Science.gov

Sample records for oxidative kinetic resolution

  1. Biocatalytic Dynamic Kinetic Resolution for the Synthesis of Atropisomeric Biaryl N-Oxide Lewis Base Catalysts.

    PubMed

    Staniland, Samantha; Adams, Ralph W; McDouall, Joseph J W; Maffucci, Irene; Contini, Alessandro; Grainger, Damian M; Turner, Nicholas J; Clayden, Jonathan

    2016-08-26

    Atropisomeric biaryl pyridine and isoquinoline N-oxides were synthesized enantioselectively by dynamic kinetic resolution (DKR) of rapidly racemizing precursors exhibiting free bond rotation. The DKR was achieved by ketoreductase (KRED) catalyzed reduction of an aldehyde to form a configurationally stable atropisomeric alcohol, with the substantial increase in rotational barrier arising from the loss of a bonding interaction between the N-oxide and the aldehyde. Use of different KREDs allowed either the M or P enantiomer to be synthesized in excellent enantiopurity. The enantioenriched biaryl N-oxide compounds catalyze the asymmetric allylation of benzaldehyde derivatives with allyltrichlorosilane.

  2. Use of a palladium(II)-catalyzed oxidative kinetic resolution in synthetic efforts toward bielschowskysin.

    PubMed

    Meyer, Michael E; Phillips, John H; Ferreira, Eric M; Stoltz, Brian M

    2013-09-09

    Progress toward the cyclobutane core of bielshowskysin is reported. The core was thought to arise from a cyclopropane intermediate via a furan-mediated cyclopropane fragmentation, followed by a 1,4-Michael addition. The synthesis of the cyclopropane intermediate utilizes a Suzuki coupling reaction, an esterification with 2-diazoacetoacetic acid, and a copper catalyzed cyclopropanation. An alcohol intermediate within the synthetic route was obtained in high enantiopurity via a highly selective palladium(II)-catalyzed oxidative kinetic resolution (OKR).

  3. Oxidative desulfurization: kinetic modelling.

    PubMed

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  4. Origin of stereocontrol in guanidine-bisurea bifunctional organocatalyst that promotes α-hydroxylation of tetralone-derived β-ketoesters: asymmetric synthesis of β- and γ-substituted tetralone derivatives via organocatalytic oxidative kinetic resolution.

    PubMed

    Odagi, Minami; Furukori, Kota; Yamamoto, Yoshiharu; Sato, Makoto; Iida, Keisuke; Yamanaka, Masahiro; Nagasawa, Kazuo

    2015-02-11

    The mechanism of asymmetric α-hydroxylation of tetralone-derived β-ketoesters with guanidine-bisurea bifunctional organocatalyst in the presence of cumene hydroperoxide (CHP) was examined by means of DFT calculations to understand the origin of the stereocontrol in the reaction. The identified transition-state model was utilized to design an enantioselective synthesis of β- or γ-substituted tetralones by catalytic oxidative kinetic resolution reaction of tetralone-derived β-ketoesters. This kinetic resolution reaction proceeded with high selectivity, and selectivity factors (s value) of up to 99 were obtained. The potential utility of this oxidative kinetic resolution method for synthesis of natural products was confirmed by applying it to achieve an enantioselective synthesis of (+)-linoxepin (13) from β-substituted tetralone rac-7 in only six steps.

  5. Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/alpha-Fe(2)O(3) composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck.

    PubMed

    Zhong, Diane K; Gamelin, Daniel R

    2010-03-31

    A cobalt-phosphate water oxidation catalyst ("Co-Pi") has been electrodeposited onto mesostructured alpha-Fe(2)O(3) photoanodes. The photoelectrochemical properties of the resulting composite photoanodes were optimized for solar water oxidation under frontside illumination in pH 8 electrolytes. A kinetic bottleneck limiting the performance of such photoanodes was identified and shown to be largely overcome by more sparse deposition of Co-Pi onto the alpha-Fe(2)O(3). Relative to alpha-Fe(2)O(3) photoanodes, a sustained 5-fold enhancement in the photocurrent density and O(2) evolution rate was observed at +1.0 V vs RHE with the Co-Pi/alpha-Fe(2)O(3) composite photoanodes. These results demonstrate that integration of this promising water oxidation catalyst with a photon-absorbing substrate can provide a substantial reduction in the external power needed to drive the catalyst's electrolysis chemistry.

  6. Kinetics of Supercritical Water Oxidation

    DTIC Science & Technology

    2007-11-02

    Donald R. Hardesty April 1 - June 30,1995 Project description: This project consists of experiments and theoretical modeling designed to improv...Washington. D.C., 4/95. D.R. Hardesty , "Kinetic Mechanisms of Supercritical Water Oxidation" presented at the FY95 In Progress Review. 5/95 Ft...McLean, 8300 MS9051 L. Rahn, 8351 MS9055 F. Tully, 8353 MS9056 G. Fisk, 8355 MS9052 D.R. Hardesty , 8361 Attn: Allendorf, S Allendorf, M

  7. Ultrahigh-performance liquid chromatography-ultraviolet absorbance detection-high-resolution-mass spectrometry combined with automated data processing for studying the kinetics of oxidative thermal degradation of thyroxine in the solid state.

    PubMed

    Neu, Volker; Bielow, Chris; Reinert, Knut; Huber, Christian G

    2014-12-05

    Levothyroxine as active pharmaceutical ingredient of formulations used for the treatment of hypothyroidism is distributed worldwide and taken by millions of people. An important issue in terms of compound stability is its capability to react with ambient oxygen, especially in case of long term compound storage at elevated temperature. In this study we demonstrate that ultrahigh-performance liquid chromatography coupled to UV spectrometry and high-resolution mass spectrometry (UHPLC-UV-HRMS) represent very useful approaches to investigate the influence of ambient oxygen on the degradation kinetics of levothyroxine in the solid state at enhanced degradation conditions. Moreover, the impurity pattern of oxidative degradation of levothyroxine is elucidated and classified with respect to degradation kinetics at different oxygen levels. Kinetic analysis of thyroxine bulk material at 100 °C reveals bi-phasic degradation kinetics with a distinct change in degradation phases dependent on the availability of oxygen. The results clearly show that contact of the bulk material to ambient oxygen is a key factor for fast compound degradation. Furthermore, the combination of time-resolved HRMS data and automated data processing is shown to allow insights into the kinetics and mechanism of impurity formation on individual compound basis. By comparing degradation profiles, four main classes of profiles linked to reaction pathways of thyroxine degradation were identifiable. Finally, we show the capability of automated data processing for the matching of different stressing conditions, in order to extract information about mechanistic similarities. As a result, degradation kinetics is influenced by factors like availability of oxygen, stressing time, or stressing temperature, while the degradation mechanisms appear to be conserved.

  8. Kinetic Resolution of Secondary Alcohols Using Amidine-Based Catalysts

    PubMed Central

    Li, Ximin; Jiang, Hui; Uffman, Eric W.; Guo, Lei; Zhang, Yuhua; Yang, Xing; Birman, Vladimir B.

    2012-01-01

    Kinetic resolution of racemic alcohols has been traditionally achieved via enzymatic enantioselective esterification and ester hydrolysis. However, there has long been considerable interest in devising nonenzymatic alternative methods for this transformation. Amidine-Based Catalysts (ABCs), a new class of enantioselective acyl transfer catalysts developed in our group, have demonstrated, inter alia, high efficacy in the kinetic resolution of benzylic, allylic and propargylic secondary alcohols and 2-substituted cycloalkanols, and thus provide a viable alternative to enzymes. PMID:22283696

  9. Kinetics of soot oxidation by NO2

    SciTech Connect

    Shrivastava, ManishKumar B.; Nguyen, Anh; Zheng, Zhongqing; Wu, Hao-Wei; Jung, Hee-Jung

    2010-06-15

    Modern technologies use NO2 to promote low temperature soot oxidation for diesel particulate filter regeneration. Most previous methods studied soot oxidation with NO2 using offline methods such as thermo-gravimetric analysis (TGA). In this study, the online aerosol-technique of high-temperature oxidation tandem differential mobility analysis (HTO-TDMA) is used to study kinetics of soot oxidation with NO2 under N2 environment. This method has significant advantages over previous offline methods in reducing heat and mass transfer diffusion limitations to the soot surface. Soot particles are exposed to varying temperature and NO2 concentration inside the furnace resulting from thermal decomposition of NO2 to NO. This causes soot oxidation rates to vary throughout the furnace. In this study, variations in temperatures, NO2 concentrations and particle residence times are thoroughly accounted for the first time, and soot oxidation rates are derived. Soot oxidation rate is calculated as a function of Arrhenius rate constant Asoot, activation energy Esoot, and partial pressure of NO2 PNO2 within the furnace at temperatures ranging 500- 950 C. Results suggest Asoot and Esoot values for soot oxidation with NO2 of 1.68 nm K-0.5 s-1 (Nm-2)-n and 46.5 kJ mol-1 respectively. The activation energy for soot oxidation with NO2 is significantly lower than oxidation with air. However, ppm levels of NO2 cause soot oxidation at low temperatures suggesting NO2 is a stronger oxidant than O2. This study also shows that a semi-empirical approach with just a few kinetic parameters could represent varying soot oxidation rates in a diesel engine cylinder or on a diesel particulate filter. Further studies should be directed towards understanding synergistic effects of other oxidants as O2 and H2O in addition to NO2 using the HTO-TDMA method.

  10. Kinetics of soot oxidation by NO2.

    PubMed

    Shrivastava, Manish; Nguyen, Anh; Zheng, Zhongqing; Wu, Hao-Wei; Jung, Heejung S

    2010-06-15

    Modern technologies use NO(2) to promote low-temperature soot oxidation for diesel particulate filter regeneration. In this study, the online aerosol technique of high-temperature oxidation tandem differential mobility analysis is used to study kinetics of soot oxidation by NO(2). Soot particles are exposed to varying temperature and NO(2) mixing ratio inside the furnace resulting from thermal decomposition of NO(2) to NO. This causes soot oxidation rates to vary throughout the furnace. Variations in temperatures and NO(2) mixing ratio are thoroughly accounted for the first time. Soot oxidation rates are calculated as a function of frequency factor A(soot), activation energy E(soot), and concentration of NO(2) within the furnace at temperatures ranging from 500 to 950 degrees C. Results suggest A(soot) and E(soot) values for soot oxidation of 2.4 x 10(-14) (nm K(-0.5) s(-1) cm(3) molecule(-1)) and 47.1 kJ mol(-1), respectively, when reaction order to NO(2) is assumed as unity. The activation energy for soot oxidation with NO(2) is significantly lower than oxidation with air. However, parts per million levels of NO(2) cause soot oxidation at low temperatures suggesting NO(2) is a stronger oxidant than O(2).

  11. Oxidation kinetics and soot formation

    NASA Technical Reports Server (NTRS)

    Glassman, I.; Brezinsky, K.

    1983-01-01

    The research objective is to clarify the role of aromaticity in the soot nucleation process by determining the relative importance of phenyl radical/molecular oxygen and benzene/atomic oxygen reactions in the complex combustion of aromatic compounds. Three sets of chemical flow reactor experiments have been designed to determine the relative importance of the phenyl radical/molecular oxygen and benzene/atomic oxygen reactions. The essential elements of these experiments are 1) the use of cresols and anisole formed during the high temperature oxidation of toluene as chemical reaction indicators; 2) the in situ photolysis of molecular oxygen to provide an oxygen atom perturbation in the reacting aromatic system; and 3) the high temperature pyrolysis of phenol, the cresols and possibly anisole.

  12. Hydrolytic and aminolytic kinetic resolution of terminal bis-epoxides.

    PubMed

    Bredihhina, Jevgenia; Villo, Piret; Andersons, Kārlis; Toom, Lauri; Vares, Lauri

    2013-03-15

    Hydrolytic and aminolytic kinetic resolution of terminal bis-epoxides catalyzed by (salen)Co(III) complexes affords epoxy-diols and N-protected epoxy-amino alcohols with excellent enantio- and diastereoselectivity and good yields. An operationally simple procedure gives instant access to valuable building blocks containing two remote stereocenters in highly enantioenriched form.

  13. Optically pure bulky (hetero)arylalkyl carbinols via kinetic resolution.

    PubMed

    Hu, Bin; Meng, Meng; Fossey, John S; Mo, Weimin; Hu, Xinquan; Deng, Wei-Ping

    2011-10-14

    Planar chiral nucleophilic catalyst Fc-PIP was employed in the kinetic resolution of bulky (hetero)arylalkyl carbinols delivering unreacted alcohols with extremely high enantiomeric excess (>99.0% ees) in ideal conversions ranging from 50.4-56.7%.

  14. Enzymatic kinetic resolution of racemic ibuprofen: past, present and future.

    PubMed

    José, Carla; Toledo, María Victoria; Briand, Laura E

    2016-10-01

    This review is a journey concerning the investigations of the kinetic resolution of racemic ibuprofen for the last 20 years. The relevancy of the pharmacological uses of the S( + ) enantiomer along with its higher cost compared with racemic profen are the driving forces of a variety of scientific research studies addressing the enzymatic resolution of ibuprofen through enantiomeric esterification using lipases as biocatalysts. Lipases of fungal sources such as Candida rugosa, Rhizomucor miehei and the lipase B of Candida antarctica have been extensively studied both in homogeneous and heterogeneous (immobilized on solid supports) processes. In this context, the various alcohols and organic co-solvents frequently used in the esterification of racemic ibuprofen are summarized and discussed in this review. Moreover, recent investigations using membranes as reactors coupled with the separation of the desired product and microfluidic devices are presented. Finally, some guidelines about future perspectives regarding the technology of the kinetic resolution of profens and research niches are given.

  15. A kinetic study of lipase-catalyzed reversible kinetic resolution involving verification at miniplant-scale.

    PubMed

    Berendsen, W R; Gendrot, G; Freund, A; Reuss, M

    2006-12-05

    Lipase-catalyzed kinetic resolution of racemates is a popular method for synthesis of chiral synthons. Most of these resolutions are reversible equilibrium limited reactions. For the first time, an extensive kinetic model is proposed for kinetic resolution reactions, which takes into account the full reversibility of the reaction, substrate inhibition by an acyl donor and an acyl acceptor as well as alternative substrate inhibition by each enantiomer. For this purpose, the reversible enantioselective transesterification of (R/S)-1-methoxy-2-propanol with ethyl acetate catalyzed by Candida antarctica lipase B (CAL-B) is investigated. The detailed model presented here is valid for a wide range of substrate and product concentrations. Following model discrimination and the application of Haldane equations to reduce the degree of freedom in parameter estimation, the 11 free parameters are successfully identified. All parameters are fitted to the complete data set simultaneously. Six types of independent initial rate studies provide a solid data basis for the model. The effect of changes in substrate and product concentration on reaction kinetics is discussed. The developed model is used for simulations to study the behavior of reaction kinetics in a fixed bed reactor. The typical plot of enantiomeric excess versus conversion of substrate and product is evaluated at various initial substrate mixtures. The model is validated by comparison with experimental results obtained with a fixed bed reactor, which is part of a fully automated state-of-the-art miniplant.

  16. Exploiting Enzymatic Dynamic Reductive Kinetic Resolution (DYRKR) in Stereocontrolled Synthesis

    PubMed Central

    Applegate, Gregory A.; Berkowitz, David B.

    2015-01-01

    Over the past two decades, the domains of both frontline synthetic organic chemistry and process chemistry and have seen an increase in crosstalk between asymmetric organic/organometallic approaches and enzymatic approaches to stereocontrolled synthesis. This review highlights the particularly auspicious role for dehydrogenase enzymes in this endeavor, with a focus on dynamic reductive kinetic resolutions (DYRKR) to “deracemize” building blocks, often setting two stereocenters in so doing. The scope and limitations of such dehydrogenase-mediated processes are overviewed, as are future possibilities for the evolution of enzymatic DYRKR. PMID:26622223

  17. Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution.

    PubMed

    Choi, Won Jae

    2009-08-01

    Enantiopure epoxides are high value-added synthons for the production of pharmaceuticals, agrochemicals, as well as versatile fine chemicals and have broad scope of market demand for their applications. A major challenge in conventional organic synthesis is to generate such compounds in high enantiopurity with reasonable yield. Among possible chemical and biological technologies for enantiopure epoxide preparation, enzymatic kinetic resolution has been paid much attention with respect to its high enantioselectivity. Epoxide hydrolase (EH) has shown promising characteristics for the preparation of enantiopure epoxides and vicinal diols during enantioselective hydrolysis of racemic epoxides. EH is readily available from microbial resources thus it is being employed for biohydrolysis of a variety of epoxides. Recent technical progress in EH-catalyzed enantioselective hydrolysis is summarized in terms of exploration of novel EH, its functional improvement, high throughput assay, and preparative scale resolution process.

  18. Stereoelectronic basis for the kinetic resolution of N-heterocycles with chiral acylating reagents.

    PubMed

    Hsieh, Sheng-Ying; Wanner, Benedikt; Wheeler, Philip; Beauchemin, André M; Rovis, Tomislav; Bode, Jeffrey W

    2014-06-10

    The kinetic resolution of N-heterocycles with chiral acylating agents reveals a previously unrecognized stereoelectronic effect in amine acylation. Combined with a new achiral hydroxamate, this effect makes possible the resolution of various N-heterocycles by using easily prepared reagents. A transition-state model to rationalize the stereochemical outcome of this kinetic resolution is also proposed.

  19. IMPACT OF OXYGEN MEDIATED OXIDATIVE COUPLING ON ADSORPTION KINETICS

    EPA Science Inventory

    The presence of molecular oxygen in the test environment promotes oxidative coupling (polymer formation) of phenolic compounds on the surface of granular activated carbon (GAC). Both adsorption equilibria and adsorption kinetics are affected by these chemical reactions. Lack of...

  20. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  1. Improved Understanding of In Situ Chemical Oxidation. Technical Objective I: Contaminant Oxidation Kinetics Contaminant Oxidation Kinetics

    DTIC Science & Technology

    2009-05-01

    nitrophenol . The kinetics generally are first-order and the effect of temperature follows the Arrhenius model. The reaction mechanism probably is not...Experimental conditions for the data points from this study: 25 ºC, pH 7, and phosphate buffer concentrations between 50 - 100 mM. 14 7. Determining...T., Nagakura, S., 1975. Photoelectron spectra of nitrophenols and nitroanisoles. J. Electron Spectrosc. Relat. Phenom., 6, 421-427. 54. Kolthoff

  2. Oxidation kinetics of ferrous sulfate over active carbon

    SciTech Connect

    Roennholm, M.R.; Waernaa, J.; Salmi, T.; Turunen, I.; Luoma, M.

    1999-07-01

    Catalyzed oxidation kinetics of dissolved Fe{sup 2+} ions to Fe{sup 3+} over active carbon in concentrated H{sub 2}SO{sub 4}-FeSO{sub 4} solutions was studied with isothermal and isobaric experiments carried out in a laboratory-scale pressurized autoclave. The experiments were performed at temperatures between 60 and 130 C, and the pressure of oxygen (O{sub 2}) was varied between 4 and 10 bar. The kinetic results revealed that the oxidation rate was enhanced by increasing the temperature and pressure and that the catalytic and noncatalytic oxidations proceed as parallel processes. A rate equation was obtained for the catalytic oxidation process, based on the assumption that the oxidation of Fe{sup 2+} with adsorbed oxygen is rate determining. The total oxidation rate was simulated by including a previously determined rate equation for the noncatalytic oxidation into the global model, from which the kinetic parameters of the catalytic oxidation rate were determined. A comparison of the model fit with the experimental data revealed that the proposed rate equation is applicable for the prediction of the Fe{sup 2+} oxidation kinetics in acidic ferrous sulfate solutions.

  3. Enzyme kinetics of oxidative metabolism: cytochromes P450.

    PubMed

    Korzekwa, Ken

    2014-01-01

    The cytochrome P450 enzymes (CYPs) are the most important enzymes in the oxidative metabolism of hydrophobic drugs and other foreign compounds (xenobiotics). The versatility of these enzymes results in some unusual kinetic properties, stemming from the simultaneous interaction of multiple substrates with the CYP active site. Often, the CYPs display kinetics that deviate from standard hyperbolic saturation or inhibition kinetics. Non-Michaelis-Menten or "atypical" saturation kinetics include sigmoidal, biphasic, and substrate inhibition kinetics (see Chapter 3 ). Interactions between substrates include competitive inhibition, noncompetitive inhibition, mixed inhibition, partial inhibition, activation, and activation followed by inhibition (see Chapter 4 ). Models and equations that can result in these kinetic profiles will be presented and discussed.

  4. The kinetics of sulfation of calcium oxide

    SciTech Connect

    Sarofim, A.F.; Longwell, J.P.

    1990-03-28

    The objectives of this study are to determine the intrinsic kinetics and the product layer diffusion rate by minimizing the resistances to gas-phase pore diffusion, and eliminating complications due to pore filling. In the report, a grain model was used to introduce the various potentially rate-limiting processes. It was compared with results obtained with a distributed pore model by Bhatia Perlmutter (1981). Comparing the predicted behavior of the surface areas with conversion, it was even possible to compare experimental results with other models. The conclusion of this study was that, even thought the kinetic parameters obtained with different samples differed much more if product layer diffusion assumed rate-limiting rather than the surface reaction, the shape of the predicted curve approached the experimental findings so much better, that product layer diffusion is indeed most likely to be rate-limiting. (VC)

  5. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation

    NASA Astrophysics Data System (ADS)

    Sabourin, Justin L.

    Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications. In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions. This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and

  6. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  7. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    ERIC Educational Resources Information Center

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  8. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    NASA Astrophysics Data System (ADS)

    Coloma Ribera, R.; van de Kruijs, R. W. E.; Yakshin, A. E.; Bijkerk, F.

    2015-08-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  9. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    SciTech Connect

    Coloma Ribera, R. Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  10. [Kinetics on ethanethiol oxidation by potassium permanganate in drinking water].

    PubMed

    Liu, Yao; Zhang, Xiao-Jian; Dai, Ji-Sheng; Xu, Huan

    2008-05-01

    Reaction kinetics of ethanethiol oxidation with potassium permanganate in water was studied, and the effect of ethanethiol oxidation in raw water under coagulation condition has been investigated. The results showed that the oxidation reaction of ethanethiol by potassium permanganate was very efficient, the removing effect could be more than 90%. The rate of ethanethiol decomposition by potassium permanganate in aqueous solution followed second-order kinetics. When potassium permanganate was excessive, pseudo-first-order rate and concentration of potassium permanganate followed the equation: k' = 0.025 [KMnO4] - 0.008. And then, the second-order reaction rate constant was k = 0.025 L/(min x mg). The removal of ethanethiol in raw water by potassium permanganate under coagulation condition was poorer than in pure water condition, So predicted concentration of potassium permanganate was lower than real concentration.

  11. The kinetics of sulfation of calcium oxide

    SciTech Connect

    Sarofim, A.F.; Longwell, J.P.

    1989-01-01

    Studies of the sulfation rate behavior show an initial fast rate followed by a rate decrease. It is generally agreed that product layer diffusion limitations are the explanation for this behavior. Many investigators tried to model this observed rate change, more or less successfully. No agreement has been reached, however, as to the value of the produce layer diffusivity. Hence, in this work we want to investigate the mechanism of this process. In addition to understanding the initial kinetics, two questions will be focused on. First, we should understand what is diffusing. It appears that the driving force for this diffusion phenomenon is not first order with the SO{sub 2} concentration in the gas. This would indicate that some other, intermediary step is occurring. The second question concerns the composition of the product layer. Different conditions at the start of the reaction were observed to produce different diffusion rates at a later stage. The microscopic appearance of the product layer also appeared to be different.

  12. Oxidation of kinetically trapped thiols by protein disulfide isomerase.

    PubMed

    Walker, K W; Gilbert, H F

    1995-10-17

    The formation of a stabilized structure during oxidative protein folding can severely retard disulfide formation if the structure must be disrupted to gain access to buried cysteines. These kinetic traps can slow protein folding and disulfide bond formation to the extent that unassisted folding is too slow to be kinetically competent in the cell. Protein disulfide isomerase (PDI) facilitates the oxidation of a kinetically trapped state of RTEM-1 beta-lactamase in which two cysteines that form the single disulfide bond in the native protein are buried and approximately 500-fold less reactive than exposed cysteines. Under second-order conditions, PDI-dependent oxidation of reduced, folded beta-lactamase is 500-fold faster than GSSG-dependent oxidation. The rate difference observed between PDI and GSSG can be accounted for by the 520-fold higher kinetic reactivity of PDI as an oxidant. Noncovalent interactions between PDI (35 microM) and beta-lactamase increase the reactivity or unfolding of beta-lactamase in the steady-state by less than 3-fold. At high concentrations of PDI or alkylating agents, the reaction of beta-lactamase cysteines approaches a constant rate, limited by the spontaneous unfolding of the protein (kunfold = 0.024 +/- 0.005 min-1). PDI does not substantially increase the rate of beta-lactamase unfolding; however, once beta-lactamase spontaneously unfolds, PDI at concentrations greater than 44 +/- 4 microM, oxidizes the unfolded substrate before it can refold (kfold = 1.5 +/- 0.2 min-1).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Kinetics and mechanism of the oxidation of amaranth with hypochlorite.

    PubMed

    Nadupalli, S; Koorbanally, N; Jonnalagadda, S B

    2011-07-14

    The reaction mechanism of the oxidation of Amaranth dye (2-hydroxy-1-(4-sulfonato-1-naphthylazo) naphthalene-3,6-disulfonate) with hypochlorite under varied pH conditions was elucidated by a kinetic approach. Under excess concentration of oxidant, the reaction followed pseudo-first-order kinetics with respect to Amaranth, and the oxidation was found to occur through two competitive reactions, initiated by hypochlorite and hypochlorous acid. The reaction order with respect to both OCl(-) ion and HOCl was unity. While the latter reaction was fast, the significance of the oxidation paths depended on the relative concentration of the two oxidizing species, which was dictated by the reaction pH. The role of the H(+) ion in the reaction was established. For the hypochlorite ion and hypochlorous acid facilitated reactions, the second-order rate coefficients were 1.9 and 23.2 M(-1) s(-1), respectively. The energy parameters were E(a) = 33.7 kJ mol(-1), ΔH(‡) = 31.2 kJ mol(-1) and ΔS(‡) = -190.6 J K(-1) mol(-1) for the OCl(-) ion-driven oxidation, and E(a) = 26.9 kJ mol(-1), ΔH(‡) = 24.3 kJ mol(-1) and ΔS(‡) = -222.8 J K(-1) mol(-1) for the reaction with HOCl-initiated oxidation. The major oxidation products for both the pathways were 3,4-dihydroxy naphthalene-2,7-disulfonic sodium salt (P(1)), dichloro-1,4-naphthoquione (P(2)) and naphtha(2,3)oxirene-2, 3-dione (P(3)). On the basis of the primary salt effect and other kinetic data, the rate law for the overall reaction and probable reaction mechanism was elucidated. The proposed mechanism was validated by simulations using Simkine-2.

  14. Improved Understanding of In Situ Chemical Oxidation Contaminant Oxidation Kinetics

    DTIC Science & Technology

    2007-12-01

    activated persulfate and found fairly rapid degradation of TNT, RDX, HMX, and 4- nitrophenol . The kinetics generally are first-order and the effect of...pH 7, and phosphate buffer concentrations between 50 - 100 mM. 14 7. Determining K" for Activated Hydrogen Peroxide4 An exhaustive literature...spectra of substituted benzenes. Bull. Chem. Soc. Jpn., 47, 2563-2572. 53. Kobayashi, T., Nagakura, S., 1975. Photoelectron spectra of nitrophenols

  15. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-17

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  16. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-20

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  17. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2008-08-15

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet-stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels. (author)

  18. AN EQUIVALENT ELECTRIC CIRCUIT APPROACH TO THE STUDY OF HYDROCARBON OXIDATION KINETICS.

    DTIC Science & Technology

    HYDROCARBONS, *OXIDATION), (*PROPANE, OXIDATION), (*FUEL CELLS, ELECTROCHEMISTRY), ELECTRIC DOUBLE LAYER, PLATINUM, ELECTRODES, REACTION KINETICS, ACETIC ACID , ELECTROLYTES, HALOGENATED HYDROCARBONS, FLUORINE COMPOUNDS

  19. Neptunium_Oxide_Precipitation_Kinetics_AJohnsen

    SciTech Connect

    Johnsen, A M; Roberts, K E; Prussin, S G

    2012-06-08

    We evaluate the proposed NpO{sub 2}{sup +}(aq)-NpO{sub 2}(cr) reduction-precipitation system at elevated temperatures to obtain primary information on the effects of temperature, ionic strength, O{sub 2} and CO{sub 2}. Experiments conducted on unfiltered solutions at 10{sup -4} M NpO{sub 2}{sup +}(aq), neutral pH, and 200 C indicated that solution colloids strongly affect precipitation kinetics. Subsequent experiments on filtered solutions at 200, 212, and 225 C showed consistent and distinctive temperature-dependent behavior at reaction times {le} 800 hours. At longer times, the 200 C experiments showed unexpected dissolution of neptunium solids, but experiments at 212 C and 225 C demonstrated quasi steady-state neptunium concentrations of 3 x 10{sup -6} M and 6 x 10{sup -6} M, respectively. Solids from a representative experiment analyzed by X-ray diffraction were consistent with NpO{sub 2}(cr). A 200 C experiment with a NaCl concentration of 0.05 M showed a dramatic increase in the rate of neptunium loss. A 200 C experiment in an argon atmosphere resulted in nearly complete loss of aqueous neptunium. Previously proposed NpO{sub 2}{sup +}(aq)-NpO{sub 2}(cr) reduction-precipitation mechanisms in the literature specified a 1:1 ratio of neptunium loss and H{sup +} production in solution over time. However, all experiments demonstrated ratios of approximately 0.4 to 0.5. Carbonate equilibria can account for only about 40% of this discrepancy, leaving an unexpected deficit in H+ production that suggests that additional chemical processes are occurring.

  20. Kinetics and spectroscopic observations of atrazine dealkylation on manganese oxides

    SciTech Connect

    Malengreau, N.; Sposito, G.; Cheney, M.A.; Crowley, D.E.

    1997-12-31

    Abiotic transformations of organic pollutants are often neglected in remediation scenarios but nonetheless can contribute significantly to detoxification. Mn oxide minerals are capable of degrading organic pollutants adsorbed to their surfaces by both redox and proton-promoted mechanisms. Concurrently with calorimetric, gas-pressure, chromatographic, and ESR methods, we used ICP, DRS, DRIFT, and FTIR spectroscopies to investigate atrazine degradation on three Mn oxides. We found that N-dealkylation can occur abiotically, leading to the formation of deethylatrazine and deisopropylatrazine. The Mn extractability after degradation of atrazine was highly dependent on the Mn oxide. Extractable Mn increased with time for cryptomelane, was constant for pyrolusite, and remained very low for birnessite. The extractable Mn is Mn(II). UV signatures of atrazine by-products were different from one another and were used to trace degradation products at the Mn oxide surface. Mechanistic interpretation of the in situ reaction kinetics and thermodynamics will be discussed.

  1. Aluminium-oxide wires for superconducting high kinetic inductance circuits

    NASA Astrophysics Data System (ADS)

    Rotzinger, H.; Skacel, S. T.; Pfirrmann, M.; Voss, J. N.; Münzberg, J.; Probst, S.; Bushev, P.; Weides, M. P.; Ustinov, A. V.; Mooij, J. E.

    2017-02-01

    We investigate thin films of conducting aluminium-oxide, also known as granular aluminium, as a material for superconducting high quality, high kinetic inductance circuits. The films are deposited by an optimised reactive DC magnetron sputter process and characterised using microwave measurement techniques at milli-Kelvin temperatures. We show that, by precise control of the reactive sputter conditions, a high room temperature sheet resistance and therefore high kinetic inductance at low temperatures can be obtained. For a coplanar waveguide resonator with 1.5 kΩ sheet resistance and a kinetic inductance fraction close to unity, we measure a quality factor in the order of 700 000 at 20 mK. Furthermore, we observe a sheet resistance reduction by gentle heat treatment in air. This behaviour is exploited to study the kinetic inductance change using the microwave response of a coplanar wave guide resonator. We find the correlation between the kinetic inductance and the sheet resistance to be in good agreement with theoretical expectations.

  2. The kinetic of photoreactions in zinc oxide microrods

    NASA Astrophysics Data System (ADS)

    Fiedot, M.; Rac, O.; Suchorska-Woźniak, P.; Nawrot, W.; Teterycz, H.

    2016-01-01

    Zinc oxide is the oldest sensing material used in the chemical resistive gas sensors which allow to detect many gases, such as carbon oxide, nitrogen oxides and other. This material is also widely used in medicine and daily life as antibacterial agent. For this reason this semiconductor is often synthesized on the polymer substrates such as foils and textiles. In presented results zinc oxide was deposited on the surface of poly(ethylene terephthalate) foil to obtain antibacterial material. As synthesis method chemical bath deposition was chosen. The growth of zinc oxide structures was carried out in water solution of zinc nitrate (V) and hexamethylenetetramine in 90°C during 9 h. Because antibacterial properties of ZnO are strongly depended on photocatalytic and electric properties of this semiconductor impedance spectroscopy measurements were carried out. During the measurements material was tested with and without UV light to determinate the kinetic of photoreactions in zinc oxide. Moreover the composite was analyzed by XRD diffraction and scanning electron microscope. The X-ray analysis indicated that obtained material has the structure of wurtzite which is typical of zinc oxide. SEM images showed that on the PET foil microrods of ZnO were formed. The impedance spectroscopy measurements of ZnO layer showed that in UV light significant changes in the conductivity of the material are observed.

  3. Experimental investigation on oxidation kinetics of germanium by ozone

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Zhao, Zhiqian; Xiang, Jinjuan; Wang, Wenwu; Zhang, Jing; Zhao, Chao; Ye, Tianchun

    2016-12-01

    Oxidation kinetics of germanium surface by ozone at low temperature (≤400 °C) is experimentally investigated. The growth process contains two regions: initial linear growth region and following parabolic growth region. The GeOx thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. The linear growth region contains reaction of oxygen atoms with surface bond and back bonds of outmost Ge layer. And the activation energy is experimentally estimated to be 0.06 eV. Such small activation energy indicates that the linear growth region is nearly barrier-less. The parabolic growth region starts when the oxygen atoms diffuse into back bonds of second outmost Ge layers. And the activation energy for this process is found to be 0.54 eV. Furthermore, in the ozone oxidation it is not O3 molecules but O radicals that go through the GeOx film.

  4. Oxidation kinetics of CVD silicon carbide and silicon nitride

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.

    1992-01-01

    The long-term oxidation behavior of pure, monolithic CVD SiC and Si3N4 is studied, and the isothermal oxidation kinetics of these two materials are obtained for the case of 100 hrs at 1200-1500 C in flowing oxygen. Estimates are made of lifetimes at the various temperatures investigated. Parabolic rate constants for SiC are within an order of magnitude of shorter exposure time values reported in the literature. The resulting silica scales are in the form of cristobalite, with cracks visible after exposure. The oxidation protection afforded by silica for these materials is adequate for long service times under isothermal conditions in 1-atm dry oxygen.

  5. Arsenate adsorption on ruthenium oxides: A spectroscopic and kinetic investigation

    SciTech Connect

    Luxton, Todd P.; Eick, Matthew J.; Scheckel, Kirk G.

    2008-12-08

    Arsenate adsorption on amorphous (RuO{sub 2} {center_dot} 1.1H{sub 2}O) and crystalline (RuO{sub 2}) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was used to determine the local coordination environment of adsorbed arsenate. Additionally, pressure-jump (p-jump) relaxation spectroscopy was used to investigate the kinetics of arsenate adsorption/desorption on ruthenium oxides. Chemical relaxations resulting from the induced pressure change were monitored via electrical conductivity detection. EXAFS data were collected for two initial arsenate solution concentrations, 3 and 33 mM at pH 5. The collected spectra indicated a similar coordination environment for arsenate adsorbed to RuO{sub 2} {center_dot} 1.1H{sub 2}O for both arsenate concentrations. In contrast the EXAFS spectra of RuO{sub 2} indicated differences in the local coordination environments for the crystalline material with increasing arsenate concentration. Data analysis indicated that both mono- and bidentate surfaces complexes were present on both RuO{sub 2} {center_dot} 1.1H{sub 2}O and RuO{sub 2}. Relaxation spectra from the pressure-jump experiments of both ruthenium oxides resulted in a double relaxation event. Based on the relaxation spectra, a two step reaction mechanism for arsenate adsorption is proposed resulting in the formation of a bidentate surface complex. Analysis of the kinetic and spectroscopic data suggested that while there were two relaxation events, arsenate adsorbed to ruthenium oxide surfaces through both mono- and bidentate surface complexes.

  6. Kinetic Modeling of Oxidative Coagulation for Arsenic Removal

    SciTech Connect

    Kim, Jin-Wook; Kramer, Timothy A.

    2004-03-31

    A model of oxidative coagulation consisting of Fenton's reagent (Fe(II)/H2O2 at pH 7.0) was established. The optimum condition was found when the mole ratio of As(III):H2O2:Fe(II)=1:15:20. In this optimum condition, all of Fe(II) was converted to HFO (am-Fe(OH)3) and precipitated to be used as the oxidized arsenic(V) adsorbent and particle coagulant. Two sorption models consisting of a surface complexation model and a kinetic model were developed and coupled. Using the coupled sorption model, the kinetics of HFO surface charge/potential during As(V) sorption was calculated. Further, during arsenic sorption, the colloid stability kinetics resulting from the perikinetic coagulation mechanism was calculated by considering interparticle forces. Colloid surface potential was decreased from 60 mv to 12 mv in proportion to the amount of arsenic adsorbed onto HFO and this surface potential directly affected the colloid stability (collision efficiency).

  7. Oxidation Kinetics of Cast TiAl3

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Humphrey, D. L.

    1992-01-01

    The isothermal oxidation kinetics of the TiAl3 compound over a wide temperature range is documented, and these rates are related to exclusive alpha-Al2O3 scale growth. The specific weight change vs time curves are shown. Two abnormalities are immediately apparent. One is that a rapid initial uptake of oxygen occurs at times less than 5 h, followed by a lower oxidation rate at longer times, for tests at 900 C and below. The other is that the final weight changes for the 700, 800, and 900 C tests are not in the sequence expected with respect to temperature. Isothermal oxidation of drop cast TiAl above 1000 C was found to exhibit parabolic oxidation controlled by protective alpha-Al2O3 scale formation. TiAl is the only phase in the binary Ti-Al system that forms exclusive scales of alpha-Al2O3 in isothermal oxidation. High anomalous rates at short times and at temperatures below 1000 C resulted from the internal oxidation of a second phase of aluminum.

  8. KINETIC ENERGY FROM SUPERNOVA FEEDBACK IN HIGH-RESOLUTION GALAXY SIMULATIONS

    SciTech Connect

    Simpson, Christine M.; Bryan, Greg L.; Ostriker, Jeremiah P.; Hummels, Cameron

    2015-08-10

    We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (∼10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 10{sup 9} M{sub ⊙} dwarf halo. We find that in high-density media (≳50 cm{sup −3}) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.

  9. Kinetic Energy from Supernova Feedback in High-resolution Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Bryan, Greg L.; Hummels, Cameron; Ostriker, Jeremiah P.

    2015-08-01

    We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (˜10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 109 M⊙ dwarf halo. We find that in high-density media (≳50 cm-3) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.

  10. Advances in Stereoconvergent Catalysis from 2005 to 2015: Transition-Metal-Mediated Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations.

    PubMed

    Bhat, Vikram; Welin, Eric R; Guo, Xuelei; Stoltz, Brian M

    2017-03-08

    Stereoconvergent catalysis is an important subset of asymmetric synthesis that encompasses stereoablative transformations, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Initially, only enzymes were known to catalyze dynamic kinetic processes, but recently various synthetic catalysts have been developed. This Review summarizes major advances in nonenzymatic, transition-metal-promoted dynamic asymmetric transformations reported between 2005 and 2015.

  11. Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides.

    PubMed

    Nielsen, Lars P C; Stevenson, Christian P; Blackmond, Donna G; Jacobsen, Eric N

    2004-02-11

    The mechanism of the hydrolytic kinetic resolution (HKR) of terminal epoxides was investigated by kinetic analysis using reaction calorimetry. The chiral (salen)Co-X complex (X = OAc, OTs, Cl) undergoes irreversible conversion to (salen)Co-OH during the course of the HKR and thus serves as both precatalyst and cocatalyst in a cooperative bimetallic catalytic mechanism. This insight led to the identification of more active catalysts for the HKR of synthetically useful terminal epoxides.

  12. Probing the oxidation kinetics of small permalloy particles

    NASA Astrophysics Data System (ADS)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu; Shirolkar, Mandar M.; Li, Ming; Wang, Haiqian

    2017-02-01

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe2O3/(Ni, Fe)3O4 plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method. Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe2O3 to (Ni, Fe)3O4 induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed.

  13. Kinetics of wet air oxidation (WAO) of alcaloide factory wastewater.

    PubMed

    Kunukcu, Y Kaçar

    2005-01-01

    Wet air oxidation (WAO) of Afyon alcaloide factory wastewater, a typical high strength industrial wastewater, was carried out. The process was performed in a specifically designed titanium bubble reactor at temperatures in the range of 140-160 degrees C. The kinetics of WAO of alcaloide factory wastewater was modeled by assuming two distinct steps. The rates of destruction were measured with respect to reduction in COD. The oxidation reaction was found to be first order with respect to COD concentration and also second order with respect to oxygen concentration in both steps. The values of activation energies were found to be in the range of 4.93 x 10(4)-7.85 x 10(4) kJ/kmol.

  14. Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids.

    PubMed

    Kreituss, Imants; Bode, Jeffrey W

    2016-12-20

    The preparation of enantioenriched chiral compounds by kinetic resolution dates back to the laboratories of Louis Pasteur in the middle of the 19th century. Unlike asymmetric synthesis, this process can always deliver enantiopure material (ee > 99%) if the reactions are allowed to proceed to sufficient conversion and the selectivity of the process is not unity (s > 1). One of the most appealing and practical variants is acylative kinetic resolution, which affords easily separable reaction products, and several highly efficient enzymatic and small molecule catalysts are available. Unfortunately, this method is applicable to limited substrate classes such as alcohols and primary benzylamines. This Account focuses on our work in catalytic acylative kinetic resolution of saturated N-heterocycles, a class of molecules that has been notoriously difficult to access via asymmetric synthesis. We document the development of hydroxamic acids as suitable catalysts for enantioselective acylation of amines through relay catalysis. Alongside catalyst optimization and reaction development, we present mechanistic studies and theoretical calculation accounting for the origins of selectivity and revealing the concerted nature of many amide-bond forming reactions. Immobilization of the hydroxamic acid to form a polymer supported reagent allows simplification of the experimental setup, improvement in product purification, and extension of the substrate scope. The kinetic resolutions are operationally straight forward: reactions proceed at room temperature and open to air conditions, without generation of difficult-to-remove side products. This was utilized to achieve decagram scale resolution of antimalarial drug mefloquine to prepare more than 50 g of (+)-erythro-meflqouine (er > 99:1) from the racemate. The immobilized quasienantiomeric acyl hydroxamic acid reagents were also exploited for a rare practical implementation of parallel kinetic resolution that affords both enantiomers of

  15. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS

    NASA Astrophysics Data System (ADS)

    Yardley, Sean S.; Moore, Katie L.; Ni, Na; Wei, Jang Fei; Lyon, Stuart; Preuss, Michael; Lozano-Perez, Sergio; Grovenor, Chris R. M.

    2013-11-01

    High resolution secondary ion mass spectrometry (SIMS) analysis has been used to study the oxidation mechanisms when commercial low tin ZIRLO™Low tin ZIRLO™ is a trademark of Westinghouse Electric Company LLC in the United States and may be registered in other countries throughout the world. Unauthorized use is strictly prohibited.1 and Zircaloy 4 materials are exposed to corroding environments containing both 18O and 2H isotopes. Clear evidence has been shown for different characteristic distributions of 18O before and after the kinetic transitions, and this behaviour has been correlated with the development of porosity in the oxide which allows the corroding medium to penetrate locally to the metal/oxide interface.

  16. Kinetic and chemical stability of graphene oxide layers

    NASA Astrophysics Data System (ADS)

    Zhou, Si; Bongiorno, Angelo; Bongiorno's lab Team

    2014-03-01

    Chemical functionalization of graphene holds great promise to open new applications of graphene in technology. Here we combine density functional theory (DFT) and Monte Carlo calculations to study both the stability and structure of graphene layers functionalized with epoxide and hydroxyl species. Our calculations show that sparse functionalizations of graphene are unstable in air at room temperature. However, oxygen groups diffuse and are prone to form dense agglomerates. To investigate these phenomena, we use DFT calculations to first map the interaction of functionalities on graphene, and then to device a simple energy scheme to both compute the Gibbs free energy of formation of arbitrary functionalizations of graphene and predict the structure resulting from diffusion and agglomeration processes. We find that the stability of graphene oxide increases for increasing both the O:C ratio and ageing time. The structure of the aged layers consists of a non-homogeneous phase of highly oxidized regions surrounded by areas of pristine graphene. Within the oxidized domains, formation of energetically stable motifs reduces the likelihood of occurrence of decomposition reactions, thereby enhancing the kinetic stability of the oxidized layer.

  17. A kinetic study of methanol oxidation in supercritical water

    SciTech Connect

    Anitescu, G.; Zhang, Z.; Tavlarides, L.L.

    1999-06-01

    The oxidation rate of methanol in supercritical water at 253 bar and temperatures between 673 and 773 K is investigated using an isothermal, isobaric plug-flow tubular reactor and GC/FID and GC/TCD chromatographic methods. Experiments are conducted at a nominal methanol feed concentration of 0.88 mol % (1.53 wt %) using H{sub 2}O{sub 2} as an initial oxidant. In some experiments, the O{sub 2}/MeOH molar ratios are varied from 1.5 to 3.0 and show that the rate of methanol oxidation is independent of the oxygen initial feed concentration. Overall first-order rate constants calculated from the data lead to Arrhenius parameters of A = 10{sup 11.8} s{sup {minus}1} and E{sub a} = 178 kJ/mol (42.5 kcal/mol). The identified reaction products are mainly CO and CO{sub 2}. The temporal variation of the CO yield exhibits a maximum at temperatures of 723 and 748 K, whereas the CO{sub 2} yield increases monotonically over the experimental range of residence time (3--50 s). The experimental data are consistent with a set of consecutive first-order reactions CH{sub 3}OH {yields} CO {yields} CO{sub 2}. The global rate-controlling step in the complete oxidation of methanol is the conversion of CO to CO{sub 2}. The first-order rate constants calculated for CO oxidation to CO{sub 2} lead to A = 10{sup 10.8} s{sup {minus}1} and E{sub a} = 172 kJ/mol (41.0 kcal/mol). Kinetics of this system may be useful to study supercritical water oxidation (SCWO) of polychlorinated biphenyls (PCBs) dissolved in methanol.

  18. Kinetic resolution of oxazinones: rational exploration of chemical space through the design of experiments.

    PubMed

    Renzi, Polyssena; Kronig, Christel; Carlone, Armando; Eröksüz, Serap; Berkessel, Albrecht; Bella, Marco

    2014-09-08

    The organocatalytic kinetic resolution of 4-substituted oxazinones has been optimised (selectivity factor S up to 98, chiral oxazinone ee values up to 99.6 % (1 a-g) and product ee values up to 90 % (3 a-g)) in a rational way by applying the Design of Experiments (DoE) approach.

  19. Kinetic resolution of racemic carboxylic acids through asymmetric protolactonization promoted by chiral phosphonous acid diester.

    PubMed

    Sakuma, Masayuki; Sakakura, Akira; Ishihara, Kazuaki

    2013-06-07

    Chiral phosphonium salts induce the kinetic resolution of racemic α-substituted unsaturated carboxylic acids through asymmetric protolactonization. Both the lactones and the recovered carboxylic acids are obtained with high enantioselectivities and high S (= kfast/kslow) values. Asymmetric protolactonization also leads to the desymmetrization of achiral carboxylic acids. Notably, chiral phosphonous acid diester not only induced the enantioselectivity but also promoted protolactonization.

  20. Kinetic resolution: a powerful tool for the synthesis of planar-chiral ferrocenes.

    PubMed

    Alba, Andrea-Nekane R; Rios, Ramon

    2009-11-20

    Since the serendipitous discovery of ferrocene by Pauson and Kealy in 1951, it has become one of the most important structures in Organic Chemistry. Lately, kinetic resolution has emerged as a useful tool for the synthesis of planar chiral ferrocenes. This review aims to cover and discuss the development of this topic.

  1. Synthesis and chiroptical properties of ferrocene-[4]-helicenequinones: kinetic resolution of a planar-chiral diene.

    PubMed

    Latorre, Alfonso; Urbano, Antonio; Carreño, M Carmen

    2011-07-28

    Both enantiomers of ferrocene [4]-helicenequinone 6, showing planar and helical chiralities, have been synthesized with very high optical purities using, as the key step, a kinetic resolution process between planar-chiral racemic ferrocene diene 2 and enantiopure sulfinyl benzoquinone (S)-3.

  2. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  3. Non-enzymatic dynamic kinetic resolution of secondary aryl alcohols: planar chiral ferrocene and ruthenium catalysts in cooperation.

    PubMed

    Díaz-Álvarez, Alba E; Mesas-Sánchez, Laura; Dinér, Peter

    2013-01-07

    "Ruth" helps iron! A novel method for the non-enzymatic dynamic kinetic resolution (DKR) of secondary aryl alcohols by the use of the planar chiral ferrocene derivative (+)-1 in combination with the ruthenium racemization catalyst 2 yields acetylated alcohols in high enantioselectivity and yield. This development opens opportunities for new developments in the field of non-enzymatic dynamic kinetic resolution.

  4. Kinetic studies on the cupric ion oxidation of sheep hemoglobin.

    PubMed

    Brittain, T; Ivanetich, K M

    1980-11-01

    The oxidation of sheep hemoglobin, in both the oxygenated and deoxygenated forms, by cuprous ions have been studied by spectrophotometric and stopped-flow techniques. Mixing of both the oxy and deoxy forms with excess Cu2+ leads to the rapid oxidation of the iron atoms of all four of the hem groups of the tetrameric protein, followed by the slow formation of hemichromes (low spin FeIII forms of hemoglobin). Stopped-flow studies show that the oxidations follow simple monophasic kinetics with second-order rate constants of 65 and 310 M-1 sec-1 for the oxy and deoxy forms, respectively. Variable temperature studies yield Arrhenius activation energies of 43 for the oxy form and 113 kJ mole-1 for the deoxy form. For each form of the protein the activation energy is very similar to the activation enthalpy. While the deoxy form is characterized by an activation energy and enthalpy that is more than twice the corresponding value in the oxy form. The activation entropies show highly significant differences being -128 e.u. and 136 e.u. at 25 degrees C for the oxy and deoxy forms, respectively.

  5. Chiral recyclable dimeric and polymeric Cr(III) salen complexes catalyzed aminolytic kinetic resolution of trans-aromatic epoxides under microwave irradiation.

    PubMed

    Kureshy, Rukhsana I; Prathap, K Jeya; Singh, Surendra; Agrawal, Santosh; Khan, Noor-Ul H; Abdi, Sayed H R; Jasra, Raksh V

    2007-11-01

    Aminolytic kinetic resolution (AKR) of trans-stilbene oxide and trans-beta-methyl styrene oxide proceeded smoothly under microwave irradiation using chiral dimeric and polymeric Cr(III) salen complexes as efficient catalysts, giving regio-, diastereo-, and enantioselective anti-beta-amino alcohols in high yields (49%) and chiral purity (ee up to 94%) in case of 4-methylaniline within 2 min. The kinetic resolution system is approximately five times faster than traditional oil bath heating at 70 degrees C and 420 times faster than the reaction conducted at room temperature with concomitant recovery of respective chirally enriched epoxides (ee, 92%) in excellent yields (up to 48%). The catalyst 1 worked well in terms of enantioselectivity than the catalyst 2, but both the catalysts were easily recovered and reused five times with the retention of its efficiency.

  6. Kinetic modeling of antimony(III) oxidation and sorption in soils.

    PubMed

    Cai, Yongbing; Mi, Yuting; Zhang, Hua

    2016-10-05

    Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model.

  7. Port wine oxidation management: a multiparametric kinetic approach.

    PubMed

    Martins, Rui Costa; Monforte, Ana Rita; Silva Ferreira, António

    2013-06-05

    Port wine is a flagship fortified wine of Portugal, which undergoes a particularly long aging period, developing a dynamic sensory profile over time, responsible for several wine categories, which is dependent upon the type of aging (bottle or barrel). Therefore, the quality of the product is dependent upon the chemical mechanisms occurring during the aging process, such as oxidation or Maillard reactions. To attain the desired quality management, it is necessary to understand how technological parameters, such as temperature or oxygen exposure, affect the kinetics of the formation of key odorants, such as sotolon. There is a lack of information about the impact of the storage conditions (oxygen and temperature) on Port wine quality. In this study, the effect of these two parameters were investigated to increase the knowledge database concerning aging management of Port wines. It was found that sotolon formation is highly dependent upon oxygen and temperature. There is however a synergistic effect between these two parameters that could significantly increase the concentration. The kinetic parameters of oxygen, sotolon, and other compounds related to Port aging (cis- and trans-5-hydroxy-2-methyl-1,3-dioxan, 2-furfural, 5-hydroxy-methyl-furfural, and 5-methyl-furfural) are also reported. Kinetic models with Monte Carlo simulations, where the oxygen permeability dispersion and temperature are the parameters under evaluation, were applied. On the basis of the modeling predictions, it would seem that the temperature of a cellar would have a more significant impact on the Port wines stored in containers where the oxygen intake is higher (barrels) when compared to containers with low oxygen permeability (bottles using cork stoppers).

  8. Kinetic characteristics of nitric oxide synthase from rat brain.

    PubMed Central

    Knowles, R G; Palacios, M; Palmer, R M; Moncada, S

    1990-01-01

    The relationship between the rate of synthesis of nitric oxide (NO) and guanylate cyclase stimulation was used to characterize the kinetics of the NO synthase from rat forebrain and of some inhibitors of this enzyme. The NO synthase had an absolute requirement for L-arginine and NADPH and did not require any other cofactors. The enzyme had a Vmax. of 42 pmol of NO formed.min-1.mg of protein-1 and a Km for L-arginine of 8.4 microM. Three analogues of L-arginine, namely NG-monomethyl-L-arginine, NG-nitro-L-arginine and NG-iminoethyl-L-ornithine inhibited the brain NO synthase. All three compounds were competitive inhibitors of the enzyme with Ki values of 0.7, 0.4 and 1.2 microM respectively. PMID:1695842

  9. Methane/steam reforming kinetics for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Achenbach, E.; Riensche, E.

    Experiments have been carried out to determine the kinetics of the methane/steam reforming process at anode materials of a solid oxide fuel cell. A nickel cermet was applied consisting of 80 wt.% ZrO 2 and 20 wt.% Ni. The temperature was varied from 700 to 940 °C, the CH 4 partial pressure from 0.11 to 0.33 bar, and the system pressure from 1.1 to 2.8 bar. The influence of the ratio H 2O/CH 4 was studied, in particular, by increasing this quantity from 2.6 to 8. The tests showed that, within the accuracy of the data, no effect of the H 2O partial pressure on the catalytic reforming process could be observed. Due to the high conversion rates of CH 4 at high temperatures, however, mass-transfer effects occurred, that must be taken into account when evaluating the steam-reforming data.

  10. Kinetics of the reaction of nitric oxide with hydrogen

    NASA Technical Reports Server (NTRS)

    Flower, W. L.; Hanson, R. K.; Kruger, C. H.

    1974-01-01

    Mixtures of NO and H2 diluted in argon or krypton were heated by incident shock waves, and the infrared emission from the fundamental vibration-rotation band of NO at 5.3 microns was used to monitor the time-varying NO concentration. The reaction kinetics were studied in the temperature range 2400-4500 K using a shock-tube technique. The decomposition of nitric oxide behind the shock was found to be modeled well by a fifteen-reaction system. A principle result of the study was the determination of the rate constant for the reaction H + NO yields N + OH, which may be the rate-limiting step for NO removal in some combustion systems. Experimental values of k sub 1 were obtained for each test through comparisons of measured and numerically predicted NO profiles.

  11. A kinetic study of hypoxanthine oxidation by milk xanthine oxidase.

    PubMed Central

    Escribano, J; Garcia-Canovas, F; Garcia-Carmona, F

    1988-01-01

    The course of the reaction sequence hypoxanthine----xanthine----uric acid catalysed by xanthine:oxygen oxidoreductase from milk was investigated on the basis of u.v. spectra taken during the course of hypoxanthine and xanthine oxidations. It was found that xanthine accumulated in the reaction mixture when hypoxanthine was used as a substrate. The time course of the concentrations of hypoxanthine, xanthine intermediate and uric acid product was simulated numerically. The mathematical model takes into account the competition of substrate, intermediate and product and the accumulation of the intermediate at the enzyme. This type of analysis permits the kinetic parameters of the enzyme for hypoxanthine and xanthine to be obtained. PMID:3196295

  12. Multiphase Processing of Isoprene Oxidation Products - Kinetic and Product Studies

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Schoene, L.; Schindelka, J.; Herrmann, H.

    2010-12-01

    Isoprene represents a significant fraction of NMHC in the troposphere with recently estimated emission rates of 500-750 TgC yr-1 (1). Due to its enormous source strength, the fate of isoprene and its degradation products is important in atmospheric processes. Possible ascendancies of such oxidation processes are the regional ozone and secondary organic aerosol (SOA) formation. Some aspects of SOA formation from isoprene and its degradation products have already been studied by chamber studies (2,3). Aqueous phase oxidation processes which may occur after phase transfer of ‘early’ oxidation products are often neglected. But these processes provide a potentially important source for organic particle mass constituents such as carboxylic acids. The majority of existing aqueous phase modelling studies focus only on ‘later’ products such as methylglyoxal and oxalic acid. Yet, a recent field study reports much higher aqueous phase concentrations of some ‘earlier’ isoprene oxidation products including methacrolein (MACR) and methyl vinyl ketone (MVK) than expected (4). This indicates a possibly underestimated importance of multiphase chemical processes in the course of the isoprene oxidation as a source for the production of organic particle mass together with known ‘heterogeneous processes’ such as the direct condensation of low-volatility products from gas phase processes onto existing particle surfaces. In order to implement the isoprene multiphase chemistry in atmospheric models detailed kinetic and mechanistic studies are needed. Hence, the temperature dependence of MACR, MVK, methacrylic acid and acrylic acid exposed to NO3, SO4- and OH radicals in the aqueous phase was investigated. The measurements were performed using a laser-photolysis laser long path absorption technique. The analysis confirmed in all cases the much higher reactivity of the OH radical in comparison to SO4- and NO3 radicals. The temperature dependence is most distinct for NO3

  13. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  14. Effect of temperature on Candida antartica lipase B activity in the kinetic resolution of acebutolol

    NASA Astrophysics Data System (ADS)

    Rajin, Mariani; Kamaruddin, A. H.

    2016-06-01

    Thermodynamic studies of free Candida antartica lipase B in kinetic resolution of acebutolol have been carried out to characterize the temperature effects towards enzyme stability and activity. A decreased in reaction rate was observed in temperature above 40oC. Thermodynamic studies on lipase deactivation exhibited a first-order kinetic pattern. The activation and deactivation energies were 39.63 kJ/mol and 54.90 kJ/mol, respectively. The enthalpy and entropy of the lipase deactivation were found to be 52.12 kJ/mol and -0.18 kJ/mol, respectively.

  15. Kinetic-dependent Killing of Oral Pathogens with Nitric Oxide

    PubMed Central

    Backlund, C.J.; Worley, B.V.; Sergesketter, A.R.

