stoichiometric operation strategy. The oxidation reactivity, ash composition, and carbon nanostructure of the GDI soot samples are analyzed using thermogravimetric analysis (TGA), scanning electron microscope–energy-dispersive spectroscopy (SEM-EDS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. Based on the analyses, a global GDI soot oxidation mechanism is proposed which includes the effects of soluble organic fractions (SOF)/weakly bonded carbon (WBC), andmore » three types of ash on GDI soot oxidation. The results show that GDI soot contains an order of magnitude higher ash fraction than does conventional diesel soot, and oxidation reactivity is significantly enhanced by the catalytic effects of ash, as a function of ash content in soot. A modified empirical kinetic correlation for GDI soot oxidation is suggested on the basis of the results, and the modified kinetic correlation predicts the GDI soot oxidation rate accurately for various engine operation points at wide ranges of soot conversion and temperature without modifying kinetic parameters. The kinetic parameters are determined from isothermal and non-isothermal thremogravimetric analysis (TGA) soot oxidation tests; the methods are elucidated in detail.« less

  7. Aluminium-oxide wires for superconducting high kinetic inductance circuits

    NASA Astrophysics Data System (ADS)

    Rotzinger, H.; Skacel, S. T.; Pfirrmann, M.; Voss, J. N.; Münzberg, J.; Probst, S.; Bushev, P.; Weides, M. P.; Ustinov, A. V.; Mooij, J. E.

    2017-02-01

    We investigate thin films of conducting aluminium-oxide, also known as granular aluminium, as a material for superconducting high quality, high kinetic inductance circuits. The films are deposited by an optimised reactive DC magnetron sputter process and characterised using microwave measurement techniques at milli-Kelvin temperatures. We show that, by precise control of the reactive sputter conditions, a high room temperature sheet resistance and therefore high kinetic inductance at low temperatures can be obtained. For a coplanar waveguide resonator with 1.5 kΩ sheet resistance and a kinetic inductance fraction close to unity, we measure a quality factor in the order of 700 000 at 20 mK. Furthermore, we observe a sheet resistance reduction by gentle heat treatment in air. This behaviour is exploited to study the kinetic inductance change using the microwave response of a coplanar wave guide resonator. We find the correlation between the kinetic inductance and the sheet resistance to be in good agreement with theoretical expectations.

  8. The kinetic of photoreactions in zinc oxide microrods

    NASA Astrophysics Data System (ADS)

    Fiedot, M.; Rac, O.; Suchorska-Woźniak, P.; Nawrot, W.; Teterycz, H.

    2016-01-01

    Zinc oxide is the oldest sensing material used in the chemical resistive gas sensors which allow to detect many gases, such as carbon oxide, nitrogen oxides and other. This material is also widely used in medicine and daily life as antibacterial agent. For this reason this semiconductor is often synthesized on the polymer substrates such as foils and textiles. In presented results zinc oxide was deposited on the surface of poly(ethylene terephthalate) foil to obtain antibacterial material. As synthesis method chemical bath deposition was chosen. The growth of zinc oxide structures was carried out in water solution of zinc nitrate (V) and hexamethylenetetramine in 90°C during 9 h. Because antibacterial properties of ZnO are strongly depended on photocatalytic and electric properties of this semiconductor impedance spectroscopy measurements were carried out. During the measurements material was tested with and without UV light to determinate the kinetic of photoreactions in zinc oxide. Moreover the composite was analyzed by XRD diffraction and scanning electron microscope. The X-ray analysis indicated that obtained material has the structure of wurtzite which is typical of zinc oxide. SEM images showed that on the PET foil microrods of ZnO were formed. The impedance spectroscopy measurements of ZnO layer showed that in UV light significant changes in the conductivity of the material are observed.

  9. Experimental investigation on oxidation kinetics of germanium by ozone

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Zhao, Zhiqian; Xiang, Jinjuan; Wang, Wenwu; Zhang, Jing; Zhao, Chao; Ye, Tianchun

    2016-12-01

    Oxidation kinetics of germanium surface by ozone at low temperature (≤400 °C) is experimentally investigated. The growth process contains two regions: initial linear growth region and following parabolic growth region. The GeOx thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. The linear growth region contains reaction of oxygen atoms with surface bond and back bonds of outmost Ge layer. And the activation energy is experimentally estimated to be 0.06 eV. Such small activation energy indicates that the linear growth region is nearly barrier-less. The parabolic growth region starts when the oxygen atoms diffuse into back bonds of second outmost Ge layers. And the activation energy for this process is found to be 0.54 eV. Furthermore, in the ozone oxidation it is not O3 molecules but O radicals that go through the GeOx film.

  10. Oxidation kinetics of CVD silicon carbide and silicon nitride

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.

    1992-01-01

    The long-term oxidation behavior of pure, monolithic CVD SiC and Si3N4 is studied, and the isothermal oxidation kinetics of these two materials are obtained for the case of 100 hrs at 1200-1500 C in flowing oxygen. Estimates are made of lifetimes at the various temperatures investigated. Parabolic rate constants for SiC are within an order of magnitude of shorter exposure time values reported in the literature. The resulting silica scales are in the form of cristobalite, with cracks visible after exposure. The oxidation protection afforded by silica for these materials is adequate for long service times under isothermal conditions in 1-atm dry oxygen.

  11. Arsenate adsorption on ruthenium oxides: A spectroscopic and kinetic investigation

    SciTech Connect

    Luxton, Todd P.; Eick, Matthew J.; Scheckel, Kirk G.

    2008-12-08

    Arsenate adsorption on amorphous (RuO{sub 2} {center_dot} 1.1H{sub 2}O) and crystalline (RuO{sub 2}) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was used to determine the local coordination environment of adsorbed arsenate. Additionally, pressure-jump (p-jump) relaxation spectroscopy was used to investigate the kinetics of arsenate adsorption/desorption on ruthenium oxides. Chemical relaxations resulting from the induced pressure change were monitored via electrical conductivity detection. EXAFS data were collected for two initial arsenate solution concentrations, 3 and 33 mM at pH 5. The collected spectra indicated a similar coordination environment for arsenate adsorbed to RuO{sub 2} {center_dot} 1.1H{sub 2}O for both arsenate concentrations. In contrast the EXAFS spectra of RuO{sub 2} indicated differences in the local coordination environments for the crystalline material with increasing arsenate concentration. Data analysis indicated that both mono- and bidentate surfaces complexes were present on both RuO{sub 2} {center_dot} 1.1H{sub 2}O and RuO{sub 2}. Relaxation spectra from the pressure-jump experiments of both ruthenium oxides resulted in a double relaxation event. Based on the relaxation spectra, a two step reaction mechanism for arsenate adsorption is proposed resulting in the formation of a bidentate surface complex. Analysis of the kinetic and spectroscopic data suggested that while there were two relaxation events, arsenate adsorbed to ruthenium oxide surfaces through both mono- and bidentate surface complexes.

  12. Oxidation kinetics of antibiotics during water treatment with potassium permanganate.

    PubMed

    Hu, Lanhua; Martin, Heather M; Strathmann, Timothy J

    2010-08-15

    The ubiquitous occurrence of antibiotics in aquatic environments raises concerns about potential adverse effects on aquatic ecology and human health, including the promotion of increased antibiotic resistance. This study examined the oxidation of three widely detected antibiotics (ciprofloxacin, lincomycin, and trimethoprim) by potassium permanganate [KMnO(4); Mn(VII)]. Reaction kinetics were described by second-order rate laws, with apparent second-order rate constants (k(2)) at pH 7 and 25 degrees C in the order of 0.61 +/- 0.02 M(-1) s(-1) (ciprofloxacin) < 1.6 +/- 0.1 M(-1) s(-1) (trimethoprim) < 3.6 +/- 0.1 M(-1) s(-1) (lincomycin). Arrhenius temperature dependence was observed with apparent activation energies (E(a)) ranging from 49 kJ mol(-1) (trimethoprim) to 68 kJ mol(-1) (lincomycin). Rates of lincomycin and trimethoprim oxidation exhibited marked pH dependences, whereas pH had only a small effect on rates of ciprofloxacin oxidation. The effects of pH were quantitatively described by considering parallel reactions between KMnO(4) and individual acid-base species of the target antibiotics. Predictions from a kinetic model that included temperature, KMnO(4) dosage, pH, and source water oxidant demand as input parameters agreed reasonably well with measurements of trimethoprim and lincomycin oxidation in six drinking water utility sources. Although Mn(VII) reactivity with the antibiotics was lower than that reported for ozone and free chlorine, its high selectivity and stability suggests a promising oxidant for treating sensitive micropollutants in organic-rich matrices (e.g., wastewater).

  13. Kinetic Modeling of Oxidative Coagulation for Arsenic Removal

    SciTech Connect

    Kim, Jin-Wook; Kramer, Timothy A.

    2004-03-31

    A model of oxidative coagulation consisting of Fenton's reagent (Fe(II)/H2O2 at pH 7.0) was established. The optimum condition was found when the mole ratio of As(III):H2O2:Fe(II)=1:15:20. In this optimum condition, all of Fe(II) was converted to HFO (am-Fe(OH)3) and precipitated to be used as the oxidized arsenic(V) adsorbent and particle coagulant. Two sorption models consisting of a surface complexation model and a kinetic model were developed and coupled. Using the coupled sorption model, the kinetics of HFO surface charge/potential during As(V) sorption was calculated. Further, during arsenic sorption, the colloid stability kinetics resulting from the perikinetic coagulation mechanism was calculated by considering interparticle forces. Colloid surface potential was decreased from 60 mv to 12 mv in proportion to the amount of arsenic adsorbed onto HFO and this surface potential directly affected the colloid stability (collision efficiency).

  14. Oxidation Kinetics of Cast TiAl3

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Humphrey, D. L.

    1992-01-01

    The isothermal oxidation kinetics of the TiAl3 compound over a wide temperature range is documented, and these rates are related to exclusive alpha-Al2O3 scale growth. The specific weight change vs time curves are shown. Two abnormalities are immediately apparent. One is that a rapid initial uptake of oxygen occurs at times less than 5 h, followed by a lower oxidation rate at longer times, for tests at 900 C and below. The other is that the final weight changes for the 700, 800, and 900 C tests are not in the sequence expected with respect to temperature. Isothermal oxidation of drop cast TiAl above 1000 C was found to exhibit parabolic oxidation controlled by protective alpha-Al2O3 scale formation. TiAl is the only phase in the binary Ti-Al system that forms exclusive scales of alpha-Al2O3 in isothermal oxidation. High anomalous rates at short times and at temperatures below 1000 C resulted from the internal oxidation of a second phase of aluminum.

  15. Oxidation Kinetics of Cast TiAl3

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Humphrey, D. L.

    1992-01-01

    The isothermal oxidation kinetics of the TiAl3 compound over a wide temperature range is documented, and these rates are related to exclusive alpha-Al2O3 scale growth. The specific weight change vs time curves are shown. Two abnormalities are immediately apparent. One is that a rapid initial uptake of oxygen occurs at times less than 5 h, followed by a lower oxidation rate at longer times, for tests at 900 C and below. The other is that the final weight changes for the 700, 800, and 900 C tests are not in the sequence expected with respect to temperature. Isothermal oxidation of drop cast TiAl above 1000 C was found to exhibit parabolic oxidation controlled by protective alpha-Al2O3 scale formation. TiAl is the only phase in the binary Ti-Al system that forms exclusive scales of alpha-Al2O3 in isothermal oxidation. High anomalous rates at short times and at temperatures below 1000 C resulted from the internal oxidation of a second phase of aluminum.

  16. Advances in Stereoconvergent Catalysis from 2005 to 2015: Transition-Metal-Mediated Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations.

    PubMed

    Bhat, Vikram; Welin, Eric R; Guo, Xuelei; Stoltz, Brian M

    2017-03-08

    Stereoconvergent catalysis is an important subset of asymmetric synthesis that encompasses stereoablative transformations, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Initially, only enzymes were known to catalyze dynamic kinetic processes, but recently various synthetic catalysts have been developed. This Review summarizes major advances in nonenzymatic, transition-metal-promoted dynamic asymmetric transformations reported between 2005 and 2015.

  17. Kinetic Energy from Supernova Feedback in High-resolution Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Bryan, Greg L.; Hummels, Cameron; Ostriker, Jeremiah P.

    2015-08-01

    We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (˜10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 109 M⊙ dwarf halo. We find that in high-density media (≳50 cm-3) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.

  18. KINETIC ENERGY FROM SUPERNOVA FEEDBACK IN HIGH-RESOLUTION GALAXY SIMULATIONS

    SciTech Connect

    Simpson, Christine M.; Bryan, Greg L.; Ostriker, Jeremiah P.; Hummels, Cameron

    2015-08-10

    We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (∼10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 10{sup 9} M{sub ⊙} dwarf halo. We find that in high-density media (≳50 cm{sup −3}) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.

  19. Probing the oxidation kinetics of small permalloy particles

    NASA Astrophysics Data System (ADS)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu; Shirolkar, Mandar M.; Li, Ming; Wang, Haiqian

    2017-02-01

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe2O3/(Ni, Fe)3O4 plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method. Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe2O3 to (Ni, Fe)3O4 induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed.

  20. Nitrogen metabolism and kinetics of ammonia-oxidizing archaea.

    PubMed

    Martens-Habbena, Willm; Stahl, David A

    2011-01-01

    The discovery of ammonia-oxidizing mesophilic and thermophilic Group I archaea changed the century-old paradigm that aerobic ammonia oxidation is solely mediated by two small clades of Beta- and Gammaproteobacteria. Group I archaea are extremely diverse and ubiquitous in marine and terrestrial environments, accounting for 20-30% of the microbial plankton in the global oceans. Recent studies indicated that many of these organisms carry putative ammonia monooxygenase genes and are more abundant than ammonia-oxidizing bacteria in most natural environments suggesting a potentially significant role in the nitrogen cycle. The isolation of Nitrosopumilus maritimus strain SCM1 provided the first direct evidence that Group I archaea indeed gain energy from ammonia oxidation. To characterize the physiology of this archaeal nitrifier, we developed a respirometry setup particularly suited for activity measurements in dilute microbial cultures with extremely low oxygen uptake rates. Here, we describe the setup and review the kinetic experiments conducted with N. maritimus and other nitrifying microorganisms. These experiments demonstrated that N. maritimus is adapted to grow on ammonia concentrations found in oligotrophic open ocean environments, far below the survival threshold of ammonia-oxidizing bacteria. The described setup and experimental procedures should facilitate physiological studies on other nitrifying archaea and oligotrophic microorganisms in general. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Method to compensate the dispersion of kinetic energy resolution in a velocity map imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lan, Pengfei; Feng, Zhengpeng; Zhang, Qingbin; Lu, Peixiang

    2014-10-01

    Here we present a novel method to improve the kinetic energy resolution of a velocity map imaging(VMI) spectrometer. The main modifications, compared to the original design of Eppink and Parker (1997 Rev. Sci. Instrum. 68 3477), are two additional grid electrodes. One of the electrodes is a grounded grid and the other is an arc-shaped grid with negative voltages (or positive voltages for an ions spectrometer). The arc-shaped electrode is axially symmetrical around the spectrometer axis. The field constructed by the two electrodes is to compensate the dispersion of the ‘v’-shaped energy resolution. Simulations by SIMION and reconstructions by the basis set expansion Abel transform method show that the kinetic energy resolution can be improved drastically by our new method. Furthermore, the accuracy in the determination of the kinetic energy of ion/electrons remains unchanged with respect to the original design.

  2. Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides.

    PubMed

    Nielsen, Lars P C; Stevenson, Christian P; Blackmond, Donna G; Jacobsen, Eric N

    2004-02-11

    The mechanism of the hydrolytic kinetic resolution (HKR) of terminal epoxides was investigated by kinetic analysis using reaction calorimetry. The chiral (salen)Co-X complex (X = OAc, OTs, Cl) undergoes irreversible conversion to (salen)Co-OH during the course of the HKR and thus serves as both precatalyst and cocatalyst in a cooperative bimetallic catalytic mechanism. This insight led to the identification of more active catalysts for the HKR of synthetically useful terminal epoxides.

  3. Iron oxidation kinetics and autotrophic bacteria in acidified environments

    SciTech Connect

    Barry, R.C.

    1993-01-01

    Iron oxidation in the presence of lake sediment collected from an acidic alpine lake was three orders of magnitude faster than in filtered lakewater without sediment. When kinetic rates in the presence of sediment were normalized on a surface area basis, they fell within a narrow range, and the assumption of a first order dependence of rate on surface area was supported. The relative influence on heterogeneous rate of ferrous iron oxidation of the five metal oxides studied can be ranked SiO[sub 2] [approx] Al[sub 2]O[sub 3] [much lt] Fe[sub 2] O[sub 3] [approx] MnO[sub 2] [approx] TiO[sub 2], with a difference of three orders of magnitude separating the aluminum and iron oxides. The rate constants on a surface area basis were, respectively, 1.8 [times] 10[sup 10], 4.6 [times] 10[sup 10], 1.4 [times] 10[sup 13], 2.3 [times] 10[sup 13] and 5.3 [times] 10[sup 13]M[sup [minus]2] atm[sup [minus]1] sec[sup [minus]1]m[sup [minus]2]. Studies at low oxygen concentrations suggested that at low pO[sub 2] oxygenation may not be first order with respect to oxygen concentration. Biological processes were found to enhance oxidation kinetics by two orders of magnitude on a surface area basis in comparison with a gamma irradiated control. Oxidation rate in the presence of irradiated sediment was in turn approximately 130 times greater than for oxidation in deionized water. The importance of biological activity in environments exhibiting photoreduction of iron was further studied by development of a polyclonal antibody test for the detection of the iron oxidizing autotroph Thiobacillus ferrooxidans. T. ferrooxidans was found in the Snake River and its tributaries in the Colorado Rocky mountains. Tests for T. ferrooxidans in samples collected at Lake Cristallina, Canton Ticino, Switzerland and McDonalds Branch, Lebanon State Forest, New Jersey were negative.

  4. Kinetics of wet air oxidation (WAO) of alcaloide factory wastewater.

    PubMed

    Kunukcu, Y Kaçar

    2005-01-01

    Wet air oxidation (WAO) of Afyon alcaloide factory wastewater, a typical high strength industrial wastewater, was carried out. The process was performed in a specifically designed titanium bubble reactor at temperatures in the range of 140-160 degrees C. The kinetics of WAO of alcaloide factory wastewater was modeled by assuming two distinct steps. The rates of destruction were measured with respect to reduction in COD. The oxidation reaction was found to be first order with respect to COD concentration and also second order with respect to oxygen concentration in both steps. The values of activation energies were found to be in the range of 4.93 x 10(4)-7.85 x 10(4) kJ/kmol.

  5. Preparation of passion fruit-typical 2-alkyl ester enantiomers via lipase-catalyzed kinetic resolution.

    PubMed

    Strohalm, Hedwig; Dold, Susanne; Pendzialek, Kathrin; Weiher, Monika; Engel, Karl-Heinz

    2010-05-26

    The preparation of ester enantiomers (acetates, butanoates, hexanoates and octanoates) of the secondary alcohols 2-pentanol, 2-heptanol and 2-nonanol via lipase-catalyzed kinetic resolutions was investigated. Conversion rates and stereochemical courses of esterification and hydrolysis reactions catalyzed by commercially available enzyme preparations were followed for the homologous series of these passion fruit-typical 2-alkyl esters by capillary gas chromatography using heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin as chiral stationary phase. An efficient method was developed to prepare the ester enantiomers via lipase-catalyzed esterifications: optically pure (R)-2-alkyl esters (ee > 99.9%) were obtained by esterification of the racemic alcohols with enantioselective Candida antarctica lipase B (immobilized) as catalyst. The subsequent esterification of the unreacted alcohols using lipase from Candida cylindracea yielded the optically enriched (S)-esters (ee > 81.4%). The separation of the products via liquid solid chromatography using a mixture of silica gel and aluminum oxide (basic) resulted in high chemical purities and yields (> 40 mol %).

  6. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    NASA Astrophysics Data System (ADS)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  7. Flammability and oxidation kinetics of hydrophobic silica aerogels.

    PubMed

    Li, Zhi; Cheng, Xudong; Shi, Long; He, Song; Gong, Lunlun; Li, Congcong; Zhang, Heping

    2016-12-15

    Silica aerogels (SAs) present great application prospects especially on thermal insulation, but their flammability is usually ignored. A combined study on the combustion behaviors and oxidation kinetics of hydrophobic silica aerogels prepared by ambient pressure drying (SA-apd) and supercritical drying (SA-sd) was performed by employing cone calorimeter and thermal analysis. The whole combustion process for SAs could be divided into three stages in which a fire propagation phenomenon was observed with the radial propagation velocity of 6.6-8.3cms(-1). Current investigations forcefully demonstrated that hydrophobic SAs were combustible and easy to flashover when exposed to a heat flux higher than 25kWm(-2). Compared between the two SAs, the SA-sd owned a less fire risk with presenting a less fire hazard and a lower smoke toxicity than those of SA-apd. The oxidation kinetics by Ozawa-Flynn-Wall method revealed that SA-sd had larger apparent activation energies than those of SA-apd which conformed to the thermal stability analysis by TG-DSC. Furthermore, a two-step combustion mechanism was proposed to explain the combustion behaviors of SAs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Interaction of Nitric Oxide with Catalase: Structural and Kinetic Analysis

    PubMed Central

    2011-01-01

    We present the structures of bovine catalase in its native form and complexed with ammonia and nitric oxide, obtained by X-ray crystallography. Using the NO generator 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, we were able to generate sufficiently high NO concentrations within the catalase crystals that substantial occupation was observed despite a high dissociation rate. Nitric oxide seems to be slightly bent from the heme normal that may indicate some iron(II) character in the formally ferric catalase. Microspectrophotometric investigations inline with the synchrotron X-ray beam reveal photoreduction of the central heme iron. In the cases of the native and ammonia-complexed catalase, reduction is accompanied by a relaxation phase. This is likely not the case for the catalase NO complex. The kinetics of binding of NO to catalase were investigated using NO photolyzed from N,N′-bis(carboxymethyl)-N,N′-dinitroso-p-phenylenediamine using an assay that combines catalase with myoglobin binding kinetics. The off rate is 1.5 s–1. Implications for catalase function are discussed. PMID:21524057

  9. Resolution of the spectral technique in kinetic modeling

    SciTech Connect

    Kuo, Chaincy; Reutter, Bryan W.; Huesman, Ronald H.

    2001-02-17

    Physiologic systems can be represented by compartmental models which describe the uptake of radio-labeled tracers from blood to tissue and their subsequent washout. Arterial and venous time-activity curves from isolated heart experiments are analyzed using spectral analysis, in which the impulse response function is represented by a sum of decaying exponentials. Resolution and uniqueness tests are conducted by synthesizing isolated heart data with predefined compartmental models, adding noise, and applying the spectral analysis technique. Venous time-activity curves are generated by convolving a typical arterial input function with the predefined spectrum. The coefficients of a set of decaying exponential basis functions are determined using a non-negative least squares algorithm, and results are compared with the predefined spectrum. The uniqueness of spectral method solutions is investigated by computing model covariance matrices, using error propagation and prior knowledge of noise distributions. Coupling between model parameters is illustrated with correlation matrices.

  10. A kinetic study of methanol oxidation in supercritical water

    SciTech Connect

    Anitescu, G.; Zhang, Z.; Tavlarides, L.L.

    1999-06-01

    The oxidation rate of methanol in supercritical water at 253 bar and temperatures between 673 and 773 K is investigated using an isothermal, isobaric plug-flow tubular reactor and GC/FID and GC/TCD chromatographic methods. Experiments are conducted at a nominal methanol feed concentration of 0.88 mol % (1.53 wt %) using H{sub 2}O{sub 2} as an initial oxidant. In some experiments, the O{sub 2}/MeOH molar ratios are varied from 1.5 to 3.0 and show that the rate of methanol oxidation is independent of the oxygen initial feed concentration. Overall first-order rate constants calculated from the data lead to Arrhenius parameters of A = 10{sup 11.8} s{sup {minus}1} and E{sub a} = 178 kJ/mol (42.5 kcal/mol). The identified reaction products are mainly CO and CO{sub 2}. The temporal variation of the CO yield exhibits a maximum at temperatures of 723 and 748 K, whereas the CO{sub 2} yield increases monotonically over the experimental range of residence time (3--50 s). The experimental data are consistent with a set of consecutive first-order reactions CH{sub 3}OH {yields} CO {yields} CO{sub 2}. The global rate-controlling step in the complete oxidation of methanol is the conversion of CO to CO{sub 2}. The first-order rate constants calculated for CO oxidation to CO{sub 2} lead to A = 10{sup 10.8} s{sup {minus}1} and E{sub a} = 172 kJ/mol (41.0 kcal/mol). Kinetics of this system may be useful to study supercritical water oxidation (SCWO) of polychlorinated biphenyls (PCBs) dissolved in methanol.

  11. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.

    PubMed

    Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas

    2017-07-19

    Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.

  12. Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids.

    PubMed

    Kreituss, Imants; Bode, Jeffrey W

    2016-12-20

    The preparation of enantioenriched chiral compounds by kinetic resolution dates back to the laboratories of Louis Pasteur in the middle of the 19th century. Unlike asymmetric synthesis, this process can always deliver enantiopure material (ee > 99%) if the reactions are allowed to proceed to sufficient conversion and the selectivity of the process is not unity (s > 1). One of the most appealing and practical variants is acylative kinetic resolution, which affords easily separable reaction products, and several highly efficient enzymatic and small molecule catalysts are available. Unfortunately, this method is applicable to limited substrate classes such as alcohols and primary benzylamines. This Account focuses on our work in catalytic acylative kinetic resolution of saturated N-heterocycles, a class of molecules that has been notoriously difficult to access via asymmetric synthesis. We document the development of hydroxamic acids as suitable catalysts for enantioselective acylation of amines through relay catalysis. Alongside catalyst optimization and reaction development, we present mechanistic studies and theoretical calculation accounting for the origins of selectivity and revealing the concerted nature of many amide-bond forming reactions. Immobilization of the hydroxamic acid to form a polymer supported reagent allows simplification of the experimental setup, improvement in product purification, and extension of the substrate scope. The kinetic resolutions are operationally straight forward: reactions proceed at room temperature and open to air conditions, without generation of difficult-to-remove side products. This was utilized to achieve decagram scale resolution of antimalarial drug mefloquine to prepare more than 50 g of (+)-erythro-meflqouine (er > 99:1) from the racemate. The immobilized quasienantiomeric acyl hydroxamic acid reagents were also exploited for a rare practical implementation of parallel kinetic resolution that affords both enantiomers of

  13. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS

    NASA Astrophysics Data System (ADS)

    Yardley, Sean S.; Moore, Katie L.; Ni, Na; Wei, Jang Fei; Lyon, Stuart; Preuss, Michael; Lozano-Perez, Sergio; Grovenor, Chris R. M.

    2013-11-01

    High resolution secondary ion mass spectrometry (SIMS) analysis has been used to study the oxidation mechanisms when commercial low tin ZIRLO™Low tin ZIRLO™ is a trademark of Westinghouse Electric Company LLC in the United States and may be registered in other countries throughout the world. Unauthorized use is strictly prohibited.1 and Zircaloy 4 materials are exposed to corroding environments containing both 18O and 2H isotopes. Clear evidence has been shown for different characteristic distributions of 18O before and after the kinetic transitions, and this behaviour has been correlated with the development of porosity in the oxide which allows the corroding medium to penetrate locally to the metal/oxide interface.

  14. Oxidation kinetics of YBa 2Cu 3O 7-γ thin films in different oxidizing ambients

    NASA Astrophysics Data System (ADS)

    Gupta, Arunava

    1993-02-01

    The effectiveness of different oxidizer gases (O, O 2, N 2O and NO 2) for the post-growth oxidation of YBa 2Cu 3O 7-γ (YBCO) thin films is investigated. In particular, the oxidation process in the presence of atomic and molecular oxygen is analyzed based on a simple kinetic model involving oxygen adsorption, desorption, and interface transfer steps. It is argued that the high oxidation capability of atomic O is a result of its direct adsorption with very high sticking probability. As a result, the thermodynamic stability range of YBCO at a particular temperature is shifted to significantly lower pressures in an atomic O plasma. On the basis of the known surface decomposition characteristics of N 2O and NO 2, the possible oxidation behavior of YBCO films in the presence of these gases is also discussed.

  15. Highly efficient asymmetric reduction of arylpropionic aldehydes by horse liver alcohol dehydrogenase through dynamic kinetic resolution.

    PubMed

    Giacomini, Daria; Galletti, Paola; Quintavalla, Arianna; Gucciardo, Gabriele; Paradisi, Francesca

    2007-10-21

    The enantioselective synthesis of (2S)-2-phenylpropanol and (2S)-2-(4-iso-butylphenyl)propanol ((S)-Ibuprofenol) has been achieved by means of Horse Liver Alcohol Dehydrogenase (HLADH) in buffered aqueous solution or buffered organic solvent mixtures; under the reaction conditions, a dynamic kinetic resolution (DKR) process was realized with good reaction yields and enantiomeric ratios.

  16. Kinetic resolution of alkyne-substituted quaternary oxindoles via copper catalysed azide-alkyne cycloadditions.

    PubMed

    Brittain, William D G; Buckley, Benjamin R; Fossey, John S

    2015-12-18

    The synthesis and kinetic resolution of quaternary oxindoles through copper catalysed azide-alkyne cycloadditions is presented. Selectivity factors (s) up to 22.1 ± 0.5 are reported. Enantioenriched alkynes and triazoles were obtained in ≥80% enantiomeric excess (e.e.).

  17. Kinetic resolution of racemic carboxylic acids through asymmetric protolactonization promoted by chiral phosphonous acid diester.

    PubMed

    Sakuma, Masayuki; Sakakura, Akira; Ishihara, Kazuaki

    2013-06-07

    Chiral phosphonium salts induce the kinetic resolution of racemic α-substituted unsaturated carboxylic acids through asymmetric protolactonization. Both the lactones and the recovered carboxylic acids are obtained with high enantioselectivities and high S (= kfast/kslow) values. Asymmetric protolactonization also leads to the desymmetrization of achiral carboxylic acids. Notably, chiral phosphonous acid diester not only induced the enantioselectivity but also promoted protolactonization.

  18. Lipase-Mediated Kinetic Resolution: An Introductory Approach to Practical Biocatalysis

    ERIC Educational Resources Information Center

    Bandeira, Pamela T.; Thomas, Juliana C.; de Oliveira, Alfredo R. M.; Piovan, Leandro

    2017-01-01

    An experimental protocol that provides an excellent way to discuss concepts at the crossroads of organic chemistry and biochemistry employing biocatalysis is presented. By evaluating several reaction parameters (enzyme source, organic solvent, and acyl donor), it was possible to conduct an enzymatic kinetic resolution experiment using…

  19. Kinetic resolution: a powerful tool for the synthesis of planar-chiral ferrocenes.

    PubMed

    Alba, Andrea-Nekane R; Rios, Ramon

    2009-11-20

    Since the serendipitous discovery of ferrocene by Pauson and Kealy in 1951, it has become one of the most important structures in Organic Chemistry. Lately, kinetic resolution has emerged as a useful tool for the synthesis of planar chiral ferrocenes. This review aims to cover and discuss the development of this topic.

  20. Synthesis and chiroptical properties of ferrocene-[4]-helicenequinones: kinetic resolution of a planar-chiral diene.

    PubMed

    Latorre, Alfonso; Urbano, Antonio; Carreño, M Carmen

    2011-07-28

    Both enantiomers of ferrocene [4]-helicenequinone 6, showing planar and helical chiralities, have been synthesized with very high optical purities using, as the key step, a kinetic resolution process between planar-chiral racemic ferrocene diene 2 and enantiopure sulfinyl benzoquinone (S)-3.

  1. Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: kinetics and oxidation products.

    PubMed

    Yahya, Muna Sh; Oturan, Nihal; El Kacemi, Kacem; El Karbane, Miloud; Aravindakumar, C T; Oturan, Mehmet A

    2014-12-01

    Oxidative degradation of the antimicrobial agent ciprofloxacin hydrochloride (CIP) has been investigated using electro-Fenton (EF) treatment with a constant current in the range 60-500 mA. The process generates highly oxidant species OH in situ via electrochemically monitored Fenton reaction. The EF experiments were performed using cells with a carbon felt cathode and Pt anode. Effect of applied current and catalyst concentration on the kinetics of oxidative degradation and mineralization efficiency have been investigated. Degradation of CIP followed pseudo-first order reaction kinetics. The rate constant of the oxidation of CIP by OH has been determined to be (1.01 ± 0.14) × 10(10) M(-1) s(-1) by using competitive kinetics method. An optimum current of 400 mA and a catalyst concentration of Fe(2+) at 0.1mM are found to be optimal for an effective degradation of CIP under our operating conditions. A remarkably high degree of mineralization (>94%) was obtained at 6h of treatment under these conditions. A number of stable intermediate products have been identified using HPLC and LC-MS/MS analyses. Based on the identified reaction intermediates, a plausible reaction pathway was proposed for the mineralization process. The high degree of mineralization obtained in this work highlights the potential application of EF process in the efficient removal of fluoroquinolone based drugs in aqueous medium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Kinetic studies on the cupric ion oxidation of sheep hemoglobin.

    PubMed

    Brittain, T; Ivanetich, K M

    1980-11-01

    The oxidation of sheep hemoglobin, in both the oxygenated and deoxygenated forms, by cuprous ions have been studied by spectrophotometric and stopped-flow techniques. Mixing of both the oxy and deoxy forms with excess Cu2+ leads to the rapid oxidation of the iron atoms of all four of the hem groups of the tetrameric protein, followed by the slow formation of hemichromes (low spin FeIII forms of hemoglobin). Stopped-flow studies show that the oxidations follow simple monophasic kinetics with second-order rate constants of 65 and 310 M-1 sec-1 for the oxy and deoxy forms, respectively. Variable temperature studies yield Arrhenius activation energies of 43 for the oxy form and 113 kJ mole-1 for the deoxy form. For each form of the protein the activation energy is very similar to the activation enthalpy. While the deoxy form is characterized by an activation energy and enthalpy that is more than twice the corresponding value in the oxy form. The activation entropies show highly significant differences being -128 e.u. and 136 e.u. at 25 degrees C for the oxy and deoxy forms, respectively.

  3. Kinetic modeling of antimony(III) oxidation and sorption in soils.

    PubMed

    Cai, Yongbing; Mi, Yuting; Zhang, Hua

    2016-10-05

    Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model.

  4. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  5. Non-enzymatic dynamic kinetic resolution of secondary aryl alcohols: planar chiral ferrocene and ruthenium catalysts in cooperation.

    PubMed

    Díaz-Álvarez, Alba E; Mesas-Sánchez, Laura; Dinér, Peter

    2013-01-07

    "Ruth" helps iron! A novel method for the non-enzymatic dynamic kinetic resolution (DKR) of secondary aryl alcohols by the use of the planar chiral ferrocene derivative (+)-1 in combination with the ruthenium racemization catalyst 2 yields acetylated alcohols in high enantioselectivity and yield. This development opens opportunities for new developments in the field of non-enzymatic dynamic kinetic resolution.

  6. Chiral recyclable dimeric and polymeric Cr(III) salen complexes catalyzed aminolytic kinetic resolution of trans-aromatic epoxides under microwave irradiation.

    PubMed

    Kureshy, Rukhsana I; Prathap, K Jeya; Singh, Surendra; Agrawal, Santosh; Khan, Noor-Ul H; Abdi, Sayed H R; Jasra, Raksh V

    2007-11-01

    Aminolytic kinetic resolution (AKR) of trans-stilbene oxide and trans-beta-methyl styrene oxide proceeded smoothly under microwave irradiation using chiral dimeric and polymeric Cr(III) salen complexes as efficient catalysts, giving regio-, diastereo-, and enantioselective anti-beta-amino alcohols in high yields (49%) and chiral purity (ee up to 94%) in case of 4-methylaniline within 2 min. The kinetic resolution system is approximately five times faster than traditional oil bath heating at 70 degrees C and 420 times faster than the reaction conducted at room temperature with concomitant recovery of respective chirally enriched epoxides (ee, 92%) in excellent yields (up to 48%). The catalyst 1 worked well in terms of enantioselectivity than the catalyst 2, but both the catalysts were easily recovered and reused five times with the retention of its efficiency.

  7. Port wine oxidation management: a multiparametric kinetic approach.

    PubMed

    Martins, Rui Costa; Monforte, Ana Rita; Silva Ferreira, António

    2013-06-05

    Port wine is a flagship fortified wine of Portugal, which undergoes a particularly long aging period, developing a dynamic sensory profile over time, responsible for several wine categories, which is dependent upon the type of aging (bottle or barrel). Therefore, the quality of the product is dependent upon the chemical mechanisms occurring during the aging process, such as oxidation or Maillard reactions. To attain the desired quality management, it is necessary to understand how technological parameters, such as temperature or oxygen exposure, affect the kinetics of the formation of key odorants, such as sotolon. There is a lack of information about the impact of the storage conditions (oxygen and temperature) on Port wine quality. In this study, the effect of these two parameters were investigated to increase the knowledge database concerning aging management of Port wines. It was found that sotolon formation is highly dependent upon oxygen and temperature. There is however a synergistic effect between these two parameters that could significantly increase the concentration. The kinetic parameters of oxygen, sotolon, and other compounds related to Port aging (cis- and trans-5-hydroxy-2-methyl-1,3-dioxan, 2-furfural, 5-hydroxy-methyl-furfural, and 5-methyl-furfural) are also reported. Kinetic models with Monte Carlo simulations, where the oxygen permeability dispersion and temperature are the parameters under evaluation, were applied. On the basis of the modeling predictions, it would seem that the temperature of a cellar would have a more significant impact on the Port wines stored in containers where the oxygen intake is higher (barrels) when compared to containers with low oxygen permeability (bottles using cork stoppers).

  8. Methane/steam reforming kinetics for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Achenbach, E.; Riensche, E.

    Experiments have been carried out to determine the kinetics of the methane/steam reforming process at anode materials of a solid oxide fuel cell. A nickel cermet was applied consisting of 80 wt.% ZrO 2 and 20 wt.% Ni. The temperature was varied from 700 to 940 °C, the CH 4 partial pressure from 0.11 to 0.33 bar, and the system pressure from 1.1 to 2.8 bar. The influence of the ratio H 2O/CH 4 was studied, in particular, by increasing this quantity from 2.6 to 8. The tests showed that, within the accuracy of the data, no effect of the H 2O partial pressure on the catalytic reforming process could be observed. Due to the high conversion rates of CH 4 at high temperatures, however, mass-transfer effects occurred, that must be taken into account when evaluating the steam-reforming data.

  9. A kinetic study of hypoxanthine oxidation by milk xanthine oxidase.

    PubMed Central

    Escribano, J; Garcia-Canovas, F; Garcia-Carmona, F

    1988-01-01

    The course of the reaction sequence hypoxanthine----xanthine----uric acid catalysed by xanthine:oxygen oxidoreductase from milk was investigated on the basis of u.v. spectra taken during the course of hypoxanthine and xanthine oxidations. It was found that xanthine accumulated in the reaction mixture when hypoxanthine was used as a substrate. The time course of the concentrations of hypoxanthine, xanthine intermediate and uric acid product was simulated numerically. The mathematical model takes into account the competition of substrate, intermediate and product and the accumulation of the intermediate at the enzyme. This type of analysis permits the kinetic parameters of the enzyme for hypoxanthine and xanthine to be obtained. PMID:3196295

  10. Kinetic characteristics of nitric oxide synthase from rat brain.

    PubMed Central

    Knowles, R G; Palacios, M; Palmer, R M; Moncada, S

    1990-01-01

    The relationship between the rate of synthesis of nitric oxide (NO) and guanylate cyclase stimulation was used to characterize the kinetics of the NO synthase from rat forebrain and of some inhibitors of this enzyme. The NO synthase had an absolute requirement for L-arginine and NADPH and did not require any other cofactors. The enzyme had a Vmax. of 42 pmol of NO formed.min-1.mg of protein-1 and a Km for L-arginine of 8.4 microM. Three analogues of L-arginine, namely NG-monomethyl-L-arginine, NG-nitro-L-arginine and NG-iminoethyl-L-ornithine inhibited the brain NO synthase. All three compounds were competitive inhibitors of the enzyme with Ki values of 0.7, 0.4 and 1.2 microM respectively. PMID:1695842

  11. Kinetics of the reaction of nitric oxide with hydrogen

    NASA Technical Reports Server (NTRS)

    Flower, W. L.; Hanson, R. K.; Kruger, C. H.

    1974-01-01

    Mixtures of NO and H2 diluted in argon or krypton were heated by incident shock waves, and the infrared emission from the fundamental vibration-rotation band of NO at 5.3 microns was used to monitor the time-varying NO concentration. The reaction kinetics were studied in the temperature range 2400-4500 K using a shock-tube technique. The decomposition of nitric oxide behind the shock was found to be modeled well by a fifteen-reaction system. A principle result of the study was the determination of the rate constant for the reaction H + NO yields N + OH, which may be the rate-limiting step for NO removal in some combustion systems. Experimental values of k sub 1 were obtained for each test through comparisons of measured and numerically predicted NO profiles.

  12. Multiphase Processing of Isoprene Oxidation Products - Kinetic and Product Studies

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Schoene, L.; Schindelka, J.; Herrmann, H.

    2010-12-01

    Isoprene represents a significant fraction of NMHC in the troposphere with recently estimated emission rates of 500-750 TgC yr-1 (1). Due to its enormous source strength, the fate of isoprene and its degradation products is important in atmospheric processes. Possible ascendancies of such oxidation processes are the regional ozone and secondary organic aerosol (SOA) formation. Some aspects of SOA formation from isoprene and its degradation products have already been studied by chamber studies (2,3). Aqueous phase oxidation processes which may occur after phase transfer of ‘early’ oxidation products are often neglected. But these processes provide a potentially important source for organic particle mass constituents such as carboxylic acids. The majority of existing aqueous phase modelling studies focus only on ‘later’ products such as methylglyoxal and oxalic acid. Yet, a recent field study reports much higher aqueous phase concentrations of some ‘earlier’ isoprene oxidation products including methacrolein (MACR) and methyl vinyl ketone (MVK) than expected (4). This indicates a possibly underestimated importance of multiphase chemical processes in the course of the isoprene oxidation as a source for the production of organic particle mass together with known ‘heterogeneous processes’ such as the direct condensation of low-volatility products from gas phase processes onto existing particle surfaces. In order to implement the isoprene multiphase chemistry in atmospheric models detailed kinetic and mechanistic studies are needed. Hence, the temperature dependence of MACR, MVK, methacrylic acid and acrylic acid exposed to NO3, SO4- and OH radicals in the aqueous phase was investigated. The measurements were performed using a laser-photolysis laser long path absorption technique. The analysis confirmed in all cases the much higher reactivity of the OH radical in comparison to SO4- and NO3 radicals. The temperature dependence is most distinct for NO3

  13. Kinetic spectrophotometric determination of certain cephalosporins using oxidized quercetin reagent

    NASA Astrophysics Data System (ADS)

    Saleh, Gamal A.; El-Shaboury, Salwa R.; Mohamed, Fardous A.; Rageh, Azza H.

    2009-09-01

    A simple, precise and accurate kinetic spectrophotometric method for determination of cefoperazone sodium, cefazolin sodium and ceftriaxone sodium in bulk and in pharmaceutical formulations has been developed. The method is based upon a kinetic investigation of the reaction of the drug with oxidized quercetin reagent at room temperature for a fixed time of 30 min. The decrease in absorbance after the addition of the drug was measured at 510 nm. The absorbance concentration plot was rectilinear over the range 80-400 μg mL -1 for all studied drugs. The concentration of the studied drugs was calculated using the corresponding calibration equation for the fixed time method. The determination of the studied drugs by initial rate, variable time and rate-constant methods was feasible with the calibration equations obtained but the fixed time method has been found to be more applicable. The analytical performance of the method, in terms of accuracy and precision, was statistically validated; the results were satisfactory. The method has been successfully applied to the determination of the studied drugs in commercial pharmaceutical formulations. Statistical comparison of the results with a well established reported method showed excellent agreement and proved that there is no significant difference in the accuracy and precision.

  14. Kinetic-dependent Killing of Oral Pathogens with Nitric Oxide

    PubMed Central

    Backlund, C.J.; Worley, B.V.; Sergesketter, A.R.

    2015-01-01

    Nitric oxide (NO)–releasing silica nanoparticles were synthesized via the co-condensation of tetramethyl orthosilicate with aminosilanes and subsequent conversion of secondary amines to N-diazeniumdiolate NO donors. A series of ~150 nm NO-releasing particles with different NO totals and release kinetics (i.e., half-lives) were achieved by altering both the identity and mol% composition of the aminosilane precursors. Independent of identical 2 h NO-release totals, enhanced antibacterial action was observed against the periodontopathogens Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis with extended NO-release kinetics at pH 7.4. Negligible bactericidal effect was observed against cariogenic Streptococcus mutans at pH 7.4, even when using NO-releasing silica particles with greater NO-release totals. However, antibacterial activity was observed against S. mutans at lower pH (6.4). This result was attributed to more rapid proton-initiated decomposition of the N-diazeniumdiolate NO donors and greater NO-release payloads. The data suggest a differential sensitivity to NO between cariogenic and periodontopathogenic bacteria with implications for the future development of NO-releasing oral care therapeutics. PMID:26078424

  15. Kinetics of Uranium Extraction from Uranium Tailings by Oxidative Leaching

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Li, Mi; Zhang, Xiaowen; Huang, Jing

    2016-07-01

    Extraction of uranium from uranium tailings by oxidative leaching with hydrogen peroxide (H2O2) was studied. The effects of various extraction factors were investigated to optimize the dissolution conditions, as well as to determine the leaching kinetic parameters. The behavior of H2O2 in the leaching process was determined through scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray diffraction analysis of leaching residues. Results suggest that H2O2 can significantly improve uranium extraction by decomposing the complex gangue structures in uranium tailings and by enhancing the reaction rate between uranium phases and the leaching agent. The extraction kinetics expression was changed from 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)-0.14903(S/L)-1.80435( R o)0.20023 e -1670.93/T t ( t ≥ 5) to 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)0.01382(S/L)-1.83275( R o)0.25763 e -1654.59/T t ( t ≥ 5) by the addition of H2O2 in the leaching process. The use of H2O2 in uranium leaching may help in extracting uranium more efficiently and rapidly from low-uranium-containing ores or tailings.

  16. Kinetic phase evolution of spinel cobalt oxide during lithiation

    SciTech Connect

    Li, Jing; He, Kai; Meng, Qingping; Li, Xin; Zhu, Yizhou; Hwang, Sooyeon; Sun, Ke; Gan, Hong; Zhu, Yimei; Mo, Yifei; Stach, Eric A.; Su, Dong

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalation reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.

  17. Kinetic phase evolution of spinel cobalt oxide during lithiation

    SciTech Connect

    Li, Jing; He, Kai; Meng, Qingping; Li, Xin; Zhu, Yizhou; Hwang, Sooyeon; Sun, Ke; Gan, Hong; Zhu, Yimei; Mo, Yifei; Stach, Eric A.; Su, Dong

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalation reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.

  18. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE PAGES

    Li, Jing; He, Kai; Meng, Qingping; ...

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  19. Effect of temperature on Candida antartica lipase B activity in the kinetic resolution of acebutolol

    NASA Astrophysics Data System (ADS)

    Rajin, Mariani; Kamaruddin, A. H.

    2016-06-01

    Thermodynamic studies of free Candida antartica lipase B in kinetic resolution of acebutolol have been carried out to characterize the temperature effects towards enzyme stability and activity. A decreased in reaction rate was observed in temperature above 40oC. Thermodynamic studies on lipase deactivation exhibited a first-order kinetic pattern. The activation and deactivation energies were 39.63 kJ/mol and 54.90 kJ/mol, respectively. The enthalpy and entropy of the lipase deactivation were found to be 52.12 kJ/mol and -0.18 kJ/mol, respectively.

  20. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  1. Modeling the kinetics of ferrous iron oxidation by monochloramine.

    PubMed

    Vikesland, Peter J; Valentine, Richard L

    2002-02-15

    The maintenance of disinfectants in distribution systems is necessary to ensure drinking water safety. Reactions with oxidizable species can however lead to undesirable disinfectant losses. Previous work has shown that the presence of Fe(II) can cause monochloramine loss in distribution system waters. This paper further examines these reactions and presents a reaction mechanism and kinetic model. The mechanism includes both aqueous-phase reactions and surface-catalyzed reactions involving the iron oxide product. In addition, it considers competitive reactions involving the amidogen radical that lead to a nonelementary stoichiometry. Using the method of initial rates, the aqueous-phase reactions were found to have first-order dependencies on Fe(II), NH2Cl, and OH- and a rate coefficient (kNH2Cl,soln) of 3.10 (+/-0.560) x 10(9) M(-2) min(-1). The surface-mediated reactions were modeled by assuming the formation of two surface species: >FeOFe+ and >FeOFeOH. Using numerical techniques, combined rate coefficients for the surface-mediated processes were determined to be 0.56 M(-3) min(-1) and 3.5 x 10(-18) M(-4) min(-1), respectively. The model was then used to examine monochloramine and Fe(II) stability under conditions similar to those observed in distribution systems. Our findings suggest the potential utility of monochloramine as an oxidant for Fe(III) removal in drinking water treatment.

  2. Fenton Oxidation Kinetics and Intermediates of Nonylphenol Ethoxylates

    PubMed Central

    Cui, Kai; Yi, Hao; Zhou, Zi-jian; Zhuo, Qiong-fang; Bing, Yong-xin; Guo, Qing-wei; Xu, Zhen-cheng

    2014-01-01

    Abstract Removal of nonylphenol ethoxylates (NPEOs) in aqueous solution by Fenton oxidation process was studied in a laboratory-scale batch reactor. Operating parameters, including initial pH temperature, hydrogen peroxide, and ferrous ion dosage, were thoroughly investigated. Maximum NPEOs reduction of 84% was achieved within 6 min, under an initial pH of 3.0, 25°C, an H2O2 dosage of 9.74×10−3 M, and a molar ratio of [H2O2]/[Fe2+] of 3. A modified pseudo-first-order kinetic model was found to well represent experimental results. Correlations of reaction rate constants and operational parameters were established based on experimental data. Results indicated that the Fenton oxidation rate and removal efficiency were more dependent on the dosage of H2O2 than Fe2+, and the apparent activation energy (ΔE) was 17.5 kJ/mol. High-performance liquid chromatography and gas chromatograph mass spectrometer analytical results indicated degradation of NPEOs obtained within the first 2 min stepwise occurred by ethoxyl (EO) unit shortening. Long-chain NPEOs mixture demonstrated a higher degradation rate than shorter-chain ones. Nonylphenol (NP), short-chain NPEOs, and NP carboxyethoxylates were identified as the primary intermediates, which were mostly further degraded. PMID:24868141

  3. Kinetics of oxytetracycline reaction with a hydrous manganese oxide.

    PubMed

    Rubert, Kennedy F; Pedersen, Joel A

    2006-12-01

    Tetracycline antibiotics comprise a class of broad spectrum antimicrobial agents finding application in human therapy, animal husbandry, aquaculture, and fruit crop production. To better understand the processes affecting these antibiotics in soils and sediments, the kinetics of oxytetracycline transformation by a hydrous manganese oxide (MnO2) were investigated as a function of reactant concentration, pH, and temperature. Oxytetracycline was rapidly degraded by MnO2. Initial reaction rates exhibited pronounced pH-dependence, increasing as pH decreased. Reaction of oxytetracycline with MnO2 was accompanied by generation of Mn(II) ions, suggesting oxidative transformation of the antibiotic. At pH 5.6, apparent reaction orders for oxytetracycline and MnO2 were 0.7 and 0.8. Reaction order with respect to H+ was 0.6 between pH 4 and 9. Initial reaction rates increased by a factor of approximately 2.4 for 10 degrees C temperature increases; the apparent activation energy (60 kJ x mol(-1)) was consistent with a surface-controlled reaction. Reactivity of tetracycline antibiotics toward MnO2 increased in the following order: rolitetracyline oxytetracycline < or =tetracycline approximately meclocycline < chlortetracycline. The initial rate of chlortetracycline degradation by MnO2 was substantially larger than that of the other tetracycline antibiotics investigated. MnO2 reactivity toward oxytetracycline decreased with time; a retarded rate equation was used to describe oxytetracycline reaction with MnO2 under declining rate conditions. This study indicates that natural manganese oxides in soils and sediments are likely to promote appreciable degradation of tetracycline antibiotics, and that reaction rates are strongly dependent on reaction time scale and solution conditions.

