Science.gov

Sample records for oxidative lung injury

  1. Nitric oxide and hyperoxic acute lung injury

    PubMed Central

    Liu, Wen-wu; Han, Cui-hong; Zhang, Pei-xi; Zheng, Juan; Liu, Kan; Sun, Xue-jun

    2016-01-01

    Hyperoxic acute lung injury (HALI) refers to the damage to the lungs secondary to exposure to elevated oxygen partial pressure. HALI has been a concern in clinical practice with the development of deep diving and the use of normobaric as well as hyperbaric oxygen in clinical practice. Although the pathogenesis of HALI has been extensively studied, the findings are still controversial. Nitric oxide (NO) is an intercellular messenger and has been considered as a signaling molecule involved in many physiological and pathological processes. Although the role of NO in the occurrence and development of pulmonary diseases including HALI has been extensively studied, the findings on the role of NO in HALI are conflicting. Moreover, inhalation of NO has been approved as a therapeutic strategy for several diseases. In this paper, we briefly summarize the role of NO in the pathogenesis of HALI and the therapeutic potential of inhaled NO in HALI. PMID:27867474

  2. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  3. Nitric Oxide as a Mediator of Oxidant Lung Injury Due to Paraquat

    NASA Astrophysics Data System (ADS)

    Berisha, Hasan I.; Pakbaz, Hedayatollah; Absood, Afaf; Said, Sami I.

    1994-08-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either N^G-nitro-L-arginine methyl ester or N^ω-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury.

  4. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  5. Oxidative Stress and Lung Ischemia-Reperfusion Injury

    PubMed Central

    Ferrari, Renata Salatti; Andrade, Cristiano Feijó

    2015-01-01

    Ischemia-reperfusion (IR) injury is directly related to the formation of reactive oxygen species (ROS), endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients. PMID:26161240

  6. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles.

    PubMed

    Jeong, Jiyoung; Kim, Jeongeun; Seok, Seung Hyeok; Cho, Wan-Seob

    2016-04-01

    Indium is an essential element in the manufacture of liquid crystal displays and other electronic devices, and several forms of indium compounds have been developed, including nanopowders, films, nanowires, and indium metal complexes. Although there are several reports on lung injury caused by indium-containing compounds, the toxicity of nanoscale indium oxide (In2O3) particles has not been reported. Here, we compared lung injury induced by a single exposure to In2O3 nanoparticles (NPs) to that caused by benchmark high-toxicity nickel oxide (NiO) and copper oxide (CuO) NPs. In2O3 NPs at doses of 7.5, 30, and 90 cm(2)/rat (50, 200, and 600 µg/rat) were administered to 6-week-old female Wistar rats via pharyngeal aspiration, and lung inflammation was evaluated 1, 3, 14, and 28 days after treatment. Neutrophilic inflammation was observed on day 1 and worsened until day 28, and severe pulmonary alveolar proteinosis (PAP) was observed on post-aspiration days 14 and 28. In contrast, pharyngeal aspiration of NiO NPs showed severe neutrophilic inflammation on day 1 and lymphocytic inflammation with PAP on day 28. Pharyngeal aspiration of CuO NPs showed severe neutrophilic inflammation on day 1, but symptoms were completely resolved after 14 days and no PAP was observed. The dose of In2O3 NPs that produced progressive neutrophilic inflammation and PAP was much less than the doses of other toxic particles that produced this effect, including crystalline silica and NiO NPs. These results suggest that occupational exposure to In2O3 NPs can cause severe lung injury.

  7. Nanoparticles, Lung Injury, and the Role of Oxidant Stress

    PubMed Central

    Madl, Amy K.; Plummer, Laurel E.; Carosino, Christopher; Pinkerton, Kent E.

    2015-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties, which have been shown to induce inflammation and oxidative stress in biologic systems. Oxidative stress reflects the imbalance between the generation of reaction oxygen species (ROS) and the biochemical mechanisms to detoxify and repair resulting damage of reactive intermediates. This review examines current research incidental and engineered nanoparticles in terms of their health effects on the lungs and mechanisms by which oxidative stress via physicochemical characteristics influence toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review will also briefly discuss some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site specific fashion. PMID:24215442

  8. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  9. Selective phosphodiesterase 3 inhibitor olprinone attenuates meconium-induced oxidative lung injury.