    2015-01-01

    Nitric oxide (NO)–releasing silica nanoparticles were synthesized via the co-condensation of tetramethyl orthosilicate with aminosilanes and subsequent conversion of secondary amines to N-diazeniumdiolate NO donors. A series of ~150 nm NO-releasing particles with different NO totals and release kinetics (i.e., half-lives) were achieved by altering both the identity and mol% composition of the aminosilane precursors. Independent of identical 2 h NO-release totals, enhanced antibacterial action was observed against the periodontopathogens Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis with extended NO-release kinetics at pH 7.4. Negligible bactericidal effect was observed against cariogenic Streptococcus mutans at pH 7.4, even when using NO-releasing silica particles with greater NO-release totals. However, antibacterial activity was observed against S. mutans at lower pH (6.4). This result was attributed to more rapid proton-initiated decomposition of the N-diazeniumdiolate NO donors and greater NO-release payloads. The data suggest a differential sensitivity to NO between cariogenic and periodontopathogenic bacteria with implications for the future development of NO-releasing oral care therapeutics. PMID:26078424

  16. Kinetic phase evolution of spinel cobalt oxide during lithiation

    SciTech Connect

    Li, Jing; He, Kai; Meng, Qingping; Li, Xin; Zhu, Yizhou; Hwang, Sooyeon; Sun, Ke; Gan, Hong; Zhu, Yimei; Mo, Yifei; Stach, Eric A.; Su, Dong

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalation reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.

  17. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE PAGES

    Li, Jing; He, Kai; Meng, Qingping; ...

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  18. Kinetics of Uranium Extraction from Uranium Tailings by Oxidative Leaching

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Li, Mi; Zhang, Xiaowen; Huang, Jing

    2016-07-01

    Extraction of uranium from uranium tailings by oxidative leaching with hydrogen peroxide (H2O2) was studied. The effects of various extraction factors were investigated to optimize the dissolution conditions, as well as to determine the leaching kinetic parameters. The behavior of H2O2 in the leaching process was determined through scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray diffraction analysis of leaching residues. Results suggest that H2O2 can significantly improve uranium extraction by decomposing the complex gangue structures in uranium tailings and by enhancing the reaction rate between uranium phases and the leaching agent. The extraction kinetics expression was changed from 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)-0.14903(S/L)-1.80435( R o)0.20023 e -1670.93/T t ( t ≥ 5) to 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)0.01382(S/L)-1.83275( R o)0.25763 e -1654.59/T t ( t ≥ 5) by the addition of H2O2 in the leaching process. The use of H2O2 in uranium leaching may help in extracting uranium more efficiently and rapidly from low-uranium-containing ores or tailings.

  19. Kinetics of oxytetracycline reaction with a hydrous manganese oxide.

    PubMed

    Rubert, Kennedy F; Pedersen, Joel A

    2006-12-01

    Tetracycline antibiotics comprise a class of broad spectrum antimicrobial agents finding application in human therapy, animal husbandry, aquaculture, and fruit crop production. To better understand the processes affecting these antibiotics in soils and sediments, the kinetics of oxytetracycline transformation by a hydrous manganese oxide (MnO2) were investigated as a function of reactant concentration, pH, and temperature. Oxytetracycline was rapidly degraded by MnO2. Initial reaction rates exhibited pronounced pH-dependence, increasing as pH decreased. Reaction of oxytetracycline with MnO2 was accompanied by generation of Mn(II) ions, suggesting oxidative transformation of the antibiotic. At pH 5.6, apparent reaction orders for oxytetracycline and MnO2 were 0.7 and 0.8. Reaction order with respect to H+ was 0.6 between pH 4 and 9. Initial reaction rates increased by a factor of approximately 2.4 for 10 degrees C temperature increases; the apparent activation energy (60 kJ x mol(-1)) was consistent with a surface-controlled reaction. Reactivity of tetracycline antibiotics toward MnO2 increased in the following order: rolitetracyline oxytetracycline < or =tetracycline approximately meclocycline < chlortetracycline. The initial rate of chlortetracycline degradation by MnO2 was substantially larger than that of the other tetracycline antibiotics investigated. MnO2 reactivity toward oxytetracycline decreased with time; a retarded rate equation was used to describe oxytetracycline reaction with MnO2 under declining rate conditions. This study indicates that natural manganese oxides in soils and sediments are likely to promote appreciable degradation of tetracycline antibiotics, and that reaction rates are strongly dependent on reaction time scale and solution conditions.

  20. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  1. Biomimetic Total Synthesis of (-)-Penibruguieramine A Using Memory of Chirality and Dynamic Kinetic Resolution.

    PubMed

    Kim, Jae Hyun; Lee, Seokwoo; Kim, Sanghee

    2015-09-07

    The fully stereocontrolled total synthesis of (-)-penibruguieramine A, a naturally occurring marine pyrrolizidine alkaloid, is described in this study for the first time. The key synthetic sequence is the biomimetic aldol reaction of the proline pentaketide amide. The principles of "memory of chirality" (MOC) and "dynamic kinetic resolution" (DKR) are applied to this reaction for the asymmetric synthesis using proline as the only chiral source. A mechanistic rationale is discussed for the excellent stereochemical outcome in a protic solvent environment.

  2. Kinetic Modeling of a Heterogeneous Fenton Oxidative Treatment of Petroleum Refining Wastewater

    PubMed Central

    Basheer Hasan, Diya'uddeen; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-01-01

    The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k2′), their final oxidation step (k1′), and the direct conversion to endproducts step (k3′) were 10.12, 3.78, and 0.24 min−1 for GKM; 0.98, 0.98, and nil min−1 for GLKM; and nil, nil, and >0.005 min−1 for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics. PMID:24592152

  3. Mechanistic aspects of metal valence change in SalenCo(III)OAc-catalyzed hydrolytic kinetic resolution of racemic epoxides.

    PubMed

    Ren, Wei-Min; Wang, Yi-Ming; Zhang, Rong; Jiang, Jing-Yang; Lu, Xiao-Bing

    2013-05-17

    The chiral SalenCo(III)OAc-catalyzed hydrolytic kinetic resolution (HKR) of racemic terminal epoxides to afford both enantioenriched epoxides and diols presents one of the most important achievements in asymmetric synthesis chemistry. Previous studies mainly focused on the development of highly efficient catalysts, while rare reports concerned the mechanistic understanding of metal valence change, associated with the formation of inactive Co(II)-Salen complex. Herein, we report the mechanistic aspects of catalyst deactivation regarding the transformation of Co(III) to Co(II) derivative in the HKR of racemic epoxides catalyzed by SalenCo(III)OAc complexes with an appended 1,5,7-triazabicyclo[4.4.0]dec-5-ene on the ligand framework by means of electrospray ionization mass spectrometry (ESI-MS). Continuous determination of transient cationic species in ESI-MS positive mode in conjunction with UV-vis spectroscopic studies at various time points provides evidence that a certain amount of SalenCo(III)OAc molecules were reduced to the corresponding Co(II) derivatives in the HKR of racemic propylene oxide or styrene oxide. To be accompanied by the reduction of Co(III) to Co(II), the resultant diols were oxidized to α-hydroxy ketones. These analyses along with some control experiments gave a mechanistic understanding of catalyst deactivation of SalenCo(III)OAc-catalyzed HKR of racemic epoxides regarding an unveiled redox reaction between Co(III)-Salen and diol, the hydrolyzed product.

  4. The kinetics of iodide oxidation by the manganese oxide mineral birnessite

    USGS Publications Warehouse

    Fox, P.M.; Davis, J.A.; Luther, G. W.

    2009-01-01

    The kinetics of iodide (I-) and molecular iodine (I2) oxidation by the manganese oxide mineral birnessite (??-MnO2) was investigated over the pH range 4.5-6.25. I- oxidation to iodate (IO3-) proceeded as a two-step reaction through an I2 intermediate. The rate of the reaction varied with both pH and birnessite concentration, with faster oxidation occurring at lower pH and higher birnessite concentration. The disappearance of I- from solution was first order with respect to I- concentration, pH, and birnessite concentration, such that -d[I-]/dt = k[I-][H+][MnO2], where k, the third order rate constant, is equal to 1.08 ?? 0.06 ?? 107 M-2 h-1. The data are consistent with the formation of an inner sphere I- surface complex as the first step of the reaction, and the adsorption of I- exhibited significant pH dependence. Both I2, and to a lesser extent, IO3- sorbed to birnessite. The results indicate that iodine transport in mildly acidic groundwater systems may not be conservative. Because of the higher adsorption of the oxidized I species I2 and IO3-, as well as the biophilic nature of I2, redox transformations of iodine must be taken into account when predicting I transport in aquifers and watersheds.

  5. Microwave Assisted Enzymatic Kinetic Resolution of (±)-1-Phenyl-2-propyn-1-ol in Nonaqueous Media

    PubMed Central

    Devendran, Saravanan; Yadav, Ganapati D.

    2014-01-01

    Kinetic resolution of 1-phenyl-2-propyn-1-ol, an important chiral synthon, was studied through trans-esterification with acyl acetate to investigate synergism between microwave irradiation and enzyme catalysis. Lipases from different microbial origins were employed for the kinetic resolution of (R/S)-1-phenyl-2-propyn-1-ol, among which Candida antarctica lipase B, immobilized on acrylic resin (Novozym 435), was found to be the best catalyst in n-hexane as solvent. Vinyl acetate was the most effective among different acyl esters studied. The effect of various parameters was studied in a systematic manner. Definite synergism between microwave and enzyme was observed. The initial rate was improved around 1.28 times under microwave irradiation than conventional heating. Under optimum conditions, maximum conversion (48.78%) and high enantiomeric excess (93.25%) were obtained in 2 h. From modeling studies, it is concluded that the reaction follows the Ping-Pong bi-bi mechanism with dead end alcohol inhibition. Kinetic parameters were obtained by using nonlinear regression. This process is green, clean, and easily scalable as compared to the chemical process. PMID:24707487

  6. Chemoenzymatic Dynamic Kinetic Resolution of Secondary Alcohols Using an Air- and Moisture-Stable Iron Racemization Catalyst.

    PubMed

    Gustafson, Karl P J; Guðmundsson, Arnar; Lewis, Kayla; Bäckvall, Jan-E

    2017-01-23

    Herein, we report on a metalloenzymatic dynamic kinetic resolution of sec-alcohols employing an iron-based racemization catalyst together with a lipase. The iron catalyst was evaluated in racemization and then used in dynamic kinetic resolution of a number of sec-alcohols to give enantiomerically pure products in good to high yields. The iron catalyst is air and moisture stable and is readily accessible.

  7. Kinetics and Microstructural Investigation of High-Temperature Oxidation of IN-738LC Super Alloy

    NASA Astrophysics Data System (ADS)

    Hamidi, S.; Rahimipour, M. R.; Eshraghi, M. J.; Hadavi, S. M. M.; Esfahani, H.

    2016-12-01

    The present study was carried out to investigate the kinetics and the surface chemistry of the oxide layers formed on the IN-738LC super alloy during high-temperature oxidation at 950 °C in air from 1 to 260 h. Oxidation kinetics were studied by mass gain measurement. The oxide layers were characterized by field emission scanning electron microscope, elemental distribution map, energy-dispersive spectroscopy as well as x-ray diffractometry (XRD). The oxidation kinetics followed the parabolic law. The XRD analysis revealed that the oxide scale contained mainly NiO, Ni (Cr, Al)2O4, Al2O3, TiO2 and Cr2O3. The oxide structure, from the top surface down to the substrate, was clarified by elemental map distribution studies as Ni-Ti oxides, Cr-Ti oxides, Cr2O3 oxide band, Ni-Co-Cr-W oxide and finally a blocky Al2O3 region. The oxidation scales were composed of three distinct layers of the outer and mid layers enriched by TiO2 and Cr2O3, NiCr2O4 oxide, respectively, and the innermost layer was composed of Al2O3 and matrix alloy. The depleted gamma prime layer was formed under the oxidation scales due to the impoverishment of Al and Ti which were induced by the formation of Al2O3 and TiO2.

  8. Kinetics and Microstructural Investigation of High-Temperature Oxidation of IN-738LC Super Alloy

    NASA Astrophysics Data System (ADS)

    Hamidi, S.; Rahimipour, M. R.; Eshraghi, M. J.; Hadavi, S. M. M.; Esfahani, H.

    2017-02-01

    The present study was carried out to investigate the kinetics and the surface chemistry of the oxide layers formed on the IN-738LC super alloy during high-temperature oxidation at 950 °C in air from 1 to 260 h. Oxidation kinetics were studied by mass gain measurement. The oxide layers were characterized by field emission scanning electron microscope, elemental distribution map, energy-dispersive spectroscopy as well as x-ray diffractometry (XRD). The oxidation kinetics followed the parabolic law. The XRD analysis revealed that the oxide scale contained mainly NiO, Ni (Cr, Al)2O4, Al2O3, TiO2 and Cr2O3. The oxide structure, from the top surface down to the substrate, was clarified by elemental map distribution studies as Ni-Ti oxides, Cr-Ti oxides, Cr2O3 oxide band, Ni-Co-Cr-W oxide and finally a blocky Al2O3 region. The oxidation scales were composed of three distinct layers of the outer and mid layers enriched by TiO2 and Cr2O3, NiCr2O4 oxide, respectively, and the innermost layer was composed of Al2O3 and matrix alloy. The depleted gamma prime layer was formed under the oxidation scales due to the impoverishment of Al and Ti which were induced by the formation of Al2O3 and TiO2.

  9. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  10. Stereoselective synthesis of norephedrine and norpseudoephedrine by using asymmetric transfer hydrogenation accompanied by dynamic kinetic resolution.

    PubMed

    Lee, Hyeon-Kyu; Kang, Soyeong; Choi, Eun Bok

    2012-06-15

    Each of the enantiomers of both norephedrine and norpseudoephedrine were stereoselectively prepared from the common, prochiral cyclic sulfamidate imine of racemic 1-hydroxy-1-phenyl-propan-2-one by employing asymmetric transfer hydrogenation (ATH) catalyzed by the well-defined chiral Rh-complexes, (S,S)- or (R,R)-Cp*RhCl(TsDPEN), and HCO(2)H/Et(3)N as the hydrogen source. The ATH processes are carried out under mild conditions (rt, 15 min) and are accompanied by dynamic kinetic resolution.

  11. Origin of Kinetic Resolution of Hydroxy Esters through Catalytic Enantioselective Lactonization by Chiral Phosphoric Acids.

    PubMed

    Changotra, Avtar; Sunoj, Raghavan B

    2016-08-05

    Kinetic resolution is a widely used strategy for separation and enrichment of enantiomers. Using density functional theory computations, the origin of how a chiral BINOL-phosphoric acid catalyzes the selective lactonization of one of the enantiomers of α-methyl γ-hydroxy ester is identified. In a stepwise mechanism, the stereocontrolling transition state for the addition of the hydroxyl group to the si face of the ester carbonyl in the case of the S isomer exhibits a network of more effective noncovalent interactions between the substrate and the chiral catalyst.

  12. Enantioselective Synthesis of Chiral Oxime Ethers: Desymmetrization and Dynamic Kinetic Resolution of Substituted Cyclohexanones.

    PubMed

    Nimmagadda, Sri Krishna; Mallojjala, Sharath Chandra; Woztas, Lukasz; Wheeler, Steven E; Antilla, Jon C

    2017-02-20

    Axially chiral cyclohexylidene oxime ethers exhibit unique chirality because of the restricted rotation of C=N. The first catalytic enantioselective synthesis of novel axially chiral cyclohexylidene oximes has been developed by catalytic desymmetrization of 4-substituted cyclohexanones with O-arylhydroxylamines and is catalyzed by a chiral BINOL-derived strontium phosphate with excellent yields and good enantioselectivities. In addition, chiral BINOL-derived phosphoric acid catalyzed dynamic kinetic resolution of α-substituted cyclohexanones has been performed and yields versatile intermediates in high yields and enantioselectivities.

  13. Chiral nanoporous metal-metallosalen frameworks for hydrolytic kinetic resolution of epoxides.

    PubMed

    Zhu, Chengfeng; Yuan, Guozan; Chen, Xu; Yang, Zhiwei; Cui, Yong

    2012-05-16

    Chiral nanoporous metal-organic frameworks are constructed by using dicarboxyl-functionalized chiral Ni(salen) and Co(salen) ligands. The Co(salen)-based framework is shown to be an efficient and recyclable heterogeneous catalyst for hydrolytic kinetic resolution (HKR) of racemic epoxides with up to 99.5% ee. The MOF structure brings Co(salen) units into a highly dense arrangement and close proximity that enhances bimetallic cooperative interactions, leading to improved catalytic activity and enantioselectivity in HKR compared with its homogeneous analogues, especially at low catalyst/substrate ratios.

  14. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    ERIC Educational Resources Information Center

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  15. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Colantoni, I.; Cruciani, A.; Di Domizio, S.; Vignati, M.; Bellini, F.; Casali, N.; Castellano, M. G.; Coppolecchia, A.; Cosmelli, C.; Tomei, C.

    2015-08-01

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σE = 154 ± 7 eV and an (18 ± 2)% efficiency.

  16. Dynamic kinetic resolution via asymmetric conjugate reduction: enantio- and diastereoselective synthesis of 2,4-dialkyl cyclopentanones.

    PubMed

    Jurkauskas, Valdas; Buchwald, Stephen L

    2002-03-27

    Herein, we report the kinetic and the dynamic kinetic resolutions of racemic 3,5-dialkyl-2-cyclopenten-1-ones. Kinetic resolution, with good selectivity factors (25-52), was achieved by conjugate reduction with catalytic CuCl/NaOt-Bu/(S)-p-tol-BINAP and stoichiometric quantities of poly(methylhydrosiloxane) (PMHS). When stoichiometric amounts of NaOt-Bu and t-BuOH were included in the reaction mixture, rapid racemization of the starting material occurred allowing for the dynamic kinetic resolution of the cyclopentenone substrates. In this process, chiral 2,4-dialkylcyclopentanones were isolated with high stereoselectivity (ee > or = 91%, dr > or = 90:10) and in high yield (> or =89%).

  17. Thermodynamic controls on the kinetics of microbial low-pH Fe(II) oxidation.

    PubMed

    Larson, Lance N; Sánchez-España, Javier; Kaley, Bradley; Sheng, Yizhi; Bibby, Kyle; Burgos, William D

    2014-08-19

    Acid mine drainage (AMD) is a major worldwide environmental threat to surface and groundwater quality. Microbial low-pH Fe(II) oxidation could be exploited for cost-effective AMD treatment; however, its use is limited because of uncertainties associated with its rate and ability to remove Fe from solution. We developed a thermodynamic-based framework to evaluate the kinetics of low-pH Fe(II) oxidation. We measured the kinetics of low-pH Fe(II) oxidation at five sites in the Appalachian Coal Basin in the US and three sites in the Iberian Pyrite Belt in Spain and found that the fastest rates of Fe(II) oxidation occurred at the sites with the lowest pH values. Thermodynamic calculations showed that the Gibbs free energy of Fe(II) oxidation (ΔG(oxidation)) was also most negative at the sites with the lowest pH values. We then conducted two series of microbial Fe(II) oxidation experiments in laboratory-scale chemostatic bioreactors operated through a series of pH values (2.1-4.2) and found the same relationships between Fe(II) oxidation kinetics, ΔG(oxidation), and pH. Conditions that favored the fastest rates of Fe(II) oxidation coincided with higher Fe(III) solubility. The solubility of Fe(III) minerals, thus plays an important role on Fe(II) oxidation kinetics. Methods to incorporate microbial low-pH Fe(II) oxidation into active and passive AMD treatment systems are discussed in the context of these findings. This study presents a simplified model that describes the relationship between free energy and microbial kinetics and should be broadly applicable to many biogeochemical systems.

  18. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  19. Hydroxyl radical induced oxidation of theophylline in water: a kinetic and mechanistic study.

    PubMed

    Sunil Paul, M M; Aravind, U K; Pramod, G; Saha, A; Aravindakumar, C T

    2014-08-14

    Oxidative destruction and mineralization of emerging organic pollutants by hydroxyl radicals (˙OH) is a well established area of research. The possibility of generating hazardous by-products in the case of ˙OH reaction demands extensive investigations on the degradation mechanism. A combination of pulse radiolysis and steady state photolysis (H2O2/UV photolysis) followed by high resolution mass spectrometric (HRMS) analysis have been employed to explicate the kinetic and mechanistic features of the destruction of theophylline, a model pharmaceutical compound and an identified pollutant, by ˙OH in the present study. The oxidative destruction of this molecule, for intermediate product studies, was initially achieved by H2O2/UV photolysis. The transient absorption spectrum corresponding to the reaction of ˙OH with theophylline at pH 6, primarily caused by the generation of (T8-OH)˙, was characterised by an absorption band at 330 nm (k2 = (8.22 ± 0.03) × 10(9) dm(3) mol(-1) s(-1)). A significantly different spectrum (λmax: 340 nm) was observed at highly alkaline pH (10.2) due to the deprotonation of this radical (pKa∼ 10.0). Specific one electron oxidants such as sulphate radical anions (SO4˙(-)) and azide radicals (N3˙) produce the deprotonated form (T(-H)˙) of the radical cation (T˙(+)) of theophylline (pKa 3.1) with k2 values of (7.51 ± 0.04) × 10(9) dm(3) mol(-1) s(-1) and (7.61 ± 0.02) × 10(9) dm(3) mol(-1) s(-1) respectively. Conversely, oxide radicals (O˙(-)) react with theophylline via a hydrogen abstraction protocol with a rather slow k2 value of (1.95 ± 0.02) × 10(9) dm(3) mol(-1) s(-1). The transient spectral studies were complemented by the end product profile acquired by HRMS analysis. Various transformation products of theophylline induced by ˙OH were identified by this technique which include derivatives of uric acids (i, iv & v) and xanthines (ii, iii & vi). Further breakdown of the early formed product due to ˙OH attack leads to

  20. Weibull mixture model for isoconversional kinetic analysis of biomass oxidative pyrolysis

    NASA Astrophysics Data System (ADS)

    Cai, J. M.; Chen, S. Y.

    2010-03-01

    In this work, the possibility of applying the weighted sum of three cumulative Weibull distribution functions for the fitting of the kinetic conversion data of biomass oxidative pyrolysis has been investigated. The kinetic conversion data of the thermal decomposition of olive oil solid waste in oxygen atmosphere for different heating rates have been analyzed. The results have shown that the experimental data can be perfectly reproduced by the general fitting function. Therefore, it is possible to obtain the corresponding conversion rate values of biomass oxidative pyrolysis by differentiating directly the fitted kinetic conversion data. Additionally, the logistic mixture model has been applied to the same experimental data. It can be found that the newly proposed function can provide a better fit of the data than the logistic mixture model. Based on the fitting of Weibull mixture model, the kinetic triples (E, A and f(α)) of oxidative pyrolysis of olive solid waste were obtained by means of Friedman's differential isoconversional method.

  1. Electrochemical degradation, kinetics & performance studies of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Das, Debanjan

    Linear and Non-linear electrochemical characterization techniques and equivalent circuit modelling were carried out on miniature and sub-commercial Solid Oxide Fuel Cell (SOFC) stacks as an in-situ diagnostic approach to evaluate and analyze their performance under the presence of simulated alternative fuel conditions. The main focus of the study was to track the change in cell behavior and response live, as the cell was generating power. Electrochemical Impedance Spectroscopy (EIS) was the most important linear AC technique used for the study. The distinct effects of inorganic components usually present in hydrocarbon fuel reformates on SOFC behavior have been determined, allowing identification of possible "fingerprint" impedance behavior corresponding to specific fuel conditions and reaction mechanisms. Critical electrochemical processes and degradation mechanisms which might affect cell performance were identified and quantified. Sulfur and siloxane cause the most prominent degradation and the associated electrochemical cell parameters such as Gerisher and Warburg elements are applied respectively for better understanding of the degradation processes. Electrochemical Frequency Modulation (EFM) was applied for kinetic studies in SOFCs for the very first time for estimating the exchange current density and transfer coefficients. EFM is a non-linear in-situ electrochemical technique conceptually different from EIS and is used extensively in corrosion work, but rarely used on fuel cells till now. EFM is based on exploring information obtained from non-linear higher harmonic contributions from potential perturbations of electrochemical systems, otherwise not obtained by EIS. The baseline fuel used was 3 % humidified hydrogen with a 5-cell SOFC sub-commercial planar stack to perform the analysis. Traditional methods such as EIS and Tafel analysis were carried out at similar operating conditions to verify and correlate with the EFM data and ensure the validity of the

  2. High resolution photoemission experiments on copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    Rameau, Jonathan David

    The mechanism for achieving high transition temperatures (T c) in copper oxide superconductors and the nature of the mysterious "pseudogap" phase from which this phenomenon arises are two of the most pressing issues in solid state physics. High resolution angle resolved photoemission spectroscopy (ARPES), which can directly probe the momentum and energy dependence of the electronic structure of a crystal, is considered one of the foremost tools for unraveling these mysteries. In this thesis we present work on both the further development of the ARPES technique itself and the results of two experiments on the high temperature superconductor Bi2Sr2CaCu2O8+delta (BSCCO)---the drosophila of copper oxide superconductors---based upon these analytical and experimental advances. On the analytical side we have shown that the precision of any ARPES experiment can be radically enhanced by using the Lucy-Richardson method (LRM) of iterative deconvolution to remove the worst effects of experimental resolution broadening present in all ARPES spectra. On the experimental side we have constructed a deep ultraviolet laser system capable of increasing our data acquisition rate by more than an order of magnitude compared to what is possible using traditional synchrotron radiation sources at the same momentum and energy resolutions. Using the LRM, in conjunction with synchrotron radiation, spectroscopic evidence was found for the existence of incoherent Cooper pairs in underdoped BSCCO in the normal pseudogap state (above Tc). At the same time an asymmetry between the particle and hole states of BSCCO was found, implying that doped Mott insulators, of which BSCCO is a primordial example, are characterized by the presence of a Fermi-Luttinger surface, rather than a Fermi surface, as would be the case for a simple metal. This study provided the first spectroscopic evidence for either phenomenon. In our second experiment we were able to use the LRM on data acquired with the laser ARPES

  3. Resolution of mitochondrial oxidant stress improves aged-cardiovascular performance

    PubMed Central

    Owada, Takashi; Yamauchi, Hiroyuki; Miura, Shunsuke; Machii, Hirofumi; Takeishi, Yasuchika

    2017-01-01

    Background Senescence is a major factor that increases oxidative stress in mitochondria, which contributes toward the pathogenesis of heart disease. However, the effect of antioxidant therapy on cardiac mitochondria in aged-cardiac performance remains elusive. Objectives We postulated that the mitochondrial targeting of superoxide scavenging would have benefits in the aged heart. Methods and results Generation of superoxide in the mitochondria and nicotinamide adenine dinucleotide phosphate oxidase activity increased in the heart of old mice compared with that in young mice. In old mice treated with a mitochondria-targeted antioxidant MitoTEMPO (180 µg/kg/day, 28 days) co-infusion using a subcutaneously implanted minipump, levels of superoxide in the mitochondria and nicotinamide adenine dinucleotide phosphate oxidase activity as well as hydrogen peroxide decreased markedly in cardiomyocytes. Treatment with MitoTEMPO in old mice improved the systolic and diastolic function assessed by echocardiography. Endothelium-dependent vasodilation in isolated coronary arteries and endothelial nitric-oxide synthase phosphorylation were impaired in old mice compared with that in young mice and were improved by MitoTEMPO treatment. Mitochondria from the old mice myocardium showed lower rates of complex I-dependent and II-dependent respiration compared with that from young mice. Supplementation of MitoTEMPO in old mice improved the respiration rates and efficiency of ATP generation in mitochondria to a level similar to that of young mice. Conclusion Resolution of oxidative stress in mitochondria by MitoTEMPO in old mice restored cardiac function and the capacity of coronary vasodilation to the same magnitude observed in young mice. An antioxidant strategy targeting mitochondria could have a therapeutic benefit in heart disease with senescence. PMID:27740971

  4. Comparative kinetic analysis of silent and ultrasound-assisted catalytic wet peroxide oxidation of phenol.

    PubMed

    Rokhina, Ekaterina V; Repo, Eveliina; Virkutyte, Jurate

    2010-03-01

    The kinetic study of silent and ultrasound-assisted catalytic wet peroxide oxidation of phenol in water was performed to qualitatively assess the effect of ultrasound on the process kinetics. Various kinetic parameters such as the apparent kinetic rate constants, the surface utilization coefficient and activation energy of phenol oxidation over RuI(3) catalyst were investigated. Comparative analysis revealed that the use of ultrasound irradiation reduced the energy barrier of the reaction but had no impact on the reaction pathway. The activation energy for the oxidation of phenol over RuI(3) catalyst in the presence of ultrasound was found to be 13kJmol(-1), which was four times smaller in comparison to the silent oxidation process (57kJmol(-1)). Finally, 'figures-of-merit' was utilized to assess different experimental strategies such as sonolysis alone, H(2)O(2)-enhanced sonolysis and sono-catalytic oxidation of phenol in order to estimate the electric energy consumption based on the kinetic rate constants of the oxidation process.

  5. Kinetic features and industrial prospects of the selective oxidative cracking of light alkanes

    NASA Astrophysics Data System (ADS)

    Arutyunov, V. S.; Savchenko, V. I.; Sedov, I. V.; Nikitin, A. V.; Magomedov, R. N.; Proshina, A. Yu

    2017-01-01

    The results of kinetic investigations of selective oxidative cracking of light alkanes are analyzed and integrated. This process attracts researchers' attention owing to possible opportunities for designing new industrial processes based on light hydrocarbon feed. Particular attention is paid to ethane for which comprehensive and adequate models of oxidative conversion suitable for detailed analysis of the process kinetics have already been developed. The prospects for the practical application of methane homologues present in natural and associated gases in the selective oxidative cracking are discussed. The bibliography includes 85 references.

  6. Chemism and kinetics of the oxidation of zinc-calcium oxysulfide

    NASA Astrophysics Data System (ADS)

    Gulyaeva, R. I.; Selivanov, E. N.; Mansurova, A. N.

    2013-05-01

    The sequence of phase transformations and the kinetics of the solid-phase (heating to 1273 K) oxidation of zinc-calcium oxysulfide CaZnSO with air are determined by thermodynamic, thermogravimetric, mass spectrometric, and X-ray diffraction analyses. The oxidation process is shown to be accompanied by the formation of the CaSO4 and ZnO phases depending on the heating conditions, as well as by the formation of CaO with SO2 evolution. The two-stage oxidation of CaZnSO is interpreted by the Avrami-Erofeev kinetic equations with activation energies of 190 and 422 kJ/mol.

  7. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution

    PubMed Central

    Yazdanbakhsh, Nima; Fisahn, Joachim

    2010-01-01

    Background Methods exist to quantify the distribution of growth rate over the root axis. However, non-destructive, high-throughput evaluations of total root elongation in controlled environments and the field are lacking in growth studies. A new imaging approach to analyse total root elongation is described. Scope High pixel resolution of the images enables the study of growth in short time intervals and provides high temporal resolution. Using the method described, total root elongation rates are calculated from the displacement of the root tip. Although the absolute root elongation rate changes in response to growth conditions, this set-up enables root growth of Arabidopsis wild-type seedlings to be followed for more than 1 month after germination. The method provides an easy approach to decipher root extension rate and much simpler calculations compared with other methods that use segmental growth to address this question. Conclusions The high temporal resolution allows small modifications of total root elongation growth to be revealed. Furthermore, with the options to investigate growth of various mutants in diverse growth conditions the present tool allows modulations in root growth kinetics due to different biotic and abiotic stimuli to be unravelled. Measurements performed on Arabidopsis thaliana wild-type (Col0) plants revealed rhythms superimposed on root elongation. Results obtained from the starchless mutant pgm, however, present a clearly modified pattern. As expected, deviation is strongest during the dark period. PMID:20421235

  8. BioRef II—Neutron reflectometry with relaxed resolution for fast, kinetic measurements at HZB

    NASA Astrophysics Data System (ADS)

    Trapp, M.; Steitz, R.; Kreuzer, M.; Strobl, M.; Rose, M.; Dahint, R.

    2016-10-01

    We present an upgrade to the time-of-flight neutron reflectometer BioRef at the research reactor BER II of the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). Through the integration of an additional chopper into the existing setup, the available wavelength resolution is significantly extended. Now two distinct operation modes can be used: a high resolution mode with Δλ/λ ranging from 1% to 5%, which allows for the investigation of thick films up to 4000 Å, and a high flux mode with Δλ/λ = 7%-11%. In the high flux mode, reflectivity curves from 0.007 Å-1 to 0.2 Å-1 with three angular settings can be recorded in 7 min. For a single angular setting and its respective window in Q-space, a time resolution of even less than 4 min is reached. The different configurations are documented by respective measurements (a) on a Ni-Ti multilayer and (b) the swelling kinetics of a solid-supported phospholipid coating upon incubation in a polyelectrolyte solution.

  9. Digitial readout for microwave kinetic inductance detectors and applications in high time resolution astronomy

    NASA Astrophysics Data System (ADS)

    Strader, Matthew James

    This dissertation spans two topics relating to optical to near-infrared astronomical cameras built around Microwave Kinetic Inductance Detectors (MKIDs). The first topic is the development of a digital readout system for 10- to 30-kilopixel arrays of MKIDs. MKIDs are superconducting detectors that can detect individual photons with a wide range of wavelengths with high time resolution (SI{2}{micro s}) and low energy resolution. The advantage of MKIDs over other low temperature detectors with similar capabilities is that it is relatively straightforward to multiplex MKIDs into large arrays. All the complexity of readout is in room temperature electronics. This work discusses the implementation and programming of these electronics. The second part of this work demonstrates the capabilities of the prototype optical and near-infrared MKID instrument with observations of pulsars. Detecting optical pulsations in these objects require high time resolution and low noise. The discovery of a correlation between the brightness of optical pulses from the Crab pulsar and the time of arrival of coincident giant radio pulses is presented. The search for optical pulses from a millisecond pulsar J0337+1715 is discussed along with a new upper limit on the brightness of its optical pulses.

  10. BioRef II-Neutron reflectometry with relaxed resolution for fast, kinetic measurements at HZB.

    PubMed

    Trapp, M; Steitz, R; Kreuzer, M; Strobl, M; Rose, M; Dahint, R

    2016-10-01

    We present an upgrade to the time-of-flight neutron reflectometer BioRef at the research reactor BER II of the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). Through the integration of an additional chopper into the existing setup, the available wavelength resolution is significantly extended. Now two distinct operation modes can be used: a high resolution mode with Δλ/λ ranging from 1% to 5%, which allows for the investigation of thick films up to 4000 Å, and a high flux mode with Δλ/λ = 7%-11%. In the high flux mode, reflectivity curves from 0.007 Å(-1) to 0.2 Å(-1) with three angular settings can be recorded in 7 min. For a single angular setting and its respective window in Q-space, a time resolution of even less than 4 min is reached. The different configurations are documented by respective measurements (a) on a Ni-Ti multilayer and (b) the swelling kinetics of a solid-supported phospholipid coating upon incubation in a polyelectrolyte solution.

  11. [Changes in Kinetics of Chemiluminescence of Plasma as a Measure of Systemic Oxidative Stress in Humans].

    PubMed

    Sozarukova, M M; Polimova, A M; Proskurnina, E V; Vladimirov, Yu A

    2016-01-01

    Oxidative stress is a pathogenetic factor of many diseases. The control of its level is important for early diagnosis and therapy adjustment. In this work, antioxidant status was estimated in blood plasma. In the system of 2,2'-azo-bis(2-amidinopropane)dihydrochloride-luminol a set of chemiluminescence kinetic curve parameters is proposed for oxidative stress level estimation (the latent period τ(lat) and the increasing of analytical signal ΔI(CL)). Uric acid and albumin were shown as the main components that responsible for changes in chemiluminescence kinetic curve of plasma. Serum albumin undergoes oxidative modification in dose-depend manner under the action of UV irradiation, it causes the enhancement of antioxidant properties. Changes in plasma chemiluminescence kinetics are proposed as a measure of oxidative stress in human body.

  12. High-temperature steam oxidation kinetics of the E110G cladding alloy

    NASA Astrophysics Data System (ADS)

    Király, Márton; Kulacsy, Katalin; Hózer, Zoltán; Perez-Feró, Erzsébet; Novotny, Tamás

    2016-07-01

    In the course of recent years, several experiments were performed at MTA EK (Centre for Energy Research, Hungarian Academy of Sciences) on the isothermal high-temperature oxidation of the improved Russian cladding alloy E110G in steam/argon atmosphere. Using these data and designing additional supporting experiments, the oxidation kinetics of the E110G alloy was investigated in a wide temperature range, between 600 °C and 1200 °C. For short durations (below 500 s) or high temperatures (above 1065 °C) the oxidation kinetics was found to follow a square-root-of-time dependence, while for longer durations and in the intermediate temperature range (800-1000 °C) it was found to approach a cube-root-of-time dependence rather than a square-root one. Based on the results a new best-estimate and a conservative oxidation kinetics model were created.

  13. Uranium oxidation kinetics monitored by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zalkind, S.; Rafailov, G.; Halevy, I.; Livneh, T.; Rubin, A.; Maimon, H.; Schweke, D.

    2017-03-01

    The oxidation kinetics of U-0.1 wt%Cr at oxygen pressures of 150 Torr and the temperature range of 90-150 °C was studied by means of in-situ X-ray diffraction (XRD). A "breakaway" in the oxidation kinetics is found at ∼0.25 μm, turning from a parabolic to a linear rate law. At the initial stage of oxidation the growth plane of UO2(111) is the prominent one. As the oxide thickens, the growth rate of UO2(220) plane increases and both planes grow concurrently. The activation energies obtained for the oxide growth are Qparabolic = 17.5 kcal/mol and Qlinear = 19 kcal/mol. Enhanced oxidation around uranium carbide (UC) inclusions is clearly observed by scanning electron microscopy (SEM).

  14. Evaluation of a new protocol for enzymatic dynamic kinetic resolution of 3-hydroxy-3-(aryl)propanoic acids.

    PubMed

    Koszelewski, Dominik; Zysk, Małgorzata; Brodzka, Anna; Żądło, Anna; Paprocki, Daniel; Ostaszewski, Ryszard

    2015-12-07

    The application of tandem metal-enzyme dynamic kinetic resolution (DKR) is a powerful tool for the manufacture of high-value chemical commodities. A new protocol of kinetic resolution based on irreversible enzymatic esterification of carboxylic acids with orthoesters was introduced to obtain optically active β-hydroxy esters. This procedure was combined with metal catalyzed racemization of the target substrate providing both (R) and (S) enantiomers of ethyl 3-hydroxy-3-(4-nitrophenyl)propanoate with a high yield of 89% at 40 °C. A substantial influence of the enzyme type, organic co-solvent, and metal catalyst on the conversion and enantioselectivity of the enzymatic dynamic kinetic resolution was noted.

  15. Kinetics of thermally oxidation of Ge(100) surface

    NASA Astrophysics Data System (ADS)

    Sahari, S. K.; Ohta, A.; Matsui, M.; Mishima, K.; Murakami, H.; Higashi, S.; Miyazaki, S.

    2013-03-01

    Thermal oxidation of a Ge(100) surface was investigated by using spectroscopic ellipsometry (SE) and x-ray photoelectron spectroscopy (XPS). Ge oxide was grown in the temperature range of 375 to 550°C in dry-O2 ambience at atmospheric pressure. Although the Ge-oxide growth rate shows a linear relationship in a log-log plot at a fixed temperature, and the slope indicates an enhancement of GeO desorption at oxidation temperatures over 490°C. The GeO desorption was also confirmed from the XPS analysis of the Si surface which was oxidized simultaneously with the Ge(100) surface. Thus, the Ge thermal oxidation at atmospheric pressure cannot be explained simply by the Deal-Grove model, in which the contribution of thermal desorption of Ge monoxide must be taken into account.

  16. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.

    PubMed

    Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian

    2017-01-03

    The design of a high-performance catalyst for Hg(0) oxidation and predicting the extent of Hg(0) oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg(0) oxidation, and the reaction mechanism and the reaction kinetics of Hg(0) oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg(0) oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg(0) concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg(0) oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg(0) with adsorbed HCl), and the rate of Hg(0) oxidation mainly depended on Cl(•) concentration on the surface. As H2O, SO2, and NO not only inhibited Cl(•) formation on the surface but also interfered with the interface reaction between gaseous Hg(0) and Cl(•) on the surface, Hg(0) oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H2O, SO2, and NO. Furthermore, the extent of Hg(0) oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter kE-R, and the predicted result was consistent with the experimental result.

  17. Seasonal variability of eddy kinetic energy in a global high-resolution ocean model

    NASA Astrophysics Data System (ADS)

    Rieck, Jan K.; Böning, Claus W.; Greatbatch, Richard J.; Scheinert, Markus

    2015-11-01

    A global ocean model with 1/12° horizontal resolution is used to assess the seasonal cycle of surface eddy kinetic energy (EKE). The model reproduces the salient features of the observed mean surface EKE, including amplitude and phase of its seasonal cycle in most parts of the ocean. In all subtropical gyres of the Pacific and Atlantic, EKE peaks in summer down to a depth of ˜350 m, below which the seasonal cycle is weak. Investigation of the possible driving mechanisms reveals the seasonal changes in the thermal interactions with the atmosphere to be the most likely cause of the summer maximum of EKE. The development of the seasonal thermocline in spring and summer is accompanied by stronger mesoscale variations in the horizontal temperature gradients near the surface which corresponds, by thermal wind balance, to an intensification of mesoscale velocity anomalies toward the surface.

  18. Lipase-Catalyzed Kinetic Resolution of Novel Antifungal N-Substituted Benzimidazole Derivatives.

    PubMed

    Łukowska-Chojnacka, Edyta; Staniszewska, Monika; Bondaryk, Małgorzata; Maurin, Jan K; Bretner, Maria

    2016-04-01

    A series of new N-substituted benzimidazole derivatives was synthesized and their antifungal activity against Candida albicans was evaluated. The chemical step included synthesis of appropriate ketones containing benzimidazole ring, reduction of ketones to the racemic alcohols, and acetylation of alcohols to the esters. All benzimidazole derivatives were obtained with satisfactory yields and in relatively short times. All synthesized compounds exhibit significant antifungal activity against Candida albicans 900028 ATCC (% cell inhibition at 0.25 μg concentration > 98%). Additionally, racemic mixtures of alcohols were separated by lipase-catalyzed kinetic resolution. In the enzymatic step a transesterification reaction was applied and the influence of a lipase type and solvent on the enantioselectivity of the reaction was studied. The most selective enzymes were Novozyme SP 435 and lipase Amano AK from Pseudomonas fluorescens (E > 100).

  19. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis.

    PubMed

    Tokunaga, M; Larrow, J F; Kakiuchi, F; Jacobsen, E N

    1997-08-15

    Epoxides are versatile building blocks for organic synthesis. However, terminal epoxides are arguably the most important subclass of these compounds, and no general and practical method exists for their production in enantiomerically pure form. Terminal epoxides are available very inexpensively as racemic mixtures, and kinetic resolution is an attractive strategy for the production of optically active epoxides, given an economical and operationally simple method. Readily accessible synthetic catalysts (chiral cobalt-based salen complexes) have been used for the efficient asymmetric hydrolysis of terminal epoxides. This process uses water as the only reagent, no added solvent, and low loadings of a recyclable catalyst (<0.5 mole percent), and it affords highly valuable terminal epoxides and 1, 2-diols in high yield with high enantiomeric enrichment.

  20. Development of dynamic kinetic resolution on large scale for (±)-1-phenylethylamine.

    PubMed

    Thalén, Lisa K; Bäckvall, Jan-E

    2010-09-13

    Candida antarctica lipase B (CALB) and racemization catalyst 4 were combined in the dynamic kinetic resolution (DKR) of (±)-1-phenylethylamine (1). Several reaction parameters have been investigated to modify the method for application on multigram scale. A comparison of isopropyl acetate and alkyl methoxyacetates as acyl donors was carried out. It was found that lower catalyst loadings could be used to obtain (R)-2-methoxy-N-(1-phenylethyl)acetamide (3) in good yield and high ee when alkyl methoxyacetates were used as acyl donors compared to when isopropyl acetate was used as the acyl donor. The catalyst loading could be decreased to 1.25 mol % Ru-catalyst 4 and 10 mg CALB per mmol 1 when alkyl methoxyacetates were used as the acyl donor.

  1. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases.

    PubMed

    Gustafson, Karl P J; Lihammar, Richard; Verho, Oscar; Engström, Karin; Bäckvall, Jan-E

    2014-05-02

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 °C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 °C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  2. Multivariate curve resolution: a method of evaluating the kinetics of biotechnological reactions.

    PubMed

    Kessler, W; Kessler, R W

    2006-03-01

    In biotechnology, strong emphasis is placed on the development of wet chemical analysis and chromatography to separate target components from a complex matrix. In bioprocessing, the development of single compound biosensors is an important activity. The advantages of these techniques are their high sensitivity and specificity. Inline or online monitoring by means of spectroscopy has the potential to be used as an "all-in-one" analysis technique for biotechnological studies, but it lacks specificity. Multivariate curve resolution (MCR) can be used to overcome this limitation. MCR is able to extract the number of components involved in a complex spectral feature, to attribute the resulting spectra to chemical compounds, to quantify the individual spectral contributions, and to use this quantification to develop kinetic models for the process with or without a priori knowledge. After a short introduction to MCR, two applications are presented. In the first example, the spectral features of hemp are monitored and analysed during growth. MCR provides unperturbed spectra on the activity of, for example, lignin and cellulose during plant development. In a second example, the kinetics of a laccase enzyme-catalysed degradation of aromatic hydrocarbons are calculated from UV/VIS spectra.

  3. High-resolution 2D3V simulations of forced hybrid-kinetic turbulence

    NASA Astrophysics Data System (ADS)

    Cerri, Silvio Sergio; Califano, Francesco; Rincon, Francois; Told, Daniel; Jenko, Frank; Pegoraro, Francesco

    2016-10-01

    The understanding of the kinetic processes at play in plasma turbulence is a frontier problem in plasma physics and among the topics currently of most interest in space plasma research. Here we investigate the properties of turbulence from the end of the magnetohydrodynamic (MHD) cascade to scales well below the ion gyroradius (i.e., the so-called ``dissipation'' or ``dispersion'' range) by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in a 2D3V phase-space (two real-space and three velocity-space dimensions). Different values of the plasma beta parameter typical of the solar wind (SW) are investigated. Several aspects of turbulence at small-scales emerging from the simulations are presented and discussed. Even within the limitations of the hybrid approach in 2D3V, a reasonable agreement with SW observations and with theory is found. Finally, we identify possible implications and questions related to SW turbulence which arise from this study. This research has been funded by European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No.277870 and by Euratom research and training programme 2014-2018. Simulations were performed on Fermi (CINECA, IT) and Hydra (MPCDF, DE).

  4. Origin of the Chemical and Kinetic Stability of Graphene Oxide

    PubMed Central

    Zhou, Si; Bongiorno, Angelo

    2013-01-01

    At moderate temperatures (≤ 70°C), thermal reduction of graphene oxide is inefficient and after its synthesis the material enters in a metastable state. Here, first-principles and statistical calculations are used to investigate both the low-temperature processes leading to decomposition of graphene oxide and the role of ageing on the structure and stability of this material. Our study shows that the key factor underlying the stability of graphene oxide is the tendency of the oxygen functionalities to agglomerate and form highly oxidized domains surrounded by areas of pristine graphene. Within the agglomerates of functional groups, the primary decomposition reactions are hindered by both geometrical and energetic factors. The number of reacting sites is reduced by the occurrence of local order in the oxidized domains, and due to the close packing of the oxygen functionalities, the decomposition reactions become – on average – endothermic by more than 0.6 eV. PMID:23963517

  5. Importance of Counterion Reactivity on the Deactivation of Co-Salen Catalysts in the Hydrolytic Kinetic Resolution of Epichlorohydrin

    SciTech Connect

    Jain,S.; Zheng, X.; Jones, C.; Weck, M.; Davis, R.

    2007-01-01

    Possible modes of deactivation of Jacobsen's Co-salen catalyst during the hydrolytic kinetic resolution (HKR) of epichlorohydrin were explored by UV-vis spectroscopy, X-ray absorption spectroscopy, and electrospray ionization mass spectrometry, combined with recycling studies. Although an active Co(III)-salen catalyst deactivated substantially after multiple cycles without regeneration, the catalyst maintained its +3 oxidation state throughout the runs. Thus, deactivation of Co-salen during HKR was not the result of Co reduction. The mass spectrum of a deactivated material showed that catalyst dimerization does not account for the loss of activity. Results from various catalyst pretreatment tests, as well as from catalysts containing various counterions (acetate, tosylate, chloride, iodide) indicated that the rate of addition of the Co-salen counterions to epoxide forming Co-OH during the reaction correlated with deactivation. The extent of counterion addition to epoxide was influenced by the exposure time and the nucleophilicity of the counterion. An oligo(cyclooctene)-supported Co-OAc salen catalyst, which was 25 times more active than the standard Co-salen catalyst, was recycled multiple times with negligible deactivation.

  6. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption.

    PubMed

    Zou, Jiaxiu; Peng, Xiaolan; Li, Miao; Xiong, Ying; Wang, Bing; Dong, Faqin; Wang, Bin

    2017-03-01

    In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm(-2)), NaCl concentration added to the real wastewaters (0-3 g·L(-1)), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg(-1) COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater.

  7. Probing Protein Folding Kinetics with High-resolution, Stabilized Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Wong, Wesley; Halvorsen, Ken

    2009-03-01

    Single-molecule techniques provide a powerful means of exploring molecular transitions such as the unfolding and refolding of a protein. However, the quantification of bi-directional transitions and near-equilibrium phenomena poses unique challenges, and is often limited by the detection resolution and long-term stability of the instrument. We have developed unique optical tweezers methods that address these problems, including an interference-based method for high-resolution 3D bead tracking (˜1 nm laterally, ˜0.3 nm vertically, at > 100 Hz), and a continuous autofocus system that stabilizes the trap height to within 1-2 nm longterm [1,2]. We have used our instruments to quantify the force-dependent unfolding and refolding kinetics of single protein domains (e.g. spectrin in collaboration with E. Evans). These single-molecule studies are presented, together with the accompanying probabilistic analysis that we have developed. References: 1. W.P. Wong, V. Heinrich, E. Evans, Mat. Res. Soc. Symp. Proc., 790, P5.1-P5.10 (2004). 2. V. Heinrich, W.P. Wong, K. Halvorsen, E. Evans, Langmuir, 24, 1194-1203 (2008).

  8. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    SciTech Connect

    Cardani, L.; Colantoni, I.; Coppolecchia, A.; Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C.; Di Domizio, S.; Castellano, M. G.; Tomei, C.

    2015-08-31

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.

  9. Kinetics and Mechanism in the Oxidation of Metal Vapors

    DTIC Science & Technology

    1974-10-01

    cooled induction coil enters the furnace chamber from the bottom flange. The crucible and its holder are supported on three tantalum rods on the inlet...In an indium furnace , heated by the same induction field as the crucible containing the thorium. When thorium was allowed to react with partially...identify by block number) Kinetics Reproduced by Uranium NATtONAL TECHNICALThorium INFORMATIOtM SERVICE US Depermeht of Cm’,ner’e Springfield, VA. 22151

  10. Pyrolysis and Oxidation Kinetics of Anisole and Phenol

    DTIC Science & Technology

    1997-06-01

    opportunity later on to serve as Rob’s teaching assistant. I chose to work with Profs. Irv Glassman and Ken Brezinsky because of their obvious enthusiasm...solvents. In general, the thermochemistry for H abstraction by C6H50- is similar to the thermochemistry for the same H abstraction by H02. However, the...1965). Effects of resonance and structure on the thermochemistry of organic’peroxy radicals and the kinetics of combustion reactions. J. Am. Chem

  11. Kinetics and mechanism of photopromoted oxidative dissolution of antimony trioxide.

    PubMed

    Hu, Xingyun; Kong, Linghao; He, Mengchang

    2014-12-16

    Light (sunlight, ultraviolet, simulated sunlight) irradiation was used to initiate the dissolution of antimony trioxide (Sb2O3). Dissolution rate of Sb2O3 was accelerated and dissolved trivalent antimony (Sb(III)) was oxidized in the irradiation of light. The photopromoted oxidative dissolution mechanism of Sb2O3 was studied through experiments investigating the effects of pH, free radicals scavengers, dissolved oxygen removal and Sb2O3 dosage on the release rate of antimony from Sb2O3 under simulated sunlight irradiation. The key oxidative components were hydroxyl free radicals, photogenerated holes and superoxide free radicals; their contribution ratios were roughly estimated. In addition, a conceptual model of the photocatalytic oxidation dissolution of Sb2O3 was proposed. The overall pH-dependent dissolution rate of Sb2O3 and the oxidation of Sb(III) under light irradiation were expressed by r = 0.08 ·[OH(-)](0.63) and rox = 0.10 ·[OH(-)](0.79). The present study on the mechanism of the photo-oxidation dissolution of Sb2O3 could help clarify the geochemical cycle and fate of Sb in the environment.

  12. Oxidation kinetics of a continuous carbon phase in a nonreactive matrix

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Cawley, James D.; Parthasarathy, Triplicane A.

    1995-01-01

    Analytical solutions of and experimental results on the oxidation kinetics of carbon in a pore are presented. Reaction rate, reaction sequence, oxidant partial pressure, total system pressure, pore/crack dimensions, and temperature are analyzed with respect to the influence of each on an overall linear-parabolic rate relationship. Direct measurement of carbon recession is performed using two microcomposite model systems oxidized in the temperature range of 700 to 1200 C, and for times to 35 h. Experimental results are evaluated using the derived analytical solutions. Implications on the oxidation resistance of continuous-fiber-reinforced ceramic-matrix composites containing a carbon constituent are discussed.

  13. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  14. Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khedr, M. H.; Abdel Halim, K. S.; Soliman, N. K.

    2008-12-01

    Carbon nanotubes (CNTs) were synthesized by the catalytic decomposition of acetylene over nanosized metallic iron. A high metal loading was chosen in order to obtain a longer catalytic activity. Different nanosized iron oxides were prepared using chemical methods. A catalyst of the composition 40% Fe 2O 3:60% Al 2O 3 is prepared by wet impregnation method. The prepared samples of iron oxides supported in alumina were completely reduced by hydrogen gas at 500 °C and then constant rate of acetylene gas was passed over the freshly reduced samples at different reaction conditions. The kinetics of CNTs synthesis on reduced nanosized Fe 2O 3 supported on alumina was investigated as a function of crystal size of iron oxide catalyst (35-150 nm) and decomposition temperature (400-700 °C). The microstructure and morphology of the synthesized catalyst and CNTs were characterized using scanning electron microscope (SEM), high-resolution transmission electron microscope (HR-TEM) and XRD analysis. The results revealed that both the crystal size of iron oxide and decomposition temperature have a significant effect on the percentage yield of carbon deposited. It increased by decreasing crystal size of the catalyst and increasing decomposition temperature to certain limit. The maximum yield of carbon deposited (426%) was obtained at decomposition temperature 600 °C and over nanosized iron oxide catalyst with crystal size of average 35 nm.

  15. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    SciTech Connect

    Wood, Elizabeth Sooby; Parker, Stephen Scott; Nelson, Andrew Thomas

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  16. Kinetic aspects of the formation of aluminium oxide by use of a microwave-induced plasma.

    PubMed

    Quade, A; Steffen, H; Hippler, R; Wulff, H

    2002-10-01

    The oxidation of thin aluminium layers in a microwave plasma has been investigated to determine the kinetics of oxide growth. Thin Al-coatings were oxidized by means of a variety of gas mixtures, characterized by different partial pressures of oxygen, in microwave-induced plasmas of different power. To study the whole kinetic process the Al-metal and the oxide formed were investigated by means of a combination of grazing incidence X-ray reflectometry (GIXR) and grazing incidence X-ray diffractometry (GIXRD). XPS and FTIR spectroscopy confirmed the formation of stoichiometric Al(2)O(3). The alumina formed is X-ray amorphous. Quantitative description of oxide formation was achieved indirectly by determination of the decrease in the integrated intensity of the Al(111)-peak and the total thickness of the whole coating. These values enabled calculation of kinetic data. It was found that oxide growth was a combination of two simultaneous processes - diffusion and sputter processes. The diffusion coefficient D (cm(2) s(-1)) and the sputter rate S (nm s(-1)) were determined. The effect of the composition of the gas mixture, microwave power, and concentration of activated oxygen species on the oxidation process will be discussed. For calculation of the activation energy, E(A), of this plasma-enhanced diffusion process the temperature-dependence of D was investigated.

  17. Kinetic resolution of allyl fluorides by enantioselective allylic trifluoromethylation based on silicon-assisted C-F bond cleavage.

    PubMed

    Nishimine, Takayuki; Fukushi, Kazunobu; Shibata, Naoyuki; Taira, Hiromi; Tokunaga, Etsuko; Yamano, Akihito; Shiro, Motoo; Shibata, Norio

    2014-01-07

    Two birds, one stone! The first kinetic resolution of allyl fluorides was achieved by the development of an organocatalyzed enantioselective allylic trifluoromethylation. Two kinds of chiral fluorinated compounds, which incorporate C*F and C*CF3 units, respectively, can thus be accessed by a single transformation.

  18. Exploring crystallization kinetics in natural rhyolitic melts using high resolution CT imagery of spherulites

    NASA Astrophysics Data System (ADS)

    Clow, T. W.; Befus, K. S.; Gardner, J. E.

    2014-12-01

    Little of our understanding of crystallization kinetics has been directly derived from studies of natural samples. We examine crystallization of rhyolitic melts by quantifying spherulite sizes and number densities in obsidian collected from Yellowstone caldera using high-resolution x-ray computed tomography (CT) imagery. Spherulites are spherical to ellipsoidal masses of intergrown alkali feldspar and quartz in a radiating, fibrous structure. They are thought to form in response to relatively rapid crystallization of melt in response to large amounts of undercooling. Recent research using compositional gradients that form outside of spherulites has suggested that they nucleate at 700 to 500 ˚C and their growth slows exponentially until it eventually ceases at ~400 ˚C. By quantifying spherulite textures, and using those temperature constraints, we derive new kinetic information regarding crystallization in natural rhyolitic systems. We find that spherulites range from 0.2 to 12.3 mm in diameter, and are 0.004 to 49.5 mm3 in volume. Such values generate number densities of 70 to 185 spherulites cm-3. Histograms of size display positively skewed distributions indicating small spherulites are far more abundant than larger ones. Those distributions imply nucleation rates change as a function of temperature. At higher temperatures where the melt is undercooled by 400-500 ˚C, nucleation is rare and growth is favored. With decreasing temperature, nucleation rates increase rapidly until cold enough temperatures are reached that diffusion limits crystallization and causes it to cease (undercoolings of ~650 ˚C). Assuming a cooling rate for the host obsidian of 10-5 ˚C s-1, then overall spherulite nucleation rates are 0.01 to 0.03 spherulites cm-3 hour-1.

  19. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    PubMed

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised.

  20. Reflectance spectroscopy in analysis of UO2 scale: derivation of a kinetic model of uranium oxidation.

    PubMed

    Chernia, Z

    2009-03-21

    In this study, we analyzed the development of a compact oxide scale built in course of Uranium surface oxidation. The process was monitored by an in-situ acquisition of the reflectance interference peaks in the NIR-MIR. Dielectric properties of the growing oxide scale were derived in accord to the oscillator model. We used effective media approach to simulate heterogeneous dielectric content in the oxide-metal interface. Following dielectric parameterization, structural properties (e.g., scale thickness) of the proposed multi-scale scheme were calculated. As scale's growth process quantified, a valid kinetic model was proposed. Analysis showed that oxidation dynamics is governed by a multi-parabolic, true diffusion-limited mechanism of activation energy conveniently equaling the known anion diffusion enthalpy of 26 kcal/mol. The applied kinetic model suggested a setup of two consecutive oxide scales, characterized by differing anion diffusion rates. Though mathematical formalism presented a similar to the paralinear, time-dependent solution, here, in contrast to the classic paralinear assumption, both scales consisted of a compact, diffusion limited oxide barriers. As a result, the difference in anion flow across the outer and inner scale barriers assigned the overall, pseudo-linear rate constant-kl, of a negative (in contrast to the paralinear approach) value. Next, Uranium oxidation has been studied in the post-elastic domain. Markedly, upon breakaway of the compact oxide scale, classic paralinear behavior was reestablished for scale thickness of > or = 0.5 microm.

  1. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    PubMed Central

    Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis–Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l−1 was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used 15NH4+ dilution technique. PMID:23657360

  2. Modeling Oxidation Kinetics of SiC-Containing Refractory Diborides

    DTIC Science & Technology

    2012-01-01

    Diboride Silicon Carbide Produced by the Spark Plasma Sintering Method,” J. Am. Ceram. Soc., 92 [9] 2046–52 (2009). 11C. M. Carney, “Oxidation...Temperature, K SiC - sintered , oxygen : Costello, Treessler [50] SiC - HP, oxygen - Costello, Treessler [50] SC SiC-fast -oxygen- Costello, Treessler [50] SC...and Arcjet Oxidation of Hafnium-Based Ultra High Temperature Ceramics Fabricated by Hot Press- ing and Field-Assisted Sintering ,” J. Eur. Ceram. Soc

  3. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    NASA Technical Reports Server (NTRS)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  4. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics

    NASA Astrophysics Data System (ADS)

    Roden, Eric E.