  4. Kinetics and Products from Heterogeneous Oxidation of Squalene with Ozone.

    PubMed

    Zhou, Shouming; Forbes, Matthew W; Abbatt, Jonathan P D

    2016-11-01

    Motivated by the importance of the heterogeneous chemistry of squalene contained within skin oil to indoor air chemistry, the surface reaction of squalene with gas-phase ozone has been investigated. Using direct analysis in real time mass spectrometry (DART-MS) to monitor squalene, the reactive uptake coefficients were determined to be (4.3 ± 2.2) × 10(-4) and (4.0 ± 2.2) × 10(-4) for ozone mixing ratios (MRO3) of 50 and 25 ppb, respectively, on squalene films deposited on glass surfaces. At an MRO3 of 25 ppb, the lifetime for oxidation was the same as that in an indoor office with an MRO3 between 22 and 32 ppb, suggesting that O3 was the dominant oxidant in this indoor setting. While the heterogeneous kinetics of squalene and O3 were independent of relative humidity (RH), the RH significantly affected the reaction products. Under dry conditions (<5% RH), in addition to several products between m/z 300 and 350, the major condensed-phase end products were levulinic acid (LLA) and succinic acid (SCA). Under humid conditions (50% RH), the major end products were 4-oxopentanal, 4-oxobutanoic acid, and LLA. The molar yields of LLA and SCA were quantified as 230 ± 43% and 110 ± 31%, respectively, under dry conditions and 91 ± 15% and <5%, respectively, at 50% RH. Moreover, high-molecular weight (molecular weight of >450 Da) products were observed under dry conditions with indications that LLA was involved in their formation. The mechanism of squalene oxidation is discussed in light of these observations, with indications of an important role played by Criegee intermediates.

  5. Kinetic study of the oxidation of n-butane on vanadium oxide supported on Al/Mg mixed oxide

    SciTech Connect

    Dejoz, A.; Vazquez, I.; Nieto, J.M.L.; Melo, F.

    1997-07-01

    The reaction kinetics of the oxidative dehydrogenation (ODH) of n-butane over vanadia supported on a heat-treated Mg/Al hydrotalcite (37.3 wt % of V{sub 2}O{sub 5}) was investigated by both linear and nonlinear regression techniques. A reaction network including the formation of butenes (1-, 2-cis-, and 2-trans-butene), butadiene, and carbon oxides by parallel and consecutive reactions, at low and high n-butane conversions, has been proposed. Langmuir-Hinshelwood (LH) models can be used as suitable models which allows reproduction of the global kinetic behavior, although differences between oxydehydrogenation and deep oxidation reactions have been observed. Thus, the formation of oxydehydrogenation products can be described by a LH equation considering a dissociative adsorption of oxygen while the formation of carbon oxides is described by a LH equation with a nondissociative adsorption of oxygen. Two different mechanisms operate on the catalyst: (i) a redox mechanism responsible of the formation of olefins and diolefins and associated to vanadium species, which is initiated by a hydrogen abstraction; (ii) a radical mechanism responsible of the formation of carbon oxides from n-butane and butenes and associated to vanadium-free sites of the support. On the other hand, the selectivity to oxydehydrogenation products increases with the reaction temperature. This catalytic performance can be explained taking into account the low reducibility of V{sup 5+}-sites and the higher apparent activation energies of the oxydehydrogenation reactions with respect to deep oxidation reactions.

  6. The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.

    PubMed

    Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang

    2016-01-01

    The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.

  7. Kinetic resolution of oxazinones: rational exploration of chemical space through the design of experiments.

    PubMed

    Renzi, Polyssena; Kronig, Christel; Carlone, Armando; Eröksüz, Serap; Berkessel, Albrecht; Bella, Marco

    2014-09-08

    The organocatalytic kinetic resolution of 4-substituted oxazinones has been optimised (selectivity factor S up to 98, chiral oxazinone ee values up to 99.6 % (1 a-g) and product ee values up to 90 % (3 a-g)) in a rational way by applying the Design of Experiments (DoE) approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biomimetic Total Synthesis of (-)-Penibruguieramine A Using Memory of Chirality and Dynamic Kinetic Resolution.

    PubMed

    Kim, Jae Hyun; Lee, Seokwoo; Kim, Sanghee

    2015-09-07

    The fully stereocontrolled total synthesis of (-)-penibruguieramine A, a naturally occurring marine pyrrolizidine alkaloid, is described in this study for the first time. The key synthetic sequence is the biomimetic aldol reaction of the proline pentaketide amide. The principles of "memory of chirality" (MOC) and "dynamic kinetic resolution" (DKR) are applied to this reaction for the asymmetric synthesis using proline as the only chiral source. A mechanistic rationale is discussed for the excellent stereochemical outcome in a protic solvent environment.

  9. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  10. Kinetic Modeling of a Heterogeneous Fenton Oxidative Treatment of Petroleum Refining Wastewater

    PubMed Central

    Basheer Hasan, Diya'uddeen; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-01-01

    The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k 2′), their final oxidation step (k 1′), and the direct conversion to endproducts step (k 3′) were 10.12, 3.78, and 0.24 min−1 for GKM; 0.98, 0.98, and nil min−1 for GLKM; and nil, nil, and >0.005 min−1 for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics. PMID:24592152

  11. Kinetics and dynamics of oxidation reactions involving an adsorbed CO species on bulk and supported platinum and copper-oxide

    SciTech Connect

    Harold, M.P.

    1991-07-01

    The proposed research is an integrated experimental and modeling study of oxidation reactions involving CO as a key player -- be it a reactant, adsorbed intermediate, and/or partial oxidation product -- in the catalytic sequence and chemistry. The reaction systems of interest in the project include CO, formaldehyde, and methanol oxidation by O{sub 2} and CO oxidation by NO, on both Pt and copper oxide catalysts. These reactions are of importance in automobile exhaust catalysis. There is a paucity of rate data in the literature for these important environmental control reactions. The goal of this research is to better understand the catalytic chemistry and kinetics of oxidations reactions involving CO as an adsorbed intermediate. Successfully meeting this goal requires an integration of basic kinetic measurements, in situ catalyst surface monitoring, kinetic modeling, and nonlinear mathematical tools.

  12. Kinetics and Products of Heterogeneous Oxidation of Erythritol and Levoglucosan in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Kessler, S. H.; Kroll, J. H.; Wilson, K. R.; Smith, J. D.

    2009-12-01

    Although organic aerosols in the atmosphere have been implicated in concerns related to both human health and global radiative forcing, they remain collectively a significant source of uncertainty in long-term predictions, in part because of the inherent chemical complexity of possible oxidation products formed from a given compound during its atmospheric lifetime. Here we study the heterogeneous oxidation of model compounds used as surrogates for biomass burning aerosol and secondary organic aerosol (SOA): levoglucosan, a frequently used tracer for biomass burning, and erythritol ((2R,3S)-butane-1,2,3,4-tetraol) an analog of the methyltetrols found in isoprene oxidation SOA. The present experiments are aimed at examining the kinetics and products of further oxidation of both compounds, in order both to explore how each compound contributes to atmospheric aerosol formation and to examine model single-component systems to determine how structural and compositional differences between compounds affect the relative paths of oxidative degradation. Particles are sent through a flow tube reactor where they are exposed to high concentrations (~1013 molecule1 s1 cm-3) of hydroxyl radicals (OH), after which the aerosols are sized and their composition analyzed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) with both electron impact (EI) and vacuum-ultraviolet (VUV) ionization techniques. Although erythritol and levoglucosan have similar second-order degradation rate constants (2.03 ± 0.20 × 10-13 and 4.7 ± 0.5 × 10-13 cm3 molecule-1 s-1, respectively), the differences between the loss of particle mass upon an equivalent amount of oxidation (80% vs 30% respectively) are much more pronounced.

  13. Kinetics of oxidation of tyrosine by a model alkoxyl radical.

    PubMed

    Folkes, Lisa K; Bartesaghi, Silvina; Trujillo, Madia; Radi, Rafael; Wardman, Peter

    2012-09-01

    Oxidation of tyrosine moieties by radicals involved in lipid peroxidation is of current interest; while a rate constant has been reported for reaction of lipid peroxyl radicals with a tyrosine model, little is known about the reaction between tyrosine and alkoxyl radicals (also intermediates in the lipid peroxidation chain reaction). In this study, the reaction between a model alkoxyl radical, the tert-butoxyl radical and tyrosine was followed using steady-state and pulse radiolysis. Acetone, a product of the β-fragmentation of the tert-butoxyl radical, was measured; the yield was reduced by the presence of tyrosine in a concentration- and pH-dependent manner. From these data, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 6 ± 1 × 10(7) M(-1) s(-1) at pH 10. Tyrosine phenoxyl radicals were also monitored directly by kinetic spectrophotometry following generation of tert-butoxyl radicals by pulse radiolysis of solutions containing tyrosine. From the yield of tyrosyl radicals (measured before they decayed) as a function of tyrosine concentration, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 7 ± 3 × 10(7) M(-1) s(-1) at pH 10 (the reaction was not observable at pH 7). We conclude that reaction involves oxidation of tyrosine phenolate rather than undissociated phenol; since the pK(a) of phenolic hydroxyl dissociation in tyrosine is ≈ 10.3, this infers a much lower rate constant, about 3 × 10(5) M(-1) s(-1), for the reaction between this alkoxyl radical and tyrosine at pH 7.4.

  14. Hydrothermal Oxidation of Fecal Sludge: Experimental Investigations and Kinetic Modeling

    PubMed Central

    2016-01-01

    Hydrothermal oxidation (HTO) provides an efficient technique to completely destroy wet organic wastes. In this study, HTO was applied to treat fecal sludge at well-defined experimental conditions. Four different kinetic models were adjusted to the obtained data. Among others, a distributed activation energy model (DAEM) was applied. A total of 33 experiments were carried out in an unstirred batch reactor with pressurized air as the oxidant at temperatures of <470 °C, oxygen-to-fuel equivalence ratios between 0 and 1.9, feed concentrations between 3.9 and 9.8 molTOC L–1 (TOC = total organic carbon), and reaction times between 86 and 1572 s. Decomposition of the fecal sludge was monitored by means of the conversion of TOC to CO2 and CO. In the presence of oxygen, ignition of the reaction was observed around 300 °C, followed by further rapid decomposition of the organic material. The TOC was completely decomposed to CO2 within 25 min at 470 °C and an oxygen-to-fuel equivalence ratio of 1.2. CO was formed as an intermediate product, and no other combustible products were found in the gas. At certain reaction conditions, the formation of unwanted coke and tarlike products occurred. The reaction temperature and oxygen-to-fuel equivalence ratio showed a significant influence on TOC conversion, while the initial TOC concentration did not. Conversion of TOC to CO2 could be well described with a first-order rate law and an activation energy of 39 kJ mol–1. PMID:28539700

  15. Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium.

    PubMed

    Nerenberg, Robert; Kawagoshi, Yasunori; Rittmann, Bruce E

    2006-10-01

    This paper provides the first kinetic parameters for a hydrogen-oxidizing perchlorate-reducing bacterium (PCRB), Dechloromonas sp. PC1. The qmax for perchlorate and chlorate were 3.1 and 6.3 mg/mgDW-day, respectively. The K for perchlorate was 0.14 mg/L, an order of magnitude lower than reported for other PCRB. The yields Y on perchlorate and chlorate were 0.23 and 0.22 mgDW/mg, respectively, and the decay constant b was 0.055/day. The growth-threshold, Smin, for perchlorate was 14 microg/L, suggesting that perchlorate cannot be reduced below this level when perchlorate is the primary electron-acceptor, although it may be possible when oxygen or nitrate is the primary acceptor. Chlorate accumulated at maximum concentrations of 0.6-4.3 mg/L in batch tests with initial perchlorate concentrations ranging from 100 to 600 mg/L. Furthermore, 50 mg/L chlorate inhibited perchlorate reduction with perchlorate at 100 mg/L. This is the first report of chlorate accumulation and inhibition for a pure culture of PCRB. These Chlorate effects are consistent with competitive inhibition between perchlorate and chlorate for the (per)chlorate reductase enzyme.

  16. The kinetics of iodide oxidation by the manganese oxide mineral birnessite

    USGS Publications Warehouse

    Fox, P.M.; Davis, J.A.; Luther, G. W.

    2009-01-01

    The kinetics of iodide (I-) and molecular iodine (I2) oxidation by the manganese oxide mineral birnessite (??-MnO2) was investigated over the pH range 4.5-6.25. I- oxidation to iodate (IO3-) proceeded as a two-step reaction through an I2 intermediate. The rate of the reaction varied with both pH and birnessite concentration, with faster oxidation occurring at lower pH and higher birnessite concentration. The disappearance of I- from solution was first order with respect to I- concentration, pH, and birnessite concentration, such that -d[I-]/dt = k[I-][H+][MnO2], where k, the third order rate constant, is equal to 1.08 ?? 0.06 ?? 107 M-2 h-1. The data are consistent with the formation of an inner sphere I- surface complex as the first step of the reaction, and the adsorption of I- exhibited significant pH dependence. Both I2, and to a lesser extent, IO3- sorbed to birnessite. The results indicate that iodine transport in mildly acidic groundwater systems may not be conservative. Because of the higher adsorption of the oxidized I species I2 and IO3-, as well as the biophilic nature of I2, redox transformations of iodine must be taken into account when predicting I transport in aquifers and watersheds.

  17. Kinetics and mechanisms of chlorine dioxide oxidation of tryptophan.

    PubMed

    Stewart, David J; Napolitano, Michael J; Bakhmutova-Albert, Ekaterina V; Margerum, Dale W

    2008-03-03

    The reactions of aqueous ClO2 (*) and tryptophan (Trp) are investigated by stopped-flow kinetics, and the products are identified by high-performance liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry and by ion chromatography. The rates of ClO2 (*) loss increase from pH 3 to 5, are essentially constant from pH 5 to 7, and increase from pH 7 to 10. The reactions are first-order in Trp with variable order in ClO2 (*). Below pH 5.0, the reactions are second- or mixed-order in [ClO2 (*)], depending on the chlorite concentration. Above pH 5.0, the reactions are first-order in [ClO2 (*)] in the absence of added chlorite. At pH 7.0, the Trp reaction with ClO2 (*) is first-order in each reactant with a second-order rate constant of 3.4 x 10(4) M(-1) s(-1) at 25.0 degrees C. In the proposed mechanism, the initial reaction is a one-electron oxidation to form a tryptophyl radical cation and chlorite ion. The radical cation deprotonates to form a neutral tryptophyl radical that combines rapidly with a second ClO 2 (*) to give an observable, short-lived adduct ( k obs = 48 s(-1)) with proposed C(H)-OClO bonding. This adduct decays to give HOCl in a three-electron oxidation. The overall reaction consumes two ClO2 (*) per Trp and forms ClO2- and HOCl. This corresponds to a four-electron oxidation. Decay of the tryptophyl-OClO adduct at pH 6.4 gives five initial products that are observed after 2 min and are separated by HPLC with elution times that vary from 4 to 17 min (with an eluent of 6.3% CH 3OH and 0.1% CH 3COOH). Each of these products is characterized by mass spectrometry and UV-vis spectroscopy. One initial product with a molecular weight of 236 decays within 47 min to yield the most stable product, N-formylkynurenine (NFK), which also has a molecular weight of 236. Other products also are observed and examined.

  18. Mechanistic aspects of metal valence change in SalenCo(III)OAc-catalyzed hydrolytic kinetic resolution of racemic epoxides.

    PubMed

    Ren, Wei-Min; Wang, Yi-Ming; Zhang, Rong; Jiang, Jing-Yang; Lu, Xiao-Bing

    2013-05-17

    The chiral SalenCo(III)OAc-catalyzed hydrolytic kinetic resolution (HKR) of racemic terminal epoxides to afford both enantioenriched epoxides and diols presents one of the most important achievements in asymmetric synthesis chemistry. Previous studies mainly focused on the development of highly efficient catalysts, while rare reports concerned the mechanistic understanding of metal valence change, associated with the formation of inactive Co(II)-Salen complex. Herein, we report the mechanistic aspects of catalyst deactivation regarding the transformation of Co(III) to Co(II) derivative in the HKR of racemic epoxides catalyzed by SalenCo(III)OAc complexes with an appended 1,5,7-triazabicyclo[4.4.0]dec-5-ene on the ligand framework by means of electrospray ionization mass spectrometry (ESI-MS). Continuous determination of transient cationic species in ESI-MS positive mode in conjunction with UV-vis spectroscopic studies at various time points provides evidence that a certain amount of SalenCo(III)OAc molecules were reduced to the corresponding Co(II) derivatives in the HKR of racemic propylene oxide or styrene oxide. To be accompanied by the reduction of Co(III) to Co(II), the resultant diols were oxidized to α-hydroxy ketones. These analyses along with some control experiments gave a mechanistic understanding of catalyst deactivation of SalenCo(III)OAc-catalyzed HKR of racemic epoxides regarding an unveiled redox reaction between Co(III)-Salen and diol, the hydrolyzed product.

  19. Kinetics and Microstructural Investigation of High-Temperature Oxidation of IN-738LC Super Alloy

    NASA Astrophysics Data System (ADS)

    Hamidi, S.; Rahimipour, M. R.; Eshraghi, M. J.; Hadavi, S. M. M.; Esfahani, H.

    2017-02-01

    The present study was carried out to investigate the kinetics and the surface chemistry of the oxide layers formed on the IN-738LC super alloy during high-temperature oxidation at 950 °C in air from 1 to 260 h. Oxidation kinetics were studied by mass gain measurement. The oxide layers were characterized by field emission scanning electron microscope, elemental distribution map, energy-dispersive spectroscopy as well as x-ray diffractometry (XRD). The oxidation kinetics followed the parabolic law. The XRD analysis revealed that the oxide scale contained mainly NiO, Ni (Cr, Al)2O4, Al2O3, TiO2 and Cr2O3. The oxide structure, from the top surface down to the substrate, was clarified by elemental map distribution studies as Ni-Ti oxides, Cr-Ti oxides, Cr2O3 oxide band, Ni-Co-Cr-W oxide and finally a blocky Al2O3 region. The oxidation scales were composed of three distinct layers of the outer and mid layers enriched by TiO2 and Cr2O3, NiCr2O4 oxide, respectively, and the innermost layer was composed of Al2O3 and matrix alloy. The depleted gamma prime layer was formed under the oxidation scales due to the impoverishment of Al and Ti which were induced by the formation of Al2O3 and TiO2.

  20. Kinetics and Microstructural Investigation of High-Temperature Oxidation of IN-738LC Super Alloy

    NASA Astrophysics Data System (ADS)

    Hamidi, S.; Rahimipour, M. R.; Eshraghi, M. J.; Hadavi, S. M. M.; Esfahani, H.

    2016-12-01

    The present study was carried out to investigate the kinetics and the surface chemistry of the oxide layers formed on the IN-738LC super alloy during high-temperature oxidation at 950 °C in air from 1 to 260 h. Oxidation kinetics were studied by mass gain measurement. The oxide layers were characterized by field emission scanning electron microscope, elemental distribution map, energy-dispersive spectroscopy as well as x-ray diffractometry (XRD). The oxidation kinetics followed the parabolic law. The XRD analysis revealed that the oxide scale contained mainly NiO, Ni (Cr, Al)2O4, Al2O3, TiO2 and Cr2O3. The oxide structure, from the top surface down to the substrate, was clarified by elemental map distribution studies as Ni-Ti oxides, Cr-Ti oxides, Cr2O3 oxide band, Ni-Co-Cr-W oxide and finally a blocky Al2O3 region. The oxidation scales were composed of three distinct layers of the outer and mid layers enriched by TiO2 and Cr2O3, NiCr2O4 oxide, respectively, and the innermost layer was composed of Al2O3 and matrix alloy. The depleted gamma prime layer was formed under the oxidation scales due to the impoverishment of Al and Ti which were induced by the formation of Al2O3 and TiO2.

  1. Microwave Assisted Enzymatic Kinetic Resolution of (±)-1-Phenyl-2-propyn-1-ol in Nonaqueous Media

    PubMed Central

    Devendran, Saravanan; Yadav, Ganapati D.

    2014-01-01

    Kinetic resolution of 1-phenyl-2-propyn-1-ol, an important chiral synthon, was studied through trans-esterification with acyl acetate to investigate synergism between microwave irradiation and enzyme catalysis. Lipases from different microbial origins were employed for the kinetic resolution of (R/S)-1-phenyl-2-propyn-1-ol, among which Candida antarctica lipase B, immobilized on acrylic resin (Novozym 435), was found to be the best catalyst in n-hexane as solvent. Vinyl acetate was the most effective among different acyl esters studied. The effect of various parameters was studied in a systematic manner. Definite synergism between microwave and enzyme was observed. The initial rate was improved around 1.28 times under microwave irradiation than conventional heating. Under optimum conditions, maximum conversion (48.78%) and high enantiomeric excess (93.25%) were obtained in 2 h. From modeling studies, it is concluded that the reaction follows the Ping-Pong bi-bi mechanism with dead end alcohol inhibition. Kinetic parameters were obtained by using nonlinear regression. This process is green, clean, and easily scalable as compared to the chemical process. PMID:24707487

  2. Lipase-catalyzed kinetic resolution of (±)-1-(2-furyl) ethanol in nonaqueous media.

    PubMed

    Devendran, Saravanan; Yadav, Ganapati D

    2014-06-01

    S-1-(2-Furyl) ethanol serves as an important chiral building block for the preparation of various natural products, fine chemicals, and is widely used in the chemical and pharmaceutical industries. In this work, lipase-catalyzed kinetic resolution of (R/S)-1-(2-furyl) ethanol using different acyl donors was investigated. Vinyl esters are good acyl donors vis-à-vis alkyl esters for kinetic resolution. Among them, vinyl acetate was found to be the best acyl donor. Different immobilized lipases such as Rhizomucor miehei lipase, Thermomyces lanuginosus lipase, and Candida antarctica lipase B were evaluated for this reaction, among which C. antarctica lipase B, immobilized on acrylic resin (Novozym 435), was found to be the best catalyst in n-heptane as solvent. The effect of various parameters was studied in a systematic manner. Maximum conversion of 47% and enantiomeric excess of the substrate (ees ) of 89% were obtained in 2 h using 5 mg of enzyme loading with an equimolar ratio of alcohol to vinyl acetate at 60 °C at a speed of 300 rpm in a batch reactor. From the analysis of progress curve and initial rate data, it was concluded that the reaction followed the ordered bi-bi mechanism with dead-end ester inhibition. Kinetic parameters were obtained by using nonlinear regression. This process is more economical, green, and easily scalable than the chemical processes. © 2014 Wiley Periodicals, Inc.

  3. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  4. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  5. Crystalline Grain Interior Configuration Affects Lithium Migration Kinetics in Li-Rich Layered Oxide.

    PubMed

    Yu, Haijun; So, Yeong-Gi; Kuwabara, Akihide; Tochigi, Eita; Shibata, Naoya; Kudo, Tetsuichi; Zhou, Haoshen; Ikuhara, Yuichi

    2016-05-11

    The electrode kinetics of Li-ion batteries, which are important for battery utilization in electric vehicles, are affected by the grain size, crystal orientation, and surface structure of electrode materials. However, the kinetic influences of the grain interior structure and element segregation are poorly understood, especially for Li-rich layered oxides with complex crystalline structures and unclear electrochemical phenomena. In this work, cross-sectional thin transmission electron microscopy specimens are "anatomized" from pristine Li1.2Mn0.567Ni0.167Co0.067O2 powders using a new argon ion slicer technique. Utilizing advanced microscopy techniques, the interior configuration of a single grain, multiple monocrystal-like domains, and nickel-segregated domain boundaries are clearly revealed; furthermore, a randomly distributed atomic-resolution Li2MnO3-like with an intergrown LiTMO2 (TM = transitional metals) "twin domain" is demonstrated to exist in each domain. Further theoretical calculations based on the Li2MnO3-like crystal domain boundary model reveal that Li(+) migration in the Li2MnO3-like structure with domain boundaries is sluggish, especially when the nickel is segregated in domain boundaries. Our work uncovers the complex configuration of the crystalline grain interior and provides a conceptual advance in our understanding of the electrochemical performance of several compounds for Li-ion batteries.

  6. Chemoenzymatic Dynamic Kinetic Resolution of Secondary Alcohols Using an Air- and Moisture-Stable Iron Racemization Catalyst.

    PubMed

    Gustafson, Karl P J; Guðmundsson, Arnar; Lewis, Kayla; Bäckvall, Jan-E

    2017-01-23

    Herein, we report on a metalloenzymatic dynamic kinetic resolution of sec-alcohols employing an iron-based racemization catalyst together with a lipase. The iron catalyst was evaluated in racemization and then used in dynamic kinetic resolution of a number of sec-alcohols to give enantiomerically pure products in good to high yields. The iron catalyst is air and moisture stable and is readily accessible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Kinetics of abiotic nitrous oxide production via oxidation of hydroxylamine by particulate metals in seawater

    NASA Astrophysics Data System (ADS)

    Cavazos, A. R.; Taillefert, M.; Glass, J. B.

    2016-12-01

    The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2­O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.

  8. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    ERIC Educational Resources Information Center

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  9. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    ERIC Educational Resources Information Center

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  10. Stereoselective synthesis of norephedrine and norpseudoephedrine by using asymmetric transfer hydrogenation accompanied by dynamic kinetic resolution.

    PubMed

    Lee, Hyeon-Kyu; Kang, Soyeong; Choi, Eun Bok

    2012-06-15

    Each of the enantiomers of both norephedrine and norpseudoephedrine were stereoselectively prepared from the common, prochiral cyclic sulfamidate imine of racemic 1-hydroxy-1-phenyl-propan-2-one by employing asymmetric transfer hydrogenation (ATH) catalyzed by the well-defined chiral Rh-complexes, (S,S)- or (R,R)-Cp*RhCl(TsDPEN), and HCO(2)H/Et(3)N as the hydrogen source. The ATH processes are carried out under mild conditions (rt, 15 min) and are accompanied by dynamic kinetic resolution.

  11. Asymmetric Synthesis of Diverse Glycolic Acid Scaffolds via Dynamic Kinetic Resolution of α-Keto Esters

    PubMed Central

    Steward, Kimberly M.; Corbett, Michael T.; Goodman, C. Guy; Johnson, Jeffrey S.

    2012-01-01

    The dynamic kinetic resolution of α-keto esters via asymmetric transfer hydrogenation has been developed as a technique for the highly stereoselective construction of structurally diverse β-substituted-α-hydroxy carboxylic acid derivatives. Through the development of a privileged m-terphenylsulfonamide for (arene)RuCl(monosulfonamide) complexes with a high affinity for selective α-keto ester reduction, excellent levels of chemo-, diastereo-, and enantiocontrol can be realized in the reduction of β-aryl- and β-chloro-α-keto esters. PMID:23186551

  12. Enantioselective Synthesis of Chiral Oxime Ethers: Desymmetrization and Dynamic Kinetic Resolution of Substituted Cyclohexanones.

    PubMed

    Nimmagadda, Sri Krishna; Mallojjala, Sharath Chandra; Woztas, Lukasz; Wheeler, Steven E; Antilla, Jon C

    2017-02-20

    Axially chiral cyclohexylidene oxime ethers exhibit unique chirality because of the restricted rotation of C=N. The first catalytic enantioselective synthesis of novel axially chiral cyclohexylidene oximes has been developed by catalytic desymmetrization of 4-substituted cyclohexanones with O-arylhydroxylamines and is catalyzed by a chiral BINOL-derived strontium phosphate with excellent yields and good enantioselectivities. In addition, chiral BINOL-derived phosphoric acid catalyzed dynamic kinetic resolution of α-substituted cyclohexanones has been performed and yields versatile intermediates in high yields and enantioselectivities.

  13. Chiral nanoporous metal-metallosalen frameworks for hydrolytic kinetic resolution of epoxides.

    PubMed

    Zhu, Chengfeng; Yuan, Guozan; Chen, Xu; Yang, Zhiwei; Cui, Yong

    2012-05-16

    Chiral nanoporous metal-organic frameworks are constructed by using dicarboxyl-functionalized chiral Ni(salen) and Co(salen) ligands. The Co(salen)-based framework is shown to be an efficient and recyclable heterogeneous catalyst for hydrolytic kinetic resolution (HKR) of racemic epoxides with up to 99.5% ee. The MOF structure brings Co(salen) units into a highly dense arrangement and close proximity that enhances bimetallic cooperative interactions, leading to improved catalytic activity and enantioselectivity in HKR compared with its homogeneous analogues, especially at low catalyst/substrate ratios.

  14. Origin of Kinetic Resolution of Hydroxy Esters through Catalytic Enantioselective Lactonization by Chiral Phosphoric Acids.

    PubMed

    Changotra, Avtar; Sunoj, Raghavan B

    2016-08-05

    Kinetic resolution is a widely used strategy for separation and enrichment of enantiomers. Using density functional theory computations, the origin of how a chiral BINOL-phosphoric acid catalyzes the selective lactonization of one of the enantiomers of α-methyl γ-hydroxy ester is identified. In a stepwise mechanism, the stereocontrolling transition state for the addition of the hydroxyl group to the si face of the ester carbonyl in the case of the S isomer exhibits a network of more effective noncovalent interactions between the substrate and the chiral catalyst.

  15. Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma

    SciTech Connect

    Han, Lihao E-mail: A.H.M.Smets@tudelft.nl; Zeman, Miro; Smets, Arno H. M. E-mail: A.H.M.Smets@tudelft.nl

    2015-05-25

    The growth mechanism of silicon nanocrystals (Si NCs) synthesized at a high rate by means of expanding thermal plasma chemical vapor deposition technique are studied in this letter. A bimodal Gaussian size distribution is revealed from the high-resolution transmission electron microscopy images, and routes to reduce the unwanted large Si NCs are discussed. Photoluminescence and Raman spectroscopies are employed to study the size-dependent quantum confinement effect, from which the average diameters of the small Si NCs are determined. The surface oxidation kinetics of Si NCs are studied using Fourier transform infrared spectroscopy and the importance of post-deposition passivation treatments of hydrogenated crystalline silicon surfaces are demonstrated.

  16. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Colantoni, I.; Cruciani, A.; Di Domizio, S.; Vignati, M.; Bellini, F.; Casali, N.; Castellano, M. G.; Coppolecchia, A.; Cosmelli, C.; Tomei, C.

    2015-08-01

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σE = 154 ± 7 eV and an (18 ± 2)% efficiency.

  17. Dynamic saturation optical microscopy: employing dark-state formation kinetics for resolution enhancement.

    PubMed

    Humpolíčková, Jana; Benda, Aleš; Macháň, Radek; Enderlein, Jörg; Hof, Martin

    2010-10-21

    Fluorescence microscopy has become one of the most rapidly developing observation techniques in the field of molecular biology, since its high sensitivity, contrast and labeling specificity together with being non-invasive fulfill the most important requirements of live cell imaging. The biggest limitation of the technique seems to be the spatial resolution which is, based on Abbe's diffraction law, restricted to some hundreds of nanometres. Recently, various approaches have been developed that overcome the limit imposed by the diffraction barrier and these methods currently lead the development in the field of fluorescence microscopy. In this contribution, we present dynamic saturation optical microscopy (DSOM)--a new technique that monitors the temporal decay of the excited singlet state due to a dark state formation. By mapping the intensity dependent decay kinetics, enhanced resolution images can be obtained. Generally, any dark state of fluorescent molecules can be employed in DSOM. Here, we focus our attention on triplet state formation.

  18. Kinetics of reduction of iron oxides using microwaves as power source

    SciTech Connect

    Gomez, I.; Aguilar, J.; Gonzalez, M.; Morales, J.

    1996-12-31

    This work deals with kinetic description of carbothermic reduction of iron oxides using microwaves as power source. Previous researches show that it is possible to conduct this kind of process successfully, but real kinetic comparisons between conventional and microwaves procedure have been presented partially. The aim of this work is to describe reduction kinetics, taking into account how the iron oxide is reduced by microwaves compared with conventional energy supply. In this study the authors used iron ore in pellet shape and dust. They found that both, pellet and dust reduction stops when it reaches approximately 40%, even at whole power.

  19. Dynamic kinetic resolution via asymmetric conjugate reduction: enantio- and diastereoselective synthesis of 2,4-dialkyl cyclopentanones.

    PubMed

    Jurkauskas, Valdas; Buchwald, Stephen L

    2002-03-27

    Herein, we report the kinetic and the dynamic kinetic resolutions of racemic 3,5-dialkyl-2-cyclopenten-1-ones. Kinetic resolution, with good selectivity factors (25-52), was achieved by conjugate reduction with catalytic CuCl/NaOt-Bu/(S)-p-tol-BINAP and stoichiometric quantities of poly(methylhydrosiloxane) (PMHS). When stoichiometric amounts of NaOt-Bu and t-BuOH were included in the reaction mixture, rapid racemization of the starting material occurred allowing for the dynamic kinetic resolution of the cyclopentenone substrates. In this process, chiral 2,4-dialkylcyclopentanones were isolated with high stereoselectivity (ee > or = 91%, dr > or = 90:10) and in high yield (> or =89%).

  20. Thermodynamic controls on the kinetics of microbial low-pH Fe(II) oxidation.

    PubMed

    Larson, Lance N; Sánchez-España, Javier; Kaley, Bradley; Sheng, Yizhi; Bibby, Kyle; Burgos, William D

    2014-08-19

    Acid mine drainage (AMD) is a major worldwide environmental threat to surface and groundwater quality. Microbial low-pH Fe(II) oxidation could be exploited for cost-effective AMD treatment; however, its use is limited because of uncertainties associated with its rate and ability to remove Fe from solution. We developed a thermodynamic-based framework to evaluate the kinetics of low-pH Fe(II) oxidation. We measured the kinetics of low-pH Fe(II) oxidation at five sites in the Appalachian Coal Basin in the US and three sites in the Iberian Pyrite Belt in Spain and found that the fastest rates of Fe(II) oxidation occurred at the sites with the lowest pH values. Thermodynamic calculations showed that the Gibbs free energy of Fe(II) oxidation (ΔG(oxidation)) was also most negative at the sites with the lowest pH values. We then conducted two series of microbial Fe(II) oxidation experiments in laboratory-scale chemostatic bioreactors operated through a series of pH values (2.1-4.2) and found the same relationships between Fe(II) oxidation kinetics, ΔG(oxidation), and pH. Conditions that favored the fastest rates of Fe(II) oxidation coincided with higher Fe(III) solubility. The solubility of Fe(III) minerals, thus plays an important role on Fe(II) oxidation kinetics. Methods to incorporate microbial low-pH Fe(II) oxidation into active and passive AMD treatment systems are discussed in the context of these findings. This study presents a simplified model that describes the relationship between free energy and microbial kinetics and should be broadly applicable to many biogeochemical systems.

  1. Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy.

    PubMed

    Lu, Yue; Geng, Jiguo; Wang, Kuan; Zhang, Wei; Ding, Wenqiang; Zhang, Zhenhua; Xie, Shaohua; Dai, Hongxing; Chen, Fu-Rong; Sui, Manling

    2017-08-22

    Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.

  2. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  3. Weibull mixture model for isoconversional kinetic analysis of biomass oxidative pyrolysis

    NASA Astrophysics Data System (ADS)

    Cai, J. M.; Chen, S. Y.

    2010-03-01

    In this work, the possibility of applying the weighted sum of three cumulative Weibull distribution functions for the fitting of the kinetic conversion data of biomass oxidative pyrolysis has been investigated. The kinetic conversion data of the thermal decomposition of olive oil solid waste in oxygen atmosphere for different heating rates have been analyzed. The results have shown that the experimental data can be perfectly reproduced by the general fitting function. Therefore, it is possible to obtain the corresponding conversion rate values of biomass oxidative pyrolysis by differentiating directly the fitted kinetic conversion data. Additionally, the logistic mixture model has been applied to the same experimental data. It can be found that the newly proposed function can provide a better fit of the data than the logistic mixture model. Based on the fitting of Weibull mixture model, the kinetic triples (E, A and f(α)) of oxidative pyrolysis of olive solid waste were obtained by means of Friedman's differential isoconversional method.

  4. Hydroxyl radical induced oxidation of theophylline in water: a kinetic and mechanistic study.

    PubMed

    Sunil Paul, M M; Aravind, U K; Pramod, G; Saha, A; Aravindakumar, C T

    2014-08-14

    Oxidative destruction and mineralization of emerging organic pollutants by hydroxyl radicals (˙OH) is a well established area of research. The possibility of generating hazardous by-products in the case of ˙OH reaction demands extensive investigations on the degradation mechanism. A combination of pulse radiolysis and steady state photolysis (H2O2/UV photolysis) followed by high resolution mass spectrometric (HRMS) analysis have been employed to explicate the kinetic and mechanistic features of the destruction of theophylline, a model pharmaceutical compound and an identified pollutant, by ˙OH in the present study. The oxidative destruction of this molecule, for intermediate product studies, was initially achieved by H2O2/UV photolysis. The transient absorption spectrum corresponding to the reaction of ˙OH with theophylline at pH 6, primarily caused by the generation of (T8-OH)˙, was characterised by an absorption band at 330 nm (k2 = (8.22 ± 0.03) × 10(9) dm(3) mol(-1) s(-1)). A significantly different spectrum (λmax: 340 nm) was observed at highly alkaline pH (10.2) due to the deprotonation of this radical (pKa∼ 10.0). Specific one electron oxidants such as sulphate radical anions (SO4˙(-)) and azide radicals (N3˙) produce the deprotonated form (T(-H)˙) of the radical cation (T˙(+)) of theophylline (pKa 3.1) with k2 values of (7.51 ± 0.04) × 10(9) dm(3) mol(-1) s(-1) and (7.61 ± 0.02) × 10(9) dm(3) mol(-1) s(-1) respectively. Conversely, oxide radicals (O˙(-)) react with theophylline via a hydrogen abstraction protocol with a rather slow k2 value of (1.95 ± 0.02) × 10(9) dm(3) mol(-1) s(-1). The transient spectral studies were complemented by the end product profile acquired by HRMS analysis. Various transformation products of theophylline induced by ˙OH were identified by this technique which include derivatives of uric acids (i, iv & v) and xanthines (ii, iii & vi). Further breakdown of the early formed product due to ˙OH attack leads to

  5. Electrochemical degradation, kinetics & performance studies of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Das, Debanjan

    Linear and Non-linear electrochemical characterization techniques and equivalent circuit modelling were carried out on miniature and sub-commercial Solid Oxide Fuel Cell (SOFC) stacks as an in-situ diagnostic approach to evaluate and analyze their performance under the presence of simulated alternative fuel conditions. The main focus of the study was to track the change in cell behavior and response live, as the cell was generating power. Electrochemical Impedance Spectroscopy (EIS) was the most important linear AC technique used for the study. The distinct effects of inorganic components usually present in hydrocarbon fuel reformates on SOFC behavior have been determined, allowing identification of possible "fingerprint" impedance behavior corresponding to specific fuel conditions and reaction mechanisms. Critical electrochemical processes and degradation mechanisms which might affect cell performance were identified and quantified. Sulfur and siloxane cause the most prominent degradation and the associated electrochemical cell parameters such as Gerisher and Warburg elements are applied respectively for better understanding of the degradation processes. Electrochemical Frequency Modulation (EFM) was applied for kinetic studies in SOFCs for the very first time for estimating the exchange current density and transfer coefficients. EFM is a non-linear in-situ electrochemical technique conceptually different from EIS and is used extensively in corrosion work, but rarely used on fuel cells till now. EFM is based on exploring information obtained from non-linear higher harmonic contributions from potential perturbations of electrochemical systems, otherwise not obtained by EIS. The baseline fuel used was 3 % humidified hydrogen with a 5-cell SOFC sub-commercial planar stack to perform the analysis. Traditional methods such as EIS and Tafel analysis were carried out at similar operating conditions to verify and correlate with the EFM data and ensure the validity of the

  6. Comparative kinetic analysis of silent and ultrasound-assisted catalytic wet peroxide oxidation of phenol.

    PubMed

    Rokhina, Ekaterina V; Repo, Eveliina; Virkutyte, Jurate

    2010-03-01

    The kinetic study of silent and ultrasound-assisted catalytic wet peroxide oxidation of phenol in water was performed to qualitatively assess the effect of ultrasound on the process kinetics. Various kinetic parameters such as the apparent kinetic rate constants, the surface utilization coefficient and activation energy of phenol oxidation over RuI(3) catalyst were investigated. Comparative analysis revealed that the use of ultrasound irradiation reduced the energy barrier of the reaction but had no impact on the reaction pathway. The activation energy for the oxidation of phenol over RuI(3) catalyst in the presence of ultrasound was found to be 13kJmol(-1), which was four times smaller in comparison to the silent oxidation process (57kJmol(-1)). Finally, 'figures-of-merit' was utilized to assess different experimental strategies such as sonolysis alone, H(2)O(2)-enhanced sonolysis and sono-catalytic oxidation of phenol in order to estimate the electric energy consumption based on the kinetic rate constants of the oxidation process.

  7. Chemism and kinetics of the oxidation of zinc-calcium oxysulfide

    NASA Astrophysics Data System (ADS)

    Gulyaeva, R. I.; Selivanov, E. N.; Mansurova, A. N.

    2013-05-01

    The sequence of phase transformations and the kinetics of the solid-phase (heating to 1273 K) oxidation of zinc-calcium oxysulfide CaZnSO with air are determined by thermodynamic, thermogravimetric, mass spectrometric, and X-ray diffraction analyses. The oxidation process is shown to be accompanied by the formation of the CaSO4 and ZnO phases depending on the heating conditions, as well as by the formation of CaO with SO2 evolution. The two-stage oxidation of CaZnSO is interpreted by the Avrami-Erofeev kinetic equations with activation energies of 190 and 422 kJ/mol.

  8. Kinetic features and industrial prospects of the selective oxidative cracking of light alkanes

    NASA Astrophysics Data System (ADS)

    Arutyunov, V. S.; Savchenko, V. I.; Sedov, I. V.; Nikitin, A. V.; Magomedov, R. N.; Proshina, A. Yu

    2017-01-01

    The results of kinetic investigations of selective oxidative cracking of light alkanes are analyzed and integrated. This process attracts researchers' attention owing to possible opportunities for designing new industrial processes based on light hydrocarbon feed. Particular attention is paid to ethane for which comprehensive and adequate models of oxidative conversion suitable for detailed analysis of the process kinetics have already been developed. The prospects for the practical application of methane homologues present in natural and associated gases in the selective oxidative cracking are discussed. The bibliography includes 85 references.

  9. Kinetic study of formic acid oxidation on carbon supported Pd electrocatalyst

    NASA Astrophysics Data System (ADS)

    Wang, Yujiao; Wu, Bing; Gao, Ying; Tang, Yawen; Lu, Tianhong; Xing, Wei; Liu, Changpeng

    The oxidation of formic acid at the Pd/C catalyst electrode is a completely irreversible kinetic process with the reaction order of 1.0. The oxidation rate of formic acid is increased with increasing the concentration of formic acid and is decreased with increasing H + concentration. The apparent negative reaction order with respect to H + is about -0.18 or -0.04 in H 2SO 4 or HClO 4 solution respectively, because bisulfate anions would inhibit formic acid oxidation at some extent. The kinetic parameters, charge transfer coefficient and the diffusion coefficient of formic acid were obtained under the quasi steady-state conditions.

  10. [Changes in Kinetics of Chemiluminescence of Plasma as a Measure of Systemic Oxidative Stress in Humans].

    PubMed

    Sozarukova, M M; Polimova, A M; Proskurnina, E V; Vladimirov, Yu A

    2016-01-01

    Oxidative stress is a pathogenetic factor of many diseases. The control of its level is important for early diagnosis and therapy adjustment. In this work, antioxidant status was estimated in blood plasma. In the system of 2,2'-azo-bis(2-amidinopropane)dihydrochloride-luminol a set of chemiluminescence kinetic curve parameters is proposed for oxidative stress level estimation (the latent period τ(lat) and the increasing of analytical signal ΔI(CL)). Uric acid and albumin were shown as the main components that responsible for changes in chemiluminescence kinetic curve of plasma. Serum albumin undergoes oxidative modification in dose-depend manner under the action of UV irradiation, it causes the enhancement of antioxidant properties. Changes in plasma chemiluminescence kinetics are proposed as a measure of oxidative stress in human body.

  11. High-temperature steam oxidation kinetics of the E110G cladding alloy

    NASA Astrophysics Data System (ADS)

    Király, Márton; Kulacsy, Katalin; Hózer, Zoltán; Perez-Feró, Erzsébet; Novotny, Tamás

    2016-07-01

    In the course of recent years, several experiments were performed at MTA EK (Centre for Energy Research, Hungarian Academy of Sciences) on the isothermal high-temperature oxidation of the improved Russian cladding alloy E110G in steam/argon atmosphere. Using these data and designing additional supporting experiments, the oxidation kinetics of the E110G alloy was investigated in a wide temperature range, between 600 °C and 1200 °C. For short durations (below 500 s) or high temperatures (above 1065 °C) the oxidation kinetics was found to follow a square-root-of-time dependence, while for longer durations and in the intermediate temperature range (800-1000 °C) it was found to approach a cube-root-of-time dependence rather than a square-root one. Based on the results a new best-estimate and a conservative oxidation kinetics model were created.

  12. Uranium oxidation kinetics monitored by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zalkind, S.; Rafailov, G.; Halevy, I.; Livneh, T.; Rubin, A.; Maimon, H.; Schweke, D.

    2017-03-01

    The oxidation kinetics of U-0.1 wt%Cr at oxygen pressures of 150 Torr and the temperature range of 90-150 °C was studied by means of in-situ X-ray diffraction (XRD). A "breakaway" in the oxidation kinetics is found at ∼0.25 μm, turning from a parabolic to a linear rate law. At the initial stage of oxidation the growth plane of UO2(111) is the prominent one. As the oxide thickens, the growth rate of UO2(220) plane increases and both planes grow concurrently. The activation energies obtained for the oxide growth are Qparabolic = 17.5 kcal/mol and Qlinear = 19 kcal/mol. Enhanced oxidation around uranium carbide (UC) inclusions is clearly observed by scanning electron microscopy (SEM).

  13. Atomic resolution spectroscopic imaging of electronic phenomena in oxide interfaces

    NASA Astrophysics Data System (ADS)

    Varela, M.; Christen, H. M.; Lee, H. N.; Kim, D. H.; Petit, L.; Schulthess, T. C.; Tao, J.; Lupini, A. R.; Pennycook, S. J.; Luo, W.; Pantelides, S. T.; Garcia-Barriocanal, J.; Leon, C.; Santamaria, J.

    2007-03-01

    Electron energy loss spectroscopy in the STEM is a powerful tool to study the structure, chemistry and electronic properties of oxides with atomic resolution, in real space. In perovskites the O 2p bands and the transition metal 3d bands are very close to the Fermi level so the electronic properties can be probed by studying the fine structure on the O K edge and the transition metal L edge. Column-by-column EELS reveals direct information about the unique phenomena going on in oxide interfaces. For example, in superconducting/ferromagnetic YBa2Cu3O7/ La0.3Ca0.7MnO3 superlattices significant transfer of electrons from the manganite into the superconductor is found over nanometric length scales. But quite different phenomena occur in other manganite interfaces such as LaMnO3/SrTiO3. In this talk both experiments and first principles calculations with simulations of the ELNES will be discussed. Sponsored by the Office of Basic Energy Sciences, Div of Materials Sciences and Engineering, US DOE under contract DE-AC05-00OR22725 with ORNL managed by UT-Battelle LLC, by the ORNL LDRD Program and by the ORNL-ORISE Postdoctoral Program.

  14. Resolution of mitochondrial oxidant stress improves aged-cardiovascular performance

    PubMed Central

    Owada, Takashi; Yamauchi, Hiroyuki; Miura, Shunsuke; Machii, Hirofumi; Takeishi, Yasuchika

    2017-01-01

    Background Senescence is a major factor that increases oxidative stress in mitochondria, which contributes toward the pathogenesis of heart disease. However, the effect of antioxidant therapy on cardiac mitochondria in aged-cardiac performance remains elusive. Objectives We postulated that the mitochondrial targeting of superoxide scavenging would have benefits in the aged heart. Methods and results Generation of superoxide in the mitochondria and nicotinamide adenine dinucleotide phosphate oxidase activity increased in the heart of old mice compared with that in young mice. In old mice treated with a mitochondria-targeted antioxidant MitoTEMPO (180 µg/kg/day, 28 days) co-infusion using a subcutaneously implanted minipump, levels of superoxide in the mitochondria and nicotinamide adenine dinucleotide phosphate oxidase activity as well as hydrogen peroxide decreased markedly in cardiomyocytes. Treatment with MitoTEMPO in old mice improved the systolic and diastolic function assessed by echocardiography. Endothelium-dependent vasodilation in isolated coronary arteries and endothelial nitric-oxide synthase phosphorylation were impaired in old mice compared with that in young mice and were improved by MitoTEMPO treatment. Mitochondria from the old mice myocardium showed lower rates of complex I-dependent and II-dependent respiration compared with that from young mice. Supplementation of MitoTEMPO in old mice improved the respiration rates and efficiency of ATP generation in mitochondria to a level similar to that of young mice. Conclusion Resolution of oxidative stress in mitochondria by MitoTEMPO in old mice restored cardiac function and the capacity of coronary vasodilation to the same magnitude observed in young mice. An antioxidant strategy targeting mitochondria could have a therapeutic benefit in heart disease with senescence. PMID:27740971

  15. High resolution photoemission experiments on copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    Rameau, Jonathan David

    The mechanism for achieving high transition temperatures (T c) in copper oxide superconductors and the nature of the mysterious "pseudogap" phase from which this phenomenon arises are two of the most pressing issues in solid state physics. High resolution angle resolved photoemission spectroscopy (ARPES), which can directly probe the momentum and energy dependence of the electronic structure of a crystal, is considered one of the foremost tools for unraveling these mysteries. In this thesis we present work on both the further development of the ARPES technique itself and the results of two experiments on the high temperature superconductor Bi2Sr2CaCu2O8+delta (BSCCO)---the drosophila of copper oxide superconductors---based upon these analytical and experimental advances. On the analytical side we have shown that the precision of any ARPES experiment can be radically enhanced by using the Lucy-Richardson method (LRM) of iterative deconvolution to remove the worst effects of experimental resolution broadening present in all ARPES spectra. On the experimental side we have constructed a deep ultraviolet laser system capable of increasing our data acquisition rate by more than an order of magnitude compared to what is possible using traditional synchrotron radiation sources at the same momentum and energy resolutions. Using the LRM, in conjunction with synchrotron radiation, spectroscopic evidence was found for the existence of incoherent Cooper pairs in underdoped BSCCO in the normal pseudogap state (above Tc). At the same time an asymmetry between the particle and hole states of BSCCO was found, implying that doped Mott insulators, of which BSCCO is a primordial example, are characterized by the presence of a Fermi-Luttinger surface, rather than a Fermi surface, as would be the case for a simple metal. This study provided the first spectroscopic evidence for either phenomenon. In our second experiment we were able to use the LRM on data acquired with the laser ARPES

  16. Methane and Methanol Oxidation in Supercritical Water: Chemical Kinetics and Hydrothermal Flame Studies

    DTIC Science & Technology

    1996-01-01

    Experiments were conducted to examine both flame and non - flame oxidation regimes. Optical access enabled the use of normal and shadowgraphy video...methanol in this environment. Experiments were conducted to examine both flame and non -flame oxidation regimes, Optical access enabled the use of nor- mal...that may be susceptible to inadvertent flame formation. Non -flame oxidation kinetics experiments measured rates of methane oxi- dation in supercritical

  17. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.