    PubMed

    Mokra, Daniela; Drgova, Anna; Pullmann, Rudolf; Calkovska, Andrea

    2012-06-01

    Since inflammation and oxidation play a key role in the pathophysiology of neonatal meconium aspiration syndrome, various anti-inflammatory drugs have been tested in the treatment. This study evaluated whether the phosphodiesterase (PDE) 3 inhibitor olprinone can alleviate meconium-induced inflammation and oxidative lung injury. Oxygen-ventilated rabbits intratracheally received 4 ml/kg of meconium (25 mg/ml) or saline. Thirty minutes after meconium/saline instillation, meconium-instilled animals were treated by intravenous olprinone (0.2 mg/kg) or were left without treatment. All animals were oxygen-ventilated for an additional 5 h. A bronchoalveolar lavage (BAL) of the left lungs was performed and differential leukocyte count in the sediment was estimated. The right lungs were used to determine lung edema by wet/dry weight ratio, as well as to detect oxidative damage to the lungs. In the lung tissue homogenate, total antioxidant status (TAS) was determined. In isolated lung mitochondria, the thiol group content, conjugated dienes, thiobarbituric acid-reactive substances (TBARS), dityrosine, lysine-lipid peroxidation products, and activity of cytochrome c oxidase (COX) were estimated. To evaluate the effects of meconium instillation and olprinone treatment on the systemic level, TBARS and TAS were determined in the blood plasma, as well. Meconium instillation increased the relative numbers of neutrophils and eosinophils in the BAL fluid, increased edema formation and concentrations of oxidation markers, and decreased TAS. Treatment with olprinone reduced the numbers of polymorphonuclears in the BAL fluid, decreased the formation of most oxidation markers in the lungs, reduced lung edema and prevented a decrease in TAS in the lung homogenate compared to non-treated animals. In the blood plasma, olprinone decreased TBARS and increased TAS compared to the non-treated group. Conclusion, the selective PDE3 inhibitor olprinone has shown potent antioxidative and anti

  10. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  11. Resolution of experimental lung injury by Monocyte-derived inducible nitric oxide synthase (iNOS)

    PubMed Central

    D’Alessio, Franco R.; Tsushima, Kenji; Aggarwal, Neil R.; Mock, Jason R.; Eto, Yoshiki; Garibaldi, Brian T.; Files, Daniel C.; Avalos, Claudia R.; Rodriguez, Jackie V.; Waickman, Adam T.; Reddy, Sekhar P.; Pearse, David B.; Sidhaye, Venkataramana K.; Hassoun, Paul M.; Crow, Michael T.; King, Landon S.

    2012-01-01

    While early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal lipopolysacaccharide (i.t. LPS) and assessed the response at intervals to day 10, when injury had resolved. Inducible nitric oxide synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS−/− mice were exposed to i.t. LPS, early lung injury was attenuated, however recovery was markedly impaired compared to wild type (WT) mice. iNOS−/− mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS−/− mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS, but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of co-signalling molecule CD86 in iNOS−/− mice compared to WT mice. Antibody-mediated blockade of CD86 in iNOS−/− mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair. PMID:22844117

  12. Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Cervelli, Jessica A; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2014-08-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants.

  13. An endothelial TLR4-VEGFR2 pathway mediates lung protection against oxidant-induced injury.

    PubMed

    Takyar, Seyedtaghi; Zhang, Yi; Haslip, Maria; Jin, Lei; Shan, Peiying; Zhang, Xuchen; Lee, Patty J

    2016-03-01

    TLR4 deficiency causes hypersusceptibility to oxidant-induced injury. We investigated the role of TLR4 in lung protection, using used bone marrow chimeras; cell-specific transgenic modeling; and lentiviral delivery in vivo to knock down or express TLR4 in various lung compartments; and lung-specific VEGF transgenic mice to investigate the effect of TLR4 on VEGF-mediated protection. C57/BL6 mice were exposed to 100% oxygen in an enclosed chamber and assessed for survival and lung injury. Primary endothelial cells were stimulated with recombinant VEGF and exposed to hyperoxia or hydrogen peroxide. Endothelium-specific expression of human TLR4 (as opposed to its expression in epithelium or immune cells) increased the survival of TLR4-deficent mice in hyperoxia by 24 h and decreased LDH release and lung cell apoptosis after 72 h of exposure by 30%. TLR4 expression was necessary and sufficient for the protective effect of VEGF in the lungs and in primary endothelial cells in culture. TLR4 knockdown inhibited VEGF signaling through VEGF receptor 2 (VEGFR2), Akt, and ERK pathways in lungs and primary endothelial cells and decreased the availability of VEGFR2 at the cell surface. These findings demonstrate a novel mechanism through which TLR4, an innate pattern receptor, interacts with an endothelial survival pathway.

  14. Biomarkers for oxidative stress in acute lung injury induced in rabbits submitted to different strategies of mechanical ventilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative damage has been said to play an important role in pulmonary injury, which is associated with the development and progression of acute respiratory distress syndrome (ARDS). We aimed to identify biomarkers to determine the oxidative stress in an animal model of acute lung injury (ALI) using ...