    2004-08-01

    Data from studies of dissimilatory bacterial (10 8 cells mL -1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L -1) were analyzed in relation to a generalized rate law for mineral dissolution (J t/m 0 = k'(m/m 0) γ, where J t is the rate of dissolution and/or reduction at time t, m 0 is the initial mass of oxide, and m/m 0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to

  5. Kinetics of ruthenium(III) catalyzed and uncatalyzed oxidation of monoethanolamine by N-bromosuccinimide

    NASA Astrophysics Data System (ADS)

    Venkata Nadh, R.; Syama Sundar, B.; Radhakrishnamurti, P. S.

    2016-09-01

    Kinetics of uncatalyzed and ruthenium(III) catalyzed oxidation of monoethanolamine by N-bromosuccinimide (NBS) has been studied in an aqueous acetic acid medium in the presence of sodium acetate and perchloric acid, respectively. In the uncatalyzed oxidation the kinetic orders are: the first order in NBS, a fractional order in the substrate. The rate of the reaction increased with an increase in the sodium acetate concentration and decreased with an increase in the perchloric acid concentration. This indicates that free amine molecules are the reactive species. Addition of halide ions results in a decrease in the kinetic rate, which is noteworthy. Both in absence and presence of a catalyst, a decrease in the dielectric constant of the medium decreases the kinetic rate pointing out that these are dipole—dipole reactions. A relatively higher oxidation state of ruthenium i.e., Ru(V) was found to be the active species in Ru(III) catalyzed reactions. A suitable mechanism consistent with the observations has been proposed and a rate law has been derived to explain the kinetic orders.

  6. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    PubMed

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs.

  7. Development of Kinetics for Soot Oxidation at High Pressures Under Fuel-Lean Conditions

    SciTech Connect

    Lighty, JoAnn; Vander Wal, Randy

    2014-04-21

    The focus of the proposed research was to develop kinetic models for soot oxidation with the hope of developing a validated, predictive, multi-­scale, combustion model to optimize the design and operation of evolving fuels in advanced engines for transportation applications. The work focused on the relatively unstudied area of the fundamental mechanism for soot oxidation. The objectives include understanding of the kinetics of soot oxidation by O2 under high pressure which require: 1) development of intrinsic kinetics for the surface oxidation, which takes into account the dependence of reactivity upon nanostructure and 2) evolution of nanostructure and its impact upon oxidation rate and 3) inclusion of internal surface area development and possible fragmentation resulting from pore development and /or surface oxidation. These objectives were explored for a variety of pure fuel components and surrogate fuels. This project was a joint effort between the University of Utah (UU) and Pennsylvania State University (Penn State). The work at the UU focuses on experimental studies using a two-­stage burner and a high- pressure thermogravimetric analyzer (TGA). Penn State provided HRTEM images and guidance in the fringe analysis algorithms and parameter quantification for the images. This report focuses on completion done under supplemental funding.

  8. Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.

    PubMed

    Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A

    2014-01-01

    In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.

  9. Effects of Soot Structure on Soot Oxidation Kinetics

    DTIC Science & Technology

    2011-06-01

    of Figures    Figure 1. Distribution of activation energies for oxygen adsorbed on soot determined by temperature programmed desorption (Du et al...25  Figure 20. Thermophoretic sampling system for transmission electron microscopy analysis. .... 26  Figure 21. The relative...HAB: Height above the top burner HP: High pass HR-TEM: High-resolution Transmission Electron Microscopy LP: Low pass NSC: Nagle-Strickland

  10. Atypical kinetic behavior of chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic hydrocarbons.

    PubMed

    Aburto, Jorge; Correa-Basurto, Jose; Torres, Eduardo

    2008-12-01

    We have identified an atypical kinetic behavior for the oxidative halogenation of several polycyclic aromatic hydrocarbons (PAHs) by chloroperoxidase (CPO) from Caldariomyces fumago. This behavior resembles the capacity of some members of the P450 family to simultaneously recognize several substrate molecules at their active sites. Indeed, fluorometric studies showed that PAHs exist in solution as monomers and pi-pi dimers that interact to different extents with CPO. The dissociation constants of dimerization were evaluated for every single PAH by spectrofluorometry. Furthermore, docking studies also suggest that CPO might recognize either one or two substrate molecules in its active site. The atypical sigmoidal kinetic behavior of CPO in the oxidative halogenation of PAHs is explained in terms of different kinetic models for non-heteroatomic PAHs (naphthalene, anthracene and pyrene). The results suggest that the actual substrate for CPO in this study was the pi-pi dimer for all evaluated PAHs.

  11. Kinetics adsorption study of the ethidium bromide by graphene oxide as adsorbent from aqueous matrices

    NASA Astrophysics Data System (ADS)

    Rajabi, M.; Moradi, O.; Zare, K.

    2017-01-01

    In this study of ethidium bromide, adsorption from aqueous matrices by graphene oxide as adsorbent was investigated. Influencing parameters in the adsorption study included contact time, temperature, and pH. The optimum time was selected 17 min, and the best value of pH was determined at 8. All adsorption experiments were performed at 298 K temperature. The maximum wavelength of ethidium bromide was 475 nm. The Elovich, four types of the pseudo-second-order, the pseudo-first-order, and intra-particle diffusion kinetic adsorption models were used for kinetic study, and the results show that adsorption of ethidium bromide on graphene oxide surface best complied with type (I) of the pseudo-second-order kinetic model.

  12. Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Shen, Xiao-yi; Zhai, Yu-chun

    2015-05-01

    Thermodynamic analyses and kinetic studies were performed on zinc oxide ore treatment by (NH4)2SO4 roasting technology. The results show that it is theoretically feasible to realize a roasting reaction between the zinc oxide ore and (NH4)2SO4 in a temperature range of 573-723 K. The effects of reaction temperature and particle size on the extraction rate of zinc were also examined. It is found that a surface chemical reaction is the rate-controlling step in roasting kinetics. The calculated activation energy of this process is about 45.57 kJ/mol, and the kinetic model can be expressed as follows: 1 - (1 - α)1/3 = 30.85 exp(-45.57/ RT)· t. An extraction ratio of zinc as high as 92% could be achieved under the optimum conditions.

  13. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    NASA Astrophysics Data System (ADS)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  14. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    ERIC Educational Resources Information Center

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  15. Ferrate promoted oxidative cleavage of sulfonamides: Kinetics and product formation under acidic conditions

    EPA Science Inventory

    Sulfonamide-based antibiotics are often detected in surface waters and secondary wastewater effluents and pose an eminent threat for the development of antibiotic resistance bacteria and genes in aquatic environment. This paper presents the kinetics and stoichiometry of the oxid...

  16. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents.

    PubMed

    Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua

    2017-02-13

    Advanced oxidation processes (AOPs), such as hydroxyl radical (HO(•))- and sulfate radical (SO4(•-))-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO(•)- and SO4(•-)-mediated oxidation. In the UV/H2O2 process, a simplified kinetic model involving only steady state concentrations of HO(•) and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO(•) in the removal of PPCPs. In the UV/K2S2O8 process, the calculated steady state concentrations of CO3(•-) and bromine radicals (Br(•), Br2(•-) and BrCl(•-)) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO4(•-), respectively. The kinetic model, involving both SO4(•-) and CO3(•-) as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO4(•-) could lead to overestimations of the removal efficiencies of the SO4(•-)-mediated oxidation of nitroimidazoles in wastewater effluents.

  17. Nitrite-Driven Nitrous Oxide Production Under Aerobic Soil Conditions: Kinetics and Biochemical Controls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrite (NO2-) can accumulate during nitrification in soil following fertilizer application. While the role of NO2- as a substrate regulating nitrous oxide (N2O) production is recognized, kinetic data are not available that allow for estimating N2O production or soil-to-atmosphere fluxes as a functi...

  18. Crystallization kinetics in poly(ethylene oxide) / layered silicates nanocomposites

    NASA Astrophysics Data System (ADS)

    Pavlopoulou, Eleni; Fotiadou, Sapfo; Papananou, Eleni; Chrissopoulou, Kiriaki; Anastasiadis, Spiros H.; Portale, Giuseppe; Bras, Wim

    2009-03-01

    We investigate the effect of inorganic clay on the crystalline characteristics and the crystallization kinetics of PEO in its intercalated nanocomposites with natural montmorillonite (Na+- MMT). The structure of the hybrids was investigated over multiple length scales by X-ray diffraction, small-angle X-ray scattering (SAXS) and polarizing optical microscopy (POM) as well as by DSC. The PEO within the galleries is completely amorphous whereas only the excess polymer outside the completely full galleries can crystallize at high PEO concentrations. The time resolved measurements reveal the effect of clay on crystallization. Even very small amount of the inorganic can cause a significant decrease of the spherulite size. The crystallization mechanism varies from sporadic nucleation for pure PEO to two-dimensional growth with predetermined nuclei at 10wt% clay with a higher activation barrier for low clay concentration. Sponsored by NATO's Scientific Affairs Division, by the Greek GSRT and by the EU.

  19. Study of oxide and α-Zr(O) growth kinetics from high temperature steam oxidation of Zircaloy-4 cladding

    NASA Astrophysics Data System (ADS)

    Sawarn, Tapan K.; Banerjee, Suparna; Samanta, Akanksha; Rath, B. N.; Kumar, Sunil

    2015-12-01

    Oxidation kinetics of Zircaloy-4 cladding of fuel pins of Indian pressurized heavy water reactors (IPHWRs) under a simulated loss of coolant accident (LOCA) condition was investigated. The kinetic rate constants for the oxide and oxygen stabilized α-Zr phase growth were established from the isothermal metal-steam reaction at high temperatures (900-1200 °C) with soaking periods in the range of 60-900 s. Oxide and α-Zr(O) layer thickness were measured to derive the respective growth rates. The observed rates obeyed a parabolic law and Arrhenius expressions of rate constants were established. Percentage equivalent clad reacted (%ECR) was calculated using Baker-Just equation. Hydrogen estimation was carried out on the oxidized samples using inert gas fusion technique. The hydrogen pick up was found to be in the range 10-30 ppm. The measured values of oxide and α-Zr(O) layer thickness were compared with the results obtained using OXYCON, an indigenously developed model. The model predicts the oxide growth reasonably well but under predicts the α-Zr(O) growth significantly at thickness values higher than 80 μm.

  20. Self-limited kinetics of electron doping in correlated oxides

    SciTech Connect

    Chen, Jikun Zhou, You; Jiang, Jun; Shi, Jian; Ramanathan, Shriram; Middey, Srimanta; Chakhalian, Jak; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max

    2015-07-20

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni{sup 3+} are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem.

  1. Self-limited kinetics of electron doping in correlated oxides

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhou, You; Middey, Srimanta; Jiang, Jun; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max; Shi, Jian; Chakhalian, Jak; Ramanathan, Shriram

    2015-07-01

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni3+ are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem.

  2. Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines

    PubMed Central

    2015-01-01

    Chemoenzymatic dynamic kinetic resolution (DKR) constitutes a convenient and efficient method to access enantiomerically pure alcohol and amine derivatives. This Perspective highlights the work carried out within this field during the past two decades and pinpoints important avenues for future research. First, the Perspective will summarize the more developed area of alcohol DKR, by delineating the way from the earliest proof-of-concept protocols to the current state-of-the-art systems that allows for the highly efficient and selective preparation of a wide range of enantiomerically pure alcohol derivatives. Thereafter, the Perspective will focus on the more challenging DKR of amines, by presenting the currently available homogeneous and heterogeneous methods and their respective limitations. In these two parts, significant attention will be dedicated to the design of efficient racemization methods as an important means of developing milder DKR protocols. In the final part of the Perspective, a brief overview of the research that has been devoted toward improving enzymes as biocatalysts is presented. PMID:25730714

  3. Chemoenzymatic dynamic kinetic resolution: a powerful tool for the preparation of enantiomerically pure alcohols and amines.

    PubMed

    Verho, Oscar; Bäckvall, Jan-E

    2015-04-01

    Chemoenzymatic dynamic kinetic resolution (DKR) constitutes a convenient and efficient method to access enantiomerically pure alcohol and amine derivatives. This Perspective highlights the work carried out within this field during the past two decades and pinpoints important avenues for future research. First, the Perspective will summarize the more developed area of alcohol DKR, by delineating the way from the earliest proof-of-concept protocols to the current state-of-the-art systems that allows for the highly efficient and selective preparation of a wide range of enantiomerically pure alcohol derivatives. Thereafter, the Perspective will focus on the more challenging DKR of amines, by presenting the currently available homogeneous and heterogeneous methods and their respective limitations. In these two parts, significant attention will be dedicated to the design of efficient racemization methods as an important means of developing milder DKR protocols. In the final part of the Perspective, a brief overview of the research that has been devoted toward improving enzymes as biocatalysts is presented.

  4. Resolution of the diffusional paradox predicting infinitely fast kinetics on the nanoscale

    NASA Astrophysics Data System (ADS)

    Beke, D. L.; Erdélyi, Z.

    2006-01-01

    In our paper, we offer a natural resolution for a long-standing paradox in diffusion. We show that the growth rate of the diffusion zone (reaction layer) should not go to infinity with decreasing time (as 1/t ), just because the diffusion permeability of the interface is finite. Expression for the changeover thickness X* between the linear and parabolic regimes of the interface shift in phase separating binary A(B) systems is derived in the framework of a deterministic atomistic model for diffusion. X* lies typically between 0.01 and 300nm , depending on the composition dependence of the diffusion coefficient and the phase separation tendency of the alloy. While in ideal binary alloys with composition independent diffusivity, the deviation from the parabolic law practically cannot be observed, in real systems (where the diffusion coefficient can change several orders of magnitude with the composition), measurable deviations are expected as it was experimentally observed very recently in the Ni/Cu and Au/Ni systems. We also offer an atomistic explanation for the phenomenological interface transfer coefficient K . It measures the finite interface permeability (proportional to the jump frequency across the interface) and thus it controls the shift of the interface at short times (diffusion distances). Although it is almost exclusively accepted in the literature that linear growth kinetics are the result of interface reaction control, our results suggest that the linear or nonparabolic growth of a reaction layer on the nanoscale cannot be automatically interpreted by an interface reaction.

  5. The spin-forbidden a 4Π(nu =13-15) and b 4Sigma - (nu =3) <-- X 2Π(nu =0) bands of nitric oxide: A new scheme for quantum state-specific high-resolution kinetic energy measurements

    NASA Astrophysics Data System (ADS)

    Drabbels, Marcel; Morgan, C. G.; Wodtke, A. M.

    1995-11-01

    A new scheme for performing high-resolution kinetic energy measurements on single quantum states of NO is described. Laser excitation of the a 4Π(ν=13-15) and b 4Σ-(ν=3)←X 2Π(ν=0) spin-forbidden bands has been used to produce NO a 4Π, either by direct excitation or after excitation to NO b 4Σ- followed by b→a emission. The sensitivity is compared to previous experiments on CO, employing the forbidden Cameron system. In the course of these experiments, three previously unknown vibronic levels of the a 4Π state were observed for which high precision molecular constants have been obtained. The derived molecular constants have been used to construct a chemically accurate RKR potential for the a 4Π state to within 0.2 eV of the dissociation limit. In addition, the electric dipole moments for the a 4Π(ν=13-14) levels have been determined. By comparing the experimental results with two ab initio calculations, the polarity of the dipole moment of the a 4Π state at equilibrium separation could be determined. A set of supplementary molecular beam laser-induced fluorescence studies on the b 4Σ-(ν=3)←X 2Π(ν=0) band were also carried out. These allowed the fluorescence lifetime of b 4Σ-(ν=3) state to be obtained under collision-free conditions and the electronic origin of the quartet manifold to be determined within 0.03 cm-1.

  6. Reaction Mechanism and Kinetics of Enargite Oxidation at Roasting Temperatures

    NASA Astrophysics Data System (ADS)

    Padilla, Rafael; Aracena, Alvaro; Ruiz, Maria C.

    2012-10-01

    Roasting of enargite (Cu3AsS4) in the temperature range of 648 K to 898 K (375 °C to 625 °C) in atmospheres containing variable amounts of oxygen has been studied by thermogravimetric methods. From the experimental results of weight loss/gain data and X-ray diffraction (XRD) analysis of partially reacted samples, the reaction mechanism of the enargite oxidation was determined, which occurred in three sequential stages:

  7. Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations

    NASA Astrophysics Data System (ADS)

    von Langen, Peter J.; Johnson, Kenneth S.; Coale, Kenneth H.; Elrod, Virginia A.

    1997-12-01

    Manganese oxidation rates were determined at low (˜ 20 nM) concentrations in seawater by measuring dissolved manganese (Mn(II)) using flow injection analysis with chemiluminescence detection. Mn(II) was measured in samples that had been filtered (0.2 μm) and kept in the dark under controlled temperature and pH conditions for time periods up to 6 months. Eight 9 L carboys with mean pH values ranging from 8 to 8.7 were held at 25°C, another carboy (pH = 9.32) was kept at 5°C. Oxidation followed the Morgan (1967) homogeneous rate equation ( d[Mn(II)]/ dt = k1 [O 2][OH -] 2[Mn(II)]). The mean rate constant k1 = 1.7 ± 0.7 × 10 12 M -3 d -1 (95% CI), determined using hydroxide ion activities determined with pH measurements on the NBS scale, was in agreement with work by Morgan (1967; k1 = 4 × 10 12 M -3 d -1) and Davies and Morgan (1989; k1 = 1.1 × 10 12 M -3 d -1) in dilute solutions. The rate constant at 5°C was 1.3 ± 0.3 × 10 12 M -3 d -1. If free hydroxide concentrations (based on the free proton pH scale) are used, then the rate constant at 25°C was k 1∗ = 0.34 ± 0.14 × 10 12 M -3d -1. Autocatalytic increases in Mn(II) oxidation rates, as predicted by a heterogeneous reaction mechanism (Morgan, 1967) ( d[Mn(II)]/ dt= k2'[Mn(II)][MnO 2]) were not observed, indicating that the homogeneous reaction dominates Mn(II) oxidation at low nM concentrations in seawater. Bacteria were enumerated by 4',6-diamidino-2-phenylindole (DAPI) staining during the experiments. No significant correlation between bacterial concentrations and Mn(II) oxidation rates was found.

  8. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study

    SciTech Connect

    Holmes, P.R.; Crundwell, F.K.

    2000-01-01

    The dissolution of pyrite is important in the geochemical cycling of iron and sulphur, in the formation of acid mine drainage, and in the extraction of metals by bacterial leaching. Many researchers have studied the kinetics of dissolution, and the rate of dissolution has often been found to be half-order in ferric ions or oxygen. Previous work has not adequately explained the kinetics of dissolution of pyrite. The dissolution of pyrite is an oxidation-reduction reaction. The kinetics of the oxidation and reduction half-reactions was studied independently using electrochemical techniques of voltammetry. The kinetics of the overall reaction was studied by the electrochemical technique of potentiometry, which consisted of measuring the mixed potential of a sample of corroding pyrite in solutions of different compositions. The kinetics of the half reactions are related to the kinetics of the overall dissolution reaction by the condition that there is no accumulation of charge. This principle is used to derive expressions for the mixed potential and the rate of dissolution, which successfully describe the mixed potential measurements and the kinetics of dissolution reported in the literature. It is shown that the observations of half-order kinetics and that the oxygen in the sulphate product arises from water are both a direct consequence of the electrochemical mechanism. Thus it is concluded that the electrochemical reaction steps occurring at the mineral-solution interface control the rate of dissolution. Raman spectroscopy was used to analyze reaction products formed on the pyrite surface. The results indicated that small amounts of polysulphides form on the surface of the pyrite. However, it was also found that the mixed (corrosion) potential does not change over a 14-day leaching period. This indicates that even though polysulphide material is present on the surface, it does not influence the rate of the reactions occurring at the surface. Measurement of the

  9. Iron oxidation kinetics for H-2 and CO production via chemical looping

    SciTech Connect

    Stehle, RC; Bobek, MM; Hahn, DW

    2015-01-30

    Solar driven production of fuels by means of an intermediate reactive metal for species splitting has provided a practical and potentially efficient pathway for disassociating molecules at significantly lower thermal energies. The fuels of interest are of or derive from the separation of oxygen from H2O and CO2 to form hydrogen and carbon monoxide, respectively. The following study focuses on iron oxidation through water and CO2 splitting to explore the fundamental reaction kinetics and kinetic rates that are relevant to these processes. In order to properly characterize the reactive metal potential and to optimize a scaled-up solar reactor system, a monolith-based laboratory reactor was implemented to investigate reaction temperatures over a range from 990 to 1400 K. The presence of a single, solid monolith as a reacting surface allowed for a limitation in mass transport effects in order to monitor kinetically driven reaction steps. The formation of oxide layers on the iron monoliths followed Cabrera-Mott models for oxidation of metals with kinetic rates being measured using real-time mass spectrometry to calculate kinetic constants and estimate oxide layer thicknesses. Activation energies of 47.3 kJ/mol and 32.8 kJ/mol were found for water-splitting and CO2 splitting, respectively, and the conclusions of the independent oxidation reactions where applied to experimental results for syngas (H-2-CO) production to explore ideal process characteristics. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  10. Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2016-02-01

    Kinetics of ruthenium(III) catalyzed oxidation of biologically important sugar alcohols (myo-inositol, D-sorbitol, and D-mannitol) by dichloroisocyanuric acid was carried out in aqueous acetic acid—perchloric medium. The reactions were found to be first order in case of oxidant and ruthenium(III). Zero order was observed with the concentrations of sorbitol and mannitol whereas, a positive fractional order was found in the case of inositol concentration. An inverse fractional order was observed with perchloric acid in oxidation of three substrates. Arrhenius parameters were calculated and a plausible mechanism was proposed.

  11. Oxidation of phenols by horseradish peroxidase and lactoperoxidase compound II--kinetic considerations.

    PubMed

    Zahida, M S; Deva, W; Peerzada, G M; Behere, D V

    1998-12-01

    Oxidation of para substituted phenols by horseradish peroxidase compound II (HRP-II) and lactoperoxidase compound II (LPO-II) were studied using stopped flow technique. Apparent second order rate constants (kapp) of the reactions were determined. The kinetics of oxidation of phenols by HRP-II and LPO-II have been compared with the oxidation potentials of the substrates. Reorganization energies of electron-transfer of phenols to the enzymes were estimated from the variation of second order rate constants with the thermodynamic driving force.

  12. Ruthenium tetraoxide oxidations of alkanes: DFT calculations of barrier heights and kinetic isotope effects.

    PubMed

    Drees, Markus; Strassner, Thomas

    2006-03-03

    The oxidation of C-H and C-C bonds by metal-oxo compounds is of general interest. We studied the RuO4-mediated catalytic oxidation of several cycloalkanes such as adamantane and cis- and trans-decalin as well as methane. B3LYP/6-31G(d) calculations on the experimentally proposed (3+2) mechanism are in good agreement with known experimental results. Comparison of experimental and theoretical kinetic isotope effects confirms the proposed mechanism. Besides RuO4, we also looked at RuO4(OH)- as a potential active species to account for ruthenium tetraoxide oxidations under strong basic conditions.

  13. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    SciTech Connect

    Contescu, Cristian I; Burchell, Timothy D; Mee, Robert

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  14. Study the oxidation kinetics of uranium using XRD and Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  15. Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation.

    PubMed

    Jung, Heejung; Kittelson, David B; Zachariah, Michael R

    2006-08-15

    Biodiesel is one of the most promising alternative diesel fuels. As diesel emission regulations have become more stringent, the diesel particulate filter (DPF) has become an essential part of the aftertreatment system. Knowledge of kinetics of exhaust particle oxidation for alternative diesel fuels is useful in estimating the change in regeneration behavior of a DPF with such fuels. This study examines the characteristics of diesel particulate emissions as well as kinetics of particle oxidation using a 1996 John Deere T04045TF250 off-highway engine and 100% soy methyl ester (SME) biodiesel (B100) as fuel. Compared to standard D2 fuel, this B100 reduced particle size, number, and volume in the accumulation mode where most of the particle mass is found. At 75% load, number decreased by 38%, DGN decreased from 80 to 62 nm, and volume decreased by 82%. Part of this decrease is likely associated with the fact that the particles were more easily oxidized. Arrhenius parameters for the biodiesel fuel showed a 2-3times greater frequency factor and approximately 6 times higher oxidation rate compared to regular diesel fuel in the range of 700-825 degrees C. The faster oxidation kinetics should facilitate regeneration when used with a DPF.

  16. Kinetic Constant Variability in Bacterial Oxidation of Elemental Sulfur▿

    PubMed Central

    Pokorna, Blanka; Mandl, Martin; Borilova, Sarka; Ceskova, Pavla; Markova, Romana; Janiczek, Oldrich

    2007-01-01

    Wide ranges of growth yields on sulfur (from 2.4 × 1010 to 8.1 × 1011 cells g−1) and maximum sulfur oxidation rates (from 0.068 to 1.30 mmol liter−1 h−1) of an Acidithiobacillus ferrooxidans strain (CCM 4253) were observed in 73 batch cultures. No significant correlation between the constants was observed. Changes of the Michaelis constant for sulfur (from 0.46 to 15.5 mM) in resting cells were also noted. PMID:17449698

  17. Bond energies in polyunsaturated acids and kinetics of co-oxidation of protiated and deuterated acids

    NASA Astrophysics Data System (ADS)

    Andrianova, Z. S.; Breslavskaya, N. N.; Pliss, E. M.; Buchachenko, A. L.

    2016-10-01

    A computational program specially designed to analyze co-oxidation of substances in mixtures is suggested. The rigorous kinetic scheme of 32 reactions describing co-oxidation of isotope differing polyunsaturated fatty acids was computed to enlighten experimentally detected enormously large H/D isotope effects. The latter were shown to depend on the kinetic chain length and exhibit two extreme regimes of short and long chains which characterize isotope effects on the initiation and propagation chain reactions of hydrogen (deuterium) atom abstraction. No protective effect of deuterated polyunsaturated acids on the oxidation of protiated acids was detected. Protective effect of the deuterated compounds on the biologically important processes seems to be induced by the low yield of products formed in the chain termination reactions due to the low rate of initiation by deuterated compounds.

  18. Oxygen atom kinetics in silane-hydrogen-nitrous oxide mixtures behind reflected shock waves

    NASA Astrophysics Data System (ADS)

    Javoy, S.; Mével, R.; Dupré, G.

    2010-11-01

    Resonance Absorption Spectroscopy has been used to study the O-atom dynamics behind reflected shock waves in highly argon diluted silane-hydrogen-nitrous oxide mixtures in the temperature range 1606-2528 K and at total pressures from 234 to 584 kPa. The absorptions at 130.5 nm of N 2O, SiH 4 and Si have been taken into account to compare simulated and experimental absorption profiles. A detailed kinetic model has been also used to interpret the results and reaction pathway and sensitivity analyses have been performed to underline important elementary reactions. A comparison with the O-atom kinetic in silane-nitrous oxide and hydrogen-nitrous oxide mixtures is also proposed.

  19. Thermoactivated persulfate oxidation of pesticide chlorpyrifos in aquatic system: kinetic and mechanistic investigations.

    PubMed

    Zhou, Lei; Zhang, Ya; Ying, Rongrong; Wang, Guoqing; Long, Tao; Li, Jianhua; Lin, Yusuo

    2017-03-20

    The widespread occurrence of organophosphorus pesticides (OPPs) in the environment poses risks to both ecologic system as well as human health. This study investigated the oxidation kinetics of chlorpyrifos (CP), one of the typical OPPs, by thermoactivated persulfate (PS) oxidation process, and evaluated the influence of key kinetic factors, such as PS concentrations, pH, temperature, bicarbonate, and chloride ions. The reaction pathways and mechanisms were also proposed based on products identification by LC-MS techniques. Our results revealed that increasing initial PS concentration and temperature favored the decomposition of CP, whereas the oxidation efficiency was not affected by pH change ranging from 3 to 11. Bicarbonate was found to play a detrimental role on CP removal rates, while chloride showed no effect. The oxidation pathways including initial oxidation of P=S bond to P=O, dechlorination, dealkylation, and the dechlorination-hydroxylation were proposed, and the detailed underlying mechanisms were also discussed. Molecular orbital (MO) calculations indicated that P=S bond was the most favored oxidation site of the molecule. The toxicity of reaction solution was believed to increase due to the formation of products with P=O structures. This work demonstrates that OPPs can readily react with SO4(·-) and provides important information for further research on the oxidation of these contaminants.

  20. Detailed kinetic modeling study of n-pentanol oxidation

    DOE PAGES

    Heufer, K. Alexander; Sarathy, S. Mani; Curran, Henry J.; ...

    2012-09-28

    To help overcome the world’s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailedmore » kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C–H and C–C bond dissociation energies. In addition, the proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes.« less

  1. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    PubMed

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils.

  2. Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate

    SciTech Connect

    Strzelec, Andrea; Toops, Todd J; Daw, C Stuart

    2011-01-01

    We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

  3. Effect of albumin on the kinetics of ascorbate oxidation.

    PubMed

    Lozinsky, E; Novoselsky, A; Shames, A I; Saphier, O; Likhtenshtein, G I; Meyerstein, D

    2001-04-03

    The fluorescence intensity of the fluorophore in dansyl piperidine-nitroxide is intramolecularly quenched by the nitroxyl fragment. Therefore, the oxidation of ascorbic acid by the fluorophore-nitroxide (FN) probe can be monitored by two independent methods: steady-state fluorescence and electron paramagnetic resonance. Bovine serum albumin (BSA) affects the rate of this reaction. The influence of BSA on the rate is attributed to the adsorption of both ascorbate and the probe to BSA. Adsorption of ascorbate to BSA is confirmed by NMR relaxation experiments. The spatial distribution of the molecules on the BSA surface changes the availability of ascorbate and FN to each other. The results also point out that, in the presence of BSA, the autoxidation of ascorbate is significantly slowed down. The effect is studied at different pH values and explained in terms of the electrostatic interaction between the ascorbate anion and the BSA molecule.

  4. Kinetic Effects of Non-Equilibrium Plasma-Assisted Methane Oxidation on Diffusion Flame Extinction Limits

    DTIC Science & Technology

    2011-01-01

    reactions (1)-(6)). The formed CH3, CH2 and CH were oxidized further to CH2O, HCO, CO and finally CO2 as shown in Fig. 7a. Among those reaction paths, a...pulsed discharge Plasma flame chemistry reactions Path flux analysis Counterflow extinction Partially premixed flames a b s t r a c t The kinetic...the kinetic model over-predicted the CO, H2O and H2 concentrations and under-predicted CO2 concentration. A path flux analysis showed that O generated

  5. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  6. High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes.

    PubMed

    Chen, Chang-Hui; Meadows, Katherine E; Cuharuc, Anatolii; Lai, Stanley C S; Unwin, Patrick R

    2014-09-14

    The scanning droplet-based technique, scanning electrochemical cell microscopy (SECCM), combined with electron backscatter diffraction (EBSD), is demonstrated as a powerful approach for visualizing surface structure effects on the rate of the oxygen reduction reaction (ORR) at polycrystalline platinum electrodes. Elucidating the effect of electrode structure on the ORR is of major interest in connection to electrocatalysis for energy-related applications. The attributes of the approach herein stem from: (i) the ease with which the polycrystalline substrate electrode can be prepared; (ii) the wide range of surface character open to study; (iii) the possibility of mapping reactivity within a particular facet (or grain), in a pseudo-single-crystal approach, and acquiring a high volume of data as a consequence; (iv) the ready ability to measure the activity at grain boundaries; and (v) an experimental arrangement (SECCM) that mimics the three-phase boundary in low temperature fuel cells. The kinetics of the ORR was analyzed and a finite element method model was developed to explore the effect of the three-phase boundary, in particular to examine pH variations in the droplet and the differential transport rates of the reactants and products. We have found a significant variation of activity across the platinum substrate, inherently linked to the crystallographic orientation, but do not detect any enhanced activity at grain boundaries. Grains with (111) and (100) contributions exhibit considerably higher activity than those with (110) and (100) contributions. These results, which can be explained by reference to previous single-crystal measurements, enhance our understanding of ORR structure-activity relationships on complex high-index platinum surfaces, and further demonstrate the power of high resolution flux imaging techniques to visualize and understand complex electrocatalyst materials.

  7. Catalytic Kinetic Resolution of a Dynamic Racemate: Highly Stereoselective β-Lactone Formation by N-Heterocyclic Carbene Catalysis

    PubMed Central

    Johnston, Ryne C.; Cohen, Daniel T.; Eichman, Chad C.

    2014-01-01

    This study describes the combined experimental and computational elucidation of the mechanism and origins of stereoselectivities in the NHC-catalyzed dynamic kinetic resolution (DKR) of α-substituted-β-ketoesters. Density functional theory computations reveal that the NHC-catalyzed DKR proceeds by two mechanisms, depending on the stereochemistry around the forming bond: 1) a concerted, asynchronous formal (2+2) aldol-lactonization process, or 2) a stepwise spiro-lactonization mechanism where the alkoxide is trapped by the NHC-catalyst. These mechanisms contrast significantly from mechanisms found and postulated in other related transformations. Conjugative stabilization of the electrophile and non-classical hydrogen bonds are key in controlling the stereoselectivity. This reaction constitutes an interesting class of DKRs in which the catalyst is responsible for the kinetic resolution to selectively and irreversibly capture an enantiomer of a substrate undergoing rapid racemization with the help of an exogenous base. PMID:25045464

  8. Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems.

    PubMed

    Dachipally, Purnachandar; Jonnalagadda, Sreekanth B

    2011-01-01

    The ozone facilitated oxidation mechanism of water soluble azo anionic dye, amaranth (Am) was investigated monitoring the depletion kinetics of the dye spectrometrically at 521 nm. The oxidation kinetics of the dye by ozone was studied under semi-batch conditions, by bubbling ozone enriched oxygen through the aqueous reaction mixture of dye, as function of flow rate, ionic strength, [O(3)] and pH variations. With excess concentration of ozone and other reagents and low [amaranth], reaction followed pseudo-first-order kinetics with respect to the dye. Added neutral salts had marginal effect on the reaction rate and the variation of pH from 7 to 2 and 7 to 12 exerted only small increases in the reaction rate suggesting molecular ozone possibly is the principle reactive species in oxidation of dye. The reaction order with respect ozone was near unity and it varied slightly with pH and flow rate variations. The overall second-order rate constant for the reaction was (105 ± 4) M(-1) min(-1). The main oxidation products immediately after amaranth decolorization were identified. The reaction mechanism and overall rate law were proposed. After spiking the seawater, river water and wastewaters with Amaranth dye, the reaction rates and trends in BOD and COD under control and natural conditions were investigated. The rate of depletion of the dye in natural waters was relatively lower, but the ozonation process significantly decreased both the BOD and COD levels.

  9. Evaluating kinetic models for preferential CO-oxidation catalysts using optimization-based parameter estimation

    NASA Astrophysics Data System (ADS)

    Baughman, Adam C.; Huang, Xinqun; Martin, Lealon L.

    2012-07-01

    We adapt a general-purpose optimization-based parameter estimation technique previously described in the literature [1] to evaluate the suitability of a number of common kinetic models for the representation of key performance characteristics (conversion and selectivity) of catalysts used for the preferential oxidation of CO in the presence of H2. We find that, for process engineering applications, there is no clear practical advantage to using mechanistically based kinetic models (e.g. Langmuir-Hinshelwood) unless the precise chemical mechanism is known. Empirical rate models are found generally to provide equivalent or better simulations of key performance variables for a diverse group of catalyst formulations. Furthermore, we demonstrate that the water-gas-shift (WGS) reaction is relevant within PROX reaction systems under conditons containing high fractions of CO2 and H2, confirming the expectations of Choi and Stenger (2004) [2]. Finally, we attempt to identify any emergent trends in kinetic parameters among catalysts sharing similar active metal or metal oxide components. Unfortunately, apart from confirming that the activation barrier for CO oxidation is generally less than the barrier for H2 oxidation (an expected relationship for PROX catalysts), no such trends are found.

  10. Estimation of Sintering Kinetics of Oxidized Magnetite Pellet Using Optical Dilatometer

    NASA Astrophysics Data System (ADS)

    Sandeep Kumar, T. K.; Viswanathan, Neelakantan Nurni; Ahmed, Hesham M.; Andersson, Charlotte; Björkman, Bo

    2015-04-01

    The quality of magnetite pellet is primarily determined by the physico-chemical changes the pellet undergoes as it makes excursion through the gaseous and thermal environment in the induration furnace. Among these physico-chemical processes, the oxidation of magnetite phase and the sintering of oxidized magnetite (hematite) and magnetite (non-oxidized) phases are vital. Rates of these processes not only depend on the thermal and gaseous environment the pellet gets exposed in the induration reactor but also interdependent on each other. Therefore, a systematic study should involve understanding these processes in isolation to the extent possible and quantify them seeking the physics. With this motivation, the present paper focusses on investigating the sintering kinetics of oxidized magnetite pellet. For the current investigation, sintering experiments were carried out on pellets containing more than 95 pct magnetite concentrate from LKAB's mine, dried and oxidized to completion at sufficiently low temperature to avoid sintering. The sintering behavior of this oxidized pellet is quantified through shrinkage captured by Optical Dilatometer. The extent of sintering characterized by sintering ratio found to follow a power law with time i.e., Kt n . The rate constant K for sintering was determined for different temperatures from isothermal experiments. The rate constant, K, varies with temperature as and the activation energy ( Q) and reaction rate constant ( K') are estimated. Further, the sintering kinetic equation was also extended to a non-isothermal environment and validated using laboratory experiments.

  11. Oxidation kinetics of zinc sulfide: determination of intrinsic rate constant

    SciTech Connect

    Prabhu, G.M.

    1983-06-01

    An initial reaction rate study was done with the help of a thermogravimetric technique. Energy dispersive x-ray analyses on partially oxidized zinc sulfide pellets with a sintered porosity of 72.4% indicated flat sulfur intensity profiles within pellets reacted below 560/sup 0/C, which suggested a homogeneous reaction mechanism. Therefore, reaction temperatures below 600/sup 0/C were chosen for the reaction rate studies. Initial reaction rate studies on 72.4, 58.2, and 34.0% porous, cylindrical zinc sulfide pellets and the corresponding Arrhenius plot suggested chemical control in the temperature range from 480 to 565/sup 0/C. The corresponding intrinsic rate constant is correlated as k = 3.45 x 10/sup 17/ exp (- 86051/RT) cm/s. The variation in sulfur intensity within sintered pellets having a porosity of 72.4% that were reacted at temperatures above 560/sup 0/C indicated that the pore diffusion resistance gradually became comparable to the chemical reaction resistance leading to a mixed control mechanism above 570/sup 0/C. The critical temperature at which this shift occurred, increased with pellet porosity.

  12. Denitrifying kinetics and nitrous oxide emission under different copper concentrations.

    PubMed

    Wu, Guangxue; Zhai, Xiaofeng; Jiang, Chengai; Guan, Yuntao

    2014-01-01

    Denitrifying activities and nitrous oxide (N2O) emission during denitrification can be affected by copper concentrations. Different denitrifiers were acclimated in sequencing batch reactors with acetate or methanol as the electron donor and nitrate as the electron acceptor. The effect of copper concentrations on the denitrifying activity and N2O emission for the acclimated denitrifiers was examined in batch experiments. Denitrifying activities of the acclimated denitrifiers declined with increasing copper concentrations, and the copper concentration exhibited a higher effect on denitrifiers acclimated with acetate than those acclimated with methanol. Compared with the control without the addition of copper, at the copper concentration of 1 mg/L, the acetate utilization rate reduced by 89% for acetate-acclimated denitrifiers, while the methanol utilization rate only reduced by 15% for methanol-acclimated denitrifiers. Copper also had different effects on N2O emission during denitrification carried out by various types of denitrifiers. For the acetate-acclimated denitrifiers, N2O emission initially increased and then decreased with increasing copper concentrations, while for the methanol-acclimated denitrifiers, N2O emission decreased with increasing copper concentrations.

  13. Oxidation kinetics of Fe(II) in sea water

    SciTech Connect

    Millero, F.J.; Sotolongo, S.; Izaguirre, M.

    1987-04-01

    The oxidation of Fe(II) has been studied as a function of pH (5 to 9), temperature (5 to 45/sup 0/C), and salinity (0 to 35). The pseudo-first-order rate constant, k/sub 1/, in water and sea water was found to be a second degree function of pH over the pH range of 7.5 to 8.5 at 5/sup 0/C and 6.0 to 8.0 at 25/sup 0/C. The overall rate constant (k) was determined from 5 to 45/sup 0/C and S = 0 to 35. The results have been fit to an equation of the form with a standard error = 0.09. The energy of activation for the overall rate constant in water and sea water was 29 +/- 2 kJ mol/sup -1/. The equations are provided with this paper. The values of the rate constant for pure water (k/sub 0/) are in good agreement with literature data. The half times for sea water from some previous studies at a pH = 8.0 were slower than the authors results for Gulf Stream waters. Measurements on Biscayne Bay waters also yield slower half times apparently due to the presence of organic ligands that can complex Fe(II).

  14. Kinetics of low-temperature CO oxidation on Au(111)

    NASA Astrophysics Data System (ADS)

    Thuening, Theodore; Walker, Joshua; Adams, Heather; Furlong, Octavio; Tysoe, Wilfred T.

    2016-06-01

    The oxidation of carbon monoxide on oxygen-modified Au(111) surfaces is studied using a combination of reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). TPD reveals that CO desorbs in two states with the low-temperature state have a peak temperature between ~ 130 and 150 K, and the higher-temperature state having a peak temperature that varies from ~ 175 to ~ 220 K depending on the initial oxygen and CO coverages. Infrared spectroscopy indicates that the low-temperature CO desorption state is predominantly associated with CO adsorbed on Auδ + sites, while the higher-temperature states are due to CO on Au0 sites. No additional vibrational features are detected indicating that CO reacts directly with adsorbed atomic oxygen on gold to form CO2. Estimates of the activation energy for CO2 formation suggest that they are in the same range and found for supported gold catalysts at reaction temperature below ~ 300 K.

  15. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    PubMed

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  16. Chemoenzymatic dynamic kinetic resolution of primary amines catalyzed by CAL-B at 38-40 °C.

    PubMed

    Poulhès, Florent; Vanthuyne, Nicolas; Bertrand, Michèle P; Gastaldi, Stéphane; Gil, Gérard

    2011-09-02

    The (R)-selective chemoenzymatic dynamic kinetic resolution of primary amines was performed at 38-40 °C in MTBE, in good to high yields and with high enantiomeric excesses. These reactions associating CAL-B to octanethiol as radical racemizing agent were carried out in the presence of methyl β-methoxy propanoate as acyl donor, under photochemical irradiation at 350 nm in glassware.

  17. Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis

    PubMed Central

    Hanson, Thomas E.; Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Hess, Daniel

    2013-01-01

    Previously, we presented data that indicated microbial sulfide oxidation would out-compete strictly chemical, abiotic sulfide oxidation reactions under nearly all conditions relevant to extant ecosystems (Luther et al., 2011). In particular, we showed how anaerobic microbial sulfide oxidation rates were several orders of magnitude higher than even metal catalyzed aerobic sulfide oxidation processes. The fact that biotic anaerobic sulfide oxidation is kinetically superior to abiotic reactions implies that nearly all anaerobic and sulfidic environments should host microbial populations that oxidize sulfide at appreciable rates. This was likely an important biogeochemical process during long stretches of euxinia in the oceans suggested by the geologic record. In particular, phototrophic sulfide oxidation allows the utilization of carbon dioxide as the electron acceptor suggesting that this process should be particularly widespread rather than relying on the presence of other chemical oxidants. Using the Chesapeake Bay as an example, we argue that phototrophic sulfide oxidation may be more important in many environments than is currently appreciated. Finally, we present methodological considerations to assist other groups that wish to study this process. PMID:24391629

  18. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    PubMed

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  19. Oxidation of manganese by spores of a marine bacillus: Kinetic and thermodynamic considerations

    NASA Astrophysics Data System (ADS)

    Hastings, David; Emerson, Steven

    1986-08-01

    The catalytic properties of spores of a marine Bacillus known to oxidize divalent manganese were used to perform laboratory Mn(II) oxidation experiments at environmental conditions of pH and Mn(II) concentration. We found that at pH 7.8 the initial kinetics of Mn(II) oxidation facilitated by the spores was four orders of magnitude greater than that which would be expected for abiotic autocatalysis on a colloidal MnO 2 surface. The rate progressively decreased as the spores became coated with manganese oxide, eventually becoming very near that predicted for abiotic surface catalysis. Transmission electron microscopic observations and oxidation state measurements of solids precipitated at pH 7.5 and [Mn(II)] < 50 nM indicated that the initial oxidation product was hausmannite (Mn 3O 4 or MnO x where x = 1.33) which aged to more highly oxidized MnO 2 ( x = 1.9) in the time scale of weeks. By utilizing spores to catalyze the oxidation rate, we were able to maintain our experimental system within the seawater range of pH and Mn(II) where highly oxidized manganese oxide precipitates are thermodynamically stable. In doing so we obtained, for the first time, laboratory precipitates with oxidation states similar to that found in marine particulate material. These results suggest that the concentration of manganese in seawater and the oxidation state of marine manganese oxides are controlled by the rapid precipitation of Mn 3O 4, which can be microbially mediated, followed by the disproportionation to MnO 2.

  20. The oxidation kinetics of Fe(II) in seawater

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.; Sotolongo, Sara; Izaguirre, Miguel

    1987-04-01

    The oxidation of Fe(II) has been studied as a function of pH (5 to 9), temperature (5 to 45°C), and salinity (0 to 35). The pseudo-first-order rate constant, k1, -d[Fe(II)]/dt = k 1[Fe(II)] in water and seawater was found to be a second degree function of pH over the pH range of 7.5 to 8.5 at 5°C and 6.0 to 8.0 at 25°C. The overall rate constant ( k) -d[Fe(II)]/dt = k[Fe(II)][O 2][OH -] 2 was determined from 5 to 45°C and S = 0 to 35. The results have been fit to an equation of the form ( T = 273.15 + t° C) log k = log k 0 - 3.29I 1/2 + 1.52I where logk0 = 21.56-1545/ T with a standard error = 0.09. The energy of activation for the overall rate constant in water and seawater was 29 ± 2 kJmol-1. The values of the rate constant for pure water ( k0) are in good agreement with literature data. The half times for seawater from some previous studies at a pH = 8.0 were slower than our results for Gulf Stream waters. Measurements on Biscayne Bay waters also yield slower half times apparently due to the presence of organic ligands that can complex Fe(II).

  1. Effect of wall growth on the kinetic modeling of nitrite oxidation in a CSTR.

    PubMed

    Dokianakis, Spiros N; Kornaros, Michael; Lyberatos, Gerasimos

    2006-03-05

    A simple kinetic model was developed for describing nitrite oxidation by autotrophic aerobic nitrifiers in a continuous stirred tank reactor (CSTR), in which mixed (suspended and attached) growth conditions prevail. The CSTR system was operated under conditions of constant nitrite feed concentration and varying volumetric flow rates. Experimental data from steady-state conditions in the CSTR system and from batch experiments were used for the determination of the model's kinetic parameters. Model predictions were verified against experimental data obtained under transient operating conditions, when volumetric flow rate and nitrite feed concentration disturbances were imposed on the CSTR. The presented kinetic modeling procedure is quite simple and general and therefore can also be applied to other mixed growth biological systems.

  2. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  3. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    SciTech Connect

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2010-05-15

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines. (author)

  4. Chemical kinetics and interactions involved in horseradish peroxidase-mediated oxidative polymerization of phenolic compounds.

    PubMed

    Cheng, Wenjing; Harper, Willie F

    2012-03-10

    The primary objective of this research was to evaluate various factors that affect the reaction rate of oxidative coupling (OXC) reaction of phenolic estrogens catalyzed by horseradish peroxidase (HRP). Kinetic parameters were obtained for the conversion of phenol as well as natural and synthetic estrogens estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), and 17α-ethinylestradiol (EE(2)). Molecular orbital theory and Autodock software were employed to analyze chemical properties and substrate binding characteristics. Reactions were first order with respect to phenolic concentration and reaction rate constants (k(r)) were determined for phenol, E(3), E(1), E(2) and EE(2) (in increasing order). Oxidative coupling was controlled by enzyme-substrate interactions, not collision frequency. Docking simulations show that higher binding energy and a shorter binding distance both promote more favorable kinetics. This research is the first to show that the OXC of phenolics is an entropy-driven and enthalpy-retarded process.

  5. Oxidation rate of graphitic matrix material in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2014-08-01

    Data on oxidation rates of matrix-grade graphite in the kinetically-controlled temperature regime of graphite oxidation are needed for safety analysis of High Temperature Gas Cooled Reactors and Very High Temperature Reactors. In this work, the oxidation rate of graphitic matrix material GKrS was measured thermogravimetrically for various oxygen concentrations and with temperatures from 873 to 1873 K. A semi-empirical Arrhenius rate equation was also developed for this temperature range. The activation energy of the graphitic material is found to be about 111.5 kJ/mol. The order of reaction was found to be about 0.89. The surface of oxidized GKrS was characterized by Scanning Electron Microscopy, Electron Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy.

  6. One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates.

    PubMed

    Trujillo, Madia; Alvarez, Beatriz; Radi, Rafael

    2016-01-01

    The oxidation of biothiols participates not only in the defense against oxidative damage but also in enzymatic catalytic mechanisms and signal transduction processes. Thiols are versatile reductants that react with oxidizing species by one- and two-electron mechanisms, leading to thiyl radicals and sulfenic acids, respectively. These intermediates, depending on the conditions, participate in further reactions that converge on different stable products. Through this review, we will describe the biologically relevant species that are able to perform these oxidations and we will analyze the mechanisms and kinetics of the one- and two-electron reactions. The processes undergone by typical low-molecular-weight thiols as well as the particularities of specific thiol proteins will be described, including the molecular determinants proposed to account for the extraordinary reactivities of peroxidatic thiols. Finally, the main fates of the thiyl radical and sulfenic acid intermediates will be summarized.

  7. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  8. Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys

    NASA Astrophysics Data System (ADS)

    Krishna, L. Rama; Purnima, A. Sudha; Wasekar, Nitin P.; Sundararajan, G.

    2007-02-01

    The micro arc oxidation (MAO) technique is being increasingly recognized as a novel and ecofriendly means of depositing dense ceramic oxide coatings on Al and its alloys. In the present study, the deposition kinetics, surface roughness, morphology, phase distribution and the microhardness of the MAO coatings deposited on ten different commercially available Al substrates having widely differing chemical composition has been investigated. Further, the tribological properties of the coatings obtained on different Al alloys in comparison with the bare substrates have also been evaluated using dry sand abrasion, solid-particle erosion and pin-on-disc dry sliding wear tests. The results clearly demonstrate that the alloying elements added to the Al substrate substantially influence the MAO coating deposition kinetics and coating properties. In the case of Al-Si alloys, the coating deposition kinetics is non-linear and the Al6Si2O13 (mullite) is observed to form. With increasing Si content, the corresponding mullite phase also increases. Increasing mullite content in the coating adversely affects the tribological performance. Excepting Al-Si alloys, all other alloys investigated including commercial purity Al exhibit linear coating deposition kinetics. Of all the alloys investigated, Al-Li alloy exhibits the highest coating deposition rate and the 6061 T6 Al alloy exhibits the best coating properties.

  9. Adsorption kinetics of organophosphonic acids on plasma-modified oxide-covered aluminum surfaces.

    PubMed

    Giza, M; Thissen, P; Grundmeier, G

    2008-08-19

    Tailoring of oxide chemistry on aluminum by means of low-pressure water and argon plasma surface modification was performed to influence the kinetics of the self-assembly process of octadecylphosphonic acid monolayers. The plasma-induced surface chemistry was studied by in situ FTIR reflection-absorption spectroscopy (IRRAS). Ex situ IRRAS and X-ray photoelectron spectroscopy were applied for the analysis of the adsorbed self-assembled monolayers. The plasma-induced variation of the hydroxide to oxide ratio led to different adsorption kinetics of the phosphonic acid from dilute ethanol solutions as measured by means of a quartz crystal microbalance. Water plasma treatment caused a significant increase in the density of surface hydroxyl groups in comparison to that of the argon-plasma-treated surface. The hydroxyl-rich surface led to significantly accelerated adsorption kinetics of the phosphonic acid with a time of monolayer formation of less than 1 min. On the contrary, decreasing the surface hydroxyl density slowed the adsorption kinetics.

  10. Kinetics and mechanism of the oxidation of organic sulfides by N-bromobenzamide

    SciTech Connect

    Chowdhury, K.; Banerji, K.K. )

    1990-09-14

    Kinetics of oxidation of 34 organic sulfides by N-bromobenzamide (NBB), to yield the corresponding sulfoxides, have been studied. The reaction is first-order with respect to the sulfide, NBB, and hydrogen ions. There is no effect of added benzamide. Protonated NBB has been postulated as the reactive oxidizing species. Reactivity of the sulfides toward NBB was subjected to correlation analysis by using multiparametric equations. The polar reaction constants are negative. Steric effects play a minor inhibitory role. A mechanism involving formulation of a halogenosulfonium cation, in the rate-determining step, has been proposed.

  11. Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate.

    PubMed

    Damm, Jochen H; Hardacre, Christopher; Kalin, Robert M; Walsh, Kayleen P

    2002-08-01

    The occurrence of the fuel oxygenate methyl tert-butyl ether (MTBE) in the environment has received considerable scientific attention. The pollutant is frequently found in the groundwater due to leaking of underground storage tanks or pipelines. Concentrations of more than several mg/L MTBE were detected in groundwater at several places in the US and Germany in the last few years. In situ chemical oxidation is a promising treatment method for MTBE-contaminated plumes. This research investigated the reaction kinetics for the oxidation of MTBE by permanganate. Batch tests demonstrated that the oxidation of MTBE by permanganate is second order overall and first order individually with respect to permanganate and MTBE. The second-order rate constant was 1.426 x 10(-6) L/mg/h. The influence of pH on the reaction rate was demonstrated to have no significant effect. However, the rate of MTBE oxidation by potassium permanganate is 2-3 orders of magnitude lower than of other advanced oxidation processes. The slower rates of MTBE oxidation by permanganate limit the applicability of this process for rapid MTBE cleanup strategies. However, permanganate oxidation of MTBE has potential for passive oxidation risk management strategies.

  12. Kinetic modeling of the oxidative degradation of additive free PE in bleach disinfected water

    NASA Astrophysics Data System (ADS)

    Mikdam, Aïcha; Colin, Xavier; Billon, Noëlle; Minard, Gaëlle

    2016-05-01

    The chemical interactions between PE and bleach were studied at 60°C in immersion in bleach solutions kept at a free chlorine concentration of 100 ppm and a pH of 5 or 7.2. It was found that the polymer undergoes a severe oxidation from the earliest weeks of exposure, in a superficial layer whose thickness (of about 50-70 µm) is almost independent of the pH value, although the superficial oxidation rate is faster in acidic than in neutral medium. Oxidation leads to the formation and accumulation of a large variety of carbonyl products (mostly ketones and carboxylic acids) and, after a few weeks, to a decrease in the average molar mass due to the large predominance of chain scissions over crosslinking. A scenario was elaborated for explaining such unexpected results. According to this scenario, the non-ionic molecules (Cl2 and ClOH) formed from the disinfectant in the water phase, would migrate deeply into PE and dissociate into highly reactive radicals (Cl• and HO•) in order to initiate a radical chain oxidation. A kinetic model was derived from this scenario for predicting the general trends of the oxidation kinetics and its dependence on environmental factors such as temperature, free chlorine concentration and pH. The validity of this model was successfully checked by comparing the numerical simulations with experimental data.

  13. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  14. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  15. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  16. How surface potential determines the kinetics of the first hole transfer of photocatalytic water oxidation.

    PubMed

    Waegele, Matthias M; Chen, Xihan; Herlihy, David M; Cuk, Tanja

    2014-07-30

    Interfacial hole transfer between n-SrTiO3 and OH(-) was investigated by surface sensitive transient optical spectroscopy of an in situ photoelectrochemical cell during water oxidation. The kinetics reveal a single rate constant with an exponential dependence on the surface hole potential, spanning time scales from 3 ns to 8 ps over a ≈1 V increase. A voltage- and laser illumination-induced process moves the valence band edge at the n-type semiconductor/water interface to continuously change the surface hole potential. This single step of the water oxidation reaction is assigned to the first hole transfer h(+) + OH(-) → OH(•). The kinetics quantify how much a change in the free energy difference driving this first hole transfer reduces the activation barrier. They are also used to extrapolate the kinetic rate due to the activation barrier when that free energy difference is zero, or the Nernstian potential. This is the first time transient spectroscopy has enabled the separation of the first hole transfer from the full four hole transfer cycle and a direct determination of these two quantities. The Nernstian potential for OH(-)/OH(•) is also suggested, in rough agreement with gas-phase studies. The observation of a distinct, much longer time scale upon picosecond hole transfer to OH(-) suggests that a dominant, more stable intermediate of the water oxidation reaction, possibly a surface bound oxo, may result.

  17. Kinetics and mechanism of oxidation of chondroitin-4-sulfate polysaccharide by chromic acid in aqueous perchlorate solutions.

    PubMed

    Hassan, Refat; Ibrahim, Samia; Dahy, Abdel Rahman; Zaafarany, Ishaq; Tirkistani, Fahd; Takagi, Hideo

    2013-02-15

    The kinetics of chromic acid oxidation of chondroitin-4-sulfate polysaccharide as sulfated carbohydrates at a constant ionic strength of 4.0 mol dm(-3) has been investigated, spectrophotometrically. The reaction kinetics showed a first-order dependence in chromic acid and fractional-first-order kinetics with respect to the chondroitin-4-sulfate concentration. The influence of [H(+)] on the reaction rates showed that the oxidation process is acid-catalyzed. Added Mn(2+) ions indicated the formation of Cr(IV) as intermediate species. A kinetic evidence for formation of 1:1 intermediate complex was revealed. The kinetic parameters have been evaluated and a tentative reaction mechanism in good consistent with the kinetic results obtained is discussed.

  18. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.

    PubMed

    Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels

    2014-07-01

    The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant persistence. The overall rate of the ISCO reaction between oxidant and contaminant is typically described using a second-order kinetic model while the second-order rate constant is determined experimentally by means of a pseudo first order approach. However, earlier studies of chlorinated hydrocarbons have yielded a wide range of values for the second-order rate constants. Also, there is limited insight in the kinetics of permanganate reactions with fuel-derived groundwater contaminants such as toluene and ethanol. In this study, batch experiments were carried out to investigate and compare the oxidation kinetics of aqueous trichloroethylene (TCE), ethanol, and toluene in an aqueous potassium permanganate solution. The overall second-order rate constants were determined directly by fitting a second-order model to the data, instead of typically using the pseudo-first-order approach. The second-order reaction rate constants (M(-1) s(-1)) for TCE, toluene, and ethanol were 8.0×10(-1), 2.5×10(-4), and 6.5×10(-4), respectively. Results showed that the inappropriate use of the pseudo-first-order approach in several previous studies produced biased estimates of the second-order rate constants. In our study, this error was expressed as a function of the extent (P/N) in which the reactant concentrations deviated from the stoichiometric ratio of each oxidation reaction. The error associated with the inappropriate use of the pseudo-first-order approach is negatively correlated with the P/N ratio and reached up to 25% of the estimated second-order rate constant in some previous studies of TCE oxidation. Based on our results, a similar relation is valid for the other volatile

  19. [Study on apparent kinetics of photocatalytic oxidation degradation Rhodamine B by photo-Fenton reaction].