    PubMed

    Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian

    2017-01-03

    The design of a high-performance catalyst for Hg(0) oxidation and predicting the extent of Hg(0) oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg(0) oxidation, and the reaction mechanism and the reaction kinetics of Hg(0) oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg(0) oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg(0) concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg(0) oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg(0) with adsorbed HCl), and the rate of Hg(0) oxidation mainly depended on Cl(•) concentration on the surface. As H2O, SO2, and NO not only inhibited Cl(•) formation on the surface but also interfered with the interface reaction between gaseous Hg(0) and Cl(•) on the surface, Hg(0) oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H2O, SO2, and NO. Furthermore, the extent of Hg(0) oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter kE-R, and the predicted result was consistent with the experimental result.

  18. Kinetics of thermally oxidation of Ge(100) surface

    NASA Astrophysics Data System (ADS)

    Sahari, S. K.; Ohta, A.; Matsui, M.; Mishima, K.; Murakami, H.; Higashi, S.; Miyazaki, S.

    2013-03-01

    Thermal oxidation of a Ge(100) surface was investigated by using spectroscopic ellipsometry (SE) and x-ray photoelectron spectroscopy (XPS). Ge oxide was grown in the temperature range of 375 to 550°C in dry-O2 ambience at atmospheric pressure. Although the Ge-oxide growth rate shows a linear relationship in a log-log plot at a fixed temperature, and the slope indicates an enhancement of GeO desorption at oxidation temperatures over 490°C. The GeO desorption was also confirmed from the XPS analysis of the Si surface which was oxidized simultaneously with the Ge(100) surface. Thus, the Ge thermal oxidation at atmospheric pressure cannot be explained simply by the Deal-Grove model, in which the contribution of thermal desorption of Ge monoxide must be taken into account.

  19. The kinetics and mechanism of catstrophic oxidation of metals

    SciTech Connect

    Belousov, V.V.

    1994-12-01

    A set of independent methods has been used to study the catastrophic oxidation of copper in the system Cu-Me{sub x}O{sub y} (where Me is Bi, W, Mo, or V). Two stages of the catastrophic oxidation have been revealed: a rapid stage (K {approximately} 10{sup -4} kg{sup 2} m{sub -4} sec{sup -1}) and a {open_quotes}super rapid{close_quotes} stage when the metal is oxidized within 1-5 sec. The weight ratios of metal to oxidizer and the partial oxygen pressure for the superrapid copper oxidation have been established. The mechanism of the catastrophic oxidation of metals is considered.

  20. BioRef II—Neutron reflectometry with relaxed resolution for fast, kinetic measurements at HZB

    NASA Astrophysics Data System (ADS)

    Trapp, M.; Steitz, R.; Kreuzer, M.; Strobl, M.; Rose, M.; Dahint, R.

    2016-10-01

    We present an upgrade to the time-of-flight neutron reflectometer BioRef at the research reactor BER II of the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). Through the integration of an additional chopper into the existing setup, the available wavelength resolution is significantly extended. Now two distinct operation modes can be used: a high resolution mode with Δλ/λ ranging from 1% to 5%, which allows for the investigation of thick films up to 4000 Å, and a high flux mode with Δλ/λ = 7%-11%. In the high flux mode, reflectivity curves from 0.007 Å-1 to 0.2 Å-1 with three angular settings can be recorded in 7 min. For a single angular setting and its respective window in Q-space, a time resolution of even less than 4 min is reached. The different configurations are documented by respective measurements (a) on a Ni-Ti multilayer and (b) the swelling kinetics of a solid-supported phospholipid coating upon incubation in a polyelectrolyte solution.

  1. BioRef II-Neutron reflectometry with relaxed resolution for fast, kinetic measurements at HZB.

    PubMed

    Trapp, M; Steitz, R; Kreuzer, M; Strobl, M; Rose, M; Dahint, R

    2016-10-01

    We present an upgrade to the time-of-flight neutron reflectometer BioRef at the research reactor BER II of the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). Through the integration of an additional chopper into the existing setup, the available wavelength resolution is significantly extended. Now two distinct operation modes can be used: a high resolution mode with Δλ/λ ranging from 1% to 5%, which allows for the investigation of thick films up to 4000 Å, and a high flux mode with Δλ/λ = 7%-11%. In the high flux mode, reflectivity curves from 0.007 Å(-1) to 0.2 Å(-1) with three angular settings can be recorded in 7 min. For a single angular setting and its respective window in Q-space, a time resolution of even less than 4 min is reached. The different configurations are documented by respective measurements (a) on a Ni-Ti multilayer and (b) the swelling kinetics of a solid-supported phospholipid coating upon incubation in a polyelectrolyte solution.

  2. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution

    PubMed Central

    Yazdanbakhsh, Nima; Fisahn, Joachim

    2010-01-01

    Background Methods exist to quantify the distribution of growth rate over the root axis. However, non-destructive, high-throughput evaluations of total root elongation in controlled environments and the field are lacking in growth studies. A new imaging approach to analyse total root elongation is described. Scope High pixel resolution of the images enables the study of growth in short time intervals and provides high temporal resolution. Using the method described, total root elongation rates are calculated from the displacement of the root tip. Although the absolute root elongation rate changes in response to growth conditions, this set-up enables root growth of Arabidopsis wild-type seedlings to be followed for more than 1 month after germination. The method provides an easy approach to decipher root extension rate and much simpler calculations compared with other methods that use segmental growth to address this question. Conclusions The high temporal resolution allows small modifications of total root elongation growth to be revealed. Furthermore, with the options to investigate growth of various mutants in diverse growth conditions the present tool allows modulations in root growth kinetics due to different biotic and abiotic stimuli to be unravelled. Measurements performed on Arabidopsis thaliana wild-type (Col0) plants revealed rhythms superimposed on root elongation. Results obtained from the starchless mutant pgm, however, present a clearly modified pattern. As expected, deviation is strongest during the dark period. PMID:20421235

  3. Digitial readout for microwave kinetic inductance detectors and applications in high time resolution astronomy

    NASA Astrophysics Data System (ADS)

    Strader, Matthew James

    This dissertation spans two topics relating to optical to near-infrared astronomical cameras built around Microwave Kinetic Inductance Detectors (MKIDs). The first topic is the development of a digital readout system for 10- to 30-kilopixel arrays of MKIDs. MKIDs are superconducting detectors that can detect individual photons with a wide range of wavelengths with high time resolution (SI{2}{micro s}) and low energy resolution. The advantage of MKIDs over other low temperature detectors with similar capabilities is that it is relatively straightforward to multiplex MKIDs into large arrays. All the complexity of readout is in room temperature electronics. This work discusses the implementation and programming of these electronics. The second part of this work demonstrates the capabilities of the prototype optical and near-infrared MKID instrument with observations of pulsars. Detecting optical pulsations in these objects require high time resolution and low noise. The discovery of a correlation between the brightness of optical pulses from the Crab pulsar and the time of arrival of coincident giant radio pulses is presented. The search for optical pulses from a millisecond pulsar J0337+1715 is discussed along with a new upper limit on the brightness of its optical pulses.

  4. Evaluation of a new protocol for enzymatic dynamic kinetic resolution of 3-hydroxy-3-(aryl)propanoic acids.

    PubMed

    Koszelewski, Dominik; Zysk, Małgorzata; Brodzka, Anna; Żądło, Anna; Paprocki, Daniel; Ostaszewski, Ryszard

    2015-12-07

    The application of tandem metal-enzyme dynamic kinetic resolution (DKR) is a powerful tool for the manufacture of high-value chemical commodities. A new protocol of kinetic resolution based on irreversible enzymatic esterification of carboxylic acids with orthoesters was introduced to obtain optically active β-hydroxy esters. This procedure was combined with metal catalyzed racemization of the target substrate providing both (R) and (S) enantiomers of ethyl 3-hydroxy-3-(4-nitrophenyl)propanoate with a high yield of 89% at 40 °C. A substantial influence of the enzyme type, organic co-solvent, and metal catalyst on the conversion and enantioselectivity of the enzymatic dynamic kinetic resolution was noted.

  5. Origin of the Chemical and Kinetic Stability of Graphene Oxide

    PubMed Central

    Zhou, Si; Bongiorno, Angelo

    2013-01-01

    At moderate temperatures (≤ 70°C), thermal reduction of graphene oxide is inefficient and after its synthesis the material enters in a metastable state. Here, first-principles and statistical calculations are used to investigate both the low-temperature processes leading to decomposition of graphene oxide and the role of ageing on the structure and stability of this material. Our study shows that the key factor underlying the stability of graphene oxide is the tendency of the oxygen functionalities to agglomerate and form highly oxidized domains surrounded by areas of pristine graphene. Within the agglomerates of functional groups, the primary decomposition reactions are hindered by both geometrical and energetic factors. The number of reacting sites is reduced by the occurrence of local order in the oxidized domains, and due to the close packing of the oxygen functionalities, the decomposition reactions become – on average – endothermic by more than 0.6 eV. PMID:23963517

  6. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption.

    PubMed

    Zou, Jiaxiu; Peng, Xiaolan; Li, Miao; Xiong, Ying; Wang, Bing; Dong, Faqin; Wang, Bin

    2017-03-01

    In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm(-2)), NaCl concentration added to the real wastewaters (0-3 g·L(-1)), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg(-1) COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater.

  7. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis.

    PubMed

    Tokunaga, M; Larrow, J F; Kakiuchi, F; Jacobsen, E N

    1997-08-15

    Epoxides are versatile building blocks for organic synthesis. However, terminal epoxides are arguably the most important subclass of these compounds, and no general and practical method exists for their production in enantiomerically pure form. Terminal epoxides are available very inexpensively as racemic mixtures, and kinetic resolution is an attractive strategy for the production of optically active epoxides, given an economical and operationally simple method. Readily accessible synthetic catalysts (chiral cobalt-based salen complexes) have been used for the efficient asymmetric hydrolysis of terminal epoxides. This process uses water as the only reagent, no added solvent, and low loadings of a recyclable catalyst (<0.5 mole percent), and it affords highly valuable terminal epoxides and 1, 2-diols in high yield with high enantiomeric enrichment.

  8. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases.

    PubMed

    Gustafson, Karl P J; Lihammar, Richard; Verho, Oscar; Engström, Karin; Bäckvall, Jan-E

    2014-05-02

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 °C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 °C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  9. Development of dynamic kinetic resolution on large scale for (±)-1-phenylethylamine.

    PubMed

    Thalén, Lisa K; Bäckvall, Jan-E

    2010-09-13

    Candida antarctica lipase B (CALB) and racemization catalyst 4 were combined in the dynamic kinetic resolution (DKR) of (±)-1-phenylethylamine (1). Several reaction parameters have been investigated to modify the method for application on multigram scale. A comparison of isopropyl acetate and alkyl methoxyacetates as acyl donors was carried out. It was found that lower catalyst loadings could be used to obtain (R)-2-methoxy-N-(1-phenylethyl)acetamide (3) in good yield and high ee when alkyl methoxyacetates were used as acyl donors compared to when isopropyl acetate was used as the acyl donor. The catalyst loading could be decreased to 1.25 mol % Ru-catalyst 4 and 10 mg CALB per mmol 1 when alkyl methoxyacetates were used as the acyl donor.

  10. Lipase-Catalyzed Kinetic Resolution of Novel Antifungal N-Substituted Benzimidazole Derivatives.

    PubMed

    Łukowska-Chojnacka, Edyta; Staniszewska, Monika; Bondaryk, Małgorzata; Maurin, Jan K; Bretner, Maria

    2016-04-01

    A series of new N-substituted benzimidazole derivatives was synthesized and their antifungal activity against Candida albicans was evaluated. The chemical step included synthesis of appropriate ketones containing benzimidazole ring, reduction of ketones to the racemic alcohols, and acetylation of alcohols to the esters. All benzimidazole derivatives were obtained with satisfactory yields and in relatively short times. All synthesized compounds exhibit significant antifungal activity against Candida albicans 900028 ATCC (% cell inhibition at 0.25 μg concentration > 98%). Additionally, racemic mixtures of alcohols were separated by lipase-catalyzed kinetic resolution. In the enzymatic step a transesterification reaction was applied and the influence of a lipase type and solvent on the enantioselectivity of the reaction was studied. The most selective enzymes were Novozyme SP 435 and lipase Amano AK from Pseudomonas fluorescens (E > 100).

  11. Seasonal variability of eddy kinetic energy in a global high-resolution ocean model

    NASA Astrophysics Data System (ADS)

    Rieck, Jan K.; Böning, Claus W.; Greatbatch, Richard J.; Scheinert, Markus

    2015-11-01

    A global ocean model with 1/12° horizontal resolution is used to assess the seasonal cycle of surface eddy kinetic energy (EKE). The model reproduces the salient features of the observed mean surface EKE, including amplitude and phase of its seasonal cycle in most parts of the ocean. In all subtropical gyres of the Pacific and Atlantic, EKE peaks in summer down to a depth of ˜350 m, below which the seasonal cycle is weak. Investigation of the possible driving mechanisms reveals the seasonal changes in the thermal interactions with the atmosphere to be the most likely cause of the summer maximum of EKE. The development of the seasonal thermocline in spring and summer is accompanied by stronger mesoscale variations in the horizontal temperature gradients near the surface which corresponds, by thermal wind balance, to an intensification of mesoscale velocity anomalies toward the surface.

  12. Oxidation behavior and kinetics of SiC/alumina-borosilicate coating for carbon-carbon composites

    NASA Astrophysics Data System (ADS)

    Li, Jun; Luo, Ruiying; Chen, Yaping; Xiang, Qiao; Lin, Chen; Ding, Peng; An, Na; Cheng, Jiwei

    2008-12-01

    A SiC/alumina-borosilicate double-layer coating was prepared by a two-step slurry technique for the protection of carbon-carbon composites from oxidation. SEM, XRD and EDX analysis showed that the inner layer coating obtained from the first step consisted of β-SiC, Si and SiO 2. The outer layer consisted of B 4C, Al, amorphous SiO 2 and quartz. The oxidation behavior and kinetics of the SiC/alumina-borosilicate coating were investigated. It was found that the as-prepared coating could effectively protect carbon-carbon composites from oxidation at 1300 °C for 100 h. The isothermally oxidation kinetics could be described by Microflaws Model and Diffusion Model. During short-time oxidation, the overall oxidation kinetics was determined by the transport processes through microflaws, which resulted in a linear growth law. While during oxidation of longer time, the weight loss rate was controlled by the diffusion processes in the coating with growing oxide layer, which led to a parabolic growth law.

  13. High-resolution 2D3V simulations of forced hybrid-kinetic turbulence

    NASA Astrophysics Data System (ADS)

    Cerri, Silvio Sergio; Califano, Francesco; Rincon, Francois; Told, Daniel; Jenko, Frank; Pegoraro, Francesco

    2016-10-01

    The understanding of the kinetic processes at play in plasma turbulence is a frontier problem in plasma physics and among the topics currently of most interest in space plasma research. Here we investigate the properties of turbulence from the end of the magnetohydrodynamic (MHD) cascade to scales well below the ion gyroradius (i.e., the so-called ``dissipation'' or ``dispersion'' range) by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in a 2D3V phase-space (two real-space and three velocity-space dimensions). Different values of the plasma beta parameter typical of the solar wind (SW) are investigated. Several aspects of turbulence at small-scales emerging from the simulations are presented and discussed. Even within the limitations of the hybrid approach in 2D3V, a reasonable agreement with SW observations and with theory is found. Finally, we identify possible implications and questions related to SW turbulence which arise from this study. This research has been funded by European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No.277870 and by Euratom research and training programme 2014-2018. Simulations were performed on Fermi (CINECA, IT) and Hydra (MPCDF, DE).

  14. Multivariate curve resolution: a method of evaluating the kinetics of biotechnological reactions.

    PubMed

    Kessler, W; Kessler, R W

    2006-03-01

    In biotechnology, strong emphasis is placed on the development of wet chemical analysis and chromatography to separate target components from a complex matrix. In bioprocessing, the development of single compound biosensors is an important activity. The advantages of these techniques are their high sensitivity and specificity. Inline or online monitoring by means of spectroscopy has the potential to be used as an "all-in-one" analysis technique for biotechnological studies, but it lacks specificity. Multivariate curve resolution (MCR) can be used to overcome this limitation. MCR is able to extract the number of components involved in a complex spectral feature, to attribute the resulting spectra to chemical compounds, to quantify the individual spectral contributions, and to use this quantification to develop kinetic models for the process with or without a priori knowledge. After a short introduction to MCR, two applications are presented. In the first example, the spectral features of hemp are monitored and analysed during growth. MCR provides unperturbed spectra on the activity of, for example, lignin and cellulose during plant development. In a second example, the kinetics of a laccase enzyme-catalysed degradation of aromatic hydrocarbons are calculated from UV/VIS spectra.

  15. Natural realgar and amorphous AsS oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2003-03-01

    The oxidation rates of natural realgar and amorphous synthetic AsS by dissolved oxygen were evaluated using mixed flow reactors at pH 7.2 to 8.8 and dissolved oxygen contents of 5.9 to 16.5 ppm over a temperature range of 25 to 40°C. The ratios of As/S are stoichiometric for all amorphous AsS oxidation experiments except for two experiments conducted at pH ˜8.8. In these experiments, stoichiometric ratios of As/S were only observed in the early stages of AsS (am) oxidation whereas lower As/S ratios were observed during steady state. For realgar oxidation experiments, the As/S ratio is less than the stoichiometric ratio of realgar, ranging between 0.61 and 0.71. This nonstoichiometric release of As and S to solution indicates that realgar oxidation is more selective for S after the rates of oxidation become constant. All measured oxidation rates at 25°C can be described within experimental uncertainties as follows: Table 1

  16. Importance of Counterion Reactivity on the Deactivation of Co-Salen Catalysts in the Hydrolytic Kinetic Resolution of Epichlorohydrin

    SciTech Connect

    Jain,S.; Zheng, X.; Jones, C.; Weck, M.; Davis, R.

    2007-01-01

    Possible modes of deactivation of Jacobsen's Co-salen catalyst during the hydrolytic kinetic resolution (HKR) of epichlorohydrin were explored by UV-vis spectroscopy, X-ray absorption spectroscopy, and electrospray ionization mass spectrometry, combined with recycling studies. Although an active Co(III)-salen catalyst deactivated substantially after multiple cycles without regeneration, the catalyst maintained its +3 oxidation state throughout the runs. Thus, deactivation of Co-salen during HKR was not the result of Co reduction. The mass spectrum of a deactivated material showed that catalyst dimerization does not account for the loss of activity. Results from various catalyst pretreatment tests, as well as from catalysts containing various counterions (acetate, tosylate, chloride, iodide) indicated that the rate of addition of the Co-salen counterions to epoxide forming Co-OH during the reaction correlated with deactivation. The extent of counterion addition to epoxide was influenced by the exposure time and the nucleophilicity of the counterion. An oligo(cyclooctene)-supported Co-OAc salen catalyst, which was 25 times more active than the standard Co-salen catalyst, was recycled multiple times with negligible deactivation.

  17. Pyrolysis and Oxidation Kinetics of Anisole and Phenol

    DTIC Science & Technology

    1997-06-01

    opportunity later on to serve as Rob’s teaching assistant. I chose to work with Profs. Irv Glassman and Ken Brezinsky because of their obvious enthusiasm...solvents. In general, the thermochemistry for H abstraction by C6H50- is similar to the thermochemistry for the same H abstraction by H02. However, the...1965). Effects of resonance and structure on the thermochemistry of organic’peroxy radicals and the kinetics of combustion reactions. J. Am. Chem

  18. Kinetics and Mechanism in the Oxidation of Metal Vapors

    DTIC Science & Technology

    1974-10-01

    cooled induction coil enters the furnace chamber from the bottom flange. The crucible and its holder are supported on three tantalum rods on the inlet...In an indium furnace , heated by the same induction field as the crucible containing the thorium. When thorium was allowed to react with partially...identify by block number) Kinetics Reproduced by Uranium NATtONAL TECHNICALThorium INFORMATIOtM SERVICE US Depermeht of Cm’,ner’e Springfield, VA. 22151

  19. Kinetics and mechanism of photopromoted oxidative dissolution of antimony trioxide.

    PubMed

    Hu, Xingyun; Kong, Linghao; He, Mengchang

    2014-12-16

    Light (sunlight, ultraviolet, simulated sunlight) irradiation was used to initiate the dissolution of antimony trioxide (Sb2O3). Dissolution rate of Sb2O3 was accelerated and dissolved trivalent antimony (Sb(III)) was oxidized in the irradiation of light. The photopromoted oxidative dissolution mechanism of Sb2O3 was studied through experiments investigating the effects of pH, free radicals scavengers, dissolved oxygen removal and Sb2O3 dosage on the release rate of antimony from Sb2O3 under simulated sunlight irradiation. The key oxidative components were hydroxyl free radicals, photogenerated holes and superoxide free radicals; their contribution ratios were roughly estimated. In addition, a conceptual model of the photocatalytic oxidation dissolution of Sb2O3 was proposed. The overall pH-dependent dissolution rate of Sb2O3 and the oxidation of Sb(III) under light irradiation were expressed by r = 0.08 ·[OH(-)](0.63) and rox = 0.10 ·[OH(-)](0.79). The present study on the mechanism of the photo-oxidation dissolution of Sb2O3 could help clarify the geochemical cycle and fate of Sb in the environment.

  20. Kinetics and mechanism of high-temperature oxidation of copper covered by bismuth thin films

    SciTech Connect

    Belousov, V.V. )

    1992-10-01

    The oxidation kinetics of copper covered by thin films of bismuth were studied by TGA, X-ray diffraction, X-ray micro-elemental, coulombmetric methods, and by electron and optional microscopy. At 1,003 K catastrophic oxidation of copper coated by bismuth thin films was observed. The parabolic rate constant of copper oxidation (Kp) depends markedly on the thickness of the bismuth film and is more than 1,000 times greater than that of bare copper. The mechanism of catastrophic copper oxidation in contact with bismuth is discussed.

  1. Oxidation kinetics of a continuous carbon phase in a nonreactive matrix

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Cawley, James D.; Parthasarathy, Triplicane A.

    1995-01-01

    Analytical solutions of and experimental results on the oxidation kinetics of carbon in a pore are presented. Reaction rate, reaction sequence, oxidant partial pressure, total system pressure, pore/crack dimensions, and temperature are analyzed with respect to the influence of each on an overall linear-parabolic rate relationship. Direct measurement of carbon recession is performed using two microcomposite model systems oxidized in the temperature range of 700 to 1200 C, and for times to 35 h. Experimental results are evaluated using the derived analytical solutions. Implications on the oxidation resistance of continuous-fiber-reinforced ceramic-matrix composites containing a carbon constituent are discussed.

  2. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  3. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  4. Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khedr, M. H.; Abdel Halim, K. S.; Soliman, N. K.

    2008-12-01

    Carbon nanotubes (CNTs) were synthesized by the catalytic decomposition of acetylene over nanosized metallic iron. A high metal loading was chosen in order to obtain a longer catalytic activity. Different nanosized iron oxides were prepared using chemical methods. A catalyst of the composition 40% Fe 2O 3:60% Al 2O 3 is prepared by wet impregnation method. The prepared samples of iron oxides supported in alumina were completely reduced by hydrogen gas at 500 °C and then constant rate of acetylene gas was passed over the freshly reduced samples at different reaction conditions. The kinetics of CNTs synthesis on reduced nanosized Fe 2O 3 supported on alumina was investigated as a function of crystal size of iron oxide catalyst (35-150 nm) and decomposition temperature (400-700 °C). The microstructure and morphology of the synthesized catalyst and CNTs were characterized using scanning electron microscope (SEM), high-resolution transmission electron microscope (HR-TEM) and XRD analysis. The results revealed that both the crystal size of iron oxide and decomposition temperature have a significant effect on the percentage yield of carbon deposited. It increased by decreasing crystal size of the catalyst and increasing decomposition temperature to certain limit. The maximum yield of carbon deposited (426%) was obtained at decomposition temperature 600 °C and over nanosized iron oxide catalyst with crystal size of average 35 nm.

  5. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    SciTech Connect

    Wood, Elizabeth Sooby; Parker, Stephen Scott; Nelson, Andrew Thomas

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  6. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    SciTech Connect

    Cardani, L.; Colantoni, I.; Coppolecchia, A.; Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C.; Di Domizio, S.; Castellano, M. G.; Tomei, C.

    2015-08-31

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.

  7. Probing Protein Folding Kinetics with High-resolution, Stabilized Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Wong, Wesley; Halvorsen, Ken

    2009-03-01

    Single-molecule techniques provide a powerful means of exploring molecular transitions such as the unfolding and refolding of a protein. However, the quantification of bi-directional transitions and near-equilibrium phenomena poses unique challenges, and is often limited by the detection resolution and long-term stability of the instrument. We have developed unique optical tweezers methods that address these problems, including an interference-based method for high-resolution 3D bead tracking (˜1 nm laterally, ˜0.3 nm vertically, at > 100 Hz), and a continuous autofocus system that stabilizes the trap height to within 1-2 nm longterm [1,2]. We have used our instruments to quantify the force-dependent unfolding and refolding kinetics of single protein domains (e.g. spectrin in collaboration with E. Evans). These single-molecule studies are presented, together with the accompanying probabilistic analysis that we have developed. References: 1. W.P. Wong, V. Heinrich, E. Evans, Mat. Res. Soc. Symp. Proc., 790, P5.1-P5.10 (2004). 2. V. Heinrich, W.P. Wong, K. Halvorsen, E. Evans, Langmuir, 24, 1194-1203 (2008).

  8. Kinetic aspects of the formation of aluminium oxide by use of a microwave-induced plasma.

    PubMed

    Quade, A; Steffen, H; Hippler, R; Wulff, H

    2002-10-01

    The oxidation of thin aluminium layers in a microwave plasma has been investigated to determine the kinetics of oxide growth. Thin Al-coatings were oxidized by means of a variety of gas mixtures, characterized by different partial pressures of oxygen, in microwave-induced plasmas of different power. To study the whole kinetic process the Al-metal and the oxide formed were investigated by means of a combination of grazing incidence X-ray reflectometry (GIXR) and grazing incidence X-ray diffractometry (GIXRD). XPS and FTIR spectroscopy confirmed the formation of stoichiometric Al(2)O(3). The alumina formed is X-ray amorphous. Quantitative description of oxide formation was achieved indirectly by determination of the decrease in the integrated intensity of the Al(111)-peak and the total thickness of the whole coating. These values enabled calculation of kinetic data. It was found that oxide growth was a combination of two simultaneous processes - diffusion and sputter processes. The diffusion coefficient D (cm(2) s(-1)) and the sputter rate S (nm s(-1)) were determined. The effect of the composition of the gas mixture, microwave power, and concentration of activated oxygen species on the oxidation process will be discussed. For calculation of the activation energy, E(A), of this plasma-enhanced diffusion process the temperature-dependence of D was investigated.

  9. Analysis of the kinetics of methanol oxidation in a porous Pt-Ru anode

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Ping; Xing, Lei; Scott, Keith

    A kinetic model of a porous Pt-Ru anode for methanol oxidation is presented. It was based on the dual-site mechanism for methanol oxidation and used to predict anode performance and the influence of species adsorption on the overall oxidation (macro-) kinetics. The performance of the porous Pt-Ru anode depended on the parameters of the intrinsic chemical kinetics of methanol oxidation and physical parameters such as electrode thickness, surface area, effective diffusion and charge transfer coefficients and concentration of methanol and temperature. The model was solved by using the finite difference method with a subroutine for solving a set of nonlinear algebraic equations in each step. Surface coverage ratio distributions of adsorbed species, effectiveness of the porous electrode and macro-polarisation curves were obtained. The simulated polarisation curves were compared to experimental polarisation data for methanol oxidation on Pt-Ru porous anodes at different temperatures and methanol concentrations. The intrinsic kinetic parameters were regressed from the corresponding experimental data. The predicted polarisation curves calculated by the model, were consistent with experimental polarisation data at lower current densities. The departure of experimental data from the predicted polarisation curves at high concentration and high apparent current densities was believed to be due to two-phase flow in the electrode.

  10. Enzymatic oxidation of rutin by horseradish peroxidase: kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry.

    PubMed

    Savic, Sasa; Vojinovic, Katarina; Milenkovic, Sanja; Smelcerovic, Andrija; Lamshoeft, Marc; Petronijevic, Zivomir

    2013-12-15

    Flavonoid oxidation is important issue in food processing and quality. The kinetic mechanism of enzymatic oxidation of rutin by horseradish peroxidase (HRP) was studied. Rutin oxidation reaction was followed by recording of spectral changes over the time at 360 nm. The studied oxidation is mostly enzymatic and less part non-enzymatic. The reaction with HRP has a higher rate compared with the reaction without of HRP, whereby is part of non-enzymatic reaction about 10% of the total reaction. Kinetic parameters were determined from graphics of linear Michaelis-Menten equation, and it was found that investigated reactions of rutin oxidation by HRP take place in a ping-pong kinetic mechanism. High resolution HPLC-MS analysis of the mixture of oxidized products of rutin revealed the presence of rutin dimer. Because of widely distribution of rutin as well as presence of peroxidases and hydrogen peroxide in fresh foods identification of this enzymatic modification product can be beneficial for foods quality and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Oxidation kinetics and mechanisms in HT-9 ferritic/martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Benitez Velez, Soraya

    Lead and lead alloys, such as lead bismuth eutectic (LBE), have gained worldwide recognition as potential candidates for coolant and target material in accelerator-driven systems (ADS) due to their excellent chemical, physical, and nuclear properties; however, they are corrosive to stainless steels, which are candidate materials for piping and molten metal containers in ADS applications. The Russians have used LBE as a coolant in their nuclear submarines for more than several decades and their experience has given way to the hypothesis that oxides protect steels from LBE corrosion, thus renewing interest in further understanding the oxidation kinetics and mechanisms of candidate stainless steel alloys. The proposed work will contribute to the ongoing research effort by elucidating the oxidation kinetics and mechanisms, and characterizing the oxides of HT-9, a candidate stainless steel for ADS application. HT-9 (DIN X20CrMoWV12 or Fe-12Cr-MoVW) is a 12 wt% Cr martensitic/ferritic stainless steel alloy developed by Sandvik (Sweden). The approach is to perform thermogravimetric analysis (TGA) to evaluate the oxidation kinetics and assess oxidation rates. Flat bar samples polished to one micron were subjected to non-isothermal and isothermal oxidation scans. Non-isothermal scans were done in dry air from room temperature to 950°C with ramping rates of 2°C/minute and 5°C/minute to obtain preliminary oxidation behavior information. Isothermal scans were done in dry air from 600°C to 800°C for 48 hours, from 800°C to 900°C for 24 hours, and at 950°C for 6 hours. The structure and composition of the oxide film developed during the isothermal scans were characterized using scanning electron microscopy with energy dispersive spectroscopy capabilities (SEM/EDS) and X-ray diffraction (XRD). Oxidation of HT-9 exhibited a complex behavior that does not follow a simple oxidation model and changes as a function of exposure time. At low temperatures (T ≥ 825°C), the

  12. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    PubMed

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised.

  13. Reflectance spectroscopy in analysis of UO2 scale: derivation of a kinetic model of uranium oxidation.

    PubMed

    Chernia, Z

    2009-03-21

    In this study, we analyzed the development of a compact oxide scale built in course of Uranium surface oxidation. The process was monitored by an in-situ acquisition of the reflectance interference peaks in the NIR-MIR. Dielectric properties of the growing oxide scale were derived in accord to the oscillator model. We used effective media approach to simulate heterogeneous dielectric content in the oxide-metal interface. Following dielectric parameterization, structural properties (e.g., scale thickness) of the proposed multi-scale scheme were calculated. As scale's growth process quantified, a valid kinetic model was proposed. Analysis showed that oxidation dynamics is governed by a multi-parabolic, true diffusion-limited mechanism of activation energy conveniently equaling the known anion diffusion enthalpy of 26 kcal/mol. The applied kinetic model suggested a setup of two consecutive oxide scales, characterized by differing anion diffusion rates. Though mathematical formalism presented a similar to the paralinear, time-dependent solution, here, in contrast to the classic paralinear assumption, both scales consisted of a compact, diffusion limited oxide barriers. As a result, the difference in anion flow across the outer and inner scale barriers assigned the overall, pseudo-linear rate constant-kl, of a negative (in contrast to the paralinear approach) value. Next, Uranium oxidation has been studied in the post-elastic domain. Markedly, upon breakaway of the compact oxide scale, classic paralinear behavior was reestablished for scale thickness of > or = 0.5 microm.

  14. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    PubMed Central

    Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis–Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l−1 was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used 15NH4+ dilution technique. PMID:23657360

  15. Modeling Oxidation Kinetics of SiC-Containing Refractory Diborides

    DTIC Science & Technology

    2012-01-01

    M. Opeka, I. G. Talmy, E. J. Wuchina, J. A. Zaykoski, and S. J. Cau- sey, “Mechanical, Thermal and Oxidation Properties Of Refractory Hafnium and...Resistance of Hafnium Diboride-Silicon Car- bide from 1400-2000C,” J. Mater. Sci., 44, 5673–81 (2009). 12M. Gasch and S. Johnson, “Physical Characterization...and Arcjet Oxidation of Hafnium -Based Ultra High Temperature Ceramics Fabricated by Hot Press- ing and Field-Assisted Sintering,” J. Eur. Ceram. Soc

  16. The kinetics of reactions of hexacarbonyls of chromium, molybdenum, and tungsten with hydroxylamine and trimethylamine oxide

    SciTech Connect

    Maksakov, V.A.; Ershova, V.A.

    1994-04-01

    The mechanism of the reactions of M(CO){sub 6}(M=Cr, Mo, and W) with hydroxylamine was studied. As follows from kinetic data, the reaction results in the oxidation of CO to CO{sub 2} and an intramolecular transfer of the formed amine to a central metal atom. The mechanisms of reactions of M(CO){sub 6} with hydroxylamine and trimethylamine oxide are compared.

  17. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    NASA Technical Reports Server (NTRS)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  18. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics

    NASA Astrophysics Data System (ADS)

    Roden, Eric E.

    2004-08-01

    Data from studies of dissimilatory bacterial (10 8 cells mL -1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L -1) were analyzed in relation to a generalized rate law for mineral dissolution (J t/m 0 = k'(m/m 0) γ, where J t is the rate of dissolution and/or reduction at time t, m 0 is the initial mass of oxide, and m/m 0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to

  19. Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles

    NASA Astrophysics Data System (ADS)

    Kreituss, Imants; Bode, Jeffrey W.

    2017-05-01

    Kinetic resolution is a common method to obtain enantioenriched material from a racemic mixture. This process will deliver enantiopure unreacted material when the selectivity factor of the process, s, is greater than 1; however, the scalemic reaction product is often discarded. Parallel kinetic resolution, on the other hand, provides access to two enantioenriched products from a single racemic starting material, but suffers from a variety of practical challenges regarding experimental design that limit its applications. Here, we describe the development of a flow-based system that enables practical parallel kinetic resolution of saturated N-heterocycles. This process provides access to both enantiomers of the starting material in good yield and high enantiopurity; similar results with classical kinetic resolution would require selectivity factors in the range of s = 100. To achieve this, two immobilized quasienantiomeric acylating agents were designed for the asymmetric acylation of racemic saturated N-heterocycles. Using the flow-based system we could efficiently separate, recover and reuse the polymer-supported reagents. The amide products could be readily separated and hydrolysed to the corresponding amines without detectable epimerization.

  20. Kinetic resolution of allyl fluorides by enantioselective allylic trifluoromethylation based on silicon-assisted C-F bond cleavage.

    PubMed

    Nishimine, Takayuki; Fukushi, Kazunobu; Shibata, Naoyuki; Taira, Hiromi; Tokunaga, Etsuko; Yamano, Akihito; Shiro, Motoo; Shibata, Norio

    2014-01-07

    Two birds, one stone! The first kinetic resolution of allyl fluorides was achieved by the development of an organocatalyzed enantioselective allylic trifluoromethylation. Two kinds of chiral fluorinated compounds, which incorporate C*F and C*CF3 units, respectively, can thus be accessed by a single transformation.

  1. (+)-Camphor-mediated kinetic resolution of allylalanes: a strategy towards enantio-enriched cyclohex-2-en-1-ylalane.

    PubMed

    Coffinet, Michaël; Massicot, Fabien; Joseph, Jomy; Behr, Jean-Bernard; Jaroschik, Florian; Vasse, Jean-Luc

    2016-12-20

    An efficient (+)-camphor-mediated kinetic resolution of racemic cyclohex-2-en-1-ylalane is described. This approach provides an enantiomerically enriched form of the alane, in situ available for synthetic uses. Applied to the allylation of aldehydes, this protocol leads to the corresponding homoallylalcohols in a highly enantioselective manner.

  2. Kinetics of ruthenium(III) catalyzed and uncatalyzed oxidation of monoethanolamine by N-bromosuccinimide

    NASA Astrophysics Data System (ADS)

    Venkata Nadh, R.; Syama Sundar, B.; Radhakrishnamurti, P. S.

    2016-09-01

    Kinetics of uncatalyzed and ruthenium(III) catalyzed oxidation of monoethanolamine by N-bromosuccinimide (NBS) has been studied in an aqueous acetic acid medium in the presence of sodium acetate and perchloric acid, respectively. In the uncatalyzed oxidation the kinetic orders are: the first order in NBS, a fractional order in the substrate. The rate of the reaction increased with an increase in the sodium acetate concentration and decreased with an increase in the perchloric acid concentration. This indicates that free amine molecules are the reactive species. Addition of halide ions results in a decrease in the kinetic rate, which is noteworthy. Both in absence and presence of a catalyst, a decrease in the dielectric constant of the medium decreases the kinetic rate pointing out that these are dipole—dipole reactions. A relatively higher oxidation state of ruthenium i.e., Ru(V) was found to be the active species in Ru(III) catalyzed reactions. A suitable mechanism consistent with the observations has been proposed and a rate law has been derived to explain the kinetic orders.

  3. Development of Kinetics for Soot Oxidation at High Pressures Under Fuel-Lean Conditions

    SciTech Connect

    Lighty, JoAnn; Vander Wal, Randy

    2014-04-21

    The focus of the proposed research was to develop kinetic models for soot oxidation with the hope of developing a validated, predictive, multi-­scale, combustion model to optimize the design and operation of evolving fuels in advanced engines for transportation applications. The work focused on the relatively unstudied area of the fundamental mechanism for soot oxidation. The objectives include understanding of the kinetics of soot oxidation by O2 under high pressure which require: 1) development of intrinsic kinetics for the surface oxidation, which takes into account the dependence of reactivity upon nanostructure and 2) evolution of nanostructure and its impact upon oxidation rate and 3) inclusion of internal surface area development and possible fragmentation resulting from pore development and /or surface oxidation. These objectives were explored for a variety of pure fuel components and surrogate fuels. This project was a joint effort between the University of Utah (UU) and Pennsylvania State University (Penn State). The work at the UU focuses on experimental studies using a two-­stage burner and a high- pressure thermogravimetric analyzer (TGA). Penn State provided HRTEM images and guidance in the fringe analysis algorithms and parameter quantification for the images. This report focuses on completion done under supplemental funding.

  4. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    PubMed

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.

    PubMed

    Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A

    2014-01-01

    In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.

  6. Exploring crystallization kinetics in natural rhyolitic melts using high resolution CT imagery of spherulites

    NASA Astrophysics Data System (ADS)

    Clow, T. W.; Befus, K. S.; Gardner, J. E.

    2014-12-01

    Little of our understanding of crystallization kinetics has been directly derived from studies of natural samples. We examine crystallization of rhyolitic melts by quantifying spherulite sizes and number densities in obsidian collected from Yellowstone caldera using high-resolution x-ray computed tomography (CT) imagery. Spherulites are spherical to ellipsoidal masses of intergrown alkali feldspar and quartz in a radiating, fibrous structure. They are thought to form in response to relatively rapid crystallization of melt in response to large amounts of undercooling. Recent research using compositional gradients that form outside of spherulites has suggested that they nucleate at 700 to 500 ˚C and their growth slows exponentially until it eventually ceases at ~400 ˚C. By quantifying spherulite textures, and using those temperature constraints, we derive new kinetic information regarding crystallization in natural rhyolitic systems. We find that spherulites range from 0.2 to 12.3 mm in diameter, and are 0.004 to 49.5 mm3 in volume. Such values generate number densities of 70 to 185 spherulites cm-3. Histograms of size display positively skewed distributions indicating small spherulites are far more abundant than larger ones. Those distributions imply nucleation rates change as a function of temperature. At higher temperatures where the melt is undercooled by 400-500 ˚C, nucleation is rare and growth is favored. With decreasing temperature, nucleation rates increase rapidly until cold enough temperatures are reached that diffusion limits crystallization and causes it to cease (undercoolings of ~650 ˚C). Assuming a cooling rate for the host obsidian of 10-5 ˚C s-1, then overall spherulite nucleation rates are 0.01 to 0.03 spherulites cm-3 hour-1.

  7. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    NASA Astrophysics Data System (ADS)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  8. Kinetics adsorption study of the ethidium bromide by graphene oxide as adsorbent from aqueous matrices

    NASA Astrophysics Data System (ADS)

    Rajabi, M.; Moradi, O.; Zare, K.

    2017-01-01

    In this study of ethidium bromide, adsorption from aqueous matrices by graphene oxide as adsorbent was investigated. Influencing parameters in the adsorption study included contact time, temperature, and pH. The optimum time was selected 17 min, and the best value of pH was determined at 8. All adsorption experiments were performed at 298 K temperature. The maximum wavelength of ethidium bromide was 475 nm. The Elovich, four types of the pseudo-second-order, the pseudo-first-order, and intra-particle diffusion kinetic adsorption models were used for kinetic study, and the results show that adsorption of ethidium bromide on graphene oxide surface best complied with type (I) of the pseudo-second-order kinetic model.

  9. Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Shen, Xiao-yi; Zhai, Yu-chun

    2015-05-01

    Thermodynamic analyses and kinetic studies were performed on zinc oxide ore treatment by (NH4)2SO4 roasting technology. The results show that it is theoretically feasible to realize a roasting reaction between the zinc oxide ore and (NH4)2SO4 in a temperature range of 573-723 K. The effects of reaction temperature and particle size on the extraction rate of zinc were also examined. It is found that a surface chemical reaction is the rate-controlling step in roasting kinetics. The calculated activation energy of this process is about 45.57 kJ/mol, and the kinetic model can be expressed as follows: 1 - (1 - α)1/3 = 30.85 exp(-45.57/ RT)· t. An extraction ratio of zinc as high as 92% could be achieved under the optimum conditions.

  10. Atypical kinetic behavior of chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic hydrocarbons.

    PubMed

    Aburto, Jorge; Correa-Basurto, Jose; Torres, Eduardo

    2008-12-01

    We have identified an atypical kinetic behavior for the oxidative halogenation of several polycyclic aromatic hydrocarbons (PAHs) by chloroperoxidase (CPO) from Caldariomyces fumago. This behavior resembles the capacity of some members of the P450 family to simultaneously recognize several substrate molecules at their active sites. Indeed, fluorometric studies showed that PAHs exist in solution as monomers and pi-pi dimers that interact to different extents with CPO. The dissociation constants of dimerization were evaluated for every single PAH by spectrofluorometry. Furthermore, docking studies also suggest that CPO might recognize either one or two substrate molecules in its active site. The atypical sigmoidal kinetic behavior of CPO in the oxidative halogenation of PAHs is explained in terms of different kinetic models for non-heteroatomic PAHs (naphthalene, anthracene and pyrene). The results suggest that the actual substrate for CPO in this study was the pi-pi dimer for all evaluated PAHs.

  11. Ferrate promoted oxidative cleavage of sulfonamides: Kinetics and product formation under acidic conditions

    EPA Science Inventory

    Sulfonamide-based antibiotics are often detected in surface waters and secondary wastewater effluents and pose an eminent threat for the development of antibiotic resistance bacteria and genes in aquatic environment. This paper presents the kinetics and stoichiometry of the oxid...

  12. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    ERIC Educational Resources Information Center

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  13. Nitrite-Driven Nitrous Oxide Production Under Aerobic Soil Conditions: Kinetics and Biochemical Controls

    USDA-ARS?s Scientific Manuscript database

    Nitrite (NO2-) can accumulate during nitrification in soil following fertilizer application. While the role of NO2- as a substrate regulating nitrous oxide (N2O) production is recognized, kinetic data are not available that allow for estimating N2O production or soil-to-atmosphere fluxes as a functi...

  14. Ferrate promoted oxidative cleavage of sulfonamides: Kinetics and product formation under acidic conditions

    EPA Science Inventory

    Sulfonamide-based antibiotics are often detected in surface waters and secondary wastewater effluents and pose an eminent threat for the development of antibiotic resistance bacteria and genes in aquatic environment. This paper presents the kinetics and stoichiometry of the oxid...

  15. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents.

    PubMed

    Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua

    2017-02-13

    Advanced oxidation processes (AOPs), such as hydroxyl radical (HO(•))- and sulfate radical (SO4(•-))-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO(•)- and SO4(•-)-mediated oxidation. In the UV/H2O2 process, a simplified kinetic model involving only steady state concentrations of HO(•) and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO(•) in the removal of PPCPs. In the UV/K2S2O8 process, the calculated steady state concentrations of CO3(•-) and bromine radicals (Br(•), Br2(•-) and BrCl(•-)) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO4(•-), respectively. The kinetic model, involving both SO4(•-) and CO3(•-) as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO4(•-) could lead to overestimations of the removal efficiencies of the SO4(•-)-mediated oxidation of nitroimidazoles in wastewater effluents.

  16. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    ERIC Educational Resources Information Center

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  17. Global kinetic model: a case study on the N-oxidation of alkylpyridines.

    PubMed

    Gao, Jun; Papadaki, Maria

    2006-03-17

    The homogeneous catalytic N-oxidation of two picolines and two lutidines by hydrogen peroxide has been studied calorimetrically using a heat flow and power compensation SIMULAR reaction calorimeter. The objective of this work was to extend a previously developed kinetic model [J. Sempere, R. Nomen, J.L. Rodriguez, M. Papadaki, Modelling of the reaction of 2-methylpyridine using hydrogen peroxide and a complex metal catalyst, Chem. Eng. Process. 37 (1998) 33-46] for 2-methylpyridine to more reactions in the same family. The kinetic model is in good agreement with our experimental data on beta-picoline. 3,5-Lutidine is in adequately good agreement with the model. However, the formation of two phases during the course of the reaction imposes the need for modifications to allow for mass transfer considerations. The N-oxidation of 2,6-lutidine is controlled by the addition or availability of hydrogen peroxide. A different reactor design is necessary for operation at the kinetic regime. High temperatures and catalyst concentrations enhance the selectivity towards N-oxidation of all alkylpyridines studied. The power evolution of all reactions has similar profiles thus indicating that similar kinetics are followed. The study of the N-oxidation of this family of compounds indicates that it is possible to design a process where hydrogen peroxide decomposition can be practically totally suppressed.

  18. Kinetic Studies of Iron Oxidation by Whole Cells of Ferrobacillus ferrooxidans

    PubMed Central

    Schnaitman, C. A.; Korczynski, M. S.; Lundgren, D. G.

    1969-01-01

    A colorimetric assay was developed for studying the kinetics of iron oxidation with whole cells of the chemoautotroph, Ferrobacillus ferrooxidans. The assay was more advantageous than the conventional method of Warburg manometry because of its simplicity, rapidity, and the small amount of cells required. The assay measured Fe3+ as a chloride complex which absorbs at 410 nm. Kinetic analysis showed the apparent Km for iron oxidation to be 5.4 × 10−3m in an unbuffered system and 2.2 × 10−3m in the presence of β-alanine-SO42− buffer. Glycine and β-alanine buffers were used in the measurement of the pH optimum for iron oxidation; the optimum ranged from 2.5 to 3.8. The effect of pH was primarily on the Vmax while the Km remained constant. Added SO42− was found to stimulate iron oxidation by increasing the Vmax of iron oxidation by whole cells, but it did not affect the Km. Results of assays of iron oxidation in systems containing various mole percentages of SO42− and Cl− indicated that Cl− did not inhibit iron oxidation but that SO42− was required. Sulfate could be partially replaced by HPO42− and HAsO42− but not by BO3−, MoO42−, NO3−, or Cl−; formate and MoO42− inhibited iron oxidation. PMID:5808080

  19. Study of oxide and α-Zr(O) growth kinetics from high temperature steam oxidation of Zircaloy-4 cladding

    NASA Astrophysics Data System (ADS)

    Sawarn, Tapan K.; Banerjee, Suparna; Samanta, Akanksha; Rath, B. N.; Kumar, Sunil

    2015-12-01

    Oxidation kinetics of Zircaloy-4 cladding of fuel pins of Indian pressurized heavy water reactors (IPHWRs) under a simulated loss of coolant accident (LOCA) condition was investigated. The kinetic rate constants for the oxide and oxygen stabilized α-Zr phase growth were established from the isothermal metal-steam reaction at high temperatures (900-1200 °C) with soaking periods in the range of 60-900 s. Oxide and α-Zr(O) layer thickness were measured to derive the respective growth rates. The observed rates obeyed a parabolic law and Arrhenius expressions of rate constants were established. Percentage equivalent clad reacted (%ECR) was calculated using Baker-Just equation. Hydrogen estimation was carried out on the oxidized samples using inert gas fusion technique. The hydrogen pick up was found to be in the range 10-30 ppm. The measured values of oxide and α-Zr(O) layer thickness were compared with the results obtained using OXYCON, an indigenously developed model. The model predicts the oxide growth reasonably well but under predicts the α-Zr(O) growth significantly at thickness values higher than 80 μm.

  20. Crystallization kinetics in poly(ethylene oxide) / layered silicates nanocomposites

    NASA Astrophysics Data System (ADS)

    Pavlopoulou, Eleni; Fotiadou, Sapfo; Papananou, Eleni; Chrissopoulou, Kiriaki; Anastasiadis, Spiros H.; Portale, Giuseppe; Bras, Wim

    2009-03-01

    We investigate the effect of inorganic clay on the crystalline characteristics and the crystallization kinetics of PEO in its intercalated nanocomposites with natural montmorillonite (Na+- MMT). The structure of the hybrids was investigated over multiple length scales by X-ray diffraction, small-angle X-ray scattering (SAXS) and polarizing optical microscopy (POM) as well as by DSC. The PEO within the galleries is completely amorphous whereas only the excess polymer outside the completely full galleries can crystallize at high PEO concentrations. The time resolved measurements reveal the effect of clay on crystallization. Even very small amount of the inorganic can cause a significant decrease of the spherulite size. The crystallization mechanism varies from sporadic nucleation for pure PEO to two-dimensional growth with predetermined nuclei at 10wt% clay with a higher activation barrier for low clay concentration. Sponsored by NATO's Scientific Affairs Division, by the Greek GSRT and by the EU.

  1. Self-limited kinetics of electron doping in correlated oxides

    SciTech Connect

    Chen, Jikun Zhou, You; Jiang, Jun; Shi, Jian; Ramanathan, Shriram; Middey, Srimanta; Chakhalian, Jak; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max

    2015-07-20

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni{sup 3+} are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem.

  2. Self-limited kinetics of electron doping in correlated oxides

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhou, You; Middey, Srimanta; Jiang, Jun; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max; Shi, Jian; Chakhalian, Jak; Ramanathan, Shriram

    2015-07-01

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni3+ are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem.