  15. A crucial role of nitric oxide in acute lung injury secondary to the acute necrotizing pancreatitis.

    PubMed

    Cheng, Shi; Yan, Wen-Mao; Yang, Bin; Shi, Jing-dong; Song, Mao-min; Zhao, Yuqian

    2010-04-01

    To investigate the role of nitric oxide (NO) in acute lung inflammation and injury secondary to acute necrotizing pancreatitis (ANP), 5% sodium taurocholate was retrogradely injected into the biliopancreatic duct of rats to ANP model. These ANP rats were given L-Arginine (L-Arg, 100 mg/kg), L-NAME (10 mg/kg), or their combination by intraperitoneal injection 30 min prior to ANP induction. At 1, 3, 6, and 12 hours after ANP induction, lung NO production, and inducible NO synthase (iNOS) expression were measured. Lung histopathological changes, bronchoalveolar lavage (BAL) protein concentration, proinflammatory mediators tumor necrotic factor alpha (TNF-alpha), and lung tissue myeloperoxidase (MPO) activity were examined. Results showed that NO production and iNOS mRNA expression in alveolar macrophages (AMs) were significantly increased along with significant increases in lung histological abnormalities and BAL proteins in the ANP group, all of which were further enhanced by pretreatment with L-Arg and attenuated by pretreatment with L-NAME, respectively. These markers were slightly attenuated by pretreatment with combination of L-Arg + L-NAME, suggesting that NO is required for initiating the acute lung damage in ANP rats, and also that L-Arg-enhanced lung injury is mediated by its NO generation rather than its direct effect. MPO activity and TNF-alpha expression in lung were upregulated in the ANP rats and further enhanced by pretreatment with L-Arg and attenuated by pretreatment with L-NAME, respectively. These results suggest that overproduction of NO mediated by iNOS in the lung is required for the acute lung inflammation and damage secondary to ANP.

  16. Endothelial Nitric Oxide Synthase Deficient Mice Are Protected from Lipopolysaccharide Induced Acute Lung Injury

    PubMed Central

    Gross, Christine M.; Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Ham III, P. Benson; Meadows, Mary Louise; Cherian-Shaw, Mary; Kangath, Archana; Sridhar, Supriya; Lucas, Rudolf; Black, Stephen M.

    2015-01-01

    Lipopolysaccharide (LPS) derived from the outer membrane of gram-negative bacteria induces acute lung injury (ALI) in mice. This injury is associated with lung edema, inflammation, diffuse alveolar damage, and severe respiratory insufficiency. We have previously reported that LPS-mediated nitric oxide synthase (NOS) uncoupling, through increases in asymmetric dimethylarginine (ADMA), plays an important role in the development of ALI through the generation of reactive oxygen and nitrogen species. Therefore, the focus of this study was to determine whether mice deficient in endothelial NOS (eNOS-/-) are protected against ALI. In both wild-type and eNOS-/- mice, ALI was induced by the intratracheal instillation of LPS (2 mg/kg). After 24 hours, we found that eNOS-/-mice were protected against the LPS mediated increase in inflammatory cell infiltration, inflammatory cytokine production, and lung injury. In addition, LPS exposed eNOS-/- mice had increased oxygen saturation and improved lung mechanics. The protection in eNOS-/- mice was associated with an attenuated production of NO, NOS derived superoxide, and peroxynitrite. Furthermore, we found that eNOS-/- mice had less RhoA activation that correlated with a reduction in RhoA nitration at Tyr34. Finally, we found that the reduction in NOS uncoupling in eNOS-/- mice was due to a preservation of dimethylarginine dimethylaminohydrolase (DDAH) activity that prevented the LPS-mediated increase in ADMA. Together our data suggest that eNOS derived reactive species play an important role in the development of LPS-mediated lung injury. PMID:25786132

  17. Ukrain (NSC 631570) ameliorates intestinal ischemia-reperfusion-induced acute lung injury by reducing oxidative stress

    PubMed Central

    Kocak, Cengiz; Kocak, Fatma Emel; Akcilar, Raziye; Akcilar, Aydin; Savran, Bircan; Zeren, Sezgin; Bayhan, Zulfu; Bayat, Zeynep

    2016-01-01

    Intestinal ischemia-reperfusion (I/R) causes severe destruction in remote organs. Lung damage is a frequently seen complication after intestinal I/R. Ukrain (NSC 631570) is a synthetic thiophosphate derivative of alkaloids from the extract of the celandine (Chelidonium majus L.) plant. We investigated the effect of Ukrain in animals with lung injury induced by intestinal I/R. Adult male Spraque-Dawley rats were randomly divided into four groups: control, Ukrain, I/R, I/R with Ukrain. Before intestinal I/R was induced, Ukrain was administered intraperitoneally at a dose of 7.0 mg/body weight. After 1 h ischemia and 2 h reperfusion period, lung tissues were excised. Tissue levels of total oxidative status (TOS), total antioxidant status (TAS) were measured and oxidative stress indices (OSI) were calculated. Lung tissues were also examined histopathologically. TOS and OSI levels markedly increased and TAS levels decreased in the I/R group compared to the control group (P < 0.05). TOS and OSI levels markedly decreased and TAS levels increased in the I/R with Ukrain group compared with the group subjected to IR only (P < 0.05). Severe hemorrhage, alveolar septal thickening, and leukocyte infiltration were observed in the I/R group. In the I/R with Ukrain group, morphologic changes occurring as a result of lung damage attenuated and histopathological scores reduced compared to the I/R group (P < 0.05). Our results suggest that Ukrain pretreatment could reduce lung injury induced by intestinal I/R induced via anti-inflammatory and antioxidant effects. PMID:26773189