    PubMed

    Li, Hong; Zheng, Huai-Li; Li, Xiao-Hong; Xie, Li-Guo; Tang, Xue

    2008-11-01

    The Fenton process, mixed by hydrogen peroxide and iron salts with highly oxidative effect, is recognized as one of powerful advanced oxidation technologies available and can be used to destroy a variety of persistent organic pollutants. The oxidation power of Fenton reagent is due to the generation of hydroxyl radical (* OH) during the iron catalysed decomposition of hydrogen peroxide in acid medium. The hydroxyl radical with a high oxidation potential (2.8 eV) attacks and completely destroys the pollutants in Fenton process. The degradation of pollutants can be considerably improved by using sunlight radiation, which is due to the generation of additional hydroxyl radicals. This photo-Fenton process had been effectively used to degrade the pollutants. In this paper, the definite quantity of Fenton reagent was added in the definite concentration of Rhodamine B solution. The degradation reaction was carried out at pH 3.5 under natural sunlight. The factors influencing on photocatalytic oxidation degradation rate of Rhodamine B were studied following: the initial concentration of Rhodamine B, initial concentrateions of Fe2+ and H2O2. The orders of degradation reaction were obtained by solving exponential kinetics equations of curve fitting, thereby gaining the kinetic parameters and reaction dynamics equation of the reaction system. The research contents included mainly: the UV-Vis spectra of Rhodamine B solution, the concentration-absorbency work curve of Rhodamine B solution, the analysis of the reaction system at various initial Rhodamine B concentrations, the analysis of the reaction system at various initial Fe2+ concentrateions, the analysis of the reaction system at various initial H2O2 concentrations, and the calculation of the apparent kinetics parameters in reaction dynamics equation. The reaction dynamics equation from experiments was constructed: V = 5 x 10(-9) P1.28 F0.366 E0.920, and overall reaction order was 2.57.

  20. Adsorption and abiotic oxidation of arsenic by aged biofilter media: equilibrium and kinetics.

    PubMed

    Sahabi, Danladi Mahuta; Takeda, Minoru; Suzuki, Ichiro; Koizumi, Jun-ichi

    2009-09-15

    Removal of arsenic from groundwater by biological adsorptive filtration depends largely on its interaction with biogenic iron and manganese oxides surfaces. In the present study we investigated the arsenic adsorption and abiotic oxidation capacities of an aged biofilter medium (BM2) collected from a long time established groundwater treatment plant for removal of iron and manganese by biological filtration. Batch oxidation/adsorption kinetic experiments indicated that BM2 can easily oxidize As(III) to As(V) with the rate of oxidation less affected by pH-variations from 4 to 8.5. The adsorption capacity of the biofilter medium for the produced or added As(V), however, depends strongly on the pH of the solution. The kinetics results have shown that As(III) sorption followed pseudo-second order kinetics, whereas the sorption of As(V) was best described by the intra-particle diffusion model, indicating that adsorptions of As(III) and As(V) onto BM2 were governed by different mechanisms. Adsorption isotherms at 25 degrees C were measured for a range of arsenite and arsenate initial concentrations of 0.67-20 micromol/L and the pH range from 4 to 9. Adsorption maxima were highest at pH 4 and decrease steadily as the pH increases. The equilibrium data for both As(III) and As(V) fitted very well to the Freundlich and Sips isotherm equations and, in most cases, the two isotherms overlapped with the same correlation coefficients, indicating sorption to be multilayer on the heterogeneous surface of BM2. The implication of the data for arsenic removal from water by biological filtration has been discussed.

  1. High temperature X-ray diffraction study of the oxidation products and kinetics of uranium-plutonium mixed oxides.

    PubMed

    Strach, Michal; Belin, Renaud C; Richaud, Jean-Christophe; Rogez, Jacques

    2014-12-15

    The oxidation products and kinetics of two sets of mixed uranium-plutonium dioxides containing 14%, 24%, 35%, 46%, 54%, and 62% plutonium treated in air were studied by means of in situ X-ray diffraction (XRD) from 300 to 1773 K every 100 K. The first set consisted of samples annealed 2 weeks before performing the experiments. The second one consisted of powdered samples that sustained self-irradiation damage. Results were compared with chosen literature data and kinetic models established for UO2. The obtained diffraction patterns were used to determine the temperature of the hexagonal M3O8 (M for metal) phase formation, which was found to increase with Pu content. The maximum observed amount of the hexagonal phase in wt % was found to decrease with Pu addition. We conclude that plutonium stabilizes the cubic phases during oxidation, but the hexagonal phase was observed even for the compositions with 62 mol % Pu. The results indicate that self-irradiation defects have a slight impact on the kinetics of oxidation and the lattice parameter even after the phase transformation. It was concluded that the lattice constant of the high oxygen phase was unaffected by the changes in the overall O/M when it was in equilibrium with small quantities of M3O8. We propose that the observed changes in the high oxygen cubic phase lattice parameter are a result of either cation migration or an increase in the miscibility of oxygen in this phase. The solubility of Pu in the hexagonal phase was estimated to be below 14 mol % even at elevated temperatures.

  2. Structure and growth kinetics of the oxidation process of Fe(001) whisker surfaces over a 10-decade pressure range

    NASA Astrophysics Data System (ADS)

    Ferrer, Salvador; Robach, Odile; Balmes, Olivier; Isern, Helena; Popa, Iona; Ackerman, Marcelo

    2010-10-01

    Fe(001) surfaces of whiskers of good crystalline quality were oxidized in a pressure range from 10 - 7 mbar to 1 bar at different temperatures. Epitaxial Fe 3O 4 and FeO thin films with negligible strain were grown depending on the oxidation temperatures. The kinetics of the oxide thickness growth was measured and compared with the predictions of the Fromhold-Cook theory for oxidation of metals. Some discrepancies were found and a possible explanation is presented.

  3. Kinetics of the Oxidation of Reduced Cu,Zn-Superoxide Dismutase by Peroxymonocarbonate

    PubMed Central

    Ranguelova, Kalina; Ganini, Douglas; Bonini, Marcelo G.; London, Robert E.; Mason, Ronald P.

    2012-01-01

    Kinetic evidence is reported for the role of the peroxymonocarbonate, HOOCO2−, as an oxidant for reduced Cu,Zn-superoxide dismutase-Cu(I) (SOD1) during the peroxidase activity of the enzyme. The formation of this reactive oxygen species results from the equilibrium between hydrogen peroxide and bicarbonate. Recently, peroxymonocarbonate has been proposed to be a key substrate for reduced SOD1 and has been shown to oxidize SOD1-Cu(I) to SOD1-Cu(II) much faster than H2O2. We have reinvestigated the kinetics of the reaction between SOD1-Cu(I) and HOOCO2− by using conventional stopped-flow spectrophotometry and obtained a second-order rate constant of k = 1600 ± 100 M−1s−1 for SOD1-Cu(I) oxidation by HOOCO2−. Our results demonstrate that peroxymonocarbonate oxidizes SOD1-Cu(I) to SOD1-Cu(II) and is in turn reduced to the carbonate anion radical. It is proposed that the dissociation of His61 from the active site Cu(I) in SOD-Cu(I) contributes to this chemistry by facilitating the binding of larger anions, such as peroxymonocarbonate. PMID:22569304

  4. Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: kinetics and intermediates.

    PubMed

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei; Wang, Zhaohui; Liu, Jianshe

    2012-11-30

    C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC-MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N(2)-saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO(2) system by changing the reaction atmospheres.

  5. Counterion and substrate effects on barrier heights of the hydrolytic kinetic resolution of terminal epoxides catalyzed by Co(III)-salen.

    PubMed

    Kennedy, Matthew R; Burns, Lori A; Sherrill, C David

    2015-01-15

    Density functional theory (DFT) has been applied to the proposed rate-limiting step of the hydrolytic kinetic resolution (HKR) of terminal epoxides as catalyzed by Co-salen-X (X = counterion) in order to resolve questions surrounding the mechanism. The present results indicate that the bimetallic mechanism proposed by Jacobsen shows nonadditive, cooperative catalysis with a larger reduction in barrier height than the sum of the barrier height reductions from the two monometallic reaction pathways. We computed barrier heights for the reaction using several counterions (chloride, acetate, tosylate, and hydroxide). For the three counterions that are experimentally active (chloride, acetate, and tosylate) the barrier heights are 35, 38, and 34 kJ mol(-1), respectively, while for hydroxide it is 48 kJ mol(-1). The similarity of the barrier heights for chloride, acetate, and tosylate is in agreement with their similar peak reaction rates. The finding that Co-salen-X with these counterions leads to rather different overall reaction profiles suggests that they have quite different rates of reaction with epoxide to form the activated Co-salen-OH required for the bimetallic mechanism. Co-salen-OH is inactive as the sole catalyst for HKR, and this inactivity is ascribed to its larger barrier height for the ring-opening step, rather than to any inability to activate epoxide. Barrier heights were also computed using propylene oxide, 1-hexene oxide, and epichlorohydrin; propylene oxide and 1-hexene oxide have similar barrier heights, 35.5 and 33.2 kJ mol(-1), respectively, and epichlorohydrin has a significantly lower barrier height of 18.8 kJ mol(-1), which is qualitatively consistent with experiments showing faster reactions for epicholorohydrin than propylene oxide when catalyzed by Co-salen-OAc.

  6. Kinetics of Mn(II) oxidation by Leptothrix discophora SS1

    NASA Astrophysics Data System (ADS)

    Zhang, Jinghao; Lion, Leonard W.; Nelson, Yarrow M.; Shuler, Michael L.; Ghiorse, William C.

    2002-03-01

    The kinetics of Mn(II) oxidation by the bacterium Leptothrix discophora SS1 was investigated in this research. Cells were grown in a minimal mineral salts medium in which chemical speciation was well defined. Mn(II) oxidation was observed in a bioreactor under controlled conditions with pH, O 2, and temperature regulation. Mn(II) oxidation experiments were performed at cell concentrations between 24 mg/L and 35 mg/L, over a pH range from 6 to 8.5, between temperatures of 10°C and 40°C, over a dissolved oxygen range of 0 to 8.05 mg/L, and with L. discophora SS1 cells that were grown in the presence of Cu concentrations ranging from zero to 0.1 μM. Mn(II) oxidation rates were determined when the cultures grew to stationary phase and were found to be directly proportional to O 2 and cell concentrations over the ranges investigated. The optimum pH for Mn(II) oxidation was approximately 7.5, and the optimum temperature was 30°C. A Cu level as low as 0.02 μM was found to inhibit the growth rate and yield of L. discophora SS1 observed in shake flasks, while Cu levels between 0.02 and 0.1 μM stimulated the Mn(II) oxidation rate observed in bioreactors. An overall rate law for Mn(II) oxidation by L. discophora as a function of pH, temperature, dissolved oxygen concentration (D.O.), and Cu concentration is proposed. At circumneutral pH, the rate of biologically mediated Mn(II) oxidation is likely to exceed homogeneous abiotic Mn(II) oxidation at relatively low (≈μg/L) concentrations of Mn oxidizing bacteria.

  7. Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects

    NASA Astrophysics Data System (ADS)

    Hryha, Eduard; Nyborg, Lars

    2014-04-01

    The main obstacle for utilization of Cr and Mn as alloying elements in powder metallurgy is their high oxygen affinity leading to oxidation risk during powder manufacturing, handling, and especially during further consolidation. Despite the high purity of the commercially available Cr- and Mn-prealloyed iron powder grades, the risk of stable oxide formation during the sintering process remains. Thermodynamic and kinetic simulation of the oxide formation/transformation on the former powder surface during heating and sintering stages using thermodynamic modeling tools (Thermo-Calc and HSC Chemistry) was performed. Simulation is based on the results from the analysis of amount, morphology, and composition of the oxide phases inside the inter-particle necks in the specimens from interrupted sintering trials utilizing advanced analysis tools (HRSEM + EDX and XPS). The effect of the processing parameters, such as sintering atmosphere composition, temperature profile as well as graphite addition on the possible scenarios of oxide reduction/formation/transformation for Fe-Cr-Mn-C powder systems, was evaluated. Results indicate that oxide transformation occurs in accordance with the thermodynamic stability of oxides as follows: Fe2O3 → FeO → Fe2MnO4 → Cr2FeO4 → Cr2O3 → MnCr2O4 → MnO/MnSiO x → SiO2. Spinel MnCr2O4 was identified as the most stable oxide phase at applied sintering conditions up to 1393 K (1120 °C). Controlled conditions during the heating stage minimize the formation of stable oxide products and produce oxide-free sintered parts.

  8. Zinc adsorption effects on arsenite oxidation kinetics at the birnessite-water interface

    USGS Publications Warehouse

    Power, L.E.; Arai, Y.; Sparks, D.L.

    2005-01-01

    Arsenite is more toxic and mobile than As(V) in soil and sediment environments, and thus it is advantageous to explore factors that enhance oxidation of As(III) to As(V). Previous studies showed that manganese oxides, such as birnessite (??-MnO2), directly oxidized As(III). However, these studies did not explore the role that cation adsorption has on As(III) oxidation. Accordingly, the effects of adsorbed and nonadsorbed Zn on arsenite (As(III)) oxidation kinetics at the birnessite-water interface were investigated using batch adsorption experiments (0.1 g L-1; pH 4.5 and 6.0; I = 0.01 M NaCl). Divalent Zn adsorption on synthetic ??-MnO 2 in the absence of As(III) increased with increasing pH and caused positive shifts in electrophoretic mobility values at pH 4-6, indirectly suggesting inner-sphere Zn adsorption mechanisms. Arsenite was readily oxidized on birnessite in the absence of Zn. The initial As(III) oxidation rate constant decreased with increasing pH from 4.5 to 6.0 and initial As(III) concentrations from 100 to 300 ??M. Similar pH and initial As(III) concentration effects were observed in systems when Zn was present (i.e., presorbed Zn prior to As(III) addition and simultaneously added Zn-As(III) systems), but As(III) oxidation reactions were suppressed compared to the respective control systems. The suppression was more pronounced when Zn was presorbed on the ??-MnO 2 surfaces as opposed to added simultaneously with As(III). This study provides further understanding of As(III) oxidation reactions on manganese oxide surfaces under environmentally applicable conditions where metals compete for reactive sites.

  9. The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics.

    PubMed

    Doig, Steven D; Pickering, Samuel C R; Lye, Gary J; Woodley, John M

    2002-10-05

    Microscale processing techniques would be a useful tool for the rapid and efficient collection of biotransformation kinetic data as a basis for bioprocess design. Automated liquid handling systems can reduce labor intensity while the small scale reduces the demand for scarce materials such as substrate, product, and biocatalyst. Here we illustrate this concept by establishing the use of several microwell formats (96-round, 96-deep square and 24-round well microtiter plates) for quantification of the kinetics of the E. coli TOP10 [pQR239] resting cell catalyzed Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2en-6-one using glycerol as a source of reducing power. By increasing the biocatalyst concentration until the biotransformation rate was oxygen mass-transfer limited we can ensure that kinetic data collected are in the region away from oxygen limitation. Using a 96-round well plate the effect of substrate (bicyclo[3.2.0]hept-2en-6-one) concentration on the volumetric CHMO activity was examined and compared to data collected from 1.5-L stirred-tank experiments. The phenomenon and magnitude of substrate inhibition, observed at the larger scale, was accurately reproduced in the microwell format. We have used this as an illustrative example to demonstrate that under adequately defined conditions, automated microscale processing technologies can be used for the collection of quantitative kinetic data. Additionally, by using the experimentally determined stoichiometry for product formation and glycerol oxidation, we have estimated the maximum oxygen transfer rates as a function of well geometry and agitation rate. Oxygen-transfer rates with an upper limit of between 33 mmol. L(-1). h(-1) (based solely on product formation) and 390 mmol. L(-1). h(-1) (based on product formation and glycerol oxidation) were achieved using a 96-square well format plate shaken at 1300 rpm operated with a static surface area to volume ratio of 320 m(2). m(-3).

  10. Synthesis of β- and γ-hydroxy α-amino acids via enzymatic kinetic resolution and cyanate-to-isocyanate rearrangement.

    PubMed

    Szcześniak, Piotr; Październiok-Holewa, Agnieszka; Klimczak, Urszula; Stecko, Sebastian

    2014-12-05

    A new strategy for stereoselective preparation of all four isomers of β- and γ-hydroxy α-amino acids is presented. The developed procedure is based on enzymatic kinetic resolution and cyanate-to-isocyanate rearrangement as key steps. Stereocontrol is achieved by proper choice of the starting hydroxyacid, the course of kinetic resolution, and the stereospecific sigmatropic rearrangement step, which proceeds with full chirality transfer.

  11. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    PubMed

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  12. Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials

    USGS Publications Warehouse

    Amirbahman, A.; Kent, D.B.; Curtis, G.P.; Davis, J.A.

    2006-01-01

    The fate of arsenic in groundwater depends largely on its interaction with mineral surfaces. We investigated the kinetics of As(III) oxidation by aquifer materials collected from the USGS research site at Cape Cod, MA, USA, by conducting laboratory experiments. Five different solid samples with similar specific surface areas (0.6-0.9 m2 g-1) and reductively extractable iron contents (18-26 ??mol m-2), but with varying total manganese contents (0.5-3.5 ??mol m-2) were used. Both dissolved and adsorbed As(III) and As(V) concentrations were measured with time up to 250 h. The As(III) removal rate from solution increased with increasing solid manganese content, suggesting that manganese oxide is responsible for the oxidation of As(III). Under all conditions, dissolved As(V) concentrations were very low. A quantitative model was developed to simulate the extent and kinetics of arsenic transformation by aquifer materials. The model included: (1) reversible rate-limited adsorption of As(III) onto both oxidative and non-oxidative (adsorptive) sites, (2) irreversible rate-limited oxidation of As(III), and (3) equilibrium adsorption of As(V) onto adsorptive sites. Rate constants for these processes, as well as the total oxidative site densities were used as the fitting parameters. The total adsorptive site densities were estimated based on the measured specific surface area of each material. The best fit was provided by considering one fast and one slow site for each adsorptive and oxidative site. The fitting parameters were obtained using the kinetic data for the most reactive aquifer material at different initial As(III) concentrations. Using the same parameters to simulate As(III) and As(V) surface reactions, the model predictions were compared to observations for aquifer materials with different manganese contents. The model simulated the experimental data very well for all materials at all initial As(III) concentrations. The As(V) production rate was related to the

  13. Influence of polycarboxylic acid chelating agents on the kinetics of the dissolution of metal oxides

    SciTech Connect

    Dyatlova, N.M.; Gorichev, I.G.; Dukhanin, V.S.; Malov, L.V.

    1986-11-01

    The factors influencing the rate of dissolution of metal oxides in aqueous solutions of acids in the presence of polycarboxylic acid chelating agents and other complexing agents have been quantitatively compared in this review, and the decisive role of the gradient of protons and electrons in the realization of this process has been revealed. The main hypotheses of the proposed conceptions of the electron-proton theory for the dissolution of metal oxides have been stated: 1) The rate-limiting step is charge transfer (first hypothesis); 2) The rate limiting step is the desorption of the dissolution products (second hypothesis). The applicability of the proposed electron-proton theory to the theoretical substantiation of all the experimentally observed kinetic features of the influence of various factors has been demonstrated. Practical recommendations for the effective utilization of the chelating agents considered for removing iron oxide surface deposits have been given.

  14. Thermal oxidation of single-crystal silicon carbide - Kinetic, electrical, and chemical studies

    NASA Technical Reports Server (NTRS)

    Petit, J. B.; Neudeck, P. G.; Matus, L. G.; Powell, J. A.

    1992-01-01

    This paper presents kinetic data from oxidation studies of the polar faces for 3C and 6H SiC in wet and dry oxidizing ambients. Values for the linear and parabolic rate constants were obtained, as well as preliminary results for the activation energies of the rate constants. Examples are presented describing how thermal oxidation can be used to map polytypes and characterize defects in epitaxial layers grown on low tilt angle 6H SiC substrates. Interface widths were measured using Auger electron spectroscopy (AES) with Ar ion beam depth profiling and variable angle spectroscopic ellipsometry (VASE) with effective medium approximation (EMA) models. Preliminary electrical measurements of MOS capacitors are also presented.

  15. Effects of point defect concentrations of the reactive element oxides on the oxidation kinetics of pure Ni and Ni-Cr alloys

    NASA Astrophysics Data System (ADS)

    Yan, Ruey-Fong

    The addition of some reactive element oxides, e.g. Ysb2Osb3 or ZrOsb2, has significant effects, e.g. improvement in scale adhesion and reduction in oxidation rate, on the oxidation behavior of chromia and alumina scale forming alloys at high temperatures. However, there is little agreement about how a small addition of an oxygen-active element can cause such profound effects. It was the goal of this project to study the growth kinetics of an oxide scale when different reactive-element oxides were added to pure Ni and Ni-Cr alloys and, consequently, to aid in clarifying the mechanism of reactive element effects. The oxidation kinetics were measured using a thermogravimetric analysis (TGA) method and the material characterization of oxide scale was conducted. The relationship between point defect structures and oxidation kinetics was discussed. The results in this research showed that Ysb2Osb3 and ZrOsb2 exhibited the reactive element effects on the oxidation behaviors of Ni and Ni-Cr alloys. In addition, the point defect concentrations of the reactive element oxide, Ysb2Osb3, were changed by doping of different valent oxides. The modification of point defect concentrations of the reactive element oxide dispersed phases did change the oxidation kinetics of the pure Ni and Ni-Cr alloys containing Ysb2Osb3. These results indicate that the transport properties of the reactive element oxide dispersed phases are one of the important factors in determining the growth rate of an oxide scale.

  16. Analyzing the kinetic response of tin oxide-carbon and tin oxide-CNT composites gas sensors for alcohols detection

    SciTech Connect

    Kamble, Vinayak Umarji, Arun

    2015-03-15

    Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide – carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size ∼7 nm and ∼95 m{sup 2}/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO{sub 2} thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors.

  17. Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism.

    PubMed

    Renger, Gernot

    2011-01-01

    The essential steps of photosynthetic water splitting take place in Photosystem II (PSII) and comprise three different reaction sequences: (i) light induced formation of the radical pair P680(+)Q(A)(-), (ii) P680(+) driven oxidative water splitting into O(2) and four protons, and (iii) two step plastoquinone reduction to plastoquinol by Q(A)(-). This mini-review briefly summarizes our state of knowledge on energetics, kinetics and mechanism of oxidative water splitting. Essential features of the two types of reactions involved are described: (a) P680(+) reduction by the redox active tyrosine Y(z) and (b) sequence of oxidation steps induced by Y(z)(ox) in the water-oxidizing complex (WOC). The rate of the former reaction is limited by the non-adiabatic electron transfer (NET) step and the multi-phase kinetics shown to originate from a sequence of relaxation processes. In marked contrast, the rate of the stepwise oxidation by Y(z)(ox) of the WOC up to the redox level S(3) is not limited by NET but by trigger reactions which probably comprise proton shifts and/or conformational changes. The overall rate of the final reaction sequence leading to formation and release of O(2) is assumed to be limited by the electron transfer step from the S(3) state of WOC to Y(z)(ox) due to involvement of an endergonic redox equilibrium. Currently discussed controversial ideas on possible pathways are briefly outlined. Several crucial points of the mechanism of oxidative water splitting, like O-O bond formation, role of local proton shift(s), details of hydrogen bonding, are still not clarified and remain a challenging topic of future research.

  18. Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Nambu, Hidesaburo

    1992-01-01

    Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.

  19. Kinetic characterization of an oxidative, cooperative HMG-CoA reductase from Burkholderia cenocepacia.

    PubMed

    Schwarz, Benjamin H; Driver, Joseph; Peacock, Riley B; Dembinski, Holly E; Corson, Melissa H; Gordon, Samuel S; Watson, Jeffrey M

    2014-02-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a key enzyme in endogenous cholesterol biosynthesis in mammals and isoprenoid biosynthesis via the mevalonate pathway in other eukaryotes, archaea and some eubacteria. In most organisms that express this enzyme, it catalyzes the NAD(P)H-dependent reduction of HMG-CoA to mevalonate. We have cloned and characterized the 6x-His-tagged HMGR from the opportunistic lung pathogen Burkholderia cenocepacia. Kinetic characterization shows that the enzyme prefers NAD(H) over NADP(H) as a cofactor, suggesting an oxidative physiological role for the enzyme. This hypothesis is supported by the fact that the Burkholderia cenocepacia genome lacks the genes for the downstream enzymes of the mevalonate pathway. The enzyme exhibits positive cooperativity toward the substrates of the reductive reaction, but the oxidative reaction exhibits unusual double-saturation kinetics, distinctive among characterized HMG-CoA reductases. The unusual kinetics may arise from the presence of multiple active oligomeric states, each with different Vmax values.

  20. Kinetics of oxidation of azobenzene nitrene with molecular oxygen in amorphous polymers

    SciTech Connect

    Kondratenko, E.V.; Bolshakov, B.V.; Tolkatchev, V.A.

    1996-12-31

    Kinetics of disappearance of azobenzene nitrene at 115-120 K in polymethyl methacrylate, poly styrene, polycarbonate and polysulfone films saturated with oxygen has been studied. For condition of oxygen excess the disappearance of nitrous is shown to be a result only of the reaction with the dissolved gas. Kinetics of the process is identical to that of the oxidation of macro radicals in the same polymer. The nonexponential character of kinetic curves is shown to be related with the existence of the rate constant distribution. The values of the width of distribution range in the narrow interval being practically the same for various polymers. The data about the width of the distribution function for the oxidation of macro radicals in amorphous polymers known from literature also fit into this interval. All the particles participating in the reaction with the experimental accuracy have the same dependence of the rate constant on temperature. The activation energies of reactions in various amorphous polymers have very close values.

  1. Determination of thermoluminescence kinetic parameters of terbium-doped zirconium oxide

    NASA Astrophysics Data System (ADS)

    Rivera, T.; Azorín, J.; Falcony, C.; Martínez, E.; García, M.

    2001-06-01

    In recent years considerable importance has been attached to zirconium oxide doped with rare earth (ZrO 2 : RE) thin films due to their desirable characteristics for use in UV dosimetry. In our laboratories we have developed a method to prepare ZrO 2 : RE thin films. Dosimetric characteristics of these materials have been reported previously (Azorin et al., Radiat. Meas. 29 (1998) 315; Radiat. Prot. Dosim. 85 (1999) 317) and results of these have stimulated continued development and analysis of the thermoluminescence mechanism. Two important parameters to be determined in TL studies are the activation energy ( E) and the frequency factor ( s). This paper presents the results of determining kinetic parameters of terbium-doped zirconium oxide (ZrO 2 : Tb) thin films, exposed to 260 nm UV light, using the Lushchik (Sov. Phys. JETF 3 (1956) 390) and Chen (J. Appl. Phys. 40 (1969) 570; J. Electrochem. Soc. 166 (1969) 1254) methods. Kinetic analysis of the glow curve shows second order kinetics for both the first and second glow peaks.

  2. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres.

    PubMed

    Chandrasekaran, Sriraam R; Hopke, Philip K

    2012-12-01

    Grass pellets are a renewable resource that have energy content similar to that of wood. However, the higher ash and chlorine content affects combustion. Thermal degradation analysis of a fuel is useful in developing effective combustion. Thermogravimetric analysis (TGA) of the thermal degradation of grass pellets under inert (nitrogen) and oxidizing (air) atmospheres was conducted. Non-isothermal conditions were employed with 4 different heating rates. Kinetic parameters (activation energy and pre-exponential factors) were estimated using the iso-conversional method. Both pyrolysis and oxidative atmospheric thermal degradation exhibited two major loss process: volatilization of cellulose, hemicelluloses and lignin and burning or slow oxidation of the residual char. The activation energy and pre-exponential factors were high for the oxidizing environment. During pyrolysis, major decomposition occurred with 40% to 75% conversion of the mass to gas with an activation energy of 314 kJ/mol. In air the decomposition occurred with 30% to 55% conversion with an activation energy of 556 kJ/mol. There was a substantial effect of heating rate on mass loss and mass loss rate. The TG shifted to higher temperature ranges on increasing the heating rate. In both pyrolyzing and oxidizing conditions, average combustion and devolatilization rates increased. Enhanced combustion takes place with higher activation energy in oxidizing atmosphere compared to the inert atmosphere due to presence of air.

  3. Corrosion of concrete sewers--the kinetics of hydrogen sulfide oxidation.

    PubMed

    Vollertsen, Jes; Nielsen, Asbjørn Haaning; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-05-01

    Hydrogen sulfide absorption and oxidation by corroding concrete surfaces was quantified in a test rig consisting of 6 concrete pipes operated under sewer conditions. The test rig was placed in an underground sewer monitoring station with access to fresh wastewater. Hydrogen sulfide gas was injected into the pipe every 2nd hour to peak concentrations around 1000 ppm. After some months of operation, the hydrogen sulfide became rapidly oxidized by the corroding concrete surfaces. At hydrogen sulfide concentrations of 1000 ppm, oxidation rates as high as 1 mg S m(-2) s(-1) were observed. The oxidation process followed simple nth order kinetics with a process order of 0.45-0.75. Extrapolating the results to gravity sewer systems showed that hydrogen sulfide oxidation by corroding concrete is a fast process compared to the release of hydrogen sulfide from the bulk water, resulting in low gas concentrations compared with equilibrium. Balancing hydrogen sulfide release with hydrogen sulfide oxidation at steady state conditions demonstrated that significant corrosion rates--several millimeters of concrete per year--can potentially occur at hydrogen sulfide gas phase concentrations well below 5-10 ppm. The results obtained in the study advances the knowledge on prediction of sewer concrete corrosion and the extent of odor problems.

  4. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.

    PubMed

    Pham, A Ninh; Waite, T David

    2014-08-01

    Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10μM) was investigated both in the absence and the presence of copper (0.01-0.4μM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu.

  5. Zinc oxide nanowire gamma ray detector with high spatiotemporal resolution

    NASA Astrophysics Data System (ADS)

    Mayo, Daniel C.; Nolen, J. Ryan; Cook, Andrew; Mu, Richard R.; Haglund, Richard F.

    2016-03-01

    Conventional scintillation detectors are typically single crystals of heavy-metal oxides or halides doped with rare-earth ions that record the recombination of electron-hole pairs by photon emission in the visible to ultraviolet. However, the light yields are typically low enough to require photomultiplier detection with the attendant instrumental complications. Here we report initial studies of gamma ray detection by zinc oxide (ZnO) nanowires, grown by vapor-solid deposition. The nanowires grow along the c-axis in a wurtzite structure; they are typically 80 nm in diameter and have lengths of 1- 2 μm. The nanowires are single crystals of high quality, with a photoluminescence (PL) yield from band-edge exciton emission in the ultraviolet that is typically one hundred times larger than the PL yield from defect centers in the visible. Nanowire ensembles were irradiated by 662 keV gamma rays from a Cs-137 source for periods of up to ten hours; gamma rays in this energy range interact by Compton scattering, which in ZnO creates F+ centers that relax to form singly-charged positive oxygen vacancies. Following irradiation, we fit the PL spectra of the visible emission with a sum of Gaussians at the energies of the known defects. We find highly efficient PL from the irradiated area, with a figure of merit approaching 106 photons/s/MeV of deposited energy. Over a period of days, the singly charged O+ vacancies relax to the more stable doubly charged O++ vacancies. However, the overall defect PL returns to pre-irradiation values after about a week, as the vacancies diffuse to the surface of these very thin nanowires, indicating that a self-healing process restores the nanowires to their original state.

  6. Shell cross-linked micelle-based nanoreactors for the substrate-selective hydrolytic kinetic resolution of epoxides.

    PubMed

    Liu, Yu; Wang, Yu; Wang, Yufeng; Lu, Jie; Piñón, Victor; Weck, Marcus

    2011-09-14

    Shell cross-linked micelles (SCMs) containing Co(III)-salen cores were prepared from amphiphilic poly(2-oxazoline) triblock copolymers. The catalytic activity of these nanoreactors for the hydrolytic kinetic resolution of various terminal epoxides was investigated. The SCM catalysts showed high catalytic efficiency and, more significantly, substrate selectivity based on the hydrophobic nature of the epoxide. Moreover, because of the nanoscale particle size and the high stability, the catalyst could be recovered easily by ultrafiltration and reused with high activity for eight cycles.

  7. High resolution Fowler-Nordheim field emission maps of thin silicon oxide layers

    NASA Astrophysics Data System (ADS)

    Ruskell, Todd G.; Workman, Richard K.; Chen, Dong; Sarid, Dror; Dahl, Sarah; Gilbert, Stephen

    1996-01-01

    An improved method for characterizing thin oxide films using Fowler-Nordheim field emission is reported. The method uses a conducting-tip atomic force microscope with dual feedback systems, one for the topography and a second for the field emission bias voltage. Images of the voltage required to maintain a 10 pA emission current through a 3 nm oxide film thermally grown on p-type Si(100) demonstrate a spatial resolution of 8 nm.

  8. Oxidation of psychotropic drugs by Chloramine-T in acid medium: a kinetic study using spectrophotometry

    NASA Astrophysics Data System (ADS)

    Saldanha, R. J. D.; Ananda, S.; Venkatesha, B. M.; Made Gowda, N. M.

    2002-03-01

    The kinetics of oxidation of psychotropic drugs, chlorpromazine hydrochloride (CPH) and fluphenazine dihydrochloride (FPH), by Chloramine-T (CAT) in pH 1.6 buffer medium has been studied spectrophotometrically at λmax=570 and 530 nm, respectively, at 30°C. The reaction rate shows a fractional-order dependence on [CAT] and first-order dependence on each [substrate]. The reaction rate also shows an inverse fractional-order in [H +]. Additions of halide ions and the reduction product of CAT, p-toluenesulfonamide, and variation of ionic strength and dielectric constant of the medium do not have any significant effect on the reaction rate. The activation parameters for the reaction were evaluated. The proposed general mechanism and the derived rate law are consistent with the observed kinetics.

  9. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    NASA Astrophysics Data System (ADS)

    Gelß, Patrick; Matera, Sebastian; Schütte, Christof

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  10. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    SciTech Connect

    Gelß, Patrick Matera, Sebastian Schütte, Christof

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  11. Size Resolved High Temperature Oxidation Kinetics of Nano-Sized Titanium and Zirconium Particles.

    PubMed

    Zong, Yichen; Jacob, Rohit J; Li, Shuiqing; Zachariah, Michael R

    2015-06-18

    While ultrafine metal particles offer the possibility of very high energy density fuels, there is considerable uncertainty in the mechanism by which metal nanoparticles burn, and few studies that have examined the size dependence to their kinetics at the nanoscale. In this work we quantify the size dependence to the burning rate of titanium and zirconium nanoparticles. Nanoparticles in the range of 20-150 nm were produced via pulsed laser ablation, and then in-flight size-selected using differential electrical mobility. The size-selected oxide free metal particles were directly injected into the post flame region of a laminar flame to create a high temperature (1700-2500 K) oxidizing environment. The reaction was monitored using high-speed videography by tracking the emission from individual nanoparticles. We find that sintering occurs prior to significant reaction, and that once sintering is accounted for, the rate of combustion follows a near nearly (diameter)(1) power-law dependence. Additionally, Arrhenius parameters for the combustion of these nanoparticles were evaluated by measuring the burn times at different ambient temperatures. The optical emission from combustion was also used to model the oxidation process, which we find can be reasonably described with a kinetically controlled shrinking core model.

  12. Gas phase oxidation of monoethanolamine (MEA) with OH radical and ozone: kinetics, products, and particles.

    PubMed

    Borduas, Nadine; Abbatt, Jonathan P D; Murphy, Jennifer G

    2013-06-18

    Monoethanolamine (MEA) is currently the benchmark solvent in carbon capture and storage (CCS), a technology aimed at reducing CO2 emissions in large combustion industries. To accurately assess the environmental impact of CCS, a sound understanding of the fate of MEA in the atmosphere is necessary. Relative and absolute rate kinetic experiments were conducted in a smog chamber using online proton transfer reaction mass spectrometry (PTR-MS) to follow the decay of MEA. The room temperature (295 ± 3K) kinetics of oxidation with hydroxyl radicals from light and dark sources yield an average value of (7.02 ± 0.46) × 10(-11) cm(3) molec(-1) s(-1), in good agreement with previously published data. For the first time, the rate coefficient for MEA with ozone was measured: (1.09 ± 0.05) × 10(-18) cm(3) molec(-1) s(-1). An investigation into the oxidation products was also conducted using online chemical ionization mass spectrometry (CI-TOFMS) where formamide, isocyanic acid as well as higher order products including cyclic amines were detected. Significant particle numbers and mass loadings were observed during the MEA oxidation experiments and accounted for over 15% of the fate of MEA-derived nitrogen.

  13. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation.

  14. On the origins of kinetic resolution of cyclohexane-1,2-diols through stereoselective acylation by chiral tetrapeptides.

    PubMed

    Shinisha, C B; Sunoj, Raghavan B

    2009-08-06

    The relative energies of cyclohexane-1,2-diols and chiral tetrapeptide (2 (Boc) or 3 (Moc)) complexes calculated using DFT indicate a thermodynamic preference for chiral recognition toward (1R,2R)(e,e)-alpha isomer. The barrier for stereoselective acyl transfer is identified as lower for trans-(1R,2R)-cyclohexane-1,2-diol, leading to the kinetic resolution (KR) of trans-(1S,2S)-cyclohexane-1,2-diol. The prediction is in concert with the reported experiments for trans-diols, while that for hitherto unknown cis-diol demands experimental verification. It is proposed that desymmetrization would enable the resolution of cis-(1R,2S)-2-hydroxycyclohexyl acetate.

  15. Oxidative vaporization kinetics of chromium (III) oxide in oxygen from 1270 to 1570 K

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1974-01-01

    Rates of oxidative vaporization of Cr2O3 on preoxidized resistively heated chromium were determined in flowing oxygen at 0.115 torr for temperatures from 1270 to 1570 K. Reaction controlled rates were obtained from experimental rates by a gold calibration technique. These rates were shown to agree with those predicted by thermochemical analysis. The activation energy obtained for the oxidative vaporation reaction corresponded numerically with the thermochemical enthalpy of the reaction. A theoretical equation is given for calculating the rate from thermodynamic data by using boundary layer theory.

  16. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation.

    PubMed

    Ushiki, Norisuke; Jinno, Masaru; Fujitani, Hirotsugu; Suenaga, Toshikazu; Terada, Akihiko; Tsuneda, Satoshi

    2017-02-12

    Nitrite oxidation is an aerobic process of the nitrogen cycle in natural ecosystems, and is performed by nitrite-oxidizing bacteria (NOB). Also, nitrite oxidation is a rate-limiting step of nitrogen removal in wastewater treatment plants (WWTPs). Although Nitrospira is known as dominant NOB in WWTPs, information on their physiological properties and kinetic parameters is limited. Here, we report the kinetic parameters and inhibition of nitrite oxidation by free ammonia in pure cultures of Nitrospira sp. strain ND1 and Nitrospira japonica strain NJ1, which were previously isolated from activated sludge in a WWTP. The maximum nitrite uptake rate ( [Formula: see text] ) and the half-saturation constant for nitrite uptake ( [Formula: see text] ) of strains ND1 and NJ1 were 45 ± 7 and 31 ± 5 (μmol NO2(-)/mg protein/h), and 6 ± 1 and 10 ± 2 (μM NO2(-)), respectively. The [Formula: see text] and [Formula: see text] of two strains indicated that they adapt to low-nitrite-concentration environments like activated sludge. The half-saturation constants for oxygen uptake ( [Formula: see text] ) of the two strains were 4.0±2.5 and 2.6±1.1 (μM O2), respectively. The [Formula: see text] values of the two strains were lower than those of other NOB, suggesting that Nitrospira in activated sludge could oxidize nitrite in the hypoxic environments often found in the interiors of biofilms and flocs. The inhibition thresholds of the two strains by free ammonia were 0.85 and 4.3 (mg-NH3 l(-1)), respectively. Comparing the physiological properties of the two strains, we suggest that tolerance for free ammonia determines competition and partitioning into ecological niches among Nitrospira populations.

  17. Radiation re-solution of fission gas in non-oxide nuclear fuel

    NASA Astrophysics Data System (ADS)

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called "homogenous" atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  18. PHOTOCATALYTIC OXIDATION FOR NOx ABATEMENT: DEVELOPMENT OF A KINETIC EXPRESSION AND DESIGN TOOLS

    SciTech Connect

    Rajiv Srivastava; M. A. Ebadian

    2000-09-15

    The ''Nitrogen Oxides Emission Reduction Program'' and ''Ozone Non-Attainment Program'' in the 1990 Clean Air Act provide guidelines for controlling NOx (NO and NO{sub 2}) emissions in new and existing stationary sources. NOx emissions have local (air quality), regional (acid rain), and global (ozone production) consequences. This study aids in developing the photocatalyst technology that has potential for use in abatement of NOx. The objective of the proposed project is to apply the principles of chemical engineering fundamentals--reaction kinetics, transport phenomena and thermodynamics--in the process design for a system that will utilize a photocatalytic reactor to oxidize NOx to nitric acid (HNO{sub 3}). HNO{sub 3} can be more easily trapped than NOx on adsorbent surfaces or in water. The project dealt with the engineering aspect of the gas-solid heterogeneous oxidation of NOx. The experiments were conducted in a photocatalyst wash-coated glass flow tube reactor. A mathematical model was developed based on a rigorous description of the physical and chemical processes occurring in the reactor. The mathematical model took into account (1) intrinsic reaction kinetics (i.e., true reaction rates), (2) transport phenomena that deal with the mass transfer effects in the reactor, and (3) the geometry of the reactor. The experimental results were used for validation of the mathematical model that provides the basis for a versatile and reliable method for the purpose of design, scale-up and process control. The NOx abatement was successfully carried out in a flow tube reactor surrounded by black lights under the exploratory grant. Due to lack of funds, a comprehensive kinetic analysis for the photocatalytic reaction scheme could not be carried out. The initial experiments look very promising for use of photocatalysis for NOx abatement.

  19. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity.

    PubMed

    Hamdi El Najjar, Nasma; Touffet, Arnaud; Deborde, Marie; Journel, Romain; Leitner, Nathalie Karpel Vel

    2013-10-01

    This work was carried out to investigate the fate of the antibiotic levofloxacin upon oxidation with ozone and hydroxyl radicals. A kinetic study was conducted at 20 °C for each oxidant. Ozonation experiments were performed using a competitive kinetic method with carbamazepin as competitor. Significant levofloxacin removal was observed during ozonation and a rate constant value of 6.0×10(4) M(-1) s(-1) was obtained at pH 7.2. An H2O2/UV system was used for the formation of hydroxyl radicals HO. The rate constant of HO was determined in the presence of a high H2O2 concentration. The kinetic expressions yielded a [Formula: see text] value of 4.5×10(9) M(-1) s(-1) at pH 6.0 and 5.2×10(9) M(-1) s(-1) at pH 7.2. These results were used to develop a model to predict the efficacy of the ozonation process and pharmaceutical removal was estimated under different ozonation conditions (i.e. oxidant concentrations and contact times). The results showed that levofloxacin was completely degraded by molecular ozone during ozonation of water and that hydroxyl radicals had no effect in real waters conditions. Moreover, LC/MS/MS and toxicity assays using Lumistox test were performed to identify ozonation transformation products. Under these conditions, four transformation products were observed and their chemical structures were proposed. The results showed an increase in toxicity during ozonation, even after degradation of all of the observed transformation products. The formation of other transformation products not identified under our experimental conditions could be responsible for the observed toxicity. These products might be ozone-resistant and more toxic to Vibrio fisheri than levofloxacin.

  20. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process.

    PubMed

    Lefèvre, Sébastien; Boutin, Olivier; Ferrasse, Jean-Henry; Malleret, Laure; Faucherand, Rémy; Viand, Alain

    2011-08-01

    This work is dedicated to an accurate evaluation of thermodynamic and kinetics aspects of phenol degradation using wet air oxidation process. Phenol is a well known polluting molecule and therefore it is important having data of its behaviour during this process. A view cell is used for the experimental study, with an internal volume of 150 mL, able to reach pressures up to 30 MPa and temperatures up to 350°C. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained for different binary systems (water/nitrogen, water/air) and ternary system (water/nitrogen/phenol). The best model is the Predictive Soave Redlich Kwong one. This information is necessary to predict the composition of the gas phase during the process. It is also important for an implementation in a process simulation. The second part is dedicated to kinetics evaluation of the degradation of phenol. Different compounds have been detected using GC coupled with a MS. A kinetic scheme is deduced, taking into account the evolution of phenol, hydroquinones, catechol, resorcinol and acetic acid. The kinetic parameters are calculated for this scheme. These data are important to evaluate the evolution of the concentration of the different polluting molecules during the process. A simplified kinetic scheme, which can be easily implemented in a process simulation, is also determined for the direct degradation of phenol into H(2)O and CO(2). The Arrhenius law data obtained for the phenol disappearance are the following: k=1.8×10(6)±3.9×10(5)M(-1)s(-1) (pre-exponential factor) and E(a)=77±8 kJ mol(-1) (activation energy).

  1. Heterogeneous oxidation of folpet and dimethomorph by OH radicals: A kinetic and mechanistic study

    NASA Astrophysics Data System (ADS)

    Al Rashidi, M.; Chakir, A.; Roth, E.

    2014-01-01

    This study investigates the heterogeneous OH oxidation of folpet and dimethomorph, two fungicides identified in the atmosphere of the Champagne-Ardenne region. Kinetic experiments were conducted in the relative mode, using terbuthylazine as a reference compound. The experimental method employed makes use of a simulation chamber coupled to a GC/MS analytical system. Meanwhile, the identification of (4-chlorophenyl)(3,4-dimethoxyphenyl)methanone (CPMPM), a degradation product of the OH oxidation of dimethomorph, is achieved using SPME/GC/MS. Moreover, a degradation mechanism of dimethomorph is proposed, and the heterogeneous OH reactivity of CPMPM is evaluated. The obtained OH reaction rate constants (cm3 molecule-1 s-1) are: kZ-dimethomorph = (2.0 ± 1.2) 10-14, kE-dimethomorph = (1.7 ± 1.2) 10-14, kFolpet = (1.6 ± 0.9) 10-13 and kCPMPM = (1.9 ± 1.0) 10-12. The implicated tropospheric life-times are up to 2 months, which shows that the investigated pesticides are relatively persistent towards oxidation removal processes. CPMPM, the identified product of OH oxidation of dimethomorph, is less persistent with a life time of only 6 days relative to heterogeneous oxidation by OH radicals.

  2. Kinetic analysis of soil contained pyrene oxidation by a pulsed discharge plasma process

    NASA Astrophysics Data System (ADS)

    Huijuan, Wang; Guangshun, Zhou; He, Guo; Cong, Geng

    2017-01-01

    A pulsed discharge plasma (PDP) reactor with net anode and net cathode was established for investigating the pyrene degradation in soil under different pulse peak voltage, air flow rate, pyrene content in soil, initial pH value and initial water content of the soil. Pyrene oxidation within the 60 min discharge time was fitting according to the pseudo-first order equation and the corresponding reaction kinetics constants (k values) were calculated. The obtained results show that pyrene oxidation under all the different reaction conditions obeyed the pseudo-first order equation well. Higher pulsed peak voltage and appropriate air flow rate were in favor of the increase of reaction rate of pyrene oxidation. A higher k value could be achieved in the lower initial pyrene content (the value was 100 mg kg-1). The k value of pyrene oxidation in the case of pH = 4 was 11.2 times higher than the value obtained under the condition of pH = 9, while the initial water content of the soil also has a large effect on the oxidation rate of pyrene due to the effect of PDP. Supported by National Natural Science Foundation of China (No. 21207052).

  3. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    SciTech Connect

    Nagaraju, D.H.; Devaraj, S.; Balaya, P.

    2014-12-15

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd{sup 2+} ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl{sub 2}. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells.

  4. Kinetic effects of increased proton transfer distance on proton-coupled oxidations of phenol-amines.

    PubMed

    Markle, Todd F; Rhile, Ian J; Mayer, James M

    2011-11-02

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh(2)NH(2) substituent (1). Spectroscopic, structural, thermochemical, and computational studies show that the two amino-phenols are very similar, except that the O···N distance (d(ON)) is >0.1 Å longer in 2 than in 1. The difference in d(ON) is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations (•)OAr-NH(3)(+) by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. 2 orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C(6)H(4)OMe)(3)(•+) (3a(+)) occurs at (1.4 ± 0.1) × 10(4) M(-1) s(-1), only a factor of 2 slower than the closely related reaction of 1 with N(C(6)H(4)OMe)(2)(C(6)H(4)Br)(•+) (3b(+)). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG° (2 + 3a(+)) = +0.078 V versus ΔG° (1 + 3b(+)) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δ ln(k)/Δ ln(K(eq))). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the

  5. Methane and Methanol Oxidation in Supercritical Water: Chemical Kinetics and Hydrothermal Flame Studies

    DTIC Science & Technology

    1996-01-01

    8208 , UC-1409 Albuquerque, NM 87185 and Livermore, CA 94551 19980710 104 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING...01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 rVn QUALITY IN8?, CTED 1 108-1996 SANDIA REPORT SAND96- 8208 - UC-1...SAND96- 8208 Unlimited Release Printed January 1996 Methane and Methanol Oxidation in Supercritical Water: Chemical Kinetics and Hydrothermal Flame

  6. [Solution kinetics of magnesium oxide containing granules produced by laboratory scale fluidization].

    PubMed

    Rácz, I; Zelkó, R; Bihari, E

    1994-09-01

    In practice of manufacturing industrial pharmaceutical products, the technique of fluidization has been used extensively in the past decades. The authors studied the magnesium oxide-containing granulates made by fluidization granulation in laboratory, to optimize the process, to determine the neutralization kinetic parameters of granulates, to establish the connections between the method of granulation and the release of active substances. According to our findings, the pharmaceutical product's characteristics in the aspects of physics, chemistry, stability and bioavailability may remarkably change without fixing the border conditions of parameters within limits.

  7. Kinetics and selectivity of oxidation of saturated hydrocarbons in sulphuric acid media containing anthracene and cyclohexane oligomers

    SciTech Connect

    Rudakov, Ye.S.; Lutsyk, A.I.; Suikov, S.Yu.; Tishchenko, N.A.

    1983-01-01

    Solutions of anthracene and cyclohexene in 93% sulphuric acid are sources of fairly stable species, which oxidize tertiary and secondary C-H bonds of saturated hydrocarbons at 90/sup 0/C. A study was made of kinetics and selectivity of the first stage of oxidation of paraffins in these systems. The selectivity, isotope effect and kinetics of oxidation of the anthraceneH/sub 2/SO/sub 4/ system and oligomers of cyclohexene-H/sub 2/SO/sub 4/ are similar and approximate to the oxidizing agent-sulphuric acid systems, previously examined. Based on this analogy a mechanism is proposed for the oxidative homolysis of C-H bonds for the first stage of oxidation of saturated hydrocarbons in anthracene-sulphuric acid and cyclohexene-sulphuric acid systems.

  8. High Time Resolution Measurements of Gaseous Oxidized Mercury from Ground and Aircraft Platforms

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; Jaffe, D. A.

    2009-12-01

    Atmospheric mercury fractions (gaseous elemental, gaseous oxidized, and fine particulate-bound mercury) have been measured in many different environmental conditions, primarily with the Tekran 2537/1130/1135 speciation system, and these measurements have greatly enhanced scientific understanding of atmospheric mercury dynamics. However, measurements of gaseous oxidized mercury, the most reactive, soluble, and bioavailable mercury fraction, have low time resolution with the Tekran system and have been mostly unchecked by calibration standards. We have developed an alternative technique for measuring gaseous oxidized mercury that provides higher resolution (2.5 minute) measurements, and have built a permeation tube-based oxidized mercury (HgCl2, HgBr2, and HgO) calibrator. The system measures oxidized mercury based on the difference between elemental mercury and total mercury measured with two Tekran 2537 analyzers, and has a 2.5 minute detection limit sufficient to quantify high oxidized mercury events (~80 pg m-3). Additionally, in laboratory tests it outperforms measurements made with KCl-coated denuders in terms of percent recovery and time-averaged detection limit. We have used this system in aircraft and at Mount Bachelor Observatory to observe the origins and dynamics of high oxidized mercury air in the Pacific Northwest, and are preparing it for deployment in the NCAR C-130 for detailed assessment of atmospheric mercury fractions in North America.

  9. Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    NASA Astrophysics Data System (ADS)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2016-09-01

    The kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1 was measured under controlled conditions of the initial Mn(II) concentration, spore concentration, chemical speciation, pH, O2, and temperature. Mn(II) oxidation experiments were performed with spore concentrations ranging from 0.7 to 11 × 109 spores/L, a pH range from 5.8 to 8.1, temperatures between 4 and 58 °C, a range of dissolved oxygen from 2 to 270 μM, and initial Mn(II) concentrations from 1 to 200 μM. The Mn(II) oxidation rates were directly proportional to the spore concentrations over these ranges of concentration. The Mn(II) oxidation rate increased with increasing initial Mn(II) concentration to a critical concentration, as described by the Michaelis-Menten model (Km = ca. 3 μM). Whereas with starting Mn(II) concentrations above the critical concentration, the rate was almost constant in low ionic solution (I = 0.05, 0.08). At high ionic solution (I = 0.53, 0.68), the rate was inversely correlated with Mn(II) concentration. Increase in the Mn(II) oxidation rate with the dissolved oxygen concentration followed the Michaelis-Menten model (Km = 12-19 μM DO) in both a HEPES-buffered commercial drinking (soft) water and in artificial and natural seawater. Overall, our results suggest that the mass transport limitations of Mn(II) ions due to secondary Mn oxide products accumulating on the spores cause a significant decrease of the oxidation rate at higher initial Mn(II) concentration on a spore basis, as well as in more concentrated ionic solutions. The optimum pH for Mn(II) oxidation was approximately 7.0 in low ionic solutions (I = 0.08). The high rates at the alkaline side (pH > 7.5) may suggest a contribution by heterogeneous reactions on manganese bio-oxides. The effect of temperature on the Mn(II) oxidation rate was studied in three solutions (500 mM NaCl, ASW, NSW solutions). Thermal denaturation occurred at 58 °C and spore germination was evident at 40 °C in all three

  10. Kinetics simulation of luminol chemiluminescence based on quantitative analysis of photons generated in electrochemical oxidation.

    PubMed

    Koizumi, Yozo; Nosaka, Yoshio

    2013-08-22

    The kinetics of electrogenerated chemiluminescence (ECL) of luminol at a gold electrode in alkaline solution was investigated by measuring the absolute number of photons emitted in an integrating sphere. The ECL efficiency as the ratio of photon to electric charge was 0.0004 in cyclic voltammography and 0.0005 in chronoamperometry. By numerically solving the rate equations based on a diffusion layer model, the observed time profile of the luminescence intensity could be successfully simulated from the oxidation current of luminol in the chronoamperometry. In the simulation, the rate constant for the oxidation of luminol by superoxide radicals in alkaline solution was determined to be 6 × 10(5) M(-1) s(-1). The present methodology and the achievement could be widely applicable to various analytical techniques using chemiluminescence.

  11. Use of the point defect model to interpret the iron oxidation kinetics under proton irradiation

    SciTech Connect

    Lapuerta, S.; Moncoffre, N.; Jaffrezic, H.; Millard-Pinard, N.; Bererd, N.; Esnouf, C.; Crusset, D.

    2007-03-15

    This article concerns the study of iron corrosion in wet air under mega-electron-volt proton irradiation for different fluxes at room temperature and with a relative humidity fixed to 45%. Oxidized iron sample surfaces are characterized by ion beam analysis (Rutherford backscattering spectrometry and elastic recoil detection analysis), for the elemental analysis. The structural and physicochemical characterization is performed using the x-ray photoelectron spectroscopy and transmission electron microscopy techniques. We have also measured the iron oxidation kinetics. Radiation enhanced diffusion and transport processes have been evidenced. The modeling of the experimental data shows that the apparent oxygen diffusion coefficient increases whereas the oxygen transport velocity decreases as function of flux. Finally, the point defect model has been used to determine the electric field value in the samples. Results have shown that the transport process can be attributed to the presence of an electrical potential gradient.

  12. Reaction kinetics of waste sulfuric acid using H2O2 catalytic oxidation.

    PubMed

    Wang, Jiade; Hong, Binxun; Tong, Xinyang; Qiu, Shufeng

    2016-12-01

    The process of recovering waste sulfuric acids using H2O2 catalytic oxidation is studied in this paper. Activated carbon was used as catalyst. Main operating parameters, such as temperature, feed rate of H2O2, and catalyst dosage, have effects on the removal of impurities from waste sulfuric acids. The reaction kinetics of H2O2 catalytic oxidation on impurities are discussed. At a temperature of 90°C, H2O2 feeding rate of 50 g (kg waste acid)(-1) per hour, and catalyst dosage of 0.2 wt% (waste acid weight), the removal efficiencies of COD and chrominance were both more than 99%, the recovery ratio of sulfuric acid was more than 95%, and the utilization ratio of H2O2 was 88.57%.

  13. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions.

    PubMed

    Reinwarth, Michael; Glotzbach, Bernhard; Tomaszowski, Michael; Fabritz, Sebastian; Avrutina, Olga; Kolmar, Harald

    2013-01-02

    Bioactive peptides often contain several disulfide bonds that provide the main contribution to conformational rigidity and structural, thermal, or biological stability. Among them, cystine-knot peptides-commonly named "knottins"-make up a subclass with several thousand natural members. Hence, they are considered promising frameworks for peptide-based pharmaceuticals. Although cystine-knot peptides are available through chemical and recombinant synthetic routes, oxidative folding to afford the bioactive isomers still remains a crucial step. We therefore investigated the oxidative folding of ten protease-inhibiting peptides from two knottin families, as well as that of an HIV entry inhibitor and of aprotinin, under two conventional sets of folding conditions and by a newly developed procedure. Kinetic studies identified folding conditions that resulted in correctly folded miniproteins with high rates of conversion even for highly hydrophobic and aggregation-prone peptides in concentrated solutions.

  14. Relevance of Chemical Kinetics for Medicine: The Case of Nitric Oxide

    NASA Astrophysics Data System (ADS)

    Balaban, Alexandru T.; Seitz, William

    2003-06-01

    Nitric oxide, NO, is central to many physiological processes including regulation of blood pressure and nerve signal transmission. Enzymes in endothelial cells and in the brain of mammals continuously synthesize it—generally in low and carefully regulated concentrations. The well known reaction of NO with oxygen to produce toxic nitrogen dioxide, NO2, has a rate which is bimolecular in NO. High concentrations of NO, as are found often in industrial plants or cigarettes, react rapidly with oxygen to produce toxic NO2. However, the half-life of NO at low NO concentrations as found in solutions and gases occurring in blood vessels, brains, and lungs is sufficiently long for biochemical purposes. Kinetics, then, determines the harmful versus helpful aspects of nitric oxide. At concentrations below 80 ppm NO is used in hospitals for lung vasodilation of preterm newborns and patients with pulmonary distress.

  15. Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Wen, Shu-ming; Deng, Jian-ying; Wu, Dan-dan

    2015-03-01

    Sulfamic acid (SA), which possesses a zwitterionic structure, was applied as a leaching reagent for the first time for extracting copper from copper oxide ore. The effects of reaction time, temperature, particle size, reagent concentration, and stirring speed on this leaching were studied. The dissolution kinetics of malachite was illustrated with a three-dimensional diffusion model. A novel leaching effect of SA on malachite was eventually demonstrated. The leaching rate increased with decreasing particle size and increasing concentration, reaction temperature and stirring speed. The activation energy for SA leaching malachite was 33.23 kJ/mol. Furthermore, the effectiveness of SA as a new reagent for extracting copper from copper oxide ore was confirmed by experiment. This approach may provide a solution suitable for subsequent electrowinning. In addition, results reported herein may provide basic data that enable the leaching of other carbonate minerals of copper, zinc, cobalt and so on in an SA system.

  16. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    SciTech Connect

    Bartling, Stephan Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina

    2015-09-21

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology.

  17. Phenol oxidation by mushroom waste extracts: a kinetic and thermodynamic study.

    PubMed

    Pigatto, Gisele; Lodi, Alessandra; Aliakbarian, Bahar; Converti, Attilio; da Silva, Regildo Marcio Gonçalves; Palma, Mauri Sérgio Alves

    2013-09-01

    Tyrosinase activity of mushroom extracts was checked for their ability to degrade phenol. Phenol oxidation kinetics was investigated varying temperature from 10 to 60 °C and the initial values of pH, enzyme activity and phenol concentration in the ranges 4.5-8.5, 1.43-9.54 U/mL and 50-600 mg/L, respectively. Thermodynamic parameters of phenol oxidation and tyrosinase reversible inactivation were estimated. Tyrosinase thermostability was also investigated through residual activity tests after extracts exposition at 20-50 °C, whose results allowed exploring the thermodynamics of enzyme irreversible thermoinactivation. This study is the first attempt to separate the effects of reversible unfolding and irreversible denaturation of tyrosinase on its activity. Extracts were finally tested on a real oil mill wastewater.

  18. Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: products, kinetics and mechanism

    SciTech Connect

    Lee, Y.J.; Rochelle, G.T.