  3. Reaction Mechanism and Kinetics of Enargite Oxidation at Roasting Temperatures

    NASA Astrophysics Data System (ADS)

    Padilla, Rafael; Aracena, Alvaro; Ruiz, Maria C.

    2012-10-01

    Roasting of enargite (Cu3AsS4) in the temperature range of 648 K to 898 K (375 °C to 625 °C) in atmospheres containing variable amounts of oxygen has been studied by thermogravimetric methods. From the experimental results of weight loss/gain data and X-ray diffraction (XRD) analysis of partially reacted samples, the reaction mechanism of the enargite oxidation was determined, which occurred in three sequential stages:

  4. Kinetic evidence for rapid oxidation of (-)-epicatechin by human myeloperoxidase

    SciTech Connect

    Spalteholz, Holger; Furtmueller, Paul Georg; Jakopitsch, Christa; Obinger, Christian; Schewe, Tankred; Sies, Helmut; Arnhold, Juergen

    2008-07-11

    Apocynin has been reported to require dimerization by myeloperoxidase (MPO) to inhibit leukocyte NADPH oxidase. (-)-Epicatechin, a dietary flavan-3-ol, has been identified as a 'prodrug' of apocynin-like metabolites that inhibit endothelial NADPH oxidase activity and elevate the cellular level of nitric oxide. Since (-)-epicatechin has tentatively been identified as substrate of MPO, we studied the one-electron oxidation of (-)-epicatechin by MPO. By using multi-mixing stopped-flow technique, we demonstrate that (-)-epicatechin is one of the most efficient electron donors for heme peroxidases investigated so far. Second order rate constants for the (-)-epicatechin-mediated conversion of MPO-compound I to compound II and compound II to resting enzyme were estimated to be 1.9 x 10{sup 7} and 4.5 x 10{sup 6} M{sup -1} s{sup -1}, respectively (pH 7, 25 deg. C). The data indicate that (-)-epicatechin is capable of undergoing fast MPO-mediated one-electron oxidation.

  5. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    NASA Astrophysics Data System (ADS)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  6. Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations

    NASA Astrophysics Data System (ADS)

    von Langen, Peter J.; Johnson, Kenneth S.; Coale, Kenneth H.; Elrod, Virginia A.

    1997-12-01

    Manganese oxidation rates were determined at low (˜ 20 nM) concentrations in seawater by measuring dissolved manganese (Mn(II)) using flow injection analysis with chemiluminescence detection. Mn(II) was measured in samples that had been filtered (0.2 μm) and kept in the dark under controlled temperature and pH conditions for time periods up to 6 months. Eight 9 L carboys with mean pH values ranging from 8 to 8.7 were held at 25°C, another carboy (pH = 9.32) was kept at 5°C. Oxidation followed the Morgan (1967) homogeneous rate equation ( d[Mn(II)]/ dt = k1 [O 2][OH -] 2[Mn(II)]). The mean rate constant k1 = 1.7 ± 0.7 × 10 12 M -3 d -1 (95% CI), determined using hydroxide ion activities determined with pH measurements on the NBS scale, was in agreement with work by Morgan (1967; k1 = 4 × 10 12 M -3 d -1) and Davies and Morgan (1989; k1 = 1.1 × 10 12 M -3 d -1) in dilute solutions. The rate constant at 5°C was 1.3 ± 0.3 × 10 12 M -3 d -1. If free hydroxide concentrations (based on the free proton pH scale) are used, then the rate constant at 25°C was k 1∗ = 0.34 ± 0.14 × 10 12 M -3d -1. Autocatalytic increases in Mn(II) oxidation rates, as predicted by a heterogeneous reaction mechanism (Morgan, 1967) ( d[Mn(II)]/ dt= k2'[Mn(II)][MnO 2]) were not observed, indicating that the homogeneous reaction dominates Mn(II) oxidation at low nM concentrations in seawater. Bacteria were enumerated by 4',6-diamidino-2-phenylindole (DAPI) staining during the experiments. No significant correlation between bacterial concentrations and Mn(II) oxidation rates was found.

  7. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study

    SciTech Connect

    Holmes, P.R.; Crundwell, F.K.

    2000-01-01

    The dissolution of pyrite is important in the geochemical cycling of iron and sulphur, in the formation of acid mine drainage, and in the extraction of metals by bacterial leaching. Many researchers have studied the kinetics of dissolution, and the rate of dissolution has often been found to be half-order in ferric ions or oxygen. Previous work has not adequately explained the kinetics of dissolution of pyrite. The dissolution of pyrite is an oxidation-reduction reaction. The kinetics of the oxidation and reduction half-reactions was studied independently using electrochemical techniques of voltammetry. The kinetics of the overall reaction was studied by the electrochemical technique of potentiometry, which consisted of measuring the mixed potential of a sample of corroding pyrite in solutions of different compositions. The kinetics of the half reactions are related to the kinetics of the overall dissolution reaction by the condition that there is no accumulation of charge. This principle is used to derive expressions for the mixed potential and the rate of dissolution, which successfully describe the mixed potential measurements and the kinetics of dissolution reported in the literature. It is shown that the observations of half-order kinetics and that the oxygen in the sulphate product arises from water are both a direct consequence of the electrochemical mechanism. Thus it is concluded that the electrochemical reaction steps occurring at the mineral-solution interface control the rate of dissolution. Raman spectroscopy was used to analyze reaction products formed on the pyrite surface. The results indicated that small amounts of polysulphides form on the surface of the pyrite. However, it was also found that the mixed (corrosion) potential does not change over a 14-day leaching period. This indicates that even though polysulphide material is present on the surface, it does not influence the rate of the reactions occurring at the surface. Measurement of the

  8. Stereoselective synthesis of D- and L-carbocyclic nucleosides by enzymatically catalyzed kinetic resolution.

    PubMed

    Mahler, Miriam; Reichardt, Bastian; Hartjen, Philip; van Lunzen, Jan; Meier, Chris

    2012-08-27

    An efficient synthesis of (S)- or (R)-3-(benzyloxy-methyl)-cyclopent-3-enol was developed by appling an enzyme-catalyzed kinetic-resolution approach. This procedure allowed the syntheses of the enantiomeric building blocks (S)- and (R)-cyclopentenol with high optical purity (>98 % ee). In contrast to previous approaches, the key advantage of this procedure is that the resolution is done on the level of enantiomers that only contain one stereogenic center. Owing to this feature, it was possible to chemically convert the enantiomers into each other. By using this route, the starting materials for the syntheses of carbocyclic D- and L-nucleoside analogues were readily accessible. 3',4'-Unsaturated D- or L-carbocyclic nucleosides were obtained from the condensation of various nucleobases with (S)- or (R)-cyclopentenol. Functionalization of the double bond in 3'-deoxy-3',4'-didehydro-carba-D-thymidine led to a variety of new nucleoside analogues. By using the cycloSal approach, their corresponding phosphorylated metabolites were readily accessable. Moreover, a new synthetic route to carbocyclic 2'-deoxy-nucleosides was developed, thereby leading to D- and L-carba-dT. D-Carba-dT was tested for antiviral activity against multidrug-resistance HIV-1 strain E2-2 and compared to the known antiviral agent d4T, as well as L-carba-dT. Whilst L-carba-dT was found to be inactive, its D-analogue showed remarkably high activity against the resistant virus and significantly better than that of d4T. However, against the wild-type virus strain NL4/3, d4T was found to be more-active than D-carba-dT. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Iron oxidation kinetics for H-2 and CO production via chemical looping

    SciTech Connect

    Stehle, RC; Bobek, MM; Hahn, DW

    2015-01-30

    Solar driven production of fuels by means of an intermediate reactive metal for species splitting has provided a practical and potentially efficient pathway for disassociating molecules at significantly lower thermal energies. The fuels of interest are of or derive from the separation of oxygen from H2O and CO2 to form hydrogen and carbon monoxide, respectively. The following study focuses on iron oxidation through water and CO2 splitting to explore the fundamental reaction kinetics and kinetic rates that are relevant to these processes. In order to properly characterize the reactive metal potential and to optimize a scaled-up solar reactor system, a monolith-based laboratory reactor was implemented to investigate reaction temperatures over a range from 990 to 1400 K. The presence of a single, solid monolith as a reacting surface allowed for a limitation in mass transport effects in order to monitor kinetically driven reaction steps. The formation of oxide layers on the iron monoliths followed Cabrera-Mott models for oxidation of metals with kinetic rates being measured using real-time mass spectrometry to calculate kinetic constants and estimate oxide layer thicknesses. Activation energies of 47.3 kJ/mol and 32.8 kJ/mol were found for water-splitting and CO2 splitting, respectively, and the conclusions of the independent oxidation reactions where applied to experimental results for syngas (H-2-CO) production to explore ideal process characteristics. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  10. Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2016-02-01

    Kinetics of ruthenium(III) catalyzed oxidation of biologically important sugar alcohols (myo-inositol, D-sorbitol, and D-mannitol) by dichloroisocyanuric acid was carried out in aqueous acetic acid—perchloric medium. The reactions were found to be first order in case of oxidant and ruthenium(III). Zero order was observed with the concentrations of sorbitol and mannitol whereas, a positive fractional order was found in the case of inositol concentration. An inverse fractional order was observed with perchloric acid in oxidation of three substrates. Arrhenius parameters were calculated and a plausible mechanism was proposed.

  11. Oxidation of phenols by horseradish peroxidase and lactoperoxidase compound II--kinetic considerations.

    PubMed

    Zahida, M S; Deva, W; Peerzada, G M; Behere, D V

    1998-12-01

    Oxidation of para substituted phenols by horseradish peroxidase compound II (HRP-II) and lactoperoxidase compound II (LPO-II) were studied using stopped flow technique. Apparent second order rate constants (kapp) of the reactions were determined. The kinetics of oxidation of phenols by HRP-II and LPO-II have been compared with the oxidation potentials of the substrates. Reorganization energies of electron-transfer of phenols to the enzymes were estimated from the variation of second order rate constants with the thermodynamic driving force.

  12. Ruthenium tetraoxide oxidations of alkanes: DFT calculations of barrier heights and kinetic isotope effects.

    PubMed

    Drees, Markus; Strassner, Thomas

    2006-03-03

    The oxidation of C-H and C-C bonds by metal-oxo compounds is of general interest. We studied the RuO4-mediated catalytic oxidation of several cycloalkanes such as adamantane and cis- and trans-decalin as well as methane. B3LYP/6-31G(d) calculations on the experimentally proposed (3+2) mechanism are in good agreement with known experimental results. Comparison of experimental and theoretical kinetic isotope effects confirms the proposed mechanism. Besides RuO4, we also looked at RuO4(OH)- as a potential active species to account for ruthenium tetraoxide oxidations under strong basic conditions.

  13. The spin-forbidden a 4Π(nu =13-15) and b 4Sigma - (nu =3) <-- X 2Π(nu =0) bands of nitric oxide: A new scheme for quantum state-specific high-resolution kinetic energy measurements

    NASA Astrophysics Data System (ADS)

    Drabbels, Marcel; Morgan, C. G.; Wodtke, A. M.

    1995-11-01

    A new scheme for performing high-resolution kinetic energy measurements on single quantum states of NO is described. Laser excitation of the a 4Π(ν=13-15) and b 4Σ-(ν=3)←X 2Π(ν=0) spin-forbidden bands has been used to produce NO a 4Π, either by direct excitation or after excitation to NO b 4Σ- followed by b→a emission. The sensitivity is compared to previous experiments on CO, employing the forbidden Cameron system. In the course of these experiments, three previously unknown vibronic levels of the a 4Π state were observed for which high precision molecular constants have been obtained. The derived molecular constants have been used to construct a chemically accurate RKR potential for the a 4Π state to within 0.2 eV of the dissociation limit. In addition, the electric dipole moments for the a 4Π(ν=13-14) levels have been determined. By comparing the experimental results with two ab initio calculations, the polarity of the dipole moment of the a 4Π state at equilibrium separation could be determined. A set of supplementary molecular beam laser-induced fluorescence studies on the b 4Σ-(ν=3)←X 2Π(ν=0) band were also carried out. These allowed the fluorescence lifetime of b 4Σ-(ν=3) state to be obtained under collision-free conditions and the electronic origin of the quartet manifold to be determined within 0.03 cm-1.

  14. OH- Initiated Heterogeneous Oxidation of Saturated Organic Aerosols in the Presence of SO2: Uptake Kinetics and Product Identification.

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, N. K.; Ward, M.; Goldstein, A. H.; Wilson, K. R.

    2014-12-01

    Gas-phase oxidation mechanisms for organic gases are often used as a starting point to understand heterogeneous oxidation. The reaction of a simple alkane hydrocarbon by OH proceeds through hydrogen abstraction and under ambient conditions leads to peroxy radical (RO2) formation. RO2 can further react to form: (1) smaller molecular weight products (i.e. fragmentation) via alkoxy radical formation and dissociation and/or (2) higher molecular weight products with oxygenated functional groups (i.e. functionalization). The ability to perturb these two pathways (functionalization vs. fragmentation) is critical for understanding the detailed reaction mechanism that control atmospheric aging chemistry of particles. At high temperatures the presence of sulfur dioxide (SO2) during organic-OH gas-phase oxidation enhances the fragmentation pathway leading to increased alkoxy formation. It is unknown if a comparative affect occurs at room temperature during a heterogeneous reaction. We used the heterogeneous reaction of OH radicals with sub-micron squalane particles in the presence and absence of SO2 as a model system to explore changes in individual mechanistic pathways. Detailed kinetic measurements were made in a flow tube reactor using a vacuum ultraviolet (VUV) photoionization aerosol mass spectrometer and oxidation products are identified from samples collected on quartz filters using thermal desorption two-dimensional chromatographic separation and ionization by either VUV (10.5 eV) or electron impact (70 eV), with detection by high resolution time of flight mass spectrometry (GCxGC-VUV/EI-HRTOFMS). In the presence of SO2 the yields of alcohols were enhanced compared to without SO2, suggesting that the alkoxy formation pathway was dominant. The results from this work will provide an experimentally-confirmed kinetic framework that could be used to model atmospheric aging mechanisms.

  15. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    SciTech Connect

    Contescu, Cristian I; Burchell, Timothy D; Mee, Robert

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  16. Study the oxidation kinetics of uranium using XRD and Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  17. Kinetics of MoSi[sub 2] pest during low-temperature oxidation

    SciTech Connect

    Chou, T.C. ); Nieh, T.G. )

    1993-07-01

    The kinetics of MoSi[sub 2] pest, caused by oxidation in air, has been studied. Experimental results indicated that pest disintegration occurred at temperatures between 375 and 500 [degree]C. The volumes of test samples increased with oxidation duration. Analysis of change in sample volume versus oxidation duration revealed that the pest disintegration consisted of two stages, namely nucleation (or incubation) and growth.The onset of growth stage depended on the test temperature. More importantly, changes in sample volume were found to obey a linear relationship with time during the growth stage. Equations were formulated to demonstrate that the growth kinetics of pest disintegration was proportional to the rates of change in sample volume. The rates of volume change during MoSi[sub 2] pest were calculated to be 4.9[times]10[sup [minus]6], 2.8[times]10[sup [minus]5], 3.7[times]10[sup [minus]5], and 5.4[times]10[sup [minus]5] cm[sup 3]/s at 375, 400, 425, and 450 [degree]C, respectively; the growth kinetics increased with oxidation temperature. The activation energy for the growth stage of pest disintegration was determined to be 27.6 kcal/mole, which agrees well with the activation energy for the low-temperature oxidation of MoSi[sub 2].

  18. Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation.

    PubMed

    Jung, Heejung; Kittelson, David B; Zachariah, Michael R

    2006-08-15

    Biodiesel is one of the most promising alternative diesel fuels. As diesel emission regulations have become more stringent, the diesel particulate filter (DPF) has become an essential part of the aftertreatment system. Knowledge of kinetics of exhaust particle oxidation for alternative diesel fuels is useful in estimating the change in regeneration behavior of a DPF with such fuels. This study examines the characteristics of diesel particulate emissions as well as kinetics of particle oxidation using a 1996 John Deere T04045TF250 off-highway engine and 100% soy methyl ester (SME) biodiesel (B100) as fuel. Compared to standard D2 fuel, this B100 reduced particle size, number, and volume in the accumulation mode where most of the particle mass is found. At 75% load, number decreased by 38%, DGN decreased from 80 to 62 nm, and volume decreased by 82%. Part of this decrease is likely associated with the fact that the particles were more easily oxidized. Arrhenius parameters for the biodiesel fuel showed a 2-3times greater frequency factor and approximately 6 times higher oxidation rate compared to regular diesel fuel in the range of 700-825 degrees C. The faster oxidation kinetics should facilitate regeneration when used with a DPF.

  19. Kinetic studies of sulfide mineral oxidation and xanthate adsorption

    NASA Astrophysics Data System (ADS)

    Mendiratta, Neeraj K.

    2000-10-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO 2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel

  20. Kinetics and Mechanisms of Ciprofloxacin Oxidation on Hematite Surfaces.

    PubMed

    Martin, Sébastien; Shchukarev, Andrey; Hanna, Khalil; Boily, Jean-François

    2015-10-20

    Adsorption of antibiotics at mineral surfaces has been extensively studied over the past 20 years, yet much remains to be learned on their interfacial properties and transformation mechanisms. In this study, interactions of Ciprofloxacin (CIP), a fluoroquinolone antibiotic with two sets of synthetic nanosized hematite particles, with relatively smooth (H10, 10-20 nm in diameter) and roughened (H80, 80-90 nm in diameter) surfaces, were studied by means of liquid chromatography (LC), mass spectrometry (MS), and spectroscopy (vibration and X-ray photoelectron). Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy provides evidence for inner-sphere bidentate complex formation of CIP at hematite surfaces in 0.01 M NaCl, irrespective of pH and particle size. ATR-FTIR spectroscopy also revealed that the sorbed mother CIP molecule decayed to other surface species over a period of at least 65 h. This was supported by the detection of three daughter products in the aqueous phase by LC/MS. The appearance of NH3(+) groups during the course of these experiments, revealed by cryogenic XPS, provides further evidence that CIP oxidation proceeds through an opening of piperazine ring via N-dealkylation. Additional in vacuo FTIR experiments under temperature-programmed desorption also showed that oxidation of sorbed byproducts were effectively degraded beyond 450 °C, a result denoting considerably strong (inter)molecular bonds of both mother and daughter products. This work also showed that rougher, possibly multidomainic particles (H80) generated slower rates of CIP decomposition but occurring through more complex schemes than at smoother particle surfaces (H10). This work thus uncovered key aspects of the binding of an important antibiotic at iron oxide surfaces, and therefore provided additional constraints to our growing understanding of the fate of emerging contaminants in the environment.

  1. Kinetic Constant Variability in Bacterial Oxidation of Elemental Sulfur▿

    PubMed Central

    Pokorna, Blanka; Mandl, Martin; Borilova, Sarka; Ceskova, Pavla; Markova, Romana; Janiczek, Oldrich

    2007-01-01

    Wide ranges of growth yields on sulfur (from 2.4 × 1010 to 8.1 × 1011 cells g−1) and maximum sulfur oxidation rates (from 0.068 to 1.30 mmol liter−1 h−1) of an Acidithiobacillus ferrooxidans strain (CCM 4253) were observed in 73 batch cultures. No significant correlation between the constants was observed. Changes of the Michaelis constant for sulfur (from 0.46 to 15.5 mM) in resting cells were also noted. PMID:17449698

  2. Influence of hydrogen oxidation kinetics on hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Kendig, M. W.; Meisels, A. P.

    1992-01-01

    Results are presented from experiments performed to determine the roles of hydrogen absorption and hydrogen electron transfer on the susceptibility of Fe- and Ni-base alloys to ambient-temperature hydroen embrittlement. An apparent independence is noted between hydrogen environment embrittlement and internal hydrogen embrittlement. The experiments were performed on Inconel 718, Incoloy 903, and A286. The electrochemical results obtained indicate that Inconel 718 either adsorbs hydrogen more rapidly and/or the electrochemical oxidation of the adsorbed hydrogen occurred more rapidly than in the other two materials.

  3. Bond energies in polyunsaturated acids and kinetics of co-oxidation of protiated and deuterated acids

    NASA Astrophysics Data System (ADS)

    Andrianova, Z. S.; Breslavskaya, N. N.; Pliss, E. M.; Buchachenko, A. L.

    2016-10-01

    A computational program specially designed to analyze co-oxidation of substances in mixtures is suggested. The rigorous kinetic scheme of 32 reactions describing co-oxidation of isotope differing polyunsaturated fatty acids was computed to enlighten experimentally detected enormously large H/D isotope effects. The latter were shown to depend on the kinetic chain length and exhibit two extreme regimes of short and long chains which characterize isotope effects on the initiation and propagation chain reactions of hydrogen (deuterium) atom abstraction. No protective effect of deuterated polyunsaturated acids on the oxidation of protiated acids was detected. Protective effect of the deuterated compounds on the biologically important processes seems to be induced by the low yield of products formed in the chain termination reactions due to the low rate of initiation by deuterated compounds.

  4. Kinetics of oxygen atom formation during the oxidation of methane behind shock waves

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1974-01-01

    An experimental and analytical study of the formation of oxygen atoms during the oxidation of methane and methane-hydrogen mixtures behind incident shock waves was carried out over the temperature range 1790-2584 K at reaction pressures between 1.2 and 1.7 atm. Oxygen atom levels were determined indirectly by measurement of emission from reaction of O with CO. On the basis of these data and ignition-delay data reported in the literature, a kinetic scheme for methane oxidation was assembled. The proposed kinetic mechanism, in general, predicts higher peak oxygen atom levels than the current oxidation mechanisms proposed by Bowman and Seery and by Skinner and his co-workers.

  5. Oxygen atom kinetics in silane-hydrogen-nitrous oxide mixtures behind reflected shock waves

    NASA Astrophysics Data System (ADS)

    Javoy, S.; Mével, R.; Dupré, G.

    2010-11-01

    Resonance Absorption Spectroscopy has been used to study the O-atom dynamics behind reflected shock waves in highly argon diluted silane-hydrogen-nitrous oxide mixtures in the temperature range 1606-2528 K and at total pressures from 234 to 584 kPa. The absorptions at 130.5 nm of N 2O, SiH 4 and Si have been taken into account to compare simulated and experimental absorption profiles. A detailed kinetic model has been also used to interpret the results and reaction pathway and sensitivity analyses have been performed to underline important elementary reactions. A comparison with the O-atom kinetic in silane-nitrous oxide and hydrogen-nitrous oxide mixtures is also proposed.

  6. Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines

    PubMed Central

    2015-01-01

    Chemoenzymatic dynamic kinetic resolution (DKR) constitutes a convenient and efficient method to access enantiomerically pure alcohol and amine derivatives. This Perspective highlights the work carried out within this field during the past two decades and pinpoints important avenues for future research. First, the Perspective will summarize the more developed area of alcohol DKR, by delineating the way from the earliest proof-of-concept protocols to the current state-of-the-art systems that allows for the highly efficient and selective preparation of a wide range of enantiomerically pure alcohol derivatives. Thereafter, the Perspective will focus on the more challenging DKR of amines, by presenting the currently available homogeneous and heterogeneous methods and their respective limitations. In these two parts, significant attention will be dedicated to the design of efficient racemization methods as an important means of developing milder DKR protocols. In the final part of the Perspective, a brief overview of the research that has been devoted toward improving enzymes as biocatalysts is presented. PMID:25730714

  7. Chemoenzymatic dynamic kinetic resolution: a powerful tool for the preparation of enantiomerically pure alcohols and amines.

    PubMed

    Verho, Oscar; Bäckvall, Jan-E

    2015-04-01

    Chemoenzymatic dynamic kinetic resolution (DKR) constitutes a convenient and efficient method to access enantiomerically pure alcohol and amine derivatives. This Perspective highlights the work carried out within this field during the past two decades and pinpoints important avenues for future research. First, the Perspective will summarize the more developed area of alcohol DKR, by delineating the way from the earliest proof-of-concept protocols to the current state-of-the-art systems that allows for the highly efficient and selective preparation of a wide range of enantiomerically pure alcohol derivatives. Thereafter, the Perspective will focus on the more challenging DKR of amines, by presenting the currently available homogeneous and heterogeneous methods and their respective limitations. In these two parts, significant attention will be dedicated to the design of efficient racemization methods as an important means of developing milder DKR protocols. In the final part of the Perspective, a brief overview of the research that has been devoted toward improving enzymes as biocatalysts is presented.

  8. Resolution of the diffusional paradox predicting infinitely fast kinetics on the nanoscale

    NASA Astrophysics Data System (ADS)

    Beke, D. L.; Erdélyi, Z.

    2006-01-01

    In our paper, we offer a natural resolution for a long-standing paradox in diffusion. We show that the growth rate of the diffusion zone (reaction layer) should not go to infinity with decreasing time (as 1/t ), just because the diffusion permeability of the interface is finite. Expression for the changeover thickness X* between the linear and parabolic regimes of the interface shift in phase separating binary A(B) systems is derived in the framework of a deterministic atomistic model for diffusion. X* lies typically between 0.01 and 300nm , depending on the composition dependence of the diffusion coefficient and the phase separation tendency of the alloy. While in ideal binary alloys with composition independent diffusivity, the deviation from the parabolic law practically cannot be observed, in real systems (where the diffusion coefficient can change several orders of magnitude with the composition), measurable deviations are expected as it was experimentally observed very recently in the Ni/Cu and Au/Ni systems. We also offer an atomistic explanation for the phenomenological interface transfer coefficient K . It measures the finite interface permeability (proportional to the jump frequency across the interface) and thus it controls the shift of the interface at short times (diffusion distances). Although it is almost exclusively accepted in the literature that linear growth kinetics are the result of interface reaction control, our results suggest that the linear or nonparabolic growth of a reaction layer on the nanoscale cannot be automatically interpreted by an interface reaction.

  9. Study of the oxidation of W(110) by full-solid-angle photoelectron diffraction with chemical state and time resolution

    SciTech Connect

    Ynzunza, R. X.; Palomares, F. J.; Tober, E. D.; Wang, Z.; Morais, J.; Denecke, R.; Daimon, H.; Chen, Y.; Hussain, Z; Liesengang, J.; Van Hove, M. A.; Fadley, C. S.

    1997-04-01

    The brightness of third-generation synchrotron radiation from beamline 9.3.2 at the Advanced Light Source has been combined with the high-intensities and energy resolutions possible with its advanced photoelectron spectrometer/diffractometer experimental station in order to study the time dependence of the oxidation of the W(110) surface. This has been done via chemical-state-resolved core-level photoelectron spectroscopy and diffraction. This system has been studied previously by other methods such as LEED and STM, but several questions remain as to the basic kinetics of oxidation and the precise adsorption structures involved. By studying the decay and growth with time of various peaks in the W 4f{sub 7/2} photoelectron spectra, it should be possible to draw quantitative conclusions concerning the reaction kinetics involved. The authors have also measured full-solid-angle photoelectron diffraction patterns for the two oxygen-induced W states, and these should permit fully defining the different structures involved in this oxidation process.

  10. Thermoactivated persulfate oxidation of pesticide chlorpyrifos in aquatic system: kinetic and mechanistic investigations.

    PubMed

    Zhou, Lei; Zhang, Ya; Ying, Rongrong; Wang, Guoqing; Long, Tao; Li, Jianhua; Lin, Yusuo

    2017-03-20

    The widespread occurrence of organophosphorus pesticides (OPPs) in the environment poses risks to both ecologic system as well as human health. This study investigated the oxidation kinetics of chlorpyrifos (CP), one of the typical OPPs, by thermoactivated persulfate (PS) oxidation process, and evaluated the influence of key kinetic factors, such as PS concentrations, pH, temperature, bicarbonate, and chloride ions. The reaction pathways and mechanisms were also proposed based on products identification by LC-MS techniques. Our results revealed that increasing initial PS concentration and temperature favored the decomposition of CP, whereas the oxidation efficiency was not affected by pH change ranging from 3 to 11. Bicarbonate was found to play a detrimental role on CP removal rates, while chloride showed no effect. The oxidation pathways including initial oxidation of P=S bond to P=O, dechlorination, dealkylation, and the dechlorination-hydroxylation were proposed, and the detailed underlying mechanisms were also discussed. Molecular orbital (MO) calculations indicated that P=S bond was the most favored oxidation site of the molecule. The toxicity of reaction solution was believed to increase due to the formation of products with P=O structures. This work demonstrates that OPPs can readily react with SO4(·-) and provides important information for further research on the oxidation of these contaminants.

  11. Detailed kinetic modeling study of n-pentanol oxidation

    DOE PAGES

    Heufer, K. Alexander; Sarathy, S. Mani; Curran, Henry J.; ...

    2012-09-28

    To help overcome the world’s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailedmore » kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C–H and C–C bond dissociation energies. In addition, the proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes.« less

  12. The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation

    SciTech Connect

    Jung, Heejung; Kittelson, David B.; Zachariah, Michael R.

    2005-08-01

    The influence of a cerium additive on the kinetics of oxidation and size distribution of ultrafine diesel particles was studied using a high-temperature oxidation-tandem differential mobility analysis method over the temperature range 300-700|{sup o}C. The addition of cerium to the diesel fuel was observed to cause significant changes in number-weighted size distributions, light-off temperature, and kinetics of oxidation. The peak number concentration in the accumulation mode decreased 50 and 65%, respectively, for 25 and 100 ppm dosing levels under 1400 rpm and 75% engine load. The light-off temperature was reduced by 250 and 300|{sup o}C, respectively, for 25 and 100 ppm dosing levels. The oxidation rate increased significantly (x20) with the addition of cerium to the fuel; however, the rate was relatively insensitive to dosing level. The activation energy for cerium-dosed oxidation was, within experimental error, equivalent to that for undosed fuel (E{sub a}=100-110 kJmol{sup -1}). From a phenomenological kinetic rate perspective, the increase in oxidation rate was attributed solely to an increase in the preexponential factor. These results suggested that diesel particles using regular, undosed diesel fuels were already metal-catalyzed to some extent, most likely from metals in the lube oil. The addition of cerium likely increased the number of catalytic sites but had no effect on the overall activation energy due to the presence of other metals in the diesel particulate matter coming from lube oil. The characteristics of cerium-laden diesel particles were also investigated. Two principal types of aggregates were found using transmission electron microscopy and energy-dispersive spectrometry analysis. The first was composed mainly of agglomerates of carbonaceous spherules and a few, considerably smaller cerium oxide nanoparticles. The second consisted of metallic aggregates composed mainly of cerium oxide nanoparticles and some carbon.

  13. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    PubMed

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils.

  14. Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate

    SciTech Connect

    Strzelec, Andrea; Toops, Todd J; Daw, C Stuart

    2011-01-01

    We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

  15. Effect of albumin on the kinetics of ascorbate oxidation.

    PubMed

    Lozinsky, E; Novoselsky, A; Shames, A I; Saphier, O; Likhtenshtein, G I; Meyerstein, D

    2001-04-03

    The fluorescence intensity of the fluorophore in dansyl piperidine-nitroxide is intramolecularly quenched by the nitroxyl fragment. Therefore, the oxidation of ascorbic acid by the fluorophore-nitroxide (FN) probe can be monitored by two independent methods: steady-state fluorescence and electron paramagnetic resonance. Bovine serum albumin (BSA) affects the rate of this reaction. The influence of BSA on the rate is attributed to the adsorption of both ascorbate and the probe to BSA. Adsorption of ascorbate to BSA is confirmed by NMR relaxation experiments. The spatial distribution of the molecules on the BSA surface changes the availability of ascorbate and FN to each other. The results also point out that, in the presence of BSA, the autoxidation of ascorbate is significantly slowed down. The effect is studied at different pH values and explained in terms of the electrostatic interaction between the ascorbate anion and the BSA molecule.

  16. Ex-situ tracking solid oxide cell electrode microstructural evolution in a redox cycle by high resolution ptychographic nanotomography

    NASA Astrophysics Data System (ADS)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Esposito, Vincenzo; Tsai, Esther Hsiao Rho; Holler, Mirko; Kreka, Kosova; Abdellahi, Ebtisam; Bowen, Jacob R.

    2017-08-01

    For solid oxide fuel and electrolysis cells, precise tracking of 3D microstructural change in the electrodes during operation is considered critical to understand the complex relationship between electrode microstructure and performance. Here, for the first time, we report a significant step towards this aim by visualizing a complete redox cycle in a solid oxide cell (SOC) electrode. The experiment demonstrates synchrotron-based ptychography as a method of imaging SOC electrodes, providing an unprecedented combination of 3D image quality and spatial resolution among non-destructive imaging techniques. Spatially registered 3D reconstructions of the same location in the electrode clearly show the evolution of the microstructure from the pristine state to the oxidized state and to the reduced state. A complete mechanical destruction of the zirconia backbone is observed via grain boundary fracture, the nickel and pore networks undergo major reorganization and the formation of internal voids is observed in the nickel-oxide particles after the oxidation. These observations are discussed in terms of reaction kinetics, electrode mechanical stress and the consequences of redox cycling on electrode performance.

  17. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  18. Kinetics of oxygenated product formation during the heterogeneous oxidation of organic aerosol

    NASA Astrophysics Data System (ADS)

    Kolesar, K. R.; Cappa, C. D.; Wilson, K. R.

    2014-12-01

    Oxidation of organic aerosols can lead to changes in their atmospheric lifetime, optical properties and health effects. Whereas much is known about the rates of reaction and subsequent branching ratios of gas-phase organic species, much less is known about their condensed phase counterparts. The determination of the kinetics and abundances of the oxidation products associated with condensed phase reactions is needed to understand the oxidation reaction pathways and their branching ratios. The Vacuum Ultraviolet Aerosol Mass Spectrometer (VUV-AMS) at the Chemical Dynamics Beamline at Lawrence Berkeley National Laboratory has been useful in determining the reaction rate constants for a number of condensed phase organic compounds with oxidants such as OH and O3. The relatively soft ionization in the VUV-AMS leads to substantially less fragmentation than other AMS instruments that use electron impact ionization, and therefore preserves a greater amount of molecular information about parent molecules. Previously, ketones formed from the heterogenous oxidation of model organic compounds have been identified and their formation kinetics quantified. However, other possible products, such as alcohols and organic peroxides, have not previously been identified in the VUV-AMS mass spectra or characterized as these are subject to greater fragmentation. Here, we present a method in which the fragmentation pattern is specified for each alcohol isomer formed from the oxidation of two model organic compounds, bis-2-ethylhexl sebacate and squalane. From this we are able to define unique m/z fragments for each isomer from which we derive information about alcohol and abundances. This study demonstrates additional methods for the analysis of mass spectra obtained with the VUV-AMS as well as provides insights into condensed phase oxidation kinetics.

  19. Metal oxidation kinetics and the transition from thin to thick films.

    PubMed

    Xu, Zhijie; Rosso, Kevin M; Bruemmer, Stephen

    2012-11-14

    We report an investigation of growth kinetics and transition from thin to thick films during metal oxidation. In the thin film limit (<20 nm), Cabrera and Mott's theory is usually adopted by explicitly considering ionic drift through the oxide in response to electric fields, where the growth kinetics follow an inverse logarithmic law log(dl/dt) is proportional to 1/l. It is generally accepted that Wagner's theory, involving self-diffusion, is valid only in the limit of thick film regime (>1 μm) and leads to parabolic growth kinetics dl/dt is proportional to 1/l, where l is the oxide film thickness. Theory presented here unifies the two models and provides a complete description of oxidation including the transition from thin to thick film. The range of validity of Cabrera and Mott's theory and Wagner's theory can be well defined in terms of the Debye-Hückel screening length. The transition from drift-dominated ionic transport for thin film to diffusion-dominated transport for thick film is found to strictly follow the direct logarithmic law log(dl/dt) is proportional to -l that is frequently observed in many experiments.

  20. Metal Oxidation Kinetics and the Transition from Thin to Thick Films

    SciTech Connect

    Xu, Zhijie; Rosso, Kevin M.; Bruemmer, Stephen M.

    2012-09-01

    We report an investigation of growth kinetics and transition from thin to thick films during metal oxidation. In the thin film limit (< 20 nm), Cabrera and Mott’s theory is usually adopted by explicitly considering ionic drift through the oxide in response to electric fields, where the growth kinetics follow an inverse logarithmic law . It is generally accepted that Wagner’s theory, involving self-diffusion, is valid only in the limit of thick film regime (>1μm) and leads to parabolic growth kinetics , where l is the oxide film thickness. Theory presented here unifies the two models and provides a complete description of oxidation including the transition from thin to thick film. The range of validity of Cabrera and Mott’s theory and Wagner’s theory can be well defined in terms of the Debye-Hückel screening length. The transition from drift-dominated ionic transport for thin film to diffusion-dominated transport for thick film is found to strictly follow the direct logarithmic law that is frequently observed in many experiments.

  1. Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems.

    PubMed

    Dachipally, Purnachandar; Jonnalagadda, Sreekanth B

    2011-01-01

    The ozone facilitated oxidation mechanism of water soluble azo anionic dye, amaranth (Am) was investigated monitoring the depletion kinetics of the dye spectrometrically at 521 nm. The oxidation kinetics of the dye by ozone was studied under semi-batch conditions, by bubbling ozone enriched oxygen through the aqueous reaction mixture of dye, as function of flow rate, ionic strength, [O(3)] and pH variations. With excess concentration of ozone and other reagents and low [amaranth], reaction followed pseudo-first-order kinetics with respect to the dye. Added neutral salts had marginal effect on the reaction rate and the variation of pH from 7 to 2 and 7 to 12 exerted only small increases in the reaction rate suggesting molecular ozone possibly is the principle reactive species in oxidation of dye. The reaction order with respect ozone was near unity and it varied slightly with pH and flow rate variations. The overall second-order rate constant for the reaction was (105 ± 4) M(-1) min(-1). The main oxidation products immediately after amaranth decolorization were identified. The reaction mechanism and overall rate law were proposed. After spiking the seawater, river water and wastewaters with Amaranth dye, the reaction rates and trends in BOD and COD under control and natural conditions were investigated. The rate of depletion of the dye in natural waters was relatively lower, but the ozonation process significantly decreased both the BOD and COD levels.

  2. Evaluating kinetic models for preferential CO-oxidation catalysts using optimization-based parameter estimation

    NASA Astrophysics Data System (ADS)

    Baughman, Adam C.; Huang, Xinqun; Martin, Lealon L.

    2012-07-01

    We adapt a general-purpose optimization-based parameter estimation technique previously described in the literature [1] to evaluate the suitability of a number of common kinetic models for the representation of key performance characteristics (conversion and selectivity) of catalysts used for the preferential oxidation of CO in the presence of H2. We find that, for process engineering applications, there is no clear practical advantage to using mechanistically based kinetic models (e.g. Langmuir-Hinshelwood) unless the precise chemical mechanism is known. Empirical rate models are found generally to provide equivalent or better simulations of key performance variables for a diverse group of catalyst formulations. Furthermore, we demonstrate that the water-gas-shift (WGS) reaction is relevant within PROX reaction systems under conditons containing high fractions of CO2 and H2, confirming the expectations of Choi and Stenger (2004) [2]. Finally, we attempt to identify any emergent trends in kinetic parameters among catalysts sharing similar active metal or metal oxide components. Unfortunately, apart from confirming that the activation barrier for CO oxidation is generally less than the barrier for H2 oxidation (an expected relationship for PROX catalysts), no such trends are found.

  3. Estimation of Sintering Kinetics of Oxidized Magnetite Pellet Using Optical Dilatometer

    NASA Astrophysics Data System (ADS)

    Sandeep Kumar, T. K.; Viswanathan, Neelakantan Nurni; Ahmed, Hesham M.; Andersson, Charlotte; Björkman, Bo

    2015-04-01

    The quality of magnetite pellet is primarily determined by the physico-chemical changes the pellet undergoes as it makes excursion through the gaseous and thermal environment in the induration furnace. Among these physico-chemical processes, the oxidation of magnetite phase and the sintering of oxidized magnetite (hematite) and magnetite (non-oxidized) phases are vital. Rates of these processes not only depend on the thermal and gaseous environment the pellet gets exposed in the induration reactor but also interdependent on each other. Therefore, a systematic study should involve understanding these processes in isolation to the extent possible and quantify them seeking the physics. With this motivation, the present paper focusses on investigating the sintering kinetics of oxidized magnetite pellet. For the current investigation, sintering experiments were carried out on pellets containing more than 95 pct magnetite concentrate from LKAB's mine, dried and oxidized to completion at sufficiently low temperature to avoid sintering. The sintering behavior of this oxidized pellet is quantified through shrinkage captured by Optical Dilatometer. The extent of sintering characterized by sintering ratio found to follow a power law with time i.e., Kt n . The rate constant K for sintering was determined for different temperatures from isothermal experiments. The rate constant, K, varies with temperature as and the activation energy ( Q) and reaction rate constant ( K') are estimated. Further, the sintering kinetic equation was also extended to a non-isothermal environment and validated using laboratory experiments.

  4. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    PubMed

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  5. Kinetics of low-temperature CO oxidation on Au(111)

    NASA Astrophysics Data System (ADS)

    Thuening, Theodore; Walker, Joshua; Adams, Heather; Furlong, Octavio; Tysoe, Wilfred T.

    2016-06-01

    The oxidation of carbon monoxide on oxygen-modified Au(111) surfaces is studied using a combination of reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). TPD reveals that CO desorbs in two states with the low-temperature state have a peak temperature between ~ 130 and 150 K, and the higher-temperature state having a peak temperature that varies from ~ 175 to ~ 220 K depending on the initial oxygen and CO coverages. Infrared spectroscopy indicates that the low-temperature CO desorption state is predominantly associated with CO adsorbed on Auδ + sites, while the higher-temperature states are due to CO on Au0 sites. No additional vibrational features are detected indicating that CO reacts directly with adsorbed atomic oxygen on gold to form CO2. Estimates of the activation energy for CO2 formation suggest that they are in the same range and found for supported gold catalysts at reaction temperature below ~ 300 K.

  6. Oxidation kinetics of zinc sulfide: determination of intrinsic rate constant

    SciTech Connect

    Prabhu, G.M.

    1983-06-01

    An initial reaction rate study was done with the help of a thermogravimetric technique. Energy dispersive x-ray analyses on partially oxidized zinc sulfide pellets with a sintered porosity of 72.4% indicated flat sulfur intensity profiles within pellets reacted below 560/sup 0/C, which suggested a homogeneous reaction mechanism. Therefore, reaction temperatures below 600/sup 0/C were chosen for the reaction rate studies. Initial reaction rate studies on 72.4, 58.2, and 34.0% porous, cylindrical zinc sulfide pellets and the corresponding Arrhenius plot suggested chemical control in the temperature range from 480 to 565/sup 0/C. The corresponding intrinsic rate constant is correlated as k = 3.45 x 10/sup 17/ exp (- 86051/RT) cm/s. The variation in sulfur intensity within sintered pellets having a porosity of 72.4% that were reacted at temperatures above 560/sup 0/C indicated that the pore diffusion resistance gradually became comparable to the chemical reaction resistance leading to a mixed control mechanism above 570/sup 0/C. The critical temperature at which this shift occurred, increased with pellet porosity.

  7. Oxidation kinetics of Fe(II) in sea water

    SciTech Connect

    Millero, F.J.; Sotolongo, S.; Izaguirre, M.

    1987-04-01

    The oxidation of Fe(II) has been studied as a function of pH (5 to 9), temperature (5 to 45/sup 0/C), and salinity (0 to 35). The pseudo-first-order rate constant, k/sub 1/, in water and sea water was found to be a second degree function of pH over the pH range of 7.5 to 8.5 at 5/sup 0/C and 6.0 to 8.0 at 25/sup 0/C. The overall rate constant (k) was determined from 5 to 45/sup 0/C and S = 0 to 35. The results have been fit to an equation of the form with a standard error = 0.09. The energy of activation for the overall rate constant in water and sea water was 29 +/- 2 kJ mol/sup -1/. The equations are provided with this paper. The values of the rate constant for pure water (k/sub 0/) are in good agreement with literature data. The half times for sea water from some previous studies at a pH = 8.0 were slower than the authors results for Gulf Stream waters. Measurements on Biscayne Bay waters also yield slower half times apparently due to the presence of organic ligands that can complex Fe(II).

  8. Denitrifying kinetics and nitrous oxide emission under different copper concentrations.

    PubMed

    Wu, Guangxue; Zhai, Xiaofeng; Jiang, Chengai; Guan, Yuntao

    2014-01-01

    Denitrifying activities and nitrous oxide (N2O) emission during denitrification can be affected by copper concentrations. Different denitrifiers were acclimated in sequencing batch reactors with acetate or methanol as the electron donor and nitrate as the electron acceptor. The effect of copper concentrations on the denitrifying activity and N2O emission for the acclimated denitrifiers was examined in batch experiments. Denitrifying activities of the acclimated denitrifiers declined with increasing copper concentrations, and the copper concentration exhibited a higher effect on denitrifiers acclimated with acetate than those acclimated with methanol. Compared with the control without the addition of copper, at the copper concentration of 1 mg/L, the acetate utilization rate reduced by 89% for acetate-acclimated denitrifiers, while the methanol utilization rate only reduced by 15% for methanol-acclimated denitrifiers. Copper also had different effects on N2O emission during denitrification carried out by various types of denitrifiers. For the acetate-acclimated denitrifiers, N2O emission initially increased and then decreased with increasing copper concentrations, while for the methanol-acclimated denitrifiers, N2O emission decreased with increasing copper concentrations.

  9. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    PubMed

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  10. Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis

    PubMed Central

    Hanson, Thomas E.; Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Hess, Daniel

    2013-01-01

    Previously, we presented data that indicated microbial sulfide oxidation would out-compete strictly chemical, abiotic sulfide oxidation reactions under nearly all conditions relevant to extant ecosystems (Luther et al., 2011). In particular, we showed how anaerobic microbial sulfide oxidation rates were several orders of magnitude higher than even metal catalyzed aerobic sulfide oxidation processes. The fact that biotic anaerobic sulfide oxidation is kinetically superior to abiotic reactions implies that nearly all anaerobic and sulfidic environments should host microbial populations that oxidize sulfide at appreciable rates. This was likely an important biogeochemical process during long stretches of euxinia in the oceans suggested by the geologic record. In particular, phototrophic sulfide oxidation allows the utilization of carbon dioxide as the electron acceptor suggesting that this process should be particularly widespread rather than relying on the presence of other chemical oxidants. Using the Chesapeake Bay as an example, we argue that phototrophic sulfide oxidation may be more important in many environments than is currently appreciated. Finally, we present methodological considerations to assist other groups that wish to study this process. PMID:24391629

  11. Observation of temperature-dependent kinetics for catalytic CO oxidation over TiO2-supported Pt catalysts

    NASA Astrophysics Data System (ADS)

    Yu, Xiaomei; Wang, Yunfei; Kim, Ansoon; Kim, Yu Kwon

    2017-10-01

    TiO2-supported Pt catalysts were prepared for the study of CO oxidation kinetics at reaction conditions of pressures (1-100 Torr) and temperatures (300-500 K). We find two distinct temperature ranges with different reaction kinetics distinguished by an abrupt slope change at around 380 K in the Arrhenius plot only with the excess O2, not with the stoichiometric O2/CO ratio. We propose that Pt oxides are formed during the catalytic reactions with increasing temperatures under the oxidizing condition and the origin of the slope change is due to the changes in the reaction pathways of CO oxidation due to the Pt oxide formation.

  12. Oxidation of manganese by spores of a marine bacillus: Kinetic and thermodynamic considerations

    NASA Astrophysics Data System (ADS)

    Hastings, David; Emerson, Steven

    1986-08-01

    The catalytic properties of spores of a marine Bacillus known to oxidize divalent manganese were used to perform laboratory Mn(II) oxidation experiments at environmental conditions of pH and Mn(II) concentration. We found that at pH 7.8 the initial kinetics of Mn(II) oxidation facilitated by the spores was four orders of magnitude greater than that which would be expected for abiotic autocatalysis on a colloidal MnO 2 surface. The rate progressively decreased as the spores became coated with manganese oxide, eventually becoming very near that predicted for abiotic surface catalysis. Transmission electron microscopic observations and oxidation state measurements of solids precipitated at pH 7.5 and [Mn(II)] < 50 nM indicated that the initial oxidation product was hausmannite (Mn 3O 4 or MnO x where x = 1.33) which aged to more highly oxidized MnO 2 ( x = 1.9) in the time scale of weeks. By utilizing spores to catalyze the oxidation rate, we were able to maintain our experimental system within the seawater range of pH and Mn(II) where highly oxidized manganese oxide precipitates are thermodynamically stable. In doing so we obtained, for the first time, laboratory precipitates with oxidation states similar to that found in marine particulate material. These results suggest that the concentration of manganese in seawater and the oxidation state of marine manganese oxides are controlled by the rapid precipitation of Mn 3O 4, which can be microbially mediated, followed by the disproportionation to MnO 2.

  13. The oxidation kinetics of Fe(II) in seawater

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.; Sotolongo, Sara; Izaguirre, Miguel

    1987-04-01

    The oxidation of Fe(II) has been studied as a function of pH (5 to 9), temperature (5 to 45°C), and salinity (0 to 35). The pseudo-first-order rate constant, k1, -d[Fe(II)]/dt = k 1[Fe(II)] in water and seawater was found to be a second degree function of pH over the pH range of 7.5 to 8.5 at 5°C and 6.0 to 8.0 at 25°C. The overall rate constant ( k) -d[Fe(II)]/dt = k[Fe(II)][O 2][OH -] 2 was determined from 5 to 45°C and S = 0 to 35. The results have been fit to an equation of the form ( T = 273.15 + t° C) log k = log k 0 - 3.29I 1/2 + 1.52I where logk0 = 21.56-1545/ T with a standard error = 0.09. The energy of activation for the overall rate constant in water and seawater was 29 ± 2 kJmol-1. The values of the rate constant for pure water ( k0) are in good agreement with literature data. The half times for seawater from some previous studies at a pH = 8.0 were slower than our results for Gulf Stream waters. Measurements on Biscayne Bay waters also yield slower half times apparently due to the presence of organic ligands that can complex Fe(II).

  14. High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes.

    PubMed

    Chen, Chang-Hui; Meadows, Katherine E; Cuharuc, Anatolii; Lai, Stanley C S; Unwin, Patrick R

    2014-09-14

    The scanning droplet-based technique, scanning electrochemical cell microscopy (SECCM), combined with electron backscatter diffraction (EBSD), is demonstrated as a powerful approach for visualizing surface structure effects on the rate of the oxygen reduction reaction (ORR) at polycrystalline platinum electrodes. Elucidating the effect of electrode structure on the ORR is of major interest in connection to electrocatalysis for energy-related applications. The attributes of the approach herein stem from: (i) the ease with which the polycrystalline substrate electrode can be prepared; (ii) the wide range of surface character open to study; (iii) the possibility of mapping reactivity within a particular facet (or grain), in a pseudo-single-crystal approach, and acquiring a high volume of data as a consequence; (iv) the ready ability to measure the activity at grain boundaries; and (v) an experimental arrangement (SECCM) that mimics the three-phase boundary in low temperature fuel cells. The kinetics of the ORR was analyzed and a finite element method model was developed to explore the effect of the three-phase boundary, in particular to examine pH variations in the droplet and the differential transport rates of the reactants and products. We have found a significant variation of activity across the platinum substrate, inherently linked to the crystallographic orientation, but do not detect any enhanced activity at grain boundaries. Grains with (111) and (100) contributions exhibit considerably higher activity than those with (110) and (100) contributions. These results, which can be explained by reference to previous single-crystal measurements, enhance our understanding of ORR structure-activity relationships on complex high-index platinum surfaces, and further demonstrate the power of high resolution flux imaging techniques to visualize and understand complex electrocatalyst materials.