  18. Carvacrol and Pomegranate Extract in Treating Methotrexate-Induced Lung Oxidative Injury in Rats

    PubMed Central

    Şen, Hadice Selimoğlu; Şen, Velat; Bozkurt, Mehtap; Türkçü, Gül; Güzel, Abdulmenap; Sezgi, Cengizhan; Abakay, Özlem; Kaplan, Ibrahim

    2014-01-01

    Background This study was designed to evaluate the effects of carvacrol (CRV) and pomegranate extract (PE) on methotrexate (MTX)-induced lung injury in rats. Material/Methods A total of 32 male rats were subdivided into 4 groups: control (group I), MTX treated (group II), MTX+CRV treated (group III), and MTX+PE treated (group IV). A single dose of 73 mg/kg CRV was administered intraperitoneally to rats in group III on Day 1 of the investigation. To group IV, a dose of 225 mg/kg of PE was administered via orogastric gavage once daily over 7 days. A single dose of 20 mg/kg of MTX was given intraperitoneally to groups II, III, and IV on Day 2. The total duration of experiment was 8 days. Malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) were measured from rat lung tissues and cardiac blood samples. Results Serum and lung specimen analyses demonstrated that MDA, TOS, and OSI levels were significantly greater in group II relative to controls. Conversely, the TAC level was significantly reduced in group II when compared to the control group. Pre-administering either CRV or PE was associated with decreased MDA, TOS, and OSI levels and increased TAC levels compared to rats treated with MTX alone. Histopathological examination revealed that lung injury was less severe in group III and IV relative to group II. Conclusions MTX treatment results in rat lung oxidative damage that is partially counteracted by pretreatment with either CRV or PE. PMID:25326861

  19. Oxidative Lung Injury in Virus-Induced Wheezing

    DTIC Science & Technology

    2012-05-01

    acid , 0.5 µg/mL triiodothyronine, 50 mg/mL gentamicin and 50 mg/mL bovine serum albumin (BSA) for SAEC medium. When SAE were used for RSV...cytokines by human respiratory syncytial virus requires activation of NF-kB and is inhibited by sodium salicylate and aspirin. Virology 232: 369-378...8217, prepared from a small number of cells. Nucleic Acids Res 17: 6419, 1989. 32. Schwarz KB. Oxidative stress during viral infection: A review. Free Rad

  20. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.

    PubMed

    Fletcher, Marianne E; Boshier, Piers R; Wakabayashi, Kenji; Keun, Hector C; Smolenski, Ryszard T; Kirkham, Paul A; Adcock, Ian M; Barton, Paul J; Takata, Masao; Marczin, Nandor

    2015-06-15

    Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications.

  1. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    SciTech Connect

    Malaviya, Rama; Venosa, Alessandro; Hall, LeRoy; Gow, Andrew J.; Sinko, Patrick J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  2. Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation

    PubMed Central

    Tyurin, Vladimir A.; Kaynar, A. Murat; Kapralova, Valentyna I.; Wasserloos, Karla; Li, Jin; Mosher, Mackenzie; Wright, Lindsay; Wipf, Peter; Watkins, Simon; Pitt, Bruce R.; Kagan, Valerian E.

    2010-01-01

    Reactive oxygen species have been shown to play a significant role in hyperoxia-induced acute lung injury, in part, by inducing apoptosis of pulmonary endothelium. However, the signaling roles of phospholipid oxidation products in pulmonary endothelial apoptosis have not been studied. Using an oxidative lipidomics approach, we identified individual molecular species of phospholipids involved in the apoptosis-associated peroxidation process in a hyperoxic lung. C57BL/6 mice were killed 72 h after exposure to hyperoxia (100% oxygen). We found that hyperoxia-induced apoptosis (documented by activation of caspase-3 and -7 and histochemical terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining of pulmonary endothelium) was accompanied by nonrandom oxidation of pulmonary lipids. Two anionic phospholipids, mitochondria-specific cardiolipin (CL) and extramitochondrial phosphatidylserine (PS), were the two major oxidized phospholipids in hyperoxic lung. Using electrospray ionization mass spectrometry, we identified several oxygenation products in CL and PS. Quantitative assessments revealed a significant decrease of CL and PS molecular species containing C18:2, C20:4, C22:5, and C22:6 fatty acids. Similarly, exposure of mouse pulmonary endothelial cells (MLEC) to hyperoxia (95% oxygen; 72 h) resulted in activation of caspase-3 and -7 and significantly decreased the content of CL molecular species containing C18:2 and C20:4 as well as PS molecular species containing C22:5 and C22:6. Oxygenated molecular species were found in the same two anionic phospholipids, CL and PS, in MLEC exposed to hyperoxia. Treatment of MLEC with a mitochondria-targeted radical scavenger, a conjugate of hemi-gramicidin S with nitroxide, XJB-5-131, resulted in significantly lower oxidation of both CL and PS and a decrease in hyperoxia-induced changes in caspase-3 and -7 activation. We speculate that cytochrome c driven oxidation of CL and PS is associated with the signaling

  3. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene.