    1987-03-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (FGD) conditions. The oxidative degradation constant k/sub 12/ is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times the ratio of the concentration of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately 3 times slower than saturated dicarboxylic acids, while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude factor. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product - smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons. 30 references, 7 figures, 7 tables.

  19. Kinetics of atmospheric oxidation of nitrous acid by oxygen in aqueous medium

    NASA Astrophysics Data System (ADS)

    Mudgal, Punit K.; Bansal, S. P.; Gupta, K. S.

    The facts that the high concentrations of nitrous acid have been reported in dew, fog, rain and cloud water and that its oxidation by dissolved oxygen is very fast in freezing conditions have led us to study the kinetics of aqueous phase oxidation of nitrous acid by dissolved oxygen in the pH range 1.0-4.5 at 30 °C. The reaction was followed by measuring [O 2] and under pseudo-first-order conditions the results were in agreement with the rate law: -d[O]t/dt=k0[N]02[H]2[O]t/(K+[H])2, where k0 is third-order composite rate coefficient and Ka is the dissociation constant of HNO 2. The values of k0 and Ka were determined to be 1×10 2 L 2 mol -2 s -1 and 3.84×10 -4, respectively. Consistent with the kinetics results two alternative mechanisms have been considered. The first of these mechanisms assumes an intermediate complex formation, [HNO 2.O 2], by the reaction of HNO 2 and O 2 in a rapid pre-equilibrium, followed by the reaction of this intermediate with another molecule of HNO 2. The second mechanism, originally proposed by Damschen and Martin [1983. Aqueous aerosol oxidation of nitrous acid by O 2, O 3 and H 2O 2. Atmospheric Environment 17, 2005-2011], assumes the formation of a dimer, [HNO 2] 2, in a rapid pre-equilibrium followed by the reaction of the dimer with O 2 to form HNO 3. The application of the mechanisms to fast oxidation of nitrite by dissolved oxygen under freezing conditions is discussed.

  20. Oxidation kinetics of the combustible fraction of construction and demolition wastes.

    PubMed

    Chang, N B; Lin, K S; Sun, Y P; Wang, H P

    2001-01-01

    Proper disposal of construction and demolition wastes (CDW) has received wide attention recently due to significantly large quantities of waste streams collected from razed or retrofitted buildings in many metropolitan regions. Burning the combustible fractions of CDW (CCDW) and possibly recovering part of the heat content for economic uses could be valuable for energy conservation. This paper explores the oxidation kinetics of CCDW associated with its ash characterization. Kinetic parameters for the oxidation of CCDW were numerically calculated using thermal gravimetric analysis (TGA) and the resultant rate equations were therefore developed for illustrating the oxidation processes of CCDW simultaneously. Based on three designated heating rates, each of the oxidation processes can be featured distinctively with five different stages according to the rate of weight change at the temperature between 300 K and 923 K. In addition, Fourier transform infrared (FTIR) spectroscopy was employed, associated with a lab-scale fixed-bed incinerator for monitoring the composition of flue gas. Carbon dioxide (CO2) was found as a major component in the flue gas. The fuel analysis also included an ash composition analysis via the use of X-ray powder diffraction (XRD), atomic absorption (AA) spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX). The ash streams were identified as nonhazardous materials based on the toxicity characteristic leaching procedure (TCLP). Overall, the scientific findings gained in this study will be helpful for supporting a sound engineering design of real-world CCDW incineration systems.

  1. Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt(111).

    PubMed

    Gerrard, Alex L; Weaver, Jason F

    2005-12-08

    Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of

  2. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  3. Time-Resolved O3 Chemical Chain Reaction Kinetics Via High-Resolution IR Laser Absorption Methods

    NASA Technical Reports Server (NTRS)

    Kulcke, Axel; Blackmon, Brad; Chapman, William B.; Kim, In Koo; Nesbitt, David J.

    1998-01-01

    Excimer laser photolysis in combination with time-resolved IR laser absorption detection of OH radicals has been used to study O3/OH(v = 0)/HO2 chain reaction kinetics at 298 K, (i.e.,(k(sub 1) is OH + 03 yields H02 + 02 and (k(sub 2) is H02 + 03 yields OH + 202). From time-resolved detection of OH radicals with high-resolution near IR laser absorption methods, the chain induction kinetics have been measured at up to an order of magnitude higher ozone concentrations ([03] less than or equal to 10(exp 17) molecules/cu cm) than accessible in previous studies. This greater dynamic range permits the full evolution of the chain induction, propagation, and termination process to be temporally isolated and measured in real time. An exact solution for time-dependent OH evolution under pseudo- first-order chain reaction conditions is presented, which correctly predicts new kinetic signatures not included in previous OH + 03 kinetic analyses. Specifically, the solutions predict an initial exponential loss (chain "induction") of the OH radical to a steady-state level ([OH](sub ss)), with this fast initial decay determined by the sum of both chain rate constants, k(sub ind) = k(sub 1) + k(sub 2). By monitoring the chain induction feature, this sum of the rate constants is determined to be k(sub ind) = 8.4(8) x 10(exp -14) cu cm/molecule/s for room temperature reagents. This is significantly higher than the values currently recommended for use in atmospheric models, but in excellent agreement with previous results from Ravishankara et al.

  4. Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics.

    PubMed

    Ashraf, Chowdhury; van Duin, Adri C T

    2017-02-09

    A detailed insight of key reactive events related to oxidation and pyrolysis of hydrocarbon fuels further enhances our understanding of combustion chemistry. Though comprehensive kinetic models are available for smaller hydrocarbons (typically C3 or lower), developing and validating reaction mechanisms for larger hydrocarbons is a daunting task, due to the complexity of their reaction networks. The ReaxFF method provides an attractive computational method to obtain reaction kinetics for complex fuel and fuel mixtures, providing an accuracy approaching ab-initio-based methods but with a significantly lower computational expense. The development of the first ReaxFF combustion force field by Chenoweth et al. (CHO-2008 parameter set) in 2008 has opened new avenues for researchers to investigate combustion chemistry from the atomistic level. In this article, we seek to address two issues with the CHO-2008 ReaxFF description. While the CHO-2008 description has achieved significant popularity for studying large hydrocarbon combustion, it fails to accurately describe the chemistry of small hydrocarbon oxidation, especially conversion of CO2 from CO, which is highly relevant to syngas combustion. Additionally, the CHO-2008 description was obtained faster than expected H abstraction by O2 from hydrocarbons, thus underestimating the oxidation initiation temperature. In this study, we seek to systemically improve the CHO-2008 description and validate it for these cases. Additionally, our aim was to retain the accuracy of the 2008 description for larger hydrocarbons and provide similar quality results. Thus, we expanded the ReaxFF CHO-2008 DFT-based training set by including reactions and transition state structures relevant to the syngas and oxidation initiation pathways and retrained the parameters. To validate the quality of our force field, we performed high-temperature NVT-MD simulations to study oxidation and pyrolysis of four different hydrocarbon fuels, namely, syngas

  5. Effect of graphene oxide sheet size on the curing kinetics and thermal stability of epoxy resins

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Jin, Jie; Song, Mo; Lin, Yue

    2016-10-01

    This work revealed the influences of graphene oxide (GO) sheet size on the curing kinetics and thermal stability of epoxy resins. A series of GO/epoxy nanocomposites were prepared by the incorporation of three different sized GO sheets, namely GO-1, GO-2 and GO-3, the average size of which was 10.79 μm, 1.72 μm and 0.70 μm, respectively. The morphologies of the nanocomposites were observed by field emission gun scanning electron microscope. The dispersion quality of each sized GO was comparable in the epoxy matrix. The curing kinetics was investigated by means of differential scanning calorimetry and analyzed based on kinetics model. Addition of a small amount of GO (0.1 wt%) exhibited strong catalytic effect on the curing reaction of epoxy resin. The activation energy was reduced by 18.9%, 28.8% and 14.6% with addition of GO-1, GO-2 and GO-3, respectively. GO-2 with medium size (1.72 μm) showed the most effective catalysis on the cure. The thermal stability of the cured resins was evaluated based on thermogravimetric analysis. GO/epoxy nanocomposites showed improved thermal stability in the range of 420 °C-500 °C, compared with the pure resin. A ˜ 4% more residue was obtained in each of the incorporated system. The variations of GO sheet size did not influence the enhancement effect on the thermal stability.

  6. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.

    PubMed

    Zheng, Jianqiu; Doskey, Paul V

    2015-02-17

    An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.

  7. Chemical kinetic study of the oxidation of toluene and related cyclic compounds

    SciTech Connect

    Mehl, M; Frassoldati, A; Fietzek, R; Faravelli, T; Pitz, W; Ranzi, E

    2009-10-01

    Chemical kinetic models of hydrocarbons found in transportation fuels are needed to simulate combustion in engines and to improve engine performance. The study of the combustion of practical fuels, however, has to deal with their complex compositions, which generally involve hundreds of compounds. To provide a simplified approach for practical fuels, surrogate fuels including few relevant components are used instead of including all components. Among those components, toluene, the simplest of the alkyl benzenes, is one of the most prevalent aromatic compounds in gasoline in the U.S. (up to 30%) and is a promising candidate for formulating gasoline surrogates. Unfortunately, even though the combustion of aromatics been studied for a long time, the oxidation processes relevant to this class of compounds are still matter of discussion. In this work, the combustion of toluene is systematically approached through the analysis of the kinetics of some important intermediates contained in its kinetic submechanism. After discussing the combustion chemistry of cyclopentadiene, benzene, phenol and, finally, of toluene, the model is validated against literature experimental data over a wide range of operating conditions.

  8. Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition.

    PubMed

    Yao, Zongbao; Lu, Peili; Zhang, Daijun; Wan, Xinyu; Li, Yulian; Peng, Shuchan

    2015-12-01

    Purpose of this study is to investigate the stoichiometry and kinetics of anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. The stoichiometry was established based on the electron balance of Anammox process with trace N2H4 addition. The stoichiometric coefficients were determined by the proton consumption and the changes in substrates and products. It was found that trace N2H4 addition can increase the yield of Anammox bacteria (AnAOB) and reduce NO3(-) yield, which enhances the Anammox. Subsequently, kinetic model of Anammox with trace N2H4 addition was developed, and the parameters of the anaerobic degradation model of N2H4 were obtained for the first time. The maximum specific substrate utilization rate, half-saturation constant and inhibition constant of N2H4 were 25.09mgN/g VSS/d, 10.42mgN/L and 1393.88mgN/L, respectively. These kinetic parameters might provide important information for the engineering applications of Anammox with trace N2H4 addition.

  9. Immobilization of Lipase from Pseudomonas fluorescens on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol.

    PubMed

    Han, Hui; Zhou, Yamei; Li, Shusheng; Wang, Yinping; Kong, Xiang Zheng

    2016-10-05

    A porous polyurea (PPU) was prepared through a simple protocol by reacting toluene diisocyanate with water in binary solvent of water-acetone. Its amine group was determined through spectrophotometric absorbance based on its iminization with p-nitrobenzaldehyde amines. PPU was then used as a novel polymer support for enzyme immobilization, through activation by glutaraldehyde followed by immobilization of an enzyme, lipase from Pseudomonas fluorescens (PFL), via covalent bonding with the amine groups of lipase molecules. Influences of glutaraldehyde and enzyme concentration and pH in the process were studied. The results revealed that the activity of the immobilized PFL reached a maximum at GA concentration of 0.17 mol/L and at pH 8. Immobilization rate of 60% or higher for PFL was obtained under optimized condition with an enzyme activity of 283 U/mg. The porous structure of PPU, prior to and after GA activation and PFL immobilization, was characterized. The activity of the immobilized PFL at different temperature and pH and its stability at 40 °C as well as its reusability were tested. The immobilized enzyme was finally used as enantioselective catalyst in kinetic resolution of racemic 1-phenylethanol (1-PEOH), and its performance compared with the free PFL. The results demonstrate that the enzyme activity and stability were greatly improved for the immobilized PFL, and highly pure enantiomers from racemic 1-PEOH were effectively achieved using the immobilized PFL. Noticeable deactivation of PFL in the resolution was observed by acetaldehyde in situ formed. In addition, the immobilized PFL was readily recovered from the reaction system for reuse. A total of 73% of the initial activity was retained after 5 repeated reuse cycles. This work provides a novel route to preparation of a polyurea porous material and its enzyme immobilization, leading to a novel type of immobilized enzyme for efficient kinetic resolution of racemic molecules.

  10. Enhanced charge separation and oxidation kinetics of BiVO4 photoanode by double layer structure

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Xiong, Yuli; Dong, Hongmei; Peng, Huarong; Zhang, Yunhuai; Xiao, Peng

    2017-03-01

    Monoclinic bismuth vanadate (BiVO4) is a promising semiconductor for photoelectrochemical water splitting. Here, we developed a facile fabrication of BiVO4 double layer photoanode on the fluorine-doped tin oxide substrate by electrodeposition. The BiVO4 double layer photoanode is composed by a dense BiVO4 film as the inner layer and a nanoporous BiVO4 film as the outer layer. Compared to the BiVO4 single layer photoanode, the optimized BiVO4 double layer photoanode produced a much higher photocurrent of 1.15 mA/cm2 at 0.6 V vs. Ag/AgCl under AM 1.5G (100 mW/cm2) illumination. The results of the photoelectric conversion kinetics for different samples revealed that the charge separation and oxidation kinetics efficiencies for the BiVO4 double layer are 47.2% and 51.6% at 0.6 V vs. Ag/AgCl, while the values for BiVO4 single layer are 32.3% and 35.8%, respectively. The improved photoelectrochemical performance for BiVO4 double layer is mainly ascribed to the decrease of defect state at the interface after inserting a dense BiVO4 as an inner layer to prevent the recombination of photogenerated electron-hole pairs.

  11. A Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran

    PubMed Central

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A.

    2013-01-01

    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300 – 1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [J. Phys. Chem. A 102 (52) (1998) 10655-10670] Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model experiment deviations of at most a factor of two, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species. PMID:23327724

  12. Coal desulfurization in oxidative acid media using hydrogen peroxide and ozone: a kinetic and statistical approach

    SciTech Connect

    F.R. Carrillo-Pedroza; A. Davalos Sanchez; M. Soria-Aguilar; E.T. Pecina Trevino

    2009-07-15

    The removal of pyritic sulfur from a Mexican sub-bituminous coal in nitric, sulfuric, and hydrochloric acid solutions was investigated. The effect of the type and concentration of acid, in the presence of hydrogen peroxide and ozone as oxidants, in a temperature range of 20-60{sup o}C, was studied. The relevant factors in pyrite dissolution were determined by means of the statistical analysis of variance and optimized by the response surface method. Kinetic models were also evaluated, showing that the dissolution of pyritic sulfur follows the kinetic model of the shrinking core model, with diffusion through the solid product of the reaction as the controlling stage. The results of statistical analysis indicate that the use of ozone as an oxidant improves the pyrite dissolution because, at 0.25 M HNO{sub 3} or H{sub 2}SO{sub 4} at 20{sup o}C and 0.33 g/h O{sub 3}, the obtained dissolution is similar to that of 1 M H{sub 2}O{sub 2} and 1 M HNO{sub 3} or H{sub 2}SO{sub 4} at 40{sup o}C. 42 refs., 9 figs., 3 tabs.

  13. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding.

    PubMed Central

    Marcinkeviciute, A; Mildaziene, V; Crumm, S; Demin, O; Hoek, J B; Kholodenko, B

    2000-01-01

    Changes in the kinetics and regulation of oxidative phosphorylation were characterized in isolated rat liver mitochondria after 2 months of ethanol consumption. Mitochondrial energy metabolism was conceptually divided into three groups of reactions, either producing protonmotive force (Deltap) (the respiratory subsystem) or consuming it (the phosphorylation subsystem and the proton leak). Manifestation of ethanol-induced mitochondrial malfunctioning of the respiratory subsystem was observed with various substrates; the respiration rate in State 3 was inhibited by 27+/-4% with succinate plus amytal, by 20+/-4% with glutamate plus malate, and by 17+/-2% with N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate. The inhibition of the respiratory activity correlated with the lower activities of cytochrome c oxidase, the bc(1) complex, and the ATP synthase in mitochondria of ethanol-fed rats. The block of reactions consuming the Deltap to produce ATP (the phosphorylating subsystem) was suppressed after 2 months of ethanol feeding, whereas the mitochondrial proton leak was not affected. The contributions of Deltap supply (the respiratory subsystem) and Deltap demand (the phosphorylation and the proton leak) to the control of the respiratory flux were quantified as the control coefficients of these subsystems. In State 3, the distribution of control exerted by different reaction blocks over respiratory flux was not significantly affected by ethanol diet, despite the marked changes in the kinetics of individual functional units of mitochondrial oxidative phosphorylation. This suggests the operation of compensatory mechanisms, when control redistributes among the different components within the same subsystem. PMID:10880351

  14. Kinetics and mechanism of the oxidation of arsine by halide complexes of copper(II)

    SciTech Connect

    Dorfman, Y.A.; Abdreimova, R.R.; Emel'yanova, V.S.; Kel'man, I.V.; Polimbetova, G.S.

    1985-11-01

    This paper studies the kinetics of the oxidation of arsine by copper (II) halides. It is shown that within the investigated region of concentrations of the components of the system CuX/sub 2/-HX-LiX-H/sub 2/O, /SUB C/ the oxidation of AsH/sub 3/ proceeds to As(O). First order with respect to /SUB Cu/ X/sub 2/ is observed; the order with respect to C /SUB As/ H/sub 3/ is close to first. With regard to activity in the reaction with arsine, copper(II) halides are distributed in the series. CuCl /SUB 3aq/ -kinetic activity proved to be directly correlated with the decrease in the negative charge of the halogen and the positive charge of arsine, leading to activation of the AsH/sub 3/ molecule. A mechanism of the reaction is proposed.

  15. Methane oxidation in a landfill cover soil reactor: Changing of kinetic parameters and microorganism community structure.

    PubMed

    Xing, Zhi L; Zhao, Tian T; Gao, Yan H; Yang, Xu; Liu, Shuai; Peng, Xu Y

    2017-02-23

    Changing of CH4 oxidation potential and biological characteristics with CH4 concentration was studied in a landfill cover soil reactor (LCSR). The maximum rate of CH4 oxidation reached 32.40 mol d(-1) m(-2) by providing sufficient O2 in the LCSR. The kinetic parameters of methane oxidation in landfill cover soil were obtained by fitting substrate diffusion and consumption model based on the concentration profile of CH4 and O2. The values of [Formula: see text] (0.93-2.29%) and [Formula: see text] (140-524 nmol kgsoil-DW(-1)·s(-1)) increased with CH4 concentration (9.25-20.30%), while the values of [Formula: see text] (312.9-2.6%) and [Formula: see text] (1.3 × 10(-5) to 9.0 × 10(-3) nmol mL(-1) h(-1)) were just the opposite. MiSeq pyrosequencing data revealed that Methylobacter (the relative abundance was decreased with height of LCSR) and Methylococcales_unclassified (the relative abundance was increased expect in H 80) became the key players after incubation with increasing CH4 concentration. These findings provide information for assessing CH4 oxidation potential and changing of biological characteristics in landfill cover soil.

  16. Oxidation kinetics of hydrogenated amorphous carbon (a-CH(x)) overcoats for magnetic data storage media.

    PubMed

    Yun, Yang; Ma, Xiaoding; Gui, Jing; Broitman, Esteban; Gellman, Andrew J

    2007-05-08

    The oxidation kinetics of a-CHx overcoats during exposure to oxygen and water vapor have been measured using X-ray photoemission spectroscopy (XPS) in an apparatus that allows oxidation and analysis of freshly deposited a-CHx overcoats without prior exposure of the overcoats to air. The uptake of oxygen on the surfaces of the a-CHx overcoats has been measured at O2 and H2O pressures in the range 10(-7)-10(-3) Torr at room temperature. The uptake of oxygen during O2 exposures on the order of 10(7) Langmuirs leads to saturation of the a-CHx overcoat surfaces at oxidation levels on the order of 20%. This indicates that the surfaces of a-CHx overcoats are relatively inert to oxidation in the sense that the dissociative sticking coefficient of O2 is approximately 10(-6). Oxygen uptake during exposure to H2O vapor is similar to the uptake during exposure to O2 gas. Although the surfaces of the a-CHx overcoats are quite inhomogeneous, it has been possible to model the uptake of oxygen on their surfaces using a fairly simple Langmuir-Hinshelwood mechanism. Interestingly, the saturation coverage of oxygen during exposure to air at atmospheric pressure is approximately 6%, significantly lower than that obtained during low-pressure exposure to O2 gas or H2O vapor.

  17. Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen

    PubMed Central

    van Wilderen, Luuk J.G.W.; Silkstone, Gary; Mason, Maria; van Thor, Jasper J.; Wilson, Michael T.

    2015-01-01

    Cryptochromes (crys) are flavoprotein photoreceptors present throughout the biological kingdom that play important roles in plant development and entrainment of the circadian clock in several organisms. Crys non-covalently bind flavin adenine dinucleotide (FAD) which undergoes photoreduction from the oxidised state to a radical form suggested to be active in signalling in vivo. Although the photoreduction reactions have been well characterised by a number of approaches, little is known of the oxidation reactions of crys and their mechanisms. In this work, a stopped-flow kinetics approach is used to investigate the mechanism of cry oxidation in the presence and absence of an external electron donor. This in vitro study extends earlier investigations of the oxidation of Arabidopsis cryptochrome1 by molecular oxygen and demonstrates that, under some conditions, a more complex model for oxidation of the flavin than was previously proposed is required to accommodate the spectral evidence (see P. Müller and M. Ahmad (2011) J. Biol. Chem. 286, 21033–21040 [1]). In the absence of an electron donor, photoreduction leads predominantly to the formation of the radical FADH•. Dark recovery most likely forms flavin hydroperoxide (FADHOOH) requiring superoxide. In the presence of reductant (DTT), illumination yields the fully reduced flavin species (FADH−). Reaction of this with dioxygen leads to transient radical (FADH•) and simultaneous accumulation of oxidised species (FAD), possibly governed by interplay between different cryptochrome molecules or cooperativity effects within the cry homodimer. PMID:26649273

  18. Kinetics of oxidation of bilirubin and its protein complex by hydrogen peroxide in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Antina, E. V.

    2010-12-01

    A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.

  19. Low-temperature oxidation of alkali overlayers: Ionic species and reaction kinetics

    NASA Astrophysics Data System (ADS)

    Krix, David; Nienhaus, Hermann

    2013-04-01

    Clean and oxidized alkali metal films have been studied using X-ray photoelectron spectroscopy (XPS). Thin films, typically 10 nm thick, of lithium, sodium, potassium, rubidium and cesium have been deposited on silicon substrates and oxidized at 120 K. Plasmon losses were found to dress the primary photo emission structures of the metals’ core lines which confirms the metallic, bulk like nature of the films. The emission from the O 1s core levels was used to determine the chemical composition and the reaction kinetics during the exposure to molecular oxygen at low pressures. Molecular oxide ions O2- and O22- as well as atomic oxygen ions O2- were detected in varying amounts depending on the alkali metal used. Diffusive transport of material in the film is shown to greatly determine the composition of the oxides. Especially, the growth of potassium superoxide is explained by the diffusion of potassium atoms to the surface and growth at the surface in a Deal-Grove like model.

  20. Kinetics, simulation and insights for CO selective oxidation in fuel cell applications

    NASA Astrophysics Data System (ADS)

    Choi, Yongtaek; Stenger, Harvey G.

    The kinetics of CO preferential oxidation (PROX) was studied to evaluate various rate expressions and to simulate the performance the CO oxidation step of a methanol fuel processor for fuel cell applications. The reaction was carried out in a micro reactor testing unit using a commercial Engelhard Selectoxo (Pt-Fe/γ-alumina) catalyst and three self-prepared catalysts. Temperature was varied between 100 and 300 °C, and a of range feed rates and compositions were tested. A reaction model in which three reactions (CO oxidation, H 2 oxidation and the water gas shift reaction) occur simultaneously was chosen to predict the reactor performance. Using non-linear least squares, empirical power-law type rate expressions were found to fit the experimental data. It was critical to include all three reactions to determine good fitting results. In particular, the reverse water gas shift reaction had an important role when fitting the experimental data precisely and explained the selectivity decrease at higher reaction temperatures. Using this three reaction model, several simulation studies for a commercial PROX reactor were performed. In these simulations, the effect of O 2/CO ratio, the effect of water addition, and various non-isothermal modes of operation were evaluated. The results of the simulation were compared with corresponding experimental data and shows good agreement.

  1. Influence of organic substrates on the kinetics of bacterial As(III) oxidation

    NASA Astrophysics Data System (ADS)

    Lescure, T.; Joulian, C.; Bauda, P.; Hénault, C.; Battaglia-Brunet, F.

    2012-04-01

    Soil microflora plays a major role on the behavior of metals and metalloids. Arsenic speciation, in particular, is related to the activity of bacteria able to oxidize, reduce or methylate this element, and determines mobility, bioavailability and toxicity of As. Arsenite (AsIII) is more toxic and more mobile than arsenate (AsV). Bacterial As(III)-oxidation tends to reduce the toxicity of arsenic in soils and the risk of transfer toward underlying aquifers, that would affect the quality of water resources. Previous results suggest that organic matter may affect kinetics or efficiency of bacterial As(III)-oxidation in presence of oxygen, thus in conventional physico-chemical conditions of a surface soil. Different hypothesis can be proposed to explain the influence of organic matter on As(III) oxidation. Arsenic is a potential energy source for bacteria. The presence of easily biodegradable organic matter may inhibit the As(III) oxidation process because bacteria would first metabolize these more energetic substrates. A second hypothesis would be that, in presence of organic matter, the Ars system involved in bacterial resistance to arsenic would be more active and would compete with the Aio system of arsenite oxidation, decreasing the global As(III) oxidation rate. In addition, organic matter influences the solubility of iron oxides which often act as the main pitfalls of arsenic in soils. The concentration and nature of organic matter could therefore have a significant influence on the bioavailability of arsenic and hence on its environmental impact. The influence of organic matter on biological As(III) oxidation has not yet been determined in natural soils. In this context, soil amendment with organic matter during operations of phytostabilization or, considering diffuse pollutions, through agricultural practices, may affect the mobility and bio-availability of the toxic metalloid. The objective of the present project is to quantify the influence of organic matter

  2. Multivariate curve resolution-alternating least squares and kinetic modeling applied to near-infrared data from curing reactions of epoxy resins: mechanistic approach and estimation of kinetic rate constants.

    PubMed

    Garrido, M; Larrechi, M S; Rius, F X

    2006-02-01

    This study describes the combination of multivariate curve resolution-alternating least squares with a kinetic modeling strategy for obtaining the kinetic rate constants of a curing reaction of epoxy resins. The reaction between phenyl glycidyl ether and aniline is monitored by near-infrared spectroscopy under isothermal conditions for several initial molar ratios of the reagents. The data for all experiments, arranged in a column-wise augmented data matrix, are analyzed using multivariate curve resolution-alternating least squares. The concentration profiles recovered are fitted to a chemical model proposed for the reaction. The selection of the kinetic model is assisted by the information contained in the recovered concentration profiles. The nonlinear fitting provides the kinetic rate constants. The optimized rate constants are in agreement with values reported in the literature.

  3. Diastereo- and enantioselective synthesis of (E)-2-Methyl-1,2-syn- and (E)-2-Methyl-1,2-anti-3-pentenediols via allenylboronate kinetic resolution with ((d)Ipc)2BH and aldehyde allylboration.

    PubMed

    Han, Jeng-Liang; Chen, Ming; Roush, William R

    2012-06-15

    Enantioselective hydroboration of racemic allenylboronate (±)-1 with 0.48 equiv of ((d)Ipc)(2)BH at -25 °C proceeds with efficient kinetic resolution and provides allylborane (R)-Z-4. When heated to 95 °C, allylborane (R)-Z-4 isomerizes to the thermodynamically more stable allylborane isomer (S)-E-7. Subsequent allylboration of aldehydes with (R)-Z-4 or (S)-E-7 at -78 °C followed by oxidative workup provides 1,2-syn- or 1,2-anti-diols, 2 or 3, respectively, in 87-94% ee.

  4. Kinetic resolution of acids in acylation reactions in the presence of chiral tertiary amines

    SciTech Connect

    Potapov, V.M.; Dem'yanovich, V.M.; Khlebnikov, V.A.

    1988-07-10

    Asymmetric synthesis has now become an important method for the production of optically active compounds, and its most attractive form is asymmetric catalysis. This work was devoted to an investigation into asymmetric catalysis with chiral tertiary amines in acylation reactions. During the acylation of alcohols and amines by the action of racemic 2-phenylpropionic and 2-methyl-3-phenylpropionic acids in the presence of S-nicotine the initial acids are resolved kinetically. The (R)-2-phenylpropionic acid obtained in this way had an optical purity of 0.5-1.5%.

  5. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    NASA Astrophysics Data System (ADS)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  6. Destruction kinetic of PCDDs/Fs in MSWI fly ash using microwave peroxide oxidation.

    PubMed

    Chang, Yu-Min; Fang, Wen-Bin; Tsai, Kuo-Sheng; Kao, Jimmy C M; Lin, Kae-Long; Chen, Ching-Ho

    2015-01-01

    Microwave peroxide oxidation is a less greenhouse gas emission and energy-efficient technology to destroy toxic organic compounds in hazardous waste. The research novelty is to adopt the innovative microwave peroxide oxidation in H2SO4/HNO3 solution to efficiently destroy the polychlorinated dibenzo-p-dioxins (PCDDs)/Fs in municipal solid waste incineration fly ash. The major objective of this paper is to study dynamic destruction of PCDDs/Fs using the microwave peroxide oxidation. Almost all PCDDs/Fs in the raw fly ash can be destructed in 120 min at a temperature of 423 K using the microwave peroxide oxidation treatment. It was found that the microwave peroxide oxidation provides the potential to destruct the PCDDs/Fs content in municipal solid waste incinerator (MSWI) fly ash to a low level as a function of treatment time. A useful kinetic correlation between destruction efficiency and treatment conditions is proposed on the basis of the experimental data obtained in this study. The significance of this work in terms of practical engineering applications is that the necessary minimum treatment time can be solved using a proposed graphic illustration method, by which the minimum treatment time is obtained if the desired destruction efficiency and treatment temperature are known. Because of inorganic salt dissolution, the temperature would be a critical factor facilitating the parts of fly ash dissolution. Material loss problem caused by the microwave peroxide oxidation and the effects of treatment time and temperature are also discussed in this paper.

  7. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.

    PubMed

    Powell, C L; Goltz, M N; Agrawal, A

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~1.9mgL(-1), and initial aqueous [CAH] ~150μgL(-1); cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12±0.01 and 0.59±0.07d(-1), respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  8. Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions.

    PubMed

    Wang, Jing; Xia, Fang-Fang; Bai, Yun; Fang, Cheng-Ran; Shen, Dong-Sheng; He, Ruo

    2011-05-01

    Waste biocover soil was investigated as an alternative in regions with a shortage of landfill cover soil. In the work, effects of the composition, ambient conditions and nitrogen stress on CH(4) oxidation in waste biocover soil were studied. The results showed that the optimal composition of waste biocover soil as a landfill cover material for CH(4) oxidation was original pH value, 45% moisture and a particle size of ≤ 4mm. CH(4) oxidation rate increased rapidly over a CH(4) concentration range of 0.01-10% (v/v), and kept stable at CH(4) concentrations of 10-30% (v/v). The Michaelis-Menten model showed a good fit for the kinetic of CH(4) oxidation in landfill waste biocover soil with a maximum of 9.03 μmol/gd.w./h. The average Q(10) was 10.6 in the batch experiments. A level of 5% of oxygen concentration was enough to sustain the activity of methanotrophs community structure in waste biocover soil. Waste biocover soil had low baseline concentrations of NH(4)(+)-N and NO(3)(-)-N. Ammonia volatilization from landfills and nitrification in landfill waste biocover soils might stimulate CH(4) consumption at concentrations below 600 mg/kg. However, the contents of NH(4)(+)-N and NO(3)(-)-N above 1200 mg/kg would inhibit CH(4) oxidation in landfill waste biocover soil. Compared with NO(3)(-)-N, NH(4)(+)-N had a greater stimulating action as nutrient at lower concentrations and inhibitory effect at higher concentrations on CH(4) oxidation in landfill waste biocover soil.

  9. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2005-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an

  10. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2002-02-01

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H{sub 2}S to elemental sulfur over selective catalysts in the presence of major

  11. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2004-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The

  12. In Situ Atomic Scale Visualization Of Surface Kinetics Driven Dynamics Of Oxide Growth On A Ni–Cr Surface

    SciTech Connect

    Luo, Langli; Zou, Lianfeng; Schreiber, Daniel K.; Olszta, Matthew J.; Baer, Donald R.; Bruemmer, Stephen M.; Zhou, Guangwen; Wang, Chong M.

    2016-01-20

    We report in situ atomic-scale visualization of the dynamical three-dimensional (3D) growth of NiO during initial oxidation of Ni-10at%Cr using environmental transmission electron microscopy (ETEM). Despite the thermodynamic preference for Cr2O3 formation, cubic NiO oxides nucleated and grew epitaxially as the dominating oxide phase on the Ni-Cr (100) surface during initial oxidation. The growth of NiO islands proceeds through step-by-step adatom mechanism in 3D, which is sustained by surface diffusion of Ni and O atoms. Although the shapes of oxide islands are controlled by strain energy between oxide and alloy substrate, local surface kinetic variations can lead to the change of surface planes of oxide islands. These results demonstrate that surface diffusion dominates initial oxidation of Ni-Cr in these test conditions.

  13. A comparison of the kinetics of low-density lipoprotein oxidation initiated by copper or by azobis (2-amidinopropane).

    PubMed

    Thomas, M J; Chen, Q; Franklin, C; Rudel, L L

    1997-01-01

    This article describes the kinetics of low density lipoprotein (LDL) oxidation catalyzed by azobis (2-amidinopropane) dihydrochloride, ABAP, or by copper. The LDLs were isolated from nonhuman primates fed diets enriched in one of three types of fatty acids: saturated fatty acids, monounsaturated fatty acids, predominantly, oleic acid, or polyunsaturated fatty acids, predominantly linoleic acid. Oxidation was followed by monitoring the formation of conjugated diene hydroperoxides from polyunsaturated fatty acids (PUFA). For both copper and ABAP-initiated oxidation, the rate of LDL oxidation depended on the concentrations of initiator, PUFA, and LDL. Except for the dependence on PUFA concentration the rate of LDL oxidation was not directly influenced by the fatty acid composition of the LDL particle. The two initiators had very different dependence on initiator concentration. Because LDL particles are essentially small, lipid-rich droplets, the kinetic descriptions of LDL oxidation assumed: (1), that there was only one chain per particle, and (2) that the radical chain was terminated when a second radical either entered or was formed in the particle. When two LDL samples having very different lag times were mixed, the oxidation profile was bimodal. This finding demonstrated that the oxidation of native LDL particles was independent of the oxidation state of the other native LDL particles in solution, i.e., LDL particles do not rapidly exchange radicals, for example, hydroperoxyl radicals. Oxidation initiated by ABAP was proportional to [ABAP]0.5, suggesting that hydroperoxyl radical recombination between the lipid hydroperoxyl radical and the ABAP-hydroperoxyl radical was the chain-terminating step. The reciprocal of the rate of copper oxidation was linearly related to the reciprocal copper concentration, demonstrating that the binding of copper to LDL was necessary to initiate oxidation. This binding constant showed considerable variability among LDL samples. The

  14. A combined kinetic and diffusion model for pyrite oxidation in tailings: a change in controls with time

    NASA Astrophysics Data System (ADS)

    Elberling, , B.; Nicholson, R. V.; Scharer, J. M.

    1994-05-01

    Acidic drainage from the oxidation of mine tailing wastes is an important environmental problem. The purpose of this paper is to develop a model (1) to simulate the rate of oxidation of pyrite over time, (2) to verify the importance of chemical kinetic control and diffusion control on the oxidation rate with time and, (3) to evaluate the sensitivity of the model to critical parameters of the tailings, such as grain size, pyrite content and the effective diffusion coefficient. The source code comprises four main modules including parameter allocation (kinetics, transport), sulphide oxidation (shrinking particle), oxygen transport and pyrite mass balance. The results show that high oxidation rates are observed in the initial time after tailings deposition. During this initial period of high rates, an apparent shift occurs from kinetic to diffusional control over a period of time that depends on the composition and properties of the tailings. Based on the simulation results, it is evident that the overall rate of oxidation after a few years will be controlled dominantly by the diffusion of oxygen rather than by biological or non-biological kinetics in the tailings.

  15. Competitive Oxidation Kinetics and Microbial Ecology: Intermediate Sulfur Transformations in Acid Mine Drainage Environments

    NASA Astrophysics Data System (ADS)

    Druschel, G. K.; Hamers, R. J.; Banfield, J. F.

    2001-12-01

    Experimental studies have demonstrated that oxidation of pyrite proceeds through several intermediate sulfur species, notably elemental sulfur, thiosulfate, and polythionates (Schippers et al., 1996). However, detailed sampling and analysis of flowing waters and pore waters failed to detect intermediate sulfur species in the 5-way area of the Richmond metal sulfide deposit at the Iron Mountain Mine in northern California. Potential energy available from the oxidation of intermediate sulfur species is considerable, so microbial activity may explain absence of intermediate sulfur compounds at the site. However, the abundance of sulfur-oxidizing microorganisms in areas of active pyrite oxidation at the 5-way is generally low (Bond et al. 2000). Rapid inorganic oxidation rates may prevent microorganisms from utilizing these intermediate sulfur species, thus shaping the structure of microbial communities in acid mine drainage (AMD) environments. Rates and mechanisms of oxidation for tetrathionate and elemental sulfur have been experimentally determined. Batch and flow-through experiments have indicated very slow oxidation of elemental sulfur in inorganic solutions analogous to AMD environments. Results for tetrathionate indicate the importance of non-metabolic and inorganic processes, including surface catalysis and the generation of hydroxyl radicals. Surface catalysis occurs through trithionate on iron oxide surfaces. Hydroxyl radicals may be formed directly by microbes living in proximity to pyrite surfaces, or at pyrite surfaces undergoing wetting and drying cycles. Further experiments investigating the importance of organic compounds associated with iron-oxidizing microorganisms acting as electron transport shuttles and/or wetting agents and ab initio calculations of the electronic structure of potential reactants and intermediates are currently being performed. It is suggested that inorganic processes involved with seasonal wetting and drying of pyritic sediment

  16. Effect of the particle size of a heterogeneous catalyst on the kinetics of liquid-phase oxidation of tetralin

    SciTech Connect

    Artemov, A.V.; Vainshtein, E.F.

    1988-01-10

    The dependence of the initial rate of oxidation of tetralin on the particle size of the Co/sup 2 +//SiO/sub 2/ catalyst is shown. The method proposed permitted explanation of the dependence of the kinetics of liquid-phase processes in the absence of extra- and intradiffusion hindrances on the particle size of a heterogeneous catalyst and estimation of the values of the kinetic constants from this dependence.

  17. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations.

    PubMed

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-02-15

    Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe2O3) and alumina (α-Al2O3) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe(2+) to Fe(3+) by dissolved O2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite.

  18. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    SciTech Connect

    Xiao, Kechao; Lee, Dongwoo; Vlassak, Joost J.

    2014-10-27

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  19. ABTS as an Electron Shuttle to Enhance the Oxidation Kinetics of Substituted Phenols by Aqueous Permanganate.

    PubMed

    Song, Yang; Jiang, Jin; Ma, Jun; Pang, Su-Yan; Liu, Yong-Ze; Yang, Yi; Luo, Cong-Wei; Zhang, Jian-Qiao; Gu, Jia; Qin, Wen

    2015-10-06

    In this study, it was, interestingly, found that 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), a widely used electron shuttle, could greatly accelerate the oxidation of substituted phenols by potassium permanganate (Mn(VII)) in aqueous solutions at pH 5-9. This was attributed to the fact that these substituted phenols could be readily oxidized by the stable radical cation (ABTS(•+)), which was quickly produced from the oxidation of ABTS by Mn(VII). The reaction of Mn(VII) with ABTS exhibited second-order kinetics, with stoichiometries of ∼5:1 at pH 5-6 and ∼3:1 at pH 7-9, and the rate constants varied negligibly from pH 5 to 9 (k = (9.44 ± 0.21) × 10(4) M(-1) s(-1)). Comparatively, the reaction of ABTS(•+) with phenol showed biphasic kinetics. The second-order rate constants for the reactions of ABTS(•+) with substituted phenols obtained in the initial phase were strongly affected by pH, and they were several orders of magnitude higher than those for the reactions of Mn(VII) with substituted phenols at each pH. Good Hammett-type correlations were found for the reactions of ABTS(•+) with undissociated (log(k) = 2.82-4.31σ) and dissociated phenols (log(k) = 7.29-5.90σ). The stoichiometries of (2.2 ± 0.06):1 (ABTS(•+) in excess) and (1.38 ± 0.18):1 (phenol in excess) were achieved in the reaction of ABTS(•+) with phenol, but they exhibited no pH dependency.

  20. Kinetics and mechanism of oxidation of tryptophan by ferrate(VI).

    PubMed

    Casbeer, Erik M; Sharma, Virender K; Zajickova, Zuzana; Dionysiou, Dionysios D

    2013-05-07

    Kinetics of the oxidation of tryptophan (Trp) and kynurenine (Kyn), precursors of nitrogenous disinfection byproducts (N-DBP), by ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) were investigated over the acidic to basic pH range. The second-order rate constants decreased with increase in pH, which could be described by the speciation of Fe(VI) and Trp (or Kyn). The trend of pH dependence of rates for Trp (i.e., aromatic α-amino acid) differs from that for glycine (i.e., aliphatic α-amino acid). A nonlinear relationship between transformation of Trp and the added amount of Fe(VI) was found. This suggests that the formed intermediate oxidized products (OPs), identified by LC-PDA and LC-MS techniques, could possibly compete with Trp to react with Fe(VI). N-Formylkynurenine (NFK) at pH 7.0 and 4-hydroxyquinoline (4-OH Q) and kynurenic acid (Kyn-A) at pH 9.0 were the major OPs. Tryptophan radical formation during the reaction was confirmed by the rapid-freeze quench EPR experiments. The oxygen atom transfer from Fe(VI) to NFK was demonstrated by reacting Fe(18)O4(2-) ion with Trp. A proposed mechanism explains the identified OPs at both neutral and alkaline pH. Kinetics and OPs by Fe(VI) were compared with other oxidants (chlorine, ClO2(•), O3, and (•)OH).

  1. Kinetics and mechanism of the oxidation of pentathionate ion by chlorine dioxide in a slightly acidic medium.

    PubMed

    Xu, Li; Csekő, György; Petz, Andrea; Horváth, Attila K

    2014-02-27

    The chlorine dioxide-pentathionate reaction has been studied at a slightly acidic medium by conventional UV-vis spectroscopy monitoring the absorbance at 430 nm. We have shown that pentathionate was oxidized to sulfate, but chlorate is also a marginal product of the reaction besides the chloride ion. The stoichiometry of the reaction can be established as a linear combination of two limiting stoichiometries under our experimental conditions. Kinetics of the reaction was found to be also complex because initial rate studies revealed that formal kinetic orders of both the hydrogen ion and chlorine dioxide is far from unity. Moreover, log-log plot of the initial rate against pentathionate concentration indicated a nonconstant formal kinetic order. We also observed a significant catalytic effect of chloride ion. Based on our observations and simultaneous evaluation of the kinetic curves, an 11-step kinetic model is obtained with 6 fitted rate coefficients. A relatively simple rate equation has also been derived and discussed.

  2. Chemical kinetic study of the oxidation of a biodiesel-bioethanol surrogate fuel: methyl octanoate-ethanol mixtures.

    PubMed

    Togbé, C; May-Carle, J-B; Dayma, G; Dagaut, P

    2010-03-25

    There is a growing interest for using bioethanol-biodiesel fuel blends in diesel engines but no kinetic data and model for their combustion were available. Therefore, the kinetics of oxidation of a biodiesel-bioethanol surrogate fuel (methyl octanoate-ethanol) was studied experimentally in a jet-stirred reactor at 10 atm and constant residence time, over the temperature range 560-1160 K, and for several equivalence ratios (0.5-2). Concentration profiles of reactants, stable intermediates, and final products were obtained by probe sampling followed by online FTIR, and off-line gas chromatography analyses. The oxidation of this fuel in these conditions was modeled using a detailed chemical kinetic reaction mechanism consisting of 4592 reversible reactions and 1087 species. The proposed kinetic reaction mechanism yielded a good representation of the kinetics of oxidation of this biodiesel-bioethanol surrogate under the JSR conditions. The modeling was used to delineate the reactions triggering the low-temperature oxidation of ethanol important for diesel engine applications.

  3. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    PubMed

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents.

  4. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    PubMed

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  5. Kinetics of carbon precipitation and re-solution in low Si-content silicon iron

    NASA Astrophysics Data System (ADS)

    Walz, F.; Wakisaka, T.; Kronmüller, H.

    2005-11-01

    In low Si-charged silicon iron (Fe + 0.1%Si) the kinetics of carbon diffusion, precipitation and redissolution have been carefully studied by means of the magnetic after-effect (MAE) within the temperature range 200 K < Ta < 1100 K. The activation parameters of respective processes have been determined by means of least squares fitting the experimental data. In the presence of substitutionally alloyed Si, the C-Richter MAE gives rise to two Debye-type relaxation peaks - resulting from elementary steps of carbon diffusion combined with reorientation in the (i) unperturbed and (ii) Si-modified Fe matrix - situated near 265 K and 320 K, with activation enthalpies, Qi, of 0.84 eV and 1.08 eV. Two-stage carbon precipitation, obeying first order kinetics, occurs, intensively, near 390 K with the elementary C diffusion enthalpy of 0.84 eV and, rather weakly, near 540 K with an enthalpy of 1.18 eV. The resulting precipitates are discussed in terms of partly intra-grain deposited iron carbide phases (Fe3C) and, mainly, grain-boundary determined C trapping. Decomposition of these precipitates occurring, again, in two stages - situated near 740 K and 950 K, with activation enthalpies of 1.72 and 2.02 eV - leads to a restitution of the state of maximum interstitially dissolved C in the matrix. Of practical importance for silicon steel fabrication is the observation that, after complete C precipitation (Ta . 580 K), the material can be kept in a state of minimum dissolved carbon content - and hence of minimum ac-losses - by not allowing it to warm up above Ta 650 K.

  6. Chiral Co(III)(salen)-catalysed hydrolytic kinetic resolution of racemic epoxides in ionic liquids.

    PubMed

    Oh, Chun Rim; Choo, Dong Joon; Shim, Woo Ho; Lee, Dong Hoon; Roh, Eun Joo; Lee, Sang-gi; Song, Choong Eui

    2003-05-07

    In the chiral Co(III)(salen)-catalysed HKR of racemic epoxides, in the presence of ionic liquids, Co(II)(salen) complex is oxidised without acetic acid to catalytically active Co(III)(salen) complex during reaction and, moreover, this oxidation state is stabilised against reduction to Co(II) complex which enables the reuse of the recovered catalyst for consecutive reactions without extra reoxidation.

  7. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  8. Chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquids and ionic liquids/supercritical carbon dioxide systems.

    PubMed

    Lozano, Pedro; De Diego, Teresa; Larnicol, Mickaël; Vaultier, Michel; Iborra, José L

    2006-10-01

    Continuous dynamic kinetic resolution processes in different ionic liquid/supercritical carbon dioxide biphasic systems were carried out by simultaneously using both immobilized Candida antarctica lipase B (Novozym 435) and silica modified with benzenosulfonic acid (SCX) catalysts at 40 degrees C and 10 MPa. SCX was seen to act as an efficient heterogeneous chemical catalyst for the racemization of (S)-1-phenylethanol in different ionic liquid media ([emim][NTf(2)], [btma][NTf(2)] and [bmim][PF(6)]). Coating both chemical and enzymatic catalysts with ILs greatly improved the efficiency of the process, providing a good yield (76%) of (R)-1-phenylethyl propionate product with excellent enantioselectivity (ee = 91-98%) in continuous operation.

  9. Kinetic resolution of racemic α-olefins with ansa-zirconocene polymerization catalysts: Enantiomorphic site vs. chain end control

    PubMed Central

    Byers, Jeffery A.; Bercaw, John E.

    2006-01-01

    Copolymerization of racemic α-olefins with ethylene and propylene was carried out in the presence of enantiopure C1-symmetric ansa metallocene, {1,2-(SiMe2)2(η5-C5H-3,5-(CHMe2)2)(η5-C5H3)}ZrCl2 to probe the effect of the polymer chain end on enantioselection for the R- or S-α-olefin during the kinetic resolution by polymerization catalysis. Copolymerizations with ethylene revealed that the polymer chain end is an important factor in the enantioselection of the reaction and that for homopolymerization, chain end control generally works cooperatively with enantiomorphic site control. Results from propylene copolymerizations suggested that chain end control arising from a methyl group at the β carbon along the main chain can drastically affect selectivity, but its importance as a stereo-directing element depends on the identity of the olefin. PMID:17032768

  10. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution.

    PubMed

    Mori, Keiji; Itakura, Tsubasa; Akiyama, Takahiko

    2016-09-12

    Reported herein is an enantiodivergent synthesis of chiral biaryls by a chiral phosphoric acid catalyzed asymmetric transfer hydrogenation reaction. Upon treatment of biaryl lactols with aromatic amines and a Hantzsch ester in the presence of chiral phosphoric acid, dynamic kinetic resolution (DKR) involving a reductive amination reaction proceeded smoothly to furnish both R and S isomers of chiral biaryls with excellent enantioselectivities by proper choice of hydroxyaniline derivative. This trend was observed in wide variety of substrates, and various chiral biphenyl and phenyl naphthyl adducts were synthesized with satisfactory enantioselectivities in enantiodivergent fashion. The enantiodivergent synthesis of synthetically challenging, chiral o-tetrasubstituted biaryls were also accomplished, and suggests high synthetic potential of the present method.

  11. Improved catalytic activity of homochiral dimeric cobalt-salen complex in hydrolytic kinetic resolution of terminal racemic epoxides.

    PubMed

    Kureshy, Rukhsana I; Singh, Surendra; Khan, Noor-Ul H; Abdi, Sayed H R; Ahmad, Irshad; Bhatt, Achyut; Jasra, Raksh V

    2005-11-01

    Enantiomerically pure epoxides (99%, ee) and diols (98%, ee) from racemic epichlorohydrin, 1,2-epoxypropane, 1,2-epoxyhexane, 1,2-epoxyoctane, and 1,2-epoxydodecane were obtained in 2-12 h by hydrolytic kinetic resolution (HKR) using the recyclable dimeric homochiral Co(III)-salen complex 1' (0.2 mol %) derived from 5,5-(2',2'-dimethylpropane)-di-[(R,R)-{N-(3-tert-butylsalicylidine)-N'-(3',5'-di-tert-butylsalicylidine)}-1,2-cyclohexanediamine] with cobalt(II) acetate. Unlike its monomeric version, the catalyst could be recycled several times without loss in performance. The use of BF(4) as counter ion in HKR reactions was also investigated.

  12. Kinetic resolution of rac-1-phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols.

    PubMed

    de Souza, Rodrigo Octavio M A; Antunes, Octavio A C; Kroutil, Wolfgang; Kappe, C Oliver

    2009-08-21

    The lipase-catalyzed kinetic resolution of rac-1-phenylethanol with vinyl acetate as acyl donor and cyclohexane as solvent has been investigated applying both microwave dielectric heating and conventional thermal heating in order to probe the existence of nonthermal microwave effects. All transformations were conducted at 40 degrees C in a dedicated reactor setup that allowed accurate internal reaction temperature measurements with use of fiber-optic probes. Quartz reaction vessels that allow higher levels of microwave power to be administered to the reaction mixture were used for all experiments. For all five studied immobilized lipases, the observed reactivities and enantioselectivities in microwave and oil bath experiments were identical and thus not related to the presence of the microwave field. The effect of magnetic stirring proved critical as too rapid stirring in some instances destroyed the enzyme support structure and led to altered reactivities and selectivities.

  13. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  14. Chemical kinetic analysis of detonability-enhancing strategies for ethylene-oxidizer mixtures

    NASA Astrophysics Data System (ADS)

    St. George, Andrew; Driscoll, R.; Anand, V.; Gutmark, E.

    2016-11-01

    Four detailed chemical kinetic mechanisms are used in conjunction with an empirical detonation cell width model to numerically assess strategies to increase the detonation sensitivity of ethylene-oxidizer mixtures. Using this method, reasonable agreement is achieved with computed cell width and the available experimental data. Elevated initial pressures significantly reduce cell width for a wide range of equivalence ratios, yielding 80% reduction at stoichiometric conditions for a tenfold increase in pressure. Elevated initial temperatures have almost no effect on the cell width at stoichiometric conditions, but yield 80% reduction at lean conditions when the initial temperature is doubled. Reduced nitrogen dilution within the oxidizer dramatically reduces the cell width for the entire computed range of equivalence ratios. Introducing hydrogen as a fuel additive yields mild improvement to detonation sensitivity at stoichiometric conditions, but requires relatively high H2 concentrations and is ineffective when coupled with elevated initial pressures. Introduction of supplemental oxygen and increasing the initial reactant pressure appears to be the most effective approach to enhance detonability for ethylene-oxidizer mixtures.

  15. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation.

    PubMed

    Xie, Xiaofang; Zhang, Yongqing; Huang, Weilin; Huang, Shaobing

    2012-01-01

    Oxidation of aniline by persulfate in aqueous solutions was investigated and the reaction kinetic rates under different temperature, persulfate concentration and pH conditions were examined in batch experiments. The results showed that, the aniline degradation followed pseudo first-order reaction model. Aniline degradation rate increased with increasing temperature or persulfate concentration. In the pH range of 3 to 11, a low aniline degradation rate was obtained at strong acid system (pH 3), while a high degradation rate was achieved at strong alkalinity (pH 11). Maximum aniline degradation occurred at pH 7 when the solution was in a weak level of acid and alkalinity (pH 5, 7 and 9). Produced intermediates during the oxidation process were identified using liquid chromatography-mass spectrometry technology. And nitrobenzene, 4-4'-diaminodiphenyl and 1-hydroxy-1,2-diphenylhydrazine have been identified as the major intermediates of aniline oxidation by persulfate and the degradation mechanism of aniline was also tentatively proposed.

  16. Kinetic characterization of the oxidation of esculetin by polyphenol oxidase and peroxidase.

    PubMed

    Munoz-Munoz, Joseph Louis; Garcia-Molina, Francis; Varon, Raymond; Rodriguez-Lopez, Joseph Neptune; Garcia-Canovas, Francis; Tudela, Joseph

    2007-02-01

    Esculetin has been described as an inhibitor of tyrosinase and polyphenol oxidase and, therefore, of melanogenesis. In this work, we demonstrate that esculetin is not an inhibitor but a substrate of mushroom polyphenol oxidase (PPO) and horseradish peroxidase (POD), enzymes which oxidize esculetin, generating its o-quinone. Since o-quinones are very unstable, the usual way of determining the enzymatic activity (slope of recordings) is difficult. For this reason, we developed a chronometric method to characterize the kinetics of this substrate, based on measurements of the lag period in the presence of micromolar concentrations of ascorbic acid. The catalytic constant determined was of the same order for both enzymes. However, polyphenol oxidase showed greater affinity (a lower Michaelis constant) than peroxidase for esculetin. The affinity of PPO and POD towards oxygen and hydrogen peroxide was very high, suggesting the possible catalysis of both enzymes in the presence of low physiological concentrations of these oxidizing substrates. Taking into consideration optimum pHs of 4.5 and 7 for POD and PPO respectively, and the acidic pHs of melanosomes, the studies were carried out at pH 4.5 and 7. The in vivo pH might be responsible for the stronger effect of these enzymes on L-tyrosine and L-3,4-dihydroxyphenylanaline (L-DOPA) (towards melanogenesis) and on cumarins such as esculetin towards an alternative oxidative pathway.

  17. A novel model to predict gas-phase hydroxyl radical oxidation kinetics of polychlorinated compounds.

    PubMed

    Luo, Shuang; Wei, Zongsu; Spinney, Richard; Yang, Zhihui; Chai, Liyuan; Xiao, Ruiyang

    2017-04-01

    In this study, a novel model based on aromatic meta-substituent grouping was presented to predict the second-order rate constants (k) for OH oxidation of PCBs in gas-phase. Since the oxidation kinetics are dependent on the chlorination degree and position, we hypothesized that it may be more accurate for k value prediction if we group PCB congeners based on substitution positions (i.e., ortho (o), meta (m), and para (p)). To test this hypothesis, we examined the correlation of polarizability (α), a quantum chemical based descriptor for k values, with an empirical Hammett constant (σ(+)) on each substitution position. Our result shows that α is highly linearly correlated to ∑σo,m,p(+) based on aromatic meta-substituents leading to the grouping based predictive model. With the new model, the calculated k values exhibited an excellent agreement with experimental measurements, and greater predictive power than the quantum chemical based quantitative structure activity relationship (QSAR) model. Further, the relationship of α and ∑σo,m,p(+) for PCDDs congeners, together with highest occupied molecular orbital (HOMO) distribution, were used to validate the aromatic meta-substituent grouping method. This newly developed model features a combination of good predictability of quantum chemical based QSAR model and simplicity of Hammett relationship, showing a great potential for fast and computational tractable prediction of k values for gas-phase OH oxidation of polychlorinated compounds.

  18. [Depth Profiles of Methane Oxidation Kinetics and the Related Methanotrophic Community in a Simulated Landfill Cover].

    PubMed

    Xing, Zhi-lin; Zhao, Tian-tao; Gao, Yan-hui; He, Zhi; Yang, Xu; Peng, Xu-ya

    2015-11-01

    Simulated landfill cover with real time online monitoring system was developed using cover soils. Then the system started and the concentrations of bio-gas in various depths were continuously monitored, and it was found that the system ran continually and stably after 2-3 h when methane flux changed. After that, the relationship between regularity of methane oxidation and methane flux in landfill cover was analyzed. The results indicated that concentration of oxygen decreased with increasing methane flux when the depth was deeper than 20 cm, and no obvious correlation between oxygen concentration in landfill cover surface and methane flux, however, methane oxidation rate showed positive correlation with methane flux in various depths (range of R2 was 0.851-0.999). Kinetics of CH4 oxidation in landfill cover was fitted by CH4 -O2 dual-substrate model (range of R2 was 0.902-0.955), the half-saturation constant K(m) increasing with depth was 0.157-0.729 in dynamic condition. Finally, methanotrophs community structure in original cover soil sample and that in simulated landfill cover were investigated by high-throughout sequencing technology, and the statistics indicated that the abundance and species of methanotrophs in simulated landfill cover significantly increased compared with those in original cover soil sample, and type I methanotrophs including Methylobacter and Methylophilaceae and type II methanotrophs Methylocystis were dominant species.

  19. Catalytic oxidation ofS(IV) on activated carbon in aqueous suspension: kinetics and mechanism

    SciTech Connect

    Brodzinsky, R.

    1981-02-01

    Activated carbon and combustion produced soot particles have been studied for their catalytic effect on the oxidation of aqueous sulfur(IV) species. Detailed kinetic studies of the reaction were performed on three different activated carbons and on a soot collected in a highway tunnel. Combustion produced soots were tested for their catalytic behavior and found to be similar to the activated carbons. The reaction rate was found to be linearly dependent on the concentration of carbon particles in the solution. The rate was found to follow a Langmuir adsorption isotherm for its dependence on oxygen and the product of two adsorption isotherms for S(IV). The reaction is independent of the pH of the solution when the pH is below 7.6. The reaction does not occur when the pH is above 7.6. The three aqueous S(IV) species are catalyzed in their oxidation by the carbon particles in a similar manner. Activation energies for the reactions on the different carbons are all about 8.5 kcal/mole. A possible four-step reaction mechanism is proposed. It consists of the adsorption of a dissolved oxygen molecule onto the carbon surface, followed by the adsorption of two S(IV) molecules or ions. These are oxidized on the surface to sulfate, which desorbs from the surface, regenerating the catalytically active site.