  15. Broad-spectrum kinetic resolution of alcohols enabled by Cu-H-catalysed dehydrogenative coupling with hydrosilanes

    NASA Astrophysics Data System (ADS)

    Dong, Xichang; Weickgenannt, Andreas; Oestreich, Martin

    2017-06-01

    The enantioselective silylation of racemic alcohols, where one enantiomer reacts faster than the other, is an alternative approach to established enzymatic and non-enzymatic acylation techniques. The existing art is either limited to structurally biased alcohols or requires elaborate catalysts. Simple substrates, such as benzylic and allylic alcohols, with no coordinating functionality in the proximity of the hydroxy group have been challenging in these kinetic resolutions. We report here the identification of a broadly applicable chiral catalyst for the enantioselective dehydrogenative coupling of alcohols and hydrosilanes with both the chiral ligand and the hydrosilane being commercially available. The efficiency of kinetic resolutions is characterized by the selectivity factor, that is, the ratio of the reaction rates of the fast-reacting over the slow-reacting enantiomer. The selectivity factors achieved with the new method are good for acyclic benzylic alcohols (<=170) and high for synthetically usefully cyclic benzylic (<=40.1) and allylic alcohols (<=159).

  16. Catalytic Kinetic Resolution of a Dynamic Racemate: Highly Stereoselective β-Lactone Formation by N-Heterocyclic Carbene Catalysis

    PubMed Central

    Johnston, Ryne C.; Cohen, Daniel T.; Eichman, Chad C.

    2014-01-01

    This study describes the combined experimental and computational elucidation of the mechanism and origins of stereoselectivities in the NHC-catalyzed dynamic kinetic resolution (DKR) of α-substituted-β-ketoesters. Density functional theory computations reveal that the NHC-catalyzed DKR proceeds by two mechanisms, depending on the stereochemistry around the forming bond: 1) a concerted, asynchronous formal (2+2) aldol-lactonization process, or 2) a stepwise spiro-lactonization mechanism where the alkoxide is trapped by the NHC-catalyst. These mechanisms contrast significantly from mechanisms found and postulated in other related transformations. Conjugative stabilization of the electrophile and non-classical hydrogen bonds are key in controlling the stereoselectivity. This reaction constitutes an interesting class of DKRs in which the catalyst is responsible for the kinetic resolution to selectively and irreversibly capture an enantiomer of a substrate undergoing rapid racemization with the help of an exogenous base. PMID:25045464

  17. Effect of wall growth on the kinetic modeling of nitrite oxidation in a CSTR.

    PubMed

    Dokianakis, Spiros N; Kornaros, Michael; Lyberatos, Gerasimos

    2006-03-05

    A simple kinetic model was developed for describing nitrite oxidation by autotrophic aerobic nitrifiers in a continuous stirred tank reactor (CSTR), in which mixed (suspended and attached) growth conditions prevail. The CSTR system was operated under conditions of constant nitrite feed concentration and varying volumetric flow rates. Experimental data from steady-state conditions in the CSTR system and from batch experiments were used for the determination of the model's kinetic parameters. Model predictions were verified against experimental data obtained under transient operating conditions, when volumetric flow rate and nitrite feed concentration disturbances were imposed on the CSTR. The presented kinetic modeling procedure is quite simple and general and therefore can also be applied to other mixed growth biological systems.

  18. Catalytic Synthesis of Nonracemic Azaproline Derivatives by Cyclization of β-Alkynyl Hydrazines under Kinetic Resolution Conditions**

    PubMed Central

    Maity, Pradip; Lepore, Salvatore D.

    2013-01-01

    Cyclic addition of a hydrazine nitrogen to unactivated alkynes catalyzed by non-metals. Starting from readily accessible γ-silyl allenyl esters, β-alkynyl hydrazines are prepared in one step and subsequently undergo unprecedented cyclization reactions in the presence of ammonium and phosphonium catalysts leading to dehydro-azaproline products. These heterocycles are also produced in high enantiomeric excesses using chiral ammonium phase transfer catalysts via a kinetic resolution pathway. PMID:21766401

  19. Chemoenzymatic dynamic kinetic resolution of primary amines catalyzed by CAL-B at 38-40 °C.

    PubMed

    Poulhès, Florent; Vanthuyne, Nicolas; Bertrand, Michèle P; Gastaldi, Stéphane; Gil, Gérard

    2011-09-02

    The (R)-selective chemoenzymatic dynamic kinetic resolution of primary amines was performed at 38-40 °C in MTBE, in good to high yields and with high enantiomeric excesses. These reactions associating CAL-B to octanethiol as radical racemizing agent were carried out in the presence of methyl β-methoxy propanoate as acyl donor, under photochemical irradiation at 350 nm in glassware.

  20. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  1. Chemical kinetics and interactions involved in horseradish peroxidase-mediated oxidative polymerization of phenolic compounds.

    PubMed

    Cheng, Wenjing; Harper, Willie F

    2012-03-10

    The primary objective of this research was to evaluate various factors that affect the reaction rate of oxidative coupling (OXC) reaction of phenolic estrogens catalyzed by horseradish peroxidase (HRP). Kinetic parameters were obtained for the conversion of phenol as well as natural and synthetic estrogens estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), and 17α-ethinylestradiol (EE(2)). Molecular orbital theory and Autodock software were employed to analyze chemical properties and substrate binding characteristics. Reactions were first order with respect to phenolic concentration and reaction rate constants (k(r)) were determined for phenol, E(3), E(1), E(2) and EE(2) (in increasing order). Oxidative coupling was controlled by enzyme-substrate interactions, not collision frequency. Docking simulations show that higher binding energy and a shorter binding distance both promote more favorable kinetics. This research is the first to show that the OXC of phenolics is an entropy-driven and enthalpy-retarded process.

  2. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    SciTech Connect

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2010-05-15

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines. (author)

  3. Oxidation rate of graphitic matrix material in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2014-08-01

    Data on oxidation rates of matrix-grade graphite in the kinetically-controlled temperature regime of graphite oxidation are needed for safety analysis of High Temperature Gas Cooled Reactors and Very High Temperature Reactors. In this work, the oxidation rate of graphitic matrix material GKrS was measured thermogravimetrically for various oxygen concentrations and with temperatures from 873 to 1873 K. A semi-empirical Arrhenius rate equation was also developed for this temperature range. The activation energy of the graphitic material is found to be about 111.5 kJ/mol. The order of reaction was found to be about 0.89. The surface of oxidized GKrS was characterized by Scanning Electron Microscopy, Electron Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy.

  4. One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates.

    PubMed

    Trujillo, Madia; Alvarez, Beatriz; Radi, Rafael

    2016-01-01

    The oxidation of biothiols participates not only in the defense against oxidative damage but also in enzymatic catalytic mechanisms and signal transduction processes. Thiols are versatile reductants that react with oxidizing species by one- and two-electron mechanisms, leading to thiyl radicals and sulfenic acids, respectively. These intermediates, depending on the conditions, participate in further reactions that converge on different stable products. Through this review, we will describe the biologically relevant species that are able to perform these oxidations and we will analyze the mechanisms and kinetics of the one- and two-electron reactions. The processes undergone by typical low-molecular-weight thiols as well as the particularities of specific thiol proteins will be described, including the molecular determinants proposed to account for the extraordinary reactivities of peroxidatic thiols. Finally, the main fates of the thiyl radical and sulfenic acid intermediates will be summarized.

  5. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  6. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  7. Kinetics of the bio-oxidation of volatile reduced sulphur compounds in a biotrickling filter.

    PubMed

    Cáceres, Manuel; Silva, Javier; Morales, Marjorie; San Martín, Ricardo; Aroca, Germán

    2012-08-01

    Mixtures of volatile reduced sulphur compounds (VRSCs) like hydrogen sulphide (H(2)S), methylmercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS) are found in gaseous emissions of several industrial activities creating nuisance in the surroundings. Hydrogen sulphide (H(2)S) decreases the removal efficiency of volatile reduced sulphur compounds (VRSCs) in biofilters but the kinetics of this effect is still unknown. Kinetic expressions that represent the rate of bio-oxidation of H(2)S, MM, DMS and DMDS are proposed. In order to observe and quantify this effect, equimolar mixtures of MM, DMS and DMDS were fed into a biotrickling filter inoculated with Thiobacillus thioparus at different H(2)S loads. Experimental results shown a good agreement with the simulations generated by the model considering the kinetic equations proposed. The estimated kinetic constants show that H(2)S and MM have a significant inhibitory effect on the bio-oxidation of DMS and DMDS, having the H(2)S the higher effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Adsorption kinetics of organophosphonic acids on plasma-modified oxide-covered aluminum surfaces.

    PubMed

    Giza, M; Thissen, P; Grundmeier, G

    2008-08-19

    Tailoring of oxide chemistry on aluminum by means of low-pressure water and argon plasma surface modification was performed to influence the kinetics of the self-assembly process of octadecylphosphonic acid monolayers. The plasma-induced surface chemistry was studied by in situ FTIR reflection-absorption spectroscopy (IRRAS). Ex situ IRRAS and X-ray photoelectron spectroscopy were applied for the analysis of the adsorbed self-assembled monolayers. The plasma-induced variation of the hydroxide to oxide ratio led to different adsorption kinetics of the phosphonic acid from dilute ethanol solutions as measured by means of a quartz crystal microbalance. Water plasma treatment caused a significant increase in the density of surface hydroxyl groups in comparison to that of the argon-plasma-treated surface. The hydroxyl-rich surface led to significantly accelerated adsorption kinetics of the phosphonic acid with a time of monolayer formation of less than 1 min. On the contrary, decreasing the surface hydroxyl density slowed the adsorption kinetics.

  9. Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys

    NASA Astrophysics Data System (ADS)

    Krishna, L. Rama; Purnima, A. Sudha; Wasekar, Nitin P.; Sundararajan, G.

    2007-02-01

    The micro arc oxidation (MAO) technique is being increasingly recognized as a novel and ecofriendly means of depositing dense ceramic oxide coatings on Al and its alloys. In the present study, the deposition kinetics, surface roughness, morphology, phase distribution and the microhardness of the MAO coatings deposited on ten different commercially available Al substrates having widely differing chemical composition has been investigated. Further, the tribological properties of the coatings obtained on different Al alloys in comparison with the bare substrates have also been evaluated using dry sand abrasion, solid-particle erosion and pin-on-disc dry sliding wear tests. The results clearly demonstrate that the alloying elements added to the Al substrate substantially influence the MAO coating deposition kinetics and coating properties. In the case of Al-Si alloys, the coating deposition kinetics is non-linear and the Al6Si2O13 (mullite) is observed to form. With increasing Si content, the corresponding mullite phase also increases. Increasing mullite content in the coating adversely affects the tribological performance. Excepting Al-Si alloys, all other alloys investigated including commercial purity Al exhibit linear coating deposition kinetics. Of all the alloys investigated, Al-Li alloy exhibits the highest coating deposition rate and the 6061 T6 Al alloy exhibits the best coating properties.

  10. Kinetics and mechanism of the oxidation of organic sulfides by N-bromobenzamide

    SciTech Connect

    Chowdhury, K.; Banerji, K.K. )

    1990-09-14

    Kinetics of oxidation of 34 organic sulfides by N-bromobenzamide (NBB), to yield the corresponding sulfoxides, have been studied. The reaction is first-order with respect to the sulfide, NBB, and hydrogen ions. There is no effect of added benzamide. Protonated NBB has been postulated as the reactive oxidizing species. Reactivity of the sulfides toward NBB was subjected to correlation analysis by using multiparametric equations. The polar reaction constants are negative. Steric effects play a minor inhibitory role. A mechanism involving formulation of a halogenosulfonium cation, in the rate-determining step, has been proposed.

  11. Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate.

    PubMed

    Damm, Jochen H; Hardacre, Christopher; Kalin, Robert M; Walsh, Kayleen P

    2002-08-01

    The occurrence of the fuel oxygenate methyl tert-butyl ether (MTBE) in the environment has received considerable scientific attention. The pollutant is frequently found in the groundwater due to leaking of underground storage tanks or pipelines. Concentrations of more than several mg/L MTBE were detected in groundwater at several places in the US and Germany in the last few years. In situ chemical oxidation is a promising treatment method for MTBE-contaminated plumes. This research investigated the reaction kinetics for the oxidation of MTBE by permanganate. Batch tests demonstrated that the oxidation of MTBE by permanganate is second order overall and first order individually with respect to permanganate and MTBE. The second-order rate constant was 1.426 x 10(-6) L/mg/h. The influence of pH on the reaction rate was demonstrated to have no significant effect. However, the rate of MTBE oxidation by potassium permanganate is 2-3 orders of magnitude lower than of other advanced oxidation processes. The slower rates of MTBE oxidation by permanganate limit the applicability of this process for rapid MTBE cleanup strategies. However, permanganate oxidation of MTBE has potential for passive oxidation risk management strategies.

  12. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  13. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  14. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  15. Anaerobic digestion of amine-oxide-based surfactants: biodegradation kinetics and inhibitory effects.

    PubMed

    Ríos, Francisco; Lechuga, Manuela; Fernández-Arteaga, Alejandro; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2017-08-01

    Recently, anaerobic degradation has become a prevalent alternative for the treatment of wastewater and activated sludge. Consequently, the anaerobic biodegradability of recalcitrant compounds such as some surfactants require a thorough study to avoid their presence in the environment. In this work, the anaerobic biodegradation of amine-oxide-based surfactants, which are toxic to several organisms, was studied by measuring of the biogas production in digested sludge. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R12), Myristamine oxide (AO-R14) and Cocamidopropylamine oxide (AO-cocoamido). Results show that AO-R12 and AO-R14 inhibit biogas production, inhibition percentages were around 90%. AO-cocoamido did not cause inhibition and it was biodegraded until reaching a percentage of 60.8%. Otherwise, we fitted the production of biogas to two kinetic models, to a pseudo first-order model and to a logistic model. Production of biogas during the anaerobic biodegradation of AO-cocoamido was pretty good adjusted to the logistics model. Kinetic parameters were also determined. This modelling is useful to predict their behaviour in wastewater treatment plants and under anaerobic conditions in the environment.

  16. Kinetic modeling of the oxidative degradation of additive free PE in bleach disinfected water

    NASA Astrophysics Data System (ADS)

    Mikdam, Aïcha; Colin, Xavier; Billon, Noëlle; Minard, Gaëlle

    2016-05-01

    The chemical interactions between PE and bleach were studied at 60°C in immersion in bleach solutions kept at a free chlorine concentration of 100 ppm and a pH of 5 or 7.2. It was found that the polymer undergoes a severe oxidation from the earliest weeks of exposure, in a superficial layer whose thickness (of about 50-70 µm) is almost independent of the pH value, although the superficial oxidation rate is faster in acidic than in neutral medium. Oxidation leads to the formation and accumulation of a large variety of carbonyl products (mostly ketones and carboxylic acids) and, after a few weeks, to a decrease in the average molar mass due to the large predominance of chain scissions over crosslinking. A scenario was elaborated for explaining such unexpected results. According to this scenario, the non-ionic molecules (Cl2 and ClOH) formed from the disinfectant in the water phase, would migrate deeply into PE and dissociate into highly reactive radicals (Cl• and HO•) in order to initiate a radical chain oxidation. A kinetic model was derived from this scenario for predicting the general trends of the oxidation kinetics and its dependence on environmental factors such as temperature, free chlorine concentration and pH. The validity of this model was successfully checked by comparing the numerical simulations with experimental data.

  17. In situ thermal oxidation kinetics in few layer MoS2

    NASA Astrophysics Data System (ADS)

    Rao, Rahul; E Islam, Ahmad; Campbell, Philip M.; Vogel, Eric M.; Maruyama, Benji

    2017-06-01

    It is important to understand the thermal and chemical stability of mono- and few-layer MoS2 for their use in applications. Oxidative environments are of particular interest due to the potential for use of MoS2 in electronics, sensing and energy storage. Here we present an in situ study of the oxidation kinetics of few-layer MoS2 over a wide range of temperatures. In situ monitoring of the MoS2 Raman spectra during oxidation revealed a decrease in the intensity of peaks following sigmoidal decay kinetics, which was initiated at temperatures as low as 300 °C. Ex situ resonance Raman spectroscopy, scanning electron and atomic force microscopy analysis indicated breaking up and thinning of the MoS2 films down to p-doped mono- and bi-layer regions. From analysis of the temperature-dependent decay rates and resonance Raman spectroscopy, we correlate oxidation rates to structural defects in the MoS2 films, and find a reaction energy of 0.54  ±  0.14 eV for the oxidation process.

  18. Kinetics of sintering of alpha-aluminium oxide derived from aluminium-ammonium alum

    NASA Astrophysics Data System (ADS)

    Tanev, P.; Koruderlieva, S.; Leach, C.; Russeva, B.

    1995-05-01

    The kinetics of sintering of alpha -Al2O3 prepared from aluminum-ammonium alum (left brace) Al2SO4(sub 2) center-dot (NH4) (sub 2)SO4 center-dot 24H2O (right brace) by different thermal treatments is studied. Three batches of aluminum oxide were prepared and their characteristics are given. It can be seen that higher surface area powders are produced at the reduced calcination temperature where the intermediate phase is not quenched.

  19. Kinetic studies of iron oxidation by whole cells of Ferrobacillus ferrooxidans.

    PubMed

    Schnaitman, C A; Korczynski, M S; Lundgren, D G

    1969-08-01

    A colorimetric assay was developed for studying the kinetics of iron oxidation with whole cells of the chemoautotroph, Ferrobacillus ferrooxidans. The assay was more advantageous than the conventional method of Warburg manometry because of its simplicity, rapidity, and the small amount of cells required. The assay measured Fe(3+) as a chloride complex which absorbs at 410 nm. Kinetic analysis showed the apparent K(m) for iron oxidation to be 5.4 x 10(-3)m in an unbuffered system and 2.2 x 10(-3)m in the presence of beta-alanine-SO(4) (2-) buffer. Glycine and beta-alanine buffers were used in the measurement of the pH optimum for iron oxidation; the optimum ranged from 2.5 to 3.8. The effect of pH was primarily on the V(max) while the K(m) remained constant. Added SO(4) (2-) was found to stimulate iron oxidation by increasing the V(max) of iron oxidation by whole cells, but it did not affect the K(m). Results of assays of iron oxidation in systems containing various mole percentages of SO(4) (2-) and Cl(-) indicated that Cl(-) did not inhibit iron oxidation but that SO(4) (2-) was required. Sulfate could be partially replaced by HPO(4) (2-) and HAsO(4) (2-) but not by BO(3) (-), MoO(4) (2-), NO(3) (-), or Cl(-); formate and MoO(4) (2-) inhibited iron oxidation.

  20. Kinetics and mechanisms of Co(II) EDTA oxidation by pyrolusite

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Taylor, D. L.

    1995-10-01

    Monitoring and restoration activities at low-level radioactive waste disposal sites have identified complicated mixtures of inorganic and organic contaminants in soil and groundwater. Metallic contaminants are generally complexed with various chelating agents and organic acids which alter the geochemical behavior of the contaminants in subsurface media. The objective of this study was to provide an improved understanding of the geochemical processes controlling the subsurface transport of radioactive 60Co complexed with ethylenediaminetetraacetic acid (EDTA). Specifically, we investigated the kinetics and mechanisms of Co(II) EDTA 2- oxidation to Co(III)EDTA - by the soil mineral pyrolusite (β-MnO 2). A column displacement technique was utilized to investigate Co(II)EDTA 2- reactivity and oxidation rates through packed beds of pyrolusite-coated SiO 2. The interaction of Co(II)EDTA 2- with the porous media was characterized by a MnO 2-induced oxidation of the Co (II)EDTA 2- to Co(III)EDTA -. The oxidation of Co(II)EDTA 2- appeared to involve the reduction of Mn (IV) to both an aqueous Mn 2+ species and a theorized Mn(III)-oxide solid phase. The redox reaction was catalytic since the reduction products were gradually reoxidized in the presence of dissolved O 2 to form a Mn(IV)-oxide phase. Oxidation of surface-bound Mn 2+ and the theorized Mn(III)-oxide was slow relative to Co(II)EDTA 2- oxidation, and a reversible loss in the oxidative ability of the β-MnO 2 occurred when exposed to CO(II)EDTA 2-. The reduction in catalytic activity of the MnO 2 was not the result of direct surface poisoning by Mn 2+ but rather was believed to result from the formation of an intermediate Mn(III)-oxide solid phase whose oxidative potential was significantly less than MnO 2. Thus, the kinetics of Co(II)EDTA 2- oxidation to Co(III)EDTA - by MnO 2 was dependent on the rate of MnO 2 surface regeneration. The environmental implications of this redox reaction are pronounced, since any Co

  1. How surface potential determines the kinetics of the first hole transfer of photocatalytic water oxidation.

    PubMed

    Waegele, Matthias M; Chen, Xihan; Herlihy, David M; Cuk, Tanja

    2014-07-30

    Interfacial hole transfer between n-SrTiO3 and OH(-) was investigated by surface sensitive transient optical spectroscopy of an in situ photoelectrochemical cell during water oxidation. The kinetics reveal a single rate constant with an exponential dependence on the surface hole potential, spanning time scales from 3 ns to 8 ps over a ≈1 V increase. A voltage- and laser illumination-induced process moves the valence band edge at the n-type semiconductor/water interface to continuously change the surface hole potential. This single step of the water oxidation reaction is assigned to the first hole transfer h(+) + OH(-) → OH(•). The kinetics quantify how much a change in the free energy difference driving this first hole transfer reduces the activation barrier. They are also used to extrapolate the kinetic rate due to the activation barrier when that free energy difference is zero, or the Nernstian potential. This is the first time transient spectroscopy has enabled the separation of the first hole transfer from the full four hole transfer cycle and a direct determination of these two quantities. The Nernstian potential for OH(-)/OH(•) is also suggested, in rough agreement with gas-phase studies. The observation of a distinct, much longer time scale upon picosecond hole transfer to OH(-) suggests that a dominant, more stable intermediate of the water oxidation reaction, possibly a surface bound oxo, may result.

  2. Kinetics and mechanism of oxidation of chondroitin-4-sulfate polysaccharide by chromic acid in aqueous perchlorate solutions.

    PubMed

    Hassan, Refat; Ibrahim, Samia; Dahy, Abdel Rahman; Zaafarany, Ishaq; Tirkistani, Fahd; Takagi, Hideo

    2013-02-15

    The kinetics of chromic acid oxidation of chondroitin-4-sulfate polysaccharide as sulfated carbohydrates at a constant ionic strength of 4.0 mol dm(-3) has been investigated, spectrophotometrically. The reaction kinetics showed a first-order dependence in chromic acid and fractional-first-order kinetics with respect to the chondroitin-4-sulfate concentration. The influence of [H(+)] on the reaction rates showed that the oxidation process is acid-catalyzed. Added Mn(2+) ions indicated the formation of Cr(IV) as intermediate species. A kinetic evidence for formation of 1:1 intermediate complex was revealed. The kinetic parameters have been evaluated and a tentative reaction mechanism in good consistent with the kinetic results obtained is discussed.

  3. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.

    PubMed

    Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels

    2014-07-01

    The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant persistence. The overall rate of the ISCO reaction between oxidant and contaminant is typically described using a second-order kinetic model while the second-order rate constant is determined experimentally by means of a pseudo first order approach. However, earlier studies of chlorinated hydrocarbons have yielded a wide range of values for the second-order rate constants. Also, there is limited insight in the kinetics of permanganate reactions with fuel-derived groundwater contaminants such as toluene and ethanol. In this study, batch experiments were carried out to investigate and compare the oxidation kinetics of aqueous trichloroethylene (TCE), ethanol, and toluene in an aqueous potassium permanganate solution. The overall second-order rate constants were determined directly by fitting a second-order model to the data, instead of typically using the pseudo-first-order approach. The second-order reaction rate constants (M(-1) s(-1)) for TCE, toluene, and ethanol were 8.0×10(-1), 2.5×10(-4), and 6.5×10(-4), respectively. Results showed that the inappropriate use of the pseudo-first-order approach in several previous studies produced biased estimates of the second-order rate constants. In our study, this error was expressed as a function of the extent (P/N) in which the reactant concentrations deviated from the stoichiometric ratio of each oxidation reaction. The error associated with the inappropriate use of the pseudo-first-order approach is negatively correlated with the P/N ratio and reached up to 25% of the estimated second-order rate constant in some previous studies of TCE oxidation. Based on our results, a similar relation is valid for the other volatile

  4. Adsorption and abiotic oxidation of arsenic by aged biofilter media: equilibrium and kinetics.

    PubMed

    Sahabi, Danladi Mahuta; Takeda, Minoru; Suzuki, Ichiro; Koizumi, Jun-ichi

    2009-09-15

    Removal of arsenic from groundwater by biological adsorptive filtration depends largely on its interaction with biogenic iron and manganese oxides surfaces. In the present study we investigated the arsenic adsorption and abiotic oxidation capacities of an aged biofilter medium (BM2) collected from a long time established groundwater treatment plant for removal of iron and manganese by biological filtration. Batch oxidation/adsorption kinetic experiments indicated that BM2 can easily oxidize As(III) to As(V) with the rate of oxidation less affected by pH-variations from 4 to 8.5. The adsorption capacity of the biofilter medium for the produced or added As(V), however, depends strongly on the pH of the solution. The kinetics results have shown that As(III) sorption followed pseudo-second order kinetics, whereas the sorption of As(V) was best described by the intra-particle diffusion model, indicating that adsorptions of As(III) and As(V) onto BM2 were governed by different mechanisms. Adsorption isotherms at 25 degrees C were measured for a range of arsenite and arsenate initial concentrations of 0.67-20 micromol/L and the pH range from 4 to 9. Adsorption maxima were highest at pH 4 and decrease steadily as the pH increases. The equilibrium data for both As(III) and As(V) fitted very well to the Freundlich and Sips isotherm equations and, in most cases, the two isotherms overlapped with the same correlation coefficients, indicating sorption to be multilayer on the heterogeneous surface of BM2. The implication of the data for arsenic removal from water by biological filtration has been discussed.

  5. [Study on apparent kinetics of photocatalytic oxidation degradation Rhodamine B by photo-Fenton reaction].

    PubMed

    Li, Hong; Zheng, Huai-Li; Li, Xiao-Hong; Xie, Li-Guo; Tang, Xue

    2008-11-01

    The Fenton process, mixed by hydrogen peroxide and iron salts with highly oxidative effect, is recognized as one of powerful advanced oxidation technologies available and can be used to destroy a variety of persistent organic pollutants. The oxidation power of Fenton reagent is due to the generation of hydroxyl radical (* OH) during the iron catalysed decomposition of hydrogen peroxide in acid medium. The hydroxyl radical with a high oxidation potential (2.8 eV) attacks and completely destroys the pollutants in Fenton process. The degradation of pollutants can be considerably improved by using sunlight radiation, which is due to the generation of additional hydroxyl radicals. This photo-Fenton process had been effectively used to degrade the pollutants. In this paper, the definite quantity of Fenton reagent was added in the definite concentration of Rhodamine B solution. The degradation reaction was carried out at pH 3.5 under natural sunlight. The factors influencing on photocatalytic oxidation degradation rate of Rhodamine B were studied following: the initial concentration of Rhodamine B, initial concentrateions of Fe2+ and H2O2. The orders of degradation reaction were obtained by solving exponential kinetics equations of curve fitting, thereby gaining the kinetic parameters and reaction dynamics equation of the reaction system. The research contents included mainly: the UV-Vis spectra of Rhodamine B solution, the concentration-absorbency work curve of Rhodamine B solution, the analysis of the reaction system at various initial Rhodamine B concentrations, the analysis of the reaction system at various initial Fe2+ concentrateions, the analysis of the reaction system at various initial H2O2 concentrations, and the calculation of the apparent kinetics parameters in reaction dynamics equation. The reaction dynamics equation from experiments was constructed: V = 5 x 10(-9) P1.28 F0.366 E0.920, and overall reaction order was 2.57.

  6. High temperature X-ray diffraction study of the oxidation products and kinetics of uranium-plutonium mixed oxides.

    PubMed

    Strach, Michal; Belin, Renaud C; Richaud, Jean-Christophe; Rogez, Jacques

    2014-12-15

    The oxidation products and kinetics of two sets of mixed uranium-plutonium dioxides containing 14%, 24%, 35%, 46%, 54%, and 62% plutonium treated in air were studied by means of in situ X-ray diffraction (XRD) from 300 to 1773 K every 100 K. The first set consisted of samples annealed 2 weeks before performing the experiments. The second one consisted of powdered samples that sustained self-irradiation damage. Results were compared with chosen literature data and kinetic models established for UO2. The obtained diffraction patterns were used to determine the temperature of the hexagonal M3O8 (M for metal) phase formation, which was found to increase with Pu content. The maximum observed amount of the hexagonal phase in wt % was found to decrease with Pu addition. We conclude that plutonium stabilizes the cubic phases during oxidation, but the hexagonal phase was observed even for the compositions with 62 mol % Pu. The results indicate that self-irradiation defects have a slight impact on the kinetics of oxidation and the lattice parameter even after the phase transformation. It was concluded that the lattice constant of the high oxygen phase was unaffected by the changes in the overall O/M when it was in equilibrium with small quantities of M3O8. We propose that the observed changes in the high oxygen cubic phase lattice parameter are a result of either cation migration or an increase in the miscibility of oxygen in this phase. The solubility of Pu in the hexagonal phase was estimated to be below 14 mol % even at elevated temperatures.

  7. Statistical model for grain boundary and grain volume oxidation kinetics in UO{sub 2} spent fuel

    SciTech Connect

    Stout, R.B.; Shaw, H.F.; Einziger, R.E.

    1989-09-01

    This paper addresses statistical characteristics for the simplest case of grain boundary/grain volume oxidation kinetics of UO{sub 2} to U{sub 3}O{sub 7} for a fragment of a spent fuel pellet. It also presents a limited discussion of future extensions to this simple case to represent the more complex cases of oxidation kinetics in spent fuels. 17 refs., 1 fig.

  8. Structure and growth kinetics of the oxidation process of Fe(001) whisker surfaces over a 10-decade pressure range

    NASA Astrophysics Data System (ADS)

    Ferrer, Salvador; Robach, Odile; Balmes, Olivier; Isern, Helena; Popa, Iona; Ackerman, Marcelo

    2010-10-01

    Fe(001) surfaces of whiskers of good crystalline quality were oxidized in a pressure range from 10 - 7 mbar to 1 bar at different temperatures. Epitaxial Fe 3O 4 and FeO thin films with negligible strain were grown depending on the oxidation temperatures. The kinetics of the oxide thickness growth was measured and compared with the predictions of the Fromhold-Cook theory for oxidation of metals. Some discrepancies were found and a possible explanation is presented.

  9. Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: kinetics and intermediates.

    PubMed

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei; Wang, Zhaohui; Liu, Jianshe

    2012-11-30

    C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC-MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N(2)-saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO(2) system by changing the reaction atmospheres.

  10. Kinetics of the Oxidation of Reduced Cu,Zn-Superoxide Dismutase by Peroxymonocarbonate

    PubMed Central

    Ranguelova, Kalina; Ganini, Douglas; Bonini, Marcelo G.; London, Robert E.; Mason, Ronald P.

    2012-01-01

    Kinetic evidence is reported for the role of the peroxymonocarbonate, HOOCO2−, as an oxidant for reduced Cu,Zn-superoxide dismutase-Cu(I) (SOD1) during the peroxidase activity of the enzyme. The formation of this reactive oxygen species results from the equilibrium between hydrogen peroxide and bicarbonate. Recently, peroxymonocarbonate has been proposed to be a key substrate for reduced SOD1 and has been shown to oxidize SOD1-Cu(I) to SOD1-Cu(II) much faster than H2O2. We have reinvestigated the kinetics of the reaction between SOD1-Cu(I) and HOOCO2− by using conventional stopped-flow spectrophotometry and obtained a second-order rate constant of k = 1600 ± 100 M−1s−1 for SOD1-Cu(I) oxidation by HOOCO2−. Our results demonstrate that peroxymonocarbonate oxidizes SOD1-Cu(I) to SOD1-Cu(II) and is in turn reduced to the carbonate anion radical. It is proposed that the dissociation of His61 from the active site Cu(I) in SOD-Cu(I) contributes to this chemistry by facilitating the binding of larger anions, such as peroxymonocarbonate. PMID:22569304

  11. Surface oxidation energetics and kinetics on MoS{sub 2} monolayer

    SciTech Connect

    KC, Santosh; Longo, Roberto C.; Wallace, Robert M.; Cho, Kyeongjae

    2015-04-07

    In this work, surface oxidation of monolayer MoS{sub 2} (one of the representative semiconductors in transition-metal dichalcogenides) has been investigated using density functional theory method. Oxygen interaction with MoS{sub 2} shows that, thermodynamically, the surface tends to be oxidized. However, the dissociative absorption of molecular oxygen on the MoS{sub 2} surface is kinetically limited due to the large energy barrier at low temperature. This finding elucidates the air stability of MoS{sub 2} surface in the atmosphere. Furthermore, the presence of defects significantly alters the surface stability and adsorption mechanisms. The electronic properties of the oxidized surface have been examined as a function of oxygen adsorption and coverage as well as substitutional impurities. Our results on energetics and kinetics of oxygen interaction with the MoS{sub 2} monolayer are useful for the understanding of surface oxidation, air stability, and electronic properties of transition-metal dichalcogenides at the atomic scale.

  12. Zinc adsorption effects on arsenite oxidation kinetics at the birnessite-water interface

    USGS Publications Warehouse

    Power, L.E.; Arai, Y.; Sparks, D.L.

    2005-01-01

    Arsenite is more toxic and mobile than As(V) in soil and sediment environments, and thus it is advantageous to explore factors that enhance oxidation of As(III) to As(V). Previous studies showed that manganese oxides, such as birnessite (??-MnO2), directly oxidized As(III). However, these studies did not explore the role that cation adsorption has on As(III) oxidation. Accordingly, the effects of adsorbed and nonadsorbed Zn on arsenite (As(III)) oxidation kinetics at the birnessite-water interface were investigated using batch adsorption experiments (0.1 g L-1; pH 4.5 and 6.0; I = 0.01 M NaCl). Divalent Zn adsorption on synthetic ??-MnO 2 in the absence of As(III) increased with increasing pH and caused positive shifts in electrophoretic mobility values at pH 4-6, indirectly suggesting inner-sphere Zn adsorption mechanisms. Arsenite was readily oxidized on birnessite in the absence of Zn. The initial As(III) oxidation rate constant decreased with increasing pH from 4.5 to 6.0 and initial As(III) concentrations from 100 to 300 ??M. Similar pH and initial As(III) concentration effects were observed in systems when Zn was present (i.e., presorbed Zn prior to As(III) addition and simultaneously added Zn-As(III) systems), but As(III) oxidation reactions were suppressed compared to the respective control systems. The suppression was more pronounced when Zn was presorbed on the ??-MnO 2 surfaces as opposed to added simultaneously with As(III). This study provides further understanding of As(III) oxidation reactions on manganese oxide surfaces under environmentally applicable conditions where metals compete for reactive sites.

  13. Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects

    NASA Astrophysics Data System (ADS)

    Hryha, Eduard; Nyborg, Lars

    2014-04-01

    The main obstacle for utilization of Cr and Mn as alloying elements in powder metallurgy is their high oxygen affinity leading to oxidation risk during powder manufacturing, handling, and especially during further consolidation. Despite the high purity of the commercially available Cr- and Mn-prealloyed iron powder grades, the risk of stable oxide formation during the sintering process remains. Thermodynamic and kinetic simulation of the oxide formation/transformation on the former powder surface during heating and sintering stages using thermodynamic modeling tools (Thermo-Calc and HSC Chemistry) was performed. Simulation is based on the results from the analysis of amount, morphology, and composition of the oxide phases inside the inter-particle necks in the specimens from interrupted sintering trials utilizing advanced analysis tools (HRSEM + EDX and XPS). The effect of the processing parameters, such as sintering atmosphere composition, temperature profile as well as graphite addition on the possible scenarios of oxide reduction/formation/transformation for Fe-Cr-Mn-C powder systems, was evaluated. Results indicate that oxide transformation occurs in accordance with the thermodynamic stability of oxides as follows: Fe2O3 → FeO → Fe2MnO4 → Cr2FeO4 → Cr2O3 → MnCr2O4 → MnO/MnSiO x → SiO2. Spinel MnCr2O4 was identified as the most stable oxide phase at applied sintering conditions up to 1393 K (1120 °C). Controlled conditions during the heating stage minimize the formation of stable oxide products and produce oxide-free sintered parts.

  14. Kinetics of Mn(II) oxidation by Leptothrix discophora SS1

    NASA Astrophysics Data System (ADS)

    Zhang, Jinghao; Lion, Leonard W.; Nelson, Yarrow M.; Shuler, Michael L.; Ghiorse, William C.

    2002-03-01

    The kinetics of Mn(II) oxidation by the bacterium Leptothrix discophora SS1 was investigated in this research. Cells were grown in a minimal mineral salts medium in which chemical speciation was well defined. Mn(II) oxidation was observed in a bioreactor under controlled conditions with pH, O2, and temperature regulation. Mn(II) oxidation experiments were performed at cell concentrations between 24 mg/L and 35 mg/L, over a pH range from 6 to 8.5, between temperatures of 10°C and 40°C, over a dissolved oxygen range of 0 to 8.05 mg/L, and with L. discophora SS1 cells that were grown in the presence of Cu concentrations ranging from zero to 0.1 μM. Mn(II) oxidation rates were determined when the cultures grew to stationary phase and were found to be directly proportional to O2 and cell concentrations over the ranges investigated. The optimum pH for Mn(II) oxidation was approximately 7.5, and the optimum temperature was 30°C. A Cu level as low as 0.02 μM was found to inhibit the growth rate and yield of L. discophora SS1 observed in shake flasks, while Cu levels between 0.02 and 0.1 μM stimulated the Mn(II) oxidation rate observed in bioreactors. An overall rate law for Mn(II) oxidation by L. discophora as a function of pH, temperature, dissolved oxygen concentration (D.O.), and Cu concentration is proposed. At circumneutral pH, the rate of biologically mediated Mn(II) oxidation is likely to exceed homogeneous abiotic Mn(II) oxidation at relatively low (≈μg/L) concentrations of Mn oxidizing bacteria.

  15. Kinetics of nitrobenzene oxidation and iron crystallization in fluidized-bed Fenton process.

    PubMed

    Anotai, Jin; Sakulkittimasak, Pasootah; Boonrattanakij, Nonglak; Lu, Ming-Chun

    2009-06-15

    This research investigated the nitrobenzene oxidation and iron removal by fluidized-bed Fenton process using metal oxide as the carriers. It was found that the removal efficiency of nitrobenzene was not affected in the presence of metal oxide. However, metal oxide could retard the degradation rate of nitrobenzene with Fenton process due to ferrous adsorption/complexation onto its surface leaving insufficient free Fe(2+) to catalyze the decomposition of H(2)O(2). Nonetheless, as the free Fe(2+) was sufficient, nitrobenzene was oxidized at the same rate as that by the conventional Fenton process. Fenton's reagent and nitrobenzene concentrations have an impact on nitrobenzene oxidation rate. The empirical kinetic equation for nitrobenzene oxidation by the fluidized-bed Fenton process under the conditions of 0.667-5mM of Fe(2+), 10-50mM of H(2)O(2), 5-12.5mM of nitrobenzene, 76.9 g/l of metal oxide, and pH 2.8+/-0.2, can be described as: [see formula text] Considering on iron removal performance, it was found that the fluidized-bed Fenton process could remove 30-65% of iron via iron crystallization onto the carriers' surface which could lead to a significant reduction in ferric hydroxide sludge production. H(2)O(2) played an important role in iron crystallization and once it was exhausted, the re-dissolution of iron occurred. In addition, it was found that the metal oxide could be repeatedly used up to 5 cycles without any significant deterioration in its surface activity. Hence, it implies that the metal oxide can be used successfully in the fluidized-bed Fenton process operated under a continuous mode.

  16. The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics.

    PubMed

    Doig, Steven D; Pickering, Samuel C R; Lye, Gary J; Woodley, John M

    2002-10-05

    Microscale processing techniques would be a useful tool for the rapid and efficient collection of biotransformation kinetic data as a basis for bioprocess design. Automated liquid handling systems can reduce labor intensity while the small scale reduces the demand for scarce materials such as substrate, product, and biocatalyst. Here we illustrate this concept by establishing the use of several microwell formats (96-round, 96-deep square and 24-round well microtiter plates) for quantification of the kinetics of the E. coli TOP10 [pQR239] resting cell catalyzed Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2en-6-one using glycerol as a source of reducing power. By increasing the biocatalyst concentration until the biotransformation rate was oxygen mass-transfer limited we can ensure that kinetic data collected are in the region away from oxygen limitation. Using a 96-round well plate the effect of substrate (bicyclo[3.2.0]hept-2en-6-one) concentration on the volumetric CHMO activity was examined and compared to data collected from 1.5-L stirred-tank experiments. The phenomenon and magnitude of substrate inhibition, observed at the larger scale, was accurately reproduced in the microwell format. We have used this as an illustrative example to demonstrate that under adequately defined conditions, automated microscale processing technologies can be used for the collection of quantitative kinetic data. Additionally, by using the experimentally determined stoichiometry for product formation and glycerol oxidation, we have estimated the maximum oxygen transfer rates as a function of well geometry and agitation rate. Oxygen-transfer rates with an upper limit of between 33 mmol. L(-1). h(-1) (based solely on product formation) and 390 mmol. L(-1). h(-1) (based on product formation and glycerol oxidation) were achieved using a 96-square well format plate shaken at 1300 rpm operated with a static surface area to volume ratio of 320 m(2). m(-3).

  17. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    PubMed

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  18. Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials

    USGS Publications Warehouse

    Amirbahman, A.; Kent, D.B.; Curtis, G.P.; Davis, J.A.

    2006-01-01

    The fate of arsenic in groundwater depends largely on its interaction with mineral surfaces. We investigated the kinetics of As(III) oxidation by aquifer materials collected from the USGS research site at Cape Cod, MA, USA, by conducting laboratory experiments. Five different solid samples with similar specific surface areas (0.6-0.9 m2 g-1) and reductively extractable iron contents (18-26 ??mol m-2), but with varying total manganese contents (0.5-3.5 ??mol m-2) were used. Both dissolved and adsorbed As(III) and As(V) concentrations were measured with time up to 250 h. The As(III) removal rate from solution increased with increasing solid manganese content, suggesting that manganese oxide is responsible for the oxidation of As(III). Under all conditions, dissolved As(V) concentrations were very low. A quantitative model was developed to simulate the extent and kinetics of arsenic transformation by aquifer materials. The model included: (1) reversible rate-limited adsorption of As(III) onto both oxidative and non-oxidative (adsorptive) sites, (2) irreversible rate-limited oxidation of As(III), and (3) equilibrium adsorption of As(V) onto adsorptive sites. Rate constants for these processes, as well as the total oxidative site densities were used as the fitting parameters. The total adsorptive site densities were estimated based on the measured specific surface area of each material. The best fit was provided by considering one fast and one slow site for each adsorptive and oxidative site. The fitting parameters were obtained using the kinetic data for the most reactive aquifer material at different initial As(III) concentrations. Using the same parameters to simulate As(III) and As(V) surface reactions, the model predictions were compared to observations for aquifer materials with different manganese contents. The model simulated the experimental data very well for all materials at all initial As(III) concentrations. The As(V) production rate was related to the

  19. Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials

    NASA Astrophysics Data System (ADS)

    Amirbahman, Aria; Kent, Douglas B.; Curtis, Gary P.; Davis, James A.

    2006-02-01

    The fate of arsenic in groundwater depends largely on its interaction with mineral surfaces. We investigated the kinetics of As(III) oxidation by aquifer materials collected from the USGS research site at Cape Cod, MA, USA, by conducting laboratory experiments. Five different solid samples with similar specific surface areas (0.6-0.9 m 2 g -1) and reductively extractable iron contents (18-26 μmol m -2), but with varying total manganese contents (0.5-3.5 μmol m -2) were used. Both dissolved and adsorbed As(III) and As(V) concentrations were measured with time up to 250 h. The As(III) removal rate from solution increased with increasing solid manganese content, suggesting that manganese oxide is responsible for the oxidation of As(III). Under all conditions, dissolved As(V) concentrations were very low. A quantitative model was developed to simulate the extent and kinetics of arsenic transformation by aquifer materials. The model included: (1) reversible rate-limited adsorption of As(III) onto both oxidative and non-oxidative (adsorptive) sites, (2) irreversible rate-limited oxidation of As(III), and (3) equilibrium adsorption of As(V) onto adsorptive sites. Rate constants for these processes, as well as the total oxidative site densities were used as the fitting parameters. The total adsorptive site densities were estimated based on the measured specific surface area of each material. The best fit was provided by considering one fast and one slow site for each adsorptive and oxidative site. The fitting parameters were obtained using the kinetic data for the most reactive aquifer material at different initial As(III) concentrations. Using the same parameters to simulate As(III) and As(V) surface reactions, the model predictions were compared to observations for aquifer materials with different manganese contents. The model simulated the experimental data very well for all materials at all initial As(III) concentrations. The As(V) production rate was related to the

  20. Effects of point defect concentrations of the reactive element oxides on the oxidation kinetics of pure Ni and Ni-Cr alloys

    NASA Astrophysics Data System (ADS)

    Yan, Ruey-Fong

    The addition of some reactive element oxides, e.g. Ysb2Osb3 or ZrOsb2, has significant effects, e.g. improvement in scale adhesion and reduction in oxidation rate, on the oxidation behavior of chromia and alumina scale forming alloys at high temperatures. However, there is little agreement about how a small addition of an oxygen-active element can cause such profound effects. It was the goal of this project to study the growth kinetics of an oxide scale when different reactive-element oxides were added to pure Ni and Ni-Cr alloys and, consequently, to aid in clarifying the mechanism of reactive element effects. The oxidation kinetics were measured using a thermogravimetric analysis (TGA) method and the material characterization of oxide scale was conducted. The relationship between point defect structures and oxidation kinetics was discussed. The results in this research showed that Ysb2Osb3 and ZrOsb2 exhibited the reactive element effects on the oxidation behaviors of Ni and Ni-Cr alloys. In addition, the point defect concentrations of the reactive element oxide, Ysb2Osb3, were changed by doping of different valent oxides. The modification of point defect concentrations of the reactive element oxide dispersed phases did change the oxidation kinetics of the pure Ni and Ni-Cr alloys containing Ysb2Osb3. These results indicate that the transport properties of the reactive element oxide dispersed phases are one of the important factors in determining the growth rate of an oxide scale.

  1. Influence of polycarboxylic acid chelating agents on the kinetics of the dissolution of metal oxides

    SciTech Connect

    Dyatlova, N.M.; Gorichev, I.G.; Dukhanin, V.S.; Malov, L.V.

    1986-11-01

    The factors influencing the rate of dissolution of metal oxides in aqueous solutions of acids in the presence of polycarboxylic acid chelating agents and other complexing agents have been quantitatively compared in this review, and the decisive role of the gradient of protons and electrons in the realization of this process has been revealed. The main hypotheses of the proposed conceptions of the electron-proton theory for the dissolution of metal oxides have been stated: 1) The rate-limiting step is charge transfer (first hypothesis); 2) The rate limiting step is the desorption of the dissolution products (second hypothesis). The applicability of the proposed electron-proton theory to the theoretical substantiation of all the experimentally observed kinetic features of the influence of various factors has been demonstrated. Practical recommendations for the effective utilization of the chelating agents considered for removing iron oxide surface deposits have been given.

  2. Thermal oxidation of single-crystal silicon carbide - Kinetic, electrical, and chemical studies

    NASA Technical Reports Server (NTRS)

    Petit, J. B.; Neudeck, P. G.; Matus, L. G.; Powell, J. A.

    1992-01-01

    This paper presents kinetic data from oxidation studies of the polar faces for 3C and 6H SiC in wet and dry oxidizing ambients. Values for the linear and parabolic rate constants were obtained, as well as preliminary results for the activation energies of the rate constants. Examples are presented describing how thermal oxidation can be used to map polytypes and characterize defects in epitaxial layers grown on low tilt angle 6H SiC substrates. Interface widths were measured using Auger electron spectroscopy (AES) with Ar ion beam depth profiling and variable angle spectroscopic ellipsometry (VASE) with effective medium approximation (EMA) models. Preliminary electrical measurements of MOS capacitors are also presented.

  3. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    PubMed Central

    Perry, Nicola H.; Ishihara, Tatsumi

    2016-01-01

    Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance. PMID:28773978

  4. Enhancement of (stereo)selectivity in dynamic kinetic resolution using a core-shell nanozeolite@enzyme as a bi-functional catalyst.

    PubMed

    Wang, Wanlu; Li, Xiang; Wang, Zhoujun; Tang, Yi; Zhang, Yahong

    2014-08-28

    A core-shell nanozeolite@enzyme bi-functional catalyst is constructed, which greatly improves selectivity and stereoselectivity of products in dynamic kinetic resolution of aromatic secondary alcohols compared with mixed catalysts, especially those involving small acyl donors.

  5. Analyzing the kinetic response of tin oxide-carbon and tin oxide-CNT composites gas sensors for alcohols detection

    SciTech Connect

    Kamble, Vinayak Umarji, Arun

    2015-03-15

    Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide – carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size ∼7 nm and ∼95 m{sup 2}/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO{sub 2} thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors.

  6. Counterion and substrate effects on barrier heights of the hydrolytic kinetic resolution of terminal epoxides catalyzed by Co(III)-salen.

    PubMed

    Kennedy, Matthew R; Burns, Lori A; Sherrill, C David

    2015-01-15

    Density functional theory (DFT) has been applied to the proposed rate-limiting step of the hydrolytic kinetic resolution (HKR) of terminal epoxides as catalyzed by Co-salen-X (X = counterion) in order to resolve questions surrounding the mechanism. The present results indicate that the bimetallic mechanism proposed by Jacobsen shows nonadditive, cooperative catalysis with a larger reduction in barrier height than the sum of the barrier height reductions from the two monometallic reaction pathways. We computed barrier heights for the reaction using several counterions (chloride, acetate, tosylate, and hydroxide). For the three counterions that are experimentally active (chloride, acetate, and tosylate) the barrier heights are 35, 38, and 34 kJ mol(-1), respectively, while for hydroxide it is 48 kJ mol(-1). The similarity of the barrier heights for chloride, acetate, and tosylate is in agreement with their similar peak reaction rates. The finding that Co-salen-X with these counterions leads to rather different overall reaction profiles suggests that they have quite different rates of reaction with epoxide to form the activated Co-salen-OH required for the bimetallic mechanism. Co-salen-OH is inactive as the sole catalyst for HKR, and this inactivity is ascribed to its larger barrier height for the ring-opening step, rather than to any inability to activate epoxide. Barrier heights were also computed using propylene oxide, 1-hexene oxide, and epichlorohydrin; propylene oxide and 1-hexene oxide have similar barrier heights, 35.5 and 33.2 kJ mol(-1), respectively, and epichlorohydrin has a significantly lower barrier height of 18.8 kJ mol(-1), which is qualitatively consistent with experiments showing faster reactions for epicholorohydrin than propylene oxide when catalyzed by Co-salen-OAc.

  7. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: Uptake kinetics and condensed-phase products

    NASA Astrophysics Data System (ADS)

    George, I. J.; Vlasenko, A.; Slowik, J. G.; Abbatt, J. P. D.

    2007-05-01

    The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl) sebacate (BES) particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) and scanning mobility particle sizer (SMPS) was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0 = 1.26 (±0.04), confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.

  8. Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism.