    PubMed

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P<0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P<0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  4. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene

    PubMed Central

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P < 0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P < 0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  5. DIETARY FLAXSEED PREVENTS RADIATION-INDUCED OXIDATIVE LUNG DAMAGE, INFLAMMATION AND FIBROSIS IN A MOUSE MODEL OF THORACIC RADIATION INJURY

    PubMed Central

    Lee, James C.; Krochak, Ryan; Blouin, Aaron; Kanterakis, Stathis; Chatterjee, Shampa; Arguiri, Evguenia; Vachani, Anil; Solomides, Charalambos C.; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2009-01-01

    Flaxseed (FS) has high contents of omega-3 fatty acids and lignans with antioxidant properties. Its use in preventing thoracic X-ray radiation therapy (XRT)-induced pneumonopathy has never been evaluated. We evaluated FS supplementation given to mice given before and post-XRT. FS-derived lignans, known for their direct antioxidant properties, were evaluated in abrogating ROS generation in cultured endothelial cells following gamma radiation exposure. Mice were fed 10% FS or isocaloric control diet for three weeks and given 13.5 Gy thoracic XRT. Lungs were evaluated at 24 hours for markers of radiation-induced injury, three weeks for acute lung damage (lipid peroxidation, lung edema and inflammation), and at four months for late lung damage (inflammation and fibrosis). FS-Lignans blunted ROS generation in vitro, resulting from radiation in a dose-dependent manner. FS-fed mice had reduced expression of lung injury biomarkers (Bax, p21, and TGF-beta1) at 24 hours following XRT and reduced oxidative lung damage as measured by malondialdehyde (MDA) levels at 3 weeks following XRT. In addition, FS-fed mice had decreased lung fibrosis as determined by hydroxyproline content and decreased inflammatory cell influx into lungs at 4 months post XRT. Importantly, when Lewis Lung carcinoma cells were injected systemically in mice, FS dietary supplementation did not appear to protect lung tumors from responding to thoracic XRT. Dietary FS is protective against pulmonary fibrosis, inflammation and oxidative lung damage in a murine model. Moreover, in this model, tumor radioprotection was not observed. FS lignans exhibited potent radiation-induced ROS scavenging action. Taken together, these data suggest that dietary flaxseed may be clinically useful as an agent to increase the therapeutic index of thoracic XRT by increasing the radiation tolerance of lung tissues. PMID:18981722

  6. Lung injury and lung cancer caused by cigarette smoke-induced oxidative stress: Molecular mechanisms and therapeutic opportunities involving the ceramide-generating machinery and epidermal growth factor receptor.

    PubMed

    Goldkorn, Tzipora; Filosto, Simone; Chung, Samuel

    2014-11-20

    Chronic obstructive pulmonary disease (COPD) and lung cancer are frequently caused by tobacco smoking. However, these diseases present opposite phenotypes involving redox signaling at the cellular level. While COPD is characterized by excessive airway epithelial cell death and lung injury, lung cancer is caused by uncontrolled epithelial cell proliferation. Notably, epidemiological studies have demonstrated that lung cancer incidence is significantly higher in patients who have preexisting emphysema/lung injury. However, the molecular link and common cell signaling events underlying lung injury diseases and lung cancer are poorly understood. This review focuses on studies of molecular mechanism(s) underlying smoking-related lung injury (COPD) and lung cancer. Specifically, the role of the ceramide-generating machinery during cigarette smoke-induced oxidative stress leading to both apoptosis and proliferation of lung epithelial cells is emphasized. Over recent years, it has been established that ceramide is a sphingolipid playing a major role in lung epithelia structure/function leading to lung injury in chronic pulmonary diseases. However, new and unexpected findings draw attention to its potential role in lung development, cell proliferation, and tumorigenesis. To address this dichotomy in detail, evidence is presented regarding several protein targets, including Src, p38 mitogen-activated protein kinase, and neutral sphingomyelinase 2, the major sphingomyelinase that controls ceramide generation during oxidative stress. Furthermore, their roles are presented not only in apoptosis and lung injury but also in enhancing cell proliferation, lung cancer development, and resistance to epidermal growth factor receptor-targeted therapy for treating lung cancer.

  7. Effectiveness of nitric oxide during spontaneous breathing in experimental lung injury.

    PubMed

    Dembinski, Rolf; Hochhausen, Nadine; Terbeck, Sandra; Bickenbach, Johannes; Stadermann, Frederik; Rossaint, Rolf; Kuhlen, Ralf

    2010-04-01

    Inhaled nitric oxide (iNO) improves gas exchange in about 60% of patients with acute respiratory distress syndrome (ARDS). Recruitment of atelectatic lung areas may improve responsiveness and preservation of spontaneous breathing (SB) may cause recruitment. Accordingly, preservation of SB may improve effectiveness of iNO. To test this hypothesis, iNO was evaluated in experimental acute lung injury (ALI) during SB. In 24 pigs with ALI, effects of 10 ppm iNO were evaluated during controlled mechanical ventilation (CMV) and SB in random order. Preservation of SB was provided by 4 different modes: Unassisted SB was enabled by biphasic positive airway pressure (BIPAP), moderate inspiratory assist was provided by pressure support (PS) and volume-assured pressure support (VAPS), maximum assist was ensured by assist control (A/C). Statistical analysis did not reveal gas exchange improvements due to SB alone. Significant gas exchange improvements due to iNO were only achieved during unassisted SB with BIPAP (P <.05) but not during CMV or assisted SB. The authors conclude that effectiveness of iNO may be improved by unassisted SB during BIPAP but not by assisted SB. Thus combined iNO and unassisted SB is possibly most effective to improve gas exchange in severe hypoxemic ARDS.