  20. In situ oxidation remediation technologies: kinetic of hydrogen peroxide decomposition on soil organic matter.

    PubMed

    Romero, Arturo; Santos, Aurora; Vicente, Fernando; Rodriguez, Sergio; Lafuente, A Lopez

    2009-10-30

    Rates of hydrogen peroxide decomposition were investigated in soils slurries. The interaction soil-hydrogen peroxide was studied using a slurry system at 20 degrees C and pH 7. To determine the role of soil organic matter (SOM) in the decomposition of hydrogen peroxide, several experiments were carried out with two soils with different SOM content (S1=15.1%, S2=10%). The influence of the oxidant dosage ([H2O2](o) from 10 to 30 g L(-1) and soil weight to liquid phase volume ratio=500 g L(-1)) was investigated using the two calcareous loamy sand soil samples. The results showed a rate dependency on both SOM and hydrogen peroxide concentration being the H2O2 decomposition rate over soil surface described by a second-order kinetic expression r(H2O2) = -dn(H2O2) / W(SOM) dt = kC(H2O2) C(SOM). Thermogravimetric analysis (TGA) was used to evaluate the effect caused by the application of this oxidant on the SOM content. It was found a slightly increase of SOM content after treatment with hydrogen peroxide, probably due to the incorporation of oxygen from the oxidant (hydrogen peroxide).

  1. Nitrogenase of Azotobacter chroococcum. Kinetics of the reduction of oxidized iron-protein by sodium dithionite.

    PubMed Central

    Thorneley, R N; Yates, M G; Lowe, D J

    1976-01-01

    The kinetics of the reduction of oxidized Fe-protein of nitrogenase from Azotobacter chroococcum by sodium dithionite were studied by stopped-flow and rapid-freezing e.p.r. (electron-paramagnetic-resonance) spectroscopy. The appearance of the gav. = 1.94 e.p.r. signal (0.24 electron integrated intensity/mol) was associated with a one-electron reduction by SO2--with k greater than 10(8)M-1-S-1 at 23 degrees C. A value of k = 1.75s-1 was obtained for the rate of dissociation of S2O42- into 2SO2-- at 23 degrees C. Further reductions by SO2-- occurred in three slower phases with rate constants in the range 10(4) -10(6)M-1-S-1. These latter phases have no corresponding e.p.r. signal changes and are probably associated with enzymically inactive protein. The high rate of reduction by SO2-- of the Fe-protein alone (k greater than 10(8)M-1-S-1) relative to the rate of oxidation of the Fe-protein in the catalytically active Fe:Mo-Fe protein complex (k = 2.2 X 1O(2)s-1) and the observation that in the steady state the Fe-protein is substantially oxidized means that at normal assay concentrations another reaction must limit the rate of reduction of Fe-protein during turnover. Images Fig. 1. Fig. 4. PMID:180978

  2. Effects of 2 different prior endurance exercises on whole-body fat oxidation kinetics: light vs. heavy exercise.

    PubMed

    Chenevière, Xavier; Borrani, Fabio; Droz, David; Gojanovic, Boris; Malatesta, Davide

    2012-10-01

    This study aimed to compare the effects of 2 different prior endurance exercises on subsequent whole-body fat oxidation kinetics. Fifteen men performed 2 identical submaximal incremental tests (Incr2) on a cycle ergometer after (i) a ∼40-min submaximal incremental test (Incr1) followed by a 90-min continuous exercise performed at 50% of maximal aerobic power-output and a 1-h rest period (Heavy); and (ii) Incr1 followed by a 2.5-h rest period (Light). Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity during Incr1 and Incr2. A sinusoidal equation, including 3 independent variables (dilatation, symmetry and translation), was used to characterize the fat oxidation kinetics and to determine the intensity (Fat(max)) that elicited the maximal fat oxidation (MFO) during Incr. After the Heavy and Light trials, Fat(max), MFO, and fat oxidation rates were significantly greater during Incr2 than Incr1 (p < 0.001). However, Δ (i.e., Incr2-Incr1) Fat(max), MFO, and fat oxidation rates were greater in the Heavy compared with the Light trial (p < 0.05). The fat oxidation kinetics during Incr2(Heavy) showed a greater dilatation and rightward asymmetry than Incr1(Heavy), whereas only a greater dilatation was observed in Incr2(Light) (p < 0.05). This study showed that although to a lesser extent in the Light trial, both prior exercise sessions led to an increase in Fat(max), MFO, and absolute fat oxidation rates during Incr2, inducing significant changes in the shape of the fat oxidation kinetics.

  3. Enzymatic Kinetic Resolution of 2-Piperidineethanol for the Enantioselective Targeted and Diversity Oriented Synthesis †

    PubMed Central

    Perdicchia, Dario; Christodoulou, Michael S.; Fumagalli, Gaia; Calogero, Francesco; Marucci, Cristina; Passarella, Daniele

    2015-01-01

    2-Piperidineethanol (1) and its corresponding N-protected aldehyde (2) were used for the synthesis of several natural and synthetic compounds. The existence of a stereocenter at position 2 of the piperidine skeleton and the presence of an easily-functionalized group, such as the alcohol, set 1 as a valuable starting material for enantioselective synthesis. Herein, are presented both synthetic and enzymatic methods for the resolution of the racemic 1, as well as an overview of synthesized natural products starting from the enantiopure 1. PMID:26712740

  4. A kinetic model for advanced oxidation processes of aromatic hydrocarbons in water: Application to phenanthrene and nitrobenzene

    SciTech Connect

    Beltran, F.J.; Rivas, J.; Alvarez, P.M.; Alonso, M.A.; Acedo, B.

    1999-11-01

    A kinetic model for the advanced oxidation (ozonation alone, UV radiation alone, ozone plus hydrogen peroxide, ozone plus UV radiation, and UV radiation plus hydrogen peroxide) of aromatic hydrocarbons in water is proposed and tested with experimental results of the oxidation of nitrobenzene and phenanthrene, two aromatic hydrocarbons of different reactivity with ozone. The kinetic model leads to good results in the case that the compound treated reacts exclusively with ozone, that is, without the contribution of hydroxyl radical oxidation as in the case of phenanthrene oxidation. In this case, it is not necessary to account for intermediate reactions to have good predictions of experimental remaining concentrations of ozonation processes. On the contrary, when the aromatic hydrocarbon s mainly removed by hydroxyl radicals (case of nitrobenzene), mole balance equations of intermediates have to be included for the experimental concentrations to be reproduced. For so doing, the kinetic parameters, such as rate constants of reactions between ozone and hydroxyl radical with intermediates and their corresponding quantum yields at 254 nm, were also determined. The kinetic model, however, is unable to reproduce, with accuracy, the experimental results of the ozone-UV radiation oxidation system.

  5. Determination of kinetic data for soot oxidation: Modeling of competition between oxygen diffusion and reaction during thermogravimetric analysis

    SciTech Connect

    Gilot, P.; Bonnefoy, F.; Marcuccilli, F.; Prado, G. . Lab. Gestion des Risques et Environnement)

    1993-10-01

    Kinetic data concerning carbon black oxidation in the temperature range between 600 and 900 C have been obtained using thermogravimetric analysis. Modeling of diffusion in a boundary layer above the pan and inside the porous medium coupled to oxygen reaction with carbon black is necessary to obtain kinetic constants as a function of temperature. These calculations require the knowledge of the oxidation rate at a given constant temperature as a function of the initial mass loading m[sub o]. This oxidation rate, expressed in milligrams of soot consumed per second and per milligram of initial soot loading, decreases when m[sub o] increases, in agreement with a reaction in an intermediary regime where the kinetics and the oxygen diffusion operate. The equivalent diffusivity of oxygen inside the porous medium is evaluated assuming two degrees of porosity: between soot aggregates and inside each aggregate. Below 700 C an activation energy of about 103 kJ/mol can be related to a combustion reaction probably kinetically controlled. Beyond 700 C the activation energy of about 20 kJ/ mol corresponds to a reaction essentially controlled by oxygen diffusion leading to a constant density oxidation with oxygen consumption at or near the particle surface. To validate these data, they are used in the modeling of a Diesel particulate trap regeneration. In this particular case, the oxidizing flux is forced across the carbon black deposit, oxygen diffusion being insignificant. A good agreement between experimental results and model predictions is obtained, proving the rate constants validity.

  6. Kinetic resolution of racemic 1-phenyl 1-propanol by lipase catalyzed enantioselective esterification reaction.

    PubMed

    Karadeniz, Fatma; Bayraktar, Emine; Mehmetoglu, Ulkü

    2010-10-01

    In this study, resolution of (R,S)-1-phenyl 1-propanol by lipase-catalyzed enantioselective esterification was achieved. To investigate the effect of lipase type on enantiomeric excess, three different lipases were used. Novozym 435 exhibited the highest enantioselectivity for resolution of (R,S)-1-phenyl 1-propanol. The effects of carbon length of fatty acids from C12 to C16, which were used as acyl donor, organic solvents with Log P values from 0.5 to 4.5, acyl donor/alcohol molar ratio (1:1, 3:2, 2:1, 3:1), amount of added molecular sieves (0-133.2 kg/m(3)), and temperature (10-60° C) on the enantioselectivity were investigated. The best reaction conditions were comprised of using toluene (Log P= 2.5) as solvent, lauric acid (12C) as acyl donor, 133.2 kg/m(3) molecular sieves at 50° C and acyl donor/alcohol molar ratio as 1:1. Under these conditions, the enantiomeric excess of S enantiomer ee (S) was obtained as 95% for a reaction time of 2.5 hours.

  7. Report on Ultra-high Resolution Gamma- / X-ray Analysis of Uranium Skull Oxide

    SciTech Connect

    Friedrich, S; Velazquez, M; Drury, O; Salaymeh, S

    2009-11-02

    We have utilized the high energy resolution and high peak-to-background ratio of superconducting TES {gamma}-detectors at very low energies for non-destructive analysis of a skull oxide derived from reprocessed nuclear fuel. Specifically, we demonstrate that superconducting detectors can separate and analyze the strong actinide emission lines in the spectral region below 60 keV that are often obscured in {gamma}-measurements with conventional Ge detectors.

  8. Kinetic investigation of sulfidizing annealing of scorodite in processing of refractory oxidized gold-containing ores

    NASA Astrophysics Data System (ADS)

    Boboev, I. R.; Strizhko, L. S.; Bobozoda, Sh.; Gorbunov, E. P.

    2016-03-01

    The results of kinetic studies on the removal of arsenic from scorodite using sulfidizing annealing are presented. The reaction order with respect to the reactant and the activation energy are established from the experimental data. The rate-determining step of the sulfidizing annealing process is determined. The main reactions that occur during the sulfidizing of arsenic in scorodite are proposed on the basis of the obtained results and confirmed by thermodynamic calculations and chemical analyses. The major results of testing this technology, as applied to the refractory oxidized ores in which arsenic is mainly concentrated in scorodite, are presented. Arsenic removal from this ore is confirmed by chemical and quantitative X-ray diffraction analyses and by qualitative phase analysis. Industrial use of this technology provides safe and efficient processing of refractory gold-containing ores, where arsenic is mainly concentrated in scorodite.

  9. A kinetic investigation of high-temperature mercury oxidation by chlorine.

    PubMed

    Wilcox, Jennifer

    2009-06-18

    First-stage mercury oxidation reactions typical of coal combustion flue gases were investigated. The present study is a determination of the kinetic and thermodynamic parameters of the bimolecular reactions, Hg + Cl(2) <--> HgCl + Cl, Hg + HCl <--> HgCl + H, and Hg + HOCl <--> HgCl + OH, at the B3LYP/RCEP60 VDZ level of theory over a temperature range of 298.15 to 2000 K at atmospheric pressure. Conventional transition state theory was used to predict the forward and reverse rate constants for each reaction and ab initio based equilibrium constant expressions were calculated as a function of temperature. Reasonable agreement was achieved between the calculated equilibrium constants and the available experimental values.

  10. Multiphase OH oxidation kinetics of organic aerosol: The role of particle phase state and relative humidity

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H.; Knopf, Daniel A.

    2014-07-01

    Organic aerosol can exhibit different phase states in response to changes in relative humidity (RH), thereby influencing heterogeneous reaction rates with trace gas species. OH radical uptake by laboratory-generated levoglucosan and methyl-nitrocatechol particles, serving as surrogates for biomass burning aerosol, is determined as a function of RH. Increasing RH lowers the viscosity of amorphous levoglucosan aerosol particles enabling enhanced OH uptake. Conversely, OH uptake by methyl-nitrocatechol aerosol particles is suppressed at higher RH as a result of competitive coadsorption of H2O that occupies reactive sites. This is shown to have substantial impacts on organic aerosol lifetimes with respect to OH oxidation. The results emphasize the importance of organic aerosol phase state to accurately describe the multiphase chemical kinetics and thus chemical aging process in atmospheric models to better represent the evolution of organic aerosol and its role in air quality and climate.

  11. Kinetics of the process of formation and high-temperature oxidation of electrospark coatings on steel

    SciTech Connect

    Verkhoturov, A.D.; Chiplik, V.N.; Egorov, F.F.; Lavrenko, V.A.; Podchernyaeva, I.A.; Shemet, V.Z.

    1986-10-01

    This work is a study of the kinetics of formation and of the heat resistance of electrospark coatings based on the composite TiB/sub 2/-Mo with varying molybdenum content. In the process of electrospark alloying they measured the specific erosion of the anode and the increase in weight of the cathode with an accuracy not worse than 5%. Electrospark coatings of TiB/sub 2/-Mo on steel 45 are marked by improved scaling resistance at temperatures above 900 C. Their scaling resistance and also the effectiveness of the process of electrospark alloying increase with increasing content of the phase B-MoB in the coating because molybdenum borate forms during its high-temperature oxidation. Illustrations and table are included.

  12. Kinetics and dosimetric features of secondary thermoluminescence in carbon-doped aluminium oxide

    NASA Astrophysics Data System (ADS)

    Chithambo, M. L.; Seneza, C.

    2014-04-01

    Carbon-doped aluminium oxide has some unstable electron traps whose presence is revealed as luminescence at temperatures close to ambient. Thermoluminescence of such a secondary glow peak at 46 °C has been studied for heating at 1.0 °C s-1. The study showed that the peak follows first order kinetics and has an activation energy of about 0.7 eV independent of irradiation. Its dose response is linear at low dose with a supralinearity index equal to 1 but suffers from fading between irradiation and measurement with a half-life of about 120 s. The luminescence is attributed to the 3P→1S transition at an F-centre.

  13. Kinetics and influence of water composition on photocatalytic disinfection and photocatalytic oxidation of pollutants.

    PubMed

    Marugán, Javier; van Grieken, Rafael; Pablos, Cristina

    2010-12-01

    This work is focused on the comparison between the photocatalytic inactivation of Escherichia coli and the photocatalytic oxidation of methylene blue, regarding the reaction kinetics and the influence of water composition. Disinfection profiles show an initial delay, in contrast with the exponential decay shown by the decolorization of methylene blue solutions. A serial-event mechanism is proposed for both disinfection and mineralization processes, the number of intermediate species being the main difference between them. Concerning the influence of water composition, inactivation of bacteria is more sensitive to the presence of inorganic ions and/or organic matter in the solution. In some cases opposite behaviours are observed, such as in the presence of chloride ions, which enhance the disinfection rate but decrease degradation activity for methylene blue. Consequently, the results obtained in the evaluation of photocatalytic processes for the degradation of chemical pollutants cannot be always extrapolated to the inactivation of microorganisms.

  14. Kinetics and mechanism of the liquid-phase oxidation of cyclohexene. V. Oxidation of cyclohexene in the presence of bimetallic catalysts

    SciTech Connect

    Baevskii, M.Yu.; Litvintsev, I.Yu.; Sapunov, V.N.

    1988-11-01

    The kinetics of the liquid-phase oxidation of cyclohexene in the presence of homogeneous bimetallic catalysts Co-V, Pb-V, Pb-Mo was investigated. It was shown that the activity of the bimetallic catalyst found is determined to a large degree by the nature of the epoxiding metal. A general model is proposed for the oxidation of cyclohexene in the presence of bimetallic catalysts.

  15. Graphene oxide single sheets as substrates for high resolution cryoTEM.

    PubMed

    van de Put, Marcel W P; Patterson, Joseph P; Bomans, Paul H H; Wilson, Neil R; Friedrich, Heiner; van Benthem, Rolf A T M; de With, Gijsbertus; O'Reilly, Rachel K; Sommerdijk, Nico A J M

    2015-02-04

    CryoTEM is an important tool in the analysis of soft matter, where generally defocus conditions are used to enhance the contrast in the images, but this is at the expense of the maximum resolution that can be obtained. Here, we demonstrate the use of graphene oxide single sheets as support for the formation of 10 nm thin films for high resolution cryoTEM imaging, using DNA as an example. With this procedure, the overlap of objects in the vitrified film is avoided. Moreover, in these thin films less background scattering occurs and as a direct result, an increased contrast can be observed in the images. Hence, imaging closer to focus as compared with conventional cryoTEM procedures is achieved, without losing contrast. In addition, we demonstrate an ~1.8 fold increase in resolution, which is crucial for accurate size analysis of nanostructures.

  16. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling.

    PubMed

    Wu, Lei; Liu, Lin; Gao, Bin; Muñoz-Carpena, Rafael; Zhang, Ming; Chen, Hao; Zhou, Zuhao; Wang, Hao

    2013-12-10

    Although graphene oxide (GO) has been used in many applications to improve human life quality, its environmental fate and behavior are still largely unknown. In this work, a novel approach that combines experimental measurements and theoretical calculations was used to determine the aggregation kinetics of GO sheets in aqueous solutions under different chemistry conditions (e.g., cation valence and pH). Experimental data showed that both cation valence and pH showed significant effect on the aggregation of GO sheets. The measured critical coagulation concentrations were in good agreement with the predictions of the extended Schulze-Hardy rule. Ca(2+) and Mg(2+) were more effective than Na(+) in aggregating the GO sheets, which could be attributed to the cross-linking between GO sheets by the divalent cations through "bridging" the functional groups at the edges of the GO sheets. When solution pH increases, deprotonation of carboxylic groups was found to play a key role in increasing GO sheet stability and surface charge development. These results suggested that edge-to-edge and face-to-face interactions were the dominant modes of GO aggregation in the presence of divalent metal ions and H(+), respectively. A modified attachment efficiency (α) model was developed on the basis of the Maxwell approach with considerations of both primary and secondary minima. The model predictions matched the experimental measurements of the aggregation kinetics of GO sheets in aqueous solutions under all of the tested experimental conditions well.

  17. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles.

    PubMed

    Milani, Narges; McLaughlin, Mike J; Stacey, Samuel P; Kirby, Jason K; Hettiarachchi, Ganga M; Beak, Douglas G; Cornelis, Geert

    2012-04-25

    The solubility of Zn in Zn fertilizers plays an important role in the agronomic effectiveness of the fertilizer. On the basis of thermodynamics, zinc oxide (ZnO) nanoparticles (NPs) should dissolve faster and to a greater extent than bulk ZnO particles (equivalent spherical diameter >100 nm). These novel solubility features of ZnO NPs might be exploited to improve the efficiency of Zn fertilizers. In this study, we compared the Zn solubility and dissolution kinetics of ZnO nanoparticles and bulk ZnO particles coated onto two selected granular macronutrient fertilizers, urea and monoammonium phosphate (MAP). The main Zn species on coated MAP and urea granules were zinc ammonium phosphate and ZnO, respectively. Coated MAP granules showed greater Zn solubility and faster dissolution rates in sand columns compared to coated urea granules, which may be related to pH differences in the solution surrounding the fertilizer granules. The kinetics of Zn dissolution was not affected by the size of the ZnO particles applied for coating of either fertilizer type, possibly because solubility was controlled by formation of the same compounds irrespective of the size of the original ZnO particles used for coating.

  18. Phenol adsorption on surface-functionalized iron oxide nanoparticles: modeling of the kinetics, isotherm, and mechanism

    NASA Astrophysics Data System (ADS)

    Yoon, Soon Uk; Mahanty, Biswanath; Ha, Hun Moon; Kim, Chang Gyun

    2016-06-01

    Phenol adsorption from aqueous solution was carried out using uncoated and methyl acrylic acid (MAA)-coated iron oxide nanoparticles (NPs), having size <10 nm, as adsorbents. Batch adsorption studies revealed that the phenol removal efficiency of MAA-coated NPs (950 mg g-1) is significantly higher than that of uncoated NPs (550 mg g-1) under neutral to acidic conditions. However, this improvement disappears above pH 9. The adsorption data under optimized conditions (pH 7) were modeled with pseudo-first- and pseudo-second-order kinetics and subjected to Freundlich and Langmuir isotherms. The analysis determined that pseudo-second-order kinetics and the Freundlich model are appropriate for both uncoated and MAA-coated NPs (all R 2 > 0.98). X-ray photoelectron spectroscopy analysis of pristine and phenol-adsorbed NPs revealed core-level binding energy and charge for Fe(2 s) and O(1 s) on the NP surfaces. The calculations suggest that phenol adsorption onto MAA-coated NPs is a charge transfer process, where the adsorbate (phenol) acts as an electron donor and the NP surface (Fe, O) as an electron acceptor. However, a physisorption process appears to be the relevant mechanism for uncoated NPs.

  19. Effect of metal ions on the kinetics of tyrosine oxidation catalysed by tyrosinase.

    PubMed

    Palumbo, A; Misuraca, G; D'Ischia, M; Prota, G

    1985-06-15

    The conversion of tyrosine into dopa [3-(3,4-dihydroxyphenyl)alanine] is the rate limiting step in the biosynthesis of melanins catalysed by tyrosinase. This hydroxylation reaction is characterized by a lag period, the extent of which depends on various parameters, notably the presence of a suitable hydrogen donor such as dopa or tetrahydropterin. We have now found that catalytic amounts of Fe2+ ions have the same effect as dopa in stimulating the tyrosine hydroxylase activity of the enzyme. Kinetic experiments showed that the shortening of the induction time depends on the concentration of the added metal and the nature of the buffer system used and is not suppressed by superoxide dismutase, catalase, formate or mannitol. Notably, Fe3+ ions showed only a small delaying effect on tyrosinase activity. Among the other metals which were tested, Zn2+, Co2+, Cd2+ and Ni2+ had no detectable influence, whereas Cu2+ and Mn2+ exhibited a marked inhibitory effect on the kinetics of tyrosine oxidation. These findings are discussed in the light of the commonly accepted mechanism of action of tyrosinase.

  20. Kinetic and Product Studies of the Reaction Between Oxidized Mercury Species and Selected Thiols

    NASA Astrophysics Data System (ADS)

    Si, L.; Ariya, P.

    2008-12-01

    Mercury is a global pollutant with severe potential toxicity. The reduction of oxidized mercury species (Hg(II)) to elemental mercury (Hg(0)) affects the global distribution of mercury and competes for methylation processes of mercury in aquatic environment. This study focused on the reduction of Hg(II) by several selected thiols using a suite of complementary mass spectrometry and cold vapor fluorescence spectroscopy (CVAFS). Previous studies showed that irradiation of benzene solution of six mercury dimercaptides (benzyl, n-propyl, isopropyl, cyclopentyl, t-butyl and phenyl sulfide) at part-per-million level by a mercury arc lamp under a nitrogen atmosphere caused the formation of Hg(0) to occur. The reaction kinetics was studied using CVAFS, and the products of the reaction were analyzed using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass spectrometry (MALDI-TOF-MS) and Gas Chromatography-Mass spectrometry (GC-MS). The kinetic data were obtained for 1-butanethiol, and 1-pentanethiol, 1-hexanethiol at environmental relevant conditions. The effects of light, pH, dissolved oxygen and chloride ion on reaction rates were also investigated. We will present our results and discuss their potential environmental implications on mercury cycling.

  1. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    PubMed

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.

  2. Kinetic study of electro-Fenton oxidation of azo dyes on boron-doped diamond electrode.

    PubMed

    Almomani, Fares; Baranova, Elena A

    2013-01-01

    The present work compares electrochemical degradation of red and blue azo textile dyes in single- and two-compartment electrochemical cells in the presence of Fenton reagent (Fe2+) and using a boron-doped diamond anode. Degradation of both dyes was related to the concentration of dye, applied current density and the concentration of FeSO4 catalyst. Complete colour removal and approximately 91% of organic matter oxidation was achieved in a two-compartment electrochemical cell at an applied current density of 20 mA x cm(-2), pH of 3 and Fe(2+) ion concentration of 0.02 mM. Higher current density and reaction time were required to achieve the same removals in a one-compartment electrochemical cell. Dye degradation kinetics as well as chemical oxygen demand removal rate were successfully modelled to pseudo first-order kinetics. The apparent first-order rate constants (k(o)) for degradation of red dye with an initial concentration of 20, 40 and 60 ppm were found to be 2.67 +/- 0.16, 2.19 +/- 0.09 and 1.5 +/- 0.03 min(-1), and for blue dye at the same initial concentrations were 1.99 +/- 0.2, 0.95 +/- 0.02 and 0.71 +/- 0.030 min(-1), respectively.

  3. Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study.

    PubMed

    Zazo, J A; Casas, J A; Mohedano, A F; Rodriguez, J J

    2009-09-01

    This work investigates the Fenton oxidation of phenol in a semicontinuous reactor where the overall amount of H(2)O(2) is distributed as a continuous feed upon the reaction time. The experiments were carried out at 25 degrees C and atmospheric pressure, with 100mg/L initial phenol concentration and iron dosages from 1 to 100 mg/L. H(2)O(2) aqueous solution was continuously fed during 4h reaction time up to an overall dose varying within the range of 500-5000 mg/L. The results in terms of evolution of phenol, H(2)O(2) and intermediates, as well as TOC abatement were compared with those obtained in conventional batch operation. It was found that the oxidation rates for phenol and intermediates were lower when adding the H(2)O(2) continuously. However, a higher abatement of TOC was reached at the end of the 4-h reaction time, in spite of a similar overall H(2)O(2) consumption. This is the result of a more efficient OH generation throughout the semicontinuous process, favouring the reaction with the organic species and reducing the occurrence of competitive scavenging reactions involving Fe(2+), H(2)O(2) and OH. Two kinetic models were proposed, one for describing the evolution of phenol, aromatics and H(2)O(2) and the other for TOC. The influence of the operating conditions on the kinetic constants was also studied, looking for the optimal conditions in terms of both, environmental and economic points of view.

  4. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.

    PubMed

    Huang, Hao-Li; Chao, Wen; Lin, Jim Jr-Min

    2015-09-01

    Criegee intermediates are thought to play a role in atmospheric chemistry, in particular, the oxidation of SO2, which produces SO3 and subsequently H2SO4, an important constituent of aerosols and acid rain. However, the impact of such oxidation reactions is affected by the reactions of Criegee intermediates with water vapor, because of high water concentrations in the troposphere. In this work, the kinetics of the reactions of dimethyl substituted Criegee intermediate (CH3)2COO with water vapor and with SO2 were directly measured via UV absorption of (CH3)2COO under near-atmospheric conditions. The results indicate that (i) the water reaction with (CH3)2COO is not fast enough (kH2O < 1.5 × 10(-16) cm(3) s(-1)) to consume atmospheric (CH3)2COO significantly and (ii) (CH3)2COO reacts with SO2 at a near-gas-kinetic-limit rate (kSO2 = 1.3 × 10(-10) cm(3) s(-1)). These observations imply a significant fraction of atmospheric (CH3)2COO may survive under humid conditions and react with SO2, very different from the case of the simplest Criegee intermediate CH2OO, in which the reaction with water dimer predominates in the CH2OO decay under typical tropospheric conditions. In addition, a significant pressure dependence was observed for the reaction of (CH3)2COO with SO2, suggesting the use of low pressure rate may underestimate the impact of this reaction. This work demonstrates that the reactivity of a Criegee intermediate toward water vapor strongly depends on its structure, which will influence the main decay pathways and steady-state concentrations for various Criegee intermediates in the atmosphere.

  5. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2

    PubMed Central

    Huang, Hao-Li; Chao, Wen; Lin, Jim Jr-Min

    2015-01-01

    Criegee intermediates are thought to play a role in atmospheric chemistry, in particular, the oxidation of SO2, which produces SO3 and subsequently H2SO4, an important constituent of aerosols and acid rain. However, the impact of such oxidation reactions is affected by the reactions of Criegee intermediates with water vapor, because of high water concentrations in the troposphere. In this work, the kinetics of the reactions of dimethyl substituted Criegee intermediate (CH3)2COO with water vapor and with SO2 were directly measured via UV absorption of (CH3)2COO under near-atmospheric conditions. The results indicate that (i) the water reaction with (CH3)2COO is not fast enough (kH2O < 1.5 × 10−16 cm3s−1) to consume atmospheric (CH3)2COO significantly and (ii) (CH3)2COO reacts with SO2 at a near–gas-kinetic-limit rate (kSO2 = 1.3 × 10−10 cm3s−1). These observations imply a significant fraction of atmospheric (CH3)2COO may survive under humid conditions and react with SO2, very different from the case of the simplest Criegee intermediate CH2OO, in which the reaction with water dimer predominates in the CH2OO decay under typical tropospheric conditions. In addition, a significant pressure dependence was observed for the reaction of (CH3)2COO with SO2, suggesting the use of low pressure rate may underestimate the impact of this reaction. This work demonstrates that the reactivity of a Criegee intermediate toward water vapor strongly depends on its structure, which will influence the main decay pathways and steady-state concentrations for various Criegee intermediates in the atmosphere. PMID:26283390

  6. Kinetics and mechanism of the deep electrochemical oxidation of sodium diclofenac on a boron-doped diamond electrode

    NASA Astrophysics Data System (ADS)

    Vedenyapina, M. D.; Borisova, D. A.; Rosenwinkel, K.-H.; Weichgrebe, D.; Stopp, P.; Vedenyapin, A. A.

    2013-08-01

    The kinetics and mechanism of the deep oxidation of sodium diclofenac on a boron-doped diamond electrode are studied to develop a technique for purifying wastewater from pharmaceutical products. The products of sodium diclofenac electrolysis are analyzed using cyclic voltammetry and nuclear magnetic resonance techniques. It is shown that the toxicity of the drug and products of its electrolysis decreases upon its deep oxidation.

  7. Kinetics of the formation of ozone and nitrogen oxides due to a pulsed microwave discharge in air

    NASA Astrophysics Data System (ADS)

    Larin, V. F.; Rumiantsev, S. A.

    1989-03-01

    The paper presents results of a numerical simulation of the kinetics of plasma-chemical processes induced by a single microwave pulse in the stratosphere. It is shown that the gas temperature is one of the main factors influencing the concentration ratio of ozone and nitrogen oxides formed under the effect of a microwave pulse. Long pulses, producing considerable gas heating, favor the formation of nitrogen oxides.

  8. Kinetic parameters for the oxidation of pulverised coal as measured from drop tube tests

    SciTech Connect

    Ballester, J.; Jimenez, S.

    2005-08-01

    The methodology for measuring the oxidation parameters for pulverised coal combustion from drop-tube tests is reviewed, and some modifications to the traditional procedure (based on Arrhenius plots) are proposed. The work includes the experimental characterisation of an anthracite's combustion in a drop-tube furnace, which will be used as the reference data. One of the main points in the discussion is the consideration of a particle-size distribution instead of a single representative diameter. Since a true monosized sample cannot be obtained by sieving, the particles injected always display a size distribution and, therefore, the experimental results are the outcome of a range of oxidation rates. As a result, the assumption of a single particle size cannot explain some aspects of the experimental results (e.g., the 'curvature' of the burnoff curve) and may lead to significant deviations in the calculated parameters. On the other hand, an alternative method for deriving the parameters, based on calculating the particle's full combustion history, is proposed. The analysis presented here enables a more systematic and unambiguous approach for deriving the kinetic parameters for oxidation from experimental measurements. If the actual particle-size distribution is taken into account, the calculations are in good agreement with the experimental results and, in particular, reproduce the progressive decay in apparent oxidation rate while the fuel burns. Even though the deviations might still be reduced by using a more sophisticated model (e.g., accounting for heterogeneity in the particles' properties, or deactivation phenomena), the results obtained suggest that such corrections should be relatively small, the correct treatment of the size distribution of the particles being more important in this case.

  9. Tracking the oxidative kinetics of carbohydrates, amino acids and fatty acids in the house sparrow using exhaled 13CO2.

    PubMed

    McCue, M D; Sivan, O; McWilliams, S R; Pinshow, B

    2010-03-01

    Clinicians commonly measure the (13)CO(2) in exhaled breath samples following administration of a metabolic tracer (breath testing) to diagnose certain infections and metabolic disorders. We believe that breath testing can become a powerful tool to investigate novel questions about the influence of ecological and physiological factors on the oxidative fates of exogenous nutrients. Here we examined several predictions regarding the oxidative kinetics of specific carbohydrates, amino acids and fatty acids in a dietary generalist, the house sparrow (Passer domesticus). After administering postprandial birds with 20 mg of one of seven (13)C-labeled tracers, we measured rates of (13)CO(2) production every 15 min over 2 h. We found that sparrows oxidized exogenous amino acids far more rapidly than carbohydrates or fatty acids, and that different tracers belonging to the same class of physiological fuels had unique oxidative kinetics. Glycine had a mean maximum rate of oxidation (2021 nmol min(-1)) that was significantly higher than that of leucine (351 nmol min(-1)), supporting our prediction that nonessential amino acids are oxidized more rapidly than essential amino acids. Exogenous glucose and fructose were oxidized to a similar extent (5.9% of dose), but the time required to reach maximum rates of oxidation was longer for fructose. The maximum rates of oxidation were significantly higher when exogenous glucose was administered as an aqueous solution (122 nmol min(-1)), rather than as an oil suspension (93 nmol min(-1)), supporting our prediction that exogenous lipids negatively influence rates of exogenous glucose oxidation. Dietary fatty acids had the lowest maximum rates of oxidation (2-6 nmol min(-1)), and differed significantly in the extent to which each was oxidized, with 0.73%, 0.63% and 0.21% of palmitic, oleic and stearic acid tracers oxidized, respectively.

  10. Determination of the Kinetic Oxidation Constants of Carbon Materials on the Basis of Analysis of Experiments on Their Ablation

    NASA Astrophysics Data System (ADS)

    Gorskii, V. V.; Koval‧skii, M. G.; Olenicheva, A. A.

    2017-01-01

    A new approach to the determination of the ablation properties of a heat-shield carbon material on the basis of analysis of the results of an experimental investigation of its ablation in the jet of an electric-arc plant in the nonstationary regime has been formulated. Original data on the kinetic constants of oxidation of carbon by atomic oxygen have been obtained.

  11. Analysis of the laser oxidation kinetics process of In-In(2)O(3) MTMO photomasks by laser direct writing.

    PubMed

    Xia, Feng; Zhang, Xinzheng; Wang, Meng; Liu, Qian; Xu, Jingjun

    2015-11-02

    One kind of novel grayscale photomask based on Metal-transparent-metallic-oxides (MTMOs) system fabricated by laser direct writing was demonstrated recently. Here, a multilayer oxidation model of In-In(2)O(3) film with a glass substrate was proposed to study the pulsed laser-induced oxidation mechanism. The distribution of the electromagnetic field in the film is calculated by the transfer matrix method. Temperature fields of the model are simulated based on the heat transfer equations with the Finite-Difference Time-Domain method. The oxidation kinetics process is studied based on the laser-induced Cabrera-Mott theory. The simulated oxidation processes are consistent with the experimental results, which mean that our laser-induced oxidation model can successfully interpret the fabrication mechanism of MTMO grayscale photomasks.

  12. Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach.

    PubMed

    Drumond, Ana Luiza; Meistrich, Marvin L; Chiarini-Garcia, Hélio

    2011-07-01

    Despite the knowledge of spermatogonial biology in adult mice, spermatogonial development in immature animals has not been fully characterized. Thus, the aim of this study was to evaluate the ontogeny of the morphological development of the spermatogonial lineage in C57BL/6 mouse testis, using high-resolution light microscopy. Spermatogonial morphology, chronology, and absolute number were determined for different ages postpartum (pp). The morphology of spermatogonia in immature mice was similar to that of adult spermatogonia, although their nuclear diameter was slightly smaller. The A(1) spermatogonia were first observed on day 2 pp, and only 24 h later, differentiating type A(3) and A(4) spermatogonia were observed in the seminiferous cords. This result indicated a shortening of the spermatogonial phase for immature mice of about ∼2.5 days when compared with adult mice and suggests that gonocytes and/or A(1) spermatogonia could directly become A(4) spermatogonia, skipping the developmental sequence of type A spermatogonia. These A(4) spermatogonia are functional as they develop into type B spermatogonia by day 5 pp. At day 8 pp, while differentiation to spermatocytes begins, the A(und) spermatogonia reach their maximal numbers, which are maintained through adulthood. The various details of the spermatogonial behavior in immature normal mice described in this study can be used as a baseline for further studies under experimental or pathological conditions.

  13. Resolution of experimental lung injury by Monocyte-derived inducible nitric oxide synthase (iNOS)

    PubMed Central

    D’Alessio, Franco R.; Tsushima, Kenji; Aggarwal, Neil R.; Mock, Jason R.; Eto, Yoshiki; Garibaldi, Brian T.; Files, Daniel C.; Avalos, Claudia R.; Rodriguez, Jackie V.; Waickman, Adam T.; Reddy, Sekhar P.; Pearse, David B.; Sidhaye, Venkataramana K.; Hassoun, Paul M.; Crow, Michael T.; King, Landon S.

    2012-01-01

    While early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal lipopolysacaccharide (i.t. LPS) and assessed the response at intervals to day 10, when injury had resolved. Inducible nitric oxide synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS−/− mice were exposed to i.t. LPS, early lung injury was attenuated, however recovery was markedly impaired compared to wild type (WT) mice. iNOS−/− mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS−/− mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS, but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of co-signalling molecule CD86 in iNOS−/− mice compared to WT mice. Antibody-mediated blockade of CD86 in iNOS−/− mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair. PMID:22844117

  14. Radiation re-solution of fission gas in non-oxide nuclear fuel

    SciTech Connect

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called ‘‘homogenous’’ atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  15. Simultaneous oxidation of ammonium and cresol isomers in a sequencing batch reactor: physiological and kinetic study.

    PubMed

    Salas-Cortés, Juan Antonio; Cuervo-López, Flor de María; Texier, Anne-Claire

    2016-02-19

    The aim of this study was to evaluate the physiological and kinetic capacities of a nitrifying consortium to simultaneously oxidize ammonium (138 mg N/L day), m-cresol, o-cresol, and p-cresol (180 mg C/L day in mixture) in a sequencing batch reactor (SBR). A 1-L SBR was firstly operated without cresol addition (phase I) for stabilizing the nitrification respiratory process with ammonium consumption efficiencies close to 100 % and obtaining nitrate as the main end product. When cresols were added (phase II m-cresol (10, 20, and 30 mg C/L); phase III m-cresol (30 mg C/L) and o-cresol (10, 20, and 30 mg C/L); phase IV a mixture of three isomers (30 mg C/L each one)), inhibitory effects were evidenced by decreased values of the specific rates of nitrification compared with values from phase I. However, the inhibition diminished throughout the operation cycles, and the overall nitrifying physiological activity of the sludge was not altered in terms of efficiency and nitrate yield. The different cresols were totally consumed, being o-cresol the most recalcitrant. The use of SBR allowed a metabolic adaptation of the consortium to oxidize the cresols as the specific rates of consumption increased throughout the cycles, showing that this type of reactor can be a good alternative for treating industrial effluents in a unique reactor.

  16. Kinetic study of the two-electron oxidation of cobalt tetraneopentoxyphthalocyanine by thionyl chloride

    SciTech Connect

    Bernstein, P.A.; Lever, A.B.P.

    1995-02-15

    Electronic spectroscopy was used to study the kinetics of the reaction between Co{sup II}TnPc(2-) and SOCl{sub 2} in 1,2-dichlorobenzene. SOCl{sub 2} reacts rapidly with Co{sup II}TnPc(2-) to yield the two-electron-oxidized species Cl{sub 2}Co{sup III}-TnPc(1-) and a (SOCl{sub 2})Co{sup II}TnPc(2-) adduct; estimates of the rate constants for formation of these species are derived from stopped-flow data. The adduct further reacts with another molecule of SOCl{sub 2} (k{sub 4} = 1.51 {+-} 0.50 M{sup {minus}1} s{sup {minus}1} at 22.2{degrees}C, {Delta}H{sup {+-}} = 13.5 {+-} 1.1 kcal/mol, {Delta}S{sup {+-}} = -11.9 {+-} 3.3 cal/(mol deg)) to yield Cl{sub 2}Co{sup III}TnPc(1-). In the presence of HCl, oxidation to form only Cl{sub 2}Co{sup III}TnPc proceeds very slowly. Implications for Li/SOCl{sub 2} batteries are discussed.

  17. Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways.

    PubMed

    Chen, Zhi; Fang, Jingyun; Fan, Chihhao; Shang, Chii

    2016-05-01

    N-Nitrosopyrrolidine (NPYR) is an emerging contaminant in drinking water and wastewater. The degradation kinetics and mechanisms of NPYR degradation by the O3/UV process were investigated and compared with those of UV direct photolysis and ozonation. A synergistic effect of ozone and UV was observed in the degradation of NPYR due to the accelerated production of OH• by ozone photolysis. This effect was more pronounced at higher ozone dosages. The second-order rate constants of NPYR reacting with OH• and ozone was determined to be 1.38 (± 0.05) × 10(9) M(-1) s(-1) and 0.31 (± 0.02) M(-1) s(-1), respectively. The quantum yield by direct UV photolysis was 0.3 (± 0.01). An empirical model using Rct (the ratio of the exposure of OH• to that of ozone) was established for NPYR degradation in treated drinking water and showed that the contributions of direct UV photolysis and OH• oxidation on NPYR degradation were both significant. As the reaction proceeded, the contribution by OH• became less important due to the exhausting of ozone. Nitrate was the major product in the O3/UV process by two possible pathways. One is through the cleavage of nitroso group to form NO• followed by hydrolysis, and the other is the oxidation of the intermediates of amines by ozonation.

  18. Azo dye Acid Red 27 decomposition kinetics during ozone oxidation and adsorption processes.

    PubMed

    Beak, Mi H; Ijagbemi, Christianah O; Kim, Dong S

    2009-05-01

    To elucidate the effects of ozone dosage, catalysts, and temperature on azo dye decomposition rate in treatment processes, the decomposition kinetics of Acid Red 27 by ozone was investigated. Acid Red 27 decomposition rate followed the first-order reaction with complete dye discoloration in 20 min of ozone reaction. The dye decay rate increases as ozone dosage increases. Using Mn, Zn and Ni as transition metal catalysts during the ozone oxidation process, Mn displayed the greatest catalytic effect with significant increase in the rate of decomposition. The rate of decomposition decreases with increase in temperature and beyond 40 degrees C, increase in decomposition rate was followed by a corresponding increase in temperature. The FT-IR spectra in the range of 1,000-1,800 cm(-1) revealed specific band variations after the ozone oxidation process, portraying structural changes traceable to cleavage of bonds in the benzene ring, the sulphite salt group, and the C-N located beside the -N = N- bond. From the (1)H-NMR spectra, the breaking down of the benzene ring showed the disappearance of the 10 H peaks at 7-8 ppm, which later emerged with a new peak at 6.16 ppm. In a parallel batch test of azo dye Acid Red 27 adsorption onto activated carbon, a low adsorption capacity was observed in the adsorption test carried out after three minutes of ozone injection while the adsorption process without ozone injection yielded a high adsorption capacity.

  19. Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics.

    PubMed

    Parsa, J Basiri; Rezaei, M; Soleymani, A R

    2009-09-15

    In this research two types of electrochemical reactors for the treatment of simulated wastewaters containing Direct blue 71 azo dye (DB71) were used: (1) Laboratory scale undivided electrolysis cell system (450 mL volume) with one 2 cm x 2 cm platinum plate as the anode placed in the middle of the cell and two 2 cm x 8 cm steel plates (SS-304) as cathodes placed in the sides of the cell 2 cm from the central anode. (2) Pilot scale reactor (9L volume), equipped with two 3 cm x 23 cm stainless steel plates as anode and cathode, with distance of 3 cm apart. The influence of supporting electrolyte, applied voltage and pH were studied. The UV-vis spectra of samples during the electrochemical oxidation showed the rapid decolorization of the dye solution. During the process, the COD and current were measured in order to evaluate the degree of mineralization, energy consumption, current and anode efficiencies. The optimum supporting electrolyte and applied voltage were NaCl (5 g L(-1)) and 15 V. Using the lab scale reactor resulted in complete decolorization and mineralization of the dye solutions after ca. 90 and 120 min, respectively. Similar results were obtained using the pilot plant reactor under the same conditions. The good fit of the data to pseudo-first-order kinetics for COD removal at all applied voltages (except 20 V) was taken as proof of the involvement of indirect oxidation pathways in the process.

  20. Squaramide-tertiary amine catalyzed asymmetric cascade sulfa-Michael/Michael addition via dynamic kinetic resolution: access to highly functionalized chromans with three contiguous stereocenters.

    PubMed

    Yang, Wen; Yang, Yi; Du, Da-Ming

    2013-03-15

    An efficient asymmetric cascade sulfa-Michael/Michael addition reaction catalyzed by a chiral bifunctional squaramide-tertiary amine catalyst has been developed. This organocatalytic cascade reaction provides easy access to highly functionalized chromans with three contiguous stereocenters, including one quaternary center. In addition, a novel cascade sulfa Michael/retro-sulfa-Michael/sulfa-Michael/Michael reaction process, involving dynamic kinetic resolution, is described.

  1. Kinetic resolution of planar-chiral 1,2-disubstituted ferrocenes by molybdenum-catalyzed asymmetric intraannular ring-closing metathesis.

    PubMed

    Ogasawara, Masamichi; Arae, Sachie; Watanabe, Susumu; Nakajima, Kiyohiko; Takahashi, Tamotsu

    2013-03-25

    Planar chirality: Ring-closing metathesis of 1,2-diallylmetallocenes afforded the corresponding 4,7-dihydroindenyl species in high yields. The metallocenes are planar chiral with two different allylic substituents, and kinetic resolution of the racemic 1,2-diallylmetallocene derivatives was realized by molybdenum-catalyzed asymmetric ring-closing metathesis with excellent enantioselectivity (see scheme).

  2. Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur

    SciTech Connect

    K.C. Kwon

    2005-11-01

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that produce electric power and clean transportation fuels with coal and natural gas. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objectives of this research are to measure kinetics of direct

  3. Nanohole-based SPR Instruments with Improved Spectral Resolution Quantify a Broad Range of Antibody-Ligand Binding Kinetics

    PubMed Central

    Im, Hyungsoon; Sutherland, Jamie N.; Maynard, Jennifer A.; Oh, Sang-Hyun

    2012-01-01

    We demonstrate an affordable low-noise SPR instrument based on extraordinary optical transmission (EOT) in metallic nanohole arrays and quantify a broad range of antibody-ligand binding kinetics with equilibrium dissociation constants ranging from 200 pM to 40 nM. This nanohole-based SPR instrument is straightforward to construct, align, and operate, since it is built around a standard microscope and a portable fiber-optic spectrometer. The measured refractive index resolution of this platform is 3.1 × 10−6 without on-chip cooling, which is among the lowest reported for SPR sensors based on EOT. This is accomplished via rapid full-spectrum acquisition in 10 milliseconds followed by frame averaging of the EOT spectra, which is made possible by the production of template-stripped gold nanohole arrays with homogeneous optical properties over centimeter-sized areas. Sequential SPR measurements are performed using a 12-channel microfluidic flow cell after optimizing surface modification protocols and antibody injection conditions to minimize mass-transport artifacts. The immobilization of a model ligand, the protective antigen of anthrax on the gold surface, is monitored in real-time with a signal-to-noise ratio of ~860. Subsequently, real-time binding kinetic curves were measured quantitatively between the antigen and a panel of small, 25 kDa single-chain antibodies at concentrations down to 1 nM. These results indicate that nanohole-based SPR instruments have potential for quantitative antibody screening and as a general-purpose platform for integrating SPR sensors with other bioanalytical tools. PMID:22235895

  4. Development of a combined model of tissue kinetics and radiation response of human bronchiolar epithelium with single cell resolution

    NASA Astrophysics Data System (ADS)

    Ostrovskaya, Natela Grigoryevna

    2005-07-01

    Lack of accurate data for epidemiological studies of low dose radiation effects necessitates development of dosimetric models allowing prediction of cancer risks for different organs. The objective of this work is to develop a model of the radiation response of human bronchiolar tissue with single cell resolution. The computer model describes epithelial tissue as an ensemble of individual cells, with the geometry of a human bronchiole and the properties of different cell types are taken into account. The model simulates the tissue kinetics and radiation exposure in four dimensions: three spatial dimensions and a temporal dimension. The bronchiole is modeled as a regular hollow cylinder with the epithelial cells of three different types (basal, secretory, and ciliated) lining its interior. For the purposes of assessment of radiation damage to the cells only the nuclei of the cells have been modeled. Subroutines describing cellular kinetics have been developed to simulate cell turnover in a normal epithelial tissue. Monte Carlo subroutines have been developed to simulate exposure to alpha particles; the GEANT4 toolkit has been used to simulate exposure to low LET radiation. Each hit cell is provided with a record of energy deposition, and this record is passed to the progeny if the cell survives. The model output provides data on the number of basal progenitor cells in different phases of a cell life-cycle and secretory to ciliated cell ratio after several generations of cell proliferation. The model calculates labeling and mitotic indices and estimates the average cell turnover time for the bronchiolar tissue. Microdosimetric calculations are performed for cells traversed by ionizing particles. The model will be used to assess the accumulation of damage in cells due to protracted low level radiation exposure. The model output may provide directions for the future experimental design.

  5. Kinetic Chemiluminescence as a Method for Oxidative Stress Evaluation in Examinations of Patients with Type 2 Diabetes Mellitus.

    PubMed

    Proskurnina, E V; Polimova, A M; Sozarukova, M M; Prudnikova, M A; Ametov, A S; Vladimirov, Yu A

    2016-05-01

    We propose a new approach to evaluation of oxidative stress based on kinetic chemiluminescence: measurement of antioxidant and pro-oxidant activities of the plasma. The study included 50 patients with type 2 diabetes mellitus receiving peroral hypoglycemic therapy. In addition to the above parameters, the levels of TBA-reactive products, inflammation markers, clotting parameters, and biochemical values were studied. The new method provides information on oxidative stress in patients with type 2 diabetes mellitus irrespective of the clinical and laboratory values. The use of this method in complex with the clinical, laboratory, and instrumental studies allows comprehensive evaluation of patient's status for the diagnosis and choice of therapy.

  6. Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway.

    PubMed

    Yang, Xiaoling; Huang, Jun; Zhang, Kunlun; Yu, Gang; Deng, Shubo; Wang, Bin

    2014-03-01

    Perfluorooctane sulfonate (PFOS), a widely used mist suppressant in hard chrome electroplating industry, has been listed in the Stockholm Convention for global ban. 6:2 Fluorotelomer sulfonate (6:2 FTS) acid and salts have been adopted as alternative products in the market, but no data about their abiotic degradation has been reported. In the present study, the degradability of 6:2 FTS potassium salt (6:2 FTS-K) was evaluated under various advanced oxidation processes, including ultraviolet (UV) irradiation, UV with hydrogen peroxide (H2O2), alkaline ozonation (O3, pH = 11), peroxone (O3/H2O2), and Fenton reagent oxidation (Fe(2+)/H2O2). UV/H2O2 was found to be the most effective approach, where the degradation of 6:2 FTS-K followed the pseudo-first-order kinetics. The intermediates were mainly shorter chain perfluoroalkyl carboxylic acid (C7 to C2), while sulfate (SO4 (2-)) and fluoride (F(-)) were found to be the final products. The high yields of SO4 (2-) and F(-) indicate that 6:2 FTS-K can be nearly completely desulfonated and defluorinated under UV/H2O2 condition. The degradation should firstly begin with the substitution of hydrogen atom by hydroxyl radicals, followed by desulfonation, carboxylation, and sequential "flake off" of CF2 unit. Compared with PFOS which is inert in most advanced oxidation processes, 6:2 FTS-K is more degradable as the alternative.

  7. Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation.

    PubMed

    Pattison, David I; Davies, Michael J

    2005-05-17

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H(2)O(2) and chloride ions by the heme enzyme myeloperoxidase (MPO) released from activated leukocytes. In addition to its potent antibacterial effects, excessive HOCl production can lead to host tissue damage, with this implicated in human diseases such as atherosclerosis, cystic fibrosis, and arthritis. HOCl reacts rapidly with biological materials, with proteins being major targets. Chlorinated amines (chloramines) formed from Lys and His side chains and alpha-amino groups on proteins are major products of these reactions; these materials are however also oxidants and can undergo further reactions. In this study, the kinetics of reaction of His side-chain chloramines with other protein components have been investigated by UV/visible spectroscopy and stopped flow methods at pH 7.4 and 22 degrees C, using the chloramines of the model compound 4-imidazoleacetic acid and N-alpha-acetyl-histidine. The second-order rate constants decrease in a similar order (Cys > Met > disulfide bonds > Trp approximately alpha-amino > Lys > Tyr > backbone amides > Arg) to the corresponding reactions of HOCl, but are typically 5-25 times slower. These rate constants are consistent with His side-chain chloramines being important secondary oxidants in HOCl-mediated damage. These studies suggest that formation and subsequent reactions of His side-chain chloramines may be responsible for the targeted secondary modification of selected protein residues by HOCl that has previously been observed experimentally and highlight the importance of chloramine structure on their subsequent reactivity.

  8. Super resolution microscopy of lipid bilayer phases and single molecule kinetic studies on merocyanine 540 bound lipid vesicles

    NASA Astrophysics Data System (ADS)

    Kuo, Chin-Kuei

    Recently, observing biological process and structural details in live cell became feasible after the introduction of super-resolution microscopy. Super-resolution microscopy by single molecule localization is the method that has commonly been used for such purpose. There are mainly three approaches to it: stochastic optical reconstruction microscopy (STORM), photoactivated localization microscopy (PALM), and point accumulation in nanoscale topology (PAINT). STORM and PALM rely on external laser control and use of photoactivable fluorescent protein or photoswitchable dyes and are technically challenging. The PAINT method relies on the control of thermal reaction rates to enable the switching between bright and dark states. Therefore, many conventional fluorescent probes can be applied in PAINT method and the images denote different information composed of interactions between the probe and its immediate environment by variations of probe parameters. The existence of lipid rafts has been under debates for decades due to the lack of a tool to directly visualize them in live cells. In the thesis, we combine PAINT with a phase sensitive dye, Merocyanine 540, to enable nanoscale observation of phase separation on supported lipid bilayers of mixed liquid/gel phases. The imaging results are presented in the chapter 3. Given that this is the first example of visualization of nanoscale phase separation of lipid bilayers using an optical microscope, we further looked into the kinetics of MC540 monomer dimer equilibrium in lipid bilayers using single molecule intensity time trajectory analysis and polarization dependent imaging. Our finding confirms that perpendicular monomeric MC540 (to the membrance surface) is the emitting speices in our system and it stays fluorescent for roughly 3 ms before it switches off to dark states. This part of analysis is presented in the chapter 4. All the materials, procedures to carry out experiments and data analysis, methods involved in our

  9. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance.

    PubMed

    Kim, S-Y; Kim, K; Hwang, Y H; Park, J; Jang, J; Nam, Y; Kang, Y; Kim, M; Park, H J; Lee, Z; Choi, J; Kim, Y; Jeong, S; Bae, B-S; Park, J-U

    2016-10-06

    As demands for high pixel densities and wearable forms of displays increase, high-resolution printing technologies to achieve high performance transistors beyond current amorphous silicon levels and to allow low-temperature solution processability for plastic substrates have been explored as key processes in emerging flexible electronics. This study describes electrohydrodynamic inkjet (e-jet) technology for direct printing of oxide semiconductor thin film transistors (TFTs) with high resolution (minimum line width: 2 μm) and superb performance, including high mobility (∼230 cm(2) V(-1) s(-1)). Logic operations of the amplifier circuits composed of these e-jet-printed metal oxide semiconductor (MOS) TFTs demonstrate their high performance. Printed In2O TFTs with e-jet printing-assisted high-resolution S/D electrodes were prepared, and the direct printing of passivation layers on these channels enhanced their gate-bias stabilities significantly. Moreover, low process temperatures (<250 °C) enable the use of thin plastic substrates; highly flexible and stretchable TFT arrays have been demonstrated, suggesting promise for next-generation printed electronics.

  10. Modeling of the kinetics of nickel reduction from a multicomponent oxide melt with a gaseous reducing agent

    NASA Astrophysics Data System (ADS)

    Vusikhis, A. S.; Kudinov, D. Z.; Leont'ev, L. I.

    2008-11-01

    A model was suggested that allows the kinetics of bubbling of various reducing gases through an oxide melt to be described by thermodynamic equilibrium calculations without the use of experimental data. An algorithm for calculations was developed. The model is tested for the NiO-FeO-Al2O3-SiO2-CaO-Mg-CO-CO2 system. A comparative analysis of the calculation results and experimental data showed that the suggested technique could be used in a qualitative analysis of interactions between multicomponent oxide melts and gaseous reducing agents of various compositions. Calculations describing the kinetics of reduction of nickel oxide with hydrogen in the NiO-CaO-B2O3 system over the temperature range 1473 1973 K were performed.

  11. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect

    K.C. Kwon

    2003-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 60-{micro}m C-500-04 alumina catalyst particles and a PFA differential fixed-bed micro reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into elemental sulfur were carried out for the space time range of 0.01-0.047 seconds at 125-155 C to evaluate effects of reaction temperatures, moisture concentrations, reaction pressures on conversion of hydrogen sulfide into elemental sulfur. Simulated coal gas mixtures consist of 61-89 v% hydrogen, 2,300-9,200-ppmv hydrogen sulfide, 1,600-4,900 ppmv sulfur dioxide, and 2.6-13.7 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 100-110 cm{sup 3}/min at room temperature and atmospheric pressure (SCCM). The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 28-127 psia. The following results were obtained based on experimental data generated from the differential reactor system, and their interpretations, (1) Concentration of moisture and concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction

  12. Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: Direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses.

    PubMed

    Ghanem, Ashraf; Aboul-Enein, Mohammed Nabil; El-Azzouny, Aida; El-Behairy, Mohammed F

    2010-02-12

    The enantioselective resolution of a set of racemic acidic compounds such as non-steroidal anti-inflammatory drugs (NSAIDs) of the group arylpropionic acid derivatives is demonstrated. Thus, a set of lipases were screened and manipulated in either the esterification or hydrolysis mode for the enantioselective kinetic resolution of these racemates in non-standard organic solvents. The accurate determination of the enantiomeric excesses of both substrate and product during such reaction is demonstrated. This was based on the development of a direct and reliable enantioselective high performance liquid chromatography (HPLC) procedure for the simultaneous baseline separation of both substrate and product in one run without derivatization. This was achieved using the immobilized chiral stationary phase namely Chiralpak IB, a 3,5-dimethylphenylcarbamate derivative of cellulose (the immobilized version of Chiralcel OD) which proved to be versatile for the monitoring of the lipase-catalyzed kinetic resolution of racemates in non-standard organic solvents.

  13. Catalytic Mechanism of Perosamine N-Acetyltransferase Revealed by High-Resolution X-ray Crystallographic Studies and Kinetic Analyses

    SciTech Connect

    Thoden, James B.; Reinhardt, Laurie A.; Cook, Paul D.; Menden, Patrick; Cleland, W.W.; Holden, Hazel M.

    2012-09-17

    N-Acetylperosamine is an unusual dideoxysugar found in the O-antigens of some Gram-negative bacteria, including the pathogenic Escherichia coli strain O157:H7. The last step in its biosynthesis is catalyzed by PerB, an N-acetyltransferase belonging to the left-handed {beta}-helix superfamily of proteins. Here we describe a combined structural and functional investigation of PerB from Caulobacter crescentus. For this study, three structures were determined to 1.0 {angstrom} resolution or better: the enzyme in complex with CoA and GDP-perosamine, the protein with bound CoA and GDP-N-acetylperosamine, and the enzyme containing a tetrahedral transition state mimic bound in the active site. Each subunit of the trimeric enzyme folds into two distinct regions. The N-terminal domain is globular and dominated by a six-stranded mainly parallel {beta}-sheet. It provides most of the interactions between the protein and GDP-perosamine. The C-terminal domain consists of a left-handed {beta}-helix, which has nearly seven turns. This region provides the scaffold for CoA binding. On the basis of these high-resolution structures, site-directed mutant proteins were constructed to test the roles of His 141 and Asp 142 in the catalytic mechanism. Kinetic data and pH-rate profiles are indicative of His 141 serving as a general base. In addition, the backbone amide group of Gly 159 provides an oxyanion hole for stabilization of the tetrahedral transition state. The pH-rate profiles are also consistent with the GDP-linked amino sugar substrate entering the active site in its unprotonated form. Finally, for this investigation, we show that PerB can accept GDP-3-deoxyperosamine as an alternative substrate, thus representing the production of a novel trideoxysugar.