    PubMed

    Renger, Gernot

    2011-01-01

    The essential steps of photosynthetic water splitting take place in Photosystem II (PSII) and comprise three different reaction sequences: (i) light induced formation of the radical pair P680(+)Q(A)(-), (ii) P680(+) driven oxidative water splitting into O(2) and four protons, and (iii) two step plastoquinone reduction to plastoquinol by Q(A)(-). This mini-review briefly summarizes our state of knowledge on energetics, kinetics and mechanism of oxidative water splitting. Essential features of the two types of reactions involved are described: (a) P680(+) reduction by the redox active tyrosine Y(z) and (b) sequence of oxidation steps induced by Y(z)(ox) in the water-oxidizing complex (WOC). The rate of the former reaction is limited by the non-adiabatic electron transfer (NET) step and the multi-phase kinetics shown to originate from a sequence of relaxation processes. In marked contrast, the rate of the stepwise oxidation by Y(z)(ox) of the WOC up to the redox level S(3) is not limited by NET but by trigger reactions which probably comprise proton shifts and/or conformational changes. The overall rate of the final reaction sequence leading to formation and release of O(2) is assumed to be limited by the electron transfer step from the S(3) state of WOC to Y(z)(ox) due to involvement of an endergonic redox equilibrium. Currently discussed controversial ideas on possible pathways are briefly outlined. Several crucial points of the mechanism of oxidative water splitting, like O-O bond formation, role of local proton shift(s), details of hydrogen bonding, are still not clarified and remain a challenging topic of future research.

  9. Kinetic characterization of an oxidative, cooperative HMG-CoA reductase from Burkholderia cenocepacia.

    PubMed

    Schwarz, Benjamin H; Driver, Joseph; Peacock, Riley B; Dembinski, Holly E; Corson, Melissa H; Gordon, Samuel S; Watson, Jeffrey M

    2014-02-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a key enzyme in endogenous cholesterol biosynthesis in mammals and isoprenoid biosynthesis via the mevalonate pathway in other eukaryotes, archaea and some eubacteria. In most organisms that express this enzyme, it catalyzes the NAD(P)H-dependent reduction of HMG-CoA to mevalonate. We have cloned and characterized the 6x-His-tagged HMGR from the opportunistic lung pathogen Burkholderia cenocepacia. Kinetic characterization shows that the enzyme prefers NAD(H) over NADP(H) as a cofactor, suggesting an oxidative physiological role for the enzyme. This hypothesis is supported by the fact that the Burkholderia cenocepacia genome lacks the genes for the downstream enzymes of the mevalonate pathway. The enzyme exhibits positive cooperativity toward the substrates of the reductive reaction, but the oxidative reaction exhibits unusual double-saturation kinetics, distinctive among characterized HMG-CoA reductases. The unusual kinetics may arise from the presence of multiple active oligomeric states, each with different Vmax values.

  10. Kinetics of oxidation of azobenzene nitrene with molecular oxygen in amorphous polymers

    SciTech Connect

    Kondratenko, E.V.; Bolshakov, B.V.; Tolkatchev, V.A.

    1996-12-31

    Kinetics of disappearance of azobenzene nitrene at 115-120 K in polymethyl methacrylate, poly styrene, polycarbonate and polysulfone films saturated with oxygen has been studied. For condition of oxygen excess the disappearance of nitrous is shown to be a result only of the reaction with the dissolved gas. Kinetics of the process is identical to that of the oxidation of macro radicals in the same polymer. The nonexponential character of kinetic curves is shown to be related with the existence of the rate constant distribution. The values of the width of distribution range in the narrow interval being practically the same for various polymers. The data about the width of the distribution function for the oxidation of macro radicals in amorphous polymers known from literature also fit into this interval. All the particles participating in the reaction with the experimental accuracy have the same dependence of the rate constant on temperature. The activation energies of reactions in various amorphous polymers have very close values.

  11. Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Nambu, Hidesaburo

    1992-01-01

    Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.

  12. Nonisothermal denaturation kinetics of human hair and the effects of oxidation.

    PubMed

    Wortmann, F-J; Popescu, C; Sendelbach, G

    2006-12-15

    Human hair as alpha-keratin fiber exhibits a complex morphology, which for the context of this investigation is considered as a filament/matrix-composite, comprising the intermediate filaments (IF) and a variety of amorphous protein components as matrix. Differential scanning calorimetry (DSC) under aqueous conditions was used to analyze the denaturation of the alpha-helical material in the IFs and to assess the changes imparted by repeated, oxidative bleaching processes. The DSC curves were submitted to kinetic analysis by applying the Friedman method and assuming first order kinetics. It was found that the course of the denaturation process remains largely unchanged through oxidation, despite the fact that pronounced decreases of denaturation temperature as well as of enthalpy occur. In parallel, the reaction rate constant at the denaturation temperature, k(TD), increases with repeated treatments, that is with cumulative chemical modification. However, this effect is in fact small compared to the overall change of k(T) through the denaturation process. This leads to conclude that once the temperature rise in combination with the chemical change has induced a suitable drop of the viscosity of the matrix around the IFs, denaturation of the remaining helical material occurs along a pathway that is largely independent of temperature and of the pretreatment history. This emphasizes the kinetic control of the matrix over the denaturation process of the helical segments in the filament/matrix composite. Copyright 2006 Wiley Periodicals, Inc.

  13. Determination of thermoluminescence kinetic parameters of terbium-doped zirconium oxide

    NASA Astrophysics Data System (ADS)

    Rivera, T.; Azorín, J.; Falcony, C.; Martínez, E.; García, M.

    2001-06-01

    In recent years considerable importance has been attached to zirconium oxide doped with rare earth (ZrO 2 : RE) thin films due to their desirable characteristics for use in UV dosimetry. In our laboratories we have developed a method to prepare ZrO 2 : RE thin films. Dosimetric characteristics of these materials have been reported previously (Azorin et al., Radiat. Meas. 29 (1998) 315; Radiat. Prot. Dosim. 85 (1999) 317) and results of these have stimulated continued development and analysis of the thermoluminescence mechanism. Two important parameters to be determined in TL studies are the activation energy ( E) and the frequency factor ( s). This paper presents the results of determining kinetic parameters of terbium-doped zirconium oxide (ZrO 2 : Tb) thin films, exposed to 260 nm UV light, using the Lushchik (Sov. Phys. JETF 3 (1956) 390) and Chen (J. Appl. Phys. 40 (1969) 570; J. Electrochem. Soc. 166 (1969) 1254) methods. Kinetic analysis of the glow curve shows second order kinetics for both the first and second glow peaks.

  14. Synthesis of β- and γ-hydroxy α-amino acids via enzymatic kinetic resolution and cyanate-to-isocyanate rearrangement.

    PubMed

    Szcześniak, Piotr; Październiok-Holewa, Agnieszka; Klimczak, Urszula; Stecko, Sebastian

    2014-12-05

    A new strategy for stereoselective preparation of all four isomers of β- and γ-hydroxy α-amino acids is presented. The developed procedure is based on enzymatic kinetic resolution and cyanate-to-isocyanate rearrangement as key steps. Stereocontrol is achieved by proper choice of the starting hydroxyacid, the course of kinetic resolution, and the stereospecific sigmatropic rearrangement step, which proceeds with full chirality transfer.

  15. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres.

    PubMed

    Chandrasekaran, Sriraam R; Hopke, Philip K

    2012-12-01

    Grass pellets are a renewable resource that have energy content similar to that of wood. However, the higher ash and chlorine content affects combustion. Thermal degradation analysis of a fuel is useful in developing effective combustion. Thermogravimetric analysis (TGA) of the thermal degradation of grass pellets under inert (nitrogen) and oxidizing (air) atmospheres was conducted. Non-isothermal conditions were employed with 4 different heating rates. Kinetic parameters (activation energy and pre-exponential factors) were estimated using the iso-conversional method. Both pyrolysis and oxidative atmospheric thermal degradation exhibited two major loss process: volatilization of cellulose, hemicelluloses and lignin and burning or slow oxidation of the residual char. The activation energy and pre-exponential factors were high for the oxidizing environment. During pyrolysis, major decomposition occurred with 40% to 75% conversion of the mass to gas with an activation energy of 314 kJ/mol. In air the decomposition occurred with 30% to 55% conversion with an activation energy of 556 kJ/mol. There was a substantial effect of heating rate on mass loss and mass loss rate. The TG shifted to higher temperature ranges on increasing the heating rate. In both pyrolyzing and oxidizing conditions, average combustion and devolatilization rates increased. Enhanced combustion takes place with higher activation energy in oxidizing atmosphere compared to the inert atmosphere due to presence of air.

  16. Corrosion of concrete sewers--the kinetics of hydrogen sulfide oxidation.

    PubMed

    Vollertsen, Jes; Nielsen, Asbjørn Haaning; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-05-01

    Hydrogen sulfide absorption and oxidation by corroding concrete surfaces was quantified in a test rig consisting of 6 concrete pipes operated under sewer conditions. The test rig was placed in an underground sewer monitoring station with access to fresh wastewater. Hydrogen sulfide gas was injected into the pipe every 2nd hour to peak concentrations around 1000 ppm. After some months of operation, the hydrogen sulfide became rapidly oxidized by the corroding concrete surfaces. At hydrogen sulfide concentrations of 1000 ppm, oxidation rates as high as 1 mg S m(-2) s(-1) were observed. The oxidation process followed simple nth order kinetics with a process order of 0.45-0.75. Extrapolating the results to gravity sewer systems showed that hydrogen sulfide oxidation by corroding concrete is a fast process compared to the release of hydrogen sulfide from the bulk water, resulting in low gas concentrations compared with equilibrium. Balancing hydrogen sulfide release with hydrogen sulfide oxidation at steady state conditions demonstrated that significant corrosion rates--several millimeters of concrete per year--can potentially occur at hydrogen sulfide gas phase concentrations well below 5-10 ppm. The results obtained in the study advances the knowledge on prediction of sewer concrete corrosion and the extent of odor problems.

  17. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.

    PubMed

    Pham, A Ninh; Waite, T David

    2014-08-01

    Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10μM) was investigated both in the absence and the presence of copper (0.01-0.4μM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu.

  18. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    SciTech Connect

    Gelß, Patrick Matera, Sebastian Schütte, Christof

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  19. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    NASA Astrophysics Data System (ADS)

    Gelß, Patrick; Matera, Sebastian; Schütte, Christof

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  20. Oxidation of psychotropic drugs by Chloramine-T in acid medium: a kinetic study using spectrophotometry

    NASA Astrophysics Data System (ADS)

    Saldanha, R. J. D.; Ananda, S.; Venkatesha, B. M.; Made Gowda, N. M.

    2002-03-01

    The kinetics of oxidation of psychotropic drugs, chlorpromazine hydrochloride (CPH) and fluphenazine dihydrochloride (FPH), by Chloramine-T (CAT) in pH 1.6 buffer medium has been studied spectrophotometrically at λmax=570 and 530 nm, respectively, at 30°C. The reaction rate shows a fractional-order dependence on [CAT] and first-order dependence on each [substrate]. The reaction rate also shows an inverse fractional-order in [H+]. Additions of halide ions and the reduction product of CAT, p-toluenesulfonamide, and variation of ionic strength and dielectric constant of the medium do not have any significant effect on the reaction rate. The activation parameters for the reaction were evaluated. The proposed general mechanism and the derived rate law are consistent with the observed kinetics.

  1. [Degradation kinetics of ozone oxidation on high concentration of humic substances].

    PubMed

    Zheng, Ke; Zhou, Shao-Qi; Yang, Mei-Mei

    2012-03-01

    Humic substance oxidation (HS) degradation by ozone was kinetically investigated. The effects of O3 dosage, initial pH, temperature and initial concentration of HS were studied. Under the conditions of 3.46 g x h(-1) ozone dosage, 1 000 mg x L(-1) initial HS, 8.0 initial pH and 303 K temperature, the removal efficiencies of HS achieved 89.04% at 30 min. The empirical kinetic equation of ozonation degradation for landfill leachate under the conditions of 1.52-6.10 g x h(-1) ozone dosage, 250-1 000 mg x L(-1) initial HS, 2.0-10.0 initial pH, 283-323 K temperature fitted well with the experimental data (average relative error is 7.62%), with low activation energy E(a) = 1.43 x 10(4)J x mol(-1).

  2. Reaction kinetics of waste sulfuric acid using H2O2 catalytic oxidation.

    PubMed

    Wang, Jiade; Hong, Binxun; Tong, Xinyang; Qiu, Shufeng

    2016-12-01

    The process of recovering waste sulfuric acids using H2O2 catalytic oxidation is studied in this paper. Activated carbon was used as catalyst. Main operating parameters, such as temperature, feed rate of H2O2, and catalyst dosage, have effects on the removal of impurities from waste sulfuric acids. The reaction kinetics of H2O2 catalytic oxidation on impurities are discussed. At a temperature of 90°C, H2O2 feeding rate of 50 g (kg waste acid)(-1) per hour, and catalyst dosage of 0.2 wt% (waste acid weight), the removal efficiencies of COD and chrominance were both more than 99%, the recovery ratio of sulfuric acid was more than 95%, and the utilization ratio of H2O2 was 88.57%. Waste sulfuric acid is a big environmental problem in China. The amount of waste sulfuric acid is huge every year. Many small and medium-sized businesses produced lots of waste acids, but they don't have an appropriate method to treat and recover them. H2O2 catalytic oxidation has been used to treat and recover waste sulfuric acid and activated carbon is the catalyst here. Main parameters, such as temperature, feed rate of H2O2, and catalyst dosage, have been investigated. The reaction kinetics are discussed. This method can be economical and feasible for most small and medium-sized businesses.

  3. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    DOE PAGES

    Wang, Dawei; Kou, Ronghui; Ren, Yang; ...

    2017-08-25

    Nickel-rich layered transition metal oxides, LiNi1-x(MnCo)xO2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi0.7Mn0.15Co0.15O2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationicmore » ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs« less

  4. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation.

  5. Size Resolved High Temperature Oxidation Kinetics of Nano-Sized Titanium and Zirconium Particles.

    PubMed

    Zong, Yichen; Jacob, Rohit J; Li, Shuiqing; Zachariah, Michael R

    2015-06-18

    While ultrafine metal particles offer the possibility of very high energy density fuels, there is considerable uncertainty in the mechanism by which metal nanoparticles burn, and few studies that have examined the size dependence to their kinetics at the nanoscale. In this work we quantify the size dependence to the burning rate of titanium and zirconium nanoparticles. Nanoparticles in the range of 20-150 nm were produced via pulsed laser ablation, and then in-flight size-selected using differential electrical mobility. The size-selected oxide free metal particles were directly injected into the post flame region of a laminar flame to create a high temperature (1700-2500 K) oxidizing environment. The reaction was monitored using high-speed videography by tracking the emission from individual nanoparticles. We find that sintering occurs prior to significant reaction, and that once sintering is accounted for, the rate of combustion follows a near nearly (diameter)(1) power-law dependence. Additionally, Arrhenius parameters for the combustion of these nanoparticles were evaluated by measuring the burn times at different ambient temperatures. The optical emission from combustion was also used to model the oxidation process, which we find can be reasonably described with a kinetically controlled shrinking core model.

  6. Gas phase oxidation of monoethanolamine (MEA) with OH radical and ozone: kinetics, products, and particles.

    PubMed

    Borduas, Nadine; Abbatt, Jonathan P D; Murphy, Jennifer G

    2013-06-18

    Monoethanolamine (MEA) is currently the benchmark solvent in carbon capture and storage (CCS), a technology aimed at reducing CO2 emissions in large combustion industries. To accurately assess the environmental impact of CCS, a sound understanding of the fate of MEA in the atmosphere is necessary. Relative and absolute rate kinetic experiments were conducted in a smog chamber using online proton transfer reaction mass spectrometry (PTR-MS) to follow the decay of MEA. The room temperature (295 ± 3K) kinetics of oxidation with hydroxyl radicals from light and dark sources yield an average value of (7.02 ± 0.46) × 10(-11) cm(3) molec(-1) s(-1), in good agreement with previously published data. For the first time, the rate coefficient for MEA with ozone was measured: (1.09 ± 0.05) × 10(-18) cm(3) molec(-1) s(-1). An investigation into the oxidation products was also conducted using online chemical ionization mass spectrometry (CI-TOFMS) where formamide, isocyanic acid as well as higher order products including cyclic amines were detected. Significant particle numbers and mass loadings were observed during the MEA oxidation experiments and accounted for over 15% of the fate of MEA-derived nitrogen.

  7. Oxidation and combustion of the n-hexene isomers: A wide range kinetic modeling study

    SciTech Connect

    Mehl, Marco; Pitz, William J.; Vanhove, Guillaume; Ranzi, Eliseo

    2008-12-15

    A detailed chemical kinetic mechanism has been developed to study the oxidation of the straight-chain isomers of hexene over a wide range of operating conditions. The main features of this detailed kinetic mechanism, which includes both high and low temperature reaction pathways, are presented and discussed with special emphasis on the main classes of reactions involved in alkene oxidation. Simulation results have been compared with experimental data over a wide range of operating conditions including shock tube, jet stirred reactor and rapid compression machine. The different reactivities of the three isomers have been successfully predicted by the model. Isomerization reactions of the hexenyl radicals were found to play a significant role in the chemistry and interactions of the three n-hexene isomers. A comparative reaction flux analysis is used to verify and discuss the fundamental role of the double bond position in the isomerization reactions of alkenyl radicals, as well as the impact of the allylic site in the low and high temperature mechanism of fuel oxidation. (author)

  8. Oxidation and combustion of the n-hexene isomers: a wide range kinetic modeling study

    SciTech Connect

    Mehl, M; Vanhove, G; Pitz, W J; Ranzi, E

    2008-03-12

    A detailed chemical kinetic mechanism has been developed to study the oxidation of the straight-chain isomers of hexene over a wide range of operating conditions. The main features of this detailed kinetic mechanism, which includes both high and low temperature reaction pathways, are presented and discussed with special emphasis on the main classes of reactions involved in alkene oxidation. Simulation results have been compared with experimental data over a wide range of operating conditions including shock tube, jet stirred reactor and rapid compression machine. The different reactivities of the three isomers have been successfully predicted by the model. Isomerization reactions of the hexenyl radicals were found to play a significant role in the chemistry and interactions of the three n-hexene isomers. A comparative reaction flux analysis is used to verify and discuss the fundamental role of the double bond position in the isomerization reactions of alkenyl radicals, as well as the impact of the allylic site in the low and high temperature mechanism of fuel oxidation.

  9. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation.

    PubMed

    Zhang, Kejia; Zhou, Xinyan; Du, Penghui; Zhang, Tuqiao; Cai, Meiquan; Sun, Peizhe; Huang, Ching-Hua

    2017-10-15

    Peracetic acid (PAA) is a disinfection oxidant used in many industries including wastewater treatment. β-Lactams, a group of widely prescribed antibiotics, are frequently detected in wastewater effluents and surface waters. The reaction kinetics and transformation of seven β-lactams (cefalexin (CFX), cefadroxil (CFR), cefapirin (CFP), cephalothin (CFT), ampicillin (AMP), amoxicillin (AMX) and penicillin G (PG)) toward PAA were investigated to elucidate the behavior of β-lactams during PAA oxidation processes. The reaction follows second-order kinetics and is much faster at pH 5 and 7 than at pH 9 due to speciation of PAA. Reactivity to PAA follows the order of CFR ∼ CFX > AMP ∼ AMX > CFT ∼ CFP ∼ PG and is related to β-lactam's nucleophilicity. The thioether sulfur of β-lactams is attacked by PAA to generate sulfoxide products. Presence of the phenylglycinyl amino group on β-lactams can significantly influence electron distribution and the highest occupied molecular orbital (HOMO) location and energy in ways that enhance the reactivity to PAA. Reaction rate constants obtained in clean water matrix can be used to accurately model the decay of β-lactams by PAA in surface water matrix and only slightly overestimate the decay in wastewater matrix. Results of this study indicate that the oxidative transformation of β-lactams by PAA can be expected under appropriate wastewater treatment conditions. Copyright © 2017. Published by Elsevier Ltd.

  10. Oxidative vaporization kinetics of chromium (III) oxide in oxygen from 1270 to 1570 K

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1974-01-01

    Rates of oxidative vaporization of Cr2O3 on preoxidized resistively heated chromium were determined in flowing oxygen at 0.115 torr for temperatures from 1270 to 1570 K. Reaction controlled rates were obtained from experimental rates by a gold calibration technique. These rates were shown to agree with those predicted by thermochemical analysis. The activation energy obtained for the oxidative vaporation reaction corresponded numerically with the thermochemical enthalpy of the reaction. A theoretical equation is given for calculating the rate from thermodynamic data by using boundary layer theory.

  11. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics In Development

    PubMed Central

    Owens, Nick D. L.; Blitz, Ira L.; Lane, Maura A.; Patrushev, Ilya; Overton, John D.; Gilchrist, Michael J.; Cho, Ken W. Y.; Khokha, Mustafa K.

    2016-01-01

    Summary Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack a comprehensive understanding of transcript kinetics, which limits quantitative biology. This is an acute challenge in embryonic development where rapid changes in gene expression dictate cell fate decisions. By ultra-high frequency sampling of Xenopus embryos and absolute normalization of sequence reads, we present smooth gene expression trajectories in absolute transcript numbers. During a developmental period approximating the first 8 weeks of human gestation, transcript kinetics vary by 8 orders of magnitude. Ordering genes by expression dynamics, we find temporal synexpression predicts common gene function. Remarkably, a single parameter, the characteristic timescale, can classify transcript kinetics globally and distinguish genes regulating development from those involved in cellular metabolism. Overall, our analysis provides unprecedented insight into the reorganization of maternal and embryonic transcripts and redefines our ability to perform quantitative biology. PMID:26774488

  12. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation.

    PubMed

    Ushiki, Norisuke; Jinno, Masaru; Fujitani, Hirotsugu; Suenaga, Toshikazu; Terada, Akihiko; Tsuneda, Satoshi

    2017-05-01

    Nitrite oxidation is an aerobic process of the nitrogen cycle in natural ecosystems, and is performed by nitrite-oxidizing bacteria (NOB). Also, nitrite oxidation is a rate-limiting step of nitrogen removal in wastewater treatment plants (WWTPs). Although Nitrospira is known as dominant NOB in WWTPs, information on their physiological properties and kinetic parameters is limited. Here, we report the kinetic parameters and inhibition of nitrite oxidation by free ammonia in pure cultures of Nitrospira sp. strain ND1 and Nitrospira japonica strain NJ1, which were previously isolated from activated sludge in a WWTP. The maximum nitrite uptake rate ( [Formula: see text] ) and the half-saturation constant for nitrite uptake ( [Formula: see text] ) of strains ND1 and NJ1 were 45 ± 7 and 31 ± 5 (μmol NO2(-)/mg protein/h), and 6 ± 1 and 10 ± 2 (μM NO2(-)), respectively. The [Formula: see text] and [Formula: see text] of two strains indicated that they adapt to low-nitrite-concentration environments like activated sludge. The half-saturation constants for oxygen uptake ( [Formula: see text] ) of the two strains were 4.0±2.5 and 2.6±1.1 (μM O2), respectively. The [Formula: see text] values of the two strains were lower than those of other NOB, suggesting that Nitrospira in activated sludge could oxidize nitrite in the hypoxic environments often found in the interiors of biofilms and flocs. The inhibition thresholds of the two strains by free ammonia were 0.85 and 4.3 (mg-NH3 l(-1)), respectively. Comparing the physiological properties of the two strains, we suggest that tolerance for free ammonia determines competition and partitioning into ecological niches among Nitrospira populations. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Zinc oxide nanowire gamma ray detector with high spatiotemporal resolution

    NASA Astrophysics Data System (ADS)

    Mayo, Daniel C.; Nolen, J. Ryan; Cook, Andrew; Mu, Richard R.; Haglund, Richard F.

    2016-03-01

    Conventional scintillation detectors are typically single crystals of heavy-metal oxides or halides doped with rare-earth ions that record the recombination of electron-hole pairs by photon emission in the visible to ultraviolet. However, the light yields are typically low enough to require photomultiplier detection with the attendant instrumental complications. Here we report initial studies of gamma ray detection by zinc oxide (ZnO) nanowires, grown by vapor-solid deposition. The nanowires grow along the c-axis in a wurtzite structure; they are typically 80 nm in diameter and have lengths of 1- 2 μm. The nanowires are single crystals of high quality, with a photoluminescence (PL) yield from band-edge exciton emission in the ultraviolet that is typically one hundred times larger than the PL yield from defect centers in the visible. Nanowire ensembles were irradiated by 662 keV gamma rays from a Cs-137 source for periods of up to ten hours; gamma rays in this energy range interact by Compton scattering, which in ZnO creates F+ centers that relax to form singly-charged positive oxygen vacancies. Following irradiation, we fit the PL spectra of the visible emission with a sum of Gaussians at the energies of the known defects. We find highly efficient PL from the irradiated area, with a figure of merit approaching 106 photons/s/MeV of deposited energy. Over a period of days, the singly charged O+ vacancies relax to the more stable doubly charged O++ vacancies. However, the overall defect PL returns to pre-irradiation values after about a week, as the vacancies diffuse to the surface of these very thin nanowires, indicating that a self-healing process restores the nanowires to their original state.

  14. Shell cross-linked micelle-based nanoreactors for the substrate-selective hydrolytic kinetic resolution of epoxides.

    PubMed

    Liu, Yu; Wang, Yu; Wang, Yufeng; Lu, Jie; Piñón, Victor; Weck, Marcus

    2011-09-14

    Shell cross-linked micelles (SCMs) containing Co(III)-salen cores were prepared from amphiphilic poly(2-oxazoline) triblock copolymers. The catalytic activity of these nanoreactors for the hydrolytic kinetic resolution of various terminal epoxides was investigated. The SCM catalysts showed high catalytic efficiency and, more significantly, substrate selectivity based on the hydrophobic nature of the epoxide. Moreover, because of the nanoscale particle size and the high stability, the catalyst could be recovered easily by ultrafiltration and reused with high activity for eight cycles.

  15. PHOTOCATALYTIC OXIDATION FOR NOx ABATEMENT: DEVELOPMENT OF A KINETIC EXPRESSION AND DESIGN TOOLS

    SciTech Connect

    Rajiv Srivastava; M. A. Ebadian

    2000-09-15

    The ''Nitrogen Oxides Emission Reduction Program'' and ''Ozone Non-Attainment Program'' in the 1990 Clean Air Act provide guidelines for controlling NOx (NO and NO{sub 2}) emissions in new and existing stationary sources. NOx emissions have local (air quality), regional (acid rain), and global (ozone production) consequences. This study aids in developing the photocatalyst technology that has potential for use in abatement of NOx. The objective of the proposed project is to apply the principles of chemical engineering fundamentals--reaction kinetics, transport phenomena and thermodynamics--in the process design for a system that will utilize a photocatalytic reactor to oxidize NOx to nitric acid (HNO{sub 3}). HNO{sub 3} can be more easily trapped than NOx on adsorbent surfaces or in water. The project dealt with the engineering aspect of the gas-solid heterogeneous oxidation of NOx. The experiments were conducted in a photocatalyst wash-coated glass flow tube reactor. A mathematical model was developed based on a rigorous description of the physical and chemical processes occurring in the reactor. The mathematical model took into account (1) intrinsic reaction kinetics (i.e., true reaction rates), (2) transport phenomena that deal with the mass transfer effects in the reactor, and (3) the geometry of the reactor. The experimental results were used for validation of the mathematical model that provides the basis for a versatile and reliable method for the purpose of design, scale-up and process control. The NOx abatement was successfully carried out in a flow tube reactor surrounded by black lights under the exploratory grant. Due to lack of funds, a comprehensive kinetic analysis for the photocatalytic reaction scheme could not be carried out. The initial experiments look very promising for use of photocatalysis for NOx abatement.

  16. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity.

    PubMed

    Hamdi El Najjar, Nasma; Touffet, Arnaud; Deborde, Marie; Journel, Romain; Leitner, Nathalie Karpel Vel

    2013-10-01

    This work was carried out to investigate the fate of the antibiotic levofloxacin upon oxidation with ozone and hydroxyl radicals. A kinetic study was conducted at 20 °C for each oxidant. Ozonation experiments were performed using a competitive kinetic method with carbamazepin as competitor. Significant levofloxacin removal was observed during ozonation and a rate constant value of 6.0×10(4) M(-1) s(-1) was obtained at pH 7.2. An H2O2/UV system was used for the formation of hydroxyl radicals HO. The rate constant of HO was determined in the presence of a high H2O2 concentration. The kinetic expressions yielded a [Formula: see text] value of 4.5×10(9) M(-1) s(-1) at pH 6.0 and 5.2×10(9) M(-1) s(-1) at pH 7.2. These results were used to develop a model to predict the efficacy of the ozonation process and pharmaceutical removal was estimated under different ozonation conditions (i.e. oxidant concentrations and contact times). The results showed that levofloxacin was completely degraded by molecular ozone during ozonation of water and that hydroxyl radicals had no effect in real waters conditions. Moreover, LC/MS/MS and toxicity assays using Lumistox test were performed to identify ozonation transformation products. Under these conditions, four transformation products were observed and their chemical structures were proposed. The results showed an increase in toxicity during ozonation, even after degradation of all of the observed transformation products. The formation of other transformation products not identified under our experimental conditions could be responsible for the observed toxicity. These products might be ozone-resistant and more toxic to Vibrio fisheri than levofloxacin.

  17. High resolution Fowler-Nordheim field emission maps of thin silicon oxide layers

    NASA Astrophysics Data System (ADS)

    Ruskell, Todd G.; Workman, Richard K.; Chen, Dong; Sarid, Dror; Dahl, Sarah; Gilbert, Stephen

    1996-01-01

    An improved method for characterizing thin oxide films using Fowler-Nordheim field emission is reported. The method uses a conducting-tip atomic force microscope with dual feedback systems, one for the topography and a second for the field emission bias voltage. Images of the voltage required to maintain a 10 pA emission current through a 3 nm oxide film thermally grown on p-type Si(100) demonstrate a spatial resolution of 8 nm.

  18. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process.

    PubMed

    Lefèvre, Sébastien; Boutin, Olivier; Ferrasse, Jean-Henry; Malleret, Laure; Faucherand, Rémy; Viand, Alain

    2011-08-01

    This work is dedicated to an accurate evaluation of thermodynamic and kinetics aspects of phenol degradation using wet air oxidation process. Phenol is a well known polluting molecule and therefore it is important having data of its behaviour during this process. A view cell is used for the experimental study, with an internal volume of 150 mL, able to reach pressures up to 30 MPa and temperatures up to 350°C. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained for different binary systems (water/nitrogen, water/air) and ternary system (water/nitrogen/phenol). The best model is the Predictive Soave Redlich Kwong one. This information is necessary to predict the composition of the gas phase during the process. It is also important for an implementation in a process simulation. The second part is dedicated to kinetics evaluation of the degradation of phenol. Different compounds have been detected using GC coupled with a MS. A kinetic scheme is deduced, taking into account the evolution of phenol, hydroquinones, catechol, resorcinol and acetic acid. The kinetic parameters are calculated for this scheme. These data are important to evaluate the evolution of the concentration of the different polluting molecules during the process. A simplified kinetic scheme, which can be easily implemented in a process simulation, is also determined for the direct degradation of phenol into H(2)O and CO(2). The Arrhenius law data obtained for the phenol disappearance are the following: k=1.8×10(6)±3.9×10(5)M(-1)s(-1) (pre-exponential factor) and E(a)=77±8 kJ mol(-1) (activation energy).

  19. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    SciTech Connect

    Nagaraju, D.H.; Devaraj, S.; Balaya, P.

    2014-12-15

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd{sup 2+} ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl{sub 2}. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells.

  20. Titanium oxidation kinetics and the mechanism for thermal ignition of titanium-based pyrotechnics

    SciTech Connect

    Erickson, K.L.; Rogers, J.W. Jr.; Ward, S.J.

    1986-01-01

    Previously published experimental studies proposed that thermal ignition of titanium-based pyrotechnics is controlled by the rate at which an initial oxide coating dissolves into the bulk metal as a result of molecular diffusion. The proposed dissolution mechanism was based primarily on the exotherms and ignition temperatures, which were about 793/sup 0/K, observed using differential thermal methods involving heating rates of 0.33 K/s. Data from a more recent investigation of titanium oxidation kinetics at temperatures between 473 and 773/sup 0/K showed that, for time scales on the order of minutes and temperatures near 773/sup 0/K, titanium oxidation rates and, therefore, pyrotechnic ignition are determined by diffusion-controlled growth of a TiO/sub 2/ (rutile) layer adjacent to the gas-solid interface. They are not controlled by oxygen dissolution into the bulk metal. This result was based primarily on Auger depth profiles from isothermally oxidized titanium single crystals. It is further supported by the present work, in which a model for pyrotechnic response during differential thermal analysis experiments was derived using an oxidation rate expression based on growth of a TiO/sub 2/ layer. The model predicts exotherms which are consistent with those reported in the previously published experimental studies. 16 refs., 4 figs., 3 tabs.

  1. Kinetic analysis of soil contained pyrene oxidation by a pulsed discharge plasma process

    NASA Astrophysics Data System (ADS)

    Huijuan, Wang; Guangshun, Zhou; He, Guo; Cong, Geng

    2017-01-01

    A pulsed discharge plasma (PDP) reactor with net anode and net cathode was established for investigating the pyrene degradation in soil under different pulse peak voltage, air flow rate, pyrene content in soil, initial pH value and initial water content of the soil. Pyrene oxidation within the 60 min discharge time was fitting according to the pseudo-first order equation and the corresponding reaction kinetics constants (k values) were calculated. The obtained results show that pyrene oxidation under all the different reaction conditions obeyed the pseudo-first order equation well. Higher pulsed peak voltage and appropriate air flow rate were in favor of the increase of reaction rate of pyrene oxidation. A higher k value could be achieved in the lower initial pyrene content (the value was 100 mg kg-1). The k value of pyrene oxidation in the case of pH = 4 was 11.2 times higher than the value obtained under the condition of pH = 9, while the initial water content of the soil also has a large effect on the oxidation rate of pyrene due to the effect of PDP. Supported by National Natural Science Foundation of China (No. 21207052).

  2. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Aadhavan, R.; Suresh Babu, K.

    2017-07-01

    Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  3. Heterogeneous oxidation of folpet and dimethomorph by OH radicals: A kinetic and mechanistic study

    NASA Astrophysics Data System (ADS)

    Al Rashidi, M.; Chakir, A.; Roth, E.

    2014-01-01

    This study investigates the heterogeneous OH oxidation of folpet and dimethomorph, two fungicides identified in the atmosphere of the Champagne-Ardenne region. Kinetic experiments were conducted in the relative mode, using terbuthylazine as a reference compound. The experimental method employed makes use of a simulation chamber coupled to a GC/MS analytical system. Meanwhile, the identification of (4-chlorophenyl)(3,4-dimethoxyphenyl)methanone (CPMPM), a degradation product of the OH oxidation of dimethomorph, is achieved using SPME/GC/MS. Moreover, a degradation mechanism of dimethomorph is proposed, and the heterogeneous OH reactivity of CPMPM is evaluated. The obtained OH reaction rate constants (cm3 molecule-1 s-1) are: kZ-dimethomorph = (2.0 ± 1.2) 10-14, kE-dimethomorph = (1.7 ± 1.2) 10-14, kFolpet = (1.6 ± 0.9) 10-13 and kCPMPM = (1.9 ± 1.0) 10-12. The implicated tropospheric life-times are up to 2 months, which shows that the investigated pesticides are relatively persistent towards oxidation removal processes. CPMPM, the identified product of OH oxidation of dimethomorph, is less persistent with a life time of only 6 days relative to heterogeneous oxidation by OH radicals.

  4. Effects of preconditioning the rhizosphere of different plant species on biotic methane oxidation kinetics.

    PubMed

    Ndanga, Éliane M; Lopera, Carolina B; Bradley, Robert L; Cabral, Alexandre R

    2016-09-01

    The rhizosphere is known as the most active biogeochemical layer of the soil. Therefore, it could be a beneficial environment for biotic methane oxidation. The aim of this study was to document - by means of batch incubation tests - the kinetics of CH4 oxidation in rhizosphere soils that were previously exposed to methane. Soils from three pre-exposure to CH4 zones were sampled: the never-before pre-exposed (NEX), the moderately pre-exposed (MEX) and the very pre-exposed (VEX). For each pre-exposure zone, the rhizosphere of several plant species was collected, pre-incubated, placed in glass vials and submitted to CH4 concentrations varying from 0.5% to 10%. The time to the beginning of CH4 consumption and the CH4 oxidation rate were recorded. The results showed that the fastest CH4 consumption occurred for the very pre-exposed rhizosphere. Specifically, a statistically significant difference in CH4 oxidation half-life was found between the rhizosphere of the VEX vegetated with a mixture of different plants and the NEX vegetated with ryegrass. This difference was attributed to the combined effect of the preconditioning level and plant species as well as to the organic matter content. Regardless of the preconditioning level, the oxidation rate values obtained in this study were comparable to those reported in the reviewed literature for mature compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Oxidation kinetics of nanoscale copper films studied by terahertz transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramanandan, Gopika K. P.; Ramakrishnan, Gopakumar; Planken, Paul C. M.

    2012-06-01

    Terahertz (THz) transmission spectroscopy is used to measure the oxidation kinetics of copper thin films evaporated on silicon substrates. The transmission of broadband THz pulses from 1 to 7 THz through the copper film is measured while it gets oxidized at an elevated temperature in ambient air. The change in the transmitted THz electric field is correlated with the growth of the cuprous oxide layer and the decrease in thickness of the copper layer. Oxidation curves were obtained for heating temperatures of 120-150 °C and were found to follow a parabolic rate law. Using the Arrhenius equation, we calculate an activation energy for diffusion of 0.55 eV. By measuring the THz transmission through unoxidized copper layers of several thicknesses, we also measured the optical properties of thin copper films around the percolation threshold thickness of 7 nm. Around the percolation transition, the optical properties of freshly deposited copper thin films are very different from that of copper layers of the same thickness remaining after partial oxidation of thick copper films.

  6. [Solution kinetics of magnesium oxide containing granules produced by laboratory scale fluidization].

    PubMed

    Rácz, I; Zelkó, R; Bihari, E

    1994-09-01

    In practice of manufacturing industrial pharmaceutical products, the technique of fluidization has been used extensively in the past decades. The authors studied the magnesium oxide-containing granulates made by fluidization granulation in laboratory, to optimize the process, to determine the neutralization kinetic parameters of granulates, to establish the connections between the method of granulation and the release of active substances. According to our findings, the pharmaceutical product's characteristics in the aspects of physics, chemistry, stability and bioavailability may remarkably change without fixing the border conditions of parameters within limits.

  7. Kinetic effects of increased proton transfer distance on proton-coupled oxidations of phenol-amines.

    PubMed

    Markle, Todd F; Rhile, Ian J; Mayer, James M

    2011-11-02

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh(2)NH(2) substituent (1). Spectroscopic, structural, thermochemical, and computational studies show that the two amino-phenols are very similar, except that the O···N distance (d(ON)) is >0.1 Å longer in 2 than in 1. The difference in d(ON) is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations (•)OAr-NH(3)(+) by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. 2 orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C(6)H(4)OMe)(3)(•+) (3a(+)) occurs at (1.4 ± 0.1) × 10(4) M(-1) s(-1), only a factor of 2 slower than the closely related reaction of 1 with N(C(6)H(4)OMe)(2)(C(6)H(4)Br)(•+) (3b(+)). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG° (2 + 3a(+)) = +0.078 V versus ΔG° (1 + 3b(+)) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δ ln(k)/Δ ln(K(eq))). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the

  8. Kinetics and selectivity of oxidation of saturated hydrocarbons in sulphuric acid media containing anthracene and cyclohexane oligomers

    SciTech Connect

    Rudakov, Ye.S.; Lutsyk, A.I.; Suikov, S.Yu.; Tishchenko, N.A.

    1983-01-01

    Solutions of anthracene and cyclohexene in 93% sulphuric acid are sources of fairly stable species, which oxidize tertiary and secondary C-H bonds of saturated hydrocarbons at 90/sup 0/C. A study was made of kinetics and selectivity of the first stage of oxidation of paraffins in these systems. The selectivity, isotope effect and kinetics of oxidation of the anthraceneH/sub 2/SO/sub 4/ system and oligomers of cyclohexene-H/sub 2/SO/sub 4/ are similar and approximate to the oxidizing agent-sulphuric acid systems, previously examined. Based on this analogy a mechanism is proposed for the oxidative homolysis of C-H bonds for the first stage of oxidation of saturated hydrocarbons in anthracene-sulphuric acid and cyclohexene-sulphuric acid systems.

  9. On the origins of kinetic resolution of cyclohexane-1,2-diols through stereoselective acylation by chiral tetrapeptides.

    PubMed

    Shinisha, C B; Sunoj, Raghavan B

    2009-08-06

    The relative energies of cyclohexane-1,2-diols and chiral tetrapeptide (2 (Boc) or 3 (Moc)) complexes calculated using DFT indicate a thermodynamic preference for chiral recognition toward (1R,2R)(e,e)-alpha isomer. The barrier for stereoselective acyl transfer is identified as lower for trans-(1R,2R)-cyclohexane-1,2-diol, leading to the kinetic resolution (KR) of trans-(1S,2S)-cyclohexane-1,2-diol. The prediction is in concert with the reported experiments for trans-diols, while that for hitherto unknown cis-diol demands experimental verification. It is proposed that desymmetrization would enable the resolution of cis-(1R,2S)-2-hydroxycyclohexyl acetate.

  10. Radiation re-solution of fission gas in non-oxide nuclear fuel

    NASA Astrophysics Data System (ADS)

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called "homogenous" atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  11. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-06-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater to surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than one week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilisation of dissolved P during the initial stage of the Fe(II) oxidation proces which results in P-depleted water before Fe(II) is competly depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients seems an

  12. Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    NASA Astrophysics Data System (ADS)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2016-09-01

    The kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1 was measured under controlled conditions of the initial Mn(II) concentration, spore concentration, chemical speciation, pH, O2, and temperature. Mn(II) oxidation experiments were performed with spore concentrations ranging from 0.7 to 11 × 109 spores/L, a pH range from 5.8 to 8.1, temperatures between 4 and 58 °C, a range of dissolved oxygen from 2 to 270 μM, and initial Mn(II) concentrations from 1 to 200 μM. The Mn(II) oxidation rates were directly proportional to the spore concentrations over these ranges of concentration. The Mn(II) oxidation rate increased with increasing initial Mn(II) concentration to a critical concentration, as described by the Michaelis-Menten model (Km = ca. 3 μM). Whereas with starting Mn(II) concentrations above the critical concentration, the rate was almost constant in low ionic solution (I = 0.05, 0.08). At high ionic solution (I = 0.53, 0.68), the rate was inversely correlated with Mn(II) concentration. Increase in the Mn(II) oxidation rate with the dissolved oxygen concentration followed the Michaelis-Menten model (Km = 12-19 μM DO) in both a HEPES-buffered commercial drinking (soft) water and in artificial and natural seawater. Overall, our results suggest that the mass transport limitations of Mn(II) ions due to secondary Mn oxide products accumulating on the spores cause a significant decrease of the oxidation rate at higher initial Mn(II) concentration on a spore basis, as well as in more concentrated ionic solutions. The optimum pH for Mn(II) oxidation was approximately 7.0 in low ionic solutions (I = 0.08). The high rates at the alkaline side (pH > 7.5) may suggest a contribution by heterogeneous reactions on manganese bio-oxides. The effect of temperature on the Mn(II) oxidation rate was studied in three solutions (500 mM NaCl, ASW, NSW solutions). Thermal denaturation occurred at 58 °C and spore germination was evident at 40 °C in all three

  13. Phenol oxidation by mushroom waste extracts: a kinetic and thermodynamic study.

    PubMed

    Pigatto, Gisele; Lodi, Alessandra; Aliakbarian, Bahar; Converti, Attilio; da Silva, Regildo Marcio Gonçalves; Palma, Mauri Sérgio Alves

    2013-09-01

    Tyrosinase activity of mushroom extracts was checked for their ability to degrade phenol. Phenol oxidation kinetics was investigated varying temperature from 10 to 60 °C and the initial values of pH, enzyme activity and phenol concentration in the ranges 4.5-8.5, 1.43-9.54 U/mL and 50-600 mg/L, respectively. Thermodynamic parameters of phenol oxidation and tyrosinase reversible inactivation were estimated. Tyrosinase thermostability was also investigated through residual activity tests after extracts exposition at 20-50 °C, whose results allowed exploring the thermodynamics of enzyme irreversible thermoinactivation. This study is the first attempt to separate the effects of reversible unfolding and irreversible denaturation of tyrosinase on its activity. Extracts were finally tested on a real oil mill wastewater.

  14. Switching Kinetics in Nanoscale Hafnium Oxide Based Ferroelectric Field-Effect Transistors.

    PubMed

    Mulaosmanovic, Halid; Ocker, Johannes; Müller, Stefan; Schroeder, Uwe; Müller, Johannes; Polakowski, Patrick; Flachowsky, Stefan; van Bentum, Ralf; Mikolajick, Thomas; Slesazeck, Stefan

    2017-02-01

    The recent discovery of ferroelectricity in thin hafnium oxide films has led to a resurgence of interest in ferroelectric memory devices. Although both experimental and theoretical studies on this new ferroelectric system have been undertaken, much remains to be unveiled regarding its domain landscape and switching kinetics. Here we demonstrate that the switching of single domains can be directly observed in ultrascaled ferroelectric field effect transistors. Using models of ferroelectric domain nucleation we explain the time, field and temperature dependence of polarization reversal. A simple stochastic model is proposed as well, relating nucleation processes to the observed statistical switching behavior. Our results suggest novel opportunities for hafnium oxide based ferroelectrics in nonvolatile memory devices.

  15. Kinetics simulation of luminol chemiluminescence based on quantitative analysis of photons generated in electrochemical oxidation.

    PubMed

    Koizumi, Yozo; Nosaka, Yoshio

    2013-08-22

    The kinetics of electrogenerated chemiluminescence (ECL) of luminol at a gold electrode in alkaline solution was investigated by measuring the absolute number of photons emitted in an integrating sphere. The ECL efficiency as the ratio of photon to electric charge was 0.0004 in cyclic voltammography and 0.0005 in chronoamperometry. By numerically solving the rate equations based on a diffusion layer model, the observed time profile of the luminescence intensity could be successfully simulated from the oxidation current of luminol in the chronoamperometry. In the simulation, the rate constant for the oxidation of luminol by superoxide radicals in alkaline solution was determined to be 6 × 10(5) M(-1) s(-1). The present methodology and the achievement could be widely applicable to various analytical techniques using chemiluminescence.

  16. Use of the point defect model to interpret the iron oxidation kinetics under proton irradiation

    SciTech Connect

    Lapuerta, S.; Moncoffre, N.; Jaffrezic, H.; Millard-Pinard, N.; Bererd, N.; Esnouf, C.; Crusset, D.

    2007-03-15

    This article concerns the study of iron corrosion in wet air under mega-electron-volt proton irradiation for different fluxes at room temperature and with a relative humidity fixed to 45%. Oxidized iron sample surfaces are characterized by ion beam analysis (Rutherford backscattering spectrometry and elastic recoil detection analysis), for the elemental analysis. The structural and physicochemical characterization is performed using the x-ray photoelectron spectroscopy and transmission electron microscopy techniques. We have also measured the iron oxidation kinetics. Radiation enhanced diffusion and transport processes have been evidenced. The modeling of the experimental data shows that the apparent oxygen diffusion coefficient increases whereas the oxygen transport velocity decreases as function of flux. Finally, the point defect model has been used to determine the electric field value in the samples. Results have shown that the transport process can be attributed to the presence of an electrical potential gradient.

  17. Relevance of Chemical Kinetics for Medicine: The Case of Nitric Oxide

    NASA Astrophysics Data System (ADS)

    Balaban, Alexandru T.; Seitz, William

    2003-06-01

    Nitric oxide, NO, is central to many physiological processes including regulation of blood pressure and nerve signal transmission. Enzymes in endothelial cells and in the brain of mammals continuously synthesize it—generally in low and carefully regulated concentrations. The well known reaction of NO with oxygen to produce toxic nitrogen dioxide, NO2, has a rate which is bimolecular in NO. High concentrations of NO, as are found often in industrial plants or cigarettes, react rapidly with oxygen to produce toxic NO2. However, the half-life of NO at low NO concentrations as found in solutions and gases occurring in blood vessels, brains, and lungs is sufficiently long for biochemical purposes. Kinetics, then, determines the harmful versus helpful aspects of nitric oxide. At concentrations below 80 ppm NO is used in hospitals for lung vasodilation of preterm newborns and patients with pulmonary distress.

  18. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    SciTech Connect

    Bartling, Stephan Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina

    2015-09-21

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology.

  19. Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Wen, Shu-ming; Deng, Jian-ying; Wu, Dan-dan

    2015-03-01

    Sulfamic acid (SA), which possesses a zwitterionic structure, was applied as a leaching reagent for the first time for extracting copper from copper oxide ore. The effects of reaction time, temperature, particle size, reagent concentration, and stirring speed on this leaching were studied. The dissolution kinetics of malachite was illustrated with a three-dimensional diffusion model. A novel leaching effect of SA on malachite was eventually demonstrated. The leaching rate increased with decreasing particle size and increasing concentration, reaction temperature and stirring speed. The activation energy for SA leaching malachite was 33.23 kJ/mol. Furthermore, the effectiveness of SA as a new reagent for extracting copper from copper oxide ore was confirmed by experiment. This approach may provide a solution suitable for subsequent electrowinning. In addition, results reported herein may provide basic data that enable the leaching of other carbonate minerals of copper, zinc, cobalt and so on in an SA system.

  20. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions.

    PubMed

    Reinwarth, Michael; Glotzbach, Bernhard; Tomaszowski, Michael; Fabritz, Sebastian; Avrutina, Olga; Kolmar, Harald

    2013-01-02

    Bioactive peptides often contain several disulfide bonds that provide the main contribution to conformational rigidity and structural, thermal, or biological stability. Among them, cystine-knot peptides-commonly named "knottins"-make up a subclass with several thousand natural members. Hence, they are considered promising frameworks for peptide-based pharmaceuticals. Although cystine-knot peptides are available through chemical and recombinant synthetic routes, oxidative folding to afford the bioactive isomers still remains a crucial step. We therefore investigated the oxidative folding of ten protease-inhibiting peptides from two knottin families, as well as that of an HIV entry inhibitor and of aprotinin, under two conventional sets of folding conditions and by a newly developed procedure. Kinetic studies identified folding conditions that resulted in correctly folded miniproteins with high rates of conversion even for highly hydrophobic and aggregation-prone peptides in concentrated solutions.

  1. Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: products, kinetics and mechanism

    SciTech Connect

    Lee, Y.J.; Rochelle, G.T.

    1987-03-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (FGD) conditions. The oxidative degradation constant k/sub 12/ is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times the ratio of the concentration of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately 3 times slower than saturated dicarboxylic acids, while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude factor. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product - smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons. 30 references, 7 figures, 7 tables.

  2. Oxidation kinetics of the combustible fraction of construction and demolition wastes.

    PubMed

    Chang, N B; Lin, K S; Sun, Y P; Wang, H P

    2001-01-01

    Proper disposal of construction and demolition wastes (CDW) has received wide attention recently due to significantly large quantities of waste streams collected from razed or retrofitted buildings in many metropolitan regions. Burning the combustible fractions of CDW (CCDW) and possibly recovering part of the heat content for economic uses could be valuable for energy conservation. This paper explores the oxidation kinetics of CCDW associated with its ash characterization. Kinetic parameters for the oxidation of CCDW were numerically calculated using thermal gravimetric analysis (TGA) and the resultant rate equations were therefore developed for illustrating the oxidation processes of CCDW simultaneously. Based on three designated heating rates, each of the oxidation processes can be featured distinctively with five different stages according to the rate of weight change at the temperature between 300 K and 923 K. In addition, Fourier transform infrared (FTIR) spectroscopy was employed, associated with a lab-scale fixed-bed incinerator for monitoring the composition of flue gas. Carbon dioxide (CO2) was found as a major component in the flue gas. The fuel analysis also included an ash composition analysis via the use of X-ray powder diffraction (XRD), atomic absorption (AA) spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX). The ash streams were identified as nonhazardous materials based on the toxicity characteristic leaching procedure (TCLP). Overall, the scientific findings gained in this study will be helpful for supporting a sound engineering design of real-world CCDW incineration systems.