  8. Protective effects of hydrogen sulfide inhalation on oxidative stress in rats with cotton smoke inhalation-induced lung injury

    PubMed Central

    HAN, ZHI-HAI; JIANG, YI; DUAN, YUN-YOU; WANG, XIAO-YANG; HUANG, YAN; FANG, TING-ZHENG

    2015-01-01

    The aim of the present study was to investigate the mechanism by which hydrogen sulfide (H2S) inhalation protects against oxidative stress in rats with cotton smoke inhalation-induced lung injury. A total of 24 male Sprague-Dawley rats were separated randomly into four groups, which included the control, H2S, smoke and smoke + H2S groups. A rat model of cotton smoke inhalation-induced lung injury was established following inhalation of 30% oxygen for 6 h. In addition, H2S (80 ppm) was inhaled by the rats in the H2S and smoke + H2S groups for 6 h following smoke or sham-smoke inhalation. Enzyme-linked immunosorbent assays were performed to measure various indices in the rat lung homogenate, while the levels of nuclear factor (NF)-κBp65 in the lung tissue of the rats were determined and semiquantitatively analyzed using immunohistochemistry. In addition, quantitative fluorescence polymerase chain reaction was employed to detect the mRNA expression of inducible nitric oxide synthase (iNOS) in the rat lung tissue. The concentrations of malondialdehyde (MDA), nitric oxide (NO), inducible iNOS and NF-κBp65, as well as the sum-integrated optical density of NF-κBp65 and the relative mRNA expression of iNOS, in the rat lung tissue from the smoke + H2S group were significantly lower when compared with the smoke group. The concentrations of MDA, NO, iNOS and NF-κBp65 in the H2S group were comparable to that of the control group. Therefore, inhalation of 80 ppm H2S may reduce iNOS mRNA transcription and the production of iNOS and NO in rats by inhibiting NF-κBp65 activation, subsequently decreasing oxidative stress and cotton smoke inhalation-induced lung injury. PMID:26170929

  9. Biomarkers of Lung Injury

    EPA Science Inventory

    Unlike the hepatic, cardiovascular, nervous, or excretory organ systems, where there .ls a strong contribution of host factors or extracellular biochemical milieu in causing organ damage, the causes of lung injuries and subsequent diseases are primarily from direct environmental ...

  10. Anti-inflammatory and Anti-oxidative Effects of Dexpanthenol on Lipopolysaccharide Induced Acute Lung Injury in Mice.

    PubMed

    Li-Mei, Wan; Jie, Tan; Shan-He, Wan; Dong-Mei, Meng; Peng-Jiu, Yu

    2016-10-01

    The aim of this study is to investigate the effects of dexpanthenol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). Lung injury was induced by exposure to atomized LPS. Mice were randomly divided into four groups: control group; Dxp (500 mg/kg) group; LPS group; LPS + Dxp (500 mg/kg) group. The effects of dexpanthenol on LPS-induced neutrophil recruitment, cytokine levels, total protein concentration, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) contents were examined. Additionally, lung tissue was examined by histology to investigate the changes in pathology in the presence and absence of dexpanthenol. In LPS-challenged mice, dexpanthenol significantly improved lung edema. Dexpanthenol also markedly inhibited the LPS-induced neutrophiles influx, protein leakage, and release of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Furthermore, dexpanthenol attenuated MPO activity and MDA contents and increased SOD and GSH activity in the LPS-challenged lung tissue. These data suggest that dexpanthenol protects mice from LPS-induced acute lung injury by its anti-inflammatory and anti-oxidative activities.

  11. Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats

    PubMed Central

    Yu, Shouli; Shi, Min; Liu, Changting; Liu, Qinghui; Guo, Jun; Yu, Senyang; Jiang, Tingshu

    2015-01-01

    Objective(s): Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI). Materials and Methods: In this study, we investigated the time course changes of oxidative stress and inflammation in lung tissues of rats exposed to >95% oxygen for 12-60 hr. Results: We found that at 12 hr after hyperoxia challenge, the activities of superoxide dismutase and glutathione peroxidase were significantly reduced with remarkably increased lipid peroxidation. At 12 hr, NF-κB p65 expression was also upregulated, but Iκ-Bα expression showed a remarkable decline. Significant production of inflammatory mediators, e.g, interleukin-1β, occurred 24 hr after hyperoxia exposure. In addition, the expression of intracellular adhesion molecule 1 expression and the activity of myeloperoxidase were significantly increased at 24 hr with a peak at 48 hr. Conclusion: Our data support that hyperoxia-induced oxidative damage and NF-κB pathway activation implicate in the early phase of HALI pathogenesis. PMID:25810882

  12. The Effects of Quercetin on Acute Lung Injury and Biomarkers of Inflammation and Oxidative Stress in the Rat Model of Sepsis.