  14. Chemoenzymatic Synthesis of trans-β-Aryl-δ-hydroxy-γ-lactones and Enzymatic Kinetic Resolution of Their Racemic Mixtures.

    PubMed

    Skrobiszewski, Andrzej; Gładkowski, Witold; Maciejewska, Gabriela; Wawrzeńczyk, Czesław

    2016-11-23

    Two novel and convenient routes to obtain enantiomerically enriched trans-β-aryl-δ-hydroxy-γ-lactones 5a-d with potential antifeedant and anticancer activity were developed. In the first method starting from corresponding enantiomers of γ,δ-unsaturated esters 4a-d derived from enzymatically resolved allyl alcohols 1a-d, both enantiomers of hydroxylactones 5a-d were synthesized with high enantiomeric excesses (73%-97%). Configurations of the stereogenic centers of the synthesized compounds were assigned based on the mechanism of acidic lactonization of esters 4a-d in the presence of m-chloroperbenzoic acid (m-CPBA). An alternative method for the production of optically active trans-β-aryl-δ-hydroxy-γ-lactones 5a-d was lipase-catalyzed kinetic resolution of their racemic mixtures by transesterification with vinyl propionate as the acyl donor. The most efficient enzyme in the screening procedure was lipase B from Candida antarctica. Its application on a preparative scale after 6 h afforded unreacted (+)-(4S,5R,6S)-hydroxylactones 5a-d and (+)-(4R,5S,6R)-propionates 6a-d, most of them with high enantiomeric excesses (92%-98%). Resolution of lactone 5d with bulky 1,3-benzodioxol ring provided products with significantly lower optical purity (ee = 89% and 84% for hydroxylactone 5d and propionate 6d, respectively). The elaborated methods give access to both enantiomers of trans-β-aryl-δ-hydroxy-γ-lactones 5a-d with the defined absolute configurations of stereogenic centers, which is crucial requirement for the investigations of relationship: spatial structure-biological activity.

  15. Chlorine dioxide oxidation of Escherichia coli in water - A study of the disinfection kinetics and mechanism.

    PubMed

    Ofori, Isaac; Maddila, Suresh; Lin, Johnson; Jonnalagadda, Sreekantha B

    2017-03-16

    This study investigated the kinetics and mechanism of chlorine dioxide (ClO2) inactivation of a Gram-negative bacteria Escherichia coli (ATCC 35218) in oxidant demand free (ODF) water in detail as a function of disinfectant concentration (0.5-5.0 mg/L), water pH (6.5-8.5), temperature variations (4-37°C) and bacterial density (10(5)-10(7) cfu/mL). The effects of ClO2 on bacterial cell morphology, outer membrane permeability, cytoplasmic membrane disruption and intracellular enzymatic activity were also studied to elucidate the mechanism of action on the cells. Increasing temperature and disinfectant concentration were proportional to the rate of cell killing, but efficacy was found to be significantly subdued at 0.5 mg/L and less dependent on the bacterial density. The bactericidal efficiency was higher at alkaline pH of 8 or above as compared to neutral and slightly acidic pH of 7 and 6.5 respectively. The disinfection kinetic curves followed a biphasic pattern of rapid inactivation within the initial 2 min which were followed by a tailing even in the presence of residual biocide. The curves were adequately described by the Cavg Hom model. Transmission Electron Microscopy images of the bacteria cells exposed to lethal concentrations of ClO2 indicated very little observable morphological damage to the outer membranes of the cells. ClO2 however was found to increase the permeability of the outer and cytoplasmic membranes leading to the leakage of membrane components such as 260 nm absorbing materials and inhibiting the activity of the intracellular enzyme β-D-galactosidase. It is suggested that the disruption of the cytoplasmic membrane and subsequent efflux of intracellular components result in the inactivation of the Gram-negative bacteria.

  16. A Model of Reduced Kinetics for Alkane Oxidation Using Constituents and Species for N-Heptane

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Bellan, Josette

    2011-01-01

    The reduction of elementary or skeletal oxidation kinetics to a subgroup of tractable reactions for inclusion in turbulent combustion codes has been the subject of numerous studies. The skeletal mechanism is obtained from the elementary mechanism by removing from it reactions that are considered negligible for the intent of the specific study considered. As of now, there are many chemical reduction methodologies. A methodology for deriving a reduced kinetic mechanism for alkane oxidation is described and applied to n-heptane. The model is based on partitioning the species of the skeletal kinetic mechanism into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement of the species ensemble. For modeling purposes, the heavy species are mathematically decomposed into constituents, which are similar but not identical to groups in the group additivity theory. From analysis of the LLNL (Lawrence Livermore National Laboratory) skeletal mechanism in conjunction with CHEMKIN II, it is shown that a similarity variable can be formed such that the appropriately non-dimensionalized global constituent molar density exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures that is of interest for predicting n-heptane oxidation. Furthermore, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable. The light species ensemble is partitioned into quasi-steady and unsteady species. The reduced model is based on concepts consistent with those of Large Eddy Simulation (LES) in which functional forms are used to replace the small scales eliminated through filtering of the governing equations; in LES, these small scales are unimportant as far as the overwhelming part of dynamic energy is concerned. Here, the scales thought unimportant for recovering the thermodynamic energy are removed. The concept is tested by

  17. First optically active selenurane oxide: resolution of C(2)-symmetric 3,3,3',3'-tetramethyl-1,1'-spirobi [3h,2,1]-benzoxaselenole oxide.

    PubMed

    Drabowicz, Józef; Luczak, Jerzy; Mikolajczyk, Marian; Yamamoto, Yohsuke; Matsukawa, Shiro; Akiba, Kin-Ya

    2004-11-01

    The enantiomers of the first optically active selenurane oxide ever reported, C(2)-symmetric 3,3,3',3'-tetramethyl-1,1'-spirobi[3h,2,1]-benzoxaselenole oxide, were isolated via enantioselective liquid chromatography of the racemate or by spontaneous resolution that occurs during the slow evaporation of its acetonitrile solution or the slow crystallization from the same solvent.

  18. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    PubMed

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen.

  19. Nanoporous activated carbon fluidized bed catalytic oxidations of aqueous o, p and m-cresols: kinetic and thermodynamic studies.

    PubMed

    Karthikeyan, S; Sekaran, G; Gupta, V K

    2013-07-01

    Nanoporous activated carbon prepared from rice husk through precarbonisation at 400 °C and phosphoric acid activation at 800 °C was used as fluidized bed in Fenton oxidation of the o, p and m-cresols in aqueous solution. The efficiencies of homogeneous Fenton oxidation, fluidized Fenton oxidation and aerobic biological oxidation systems for the removal of o, p and m-cresols in aqueous solution have been compared. The kinetic constants and the thermodynamic parameters for the homogeneous Fenton, heterogeneous Fenton and aerobic biological oxidations of o, p and m-cresols in synthetic wastewater were determined. The degradation of cresols in synthetic wastewater was confirmed using FT-IR, (1)H-NMR and UV-visible spectroscopy.

  20. Kinetic isotope effects implicate the iron-oxene as the sole oxidant in P450-catalyzed N-dealkylation.

    PubMed

    Dowers, Tamara S; Rock, Dan A; Rock, Denise A; Jones, Jeffrey P

    2004-07-28

    Multiple oxidants have been implicated as playing a role in cytochrome P450-mediated oxidations. Herein, we report results on N-dealkylation, one of the most facile reactions mediated by P450 enzymes. We have employed the N-oxides of a series of para-substituted 13C2H2-labeled N,N-dimethylanilines to function as both substrates and surrogate oxygen atom donors for P450cam and P4502E1. Kinetic isotope effect profiles obtained using the N-oxide system were found to closely match the profiles produced using the complete NAD(P)H/NAD(P)-P450 reductase/O2 system. The results are consistent with oxidation occurring solely through an iron-oxene species.

  1. Experimental kinetic study of oxidation of uranium monocarbide powders under controlled oxygen partial pressures below 230 °C

    NASA Astrophysics Data System (ADS)

    Berthinier, C.; Rado, C.; Dugne, O.; Cabie, M.; Chatillon, C.; Boichot, R.; Blanquet, E.

    2013-01-01

    Uranium monocarbide (UC) powders are known to be easily oxidised by gas mixtures containing oxygen. In this study, the oxidation of UC micron powders was followed by isothermal thermogravimetry at temperatures ranging from 100 °C to 230 °C in two different gas mixtures: synthetic air and 97%N2 + 3%O2. X-ray diffraction tests conducted on powders after their oxidation showed that small crystallites of UO2 oxide are formed. Furthermore, an analysis of mass gain showed that the carbon initially linked with the uranium is not oxidised but retained in oxide layers. Additionally, this kinetic study revealed that the rate-limiting step mechanism governing the oxidation of UC powders is a diffusive process that follows the Arrhenius law regarding temperature. Finally, it was discovered that cracks occur in grains once a given fractional conversion has been reached, inducing a major increase in the volume of grains.

  2. Thermodynamics and Kinetics for the Free Radical Oxygen Protein Oxidation Pathway in a Model for β-Structured Peptides.

    PubMed

    Green, Mandy C; Dubnicka, Laura J; Davis, Alex C; Rypkema, Heather A; Francisco, Joseph S; Slipchenko, Lyudmila V

    2016-04-28

    Oxidative stress plays a role in many biological phenomena, but involved mechanisms and individual reactions are not well understood. Correlated electronic structure calculations with the MP2, MP4, and CCSD(T) methods detail thermodynamic and kinetic information for the free radical oxygen protein oxidation pathway studied in a trialanine model system. The pathway includes aerobic, anaerobic and termination reactions. The course of the oxidation process depends on local conditions and availability of specific reactive oxygen species (ROS). A chemical mechanism is proposed for how oxidative stress promotes β-structure formation in the amyloid diseases. The work can be used to aid experimentalists as they explore individual reactions and mechanisms involving oxygen free radicals and oxidative stress in β-structured proteins.

  3. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    SciTech Connect

    O'Day, Peggy A.; Asta, Maria P.; Kanematsu, Masakazu; Beller, Harry; Zhou, Peng; Steefel, Carl

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactive transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.

  4. Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus.

    PubMed

    Read-Daily, B L; Sabba, F; Pavissich, J P; Nerenberg, R

    2016-12-01

    Nitrous oxide (N2O) is a powerful greenhouse gas emitted from wastewater treatment, as well as natural systems, as a result of biological nitrification and denitrification. While denitrifying bacteria can be a significant source of N2O, they can also reduce N2O to N2. More information on the kinetics of N2O formation and reduction by denitrifying bacteria is needed to predict and quantify their impact on N2O emissions. In this study, kinetic parameters were determined for Paracoccus pantotrophus, a common denitrifying bacterium. Parameters included the maximum specific reduction rates, [Formula: see text], growth rates, [Formula: see text], and yields, Y, for reduction of NO3(-) (nitrate) to nitrite (NO2(-)), NO2(-) to N2O, and N2O to N2, with acetate as the electron donor. The [Formula: see text] values were 2.9 gN gCOD(-1) d(-1) for NO3(-) to NO2(-), 1.4 gN gCOD(-1) d(-1) for NO2(-) to N2O, and 5.3 gN gCOD(-1) d(-1) for N2O to N2. The [Formula: see text] values were 2.7, 0.93, and 1.5 d(-1), respectively. When N2O and NO3(-) were added concurrently, the apparent (extant) kinetics, [Formula: see text], assuming reduction to N2, were 6.3 gCOD gCOD(-1) d(-1), compared to 5.4 gCOD gCOD(-1) d(-1) for NO3(-) as the sole added acceptor. The [Formula: see text] was 1.6 d(-1), compared to 2.5 d(-1) for NO3(-) alone. These results suggest that NO3(-) and N2O were reduced concurrently. Based on this research, denitrifying bacteria like P. pantotrophus may serve as a significant sink for N2O. With careful design and operation, treatment plants can use denitrifying bacteria to minimize N2O emissions.

  5. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms.

    PubMed

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  6. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    PubMed Central

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  7. Kinetics and Mechanisms of Thiol–Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways

    PubMed Central

    2013-01-01

    Abstract Significance: Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol–disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. Critical Issues: This review is focused on the kinetics and mechanisms of thiol–disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Recent Advances and Future Directions: Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery. Antioxid. Redox Signal. 18, 1623–1641. PMID:23075118

  8. Seasonal variability of eddy kinetic energy in the North Atlantic subtropical gyre: A high-resolution ocean model analysis

    NASA Astrophysics Data System (ADS)

    Rieck, Jan Klaus; Böning, Claus W.; Greatbatch, Richard J.; Scheinert, Markus

    2016-04-01

    A global ocean model with 1/12° horizontal resolution is used to assess the seasonal cycle of surface eddy kinetic energy (EKE) in the North Atlantic. The model reproduces the salient features of the observed mean surface EKE, including amplitude and phase of its seasonal cycle in most parts of the basin. In the interior North Atlantic subtropical gyre, EKE peaks in summer down to a depth of ˜200 m, below which the seasonal cycle is weak. Investigation of the possible driving mechanisms reveals the seasonal changes in the thermal interactions with the atmosphere to be the most likely cause of the summer maximum of EKE. The development of the seasonal thermocline in spring and summer is accompanied by stronger mesoscale variations in the horizontal temperature gradients near the surface which corresponds, by thermal wind balance, to an intensification of mesoscale velocity anomalies toward the surface. An extension of the analysis leads to similar results in the South Atlantic, North Pacific and South Pacific subtropical gyres.

  9. Mechanistic basis for high reactivity of (salen)Co-OTs in the hydrolytic kinetic resolution of terminal epoxides.

    PubMed

    Nielsen, Lars P C; Zuend, Stephan J; Ford, David D; Jacobsen, Eric N

    2012-03-02

    The (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides is a bimetallic process with a rate controlled by partitioning between a nucleophilic (salen)Co-OH catalyst and a Lewis acidic (salen)Co-X catalyst. The commonly used (salen)Co-OAc and (salen)Co-Cl precatalysts undergo complete and irreversible counterion addition to epoxide during the course of the epoxide hydrolysis reaction, resulting in quantitative formation of weakly Lewis acidic (salen)Co-OH and severely diminished reaction rates in the late stages of HKR reactions. In contrast, (salen)Co-OTs maintains high reactivity over the entire course of HKR reactions. We describe here an investigation of catalyst partitioning with different (salen)Co-X precatalysts and demonstrate that counterion addition to epoxide is reversible in the case of the (salen)Co-OTs. This reversible counterion addition results in stable partitioning between nucleophilic and Lewis acidic catalyst species, allowing highly efficient catalysis throughout the course of the HKR reaction.

  10. Mechanistic Basis for High Stereoselectivity and Broad Substrate Scope in the (salen)Co(III)-Catalyzed Hydrolytic Kinetic Resolution

    PubMed Central

    Ford, David D.; Nielsen, Lars P. C.; Zuend, Stephan J.; Jacobsen, Eric N.

    2013-01-01

    In the (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides, the rate- and stereoselectivity-determining epoxide ring-opening step occurs by a cooperative bimetallic mechanism with one Co(III) complex acting as a Lewis acid and another serving to deliver the hydroxide nucleophile. In this paper, we analyze the basis for the extraordinarily high stereoselectivity and broad substrate scope observed in the HKR. We demonstrate that the stereochemistry of each of the two (salen)Co(III) complexes in the rate-determining transition structure is important for productive catalysis: a measurable rate of hydrolysis occurs only if the absolute stereochemistry of each of these (salen)Co(III) complexes is the same. Experimental and computational studies provide strong evidence that stereochemical communication in the HKR is mediated by the stepped conformation of the salen ligand, and not the shape of the chiral diamine backbone of the ligand. A detailed computational analysis reveals that the epoxide binds the Lewis acidic Co(III) complex in a well-defined geometry imposed by stereoelectronic, rather than steric effects. This insight serves as the basis of a complete stereochemical and transition structure model that sheds light on the reasons for the broad substrate generality of the HKR. PMID:24041239

  11. Mechanistic basis for high stereoselectivity and broad substrate scope in the (salen)Co(III)-catalyzed hydrolytic kinetic resolution.

    PubMed

    Ford, David D; Nielsen, Lars P C; Zuend, Stephan J; Musgrave, Charles B; Jacobsen, Eric N

    2013-10-16

    In the (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides, the rate- and stereoselectivity-determining epoxide ring-opening step occurs by a cooperative bimetallic mechanism with one Co(III) complex acting as a Lewis acid and another serving to deliver the hydroxide nucleophile. In this paper, we analyze the basis for the extraordinarily high stereoselectivity and broad substrate scope observed in the HKR. We demonstrate that the stereochemistry of each of the two (salen)Co(III) complexes in the rate-determining transition structure is important for productive catalysis: a measurable rate of hydrolysis occurs only if the absolute stereochemistry of each of these (salen)Co(III) complexes is the same. Experimental and computational studies provide strong evidence that stereochemical communication in the HKR is mediated by the stepped conformation of the salen ligand, and not the shape of the chiral diamine backbone of the ligand. A detailed computational analysis reveals that the epoxide binds the Lewis acidic Co(III) complex in a well-defined geometry imposed by stereoelectronic rather than steric effects. This insight serves as the basis of a complete stereochemical and transition structure model that sheds light on the reasons for the broad substrate generality of the HKR.

  12. Poly(styrene)-supported co-salen complexes as efficient recyclable catalysts for the hydrolytic kinetic resolution of epichlorohydrin.

    PubMed

    Zheng, Xiaolai; Jones, Christopher W; Weck, Marcus

    2005-12-23

    Here we describe an unprecedented synthetic approach to poly(styrene)-supported chiral salen ligands by the free radical polymerization of an unsymmetrical styryl-substituted salen monomer (H2salen = bis(salicylidene)ethylenediamine). The new method allows for the attachment of salen moieties to the polymer main chain in a flexible, pendant fashion, avoiding grafting reactions that often introduce ill-defined species on the polymers. Moreover, the loading of the salen is controlled by the copolymerization of the styryl-substituted salen monomer with styrene in different ratios. The polymeric salen ligands are metallated with cobalt(II) acetate to afford the corresponding supported Co-salen complexes, which are used in the hydrolytic kinetic resolution of racemic epichlorohydrin, exhibiting high reactivity and enantioselectivity. Remarkably, the copolymer-supported Co-salen complexes showed a better catalytic performance (>99 % ee, 54 % conversion, one hour) in comparison to the homopolymeric analogues and the small molecule Co-salen complex. The soluble poly(styrene)-supported catalysts were recovered by precipitation after the catalytic reactions and were recycled three times to afford almost identical enantiomeric excesses as the first run, with slightly reduced reaction rates.

  13. Mechanistic Basis for High Reactivity of (salen)Co–OTs in the Hydrolytic Kinetic Resolution of Terminal Epoxides

    PubMed Central

    Nielsen, Lars P. C.; Zuend, Stephan J.; Ford, David D.; Jacobsen, Eric N.

    2012-01-01

    The (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides is a bimetallic process with a rate controlled by partitioning between a nucleophilic (salen)Co–OH catalyst and a Lewis acidic (salen)Co–X catalyst. The commonly used (salen)Co–OAc and (salen)Co–Cl precatalysts undergo complete and irreversible counterion addition to epoxide during the course of the epoxide hydrolysis reaction, resulting in quantitative formation of weakly Lewis acidic (salen)Co–OH, and severely diminished reaction rates in the late stages of HKR reactions. In contrast, (salen)Co–OTs maintains high reactivity over the entire course of HKR reactions. We describe here an investigation of catalyst partitioning with different (salen)Co–X precatalysts, and demonstrate that counterion addition to epoxide is reversible in the case of the (salen)Co–OTs. This reversible counterion addition results in stable partitioning between nucleophilic and Lewis acidic catalyst species, allowing highly efficient catalysis throughout the course of the HKR reaction. PMID:22292515

  14. Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry

    SciTech Connect

    Fooshee, David R.; Aiona, Paige K.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey; Baldi, Pierre

    2015-10-22

    Squalene is a major component of skin and plant surface lipids, and is known to be present at high concentrations in indoor dust. Its high reactivity toward ozone makes it an important ozone sink and a natural protectant against atmospheric oxidizing agents. While the volatile products of squalene ozonolysis are known, the condensed-phase products have not been characterized. We present an analysis of condensed-phase products resulting from an extensive oxidation of squalene by ozone probed by electrospray ionization (ESI) high-resolution mass spectrometry (HR-MS). A complex distribution of nearly 1,300 peaks assignable to molecular formulas is observed in direct infusion positive ion mode ESI mass spectra. The distribution of peaks in the mass spectra suggests that there are extensive cross-coupling reactions between hydroxy-carbonyl products of squalene ozonolysis. To get additional insights into the mechanism, we apply a Computational Brewing Application (COBRA) to simulate the oxidation of squalene in the presence of ozone, and compare predicted results with those observed by the HR-MS experiments. The system predicts over one billion molecular structures between 0-1450 Da, which correspond to about 27,000 distinct elemental formulas. Over 83% of the squalene oxidation products inferred from the mass spectrometry data are matched by the simulation. Simulation indicates a prevalence of peroxy groups, with hydroxyl and ether groups being the second-most important O-containing functional groups formed during squalene oxidation. These highly oxidized products of squalene ozonolysis may accumulate on indoor dust and surfaces, and contribute to their redox capacity.

  15. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.

    PubMed

    Yoo, Byung-Kuk; Kruglik, Sergei G; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-04-05

    To study the ultrafast movement of the heme iron induced by nitric oxide (NO) binding to hemoglobin (Hb) and myoglobin (Mb), we probed the picosecond spectral evolution of absorption band III (∼760 nm) and vibrational modes (iron-histidine stretching, ν(4) and ν(7) in-plane modes) in time-resolved resonance Raman spectra. The time constants of band III intensity kinetics induced by NO rebinding (25 ps for hemoglobin and 40 ps for myoglobin) are larger than in Soret bands and Q-bands. Band III intensity kinetics is retarded with respect to NO rebinding to Hb and to Mb. Similarly, the ν((Fe-His)) stretching intensity kinetics are retarded with respect to the ν(4) and ν(7) heme modes and to Soret absorption. In contrast, band III spectral shift kinetics do not coincide with band III intensity kinetics but follows Soret kinetics. We concluded that, namely, the band III intensity depends on the heme iron out-of-plane position, as theoretically predicted ( Stavrov , S. S. Biopolymers 2004 , 74 , 37 - 40 ).

  16. An analysis of the kinetics of oxidation of ascorbate at poly(aniline)-poly(styrene sulfonate) modified microelectrodes.

    PubMed

    Bonastre, A M; Sosna, M; Bartlett, P N

    2011-03-28

    A detailed kinetic study is provided for the oxidation of ascorbate at poly(aniline)-poly(styrene sulfonate) coated microelectrodes. Flat films with a low degree of polymer spillover and a thickness much lower than the microelectrode radius were produced by controlled potentiodynamic electrodeposition. The currents for ascorbate oxidation are found to be independent of the polymer thickness, indicating that the reaction occurs at the outer surface of the polymer film. At low ascorbate concentrations, below around 40 mM, the currents are found to be mass transport limited. At higher ascorbate concentrations the currents became kinetically limited. The experimental data for measurements at a range of potentials are fitted to a consistent kinetic model and the results summarized in a case diagram. The results obtained for the poly(aniline)-(polystyrene sulfonate) coated microelectrode are compared to those for a poly(aniline)-poly(vinyl sulfonate) coated microelectrode and to the results of an earlier study of the reaction at poly(aniline)-poly(vinyl sulfonate) coated rotating disc electrodes. For poly(aniline)-poly(styrene sulfonate) the oxidation of ascorbate is found to proceed by one electron reaction whereas for poly(aniline)-poly(vinyl sulfonate) the reaction is found to be a two electron oxidation.

  17. Kinetics of Cyclic Oxidation and Cracking and Finite Element Analysis of MA956 and Sapphire/MA956 Composite System

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Arya, Vinod K.; Halford, Gary R.; Barrett, Charles A.

    1996-01-01

    Sapphire fiber-reinforced MA956 composites hold promise for significant weight savings and increased high-temperature structural capability, as compared to unreinforced MA956. As part of an overall assessment of the high-temperature characteristics of this material system, cyclic oxidation behavior was studied at 1093 C and 1204 C. Initially, both sets of coupons exhibited parabolic oxidation kinetics. Later, monolithic MA956 exhibited spallation and a linear weight loss, whereas the composite showed a linear weight gain without spallation. Weight loss of the monolithic MA956 resulted from the linking of a multiplicity of randomly oriented and closely spaced surface cracks that facilitated ready spallation. By contrast, cracking of the composite's oxide layer was nonintersecting and aligned nominally parallel with the orientation of the subsurface reinforcing fibers. Oxidative lifetime of monolithic MA956 was projected from the observed oxidation kinetics. Linear elastic, finite element continuum, and micromechanics analyses were performed on coupons of the monolithic and composite materials. Results of the analyses qualitatively agreed well with the observed oxide cracking and spallation behavior of both the MA956 and the Sapphire/MA956 composite coupons.

  18. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    PubMed

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  19. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    PubMed

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  20. Modeling aerosol surface chemistry and gas-particle interaction kinetics with K2-SURF: PAH oxidation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R.; Pöschl, U.

    2009-04-01

    Atmospheric aerosols are ubiquitous in the atmosphere. They have the ability to impact cloud properties, radiative balance and provide surfaces for heterogeneous reactions. The uptake of gaseous species on aerosol surfaces impacts both the aerosol particles and the atmospheric budget of trace gases. These subsequent changes to the aerosol can in turn impact the aerosol chemical and physical properties. However, this uptake, as well as the impact on the aerosol, is not fully understood. This uncertainty is due not only to limited measurement data, but also a dearth of comprehensive and applicable modeling formalizations used for the analysis, interpretation and description of these heterogeneous processes. Without a common model framework, comparing and extrapolating experimental data is difficult. In this study, a novel kinetic surface model (K2-SURF) [Ammann & Pöschl, 2007; Pöschl et al., 2007] was used to describe the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs). Integrated into this consistent and universally applicable kinetic and thermodynamic process model are the concepts, terminologies and mathematical formalizations essential to the description of atmospherically relevant physicochemical processes involving organic and mixed organic-inorganic aerosols. Within this process model framework, a detailed master mechanism, simplified mechanism and parameterizations of atmospheric aerosol chemistry are being developed and integrated in analogy to existing mechanisms and parameterizations of atmospheric gas-phase chemistry. One of the key aspects to this model is the defining of a clear distinction between various layers of the particle and surrounding gas phase. The processes occurring at each layer can be fully described using known fluxes and kinetic parameters. Using this system there is a clear separation of gas phase, gas-surface and surface bulk transport and reactions. The partitioning of compounds can be calculated using the flux

  1. Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments.

    PubMed

    Pavagadhi, Shruti; Tang, Ai Ling Lena; Sathishkumar, Muthuswamy; Loh, Kian Ping; Balasubramanian, Rajasekhar

    2013-09-01

    Graphene oxide (GO) was employed in the present study for removal of two commonly occurring algal toxins, microcystin-LR (MC-LR) and microcystin-RR (MC-RR), from water. The adsorption performance of GO was compared to that of commercially available activated carbon. Further, adsorption experiments were conducted in the presence of other environmental pollutants to understand the matrix effects of contaminated water on the selective adsorption of MC-LR and MC-RR onto GO. The environmental pollutants addressed in this study included different anions (nitrate NO3-, nitrite NO2-, sulphate SO4(2-), chloride (Cl(-)), phosphate PO4(3-) and fluoride (F(-))) and cations (sodium (Na(+)), potassium (K(+)), magnesium (Mg(2+)) and calcium (Ca(2+))). GO showed very a high adsorption capacity of 1700 μg/g for removal of MC-LR and 1878 μg/g for MC-RR while the maximum adsorption capacity obtained with the commercial activated carbon was 1481.7 μg/g and 1034.1 μg/g for MC-LR and MC-RR, respectively. The sorption kinetic experiments revealed that more than 90% removal of both MC-LR/RR was achieved within 5 min for all the doses studied (500, 700 and 900 μg/L). GO could be reused as an adsorbent following ten cycles of adsorption/desorption with no significant loss in its adsorption capacity.

  2. UV spectra and OH-oxidation kinetics of gaseous phase morpholinic compounds

    NASA Astrophysics Data System (ADS)

    Al Rashidi, M.; El Masri, A.; Roth, E.; Chakir, A.

    2014-05-01

    This paper presents an experimental study of the UV spectra as well as the kinetics of gaseous phase OH-oxidation of morpholine, N-formylmorpholine (NFM) and N-acetlymorpholine (NAM). The spectra recorded using a UV spectrometer in the spectral range 200-280 nm show that the analytes mainly absorb at wavelengths less than 280 nm. This indicates that their photolysis potential in the troposphere is insignificant. Meanwhile, the OH-reactivity of these analytes was studied using a triple-jacket 2 m long reactor equipped with a multi-reflection system and coupled to an FTIR spectrometer. The experiments were carried out at 295 and 313 K for the amine and amides, respectively. The study was conducted in the relative mode using isoprene and benzaldehyde as reference compounds. The rate constants obtained are 14.0 ± 1.9, 4.0 ± 1.1 and 3.8 ± 1.0 (in units of 10-11 cm3 molecule-1 s-1) for morpholine, NFM and NAM respectively. These results are discussed in terms of reactivity and compared to those obtained for other oxy-nitrogenated species. In addition, the determined rate constants are used to estimate effective atmospheric lifetimes of the investigated morpholinic compounds with respect to reaction with OH radicals.

  3. Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism.

    PubMed Central

    Dweik, R A; Laskowski, D; Abu-Soud, H M; Kaneko, F; Hutte, R; Stuehr, D J; Erzurum, S C

    1998-01-01

    In this study, we show that oxygen regulates nitric oxide (NO) levels through effects on NO synthase (NOS) enzyme kinetics. Initially, NO synthesis in the static lung was measured in bronchiolar gases during an expiratory breath-hold in normal individuals. NO accumulated exponentially to a plateau, indicating balance between NO production and consumption in the lung. Detection of NO2-, NO3-, and S-nitrosothiols in lung epithelial lining fluids confirmed NO consumption by chemical reactions in the lung. Interestingly, alveolar gas NO (estimated from bronchiolar gases at end-expiration) was near zero, suggesting NO in exhaled gases is not derived from circulatory/systemic sources. Dynamic NO levels during tidal breathing in different airway regions (mouth, trachea, bronchus, and bronchiole) were similar. However, in individuals breathing varying levels of inspired oxygen, dynamic NO levels were notably dependent on O2 concentration in the hypoxic range (KmO2 190 microM). Purified NOS type II enzyme activity in vitro was similarly dependent on molecular oxygen levels (KmO2 135 microM), revealing a means by which oxygen concentration affects NO levels in vivo. Based upon these results, we propose that NOS II is a mediator of the vascular response to oxygen in the lung, because its KmO2 allows generation of NO in proportion to the inspired oxygen concentration throughout the physiologic range. PMID:9449700

  4. Kinetic characterization of the oxidation of carbidopa and benserazide by tyrosinase and peroxidase.

    PubMed

    Munoz-Munoz, Joseph Louis; Garcia-Molina, Francis; Garcia-Molina, Mary; Tudela, Joseph; García-Cánovas, Francis; Rodriguez-Lopez, Joseph Neptune

    2009-06-01

    Carbidopa and benserazide have been described as inhibitors of dopa decarboxylase and both have been used in the treatment of Parkinson's disease. Because of their chemical structure as polyphenols, these compounds can behave as substrates of tyrosinase and peroxidase. We demonstrate that these enzymes oxidize both substrates. Since o-quinones are unstable, a chronometric method for enzymatic initial rate determinations was used based on measurements of the lag period in the presence of micromolar concentrations of ascorbic acid to kinetically characterize these substrates. In the case of tyrosinase, the values of the Michaelis constant for both substrates were greater than those described for dopa, although the catalytic constants were lower, probably due to the greater size of the substitute group in carbon 1. As regards peroxidase, the saturation of the enzyme by both substrates is possible, however this effect does not occur with the isomers of dopa. The distance of the charges from the benzene ring may enable the ring to approach the iron of the active site and, therefore, act.

  5. Crystallization Kinetics of a Solid Oxide Fuel Cell Seal Glass by Differential Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Gamble, Eleanor A.

    2005-01-01

    Crystallization kinetics of a barium calcium aluminosilicate glass (BCAS), a sealant material for planar solid oxide fuel cells, have been investigated by differential thermal analysis (DTA). From variation of DTA peak maximum temperature with heating rate, the activation energy for glass crystallization was calculated to be 259 kJ/mol. Development of crystalline phases on thermal treatments of the glass at various temperatures has been followed by powder x-ray diffraction. Microstructure and chemical composition of the crystalline phases were investigated by scanning electron microscopy and energy dispersive spectroscopic (EDS) analysis. BaSiO3 and hexacelsian (BaAl2Si2O8) were the primary crystalline phases whereas monoclinic celsian (BaAl2Si2O8) and (Ba(x), Ca(y))SiO4 were also detected as minor phases. Needle-shaped BaSiO3 crystals are formed first, followed by the formation of other phases at longer times of heat treatments. The glass does not fully crystallize even after long term heat treatments at 750 to 900 C.

  6. A multiple shock tube and chemical kinetic modeling study of diethyl ether pyrolysis and oxidation.

    PubMed

    Yasunaga, K; Gillespie, F; Simmie, J M; Curran, H J; Kuraguchi, Y; Hoshikawa, H; Yamane, M; Hidaka, Y

    2010-09-02

    The pyrolysis and oxidation of diethyl ether (DEE) has been studied at pressures from 1 to 4 atm and temperatures of 900-1900 K behind reflected shock waves. A variety of spectroscopic diagnostics have been used, including time-resolved infrared absorption at 3.39 mum and time-resolved ultraviolet emission at 431 nm and absorption at 306.7 nm. In addition, a single-pulse shock tube was used to measure reactant, intermediate, and product species profiles by GC samplings at different reaction times varying from 1.2 to 1.8 ms. A detailed chemical kinetic model comprising 751 reactions involving 148 species was assembled and tested against the experiments with generally good agreement. In the early stages of reaction the unimolecular decomposition and hydrogen atom abstraction of DEE and the decomposition of the ethoxy radical have the largest influence. In separate experiments at 1.9 atm and 1340 K, it is shown that DEE inhibits the reactivity of an equimolar mixture of hydrogen and oxygen (1% of each).

  7. In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis.

    PubMed Central

    Condorelli, P; George, S C

    2001-01-01

    Free nitric oxide (NO) activates soluble guanylate cyclase (sGC), an enzyme, within both pulmonary and vascular smooth muscle. sGC catalyzes the cyclization of guanosine 5'-triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP). Binding rates of NO to the ferrous heme(s) of sGC have been measured in vitro. However, a missing link in our understanding of the control mechanism of sGC by NO is a comprehensive in vivo kinetic analysis. Available literature data suggests that NO dissociation from the heme center of sGC is accelerated by its interaction with one or more cofactors in vivo. We present a working model for sGC activation and NO consumption in vivo. Our model predicts that NO influences the cGMP formation rate over a concentration range of approximately 5-100 nM (apparent Michaelis constant approximately 23 nM), with Hill coefficients between 1.1 and 1.5. The apparent reaction order for NO consumption by sGC is dependent on NO concentration, and varies between 0 and 1.5. Finally, the activation of sGC (half-life approximately 1-2 s) is much more rapid than deactivation (approximately 50 s). We conclude that control of sGC in vivo is most likely ultra-sensitive, and that activation in vivo occurs at lower NO concentrations than previously reported. PMID:11325714

  8. Supercritical water oxidation of quinazoline: Reaction kinetics and modeling.

    PubMed

    Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan; Xu, Donghai

    2017-03-01

    This paper presents a first quantitative kinetic model for supercritical water oxidation (SCWO) of quinazoline that describes the formation and interconversion of intermediates and final products at 673-873 K. The set of 11 reaction pathways for phenol, pyrimidine, naphthalene, NH3, etc, involved in the simplified reaction network proved sufficient for fitting the experimental results satisfactorily. We validated the model prediction ability on CO2 yields at initial quinazoline loading not used in the parameter estimation. Reaction rate analysis and sensitivity analysis indicate that nearly all reactions reach their thermodynamic equilibrium within 300 s. The pyrimidine yielding from quinazoline is the dominant ring-opening pathway and provides a significant contribution to CO2 formation. Low sensitivity of NH3 decomposition rate to concentration confirms its refractory nature in SCWO. Nitrogen content in liquid products decreases whereas that in gaseous phase increases as reaction time prolonged. The nitrogen predicted by the model in gaseous phase combined with the experimental nitrogen in liquid products gives an accurate nitrogen balance of conversion process.

  9. Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults.

    PubMed

    Lanzi, Stefano; Codecasa, Franco; Cornacchia, Mauro; Maestrini, Sabrina; Salvadori, Alberto; Brunani, Amelia; Malatesta, Davide

    2014-01-01

    This study aimed to compare fat oxidation, hormonal and plasma metabolite kinetics during exercise in lean (L) and obese (O) men. Sixteen L and 16 O men [Body Mass Index (BMI): 22.9 ± 0.3 and 39.0 ± 1.4 kg · m(-2)] performed a submaximal incremental test (Incr) on a cycle-ergometer. Fat oxidation rates (FORs) were determined using indirect calorimetry. A sinusoidal model, including 3 independent variables (dilatation, symmetry, translation), was used to describe fat oxidation kinetics and determine the intensity (Fat(max)) eliciting maximal fat oxidation. Blood samples were drawn for the hormonal and plasma metabolite determination at each step of Incr. FORs (mg · FFM(-1) · min(-1)) were significantly higher from 20 to 30% of peak oxygen uptake (VO2peak) in O than in L and from 65 to 85% VO2peak in L than in O (p ≤ 0.05). FORs were similar in O and in L from 35 to 60% VO2peak. Fat max was 17% significantly lower in O than in L (p<0.01). Fat oxidation kinetics were characterized by similar translation, significantly lower dilatation and left-shift symmetry in O compared with L (p<0.05). During whole exercise, a blunted lipolysis was found in O [lower glycerol/fat mass (FM) in O than in L (p ≤ 0.001)], likely associated with higher insulin concentrations in O than in L (p<0.01). Non-esterified fatty acids (NEFA) were significantly higher in O compared with L (p<0.05). Despite the blunted lipolysis, O presented higher NEFA availability, likely due to larger amounts of FM. Therefore, a lower Fat(max), a left-shifted and less dilated curve and a lower reliance on fat oxidation at high exercise intensities suggest that the difference in the fat oxidation kinetics is likely linked to impaired muscular capacity to oxidize NEFA in O. These results may have important implications for the appropriate exercise intensity prescription in training programs designed to optimize fat oxidation in O.

  10. Hyaluronidase reaction kinetics evaluated by capillary electrophoresis with UV and high-resolution mass spectrometry (HRMS) detection.

    PubMed

    Fayad, Syntia; Nehmé, Reine; Langmajerová, Monika; Ayela, Benjamin; Colas, Cyril; Maunit, Benoit; Jacquinet, Jean-Claude; Vibert, Aude; Lopin-Bon, Chrystel; Zdeněk, Glatz; Morin, Philippe

    2017-01-25

    The biology of hyaluronidase activity on age related turnover of the hyaluronic acid (HA) in skin dermis and epidermis has not been established. Elucidation of this phenomenon enables discovery of novel compounds for skin health. As a simple and green technique, capillary electrophoresis (CE) was used for the first time for the determination of the kinetic constants (Km, Vmax and IC50) of the enzymatic degradation of HA. Reaction products were identified using CE/high-resolution mass spectrometry (HRMS) after appropriate optimization. Best results in terms of signal sensitivity were obtained using 10 mM ammonium acetate (pH 9.0) BGE, a sheath liquid composed of methanol-water (80:20, v/v) with 0.02% (v/v) formic acid at 10 μL min(-1) and an ESI voltage at -4 kV. Km and Vmax were determined (n = 3) using CE/UV at 200 nm as 0.24 ± 0.02 mg mL(-1) and 150.4 ± 0.1 nM s(-1), respectively. They were also successfully obtained by CE/HRMS (n = 3) with Km of 0.49 ± 0.02 mg mL(-1) and Vmax of 155.7 ± 0.2 nM s(-1). IC50 of a standard natural inhibitor, epigallocatechin gallate, was also determined by CE-UV/HRMS. Kinetic constant values obtained by CE compared well with literature which validated the developed CE-based assay. In addition, the activity of homemade tetrasaccharides of biotinylated chondroitin sulfate CS-A or CS-C (4- or 6- sulfated in a homogeneous or heterogeneous way) on the hydrolysis reaction of hyaluronidase was evaluated. Hyaluronidase was mostly dose-dependently inhibited by CS-A tetrasaccharides sulfated in a homogeneous way. Two trisaccharides from truncated linkage region of proteoglycans were also tested as inhibitors or activators. CE-based assay showed that even a small modification of one hydroxyl group changes the influence on hyaluronidase activity. CE-based assay can be used for the screening of natural and synthetic inhibitors of hyaluronidase activity for cosmetic and therapeutic applications.

  11. Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II.

    PubMed

    Burner, U; Jantschko, W; Obinger, C

    1999-01-29

    Myeloperoxidase (MPO) is the most abundant protein in neutrophils and plays a central role in microbial killing and inflammatory tissue damage. Because most of the non-steroidal anti-inflammatory drugs and other drugs contain a thiol group, it is necessary to understand how these substrates are oxidized by MPO. We have performed transient kinetic measurements to study the oxidation of 14 aliphatic and aromatic mono- and dithiols by the MPO intermediates, Compound I (k3) and Compound II (k4), using sequential mixing stopped-flow techniques. The one-electron reduction of Compound I by aromatic thiols (e.g. methimidazole, 2-mercaptopurine and 6-mercaptopurine) varied by less than a factor of seven (between 1.39 +/- 0.12 x 10(5) M(-1) s(-1) and 9.16 +/- 1.63 x 10(5) M(-1) s(-1)), whereas reduction by aliphatic thiols was demonstrated to depend on their overall net charge and hydrophobic character and not on the percentage of thiol deprotonation or redox potential. Cysteamine, cysteine methyl ester, cysteine ethyl ester and alpha-lipoic acid showed k3 values comparable to aromatic thiols, whereas a free carboxy group (e.g. cysteine, N-acetylcysteine, glutathione) diminished k3 dramatically. The one-electron reduction of Compound II was far more constrained by the nature of the substrate. Reduction by methimidazole, 2-mercaptopurine and 6-mercaptopurine showed second-order rate constants (k4) of 1.33 +/- 0.08 x 10(5) M(-1) s(-1), 5.25 +/- 0.07 x 10(5) M(-1) s(-1) and 3.03 +/- 0.07 x 10(3) M(-1) s(-1). Even at high concentrations cysteine, penicillamine and glutathione could not reduce Compound II, whereas cysteamine (4.27 +/- 0.05 x 10(3) M(-1) s(-1)), cysteine methyl ester (8.14 +/- 0.08 x 10(3) M(-1) s(-1)), cysteine ethyl ester (3.76 +/- 0.17 x 10(3) M(-1) s(-1)) and alpha-lipoic acid (4.78 +/- 0.07 x 10(4) M(-1) s(-1)) were demonstrated to reduce Compound II and thus could be expected to be oxidized by MPO without co-substrates.

  12. Crystallization kinetics of amorphous tin-doped indium oxide thin films

    NASA Astrophysics Data System (ADS)

    Ow-Yang, Cleva Wan

    The crystallization kinetics of amorphous tin-doped indium oxide thin films grown by dc magnetron sputtering and electron beam evaporation was investigated using time-resolved laser reflectivity in conjunction with TEM analyses. The as-grown films were established to be amorphous using glancing angle x-ray and selected area electron diffraction. The samples were then annealed at temperatures ranging from (˜111-167sp°C) some in a range of environments (oxidizing (Nsb2), strongly oxidizing (air), and reducing (wet/dry forming gas). Gross-sectional TEM analysis reveals a columnar as-sputtered microstructure that is retained after annealing to complete transformation. In contrast a-ITO films grown by evaporation show a uniformly dense microstructure. Annealing evaporated films in air produced films containing a wide distribution in grain sizes, while annealing in the more reducing environments yielded polycrystalline films with a narrow grain size distribution centered at 15 nm. Time-resolved laser reflectivity was an advantageous tool for monitoring the progress of the crystallization transformation because the technique generates quantifiable data while allowing real-time, non-contact observation. Plotting the transformation rate as a function of annealing temperature demonstrated the amorphous-to-crystalline transformation to be a thermally activated process. The energy required to crystallize sputtered a-ITO films in flowing Nsb2 is much lower than that for evaporated alpha-ITO films also in flowing Nsb2. XRD spectra of the as-sputtered a-ITO reveals the presence of an indium metal phase, which is not observed in the as-evaporated a-ITO films. The activation energy is most likely dependent on the presence of In metal, which serves as a catalyst for lowering the energy barrier. This is confirmed by the reduction in energy needed to transform evaporated a-ITO film in a reducing environment. In this study, the pre- and post-anneal microstructures were examined to

  13. Thermal aging stability of infiltrated solid oxide fuel cell electrode microstructures: A three-dimensional kinetic Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Ni, Meng; Yan, Mufu; Chen, Fanglin

    2015-12-01

    Nanostructured electrodes are widely used for low temperature solid oxide fuel cells, due to their remarkably high activity. However, the industrial applications of the infiltrated electrodes are hindered by the durability issues, such as the microstructure stability against thermal aging. Few strategies are available to overcome this challenge due to the limited knowledge about the coarsening kinetics of the infiltrated electrodes and how the potentially important factors affect the stability. In this work, the generic thermal aging kinetics of the three-dimensional microstructures of the infiltrate electrodes is investigated by a kinetic Monte Carlo simulation model considering surface diffusion mechanism. Effects of temperature, infiltration loading, wettability, and electrode configuration are studied and the key geometric parameters are calculated such as the infiltrate particle size, the total and percolated quantities of three-phase boundary length and infiltrate surface area, and the tortuosity factor of infiltrate network. Through parametric study, several strategies to improve the thermal aging stability are proposed.

  14. The Role of Defects in the Local Reaction Kinetics of CO Oxidation on Low-Index Pd Surfaces.

    PubMed

    Vogel, D; Spiel, C; Schmid, M; Stöger-Pollach, M; Schlögl, R; Suchorski, Y; Rupprechter, G

    2013-06-13

    The role of artificially created defects and steps in the local reaction kinetics of CO oxidation on the individual domains of a polycrystalline Pd foil was studied by photoemission electron microscopy (PEEM), mass spectroscopy (MS), and scanning tunneling microscopy (STM). The defects and steps were created by STM-controlled Ar(+) sputtering and the novel PEEM-based approach allowed the simultaneous determination of local kinetic phase transitions on differently oriented μm-sized grains of a polycrystalline sample. The independent (single-crystal-like) reaction behavior of the individual Pd(hkl) domains in the 10(-5) mbar pressure range changes upon Ar(+) sputtering to a correlated reaction behavior, and the reaction fronts propagate unhindered across the grain boundaries. The defect-rich surface shows also a significantly higher CO tolerance as reflected by the shift of both the global (MS-measured) and the local (PEEM-measured) kinetic diagrams toward higher CO pressure.

  15. High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor

    2015-04-01

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.

  16. Characterisation of oxidation products of 1,1-dimethylhydrazine by high-resolution orbitrap mass spectrometry.

    PubMed

    Ul'yanovskii, N V; Kosyakov, D S; Pikovskoi, I I; Khabarov, Yu G

    2017-05-01

    1,1-Dimethylhydrazine is used as a fuel for carrier rockets in the majority of countries implementing space exploration programs. Being highly reactive, 1,1-dimethylhydrazine easily undergoes oxidative transformation with the formation of a number of toxic, mutagenic, and teratogenic compounds. The use of high-resolution mass spectrometry for the study of the reaction of 1,1-dimethylhydrazine oxidation with hydrogen peroxide in aqueous solution allowed us to find hundreds of nitrogen-containing products of the CHN and CHNO classes, formed via radical processes. The vast majority of the compounds have not been previously considered as possible products of the transformation of rocket fuel. We have shown that the oxidation of 1,1-dimethylhydrazine proceeds in two stages, with the formation of a great number of complex unstable intermediates that contain up to ten nitrogen atoms. These intermediates are subsequently converted into final reaction products with a concomitant decrease in the average molecular weight. The intermediates and final products of the oxidative transformation of 1,1-dimethylhydrazine were characterised on the basis of their elemental composition using van Krevelen diagrams and possible compounds corresponding to the most intense peaks in the mass spectra were proposed. The data obtained are indicative of the presence of the following classes of heterocyclic nitrogen-containing compounds among the oxidation products: imines, piperidines, pyrrolidines, dihydropyrazoles, dihydroimidazoles, triazoles, aminotriazines, and tetrazines. The results obtained open up possibilities for the targeted search and identification of new toxic products of the degradation of rocket fuel and, as a result, a more adequate assessment of the ecological consequences of space-rocket activity.

  17. Kinetic Monte Carlo Simulation of the oscillatory catalytic CO oxidation using a modified Ziff-Gulari-Barshad model

    NASA Astrophysics Data System (ADS)

    Sinha, Indrajit; Mukherjee, Ashim K.

    2014-03-01

    The oxidation of CO on Pt-group metal surfaces has attracted widespread attention since a long time due to its interesting oscillatory kinetics and spatiotemporal behavior. The use of STM in conjunction with other experimental data has confirmed the validity of the surface reconstruction (SR) model under low pressure and the more recent surface oxide (SO) model which is possible under sub-atmospheric pressure conditions [1]. In the SR model the surface is periodically reconstructed below a certain low critical CO-coverage and this reconstruction is lifted above a second, higher critical CO-coverage. Alternatively the SO model proposes periodic switching between a low-reactivity metallic surface and a high-reactivity oxide surface. Here we present an overview of our recent kinetic Monte Carlo (KMC) simulation studies on the oscillatory kinetics of surface catalyzed CO oxidation. Different modifications of the lattice gas Ziff-Gulari-Barshad (ZGB) model have been utilized or proposed for this purpose. First we present the effect of desorption on the ZGB reactive to poisoned irreversible phase transition in the SR model. Next we discuss our recent research on KMC simulation of the SO model. The ZGB framework is utilized to propose a new model incorporating not only the standard Langmuir-Hinshelwood (LH) mechanism, but also introducing the Mars-van Krevelen (MvK) mechanism for the surface oxide phase [5]. Phase diagrams, which are plots between long time averages of various oscillating quantities against the normalized CO pressure, show two or three transitions depending on the CO coverage critical threshold (CT) value beyond which all adsorbed oxygen atoms are converted to surface oxide.

  18. Effect of ionic micellar medium on kinetics and mechanism of oxidation of bovine serum albumin: A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Mukherjee, Tulsi

    2010-09-01

    Effect of protein-micelle interaction on bovine serum albumin (BSA) oxidation by trichloromethyl peroxyl radical (CCl 3O 2·) in anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethyl ammonium bromide (CTAB) micellar media has been studied using nanosecond pulse radiolysis technique. Viscosity measurement and light scattering studies have suggested that SDS and CTAB micelles produce BSA-micelle aggregates of different sizes and polydispersity. Oxidation kinetics and transients have been affected both by anionic SDS and cationic CTAB micelles but in a different manner. Tryptophanyl-CCl 3O 2· adduct radical to tyrosyl radical transformation in BSA has been observed in anionic SDS micelles but not in cationic CTAB micelles. Similar studies have also been done with tryptophan and tyrosine amino acids, which undergo oxidation in BSA. The study suggests that Coulombic and hydrophobic interactions between micelles and protein affect the structure of the protein to shield its functional amino acids, like tryptophan and tyrosine, to neutral oxidizing radical.

  19. Oxidation rate of nuclear-grade graphite IG-110 in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2014-03-01

    The oxidation rates of nuclear-grade graphite IG-110 in the kinetically-controlled temperature regime of graphite oxidation were predicted and compared in Very High Temperature Reactor air ingress accident scenarios. The oxidative mass loss of graphite was measured thermogravimetrically from 873 to 1873 K in 100% air (21 mol%). The activation energy was found to be 222.07 kJ/mol, and the order of reaction with respect to oxygen concentration is 0.76. The surfaces of the samples were characterized by Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy before and after oxidation. These results are compared with those available in the literature, and our recently reported results for NBG-18 nuclear-grade graphite using the same technique.

  20. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA)

    PubMed Central

    Fakour, Hoda; Lin, Tsair-Fuh

    2014-01-01

    Due to the importance of adsorption kinetics and redox transformation of arsenic (As) during the adsorption process, the present study elucidated natural organic matter (NOM) effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA) as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA), as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions. PMID:25325357

  1. Chemical kinetic modeling of the oxidation of large alkane fuels: n-octane and iso-octane

    SciTech Connect

    Axelsson, E.I.; Brezinsky, K.; Dryer, F.L.; Pitz, W.J.; Westbrook, C.K.

    1986-01-13

    The development of detailed chemical kinetic reaction mechanisms for oxidation of n-octane and iso-octane is described, with emphasis on the factors which are specific to many large hydrocarbon fuel molecules. Elements which are of particular importance are found to include site-specific abstraction of H atoms, radical isomerization of alkyl radicals by internal H atom abstraction, and rapid ..beta..-scission of the alkyl radicals. These features, combined with distinctions in the types of intermediate olefin species produced, are used to explain the significant differences in the rate of oxidation between n-octane and iso-octane. 24 refs., 3 figs., 1 tab.

  2. Complexation facilitated reduction of aromatic N-oxides by aqueous Fe(II)-tiron complex: reaction kinetics and mechanisms.

    PubMed

    Chen, Yiling; Zhang, Huichun

    2013-10-01

    Rapid reduction of carbadox (CDX), olaquindox and several other aromatic N-oxides were investigated in aqueous solution containing Fe(II) and tiron. Consistent with previous work, the 1:2 Fe(II)-tiron complex, FeL2(6-), is the dominant reactive species as its concentration linearly correlates with the observed rate constant kobs under various conditions. The N-oxides without any side chains were much less reactive, suggesting direct reduction of the N-oxides is slow. UV-vis spectra suggest FeL2(6-) likely forms 5- or 7-membered rings with CDX and olaquindox through the N and O atoms on the side chain. The formed inner-sphere complexes significantly facilitated electron transfer from FeL2(6-) to the N-oxides. Reduction products of the N-oxides were identified by HPLC/QToF-MS to be the deoxygenated analogs. QSAR analysis indicated neither the first electron transfer nor N-O bond cleavage is the rate-limiting step. Calculations of the atomic spin densities of the anionic N-oxides confirmed the extensive delocalization between the aromatic ring and the side chain, suggesting complex formation can significantly affect the reduction kinetics. Our results suggest the complexation facilitated N-oxide reduction by Fe(II)-tiron involves a free radical mechanism, and the subsequent deoxygenation might also benefit from the weak complexation of Fe(II) with the N-oxide O atom.

  3. S-oxygenation of thiocarbamides IV: Kinetics of oxidation of tetramethylthiourea by aqueous bromine and acidic bromate.

    PubMed

    Ajibola, Risikat O; Simoyi, Reuben H

    2011-04-07

    The kinetics and mechanism of oxidation of tetramethylthiourea (TTTU) by bromine and acidic bromate has been studied in aqueous media. The kinetics of reaction of bromate with TTTU was characterized by an induction period followed by formation of bromine. The reaction stoichiometry was determined to be 4BrO(3)(-) + 3(R)(2)C═S + 3H(2)O → 4Br(-) + 3(R)(2)C═O + 3SO(4)(2-) + 6H(+). For the reaction of TTTU with bromine, a 4:1 stoichiometric ratio of bromine to TTTU was obtained with 4Br(2) + (R)(2)C═S + 5H(2)O → 8Br(-) + SO(4)(2-) + (R)(2)C═O + 10H(+). The oxidation pathway went through the formation of tetramethythiourea sulfenic acid as evidenced by the electrospray ionization mass spectrum of the dynamic reaction solution. This S-oxide was then oxidized to produce tetramethylurea and sulfate as final products of reaction. There was no evidence for the formation of the sulfinic and sulfonic acids in the oxidation pathway. This implicates the sulfoxylate anion as a precursor to formation of sulfate. In aerobic conditions, this anion can unleash a series of genotoxic reactive oxygen species which can explain TTTU's observed toxicity. A bimolecular rate constant of 5.33 ± 0.32 M(-1) s(-1) for the direct reaction of TTTU with bromine was obtained.

  4. Studies of Nonequilibrium Vibrational Kinetics of Carbon Monoxide and Nitric Oxide in Optical Pumping Experiments.

    NASA Astrophysics Data System (ADS)

    Adamovich, Igor V.

    This dissertation presents the design, analysis, theoretical interpretation, and conduct of optical pumping experiments to study molecular energy transfer processes in carbon monoxide and nitric oxide. The vibrational modes of CO and NO are excited by resonance absorption of CO laser radiation and subsequent vibration-to-vibration (V -V) pumping in CO-Ar-He and NO-Ar mixtures in a cell. Ionization of CO molecules at high vibrational levels occurs in the laser beam region. The vibrational distribution function (VDF) of CO in the cell is measured by infrared emission spectroscopy. It is demonstrated that a definite correlation exists between the induced current and the high vibrational level populations. It is concluded that the ionization occurs in collisions of two vibrationally excited CO molecules. An ionization rate constant of k_{rm i} = (8 +/- 5) times 10^{-15} cm^3/s is inferred from the VDF measurements. The effect of vibration-to-electron (V-e) coupling is measured in the experiment for the first time. The NO fluorescence in the infrared and in the ultraviolet is analyzed. Quantitative analysis of the NO IR overtone spectrum, Deltav = 2, allows inference of the NO(X^2Pi ) VDF up to vibrational level v = 15. It is shown that the mechanism of vibrational excitation is anharmonic V-V pumping. In particular, the higher vibrational levels, v >= 8, are populated by near-resonant V-V exchange processes. It is suggested that the electronically excited NO molecules in A^2Sigma and B^2Pi states, which are observed, can be produced both by resonant vibration-to -electronic (V-E) energy transfer processes and in energy pooling reactions. Previous rate measurement experiments in NO are analyzed and discussed in light of the present data, and further state-resolved measurements are proposed. Kinetics of spatially nonhomogeneous, vibrationally excited gas flows is theoretically discussed. The corrections due to diffusion and the vibration-to-electronic (V-E) energy

  5. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.

    PubMed

    Xiang, Yingying; Fang, Jingyun; Shang, Chii

    2016-03-01

    The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed.

  6. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent.

    PubMed

    Burbano, Arturo A; Dionysiou, Dionysios D; Suidan, Makram T; Richardson, Teri L

    2005-01-01

    The fundamentals of the Fenton reagent-based degradation of low concentrations of methyl tert-butyl ether (MTBE) in batch reactors under initially anaerobic conditions are discussed in this work. The objective of the study was to quantitatively verify the feasibility of MTBE degradation with Fenton reagent under such conditions. The conclusions may be potentially helpful to further develop an effective in situ treatment of MTBE-contaminated groundwater. Initial MTBE concentrations ([MTBE](0)) of 11.4 and 22.7 microM (approximately 1.0 and 2.0 mg/L, respectively) were treated with Fenton reagent (FR) using a [FR](0):[MTBE](0) molar ratio of 10:1. FR was used in equimolar mixture of Fe(2+)and H(2)O(2) (i.e., [Fe(2+)](0):[H(2)O(2)](0)=1:1). This analysis considers the hydroxyl radicals (OH(*)) produced by FR as the main species responsible for the degradation processes. The effects of [MTBE](0) and pH on the oxidation kinetics were investigated. Under these conditions it was observed that: (i) MTBE was degraded at high extent (90-99%) after 1h of reaction time, (ii) MTBE mineralization was low in all cases and reached only 31.7% at the best conditions, and (iii) In all cases, most of MTBE degradation occurred during the initial 3-5 min of reaction. During this brief initial phase, MTBE transformation followed pseudo-first order kinetics, while the subsequent phase exhibited a sharp drop in degradation rate and had almost negligible contribution to the overall degradation. Experiments performed at acidic pH exhibited the best degradation results, while at neutral pH the degradation rates dropped significantly. Other parameters included in this analysis were: TOC reduction and total concentration of compounds containing the tert-butyl group in their structure (tBC). These compounds were analyzed because of the concerns related to their potential toxicity. Tert-butyl formate (TBF), Tert-butyl alcohol (TBA), acetone and methyl acetate were identified and quantified as

  7. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    NASA Astrophysics Data System (ADS)

    Loyer-Prost, M.; Merot, J.-S.; Ribis, J.; Le Bouar, Y.; Chaffron, L.; Legendre, F.