  3. Kinetics of atmospheric oxidation of nitrous acid by oxygen in aqueous medium

    NASA Astrophysics Data System (ADS)

    Mudgal, Punit K.; Bansal, S. P.; Gupta, K. S.

    The facts that the high concentrations of nitrous acid have been reported in dew, fog, rain and cloud water and that its oxidation by dissolved oxygen is very fast in freezing conditions have led us to study the kinetics of aqueous phase oxidation of nitrous acid by dissolved oxygen in the pH range 1.0-4.5 at 30 °C. The reaction was followed by measuring [O 2] and under pseudo-first-order conditions the results were in agreement with the rate law: -d[O]t/dt=k0[N]02[H]2[O]t/(K+[H])2, where k0 is third-order composite rate coefficient and Ka is the dissociation constant of HNO 2. The values of k0 and Ka were determined to be 1×10 2 L 2 mol -2 s -1 and 3.84×10 -4, respectively. Consistent with the kinetics results two alternative mechanisms have been considered. The first of these mechanisms assumes an intermediate complex formation, [HNO 2.O 2], by the reaction of HNO 2 and O 2 in a rapid pre-equilibrium, followed by the reaction of this intermediate with another molecule of HNO 2. The second mechanism, originally proposed by Damschen and Martin [1983. Aqueous aerosol oxidation of nitrous acid by O 2, O 3 and H 2O 2. Atmospheric Environment 17, 2005-2011], assumes the formation of a dimer, [HNO 2] 2, in a rapid pre-equilibrium followed by the reaction of the dimer with O 2 to form HNO 3. The application of the mechanisms to fast oxidation of nitrite by dissolved oxygen under freezing conditions is discussed.

  4. Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt(111).

    PubMed

    Gerrard, Alex L; Weaver, Jason F

    2005-12-08

    Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of

  5. Kinetics and mechanism of oxidation of super-reduced cobalamin and cobinamide species by thiosulfate, sulfite and dithionite

    PubMed Central

    Dereven’kov, Ilia A.; Salnikov, Denis S.; Makarov, Sergei V.; Boss, Gerry R.; Koifman, Oskar I.

    2013-01-01

    We studied the kinetics of reactions of cob(I)alamin and cob(I)inamide with thiosulfate, sulfite, and dithionite by UV-Visible (UV-Vis) and stopped-flow spectroscopy. We found that the two Co(I) species were oxidized by these sulfur-containing compounds to Co(II) forms: oxidation by excess thiosulfate leads to penta-coordinate complexes and oxidation by excess sulfite or dithionite leads to hexa-coordinate Co(II)–SO2− complexes. The net scheme involves transfer of three electrons in the case of oxidation by thiosulfate and one electron for oxidation by sulfite and dithionite. On the basis of kinetic data, the nature of the reactive oxidants was suggested, i.e., HS2O3− (for oxidation by thiosulfate), S2O52−, HSO3−, and aquated SO2 (for oxidation by sulfite), and S2O42− and SO2− (for oxidation by dithionite). No difference was observed in kinetics with cobalamin(I) or cobinamide(I) as reductants. PMID:23999614

  6. Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics.

    PubMed

    Ashraf, Chowdhury; van Duin, Adri C T

    2017-02-09

    A detailed insight of key reactive events related to oxidation and pyrolysis of hydrocarbon fuels further enhances our understanding of combustion chemistry. Though comprehensive kinetic models are available for smaller hydrocarbons (typically C3 or lower), developing and validating reaction mechanisms for larger hydrocarbons is a daunting task, due to the complexity of their reaction networks. The ReaxFF method provides an attractive computational method to obtain reaction kinetics for complex fuel and fuel mixtures, providing an accuracy approaching ab-initio-based methods but with a significantly lower computational expense. The development of the first ReaxFF combustion force field by Chenoweth et al. (CHO-2008 parameter set) in 2008 has opened new avenues for researchers to investigate combustion chemistry from the atomistic level. In this article, we seek to address two issues with the CHO-2008 ReaxFF description. While the CHO-2008 description has achieved significant popularity for studying large hydrocarbon combustion, it fails to accurately describe the chemistry of small hydrocarbon oxidation, especially conversion of CO2 from CO, which is highly relevant to syngas combustion. Additionally, the CHO-2008 description was obtained faster than expected H abstraction by O2 from hydrocarbons, thus underestimating the oxidation initiation temperature. In this study, we seek to systemically improve the CHO-2008 description and validate it for these cases. Additionally, our aim was to retain the accuracy of the 2008 description for larger hydrocarbons and provide similar quality results. Thus, we expanded the ReaxFF CHO-2008 DFT-based training set by including reactions and transition state structures relevant to the syngas and oxidation initiation pathways and retrained the parameters. To validate the quality of our force field, we performed high-temperature NVT-MD simulations to study oxidation and pyrolysis of four different hydrocarbon fuels, namely, syngas

  7. High Time Resolution Measurements of Gaseous Oxidized Mercury from Ground and Aircraft Platforms

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; Jaffe, D. A.

    2009-12-01

    Atmospheric mercury fractions (gaseous elemental, gaseous oxidized, and fine particulate-bound mercury) have been measured in many different environmental conditions, primarily with the Tekran 2537/1130/1135 speciation system, and these measurements have greatly enhanced scientific understanding of atmospheric mercury dynamics. However, measurements of gaseous oxidized mercury, the most reactive, soluble, and bioavailable mercury fraction, have low time resolution with the Tekran system and have been mostly unchecked by calibration standards. We have developed an alternative technique for measuring gaseous oxidized mercury that provides higher resolution (2.5 minute) measurements, and have built a permeation tube-based oxidized mercury (HgCl2, HgBr2, and HgO) calibrator. The system measures oxidized mercury based on the difference between elemental mercury and total mercury measured with two Tekran 2537 analyzers, and has a 2.5 minute detection limit sufficient to quantify high oxidized mercury events (~80 pg m-3). Additionally, in laboratory tests it outperforms measurements made with KCl-coated denuders in terms of percent recovery and time-averaged detection limit. We have used this system in aircraft and at Mount Bachelor Observatory to observe the origins and dynamics of high oxidized mercury air in the Pacific Northwest, and are preparing it for deployment in the NCAR C-130 for detailed assessment of atmospheric mercury fractions in North America.

  8. Activity modulation of core and shell in nanozeolite@enzyme bi-functional catalyst for dynamic kinetic resolution.

    PubMed

    Li, Xiang; Yan, Yueer; Wang, Wanlu; Zhang, Yahong; Tang, Yi

    2015-01-15

    A core-shell nanozeolite@enzyme bi-functional catalyst is prepared by using nanozeolite β as acidic core and immobilized Candida antarctica lipase B (CALB) as enzyme shell for the purpose of dynamic kinetic resolution (DKR), and polydiallyldimethylammonium chloride (PDDA) is used as interlayer to compart core and shell. The activities of core and shell in bi-functional catalyst are modulated to achieve the matching between racemization and kinetic resolution (KR) rates in DKR, i.e., a slow racemization rate on core while a fast KR rate on shell. Nanozeolite β with intermediate SiO2/Al2O3 ratio provides proper acid amount for racemization step. A relatively thick layer of PDDA not only improves the activity of CALB by its coverage for surface acidic sites but also limits the accessibility and diffusion of substrate towards the acidic core. The CALB shell with larger immobilized amount and higher enzyme activity offers enhanced driving force of DKR process, leading to higher conversion, selectivity and yield. The preparation and activity modulation of core-shell catalyst provide an ideal method to improve the catalytic performance of bi-functional catalyst. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Chemical kinetic study of the oxidation of toluene and related cyclic compounds

    SciTech Connect

    Mehl, M; Frassoldati, A; Fietzek, R; Faravelli, T; Pitz, W; Ranzi, E

    2009-10-01

    Chemical kinetic models of hydrocarbons found in transportation fuels are needed to simulate combustion in engines and to improve engine performance. The study of the combustion of practical fuels, however, has to deal with their complex compositions, which generally involve hundreds of compounds. To provide a simplified approach for practical fuels, surrogate fuels including few relevant components are used instead of including all components. Among those components, toluene, the simplest of the alkyl benzenes, is one of the most prevalent aromatic compounds in gasoline in the U.S. (up to 30%) and is a promising candidate for formulating gasoline surrogates. Unfortunately, even though the combustion of aromatics been studied for a long time, the oxidation processes relevant to this class of compounds are still matter of discussion. In this work, the combustion of toluene is systematically approached through the analysis of the kinetics of some important intermediates contained in its kinetic submechanism. After discussing the combustion chemistry of cyclopentadiene, benzene, phenol and, finally, of toluene, the model is validated against literature experimental data over a wide range of operating conditions.

  10. [CoCuMnOx Photocatalyzed Oxidation of Multi-component VOCs and Kinetic Analysis].

    PubMed

    Meng, Hai-long; Bo, Long-li; Liu, Jia-dong; Gao, Bo; Feng, Qi-qi; Tan, Na; Xie, Shuai

    2016-05-15

    Solar energy absorption coating CoCuMnOx was prepared by co-precipitation method and applied to photodegrade multi- component VOCs including toluene, ethyl acetate and acetone under visible light irradiation. The photocatalytic oxidation performance of toluene, ethyl acetate and acetone was analyzed and reaction kinetics of VOCs were investigated synchronously. The research indicated that removal rates of single-component toluene, ethyl acetate and acetone were 57%, 62% and 58% respectively under conditions of 400 mg · m⁻³ initial concentration, 120 mm illumination distance, 1 g/350 cm² dosage of CoCuMnOx and 6 h of irradiation time by 100 W tungsten halogen lamp. Due to the competition among different VOCs, removal efficiencies in three-component mixture were reduced by 5%-26% as compared with single VOC. Degradation processes of single-component VOC and three-component VOCs both fitted pseudo first order reaction kinetics, and kinetic constants of toluene, ethyl acetate and acetone were 0.002, 0.002 8 and 0.002 33 min⁻¹ respectively under single-component condition. Reaction rates of VOCs in three-component mixture were 0.49-0.88 times of single components.

  11. Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition.

    PubMed

    Yao, Zongbao; Lu, Peili; Zhang, Daijun; Wan, Xinyu; Li, Yulian; Peng, Shuchan

    2015-12-01

    Purpose of this study is to investigate the stoichiometry and kinetics of anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. The stoichiometry was established based on the electron balance of Anammox process with trace N2H4 addition. The stoichiometric coefficients were determined by the proton consumption and the changes in substrates and products. It was found that trace N2H4 addition can increase the yield of Anammox bacteria (AnAOB) and reduce NO3(-) yield, which enhances the Anammox. Subsequently, kinetic model of Anammox with trace N2H4 addition was developed, and the parameters of the anaerobic degradation model of N2H4 were obtained for the first time. The maximum specific substrate utilization rate, half-saturation constant and inhibition constant of N2H4 were 25.09mgN/g VSS/d, 10.42mgN/L and 1393.88mgN/L, respectively. These kinetic parameters might provide important information for the engineering applications of Anammox with trace N2H4 addition.

  12. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.

    PubMed

    Zheng, Jianqiu; Doskey, Paul V

    2015-02-17

    An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.

  13. Effect of graphene oxide sheet size on the curing kinetics and thermal stability of epoxy resins

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Jin, Jie; Song, Mo; Lin, Yue

    2016-10-01

    This work revealed the influences of graphene oxide (GO) sheet size on the curing kinetics and thermal stability of epoxy resins. A series of GO/epoxy nanocomposites were prepared by the incorporation of three different sized GO sheets, namely GO-1, GO-2 and GO-3, the average size of which was 10.79 μm, 1.72 μm and 0.70 μm, respectively. The morphologies of the nanocomposites were observed by field emission gun scanning electron microscope. The dispersion quality of each sized GO was comparable in the epoxy matrix. The curing kinetics was investigated by means of differential scanning calorimetry and analyzed based on kinetics model. Addition of a small amount of GO (0.1 wt%) exhibited strong catalytic effect on the curing reaction of epoxy resin. The activation energy was reduced by 18.9%, 28.8% and 14.6% with addition of GO-1, GO-2 and GO-3, respectively. GO-2 with medium size (1.72 μm) showed the most effective catalysis on the cure. The thermal stability of the cured resins was evaluated based on thermogravimetric analysis. GO/epoxy nanocomposites showed improved thermal stability in the range of 420 °C-500 °C, compared with the pure resin. A ˜ 4% more residue was obtained in each of the incorporated system. The variations of GO sheet size did not influence the enhancement effect on the thermal stability.

  14. High-resolution Statistics of Solar Wind Turbulence at Kinetic Scales Using the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; Fuselier, S. A.; Maruca, B. A.; Phan, T. D.; Burch, J. L.; Moore, T. E.; Pollock, C. J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.

    2017-07-01

    Using data from the Magnetospheric Multiscale (MMS) and Cluster missions obtained in the solar wind, we examine second-order and fourth-order structure functions at varying spatial lags normalized to ion inertial scales. The analysis includes direct two-spacecraft results and single-spacecraft results employing the familiar Taylor frozen-in flow approximation. Several familiar statistical results, including the spectral distribution of energy, and the sale-dependent kurtosis, are extended down to unprecedented spatial scales of ∼6 km, approaching electron scales. The Taylor approximation is also confirmed at those small scales, although small deviations are present in the kinetic range. The kurtosis is seen to attain very high values at sub-proton scales, supporting the previously reported suggestion that monofractal behavior may be due to high-frequency plasma waves at kinetic scales.

  15. A Kinetic Study of the Heterogeneous Chemistry and Photochemistry of Ozone Dissociation on Oxide Surfaces

    NASA Astrophysics Data System (ADS)

    Chen, H.; Stanier, C. O.; Young, M. A.; Grassian, V. H.

    2011-12-01

    Transport of mineral dust over long distance raised the possibility that mineral dust aerosol can alter the chemical partitioning of atmospheric trace gases on global scale. One such important heterogeneous reaction is the decomposition of ozone, which is of particular interest due to the critical role ozone plays in atmospheric oxidation, its potential as a greenhouse gas, and its presence as a toxic tropospheric pollutant. In this study, the heterogeneous chemistry and photochemistry of ozone, O3, on components of mineral dust aerosol, including α-Fe2O3 (hematite), TiO2, and α-Al2O3, at different relative humidity were investigated using an environmental aerosol chamber. The rate and extent of O3 decomposition on the surfaces of these oxides is a function of the nature of the surface, presence of light and relative humidity. In the dark and dry conditions, only α-Fe2O3 exhibits catalytic decomposition toward O3. However, upon irradiation TiO2 is active toward O3 decomposition but α-Al2O3 remains inactive. In the presence of relative humidity, ozone decay on illuminated α-Fe2O3 as well as in the dark, is found to decrease, due to the competitive adsorption of water molecules and ozone for active surface sites. In contrast, the relative humidity dependence of ozone uptake on TiO2 in the presence of light is more complex with an increase in ozone uptake observed at low relative humidity and a decrease at higher relative humidity. A kinetic model to simulate reactions in the environmental aerosol chamber was built with the Kinetic Preprocessor, in order to obtain kinetic data regarding ozone uptake on these metal oxides under a variety of conditions. The application of this model to the environmental aerosol chamber results allows us to differentiate heterogeneous photochemistry from heterogeneous and homogeneous chemistry and extract valuable kinetic information, improving our understanding of ozone uptake on mineral dust aerosol.

  16. Coal desulfurization in oxidative acid media using hydrogen peroxide and ozone: a kinetic and statistical approach

    SciTech Connect

    F.R. Carrillo-Pedroza; A. Davalos Sanchez; M. Soria-Aguilar; E.T. Pecina Trevino

    2009-07-15

    The removal of pyritic sulfur from a Mexican sub-bituminous coal in nitric, sulfuric, and hydrochloric acid solutions was investigated. The effect of the type and concentration of acid, in the presence of hydrogen peroxide and ozone as oxidants, in a temperature range of 20-60{sup o}C, was studied. The relevant factors in pyrite dissolution were determined by means of the statistical analysis of variance and optimized by the response surface method. Kinetic models were also evaluated, showing that the dissolution of pyritic sulfur follows the kinetic model of the shrinking core model, with diffusion through the solid product of the reaction as the controlling stage. The results of statistical analysis indicate that the use of ozone as an oxidant improves the pyrite dissolution because, at 0.25 M HNO{sub 3} or H{sub 2}SO{sub 4} at 20{sup o}C and 0.33 g/h O{sub 3}, the obtained dissolution is similar to that of 1 M H{sub 2}O{sub 2} and 1 M HNO{sub 3} or H{sub 2}SO{sub 4} at 40{sup o}C. 42 refs., 9 figs., 3 tabs.

  17. Enhanced charge separation and oxidation kinetics of BiVO4 photoanode by double layer structure

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Xiong, Yuli; Dong, Hongmei; Peng, Huarong; Zhang, Yunhuai; Xiao, Peng

    2017-03-01

    Monoclinic bismuth vanadate (BiVO4) is a promising semiconductor for photoelectrochemical water splitting. Here, we developed a facile fabrication of BiVO4 double layer photoanode on the fluorine-doped tin oxide substrate by electrodeposition. The BiVO4 double layer photoanode is composed by a dense BiVO4 film as the inner layer and a nanoporous BiVO4 film as the outer layer. Compared to the BiVO4 single layer photoanode, the optimized BiVO4 double layer photoanode produced a much higher photocurrent of 1.15 mA/cm2 at 0.6 V vs. Ag/AgCl under AM 1.5G (100 mW/cm2) illumination. The results of the photoelectric conversion kinetics for different samples revealed that the charge separation and oxidation kinetics efficiencies for the BiVO4 double layer are 47.2% and 51.6% at 0.6 V vs. Ag/AgCl, while the values for BiVO4 single layer are 32.3% and 35.8%, respectively. The improved photoelectrochemical performance for BiVO4 double layer is mainly ascribed to the decrease of defect state at the interface after inserting a dense BiVO4 as an inner layer to prevent the recombination of photogenerated electron-hole pairs.

  18. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding.

    PubMed Central

    Marcinkeviciute, A; Mildaziene, V; Crumm, S; Demin, O; Hoek, J B; Kholodenko, B

    2000-01-01

    Changes in the kinetics and regulation of oxidative phosphorylation were characterized in isolated rat liver mitochondria after 2 months of ethanol consumption. Mitochondrial energy metabolism was conceptually divided into three groups of reactions, either producing protonmotive force (Deltap) (the respiratory subsystem) or consuming it (the phosphorylation subsystem and the proton leak). Manifestation of ethanol-induced mitochondrial malfunctioning of the respiratory subsystem was observed with various substrates; the respiration rate in State 3 was inhibited by 27+/-4% with succinate plus amytal, by 20+/-4% with glutamate plus malate, and by 17+/-2% with N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate. The inhibition of the respiratory activity correlated with the lower activities of cytochrome c oxidase, the bc(1) complex, and the ATP synthase in mitochondria of ethanol-fed rats. The block of reactions consuming the Deltap to produce ATP (the phosphorylating subsystem) was suppressed after 2 months of ethanol feeding, whereas the mitochondrial proton leak was not affected. The contributions of Deltap supply (the respiratory subsystem) and Deltap demand (the phosphorylation and the proton leak) to the control of the respiratory flux were quantified as the control coefficients of these subsystems. In State 3, the distribution of control exerted by different reaction blocks over respiratory flux was not significantly affected by ethanol diet, despite the marked changes in the kinetics of individual functional units of mitochondrial oxidative phosphorylation. This suggests the operation of compensatory mechanisms, when control redistributes among the different components within the same subsystem. PMID:10880351

  19. Effects of Transition-Metal Mixing on Na Ordering and Kinetics in Layered P 2 Oxides

    NASA Astrophysics Data System (ADS)

    Zheng, Chen; Radhakrishnan, Balachandran; Chu, Iek-Heng; Wang, Zhenbin; Ong, Shyue Ping

    2017-06-01

    Layered P 2 oxides are promising cathode materials for rechargeable sodium-ion batteries. In this work, we systematically investigate the effects of transition-metal (TM) mixing on Na ordering and kinetics in the NaxCo1 -yMnyO2 model system using density-functional-theory (DFT) calculations. The DFT-predicted 0-K stability diagrams indicate that Co-Mn mixing reduces the energetic differences between Na orderings, which may account for the reduction of the number of phase transformations observed during the cycling of mixed-TM P 2 layered oxides compared to a single TM. Using ab initio molecular-dynamics simulations and nudged elastic-band calculations, we show that the TM composition at the Na(1) (face-sharing) site has a strong influence on the Na site energies, which in turn impacts the kinetics of Na diffusion towards the end of the charge. By employing a site-percolation model, we establish theoretical upper and lower bounds for TM concentrations based on their effect on Na(1) site energies, providing a framework to rationally tune mixed-TM compositions for optimal Na diffusion.

  20. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.

    PubMed

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A

    2013-02-21

    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.

  1. Kinetics and mechanism of the oxidation of arsine by halide complexes of copper(II)

    SciTech Connect

    Dorfman, Y.A.; Abdreimova, R.R.; Emel'yanova, V.S.; Kel'man, I.V.; Polimbetova, G.S.

    1985-11-01

    This paper studies the kinetics of the oxidation of arsine by copper (II) halides. It is shown that within the investigated region of concentrations of the components of the system CuX/sub 2/-HX-LiX-H/sub 2/O, /SUB C/ the oxidation of AsH/sub 3/ proceeds to As(O). First order with respect to /SUB Cu/ X/sub 2/ is observed; the order with respect to C /SUB As/ H/sub 3/ is close to first. With regard to activity in the reaction with arsine, copper(II) halides are distributed in the series. CuCl /SUB 3aq/ -kinetic activity proved to be directly correlated with the decrease in the negative charge of the halogen and the positive charge of arsine, leading to activation of the AsH/sub 3/ molecule. A mechanism of the reaction is proposed.

  2. Low-temperature oxidation of alkali overlayers: Ionic species and reaction kinetics

    NASA Astrophysics Data System (ADS)

    Krix, David; Nienhaus, Hermann

    2013-04-01

    Clean and oxidized alkali metal films have been studied using X-ray photoelectron spectroscopy (XPS). Thin films, typically 10 nm thick, of lithium, sodium, potassium, rubidium and cesium have been deposited on silicon substrates and oxidized at 120 K. Plasmon losses were found to dress the primary photo emission structures of the metals’ core lines which confirms the metallic, bulk like nature of the films. The emission from the O 1s core levels was used to determine the chemical composition and the reaction kinetics during the exposure to molecular oxygen at low pressures. Molecular oxide ions O2- and O22- as well as atomic oxygen ions O2- were detected in varying amounts depending on the alkali metal used. Diffusive transport of material in the film is shown to greatly determine the composition of the oxides. Especially, the growth of potassium superoxide is explained by the diffusion of potassium atoms to the surface and growth at the surface in a Deal-Grove like model.

  3. Oxidation kinetics of hydrogenated amorphous carbon (a-CH(x)) overcoats for magnetic data storage media.

    PubMed

    Yun, Yang; Ma, Xiaoding; Gui, Jing; Broitman, Esteban; Gellman, Andrew J

    2007-05-08

    The oxidation kinetics of a-CHx overcoats during exposure to oxygen and water vapor have been measured using X-ray photoemission spectroscopy (XPS) in an apparatus that allows oxidation and analysis of freshly deposited a-CHx overcoats without prior exposure of the overcoats to air. The uptake of oxygen on the surfaces of the a-CHx overcoats has been measured at O2 and H2O pressures in the range 10(-7)-10(-3) Torr at room temperature. The uptake of oxygen during O2 exposures on the order of 10(7) Langmuirs leads to saturation of the a-CHx overcoat surfaces at oxidation levels on the order of 20%. This indicates that the surfaces of a-CHx overcoats are relatively inert to oxidation in the sense that the dissociative sticking coefficient of O2 is approximately 10(-6). Oxygen uptake during exposure to H2O vapor is similar to the uptake during exposure to O2 gas. Although the surfaces of the a-CHx overcoats are quite inhomogeneous, it has been possible to model the uptake of oxygen on their surfaces using a fairly simple Langmuir-Hinshelwood mechanism. Interestingly, the saturation coverage of oxygen during exposure to air at atmospheric pressure is approximately 6%, significantly lower than that obtained during low-pressure exposure to O2 gas or H2O vapor.

  4. Chemical sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan.

    PubMed

    Kessler, Sean H; Smith, Jared D; Che, Dung L; Worsnop, Douglas R; Wilson, Kevin R; Kroll, Jesse H

    2010-09-15

    The heterogeneous oxidation of pure erythritol (C(4)H(10)O(4)) and levoglucosan (C(6)H(10)O(5)) particles was studied in order to evaluate the effects of atmospheric aging on the mass and chemical composition of atmospheric organic aerosol. In contrast to what is generally observed for the heterogeneous oxidation of reduced organics, substantial volatilization is observed in both systems. However, the ratio of the decrease in particle mass to the decrease in the concentration of the parent species is about three times higher for erythritol than for levoglucosan, indicating that details of chemical structure (such as carbon number, cyclic moieties, and oxygen-containing functional groups) play a governing role in the importance of volatilization reactions. The kinetics of the reaction indicate that while both compounds react at approximately the same rate, reactions of their oxidation products appear to be slowed substantially. Estimates of volatilities of organic species based on elemental composition measurements suggest that the heterogeneous oxidation of oxygenated organics may be an important loss mechanism of organic aerosol.

  5. Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen

    PubMed Central

    van Wilderen, Luuk J.G.W.; Silkstone, Gary; Mason, Maria; van Thor, Jasper J.; Wilson, Michael T.

    2015-01-01

    Cryptochromes (crys) are flavoprotein photoreceptors present throughout the biological kingdom that play important roles in plant development and entrainment of the circadian clock in several organisms. Crys non-covalently bind flavin adenine dinucleotide (FAD) which undergoes photoreduction from the oxidised state to a radical form suggested to be active in signalling in vivo. Although the photoreduction reactions have been well characterised by a number of approaches, little is known of the oxidation reactions of crys and their mechanisms. In this work, a stopped-flow kinetics approach is used to investigate the mechanism of cry oxidation in the presence and absence of an external electron donor. This in vitro study extends earlier investigations of the oxidation of Arabidopsis cryptochrome1 by molecular oxygen and demonstrates that, under some conditions, a more complex model for oxidation of the flavin than was previously proposed is required to accommodate the spectral evidence (see P. Müller and M. Ahmad (2011) J. Biol. Chem. 286, 21033–21040 [1]). In the absence of an electron donor, photoreduction leads predominantly to the formation of the radical FADH•. Dark recovery most likely forms flavin hydroperoxide (FADHOOH) requiring superoxide. In the presence of reductant (DTT), illumination yields the fully reduced flavin species (FADH−). Reaction of this with dioxygen leads to transient radical (FADH•) and simultaneous accumulation of oxidised species (FAD), possibly governed by interplay between different cryptochrome molecules or cooperativity effects within the cry homodimer. PMID:26649273

  6. Methane oxidation in a landfill cover soil reactor: Changing of kinetic parameters and microorganism community structure.

    PubMed

    Xing, Zhi L; Zhao, Tian T; Gao, Yan H; Yang, Xu; Liu, Shuai; Peng, Xu Y

    2017-02-23

    Changing of CH4 oxidation potential and biological characteristics with CH4 concentration was studied in a landfill cover soil reactor (LCSR). The maximum rate of CH4 oxidation reached 32.40 mol d(-1) m(-2) by providing sufficient O2 in the LCSR. The kinetic parameters of methane oxidation in landfill cover soil were obtained by fitting substrate diffusion and consumption model based on the concentration profile of CH4 and O2. The values of [Formula: see text] (0.93-2.29%) and [Formula: see text] (140-524 nmol kgsoil-DW(-1)·s(-1)) increased with CH4 concentration (9.25-20.30%), while the values of [Formula: see text] (312.9-2.6%) and [Formula: see text] (1.3 × 10(-5) to 9.0 × 10(-3) nmol mL(-1) h(-1)) were just the opposite. MiSeq pyrosequencing data revealed that Methylobacter (the relative abundance was decreased with height of LCSR) and Methylococcales_unclassified (the relative abundance was increased expect in H 80) became the key players after incubation with increasing CH4 concentration. These findings provide information for assessing CH4 oxidation potential and changing of biological characteristics in landfill cover soil.

  7. Kinetics, simulation and insights for CO selective oxidation in fuel cell applications

    NASA Astrophysics Data System (ADS)

    Choi, Yongtaek; Stenger, Harvey G.

    The kinetics of CO preferential oxidation (PROX) was studied to evaluate various rate expressions and to simulate the performance the CO oxidation step of a methanol fuel processor for fuel cell applications. The reaction was carried out in a micro reactor testing unit using a commercial Engelhard Selectoxo (Pt-Fe/γ-alumina) catalyst and three self-prepared catalysts. Temperature was varied between 100 and 300 °C, and a of range feed rates and compositions were tested. A reaction model in which three reactions (CO oxidation, H 2 oxidation and the water gas shift reaction) occur simultaneously was chosen to predict the reactor performance. Using non-linear least squares, empirical power-law type rate expressions were found to fit the experimental data. It was critical to include all three reactions to determine good fitting results. In particular, the reverse water gas shift reaction had an important role when fitting the experimental data precisely and explained the selectivity decrease at higher reaction temperatures. Using this three reaction model, several simulation studies for a commercial PROX reactor were performed. In these simulations, the effect of O 2/CO ratio, the effect of water addition, and various non-isothermal modes of operation were evaluated. The results of the simulation were compared with corresponding experimental data and shows good agreement.

  8. Kinetics of oxidation of bilirubin and its protein complex by hydrogen peroxide in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Antina, E. V.

    2010-12-01

    A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.

  9. Influence of organic substrates on the kinetics of bacterial As(III) oxidation

    NASA Astrophysics Data System (ADS)

    Lescure, T.; Joulian, C.; Bauda, P.; Hénault, C.; Battaglia-Brunet, F.

    2012-04-01

    Soil microflora plays a major role on the behavior of metals and metalloids. Arsenic speciation, in particular, is related to the activity of bacteria able to oxidize, reduce or methylate this element, and determines mobility, bioavailability and toxicity of As. Arsenite (AsIII) is more toxic and more mobile than arsenate (AsV). Bacterial As(III)-oxidation tends to reduce the toxicity of arsenic in soils and the risk of transfer toward underlying aquifers, that would affect the quality of water resources. Previous results suggest that organic matter may affect kinetics or efficiency of bacterial As(III)-oxidation in presence of oxygen, thus in conventional physico-chemical conditions of a surface soil. Different hypothesis can be proposed to explain the influence of organic matter on As(III) oxidation. Arsenic is a potential energy source for bacteria. The presence of easily biodegradable organic matter may inhibit the As(III) oxidation process because bacteria would first metabolize these more energetic substrates. A second hypothesis would be that, in presence of organic matter, the Ars system involved in bacterial resistance to arsenic would be more active and would compete with the Aio system of arsenite oxidation, decreasing the global As(III) oxidation rate. In addition, organic matter influences the solubility of iron oxides which often act as the main pitfalls of arsenic in soils. The concentration and nature of organic matter could therefore have a significant influence on the bioavailability of arsenic and hence on its environmental impact. The influence of organic matter on biological As(III) oxidation has not yet been determined in natural soils. In this context, soil amendment with organic matter during operations of phytostabilization or, considering diffuse pollutions, through agricultural practices, may affect the mobility and bio-availability of the toxic metalloid. The objective of the present project is to quantify the influence of organic matter

  10. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development.

    PubMed

    Owens, Nick D L; Blitz, Ira L; Lane, Maura A; Patrushev, Ilya; Overton, John D; Gilchrist, Michael J; Cho, Ken W Y; Khokha, Mustafa K

    2016-01-26

    Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack a comprehensive understanding of transcript kinetics, which limits quantitative biology. This is an acute challenge in embryonic development, where rapid changes in gene expression dictate cell fate decisions. By ultra-high-frequency sampling of Xenopus embryos and absolute normalization of sequence reads, we present smooth gene expression trajectories in absolute transcript numbers. During a developmental period approximating the first 8 weeks of human gestation, transcript kinetics vary by eight orders of magnitude. Ordering genes by expression dynamics, we find that "temporal synexpression" predicts common gene function. Remarkably, a single parameter, the characteristic timescale, can classify transcript kinetics globally and distinguish genes regulating development from those involved in cellular metabolism. Overall, our analysis provides unprecedented insight into the reorganization of maternal and embryonic transcripts and redefines our ability to perform quantitative biology. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Destruction kinetic of PCDDs/Fs in MSWI fly ash using microwave peroxide oxidation.

    PubMed

    Chang, Yu-Min; Fang, Wen-Bin; Tsai, Kuo-Sheng; Kao, Jimmy C M; Lin, Kae-Long; Chen, Ching-Ho

    2015-01-01

    Microwave peroxide oxidation is a less greenhouse gas emission and energy-efficient technology to destroy toxic organic compounds in hazardous waste. The research novelty is to adopt the innovative microwave peroxide oxidation in H2SO4/HNO3 solution to efficiently destroy the polychlorinated dibenzo-p-dioxins (PCDDs)/Fs in municipal solid waste incineration fly ash. The major objective of this paper is to study dynamic destruction of PCDDs/Fs using the microwave peroxide oxidation. Almost all PCDDs/Fs in the raw fly ash can be destructed in 120 min at a temperature of 423 K using the microwave peroxide oxidation treatment. It was found that the microwave peroxide oxidation provides the potential to destruct the PCDDs/Fs content in municipal solid waste incinerator (MSWI) fly ash to a low level as a function of treatment time. A useful kinetic correlation between destruction efficiency and treatment conditions is proposed on the basis of the experimental data obtained in this study. The significance of this work in terms of practical engineering applications is that the necessary minimum treatment time can be solved using a proposed graphic illustration method, by which the minimum treatment time is obtained if the desired destruction efficiency and treatment temperature are known. Because of inorganic salt dissolution, the temperature would be a critical factor facilitating the parts of fly ash dissolution. Material loss problem caused by the microwave peroxide oxidation and the effects of treatment time and temperature are also discussed in this paper.

  12. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    NASA Astrophysics Data System (ADS)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  13. Methane and methanol oxidation in supercritical water: Chemical kinetics and hydrothermal flame studies

    SciTech Connect

    Steeper, R.R.

    1996-01-01

    Supercritical water oxidation (SCWO) is an emerging technology for the treatment of wastes in the presence of a large concentration of water at conditions above water`s thermodynamic critical point. A high-pressure, optically accessible reaction cell was constructed to investigate the oxidation of methane and methanol in this environment. Experiments were conducted to examine both flame and non-flame oxidation regimes. Optical access enabled the use of normal and shadowgraphy video systems for visualization, and Raman spectroscopy for in situ measurement of species concentrations. Flame experiments were performed by steadily injecting pure oxygen into supercritical mixtures of water and methane or methanol at 270 bar and at temperatures from 390 to 510{degrees}C. The experiments mapped conditions leading to the spontaneous ignition of diffusion flames in supercritical water. Above 470{degrees}C, flames spontaneously ignite in mixtures containing only 6 mole% methane or methanol. This data is relevant to the design and operation of commercial SCWO processes that may be susceptible to inadvertent flame formation. Non-flame oxidation kinetics experiments measured rates of methane oxidation in supercritical water at 270 bar and at temperatures from 390 to 442{degrees}C. The initial methane concentration was nominally 0.15 gmol/L, a level representative of commercial SCWO processes. The observed methane concentration histories were fit to a one-step reaction rate expression indicating a reaction order close to two for methane and zero for oxygen. Experiments were also conducted with varying water concentrations (0 to 8 gmol/L) while temperature and initial reactant concentrations were held constant. The rate of methane oxidation rises steadily with water concentration up to about 5 gmol/L and then abruptly falls off at higher concentrations.

  14. Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions.

    PubMed

    Wang, Jing; Xia, Fang-Fang; Bai, Yun; Fang, Cheng-Ran; Shen, Dong-Sheng; He, Ruo

    2011-05-01

    Waste biocover soil was investigated as an alternative in regions with a shortage of landfill cover soil. In the work, effects of the composition, ambient conditions and nitrogen stress on CH(4) oxidation in waste biocover soil were studied. The results showed that the optimal composition of waste biocover soil as a landfill cover material for CH(4) oxidation was original pH value, 45% moisture and a particle size of ≤ 4mm. CH(4) oxidation rate increased rapidly over a CH(4) concentration range of 0.01-10% (v/v), and kept stable at CH(4) concentrations of 10-30% (v/v). The Michaelis-Menten model showed a good fit for the kinetic of CH(4) oxidation in landfill waste biocover soil with a maximum of 9.03 μmol/gd.w./h. The average Q(10) was 10.6 in the batch experiments. A level of 5% of oxygen concentration was enough to sustain the activity of methanotrophs community structure in waste biocover soil. Waste biocover soil had low baseline concentrations of NH(4)(+)-N and NO(3)(-)-N. Ammonia volatilization from landfills and nitrification in landfill waste biocover soils might stimulate CH(4) consumption at concentrations below 600 mg/kg. However, the contents of NH(4)(+)-N and NO(3)(-)-N above 1200 mg/kg would inhibit CH(4) oxidation in landfill waste biocover soil. Compared with NO(3)(-)-N, NH(4)(+)-N had a greater stimulating action as nutrient at lower concentrations and inhibitory effect at higher concentrations on CH(4) oxidation in landfill waste biocover soil.

  15. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  16. Time-Resolved O3 Chemical Chain Reaction Kinetics Via High-Resolution IR Laser Absorption Methods

    NASA Technical Reports Server (NTRS)

    Kulcke, Axel; Blackmon, Brad; Chapman, William B.; Kim, In Koo; Nesbitt, David J.

    1998-01-01

    Excimer laser photolysis in combination with time-resolved IR laser absorption detection of OH radicals has been used to study O3/OH(v = 0)/HO2 chain reaction kinetics at 298 K, (i.e.,(k(sub 1) is OH + 03 yields H02 + 02 and (k(sub 2) is H02 + 03 yields OH + 202). From time-resolved detection of OH radicals with high-resolution near IR laser absorption methods, the chain induction kinetics have been measured at up to an order of magnitude higher ozone concentrations ([03] less than or equal to 10(exp 17) molecules/cu cm) than accessible in previous studies. This greater dynamic range permits the full evolution of the chain induction, propagation, and termination process to be temporally isolated and measured in real time. An exact solution for time-dependent OH evolution under pseudo- first-order chain reaction conditions is presented, which correctly predicts new kinetic signatures not included in previous OH + 03 kinetic analyses. Specifically, the solutions predict an initial exponential loss (chain "induction") of the OH radical to a steady-state level ([OH](sub ss)), with this fast initial decay determined by the sum of both chain rate constants, k(sub ind) = k(sub 1) + k(sub 2). By monitoring the chain induction feature, this sum of the rate constants is determined to be k(sub ind) = 8.4(8) x 10(exp -14) cu cm/molecule/s for room temperature reagents. This is significantly higher than the values currently recommended for use in atmospheric models, but in excellent agreement with previous results from Ravishankara et al.

  17. Time-Resolved O3 Chemical Chain Reaction Kinetics Via High-Resolution IR Laser Absorption Methods

    NASA Technical Reports Server (NTRS)

    Kulcke, Axel; Blackmon, Brad; Chapman, William B.; Kim, In Koo; Nesbitt, David J.

    1998-01-01

    Excimer laser photolysis in combination with time-resolved IR laser absorption detection of OH radicals has been used to study O3/OH(v = 0)/HO2 chain reaction kinetics at 298 K, (i.e.,(k(sub 1) is OH + 03 yields H02 + 02 and (k(sub 2) is H02 + 03 yields OH + 202). From time-resolved detection of OH radicals with high-resolution near IR laser absorption methods, the chain induction kinetics have been measured at up to an order of magnitude higher ozone concentrations ([03] less than or equal to 10(exp 17) molecules/cu cm) than accessible in previous studies. This greater dynamic range permits the full evolution of the chain induction, propagation, and termination process to be temporally isolated and measured in real time. An exact solution for time-dependent OH evolution under pseudo- first-order chain reaction conditions is presented, which correctly predicts new kinetic signatures not included in previous OH + 03 kinetic analyses. Specifically, the solutions predict an initial exponential loss (chain "induction") of the OH radical to a steady-state level ([OH](sub ss)), with this fast initial decay determined by the sum of both chain rate constants, k(sub ind) = k(sub 1) + k(sub 2). By monitoring the chain induction feature, this sum of the rate constants is determined to be k(sub ind) = 8.4(8) x 10(exp -14) cu cm/molecule/s for room temperature reagents. This is significantly higher than the values currently recommended for use in atmospheric models, but in excellent agreement with previous results from Ravishankara et al.

  18. A Kinetic Platform to Determine the Fate of Nitric Oxide in Escherichia coli

    PubMed Central

    Robinson, Jonathan L.; Brynildsen, Mark P.

    2013-01-01

    Nitric oxide (NO•) is generated by the innate immune response to neutralize pathogens. NO• and its autoxidation products have an extensive biochemical reaction network that includes reactions with iron-sulfur clusters, DNA, and thiols. The fate of NO• inside a pathogen depends on a kinetic competition among its many targets, and is of critical importance to infection outcomes. Due to the complexity of the NO• biochemical network, where many intermediates are short-lived and at extremely low concentrations, several species can be measured, but stable products are non-unique, and damaged biomolecules are continually repaired or regenerated, kinetic models are required to understand and predict the outcome of NO• treatment. Here, we have constructed a comprehensive kinetic model that encompasses the broad reactivity of NO• in Escherichia coli. The incorporation of spontaneous and enzymatic reactions, as well as damage and repair of biomolecules, allowed for a detailed analysis of how NO• distributes in E. coli cultures. The model was informed with experimental measurements of NO• dynamics, and used to identify control parameters of the NO• distribution. Simulations predicted that NO• dioxygenase (Hmp) functions as a dominant NO• consumption pathway at O2 concentrations as low as 35 µM (microaerobic), and interestingly, loses utility as the NO• delivery rate increases. We confirmed these predictions experimentally by measuring NO• dynamics in wild-type and mutant cultures at different NO• delivery rates and O2 concentrations. These data suggest that the kinetics of NO• metabolism must be considered when assessing the importance of cellular components to NO• tolerance, and that models such as the one described here are necessary to rigorously investigate NO• stress in microbes. This model provides a platform to identify novel strategies to potentiate the effects of NO•, and will serve as a template from which analogous models can be

  19. In Situ Atomic Scale Visualization Of Surface Kinetics Driven Dynamics Of Oxide Growth On A Ni–Cr Surface

    SciTech Connect

    Luo, Langli; Zou, Lianfeng; Schreiber, Daniel K.; Olszta, Matthew J.; Baer, Donald R.; Bruemmer, Stephen M.; Zhou, Guangwen; Wang, Chong M.

    2016-01-20

    We report in situ atomic-scale visualization of the dynamical three-dimensional (3D) growth of NiO during initial oxidation of Ni-10at%Cr using environmental transmission electron microscopy (ETEM). Despite the thermodynamic preference for Cr2O3 formation, cubic NiO oxides nucleated and grew epitaxially as the dominating oxide phase on the Ni-Cr (100) surface during initial oxidation. The growth of NiO islands proceeds through step-by-step adatom mechanism in 3D, which is sustained by surface diffusion of Ni and O atoms. Although the shapes of oxide islands are controlled by strain energy between oxide and alloy substrate, local surface kinetic variations can lead to the change of surface planes of oxide islands. These results demonstrate that surface diffusion dominates initial oxidation of Ni-Cr in these test conditions.

  20. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2005-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an

  1. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2002-02-01

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H{sub 2}S to elemental sulfur over selective catalysts in the presence of major

  2. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2004-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The

  3. A comparison of the kinetics of low-density lipoprotein oxidation initiated by copper or by azobis (2-amidinopropane).

    PubMed

    Thomas, M J; Chen, Q; Franklin, C; Rudel, L L

    1997-01-01

    This article describes the kinetics of low density lipoprotein (LDL) oxidation catalyzed by azobis (2-amidinopropane) dihydrochloride, ABAP, or by copper. The LDLs were isolated from nonhuman primates fed diets enriched in one of three types of fatty acids: saturated fatty acids, monounsaturated fatty acids, predominantly, oleic acid, or polyunsaturated fatty acids, predominantly linoleic acid. Oxidation was followed by monitoring the formation of conjugated diene hydroperoxides from polyunsaturated fatty acids (PUFA). For both copper and ABAP-initiated oxidation, the rate of LDL oxidation depended on the concentrations of initiator, PUFA, and LDL. Except for the dependence on PUFA concentration the rate of LDL oxidation was not directly influenced by the fatty acid composition of the LDL particle. The two initiators had very different dependence on initiator concentration. Because LDL particles are essentially small, lipid-rich droplets, the kinetic descriptions of LDL oxidation assumed: (1), that there was only one chain per particle, and (2) that the radical chain was terminated when a second radical either entered or was formed in the particle. When two LDL samples having very different lag times were mixed, the oxidation profile was bimodal. This finding demonstrated that the oxidation of native LDL particles was independent of the oxidation state of the other native LDL particles in solution, i.e., LDL particles do not rapidly exchange radicals, for example, hydroperoxyl radicals. Oxidation initiated by ABAP was proportional to [ABAP]0.5, suggesting that hydroperoxyl radical recombination between the lipid hydroperoxyl radical and the ABAP-hydroperoxyl radical was the chain-terminating step. The reciprocal of the rate of copper oxidation was linearly related to the reciprocal copper concentration, demonstrating that the binding of copper to LDL was necessary to initiate oxidation. This binding constant showed considerable variability among LDL samples. The

  4. A combined kinetic and diffusion model for pyrite oxidation in tailings: a change in controls with time

    NASA Astrophysics Data System (ADS)

    Elberling, , B.; Nicholson, R. V.; Scharer, J. M.

    1994-05-01

    Acidic drainage from the oxidation of mine tailing wastes is an important environmental problem. The purpose of this paper is to develop a model (1) to simulate the rate of oxidation of pyrite over time, (2) to verify the importance of chemical kinetic control and diffusion control on the oxidation rate with time and, (3) to evaluate the sensitivity of the model to critical parameters of the tailings, such as grain size, pyrite content and the effective diffusion coefficient. The source code comprises four main modules including parameter allocation (kinetics, transport), sulphide oxidation (shrinking particle), oxygen transport and pyrite mass balance. The results show that high oxidation rates are observed in the initial time after tailings deposition. During this initial period of high rates, an apparent shift occurs from kinetic to diffusional control over a period of time that depends on the composition and properties of the tailings. Based on the simulation results, it is evident that the overall rate of oxidation after a few years will be controlled dominantly by the diffusion of oxygen rather than by biological or non-biological kinetics in the tailings.

  5. Diastereo- and enantioselective synthesis of (E)-2-Methyl-1,2-syn- and (E)-2-Methyl-1,2-anti-3-pentenediols via allenylboronate kinetic resolution with ((d)Ipc)2BH and aldehyde allylboration.

    PubMed

    Han, Jeng-Liang; Chen, Ming; Roush, William R

    2012-06-15

    Enantioselective hydroboration of racemic allenylboronate (±)-1 with 0.48 equiv of ((d)Ipc)(2)BH at -25 °C proceeds with efficient kinetic resolution and provides allylborane (R)-Z-4. When heated to 95 °C, allylborane (R)-Z-4 isomerizes to the thermodynamically more stable allylborane isomer (S)-E-7. Subsequent allylboration of aldehydes with (R)-Z-4 or (S)-E-7 at -78 °C followed by oxidative workup provides 1,2-syn- or 1,2-anti-diols, 2 or 3, respectively, in 87-94% ee.

  6. Immobilization of Lipase from Pseudomonas fluorescens on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol.

    PubMed

    Han, Hui; Zhou, Yamei; Li, Shusheng; Wang, Yinping; Kong, Xiang Zheng

    2016-10-05

    A porous polyurea (PPU) was prepared through a simple protocol by reacting toluene diisocyanate with water in binary solvent of water-acetone. Its amine group was determined through spectrophotometric absorbance based on its iminization with p-nitrobenzaldehyde amines. PPU was then used as a novel polymer support for enzyme immobilization, through activation by glutaraldehyde followed by immobilization of an enzyme, lipase from Pseudomonas fluorescens (PFL), via covalent bonding with the amine groups of lipase molecules. Influences of glutaraldehyde and enzyme concentration and pH in the process were studied. The results revealed that the activity of the immobilized PFL reached a maximum at GA concentration of 0.17 mol/L and at pH 8. Immobilization rate of 60% or higher for PFL was obtained under optimized condition with an enzyme activity of 283 U/mg. The porous structure of PPU, prior to and after GA activation and PFL immobilization, was characterized. The activity of the immobilized PFL at different temperature and pH and its stability at 40 °C as well as its reusability were tested. The immobilized enzyme was finally used as enantioselective catalyst in kinetic resolution of racemic 1-phenylethanol (1-PEOH), and its performance compared with the free PFL. The results demonstrate that the enzyme activity and stability were greatly improved for the immobilized PFL, and highly pure enantiomers from racemic 1-PEOH were effectively achieved using the immobilized PFL. Noticeable deactivation of PFL in the resolution was observed by acetaldehyde in situ formed. In addition, the immobilized PFL was readily recovered from the reaction system for reuse. A total of 73% of the initial activity was retained after 5 repeated reuse cycles. This work provides a novel route to preparation of a polyurea porous material and its enzyme immobilization, leading to a novel type of immobilized enzyme for efficient kinetic resolution of racemic molecules.

  7. Multivariate curve resolution-alternating least squares and kinetic modeling applied to near-infrared data from curing reactions of epoxy resins: mechanistic approach and estimation of kinetic rate constants.

    PubMed

    Garrido, M; Larrechi, M S; Rius, F X

    2006-02-01

    This study describes the combination of multivariate curve resolution-alternating least squares with a kinetic modeling strategy for obtaining the kinetic rate constants of a curing reaction of epoxy resins. The reaction between phenyl glycidyl ether and aniline is monitored by near-infrared spectroscopy under isothermal conditions for several initial molar ratios of the reagents. The data for all experiments, arranged in a column-wise augmented data matrix, are analyzed using multivariate curve resolution-alternating least squares. The concentration profiles recovered are fitted to a chemical model proposed for the reaction. The selection of the kinetic model is assisted by the information contained in the recovered concentration profiles. The nonlinear fitting provides the kinetic rate constants. The optimized rate constants are in agreement with values reported in the literature.

  8. Competitive Oxidation Kinetics and Microbial Ecology: Intermediate Sulfur Transformations in Acid Mine Drainage Environments

    NASA Astrophysics Data System (ADS)

    Druschel, G. K.; Hamers, R. J.; Banfield, J. F.

    2001-12-01

    Experimental studies have demonstrated that oxidation of pyrite proceeds through several intermediate sulfur species, notably elemental sulfur, thiosulfate, and polythionates (Schippers et al., 1996). However, detailed sampling and analysis of flowing waters and pore waters failed to detect intermediate sulfur species in the 5-way area of the Richmond metal sulfide deposit at the Iron Mountain Mine in northern California. Potential energy available from the oxidation of intermediate sulfur species is considerable, so microbial activity may explain absence of intermediate sulfur compounds at the site. However, the abundance of sulfur-oxidizing microorganisms in areas of active pyrite oxidation at the 5-way is generally low (Bond et al. 2000). Rapid inorganic oxidation rates may prevent microorganisms from utilizing these intermediate sulfur species, thus shaping the structure of microbial communities in acid mine drainage (AMD) environments. Rates and mechanisms of oxidation for tetrathionate and elemental sulfur have been experimentally determined. Batch and flow-through experiments have indicated very slow oxidation of elemental sulfur in inorganic solutions analogous to AMD environments. Results for tetrathionate indicate the importance of non-metabolic and inorganic processes, including surface catalysis and the generation of hydroxyl radicals. Surface catalysis occurs through trithionate on iron oxide surfaces. Hydroxyl radicals may be formed directly by microbes living in proximity to pyrite surfaces, or at pyrite surfaces undergoing wetting and drying cycles. Further experiments investigating the importance of organic compounds associated with iron-oxidizing microorganisms acting as electron transport shuttles and/or wetting agents and ab initio calculations of the electronic structure of potential reactants and intermediates are currently being performed. It is suggested that inorganic processes involved with seasonal wetting and drying of pyritic sediment

  9. Effect of the particle size of a heterogeneous catalyst on the kinetics of liquid-phase oxidation of tetralin

    SciTech Connect

    Artemov, A.V.; Vainshtein, E.F.