    PubMed

    Gerin, Fethullah; Sener, Umit; Erman, Hayriye; Yilmaz, Ahsen; Aydin, Bayram; Armutcu, Ferah; Gurel, Ahmet

    2016-04-01

    Experimental studies indicate that sepsis causes remote organ injury although the molecular mechanism has not been clearly defined. In this report, the role of oxidative damage, and inflammation on lung injury, following sepsis model by cecal ligation and puncture, and the effects of quercetin, antioxidant, and anti-inflammatory flavonoid, in the lung tissue were investigated. In the present study, we found that administration of single-dose quercetin before cecal ligation and puncture procedure, while markedly diminishing the levels of YKL-40 and oxidant molecules (xanthine oxidase (XO), nitric oxide (NO), and malondialdehyde (MDA)), increases the antioxidant enzymes levels. Quercetin is beneficial to acute lung injury by decreasing the levels of oxidative stress markers and increasing the antioxidant enzyme activities. Quercetin also causes a decrease in the serum levels of YKL-40 and periostin in the oxidative lung injury induced by the experimental sepsis model.

  13. Dexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats

    PubMed Central

    Fu, Chunlai; Dai, Xingui; Yang, You; Lin, Mengxiang; Cai, Yeping; Cai, Shaoxi

    2016-01-01

    Previous studies have identified that dexmedetomidine (DEX) treatment can ameliorate the acute lung injury (ALI) induced by lipopolysaccharide and ischemia-reperfusion. However, the molecular mechanisms by which DEX ameliorates lung injury remain unclear. The present study investigated whether DEX, which has been reported to exert effects on oxidative stress, mitochondrial permeability transition pores and apoptosis in other disease types, can exert protective effects in lipopolysaccharide (LPS)-induced ALI by inhibiting oxidative stress, mitochondrial dysfunction and mitochondrial-dependent apoptosis. It was revealed that LPS-challenged rats exhibited significant lung injury, characterized by the deterioration of histopathology, vascular hyperpermeability, wet-to-dry weight ratio and oxygenation index (PaO2/FIO2), which was attenuated by DEX treatment. DEX treatment inhibited LPS-induced mitochondrial dysfunction, as evidenced by alleviating the cellular ATP and mitochondrial membrane potential in vitro. In addition, DEX treatment markedly prevented the LPS-induced mitochondrial-dependent apoptotic pathway in vitro (increases of cell apoptotic rate, cytosolic cytochrome c, and caspase 3 activity) and in vivo (increases of |terminal deoxynucleotidyl transferase dUTP nick-end labeling positive cells, cleaved caspase 3, Bax upregulation and Bcl-2 downregulation). Furthermore, DEX treatment markedly attenuated LPS-induced oxidative stress, as evidenced by downregulation of cellular reactive oxygen species in vitro and lipid peroxides in serum. Collectively, the present results demonstrated that DEX ameliorates LPS-induced ALI by reducing oxidative stress, mitochondrial dysfunction and mitochondrial-dependent apoptosis. PMID:27959438

  14. Dexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats.

    PubMed

    Fu, Chunlai; Dai, Xingui; Yang, You; Lin, Mengxiang; Cai, Yeping; Cai, Shaoxi

    2017-01-01

    Previous studies have identified that dexmedetomidine (DEX) treatment can ameliorate the acute lung injury (ALI) induced by lipopolysaccharide and ischemia-reperfusion. However, the molecular mechanisms by which DEX ameliorates lung injury remain unclear. The present study investigated whether DEX, which has been reported to exert effects on oxidative stress, mitochondrial permeability transition pores and apoptosis in other disease types, can exert protective effects in lipopolysaccharide (LPS)‑induced ALI by inhibiting oxidative stress, mitochondrial dysfunction and mitochondrial‑dependent apoptosis. It was revealed that LPS‑challenged rats exhibited significant lung injury, characterized by the deterioration of histopathology, vascular hyperpermeability, wet‑to‑dry weight ratio and oxygenation index (PaO2/FIO2), which was attenuated by DEX treatment. DEX treatment inhibited LPS‑induced mitochondrial dysfunction, as evidenced by alleviating the cellular ATP and mitochondrial membrane potential in vitro. In addition, DEX treatment markedly prevented the LPS‑induced mitochondrial‑dependent apoptotic pathway in vitro (increases of cell apoptotic rate, cytosolic cytochrome c, and caspase 3 activity) and in vivo (increases of |terminal deoxynucleotidyl transferase dUTP nick‑end labeling positive cells, cleaved caspase 3, Bax upregulation and Bcl‑2 downregulation). Furthermore, DEX treatment markedly attenuated LPS‑induced oxidative stress, as evidenced by downregulation of cellular reactive oxygen species in vitro and lipid peroxides in serum. Collectively, the present results demonstrated that DEX ameliorates LPS‑induced ALI by reducing oxidative stress, mitochondrial dysfunction and mitochondrial-dependent apoptosis.