    2016-10-01

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) bcc iron structure. They coexist with larger crystalline spherical precipitates of 15-20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials.

  8. High-resolution Z-contrast imaging and EELS study of functional oxide materials.

    PubMed

    Klie, Robert F; Zhao, Yuan; Yang, Guang; Zhu, Yimei

    2008-08-01

    Functional complex-oxide materials show a wide variety of properties and behaviors that cannot be found in any other class of materials, including high-temperature superconductivity and colossal magneto resistance. Consequently, this group of oxide materials has become the focus of many experimental as well as theoretical studies, aiming at understanding the fundamental mechanisms and properties that govern these complex structures. Here, we will review our high-resolution Z-contrast imaging and electron energy-loss studies of two complex-oxide materials systems, more specifically low-angle tilt grain-boundaries in YBa(2)Cu(3)O(7) (YBCO), and the spin-state transition in LaCoO(3). It will be shown that the O K-edge pre-peak can be used to quantify the hole-concentration in the vicinity of the dislocation core in YBCO, as well as to determine the Co(3+) spin-state in LaCoO(3).

  9. Characterization and kinetics of sulfide-oxidizing autotrophic denitrification in batch reactors containing suspended and immobilized cells.

    PubMed

    Moraes, B S; Souza, T S O; Foresti, E

    2011-01-01

    Sulfide-oxidizing autotrophic denitrification is an advantageous alternative over heterotrophic denitrification, and may have potential for nitrogen removal of low-strength wastewaters, such as anaerobically pre-treated domestic sewage. This study evaluated the fundamentals and kinetics of this process in batch reactors containing suspended and immobilized cells. Batch tests were performed for different NOx-/S2- ratios and using nitrate and nitrite as electron acceptors. Autotrophic denitrification was observed for both electron acceptors, and NOx-/S2- ratios defined whether sulfide oxidation was complete or not. Kinetic parameter values obtained for nitrate were higher than for nitrite as electron acceptor. Zero-order models were better adjusted to profiles obtained for suspended cell reactors, whereas first-order models were more adequate for immobilized cell reactors. However, in the latter, mass transfer physical phenomena had a significant effect on kinetics based on biochemical reactions. Results showed that sulfide-oxidizing autotrophic denitrification can be successfully established for low-strength wastewaters and have potential for nitrogen removal from anaerobically pre-treated domestic sewage.

  10. A highly selective ferrocene-based planar chiral PIP (Fc-PIP) acyl transfer catalyst for the kinetic resolution of alcohols.

    PubMed

    Hu, Bin; Meng, Meng; Wang, Zheng; Du, Wenting; Fossey, John S; Hu, Xinquan; Deng, Wei-Ping

    2010-12-01

    Novel planar chiral ferrocene nucleophilic catalysts (Fc-PIP) containing both central and planar chiral elements were designed and synthesized for catalytic enantioselective acyl transfer of secondary alcohols. A remarkably efficient catalyst with high selectivity factors (up to S = 1892) was identified. Comparing the combination of central and planar chirality revealed a strong requirement for the "matched" chiral elements, indicating that the stereogenic center of the imidazole rings should present itself on the same face as the ferrocenyl fragment; otherwise, the catalyst is completely inactive. An exclusively stacked transition state that accounts for the high selectivity of the kinetic resolution of secondary alcohols is proposed. Notably, this newly designed catalyst family is suitable for the catalytic kinetic resolution of bulky arylalkyl carbinols, producing esters with extremely high ee (>99%).

  11. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    NASA Astrophysics Data System (ADS)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  12. Dynamic kinetic resolution in the stereoselective synthesis of 4,5-diaryl cyclic sulfamidates by using chiral rhodium-catalyzed asymmetric transfer hydrogenation.

    PubMed

    Han, Juae; Kang, Soyeong; Lee, Hyeon-Kyu

    2011-04-07

    The dynamic kinetic resolution of 4,5-diaryl cyclic sulfamidate imines was achieved via asymmetric transfer hydrogenation using a HCO(2)H/Et(3)N mixture as the hydrogen source and chiral Rh catalysts (R,R)- or (S,S)-RhCl(TsDPEN)Cp* affording the corresponding cyclic sulfamidates in good yields with up to >20 : 1 dr and up to >99% ee.

  13. Stereoselective Synthesis of 4-Substituted Cyclic Sulfamidate-5-Phosphonates by Using Rh-Catalyzed, Asymmetric Transfer Hydrogenation with Accompanying Dynamic Kinetic Resolution.

    PubMed

    Seo, Yeon Ji; Kim, Jin-ah; Lee, Hyeon-Kyu

    2015-09-04

    Dynamic kinetic resolution driven, asymmetric transfer hydrogenation of 4-substituted cyclic sulfamidate imine-5-phosphonates produces the corresponding cyclic sulfamidate-5-phosphonates. The process employs a HCO2H/Et3N mixture as the hydrogen source and the chiral Rh catalysts, (R,R)- or (S,S)-Cp*RhCl(TsDPEN), and it takes place at room temperature within 1 h with high yields and high levels of stereoselectivity.

  14. A study of pH-dependent photodegradation of amiloride by a multivariate curve resolution approach to combined kinetic and acid-base titration UV data.

    PubMed

    De Luca, Michele; Ioele, Giuseppina; Mas, Sílvia; Tauler, Romà; Ragno, Gaetano

    2012-11-21

    Amiloride photostability at different pH values was studied in depth by applying Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to the UV spectrophotometric data from drug solutions exposed to stressing irradiation. Resolution of all degradation photoproducts was possible by simultaneous spectrophotometric analysis of kinetic photodegradation and acid-base titration experiments. Amiloride photodegradation showed to be strongly dependent on pH. Two hard modelling constraints were sequentially used in MCR-ALS for the unambiguous resolution of all the species involved in the photodegradation process. An amiloride acid-base system was defined by using the equilibrium constraint, and the photodegradation pathway was modelled taking into account the kinetic constraint. The simultaneous analysis of photodegradation and titration experiments revealed the presence of eight different species, which were differently distributed according to pH and time. Concentration profiles of all the species as well as their pure spectra were resolved and kinetic rate constants were estimated. The values of rate constants changed with pH and under alkaline conditions the degradation pathway and photoproducts also changed. These results were compared to those obtained by LC-MS analysis from drug photodegradation experiments. MS analysis allowed the identification of up to five species and showed the simultaneous presence of more than one acid-base equilibrium.

  15. Adsorption Properties of Tetracycline onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies

    PubMed Central

    Ghadim, Ehsan Ezzatpour; Manouchehri, Firouzeh; Soleimani, Gholamreza; Hosseini, Hadi; Kimiagar, Salimeh; Nafisi, Shohreh

    2013-01-01

    Graphene oxide (GO) nanoparticle is a high potential effective absorbent. Tetracycline (TC) is a broad-spectrum antibiotic produced, indicated for use against many bacterial infections. In the present research, a systematic study of the adsorption and release process of tetracycline on GO was performed by varying pH, sorption time and temperature. The results of our studies showed that tetracycline strongly loads on the GO surface via π–π interaction and cation–π bonding. Investigation of TC adsorption kinetics showed that the equilibrium was reached within 15 min following the pseudo-second-order model with observed rate constants of k2 = 0.2742–0.5362 g/mg min (at different temperatures). The sorption data has interpreted by the Langmuir model with the maximum adsorption of 323 mg/g (298 K). The mean energy of adsorption was determined 1.83 kJ/mol (298 K) based on the Dubinin–Radushkevich (D–R) adsorption isotherm. Moreover, the thermodynamic parameters such as ΔH°, ΔS° and ΔG° values for the adsorption were estimated which indicated the endothermic and spontaneous nature of the sorption process. The electrochemistry approved an ideal reaction for the adsorption under electrodic process. Simulation of GO and TC was done by LAMMPS. Force studies in z direction showed that tetracycline comes close to GO sheet by C8 direction. Then it goes far and turns and again comes close from amine group to the GO sheet. PMID:24302989

  16. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame

    SciTech Connect

    Tian, Z; Pitz, W J; Fournet, R; Glaude, P; Battin-Leclerc, F

    2009-12-18

    An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene, decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C{sub 4} + C{sub 2} species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C{sub 6}H{sub 4}CH{sub 3} radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C{sub 6}H{sub 4}CH{sub 3} radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics.

  17. On-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processes.

    PubMed

    Guo, Xin; Minakata, Daisuke; Crittenden, John

    2015-08-04

    We have developed an on-the-fly kinetic Monte Carlo (KMC) model to predict the degradation mechanisms and fates of intermediates and byproducts that are produced during aqueous-phase advanced oxidation processes (AOPs). The on-the-fly KMC model is composed of a reaction pathway generator, a reaction rate constant estimator, a mechanistic reduction module, and a KMC solver. The novelty of this work is that we develop the pathway as we march forward in time rather than developing the pathway before we use the KMC method to solve the equations. As a result, we have fewer reactions to consider, and we have greater computational efficiency. We have verified this on-the-fly KMC model for the degradation of polyacrylamide (PAM) using UV light and titanium dioxide (i.e., UV/TiO2). Using the on-the-fly KMC model, we were able to predict the time-dependent profiles of the average molecular weight for PAM. The model provided detailed and quantitative insights into the time evolution of the molecular weight distribution and reaction mechanism. We also verified our on-the-fly KMC model for the destruction of (1) acetone, (2) trichloroethylene (TCE), and (3) polyethylene glycol (PEG) for the ultraviolet light and hydrogen peroxide AOP. We demonstrated that the on-the-fly KMC model can achieve the same accuracy as the computer-based first-principles KMC (CF-KMC) model, which has already been validated in our earlier work. The on-the-fly KMC is particularly suitable for molecules with large molecular weights (e.g., polymers) because the degradation mechanisms for large molecules can result in hundreds of thousands to even millions of reactions. The ordinary differential equations (ODEs) that describe the degradation pathways cannot be solved using traditional numerical methods, but the KMC can solve these equations.

  18. Chemical kinetic behavior of chlorogenic acid in protecting erythrocyte and DNA against radical-induced oxidation.

    PubMed

    Tang, You-Zhi; Liu, Zai-Qun

    2008-11-26

    As an abundant ingredient in coffee, chlorogenic acid (CGA) is a well-known antioxidant. Although some works have dealt with its radical-scavenging property, the present work investigated the protective effects of CGA on the oxidation of DNA and on the hemolysis of human erythrocytes induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) by means of chemical kinetics. The inhibition period (t(inh)) derived from the protective effect of CGA on erythrocyte and DNA was proportional to its concentration, t(inh) = (n/R(i))[CGA], where R(i) refers to the radical-initiation rate, and n indicates the number of radical-propagation chains terminated by CGA. It was found that the n of CGA to protect erythrocytes was 0.77, lower than that of vitamin E (2.0), but higher than that of vitamin C (0.19). Furthermore, CGA facilitated a mutual protective effect with VE and VC on AAPH-induced hemolysis by increasing n of VE and VC. CGA was also found to be a membrane-stabilizer to protect erythrocytes against hemin-induced hemolysis. Moreover, the n of CGA was only 0.41 in the process of protecting DNA. This fact revealed that CGA served as an efficient antioxidant to protect erythrocytes more than to protect DNA. Finally, the reaction between CGA and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(+*)) or 2,2'-diphenyl-1-picrylhydrazyl (DPPH) revealed that CGA was able to trap radicals by reducing radicals more than by donating its hydrogen atoms to radicals.

  19. Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study.

    PubMed

    Ruiz-Dueñas, Francisco J; Morales, María; Pérez-Boada, Marta; Choinowski, Thomas; Martínez, María Jesús; Piontek, Klaus; Martínez, Angel T

    2007-01-09

    The molecular architecture of versatile peroxidase (VP) includes an exposed tryptophan responsible for aromatic substrate oxidation and a putative Mn2+ oxidation site. The crystal structures (solved up to 1.3 A) of wild-type and recombinant Pleurotus eryngii VP, before and after exposure to Mn2+, showed a variable orientation of the Glu36 and Glu40 side chains that, together with Asp175, contribute to Mn2+ coordination. To evaluate the involvement of these residues, site-directed mutagenesis was performed. The E36A, E40A, and D175A mutations caused a 60-85-fold decrease in Mn2+ affinity and a decrease in the Mn2+ oxidation activity. Transient-state kinetic constants showed that reduction of both compounds I and II was affected (80-325-fold lower k2app and 103-104-fold lower k3app, respectively). The single mutants retained partial Mn2+ oxidation activity, and a triple mutation (E36A/E40A/D175A) was required to completely suppress the activity (<1% kcat). The affinity for Mn2+ also decreased ( approximately 25-fold) with the shorter carboxylate side chain in the E36D and E40D variants, which nevertheless retained 30-50% of the maximal activity, whereas similar mutations caused a 50-100-fold decrease in kcat in the case of the Phanerochaete chrysosporium manganese peroxidase (MnP). Additional mutations showed that introduction of a basic residue near Asp175 did not improve Mn2+ oxidation as found for MnP and ruled out an involvement of the C-terminal tail of the protein in low-efficiency oxidation of Mn2+. The structural and kinetic data obtained highlighted significant differences in the Mn2+ oxidation site of the new versatile enzyme compared to P. chrysosporium MnP.

  20. Solid-gas reactions of complex oxides inside an environmental high-resolution transmission electron microscope.

    PubMed

    Sayagués, M J; Krumeich, F; Hutchison, J L

    2001-07-01

    In a gas reaction cell (GRC), installed in a high-resolution transmission electron microscope (HRTEM) (JEOL 4000EX), samples can be manipulated in an ambient atmosphere (p<50mbar). This experimental setup permits not only the observation of solid-gas reactions in situ at close to the atomic level but also the induction of structural modifications under the influence of a plasma, generated by the ionization of gas particles by an intense electron beam. Solid state reactions of non-stoichiometric niobium oxides and niobium tungsten oxides with different gases (O2, H2 and He) have been carried out inside this controlled environment transmission electron microscope (CETEM), and this has led to reaction products with novel structures which are not accessible by conventional solid state synthesis methods. Monoclinic and orthorhombic Nb(12)O(29) crystallize in block structures comprising [3x4] blocks. The oxidation of the monoclinic phase occurs via a three step mechanism: firstly, a lamellar defect of composition Nb(11)O(27) is formed. Empty rectangular channels in this defect provide the diffusion paths in the subsequent oxidation. In the second step, microdomains of the Nb(22)O(54) phase are generated as an intermediate state of the oxidation process. The structure of the final product Nb(10)O(25), which consists of [3x3] blocks and tetrahedral coordinated sites, is isostructural to PNb(9)O(25). Microdomains of this apparently metastable phase appear as a product of the Nb(22)O(54) oxidation. The oxidation reaction of Nb(12)O(29) was found to be a reversible process: the reduction of the oxidation product with H(2) results in the formation of the starting Nb(12)O(29) structure. On the other hand, the block structure of Nb(12)O(29) has been destroyed by a direct treatment of the sample with H(2) while NbO in a cubic rock salt structure is produced. This in situ technique has also been applied to niobium tungsten oxides which constitute the solid solution series Nb(8-n

  1. Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: Kinetics and formation of transformation products.

    PubMed

    Borowska, Ewa; Bourgin, Marc; Hollender, Juliane; Kienle, Cornelia; McArdell, Christa S; von Gunten, Urs

    2016-05-01

    The efficiency of wastewater ozonation for the abatement of three nitrogen-containing pharmaceuticals, two antihistamine drugs, cetirizine (CTR) and fexofenadine (FXF), and the diuretic drug, hydrochlorothiazide (HCTZ), was investigated. Species-specific second-order rate constants for the reactions of the molecular, protonated (CTR, FXF) or deprotonated (HCTZ) forms of these compounds with ozone were determined. All three compounds are very reactive with ozone (apparent second order rate constants at pH 7: kO3,pH7 = 1.7·10(5) M(-1)s(-1), 8.5·10(4) M(-1)s(-1) and 9.0·10(3) M(-1)s(-1) for CTR, HCTZ and FXF, respectively). Transformation product (TP) structures were elucidated using liquid chromatography coupled with high-resolution tandem mass spectrometry, including isotope-labeled standards. For cetirizine and hydrochlorothiazide 8 TPs each and for fexofenadine 7 TPs were identified. The main TPs of cetirizine and fexofenadine are their respective N-oxides, whereas chlorothiazide forms to almost 100% from hydrochlorothiazide. In the bacteria bioluminescence assay the toxicity was slightly increased only during the ozonation of cetirizine at very high cetirizine concentrations. The main TPs detected in bench-scale experiments were also detected in full-scale ozonation of a municipal wastewater, for >90% elimination of the parent compounds.

  2. Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment.

    PubMed

    Barhoumi, Natija; Oturan, Nihal; Olvera-Vargas, Hugo; Brillas, Enric; Gadri, Abdellatif; Ammar, Salah; Oturan, Mehmet A

    2016-05-01

    The degradation of 0.20 mM sulfamethazine (SMT) solutions was investigated by heterogeneous electro-Fenton (EF) process using pyrite as source of Fe(2+) (catalyst) and pH regulator in an undivided electrochemical cell equipped either with a Pt or a BDD anode and carbon-felt as cathode. Effect of pyrite concentration and applied current on the oxidative degradation kinetics and mineralization efficiency has been studied. The higher oxidation power of the process, named "Pyrite-EF″ using BDD anode was demonstrated. Pyrite-EF showed a better performance for the oxidation/mineralization of the drug SMT in comparison to the classic EF process: 95% and 87% TOC removal by Pyrite-EF with BDD and Pt anodes, respectively, versus 90% and 83% by classical EF with BDD and Pt anodes, respectively. The rate constant of the oxidation of SMT by OH was determined by the competition kinetics method and found to be 1.87 × 10(9) mol(-1) L s(-1). Based on the identified reaction intermediates by HPLC and GS-MS, as well as released SO4(2-), NH4(+) and NO3(-) ions, a plausible reaction pathway was proposed for the mineralization of SMT during Pyrite-EF process. Toxicity assessment by means of Microtox method revealed the formation of some toxic intermediates during the treatment. However, toxicity of the solution was removed at the end of treatment.

  3. Review of kinetics of chemical and photocatalytical oxidation of Arsenic(III) as influenced by pH.

    PubMed

    Sharma, Virender K; Dutta, Paritam K; Ray, Ajay K

    2007-06-01

    The kinetics and stoichiometry of As(III) oxidation by chemical oxidants is presented. The reactions are first-order with respect to each reactant. The second-order rate constants vary with pH and have a range in magnitude of 10(4)-10(7) M-1 s-1 for free available chlorine (FAC), O3, and FeO4(2-) in a pH range of 6.0-9.0. In this pH range, the reactions of As(III) with chloroamine (NH2Cl) and H2O2 are quite slow with rate constants of 2.9-4.3x10(-1) M-1 s-1 and 2.6x10(-2)-4.5x10(1) M-1 s-1 for chloroamine and H2O2, respectively. The pH dependence of the oxidation reactions can be described using acid-base equilibria of both As(III) species and the oxidant. FAC, O3, and FeO(4)2- oxidize As(III) instantaneously at pH 7.0 with half-lives of milliseconds if 2 mg/L excess dose of oxidant is applied. One major advantage of FeO4(2-) ions over the other oxidants is its ability to remove arsenic in water by two mechanisms; it oxidizes As(III) and also subsequently coagulates As(V) through Fe(III) hydroxide produced from Fe(VI) reduction. Photocatalytic oxidation of As(III) to As(V) follows zero-order kinetics and the oxidation is completed in minutes with no significant pH dependence. The removal of dissolved arsenic to values below the World Health Organization drinking water limit of 10 microg/L can be achieved through photocatalytic oxidation of As(III) to As(V) in acidic solution followed by adsorption of As(V) onto TiO2 surfaces.

  4. Inactivation kinetics and photoreactivation of vegetable oxidative enzymes after combined UV-C processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inactivation kinetics of lipoxygenase (LOX), peroxidase (POD) and polyphenoloxidase (PPO) in phosphate buffer (pH 4.0 and 7.0) treated by combined thermal (25-65 C) and UV-C (1-10 min) processes were fitted using a traditional first-order kinetics model and the Weibull distribution function. For...

  5. Investigation of oxidation and tautomerization of a recently synthesized Schiff base in micellar media using multivariate curve resolution alternative least squares and rank annihilation factor analysis methods.

    PubMed

    Afkhami, Abbas; Khajavi, Farzad; Khanmohammadi, Hamid

    2009-08-11

    The oxidation of the recently synthesized Schiff base 3,6-bis((2-aminoethyl-5-Br-salicyliden)thio)pyridazine (PABST) with hydrogen peroxide was investigated using spectrophotometric studies. The reaction rate order and observed rate constant of the oxidation reaction was obtained in the mixture of N,N-dimethylformamide (DMF):water (30:70, v/v) at pH 10 using multivariate cure resolution alternative least squares (MCR-ALS) method and rank annihilation factor analysis (RAFA). The effective parameters on the oxidation rate constant such as percents of DMF, the effect of transition metals like Cu(2+), Zn(2+), Mn(2+) and Hg(2+) and the presence of surfactants were investigated. The keto-enol equilibria in DMF:water (30:70, v/v) solution at pH 7.6 was also investigated in the presence of surfactants. At concentrations above critical micelle concentration (cmc) of cationic surfactant cetyltrimethylammonium bromide (CTAB), the keto form was the predominant species, while at concentrations above cmc of anionic surfactant sodium dodecyl sulfate (SDS), the enol form was the predominant species. The kinetic reaction order and the rate constant of tautomerization in micellar medium were obtained using MCR-ALS and RAFA. The results obtained by both the methods were in a good agreement with each other. Also the effect of different volume percents of DMF on the rate constant of tautomerization was investigated. The neutral surfactant (Triton X-100) had no effect on tautomerization equilibrium.

  6. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    SciTech Connect

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; Prinz, Friedrich B.; Lee, Wonyoung

    2015-11-01

    In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created with yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.

  7. Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide.

    PubMed

    Li, Jialiang; Yang, Yushi; Mao, Zhou; Huang, Wenjie; Qiu, Tong; Wu, Qingzhi

    2016-12-01

    In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules.

  8. Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Yang, Yushi; Mao, Zhou; Huang, Wenjie; Qiu, Tong; Wu, Qingzhi

    2016-09-01

    In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules.

  9. The Kinetic Sunyaev-Zel’dovich Effect from Reionization: Simulated Full-sky Maps at Arcminute Resolution

    NASA Astrophysics Data System (ADS)

    Alvarez, Marcelo A.

    2016-06-01

    The kinetic Sunyaev-Zel’dovich (kSZ) effect results from Thomson scattering by coherent flows in the reionized intergalactic medium. We present new results based on ray-tracing an 8 Gpc/h realization of reionization with resolution elements 2 Mpc/h (subtending ˜ 1‧ at z = 6) on a side to create a full-sky kSZ map. The realization includes, self-consistently, the effects of reionization on scales corresponding to multipoles 10≲ {\\ell }≲ 5000. We separate the kSZ map into Doppler ({\\boldsymbol{v}}), Ostriker-Vishniac (δ {\\boldsymbol{v}}), patchy (x{\\boldsymbol{v}}), and third-order (xδ {\\boldsymbol{v}}) components, and compute explicitly all the auto- and cross-correlations (e.g., < {\\boldsymbol{vv}}> , < δ {\\boldsymbol{v}}x{\\boldsymbol{v}}> , etc.) that contribute to the total power. We find a complex and nonmonotonic dependence on the duration of reionization at {\\ell }˜ 300 and evidence for a non-negligible (10%-30%) contribution from connected four-point correlations, < x{\\boldsymbol{v}}x{\\boldsymbol{v}}{> }c, usually neglected in analytical models. We also investigate the cross-correlation of linear matter and large-scale kSZ temperature fluctuations, focusing on (1) cross-power spectra with biased tracers of the matter density and (2) cold spots from infall onto large, rare H ii regions centered on peaks in the matter distribution at redshifts z\\gt 10 that are a generic non-Gaussian feature of patchy reionization. Finally, we show that the reionization history can be reconstructed at 5σ-10σ significance by correlating full-sky 21 cm maps stacked in bins with {{Δ }}ν = 10 {{MHz}} with existing cosmic microwave background (CMB) temperature maps at {\\ell }\\lt 500, raising the prospects for probing reionization by correlating CMB and LSS measurements. The resulting kSZ maps have been made publicly available at www.cita.utoronto.ca/~malvarez/research/ksz-data/.

  10. Adsorptive kinetic mechanism of heavy metal cations on the surface of graphite oxide and its SiO2 composite

    NASA Astrophysics Data System (ADS)

    Sheet, Imtithal; Kabbani, Ahmad; Holail, Hanafy

    2017-02-01

    Nanomaterials have gained great attention because of their novel size- and shape-dependent properties, large specific surface area and high reaction activity. Moreover, nanomaterials have a wide range of applications, as in the technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water treatments. In the present study, nanostructured graphite oxide, silica/graphite oxide composites and silica nanoparticles were used for the removal of the heavy metal ions from aqueous solutions by a batch adsorption method and the adsorptive kinetic mechanism of heavy metal cations on the surface of graphite oxide and its SiO2 composite was evaluated. The experimental results revealed a strong adsorption of the metal cations on the surface of graphite oxide, this is reflected in the shifts in wave numbers after adsorption with nanostructured graphite oxide and the big shift in wave numbers (Δv¯) for nickel ions reflects chemosorption type of adsorption. This is confirmed by the coherence between Δv¯, removal percentage and crystal field stabilization energy (CFSE). Silica/ GO (2:3) composite showed the greatest removal percentage at different concentrations compared to pure graphite oxide and silica nanoparticles. The higher removal percentage of nickel ions by silica /GO composite (2:3) was observed at 180 min contact time and basic pH. The kinetic studies showed that silica/ GO (2:3) composite had rapid adsorption rate and efficiency and it was found to follow first order rate expression or an exponential decay of the metal cations from water study.

  11. Transient and steady state CO oxidation kinetics on nanolithographically prepared supported Pd model catalysts: Experiments and simulations

    SciTech Connect

    Laurin, M.; Johanek, V.; Grant, A.W.; Kasemo, B.; Libuda, J.; Freund, H.-J.

    2005-08-01

    Applying molecular-beam methods to a nanolithographically prepared planar Pd/SiO{sub 2} model catalyst, we have performed a detailed study of the kinetics of CO oxidation. The model catalyst was prepared by electron-beam lithography, allowing individual control of particle size and position. The sample was structurally characterized by atomic force microscopy and scanning electron microscopy before and after reaction. In the kinetic experiments, the O-rich and CO-rich regimes were investigated systematically with respect to their transient and steady-state behaviors, both under bistable and monostable reaction conditions. Separate molecular beams were used in order to supply the reactants, allowing individual control over the reactant fluxes. The desorbing CO{sub 2} was detected by both angle-resolved and angle-integrated mass spectrometries. The experimental results were analyzed using different types of microkinetic models, including a detailed reaction-diffusion model, which takes into account the structural parameters of the catalyst as well as scattering of the reactants from the support. The model quantitatively reproduces the results as a function of the reactant fluxes and the surface temperature. Various kinetic effects observed are discussed in detail on the basis of the model. Specifically, it is shown that under conditions of limited oxygen mobility, the switching behavior between the kinetic regimes is largely driven by the surface mobility of CO.

  12. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes.

    PubMed

    Chen, Guang-Cai; Shan, Xiao-Quan; Zhou, Yi-Quan; Shen, Xiu-e; Huang, Hong-Lin; Khan, Shahamat U

    2009-09-30

    The adsorption kinetics, isotherms and thermodynamic of atrazine on multiwalled carbon nanotubes (MWCNTs) containing 0.85%, 2.16%, and 7.07% oxygen was studied. Kinetic analyses were performed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The regression results showed that the pseudo-second-order law fit the adsorption kinetics. The calculated thermodynamic parameters indicated that adsorption of atrazine on MWCNTs was spontaneous and exothermic. Standard free energy (DeltaG(0)) became less negative when the oxygen content of MWCNTs increased from 0.85% to 7.07% which is consistent with the low adsorption affinity of MWCNTs for atrazine.

  13. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  14. Kinetics of conjugation and oxidation of nitrobenzyl alcohols by rat hepatic enzymes.

    PubMed

    Rickert, D E; deBethizy, J D; Glover, M R; Kedderis, G L

    1985-12-01

    Previous work has suggested that quantitative differences in the in vitro and in vivo metabolism of mononitrotoluene isomers are a result of differences in the hepatic conjugation and oxidation of the first metabolic intermediates, the mononitrobenzyl alcohols. We have determined the steady-state kinetic parameters, Vmax, Km and V/K, for the metabolism of the nitrobenzyl alcohols by rat hepatic alcohol dehydrogenase, glucuronyltransferase, and sulfotransferase. 3-Nitrobenzyl alcohol was the best substrate for cytosolic alcohol dehydrogenase (Vmax = 1.48 nmoles/min/mg protein, V/K = 3.15 X 10(-3) nmoles/min/mg protein/microM, Km = 503 microM). Vmax and Km values for 4-nitrobenzyl alcohol were similar, but V/K was about 60% of that for 3-nitrobenzyl alcohol. 2-Nitrobenzyl alcohol was not metabolized by the alcohol dehydrogenase preparation used here, but it was metabolized to 2-nitrobenzoic acid by a rat liver mitochondrial preparation. 2-Nitrobenzyl alcohol was the best substrate for microsomal glucuronyltransferase (Vmax = 3.59 nmoles/min/mg protein, V/K = 11.28 X 10(-3) nmoles/min/mg protein/microM, Km = 373 microM). The Vmax for 3-nitrobenzyl alcohol was similar, but the V/K was about half and the Km was about twice that for 2-nitrobenzyl alcohol. The Vmax for 4-nitrobenzyl alcohol was about 40% and the V/K was about half that for 2-nitrobenzyl alcohol. The best substrate for cytosolic sulfotransferase was 4-nitrobenzyl alcohol (Vmax = 1.69 nmoles/min/mg protein, V/K = 37.21 X 10(-3) nmoles/min/mg protein/microM, Km = 48 microM). The Vmax values for the other two benzyl alcohols were similar, but the V/K and Km values were about 11 and 400%, respectively, of those for 4-nitrobenzyl alcohol. These data are in qualitative agreement with results obtained when the nitrobenzyl alcohols were incubated with isolated hepatocytes, but they do not allow quantitative modeling of the data from hepatocytes.

  15. Classification of metal-oxide bonded interactions based on local potential- and kinetic-energy densities

    SciTech Connect

    Gibbs, Gerald V.; Cox, David; Crawford, T Daniel; Rosso, Kevin M.; Ross, Nancy; Downs, R. T.

    2006-02-28

    A classification of the HF bonded interactions comprising a large number of molecules has been proposed by Espinosa et al. [J. Chem. Phys. 117, 5529 (2002)] based on the ratio |V(rc)|/G(rc) where |V(rc)| is the magnitude of the local potential energy density and G(rc) is the local kinetic density evaluated at the bond critical points, rc. A calculation of the ratio for the MO bonded interactions comprising a relatively large number of molecules and earth materials, together with the constraints imposed by the values of Ñ2ρ(rc) and the local electronic energy density H(rc) = G(rc) + V(rc) in the HF study, yielded the same classification for the oxides as found for the fluorides. This is true despite the different trends of the bond critical point and local energy properties with the bond length displayed by the HF and MO bonded interactions. LiO, NaO and MgO bonded interactions classify as closed shell ionic bonds, BeO, AlO, SiO, BO and PO bonded interactions classify as bonds of intermediate character and NO bonded interactions classify as shared covalent bonds. CO and SO bonded interactions classify as both intermediate and covalent bonded interactions. The CO triple bonded interaction classifies as a bond of intermediate character and the CO single bonded interaction classifies as a covalent bond whereas their H(rc) value indicates that they are both covalent bonds. The |V(rc)|/G(rc) ratios for the BeO, AlO and SiO bonded interactions indicate that they have a substantial component of ionic character despite their classification as bonds of intermediate character. The trend between |V(rc)|/G(rc) and the character of the bonded interaction is consistent with trends expected from electronegativity considerations. The connection between the net charges and the experimental SiO bond length evaluated for the Si and O atoms comprising two orthosilicates are examined in terms of the |V(rc)|/G(rc) values.

  16. Kinetics and mechanisms of heterogeneous reaction of gaseous hydrogen peroxide on mineral oxide particles.

    PubMed

    Zhao, Yue; Chen, Zhongming; Shen, Xiaoli; Zhang, Xuan

    2011-04-15

    Recent studies have shown that heterogeneous reactions of hydrogen peroxide (H(2)O(2)) on aerosol surfaces may play an important role in tropospheric chemistry. The data concerning the kinetics and mechanisms of these reactions, however, are quite scarce so far. Here, we investigated, for the first time, the heterogeneous reactions of gaseous H(2)O(2) on SiO(2) and α-Al(2)O(3) particles, two major components of mineral dust aerosol, using transmission-Fourier Transform Infrared (T-FTIR) spectroscopy, and high-performance liquid chromatography (HPLC). It is found that H(2)O(2) molecularly adsorbs on SiO(2), and a small amount of molecularly adsorbed H(2)O(2) decomposes due to its thermal instability. For α-Al(2)O(3), catalytic decomposition of H(2)O(2) evidently occurs, but there is also a small amount of H(2)O(2) molecularly adsorbed on the particle surface. The BET uptake coefficients of H(2)O(2) on both particles appear to be independent of gaseous H(2)O(2) concentration (1.27-13.8 ppmv) and particle sample mass (2.8-6.5 mg for SiO(2) and 8.6-18.9 mg for α-Al(2)O(3)), but are strongly dependent on relative humidity with the values ranging from (1.55 ± 0.14) × 10(-8) and (1.21 ± 0.04) × 10(-7) at 2% RH to (0.61 ± 0.06) × 10(-8) and (0.76 ± 0.09) × 10(-7) at 76% RH for SiO(2) and α-Al(2)O(3), respectively. On the basis of the experimental results and literature data, the potential mechanisms for heterogeneous decomposition of H(2)O(2) were proposed, and the atmospheric implications of these reactions were discussed. It is found that heterogeneous reaction of H(2)O(2) on both mineral oxides plays a significant role in processing mineral aerosols, although its role as a sink for ambient H(2)O(2) is probably limited.

  17. Investigation of the electrode kinetics in a solid oxide fuel cell and an oxygen sensor

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajesh

    This dissertation investigates the electrode kinetics in a solid oxide fuel cell and an oxygen sensor. The first chapter describes the basics of fuel cell and motivation behind the studies. The second chapter investigates the dependence of cathodic charge transfer reaction resistance (Rct), on three-phase boundary length (lTPB) at various temperatures and oxygen partial pressures ( pO2 ). Impedance spectra were obtained using three-electrode configuration on discs having cathodes with definite lTPB to investigate the La0.8Sr0.2MnO3 (LSM)-Y 0.16Zr0.84O2 (YSZ), platinum (Pt)-YSZ and La 0.8Sr0.2CoO3 (LSC)-Ce0.8Sm0.2 O2 (SDC) half cell reactions at temperatures between 650--800°C and pO2 between 10-3 to 1 atm. For LSM-YSZ and Pt-YSZ, 1/Rct varies linearly with lTPB. LSC-SDC system did not show any specific dependence between R ct and lTPB. The third chapter examines the use of an electrolyte supported cell with externally applied voltage to determine the single electrode overpotential and extending the parameters derived to that of an anode supported fuel cell having thin film electrolyte operating under a chemical potential gradient. Spatial distributions of the electrochemical potential of electrons (ϕ) and oxygen ions ( m˜O-2 ), and chemical potential of oxygen ( mO2 ) for these two cases were obtained. Under fuel cell operating conditions, ϕ, m˜O-2 and mO2 , decreases monotonically from higher value to lower value. For electrolyte supported cell under externally applied voltage mO2 does not vary monotonically; it reaches values above or below that of the boundary values, leading to development of internal electromotive forces (EMFs), which can in turn affect the activity of the interface. The fourth chapter describes design microfabrication and characterization of a series connected potentiometric oxygen sensor. A drawback of potentiometric sensors in general is that the output signal is low when the ratio of the partial pressures at the two electrodes is low

  18. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    NASA Astrophysics Data System (ADS)

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  19. Stereoselective synthesis of 4-substituted-cyclic sulfamidate-5-carboxylates by asymmetric transfer hydrogenation accompanied by dynamic kinetic resolution and applications to concise stereoselective syntheses of (-)-epi-cytoxazone and the taxotere side-chain.

    PubMed

    Kim, Jin-ah; Seo, Yeon Ji; Kang, Soyeong; Han, Juae; Lee, Hyeon-Kyu

    2014-11-18

    Dynamic kinetic resolution driven, asymmetric transfer hydrogenation reactions of cyclic sulfamidate imine-5-carboxylate esters were developed. Applications of the new methodology to stereoselective syntheses of the taxotere side-chain and (-)-epi-cytoxazone are described.

  20. Mechanism and kinetics of low-temperature oxidation of a biodiesel surrogate: methyl propanoate radicals with oxygen molecule.

    PubMed

    Le, Xuan T; Mai, Tam V T; Ratkiewicz, Artur; Huynh, Lam K

    2015-04-23

    This paper presents a computational study on the low-temperature mechanism and kinetics of the reaction between molecular oxygen and alkyl radicals of methyl propanoate (MP), which plays an important role in low-temperature oxidation and/or autoignition processes of the title fuel. Their multiple reaction pathways either accelerate the oxidation process via chain branching or inhibit it by forming relatively stable products. The potential energy surfaces of the reactions between three primary MP radicals and molecular oxygen, namely, C(•)H2CH2COOCH3 + O2, CH3C(•)HCOOCH3 + O2, and CH3CH2COOC(•)H2 + O2, were constructed using the accurate composite CBS-QB3 method. Thermodynamic properties of all species as well as high-pressure rate constants of all reaction channels were derived with explicit corrections for tunneling and hindered internal rotations. Our calculation results are in good agreement with a limited number of scattered data in the literature. Furthermore, pressure- and temperature-dependent rate constants for all reaction channels on the multiwell-multichannel potential energy surfaces were computed with the quantum Rice-Ramsperger-Kassel (QRRK) and the modified strong collision (MSC) theories. This procedure resulted in a thermodynamically consistent detailed kinetic submechanism for low-temperature oxidation governed by the title process. A simplified mechanism, which consists of important reactions, is also suggested for low-temperature combustion at engine-like conditions.

  1. Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters.

    PubMed

    Mora, Mabel; Fernández, Maikel; Gómez, José Manuel; Cantero, Domingo; Lafuente, Javier; Gamisans, Xavier; Gabriel, David

    2015-01-01

    Monitoring the biological activity in biotrickling filters is difficult since it implies estimating biomass concentration and its growth yield, which can hardly be measured in immobilized biomass systems. In this study, the characterization of a sulfide-oxidizing nitrate-reducing biomass obtained from an anoxic biotrickling filter was performed through the application of respirometric and titrimetric techniques. Previously, the biomass was maintained in a continuous stirred tank reactor under steady-state conditions resulting in a growth yield of 0.328 ± 0.045 g VSS/g S. To properly assess biological activity in respirometric tests, abiotic assays were conducted to characterize the stripping of CO2 and sulfide. The global mass transfer coefficient for both processes was estimated. Subsequently, different respirometric tests were performed: (1) to solve the stoichiometry related to the autotrophic denitrification of sulfide using either nitrate or nitrite as electron acceptors, (2) to evaluate the inhibition caused by nitrite and sulfide on sulfide oxidation, and (3) to propose, calibrate, and validate a kinetic model considering both electron acceptors in the overall anoxic biodesulfurization process. The kinetic model considered a Haldane-type equation to describe sulfide and nitrite inhibitions, a non-competitive inhibition to reflect the effect of sulfide on the elemental sulfur oxidation besides single-step denitrification since no nitrite was produced during the biological assays.

  2. Dissolution of alumina, copper oxide and nitrogen in molten slags: Thermodynamics and kinetics

    NASA Astrophysics Data System (ADS)

    Fan, Peng

    Three studies have been conducted concerning thermodynamics and kinetics of dissolution of alumina, copper oxides and nitrogen in various molten slags. In the first study, the dissolution rate of alumina particles in molten CaO-Al2O3-SiO2 slag was measured at 1500--1550°C by direct sampling method for the purpose of understanding the dissolution behavior of alumina inclusion in molten slags. It was found that the dissolution rate decreased with increasing SiO2 and Al2O3 contents in slag, but increased with increasing temperature. In the ladle type slags, alumina particles dissolved much faster than in the tundish type slags. In the second study, solubility of solid CuO in molten Na2O-B 2O3 slag and liquid Cu2O in molten CaO-B 2O3-SiO2 slag was measured at 1000°C and 1250°C, with attempts to find suitable slags for the fluxing stage of the proposed oxidizing-fluxing process to remove copper from steel scrap. Experimental results showed that the minimum solubility occurred at neutral slag compositions, demonstrating amphoteric nature of CuO and Cu2O A regular solution model was employed to interpret the solubility data of CuO in Na2O-B 2O3 slag to obtain the interaction energies of CuO-NaO 0.5 and CuO-BO1.5, and then solubility curve, iso-activity curves and isothermal section of phase diagram of CuO-Na2O-B 2O3 system at 1000°C were drawn from the model calculation. Basic Na2O-B2O3 slag is expected to be a suitable slag for the fluxing process. The objective of the third study is to investigate the feasibility of removing nitrogen from molten steel by two newly proposed slag systems, TiO slag and Ti2O3 slag. Nitrogen distribution ratios between slag and steel were measured at 1600°C, for CaO-Al2O3-TiO, CaO-Al2O3-Ti 2O, CaO-Al2O3-TiO2 and CaO-Al 2O3 by two new slag-metal equilibration techniques, i.e., liquid sealing method and static atmosphere method. Activity coefficients of AIN and TiN, as useful indexes of measuring ability of slag to remove nitrogen, were

  3. Kinetic Study of Colloidal Birnessite Formation During Oxidation of Chlorinated Solvent by Permanganate

    SciTech Connect

    Li, X. David; Schwartz, Franklin W.

    2003-03-26

    The use of permanganate for the in situ oxidation of chlorinated ethylenes has shown promise in the remediation of subsurface contamination. The oxidation reaction produces Mn oxide, which causes pore plugging and problems in oxidant delivery. This study utilized batch experiments to explore the feasibility of using phosphate to slow down the formation of colloidal Mn oxide, which may allow Mn oxide to precipitate further away from the zone of oxidation. The results show that phosphate can influence the formation of the colloids. Colloid growth was slow, especially early in the reaction. The rate of the colloid formation decreases linearly with increasing concentrations of phosphate ion. Efforts were made to elucidate the mechanism of the reaction between phosphate and Mn oxide. A model was proposed to describe the reaction process, which is thought to involve the formation of a Mn(IV)-phosphate complex in the aqueous phase before formation of the colloids.

  4. Study of Degradation Kinetics of Parathion Methyl On Mixed Nanocrystalline Titania-Zirconium and Titania-Cerium Oxides

    NASA Astrophysics Data System (ADS)

    Kuráň, Pavel; Pšenička, Martin; Šťastný, Martin; Benkocká, Monika; Janoš, Pavel

    2016-10-01

    The unique surface properties of some nanocrystalline metal oxides and their application for removal of various toxic compounds were reported in early 1990s. Recently, a reliable method for the preparation of reactive cerium dioxide sorbent and its application for degradation of the organophosphate pesticides, such as parathion methyl, chlorpyrifos, dichlofenthion, fenchlorphos, and prothiofos, as well as of some chemical warfare agents-nerve gases soman and O-ethyl S-[2-(diisopropylamino) ethyl] methylphosphonothioate (VX) was published. This paper reports on the kinetics study of degradation of parathion methyl as a representative organophosphate on nanocrystalline metal oxides TiO2, ZrO2, CeO2 and their mixtures in different molar ratios of particular elements. The tested sorbents except of CeO2 were prepared by different methods (e.g. sol-gel, precipitation) in cooperation with Institute of Inorganic Chemistry (Rez, Czech Republic). The degradation kinetics of parathion methyl on tested sorbents was followed by HPLC equipped with diode array detector. The basic kinetics parameters (half-lives of parathion methyl degradation, rate constants of degradation product formation) were calculated for each sorbent from Weber-Morris equation of 1st order diffusion kinetic model. The results proved the ability of prepared sorbents to degrade parathion methyl under formation of 4-nitrophenol as the main degradation product. The most efficient sorbents were TiCe (2:8), TiCe (1:1), TiCe (0:1) (50-70 %) followed by TiZr (1:1), TiCe (8:2), TiZr (8:2), TiZr (2:8) (20-30%) and TiO2, ZrO2 (less than 5 %).

  5. Implementation of steady state approximation for modelling of reaction kinetic of UV catalysed hydrogen peroxide oxidation of starch

    NASA Astrophysics Data System (ADS)

    Kumoro, Andri Cahyo; Retnowati, Diah Susetyo; Ratnawati, Budiyati, Catarina Sri

    2015-12-01

    With regard to its low viscosity, high stability, clarity, film forming and binding properties, oxidised starch has been widely used in various applications specifically in the food, paper, textile, laundry finishing and binding materials industries. A number of methods have been used to produce oxidised starch through reactions with various oxidizing agents, such as hydrogen peroxide, air oxygen, ozone, bromine, chromic acid, permanganate, nitrogen dioxide and hypochlorite. Unfortunately, most of previous works reported in the literatures were focused on the study of reaction mechanism and physicochemical properties characterization of the oxidised starches produced without investigation of the reaction kinetics of the oxidation process. This work aimed to develop a simple kinetic model for UV catalysed hydrogen peroxide oxidation of starch through implementation of steady state approximation for the radical reaction rates. The model was then verified using experimental data available in the literature. The model verification revealed that the proposed model shows its good agreement with the experimental data as indicated by an average absolute relative error of only 2.45%. The model also confirmed that carboxyl groups are oxidised further by hydroxyl radical. The carbonyl production rate was found to follow first order reaction with respect to carbonyl concentration. Similarly, carboxyl production rate also followed first order reaction with respect to carbonyl concentration. The apparent reaction rate constant for carbonyl formation and oxidation were 6.24 × 104 s-1 and 1.01 × 104 M-1.s-1, respectively. While apparent reaction rate constant for carboxyl oxidation was 4.86 × 104 M-1.s-1.

  6. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  7. Kinetics and mechanism of the electrochemical formation of iron oxidation products on steel immersed in sour acid media.

    PubMed

    Hernández-Espejel, Antonio; Palomar-Pardavé, Manuel; Cabrera-Sierra, Román; Romero-Romo, Mario; Ramírez-Silva, María Teresa; Arce-Estrada, Elsa M

    2011-03-03

    From electrochemical techniques (cyclic voltammetry, potential steps, and EIS), XRD, and SEM-EDX, the kinetics and mechanism of anodic film formation applying anodic potential steps on steel immersed in sour acid media was determined. It was found, from a thermodynamic analysis, based on equilibrium phase diagrams of the system considered in this work, that iron oxidation may produce different new solid phases, depending on the applied potential, the first being the iron oxidation associated with formation of FeS((c)) species, which in turn can be reoxidized to FeS(2(c)) or even to Fe(2)O(3(c)) at higher potential values. From analysis of the corresponding experimental potentiostatic current density transients, it was concluded that the electrochemical anodic film formation involves an E(1)CE(2) mechanism, whereby the first of the two simultaneous processes were the Fe electrochemical oxidation (E(1)) followed by FeS precipitation (C) that occurs by 3D nucleation and growth limited by mass transfer reaction and FeS oxidation (E(2)) forming a mix of different stoichiometry iron sulphides and oxides. From EIS measurements, it was revealed that the anodic film's charge transfer resistance diminishes as the potential applied for its formation becomes more anodic, thus behaving poorly against corrosion.

  8. [Effect of horse radish peroxidase immobilization on the kinetics of enzymatic oxidation of guaiacol in frozen solutions].

    PubMed

    Sergeev, G B; Gudima, A I; Sergeev, B M; Taran, A A; Batiuk, V A

    1981-06-01

    The kinetics of horse radish peroxidase (EC 1.11.1.7) catalyzed oxidation of guaiacol by hydrogen peroxide has been studied within the temperature region of +20--35 degrees C. The covalent attachment of the enzyme to polyacrylamide gel had no significant influence on the activation energy of the reaction in liquid solutions. For frozen solutions it was demonstrated that the temperature dependencies of the reaction rate differ greatly for the soluble and bound forms of the enzyme. The observed phenomenon is probably due to the differences in the molecular mobility, distribution and arrangement of reactants in frozen state.

  9. Kinetic spectrophotometric determination of rutin by its inhibitory effect on the oxidation of amaranth by potassium periodate.

    PubMed

    Wang, Shuhao; Du, Lingyun; Yao, Xingjun; Niu, Xueli; Zhuang, Huisheng

    2005-01-01

    A novel kinetic spectrophotometric method is described for the determination of rutin. The method is based on the inhibitory effect of rutin on the oxidation reaction of amaranth by potassium periodate in acidic media at 100 degrees C. The linear range for the determination of rutin is 0.02 - 0.50 microg/ml, and the detection limit is 0.014 microg/ml. The method has been successfully applied to the determination of rutin in medicine of rutin tablet and traditional Chinese medicine.

  10. Integration of reactive membrane extraction with lipase-hydrolysis dynamic kinetic resolution of naproxen 2,2,2-trifluoroethyl thioester in isooctane.

    PubMed

    Lu, Chu-Hsun; Cheng, Yu-Chi; Tsai, Shau-Wei

    2002-07-20

    Lipases immobilized on polypropylene powders have been used as the biocatalyst in the enantioselective hydrolysis of (S)-naproxen from racemic naproxen thioesters in isooctane, in which trioctylamine was added to perform in situ racemization of the remaining (R)-thioester substrate. A detailed study of the kinetics for hydrolysis and racemization indicates that increasing the trioctylamine concentration can activate and stabilize the lipase as well as enhance the racemization and non-stereoselective hydrolysis of the thioester. Effects of the aqueous pH value and trioctylamine concentration on (S)-naproxen dissociation and partitioning in the aqueous phase as well as the transportation in a hollow fiber membrane were further investigated. Good agreements between the experimental data and theoretical results were obtained when the dynamic kinetic resolution process was integrated with a hollow fiber membrane to reactively extract the desired (S)-naproxen out of the reaction medium.

  11. Structure sensitivity in oxide catalysis: First-principles kinetic Monte Carlo simulations for CO oxidation at RuO2(111)

    NASA Astrophysics Data System (ADS)

    Wang, Tongyu; Reuter, Karsten

    2015-11-01

    We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO2. We compare the detailed insight into elementary processes, steady-state surface coverages, and catalytic activity to equivalent published simulation data for the frequently studied RuO2(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. These findings challenge the traditional definition of structure sensitivity based on macroscopically observable turnover frequencies and prompt scrutiny of the applicability of structure sensitivity classifications developed for metals to oxide catalysis.

  12. Structure sensitivity in oxide catalysis: First-principles kinetic Monte Carlo simulations for CO oxidation at RuO{sub 2}(111)

    SciTech Connect

    Wang, Tongyu; Reuter, Karsten

    2015-11-28

    We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO{sub 2}. We compare the detailed insight into elementary processes, steady-state surface coverages, and catalytic activity to equivalent published simulation data for the frequently studied RuO{sub 2}(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. These findings challenge the traditional definition of structure sensitivity based on macroscopically observable turnover frequencies and prompt scrutiny of the applicability of structure sensitivity classifications developed for metals to oxide catalysis.

  13. Structure sensitivity in oxide catalysis: First-principles kinetic Monte Carlo simulations for CO oxidation at RuO2(111)

    SciTech Connect

    Wang, Tongyu; Reuter, Karsten

    2015-11-24

    We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO2. We compare the detailed insight into elementary processes, steady-state surface coverages, and catalytic activity to equivalent published simulation data for the frequently studied RuO2(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. As a result, these findings challenge the traditional definition of structure sensitivity based on macroscopically observable turnover frequencies and prompt scrutiny of the applicability of structure sensitivity classifications developed for metals to oxide catalysis.

  14. Structure sensitivity in oxide catalysis: First-principles kinetic Monte Carlo simulations for CO oxidation at RuO2(111)

    DOE PAGES

    Wang, Tongyu; Reuter, Karsten

    2015-11-24

    We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO2. We compare the detailed insight into elementary processes, steady-state surface coverages, and catalytic activity to equivalent published simulation data for the frequently studied RuO2(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. As a result, these findings challenge the traditional definition of structuremore » sensitivity based on macroscopically observable turnover frequencies and prompt scrutiny of the applicability of structure sensitivity classifications developed for metals to oxide catalysis.« less

  15. Kinetic and spectroscopic study of catalysts for water-gas shift and nitrogen oxide removal

    NASA Astrophysics Data System (ADS)

    Kispersky, Vincent Frederick

    adsorbed CO2 proved less competitive for NOx sorption sites, explaining the weak reduction of NSC by CO2 on low Ba loadings. Contrary to CO2, H2O exhibited both beneficial and inhibitory effects on the NSC. Over long periods of time, and at high Ba loadings, the addition of H2O in the feed increased the NSC, attributed to enhanced O2 spillover on the hydroxylated Ba surface allowing greater access to available NOx storage sites. When the Ba loading was reduced, the interaction sphere of Pt particles with the Ba storage component required for O2 to spillover to assist in NOx storage was reduced. Thus, despite the enhanced spillover capacity of oxygen on the hydroxylated storage component other NSC decreasing effects of H2O addition, such as Ba agglomeration, became more dominant and reduced the NSC. Recent developments in selective catalytic reduction have shown Cu and Fe/chabazite (CHA) based zeolites to be particularly well suited to sustaining high catalytic rates without degradation in the harsh environment of diesel engine exhaust. Little has been published about these catalysts as the academic community has just recently learned about the materials and their commercial implementation. Using operando X-ray absorption spectroscopy, combined with first-principles thermodynamics simulations and kinetic analysis, we have studied the nature of the Cu active site on Cu/SSZ-13, Cu/SAPO-34 and Cu/ZSM-5. Examining the catalysts under operando standard SCR conditions (300 ppm NO, 300 ppm NH3, 5% O2, 5% H2O and 5% CO2) showed the catalyst to be in a mixed Cu(I)-Cu(II) oxidation state. Neither the amount of Cu(I) nor Cu(II) individually correlated with the different rates measured on the various zeolite catalysts, and so we proposed that the SCR reaction progresses via a redox mechanism requiring both Cu(I) and Cu(II). First principles thermodynamic calculations found that the redox couple of Cu(I)H2O and Cu(II)(OH)2 were the most thermodynamically stable species of any of the Ox

  16. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  17. Thermodynamic Characterization of Five Key Kinetic Parameters that Define Neuronal Nitric Oxide Synthase Catalysis

    PubMed Central

    Haque, Mohammad Mahfuzul; Tejero, Jesús; Bayachou, Mekki; Wang, Zhi-Qiang; Fadlalla, Mohammed; Stuehr, Dennis J.

    2013-01-01

    NO synthase (NOS) enzymes convert L-arginine to NO in two sequential reactions whose rates (kcat1 and kcat2) are both limited by the rate of ferric heme reduction (kr). An enzyme ferric heme-NO complex forms as an immediate product complex and then undergoes either dissociation (at a rate that we denote as kd) to release NO in a productive manner, or reduction (kr) to form a ferrous heme-NO complex (FeIINO) that must react with O2 (at a rate that we denote as kox) in a NO dioxygenase reaction that regenerates the ferric enzyme. The interplay of these five kinetic parameters (kcat1, kcat2, kr, kd, and kox) determine NOS specific activity, O2 concentration response, and pulsatile versus steady-state NO generation. Here we utilized stopped-flow spectroscopy and single catalytic turnover methods to characterize the individual temperature dependencies of the five kinetic parameters of rat neuronal NOS (nNOS). We then incorporated the measured kinetic values into computer simulations of the nNOS reaction using a global kinetic model to comprehensively model its temperature-dependent catalytic behaviors. Our results provide new mechanistic insights and also reveal that the different temperature dependencies of the five kinetic parameters significantly alter nNOS catalytic behaviors and NO release efficiency as a function of temperature. PMID:23789902

  18. Oxidation of antibacterial molecules by aqueous ozone: moiety-specific reaction kinetics and application to ozone-based wastewater treatment.

    PubMed

    Dodd, Michael C; Buffle, Marc-Olivier; Von Gunten, Urs

    2006-03-15

    Ozone and hydroxyl radical (*OH) reaction kinetics were measured for 14 antibacterial compounds from nine structural families, to determine whether municipal wastewater ozonation is likely to result in selective oxidation of these compounds' biochemically essential moieties. Each substrate is oxidized by ozone with an apparent second-order rate constant, k''(O3,app) > 1 x 10(3) M(-1) s(-1), at pH 7, with the exception of N(4)-acetylsulfamethoxazole (K''(O3,app) is 2.5 x 102 M(-1) s(-1)). k''(O3,app) values (pH 7) for macrolides, sulfamethoxazole, trimethoprim, tetracycline, vancomycin, and amikacin appear to correspond directly to oxidation of biochemically essential moieties. Initial reactions of ozone with N(4)-acetylsulfamethoxazole, fluoroquinolones, lincomycin, and beta-lactams do not lead to appreciable oxidation of biochemically essential moieties. However, ozone oxidizes these moieties within fluoroquinolones and lincomycin via slower reactions. Measured k''(O3,app) values and second-order *OH rate constants, k''(*OH,app) were utilized to characterize pollutant losses during ozonation of secondary municipal wastewater effluent. These losses were dependent on k''(O3,app), but independent of k''(*OH,app). Ozone doses > or =3 mg/L yielded > or =99% depletion of fast-reacting substrates (K''(O3,app) > 5 x 10(4) M(-1) s(-1)) at pH 7.7. Ten substrates reacted predominantly with ozone; only four were oxidized predominantly by .OH. These results indicate that many antibacterial compounds will be oxidized in wastewater via moiety-specific reactions with ozone.

  19. Use of Mg-Al oxide for boron removal from an aqueous solution in rotation: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2016-01-01

    Mg-Al oxide prepared through the thermal treatment of [Formula: see text] intercalated Mg-Al layered double hydroxides (CO3·Mg-Al LDH) was found to remove boron (B) from an aqueous solution. B was removed by the rehydration of Mg-Al oxide accompanied by combination with [Formula: see text] . When using twice the stoichiometric quantity of Mg-Al oxide for Mg/Al = 4, the residual concentration of B dropped from 100 to 2.8 mg/L in 480 min, and for Mg/Al = 2, it decreased from 100 to 2.5 mg/L in 240 min. In both cases, the residual concentration of B was highlighted to be lower than the current Japanese effluent standards (10 mg/L). The removal of B can be explained by way of pseudo-first-order reaction kinetics. The apparent activation energy of 63.5 kJ mol(-1), calculated from the Arrhenius plot indicating that a chemical reaction dominates the removal of B by Mg-Al oxide (Mg/Al = 2). The adsorption of B acts upon a Langmuir-type phenomena. The maximum adsorption (qm) and equilibrium adsorption constants (KL) were 7.4 mmol g(-1) and 1.9 × 10(3), respectively, for Mg-Al oxide (Mg/Al = 2). [Formula: see text] in B(OH)4·Mg-Al LDH produced by the removal of B was observed to undergo anion exchange with [Formula: see text] in solution. Following regeneration, the Mg-Al oxide maintained the ability to remove B from an aqueous solution. This study has clarified the possibility of recycling Mg-Al oxide for B removal.

  20. Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Abdel Moghny, Th.; Mousa, Mahmoud Ahmed; El-Bellihi, Abdel-Hameed A.-A.; Awadallah, Ahmed E.

    2016-11-01

    Sorption of calcium ion from the hard underground water using novel oxidized graphene (GO) sheets was studied in this paper. Physicochemical properties and microstructure of graphene sheets were investigated using Raman spectrometer, thermogravimetry analyzer, transmission electron microscope, scanning electron microscope. The kinetics adsorption of calcium on graphene oxide sheets was examined using Lagergren first and second orders. The results show that the Lagergren second-order was the best-fit model that suggests the conception process of calcium ion adsorption on the Go sheets. For isothermal studies, the Langmuir and Freundlich isotherm models were used at temperatures ranging between 283 and 313 K. Thermodynamic parameters resolved at 283, 298 and 313 K indicating that the GO adsorption was exothermic spontaneous process. Finally, the graphene sheets show high partiality toward calcium particles and it will be useful in softening and treatment of hard water.