    1988-01-10

    The dependence of the initial rate of oxidation of tetralin on the particle size of the Co/sup 2 +//SiO/sub 2/ catalyst is shown. The method proposed permitted explanation of the dependence of the kinetics of liquid-phase processes in the absence of extra- and intradiffusion hindrances on the particle size of a heterogeneous catalyst and estimation of the values of the kinetic constants from this dependence.

  10. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations.

    PubMed

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-02-15

    Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe2O3) and alumina (α-Al2O3) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe(2+) to Fe(3+) by dissolved O2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite.

  11. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    SciTech Connect

    Xiao, Kechao; Lee, Dongwoo; Vlassak, Joost J.

    2014-10-27

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  12. Kinetics and mechanism of oxidation of tryptophan by ferrate(VI).

    PubMed

    Casbeer, Erik M; Sharma, Virender K; Zajickova, Zuzana; Dionysiou, Dionysios D

    2013-05-07

    Kinetics of the oxidation of tryptophan (Trp) and kynurenine (Kyn), precursors of nitrogenous disinfection byproducts (N-DBP), by ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) were investigated over the acidic to basic pH range. The second-order rate constants decreased with increase in pH, which could be described by the speciation of Fe(VI) and Trp (or Kyn). The trend of pH dependence of rates for Trp (i.e., aromatic α-amino acid) differs from that for glycine (i.e., aliphatic α-amino acid). A nonlinear relationship between transformation of Trp and the added amount of Fe(VI) was found. This suggests that the formed intermediate oxidized products (OPs), identified by LC-PDA and LC-MS techniques, could possibly compete with Trp to react with Fe(VI). N-Formylkynurenine (NFK) at pH 7.0 and 4-hydroxyquinoline (4-OH Q) and kynurenic acid (Kyn-A) at pH 9.0 were the major OPs. Tryptophan radical formation during the reaction was confirmed by the rapid-freeze quench EPR experiments. The oxygen atom transfer from Fe(VI) to NFK was demonstrated by reacting Fe(18)O4(2-) ion with Trp. A proposed mechanism explains the identified OPs at both neutral and alkaline pH. Kinetics and OPs by Fe(VI) were compared with other oxidants (chlorine, ClO2(•), O3, and (•)OH).

  13. ABTS as an Electron Shuttle to Enhance the Oxidation Kinetics of Substituted Phenols by Aqueous Permanganate.

    PubMed

    Song, Yang; Jiang, Jin; Ma, Jun; Pang, Su-Yan; Liu, Yong-Ze; Yang, Yi; Luo, Cong-Wei; Zhang, Jian-Qiao; Gu, Jia; Qin, Wen

    2015-10-06

    In this study, it was, interestingly, found that 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), a widely used electron shuttle, could greatly accelerate the oxidation of substituted phenols by potassium permanganate (Mn(VII)) in aqueous solutions at pH 5-9. This was attributed to the fact that these substituted phenols could be readily oxidized by the stable radical cation (ABTS(•+)), which was quickly produced from the oxidation of ABTS by Mn(VII). The reaction of Mn(VII) with ABTS exhibited second-order kinetics, with stoichiometries of ∼5:1 at pH 5-6 and ∼3:1 at pH 7-9, and the rate constants varied negligibly from pH 5 to 9 (k = (9.44 ± 0.21) × 10(4) M(-1) s(-1)). Comparatively, the reaction of ABTS(•+) with phenol showed biphasic kinetics. The second-order rate constants for the reactions of ABTS(•+) with substituted phenols obtained in the initial phase were strongly affected by pH, and they were several orders of magnitude higher than those for the reactions of Mn(VII) with substituted phenols at each pH. Good Hammett-type correlations were found for the reactions of ABTS(•+) with undissociated (log(k) = 2.82-4.31σ) and dissociated phenols (log(k) = 7.29-5.90σ). The stoichiometries of (2.2 ± 0.06):1 (ABTS(•+) in excess) and (1.38 ± 0.18):1 (phenol in excess) were achieved in the reaction of ABTS(•+) with phenol, but they exhibited no pH dependency.

  14. Kinetics and mechanism of the oxidation of pentathionate ion by chlorine dioxide in a slightly acidic medium.

    PubMed

    Xu, Li; Csekő, György; Petz, Andrea; Horváth, Attila K

    2014-02-27

    The chlorine dioxide-pentathionate reaction has been studied at a slightly acidic medium by conventional UV-vis spectroscopy monitoring the absorbance at 430 nm. We have shown that pentathionate was oxidized to sulfate, but chlorate is also a marginal product of the reaction besides the chloride ion. The stoichiometry of the reaction can be established as a linear combination of two limiting stoichiometries under our experimental conditions. Kinetics of the reaction was found to be also complex because initial rate studies revealed that formal kinetic orders of both the hydrogen ion and chlorine dioxide is far from unity. Moreover, log-log plot of the initial rate against pentathionate concentration indicated a nonconstant formal kinetic order. We also observed a significant catalytic effect of chloride ion. Based on our observations and simultaneous evaluation of the kinetic curves, an 11-step kinetic model is obtained with 6 fitted rate coefficients. A relatively simple rate equation has also been derived and discussed.

  15. Kinetic resolution of acids in acylation reactions in the presence of chiral tertiary amines

    SciTech Connect

    Potapov, V.M.; Dem'yanovich, V.M.; Khlebnikov, V.A.

    1988-07-10

    Asymmetric synthesis has now become an important method for the production of optically active compounds, and its most attractive form is asymmetric catalysis. This work was devoted to an investigation into asymmetric catalysis with chiral tertiary amines in acylation reactions. During the acylation of alcohols and amines by the action of racemic 2-phenylpropionic and 2-methyl-3-phenylpropionic acids in the presence of S-nicotine the initial acids are resolved kinetically. The (R)-2-phenylpropionic acid obtained in this way had an optical purity of 0.5-1.5%.

  16. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2005-01-01

    Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is

  17. Novel approaches to estimate turbulent kinetic energy dissipation rate from low and moderate resolution velocity fluctuation time series

    NASA Astrophysics Data System (ADS)

    Wacławczyk, Marta; Ma, Yong-Feng; Kopeć, Jacek; Malinowski, Szymon

    2017-04-01

    Evaluation of turbulent kinetic energy (TKE) dissipation rate (ɛ) from the low- and moderate-resolution in situ airborne measurements is problematic and scarce. Due to various problems related to e.g. inhomogeneity of turbulence along the aircraft and artifacts related to inevitable aerodynamic problems, estimation of ɛ using the traditional methods such as power spectra or structure functions are complex and far from being standardized. Therefore, we try to introduce alternative methods to increase robustness of ɛ retrievals from such low-resolution airborne measurements. In this study we propose two approaches to estimate ɛ based on the zero-crossing method by Sreenivasan et al. (1983). The original formulation requires a fine resolution of the measured signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measurement errors, velocity time series obtained from airborne experiments are characterized by the presence of effective spectral cut-offs. In contrast to the original formulation the proposed approaches are suitable for use with signals originated from such experiments. The fittingness of the new approaches is tested using measurement data obtained during the Physics of Stratocumulus Top (POST) airborne research campaign. Sreenivasan K., Prabhu A. and Narasimha R., 1983: Zero-crossings in turbulent signals, J. Fluid Mech., 137, 251-272.

  18. Chemical kinetic study of the oxidation of a biodiesel-bioethanol surrogate fuel: methyl octanoate-ethanol mixtures.

    PubMed

    Togbé, C; May-Carle, J-B; Dayma, G; Dagaut, P

    2010-03-25

    There is a growing interest for using bioethanol-biodiesel fuel blends in diesel engines but no kinetic data and model for their combustion were available. Therefore, the kinetics of oxidation of a biodiesel-bioethanol surrogate fuel (methyl octanoate-ethanol) was studied experimentally in a jet-stirred reactor at 10 atm and constant residence time, over the temperature range 560-1160 K, and for several equivalence ratios (0.5-2). Concentration profiles of reactants, stable intermediates, and final products were obtained by probe sampling followed by online FTIR, and off-line gas chromatography analyses. The oxidation of this fuel in these conditions was modeled using a detailed chemical kinetic reaction mechanism consisting of 4592 reversible reactions and 1087 species. The proposed kinetic reaction mechanism yielded a good representation of the kinetics of oxidation of this biodiesel-bioethanol surrogate under the JSR conditions. The modeling was used to delineate the reactions triggering the low-temperature oxidation of ethanol important for diesel engine applications.

  19. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    PubMed

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents.

  20. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    PubMed

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  1. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  2. Nitrogenase of Azotobacter chroococcum. Kinetics of the reduction of oxidized iron-protein by sodium dithionite.

    PubMed Central

    Thorneley, R N; Yates, M G; Lowe, D J

    1976-01-01

    The kinetics of the reduction of oxidized Fe-protein of nitrogenase from Azotobacter chroococcum by sodium dithionite were studied by stopped-flow and rapid-freezing e.p.r. (electron-paramagnetic-resonance) spectroscopy. The appearance of the gav. = 1.94 e.p.r. signal (0.24 electron integrated intensity/mol) was associated with a one-electron reduction by SO2--with k greater than 10(8)M-1-S-1 at 23 degrees C. A value of k = 1.75s-1 was obtained for the rate of dissociation of S2O42- into 2SO2-- at 23 degrees C. Further reductions by SO2-- occurred in three slower phases with rate constants in the range 10(4) -10(6)M-1-S-1. These latter phases have no corresponding e.p.r. signal changes and are probably associated with enzymically inactive protein. The high rate of reduction by SO2-- of the Fe-protein alone (k greater than 10(8)M-1-S-1) relative to the rate of oxidation of the Fe-protein in the catalytically active Fe:Mo-Fe protein complex (k = 2.2 X 1O(2)s-1) and the observation that in the steady state the Fe-protein is substantially oxidized means that at normal assay concentrations another reaction must limit the rate of reduction of Fe-protein during turnover. Images Fig. 1. Fig. 4. PMID:180978

  3. In situ oxidation remediation technologies: kinetic of hydrogen peroxide decomposition on soil organic matter.

    PubMed

    Romero, Arturo; Santos, Aurora; Vicente, Fernando; Rodriguez, Sergio; Lafuente, A Lopez

    2009-10-30

    Rates of hydrogen peroxide decomposition were investigated in soils slurries. The interaction soil-hydrogen peroxide was studied using a slurry system at 20 degrees C and pH 7. To determine the role of soil organic matter (SOM) in the decomposition of hydrogen peroxide, several experiments were carried out with two soils with different SOM content (S1=15.1%, S2=10%). The influence of the oxidant dosage ([H2O2](o) from 10 to 30 g L(-1) and soil weight to liquid phase volume ratio=500 g L(-1)) was investigated using the two calcareous loamy sand soil samples. The results showed a rate dependency on both SOM and hydrogen peroxide concentration being the H2O2 decomposition rate over soil surface described by a second-order kinetic expression r(H2O2) = -dn(H2O2) / W(SOM) dt = kC(H2O2) C(SOM). Thermogravimetric analysis (TGA) was used to evaluate the effect caused by the application of this oxidant on the SOM content. It was found a slightly increase of SOM content after treatment with hydrogen peroxide, probably due to the incorporation of oxygen from the oxidant (hydrogen peroxide).

  4. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  5. A novel model to predict gas-phase hydroxyl radical oxidation kinetics of polychlorinated compounds.

    PubMed

    Luo, Shuang; Wei, Zongsu; Spinney, Richard; Yang, Zhihui; Chai, Liyuan; Xiao, Ruiyang

    2017-04-01

    In this study, a novel model based on aromatic meta-substituent grouping was presented to predict the second-order rate constants (k) for OH oxidation of PCBs in gas-phase. Since the oxidation kinetics are dependent on the chlorination degree and position, we hypothesized that it may be more accurate for k value prediction if we group PCB congeners based on substitution positions (i.e., ortho (o), meta (m), and para (p)). To test this hypothesis, we examined the correlation of polarizability (α), a quantum chemical based descriptor for k values, with an empirical Hammett constant (σ(+)) on each substitution position. Our result shows that α is highly linearly correlated to ∑σo,m,p(+) based on aromatic meta-substituents leading to the grouping based predictive model. With the new model, the calculated k values exhibited an excellent agreement with experimental measurements, and greater predictive power than the quantum chemical based quantitative structure activity relationship (QSAR) model. Further, the relationship of α and ∑σo,m,p(+) for PCDDs congeners, together with highest occupied molecular orbital (HOMO) distribution, were used to validate the aromatic meta-substituent grouping method. This newly developed model features a combination of good predictability of quantum chemical based QSAR model and simplicity of Hammett relationship, showing a great potential for fast and computational tractable prediction of k values for gas-phase OH oxidation of polychlorinated compounds.

  6. Kinetic characterization of the oxidation of esculetin by polyphenol oxidase and peroxidase.

    PubMed

    Munoz-Munoz, Joseph Louis; Garcia-Molina, Francis; Varon, Raymond; Rodriguez-Lopez, Joseph Neptune; Garcia-Canovas, Francis; Tudela, Joseph

    2007-02-01

    Esculetin has been described as an inhibitor of tyrosinase and polyphenol oxidase and, therefore, of melanogenesis. In this work, we demonstrate that esculetin is not an inhibitor but a substrate of mushroom polyphenol oxidase (PPO) and horseradish peroxidase (POD), enzymes which oxidize esculetin, generating its o-quinone. Since o-quinones are very unstable, the usual way of determining the enzymatic activity (slope of recordings) is difficult. For this reason, we developed a chronometric method to characterize the kinetics of this substrate, based on measurements of the lag period in the presence of micromolar concentrations of ascorbic acid. The catalytic constant determined was of the same order for both enzymes. However, polyphenol oxidase showed greater affinity (a lower Michaelis constant) than peroxidase for esculetin. The affinity of PPO and POD towards oxygen and hydrogen peroxide was very high, suggesting the possible catalysis of both enzymes in the presence of low physiological concentrations of these oxidizing substrates. Taking into consideration optimum pHs of 4.5 and 7 for POD and PPO respectively, and the acidic pHs of melanosomes, the studies were carried out at pH 4.5 and 7. The in vivo pH might be responsible for the stronger effect of these enzymes on L-tyrosine and L-3,4-dihydroxyphenylanaline (L-DOPA) (towards melanogenesis) and on cumarins such as esculetin towards an alternative oxidative pathway.

  7. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation.

    PubMed

    Xie, Xiaofang; Zhang, Yongqing; Huang, Weilin; Huang, Shaobing

    2012-01-01

    Oxidation of aniline by persulfate in aqueous solutions was investigated and the reaction kinetic rates under different temperature, persulfate concentration and pH conditions were examined in batch experiments. The results showed that, the aniline degradation followed pseudo first-order reaction model. Aniline degradation rate increased with increasing temperature or persulfate concentration. In the pH range of 3 to 11, a low aniline degradation rate was obtained at strong acid system (pH 3), while a high degradation rate was achieved at strong alkalinity (pH 11). Maximum aniline degradation occurred at pH 7 when the solution was in a weak level of acid and alkalinity (pH 5, 7 and 9). Produced intermediates during the oxidation process were identified using liquid chromatography-mass spectrometry technology. And nitrobenzene, 4-4'-diaminodiphenyl and 1-hydroxy-1,2-diphenylhydrazine have been identified as the major intermediates of aniline oxidation by persulfate and the degradation mechanism of aniline was also tentatively proposed.

  8. Kinetics and Product Yields of the OH Driven Oxidation of Hydroxymethyl Hydroperoxide

    NASA Astrophysics Data System (ADS)

    Allen, H.; Teng, A.; Bates, K. H.; Crounse, J.; Thayer, M. P.; Rivera, J. C.; Keutsch, F. N.; St Clair, J. M.; Wennberg, P. O.

    2016-12-01

    Hydroperoxides play a significant role in altering the atmosphere's oxidative potential by acting as a sink and mobile reservoir of OH and odd oxygen species. Hydroxymethyl hydroperoxide (HMHP), formed primarily via the reaction of the C1 criegee with water, is among the most abundant organic peroxides in the atmosphere. Although reaction with OH is thought to represent one of the most important removal processes for HMHP, to date, no experimental study of HMHP and OH has been reported. Here, we present a laboratory study of the kinetics and product distributions formed in the reaction of HMHP with OH. Synthesized HMHP was oxidized by OH in an environmental chamber, and the decay of the hydroperoxide was monitored over time via CF3O- chemical ionization mass spectrometry (CIMS). Product yields, primarily formic acid and formaldehyde, were characterized by CIMS and by laser induced fluorescence (LIF). We use these measurements to interpret HMHP measurements obtained during SOAS and SEAC4RS. We further use global simulations with GEOS-Chem to evaluate the global importance of different HMHP sinks and the impact of HMHP oxidation on global formaldehyde and formic acid concentrations.

  9. [Depth Profiles of Methane Oxidation Kinetics and the Related Methanotrophic Community in a Simulated Landfill Cover].

    PubMed

    Xing, Zhi-lin; Zhao, Tian-tao; Gao, Yan-hui; He, Zhi; Yang, Xu; Peng, Xu-ya

    2015-11-01

    Simulated landfill cover with real time online monitoring system was developed using cover soils. Then the system started and the concentrations of bio-gas in various depths were continuously monitored, and it was found that the system ran continually and stably after 2-3 h when methane flux changed. After that, the relationship between regularity of methane oxidation and methane flux in landfill cover was analyzed. The results indicated that concentration of oxygen decreased with increasing methane flux when the depth was deeper than 20 cm, and no obvious correlation between oxygen concentration in landfill cover surface and methane flux, however, methane oxidation rate showed positive correlation with methane flux in various depths (range of R2 was 0.851-0.999). Kinetics of CH4 oxidation in landfill cover was fitted by CH4 -O2 dual-substrate model (range of R2 was 0.902-0.955), the half-saturation constant K(m) increasing with depth was 0.157-0.729 in dynamic condition. Finally, methanotrophs community structure in original cover soil sample and that in simulated landfill cover were investigated by high-throughout sequencing technology, and the statistics indicated that the abundance and species of methanotrophs in simulated landfill cover significantly increased compared with those in original cover soil sample, and type I methanotrophs including Methylobacter and Methylophilaceae and type II methanotrophs Methylocystis were dominant species.

  10. Catalytic oxidation ofS(IV) on activated carbon in aqueous suspension: kinetics and mechanism

    SciTech Connect

    Brodzinsky, R.

    1981-02-01

    Activated carbon and combustion produced soot particles have been studied for their catalytic effect on the oxidation of aqueous sulfur(IV) species. Detailed kinetic studies of the reaction were performed on three different activated carbons and on a soot collected in a highway tunnel. Combustion produced soots were tested for their catalytic behavior and found to be similar to the activated carbons. The reaction rate was found to be linearly dependent on the concentration of carbon particles in the solution. The rate was found to follow a Langmuir adsorption isotherm for its dependence on oxygen and the product of two adsorption isotherms for S(IV). The reaction is independent of the pH of the solution when the pH is below 7.6. The reaction does not occur when the pH is above 7.6. The three aqueous S(IV) species are catalyzed in their oxidation by the carbon particles in a similar manner. Activation energies for the reactions on the different carbons are all about 8.5 kcal/mole. A possible four-step reaction mechanism is proposed. It consists of the adsorption of a dissolved oxygen molecule onto the carbon surface, followed by the adsorption of two S(IV) molecules or ions. These are oxidized on the surface to sulfate, which desorbs from the surface, regenerating the catalytically active site.

  11. Chemical kinetic analysis of detonability-enhancing strategies for ethylene-oxidizer mixtures

    NASA Astrophysics Data System (ADS)

    St. George, Andrew; Driscoll, R.; Anand, V.; Gutmark, E.

    2016-11-01

    Four detailed chemical kinetic mechanisms are used in conjunction with an empirical detonation cell width model to numerically assess strategies to increase the detonation sensitivity of ethylene-oxidizer mixtures. Using this method, reasonable agreement is achieved with computed cell width and the available experimental data. Elevated initial pressures significantly reduce cell width for a wide range of equivalence ratios, yielding 80% reduction at stoichiometric conditions for a tenfold increase in pressure. Elevated initial temperatures have almost no effect on the cell width at stoichiometric conditions, but yield 80% reduction at lean conditions when the initial temperature is doubled. Reduced nitrogen dilution within the oxidizer dramatically reduces the cell width for the entire computed range of equivalence ratios. Introducing hydrogen as a fuel additive yields mild improvement to detonation sensitivity at stoichiometric conditions, but requires relatively high H2 concentrations and is ineffective when coupled with elevated initial pressures. Introduction of supplemental oxygen and increasing the initial reactant pressure appears to be the most effective approach to enhance detonability for ethylene-oxidizer mixtures.

  12. Effects of 2 different prior endurance exercises on whole-body fat oxidation kinetics: light vs. heavy exercise.

    PubMed

    Chenevière, Xavier; Borrani, Fabio; Droz, David; Gojanovic, Boris; Malatesta, Davide

    2012-10-01

    This study aimed to compare the effects of 2 different prior endurance exercises on subsequent whole-body fat oxidation kinetics. Fifteen men performed 2 identical submaximal incremental tests (Incr2) on a cycle ergometer after (i) a ∼40-min submaximal incremental test (Incr1) followed by a 90-min continuous exercise performed at 50% of maximal aerobic power-output and a 1-h rest period (Heavy); and (ii) Incr1 followed by a 2.5-h rest period (Light). Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity during Incr1 and Incr2. A sinusoidal equation, including 3 independent variables (dilatation, symmetry and translation), was used to characterize the fat oxidation kinetics and to determine the intensity (Fat(max)) that elicited the maximal fat oxidation (MFO) during Incr. After the Heavy and Light trials, Fat(max), MFO, and fat oxidation rates were significantly greater during Incr2 than Incr1 (p < 0.001). However, Δ (i.e., Incr2-Incr1) Fat(max), MFO, and fat oxidation rates were greater in the Heavy compared with the Light trial (p < 0.05). The fat oxidation kinetics during Incr2(Heavy) showed a greater dilatation and rightward asymmetry than Incr1(Heavy), whereas only a greater dilatation was observed in Incr2(Light) (p < 0.05). This study showed that although to a lesser extent in the Light trial, both prior exercise sessions led to an increase in Fat(max), MFO, and absolute fat oxidation rates during Incr2, inducing significant changes in the shape of the fat oxidation kinetics.

  13. Determination of kinetic data for soot oxidation: Modeling of competition between oxygen diffusion and reaction during thermogravimetric analysis

    SciTech Connect

    Gilot, P.; Bonnefoy, F.; Marcuccilli, F.; Prado, G. . Lab. Gestion des Risques et Environnement)

    1993-10-01

    Kinetic data concerning carbon black oxidation in the temperature range between 600 and 900 C have been obtained using thermogravimetric analysis. Modeling of diffusion in a boundary layer above the pan and inside the porous medium coupled to oxygen reaction with carbon black is necessary to obtain kinetic constants as a function of temperature. These calculations require the knowledge of the oxidation rate at a given constant temperature as a function of the initial mass loading m[sub o]. This oxidation rate, expressed in milligrams of soot consumed per second and per milligram of initial soot loading, decreases when m[sub o] increases, in agreement with a reaction in an intermediary regime where the kinetics and the oxygen diffusion operate. The equivalent diffusivity of oxygen inside the porous medium is evaluated assuming two degrees of porosity: between soot aggregates and inside each aggregate. Below 700 C an activation energy of about 103 kJ/mol can be related to a combustion reaction probably kinetically controlled. Beyond 700 C the activation energy of about 20 kJ/ mol corresponds to a reaction essentially controlled by oxygen diffusion leading to a constant density oxidation with oxygen consumption at or near the particle surface. To validate these data, they are used in the modeling of a Diesel particulate trap regeneration. In this particular case, the oxidizing flux is forced across the carbon black deposit, oxygen diffusion being insignificant. A good agreement between experimental results and model predictions is obtained, proving the rate constants validity.

  14. A kinetic model for advanced oxidation processes of aromatic hydrocarbons in water: Application to phenanthrene and nitrobenzene

    SciTech Connect

    Beltran, F.J.; Rivas, J.; Alvarez, P.M.; Alonso, M.A.; Acedo, B.

    1999-11-01

    A kinetic model for the advanced oxidation (ozonation alone, UV radiation alone, ozone plus hydrogen peroxide, ozone plus UV radiation, and UV radiation plus hydrogen peroxide) of aromatic hydrocarbons in water is proposed and tested with experimental results of the oxidation of nitrobenzene and phenanthrene, two aromatic hydrocarbons of different reactivity with ozone. The kinetic model leads to good results in the case that the compound treated reacts exclusively with ozone, that is, without the contribution of hydroxyl radical oxidation as in the case of phenanthrene oxidation. In this case, it is not necessary to account for intermediate reactions to have good predictions of experimental remaining concentrations of ozonation processes. On the contrary, when the aromatic hydrocarbon s mainly removed by hydroxyl radicals (case of nitrobenzene), mole balance equations of intermediates have to be included for the experimental concentrations to be reproduced. For so doing, the kinetic parameters, such as rate constants of reactions between ozone and hydroxyl radical with intermediates and their corresponding quantum yields at 254 nm, were also determined. The kinetic model, however, is unable to reproduce, with accuracy, the experimental results of the ozone-UV radiation oxidation system.

  15. Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis leaves.

    PubMed

    Lambrev, Petar H; Nilkens, Manuela; Miloslavina, Yuliya; Jahns, Peter; Holzwarth, Alfred R

    2010-03-01

    Using novel specially designed instrumentation, fluorescence emission spectra were recorded from Arabidopsis (Arabidopsis thaliana) leaves during the induction period of dark to high-light adaptation in order to follow the spectral changes associated with the formation of nonphotochemical quenching. In addition to an overall decrease of photosystem II fluorescence (quenching) across the entire spectrum, high light induced two specific relative changes in the spectra: (1) a decrease of the main emission band at 682 nm relative to the far-red (750-760 nm) part of the spectrum (Delta F(682)); and (2) an increase at 720 to 730 nm (Delta F(720)) relative to 750 to 760 nm. The kinetics of the two relative spectral changes and their dependence on various mutants revealed that they do not originate from the same process but rather from at least two independent processes. The Delta F(720) change is specifically associated with the rapidly reversible energy-dependent quenching. Comparison of the wild-type Arabidopsis with mutants unable to produce or overexpressing the PsbS subunit of photosystem II showed that PsbS was a necessary component for Delta F(720). The spectral change Delta F(682) is induced both by energy-dependent quenching and by PsbS-independent mechanism(s). A third novel quenching process, independent from both PsbS and zeaxanthin, is activated by a high turnover rate of photosystem II. Its induction and relaxation occur on a time scale of a few minutes. Analysis of the spectral inhomogeneity of nonphotochemical quenching allows extraction of mechanistically valuable information from the fluorescence induction kinetics when registered in a spectrally resolved fashion.

  16. Kinetics of carbon precipitation and re-solution in low Si-content silicon iron

    NASA Astrophysics Data System (ADS)

    Walz, F.; Wakisaka, T.; Kronmüller, H.

    2005-11-01

    In low Si-charged silicon iron (Fe + 0.1%Si) the kinetics of carbon diffusion, precipitation and redissolution have been carefully studied by means of the magnetic after-effect (MAE) within the temperature range 200 K < Ta < 1100 K. The activation parameters of respective processes have been determined by means of least squares fitting the experimental data. In the presence of substitutionally alloyed Si, the C-Richter MAE gives rise to two Debye-type relaxation peaks - resulting from elementary steps of carbon diffusion combined with reorientation in the (i) unperturbed and (ii) Si-modified Fe matrix - situated near 265 K and 320 K, with activation enthalpies, Qi, of 0.84 eV and 1.08 eV. Two-stage carbon precipitation, obeying first order kinetics, occurs, intensively, near 390 K with the elementary C diffusion enthalpy of 0.84 eV and, rather weakly, near 540 K with an enthalpy of 1.18 eV. The resulting precipitates are discussed in terms of partly intra-grain deposited iron carbide phases (Fe3C) and, mainly, grain-boundary determined C trapping. Decomposition of these precipitates occurring, again, in two stages - situated near 740 K and 950 K, with activation enthalpies of 1.72 and 2.02 eV - leads to a restitution of the state of maximum interstitially dissolved C in the matrix. Of practical importance for silicon steel fabrication is the observation that, after complete C precipitation (Ta . 580 K), the material can be kept in a state of minimum dissolved carbon content - and hence of minimum ac-losses - by not allowing it to warm up above Ta 650 K.

  17. Modeling Photo-Bleaching Kinetics to Create High Resolution Maps of Rod Rhodopsin in the Human Retina

    PubMed Central

    Ehler, Martin; Dobrosotskaya, Julia; Cunningham, Denise; Wong, Wai T.; Chew, Emily Y.; Czaja, Wojtek; Bonner, Robert F.

    2015-01-01

    We introduce and describe a novel non-invasive in-vivo method for mapping local rod rhodopsin distribution in the human retina over a 30-degree field. Our approach is based on analyzing the brightening of detected lipofuscin autofluorescence within small pixel clusters in registered imaging sequences taken with a commercial 488nm confocal scanning laser ophthalmoscope (cSLO) over a 1 minute period. We modeled the kinetics of rhodopsin bleaching by applying variational optimization techniques from applied mathematics. The physical model and the numerical analysis with its implementation are outlined in detail. This new technique enables the creation of spatial maps of the retinal rhodopsin and retinal pigment epithelium (RPE) bisretinoid distribution with an ≈ 50μm resolution. PMID:26196397

  18. Improved catalytic activity of homochiral dimeric cobalt-salen complex in hydrolytic kinetic resolution of terminal racemic epoxides.

    PubMed

    Kureshy, Rukhsana I; Singh, Surendra; Khan, Noor-Ul H; Abdi, Sayed H R; Ahmad, Irshad; Bhatt, Achyut; Jasra, Raksh V

    2005-11-01

    Enantiomerically pure epoxides (99%, ee) and diols (98%, ee) from racemic epichlorohydrin, 1,2-epoxypropane, 1,2-epoxyhexane, 1,2-epoxyoctane, and 1,2-epoxydodecane were obtained in 2-12 h by hydrolytic kinetic resolution (HKR) using the recyclable dimeric homochiral Co(III)-salen complex 1' (0.2 mol %) derived from 5,5-(2',2'-dimethylpropane)-di-[(R,R)-{N-(3-tert-butylsalicylidine)-N'-(3',5'-di-tert-butylsalicylidine)}-1,2-cyclohexanediamine] with cobalt(II) acetate. Unlike its monomeric version, the catalyst could be recycled several times without loss in performance. The use of BF(4) as counter ion in HKR reactions was also investigated.

  19. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution.

    PubMed

    Mori, Keiji; Itakura, Tsubasa; Akiyama, Takahiko

    2016-09-12

    Reported herein is an enantiodivergent synthesis of chiral biaryls by a chiral phosphoric acid catalyzed asymmetric transfer hydrogenation reaction. Upon treatment of biaryl lactols with aromatic amines and a Hantzsch ester in the presence of chiral phosphoric acid, dynamic kinetic resolution (DKR) involving a reductive amination reaction proceeded smoothly to furnish both R and S isomers of chiral biaryls with excellent enantioselectivities by proper choice of hydroxyaniline derivative. This trend was observed in wide variety of substrates, and various chiral biphenyl and phenyl naphthyl adducts were synthesized with satisfactory enantioselectivities in enantiodivergent fashion. The enantiodivergent synthesis of synthetically challenging, chiral o-tetrasubstituted biaryls were also accomplished, and suggests high synthetic potential of the present method.

  20. Kinetic resolution of racemic α-olefins with ansa-zirconocene polymerization catalysts: Enantiomorphic site vs. chain end control

    PubMed Central

    Byers, Jeffery A.; Bercaw, John E.

    2006-01-01

    Copolymerization of racemic α-olefins with ethylene and propylene was carried out in the presence of enantiopure C1-symmetric ansa metallocene, {1,2-(SiMe2)2(η5-C5H-3,5-(CHMe2)2)(η5-C5H3)}ZrCl2 to probe the effect of the polymer chain end on enantioselection for the R- or S-α-olefin during the kinetic resolution by polymerization catalysis. Copolymerizations with ethylene revealed that the polymer chain end is an important factor in the enantioselection of the reaction and that for homopolymerization, chain end control generally works cooperatively with enantiomorphic site control. Results from propylene copolymerizations suggested that chain end control arising from a methyl group at the β carbon along the main chain can drastically affect selectivity, but its importance as a stereo-directing element depends on the identity of the olefin. PMID:17032768

  1. Chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquids and ionic liquids/supercritical carbon dioxide systems.

    PubMed

    Lozano, Pedro; De Diego, Teresa; Larnicol, Mickaël; Vaultier, Michel; Iborra, José L

    2006-10-01

    Continuous dynamic kinetic resolution processes in different ionic liquid/supercritical carbon dioxide biphasic systems were carried out by simultaneously using both immobilized Candida antarctica lipase B (Novozym 435) and silica modified with benzenosulfonic acid (SCX) catalysts at 40 degrees C and 10 MPa. SCX was seen to act as an efficient heterogeneous chemical catalyst for the racemization of (S)-1-phenylethanol in different ionic liquid media ([emim][NTf(2)], [btma][NTf(2)] and [bmim][PF(6)]). Coating both chemical and enzymatic catalysts with ILs greatly improved the efficiency of the process, providing a good yield (76%) of (R)-1-phenylethyl propionate product with excellent enantioselectivity (ee = 91-98%) in continuous operation.

  2. Kinetic resolution of rac-1-phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols.

    PubMed

    de Souza, Rodrigo Octavio M A; Antunes, Octavio A C; Kroutil, Wolfgang; Kappe, C Oliver

    2009-08-21

    The lipase-catalyzed kinetic resolution of rac-1-phenylethanol with vinyl acetate as acyl donor and cyclohexane as solvent has been investigated applying both microwave dielectric heating and conventional thermal heating in order to probe the existence of nonthermal microwave effects. All transformations were conducted at 40 degrees C in a dedicated reactor setup that allowed accurate internal reaction temperature measurements with use of fiber-optic probes. Quartz reaction vessels that allow higher levels of microwave power to be administered to the reaction mixture were used for all experiments. For all five studied immobilized lipases, the observed reactivities and enantioselectivities in microwave and oil bath experiments were identical and thus not related to the presence of the microwave field. The effect of magnetic stirring proved critical as too rapid stirring in some instances destroyed the enzyme support structure and led to altered reactivities and selectivities.

  3. Steam effects on oxidation behavior of alumina-scale forming nickel-based alloys and a kinetics analysis of complex scale evolution during isothermal oxidation

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    The first part of this study investigated steam effects on the oxidation behavior of Al2O3-scale forming Ni-based alloys. This effect was assessed in the context of Giggins and Pettit's oxidation map1 for the Ni-Cr-Al system, which was determined under dry oxidizing conditions. Of particular relevance to the design of high-temperature alloys and coatings is the location in the oxide map of the kinetically-dictated critical Al content (NAl*) in a given alloy to form a continuous Al2O3-scale. It was found that NAl* increases when the air contains 30% steam. A rigorous quantitative analysis based on Maak's modification2 of Wagner's theory3 was carried out to determine the key parameter affecting an increase in NAl* under wet oxidizing conditions. By checking the sensitivity of NAl* with respect to each parameter in the theory, it was deduced that the only parameter which can give the necessarily large change in NAl * found in wet-air oxidation is the critical volume fraction of internal oxide, fv*, a parameter that is usually assumed to be a constant and independent of the reacting conditions. From experimental observation, it was found that the surface of NiO scale became unstable in wet oxidizing conditions. Unlike the dense and uniform surface formed scale in dry air, finger-like protrusions or a powder-like porous structure could form under wet conditions. The experimental conditions and possible mechanisms for this observed instability were assessed. In the second part of this study, a novel kinetics analysis method was established to quantify the kinetics of scale evolution based on analyzing the instantaneous growth rate constant ki and the time exponent ni determined from thermogravimetric (TG) data. A methodology is proposed to ascertain whether the oxidation kinetics has come to a steady state from a transient stage, and to accurately determine the growth rate constant. Both a fundamental analysis and an experimental validation of this methodology are

  4. Chiral Co(III)(salen)-catalysed hydrolytic kinetic resolution of racemic epoxides in ionic liquids.

    PubMed

    Oh, Chun Rim; Choo, Dong Joon; Shim, Woo Ho; Lee, Dong Hoon; Roh, Eun Joo; Lee, Sang-gi; Song, Choong Eui

    2003-05-07

    In the chiral Co(III)(salen)-catalysed HKR of racemic epoxides, in the presence of ionic liquids, Co(II)(salen) complex is oxidised without acetic acid to catalytically active Co(III)(salen) complex during reaction and, moreover, this oxidation state is stabilised against reduction to Co(II) complex which enables the reuse of the recovered catalyst for consecutive reactions without extra reoxidation.

  5. Exploiting kinetics and thermodynamics to grow phase-pure complex oxides by molecular-beam epitaxy under continuous codeposition

    NASA Astrophysics Data System (ADS)

    Smith, Eva H.; Ihlefeld, Jon F.; Heikes, Colin A.; Paik, Hanjong; Nie, Yuefeng; Adamo, Carolina; Heeg, Tassilo; Liu, Zi-Kui; Schlom, Darrell G.

    2017-07-01

    We report the growth of PbTiO3 thin films by molecular-beam epitaxy utilizing continuous codeposition. In addition to the requirements from thermodynamics, whether the resulting film is single-phase PbTiO3 or not at a particular temperature depends strongly on the film growth rate and the incident fluxes of all species, including titanium. We develop a simple theory for the kinetics of lead oxidation on the growing film surface and find that it qualitatively explains the manner in which the adsorption-controlled growth window of PbTiO3 depends on lead flux, oxidant flux, and titanium flux. We successfully apply the kinetic theory to the dependence of the growth of BiFeO3 on oxidant type and surmise that the theory may be generally applicable to the adsorption-controlled growth of complex oxides by MBE.

  6. Kinetics and mechanism of the liquid-phase oxidation of cyclohexene. V. Oxidation of cyclohexene in the presence of bimetallic catalysts

    SciTech Connect

    Baevskii, M.Yu.; Litvintsev, I.Yu.; Sapunov, V.N.

    1988-11-01

    The kinetics of the liquid-phase oxidation of cyclohexene in the presence of homogeneous bimetallic catalysts Co-V, Pb-V, Pb-Mo was investigated. It was shown that the activity of the bimetallic catalyst found is determined to a large degree by the nature of the epoxiding metal. A general model is proposed for the oxidation of cyclohexene in the presence of bimetallic catalysts.

  7. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    SciTech Connect

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  8. Kinetics and dosimetric features of secondary thermoluminescence in carbon-doped aluminium oxide

    NASA Astrophysics Data System (ADS)

    Chithambo, M. L.; Seneza, C.

    2014-04-01

    Carbon-doped aluminium oxide has some unstable electron traps whose presence is revealed as luminescence at temperatures close to ambient. Thermoluminescence of such a secondary glow peak at 46 °C has been studied for heating at 1.0 °C s-1. The study showed that the peak follows first order kinetics and has an activation energy of about 0.7 eV independent of irradiation. Its dose response is linear at low dose with a supralinearity index equal to 1 but suffers from fading between irradiation and measurement with a half-life of about 120 s. The luminescence is attributed to the 3P→1S transition at an F-centre.

  9. A kinetic investigation of high-temperature mercury oxidation by chlorine.

    PubMed

    Wilcox, Jennifer

    2009-06-18

    First-stage mercury oxidation reactions typical of coal combustion flue gases were investigated. The present study is a determination of the kinetic and thermodynamic parameters of the bimolecular reactions, Hg + Cl(2) <--> HgCl + Cl, Hg + HCl <--> HgCl + H, and Hg + HOCl <--> HgCl + OH, at the B3LYP/RCEP60 VDZ level of theory over a temperature range of 298.15 to 2000 K at atmospheric pressure. Conventional transition state theory was used to predict the forward and reverse rate constants for each reaction and ab initio based equilibrium constant expressions were calculated as a function of temperature. Reasonable agreement was achieved between the calculated equilibrium constants and the available experimental values.

  10. Kinetics of the process of formation and high-temperature oxidation of electrospark coatings on steel

    SciTech Connect

    Verkhoturov, A.D.; Chiplik, V.N.; Egorov, F.F.; Lavrenko, V.A.; Podchernyaeva, I.A.; Shemet, V.Z.

    1986-10-01

    This work is a study of the kinetics of formation and of the heat resistance of electrospark coatings based on the composite TiB/sub 2/-Mo with varying molybdenum content. In the process of electrospark alloying they measured the specific erosion of the anode and the increase in weight of the cathode with an accuracy not worse than 5%. Electrospark coatings of TiB/sub 2/-Mo on steel 45 are marked by improved scaling resistance at temperatures above 900 C. Their scaling resistance and also the effectiveness of the process of electrospark alloying increase with increasing content of the phase B-MoB in the coating because molybdenum borate forms during its high-temperature oxidation. Illustrations and table are included.

  11. Understanding the kinetics of tethering by aggregation and growth of phosphonic acid monolayers on silicon oxide

    NASA Astrophysics Data System (ADS)

    Vega, Abraham

    Tethering by aggregation and growth (T-BAG) of octadecylphosphonic acid (ODPA) on silicon oxide surfaces has been studied in order to expand the understanding of the kinetics of this process, for which the literature has not been able to give a solid answer. ODPA self-assembled monolayers (SAMs) were adsorbed from a THF solution, and characterized by means of in situ Fourier transform infrared spectroscopy (FTIR). These studies show that the heating time used in the T-BAG process can be dramatically shortened, making the T-BAG method even more suitable for practical applications. Furthermore, it was shown that controlling the environment humidity is a key factor in the process, given that in the presence of water, the chemisorption does not take place.

  12. Kinetic investigation of sulfidizing annealing of scorodite in processing of refractory oxidized gold-containing ores

    NASA Astrophysics Data System (ADS)

    Boboev, I. R.; Strizhko, L. S.; Bobozoda, Sh.; Gorbunov, E. P.

    2016-03-01

    The results of kinetic studies on the removal of arsenic from scorodite using sulfidizing annealing are presented. The reaction order with respect to the reactant and the activation energy are established from the experimental data. The rate-determining step of the sulfidizing annealing process is determined. The main reactions that occur during the sulfidizing of arsenic in scorodite are proposed on the basis of the obtained results and confirmed by thermodynamic calculations and chemical analyses. The major results of testing this technology, as applied to the refractory oxidized ores in which arsenic is mainly concentrated in scorodite, are presented. Arsenic removal from this ore is confirmed by chemical and quantitative X-ray diffraction analyses and by qualitative phase analysis. Industrial use of this technology provides safe and efficient processing of refractory gold-containing ores, where arsenic is mainly concentrated in scorodite.

  13. Kinetics and influence of water composition on photocatalytic disinfection and photocatalytic oxidation of pollutants.

    PubMed

    Marugán, Javier; van Grieken, Rafael; Pablos, Cristina

    2010-12-01

    This work is focused on the comparison between the photocatalytic inactivation of Escherichia coli and the photocatalytic oxidation of methylene blue, regarding the reaction kinetics and the influence of water composition. Disinfection profiles show an initial delay, in contrast with the exponential decay shown by the decolorization of methylene blue solutions. A serial-event mechanism is proposed for both disinfection and mineralization processes, the number of intermediate species being the main difference between them. Concerning the influence of water composition, inactivation of bacteria is more sensitive to the presence of inorganic ions and/or organic matter in the solution. In some cases opposite behaviours are observed, such as in the presence of chloride ions, which enhance the disinfection rate but decrease degradation activity for methylene blue. Consequently, the results obtained in the evaluation of photocatalytic processes for the degradation of chemical pollutants cannot be always extrapolated to the inactivation of microorganisms.

  14. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles.

    PubMed

    Milani, Narges; McLaughlin, Mike J; Stacey, Samuel P; Kirby, Jason K; Hettiarachchi, Ganga M; Beak, Douglas G; Cornelis, Geert

    2012-04-25

    The solubility of Zn in Zn fertilizers plays an important role in the agronomic effectiveness of the fertilizer. On the basis of thermodynamics, zinc oxide (ZnO) nanoparticles (NPs) should dissolve faster and to a greater extent than bulk ZnO particles (equivalent spherical diameter >100 nm). These novel solubility features of ZnO NPs might be exploited to improve the efficiency of Zn fertilizers. In this study, we compared the Zn solubility and dissolution kinetics of ZnO nanoparticles and bulk ZnO particles coated onto two selected granular macronutrient fertilizers, urea and monoammonium phosphate (MAP). The main Zn species on coated MAP and urea granules were zinc ammonium phosphate and ZnO, respectively. Coated MAP granules showed greater Zn solubility and faster dissolution rates in sand columns compared to coated urea granules, which may be related to pH differences in the solution surrounding the fertilizer granules. The kinetics of Zn dissolution was not affected by the size of the ZnO particles applied for coating of either fertilizer type, possibly because solubility was controlled by formation of the same compounds irrespective of the size of the original ZnO particles used for coating.

  15. Effect of metal ions on the kinetics of tyrosine oxidation catalysed by tyrosinase.

    PubMed

    Palumbo, A; Misuraca, G; D'Ischia, M; Prota, G

    1985-06-15

    The conversion of tyrosine into dopa [3-(3,4-dihydroxyphenyl)alanine] is the rate limiting step in the biosynthesis of melanins catalysed by tyrosinase. This hydroxylation reaction is characterized by a lag period, the extent of which depends on various parameters, notably the presence of a suitable hydrogen donor such as dopa or tetrahydropterin. We have now found that catalytic amounts of Fe2+ ions have the same effect as dopa in stimulating the tyrosine hydroxylase activity of the enzyme. Kinetic experiments showed that the shortening of the induction time depends on the concentration of the added metal and the nature of the buffer system used and is not suppressed by superoxide dismutase, catalase, formate or mannitol. Notably, Fe3+ ions showed only a small delaying effect on tyrosinase activity. Among the other metals which were tested, Zn2+, Co2+, Cd2+ and Ni2+ had no detectable influence, whereas Cu2+ and Mn2+ exhibited a marked inhibitory effect on the kinetics of tyrosine oxidation. These findings are discussed in the light of the commonly accepted mechanism of action of tyrosinase.

  16. Kinetic study of electro-Fenton oxidation of azo dyes on boron-doped diamond electrode.

    PubMed

    Almomani, Fares; Baranova, Elena A

    2013-01-01

    The present work compares electrochemical degradation of red and blue azo textile dyes in single- and two-compartment electrochemical cells in the presence of Fenton reagent (Fe2+) and using a boron-doped diamond anode. Degradation of both dyes was related to the concentration of dye, applied current density and the concentration of FeSO4 catalyst. Complete colour removal and approximately 91% of organic matter oxidation was achieved in a two-compartment electrochemical cell at an applied current density of 20 mA x cm(-2), pH of 3 and Fe(2+) ion concentration of 0.02 mM. Higher current density and reaction time were required to achieve the same removals in a one-compartment electrochemical cell. Dye degradation kinetics as well as chemical oxygen demand removal rate were successfully modelled to pseudo first-order kinetics. The apparent first-order rate constants (k(o)) for degradation of red dye with an initial concentration of 20, 40 and 60 ppm were found to be 2.67 +/- 0.16, 2.19 +/- 0.09 and 1.5 +/- 0.03 min(-1), and for blue dye at the same initial concentrations were 1.99 +/- 0.2, 0.95 +/- 0.02 and 0.71 +/- 0.030 min(-1), respectively.

  17. Efficient Removal of Cobalt from Aqueous Solution by Zinc Oxide Nanoparticles: Kinetic and Thermodynamic Studies

    NASA Astrophysics Data System (ADS)

    Khezami, L.; Taha, Kamal K.; Modwi, A.

    2017-05-01

    This article deals with the removal of cobalt ions using zinc oxide nanopowder. The nanomaterial was prepared via the sol-gel method under supercritical drying. The nanomaterial was characterised via XRD, SEM, EDX, FTIR, and BET surface area techniques. The kinetics, equilibrium, and thermodynamic studies of the metal ions adsorption on the nanomaterial were conducted in batch mode experiments by varying some parameters such as pH, contact time, initial ion concentrations, nanoparticles dose, and temperature. The data revealed significant dependence of the adsorption process on concentration, and the temperature was found to enhance the adsorption rate indicating an endothermic nature of the adsorption. The adsorption complied well with the pseudo-second-order kinetics model. The adsorption process was found to match the Langmuir adsorption isotherm. The ZnO nanoparticles could successfully remove up to 125 mg·g-1 of Co(II) ions at elevated temperature. The metal ions adsorption could be described as an endothermic, spontaneous physisorption process. A mechanism for the metal ions adsorption was proposed.

  18. Kinetic and Product Studies of the Reaction Between Oxidized Mercury Species and Selected Thiols

    NASA Astrophysics Data System (ADS)

    Si, L.; Ariya, P.

    2008-12-01

    Mercury is a global pollutant with severe potential toxicity. The reduction of oxidized mercury species (Hg(II)) to elemental mercury (Hg(0)) affects the global distribution of mercury and competes for methylation processes of mercury in aquatic environment. This study focused on the reduction of Hg(II) by several selected thiols using a suite of complementary mass spectrometry and cold vapor fluorescence spectroscopy (CVAFS). Previous studies showed that irradiation of benzene solution of six mercury dimercaptides (benzyl, n-propyl, isopropyl, cyclopentyl, t-butyl and phenyl sulfide) at part-per-million level by a mercury arc lamp under a nitrogen atmosphere caused the formation of Hg(0) to occur. The reaction kinetics was studied using CVAFS, and the products of the reaction were analyzed using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass spectrometry (MALDI-TOF-MS) and Gas Chromatography-Mass spectrometry (GC-MS). The kinetic data were obtained for 1-butanethiol, and 1-pentanethiol, 1-hexanethiol at environmental relevant conditions. The effects of light, pH, dissolved oxygen and chloride ion on reaction rates were also investigated. We will present our results and discuss their potential environmental implications on mercury cycling.

  19. Phenol adsorption on surface-functionalized iron oxide nanoparticles: modeling of the kinetics, isotherm, and mechanism

    NASA Astrophysics Data System (ADS)

    Yoon, Soon Uk; Mahanty, Biswanath; Ha, Hun Moon; Kim, Chang Gyun

    2016-06-01

    Phenol adsorption from aqueous solution was carried out using uncoated and methyl acrylic acid (MAA)-coated iron oxide nanoparticles (NPs), having size <10 nm, as adsorbents. Batch adsorption studies revealed that the phenol removal efficiency of MAA-coated NPs (950 mg g-1) is significantly higher than that of uncoated NPs (550 mg g-1) under neutral to acidic conditions. However, this improvement disappears above pH 9. The adsorption data under optimized conditions (pH 7) were modeled with pseudo-first- and pseudo-second-order kinetics and subjected to Freundlich and Langmuir isotherms. The analysis determined that pseudo-second-order kinetics and the Freundlich model are appropriate for both uncoated and MAA-coated NPs (all R 2 > 0.98). X-ray photoelectron spectroscopy analysis of pristine and phenol-adsorbed NPs revealed core-level binding energy and charge for Fe(2 s) and O(1 s) on the NP surfaces. The calculations suggest that phenol adsorption onto MAA-coated NPs is a charge transfer process, where the adsorbate (phenol) acts as an electron donor and the NP surface (Fe, O) as an electron acceptor. However, a physisorption process appears to be the relevant mechanism for uncoated NPs.

  20. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    PubMed

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.