  15. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    SciTech Connect

    Sunil, Vasanthi R.; Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  16. Effect of inhaled nitric oxide on pulmonary hemodynamics after acute lung injury in dogs

    SciTech Connect

    Romand, J.A.; Pinsky, M.R.; Firestone, L.; Zar, H.A.; Lancaster, J.R. Jr. )

    1994-03-01

    Increased pulmonary vascular resistance (PVR) and mismatch in ventilation-to-perfusion ratio characterize acute lung injury (ALI). Pulmonary arterial pressure (Ppa) decreases when nitric oxide (NO) is inhaled during hypoxic pulmonary vasoconstriction (HPV); thus NO inhalation may reduce PVR and improve gas exchange in ALI. The authors studied the hemodynamic and gas exchange effects of NO inhalation during HPV and then ALI in eight anesthetized open-chest mechanically ventilated dogs. Right atrial pressure, Ppa, and left ventricular and arterial pressures were measured, and cardiac output was estimated by an aortic flow probe. Shunt and dead space were also estimated. The effect of 5-min exposures to 0, 17, 28, 47, and 0 ppm inhaled NO was recorded during hyperoxia, hypoxia, and oleic acid-induced ALI. During ALI, partial [beta]-adrenergic blockage (propanolol, 0.15 mg/kg iv) was induced and 74 ppm NO was inhaled. Nitrosylhemoglobin (NO-Hb) and methemoglobin (MetHb) levels were measured. During hyperoxia, NO inhalation had no measurable effects. Hypoxia increased Ppa and calculated PVR, both of which decreased with 17 ppm NO. ALI decreased arterial Po[sub 2] and increased airway pressure, shunt, and dead space ventilation. Ppa and PVR were greater during ALI than during hyperoxia. NO inhalation had no measurable effect during ALI before or after [beta]-adrenergic blockage. MetHb remained low, and NO-Hb was unmeasurable. Bolus infusion of nitroglycerin (15 [mu]g) induced an immediate decrease in Ppa and PVR during ALI. Short-term NO inhalation does not affect PVR or gas exchange in dogs with oleic acid-induced ALI, nor does it increase NO-Hb or MetHb. In contrast, NO can diminish hypoxia-induced elevations in pulmonary vascular tone. These data suggest that NO inhalation selectively dilates the pulmonary circulation and specifically reduces HPV but not oleic acid-induced increases in pulmonary vasomotor tone. 28 refs., 3 figs., 2 tabs.

  17. Effects of surfactant/budesonide therapy on oxidative modifications in the lung in experimental meconium-induced lung injury.

    PubMed

    Mikolka, P; Kopincova, J; Tomcikova Mikusiakova, L; Kosutova, P; Antosova, M; Calkovska, A; Mokra, D

    2016-02-01

    Meconium aspiration syndrome (MAS) is a serious condition, which can be treated with exogenous surfactant and mechanical ventilation. However, meconium-induced inflammation, lung edema and oxidative damage may inactivate delivered surfactant and thereby reduce effectiveness of the therapy. As we presumed that addition of anti-inflammatory agent into the surfactant may alleviate inflammation and enhance efficiency of the therapy, this study was performed to evaluate effects of surfactant therapy enriched with budesonide versus surfactant-only therapy on markers of oxidative stress in experimental model of MAS. Meconium suspension (25 mg/ml, 4 ml/kg) was instilled into the trachea of young rabbits, whereas one group of animals received saline instead of meconium (C group, n = 6). In meconium-instilled animals, respiratory failure developed within 30 min. Then, meconium-instilled animals were divided into 3 groups according to therapy (n = 6 each): with surfactant therapy (M + S group), with surfactant + budesonide therapy (M + S + B), and without therapy (M group). Surfactant therapy consisted of two bronchoalveolar lavages (BAL) with diluted surfactant (Curosurf, 5 mg phospholipids/ml, 10 ml/kg) followed by undiluted surfactant (100 mg phospholipids/kg), which was in M + S + B group enriched with budesonide (Pulmicort, 0.5 mg/ml). Animals were oxygen-ventilated for additional 5 hours. At the end of experiment, blood sample was taken for differential white blood cell (WBC) count. After euthanizing animals, left lung was saline-lavaged and cell differential in BAL was determined. Oxidative damage, i.e. oxidation of lipids (thiobarbituric acid reactive substance (TBARS) and conjugated dienes) and proteins (dityrosine and lysine-lipoperoxidation products) was estimated in lung homogenate and isolated mitochondria. Total antioxidant capacity was evaluated in lung homogenate and plasma. Meconium instillation increased transmigration of neutrophils and production of free

  18. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    SciTech Connect

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin . E-mail: pplin@nhri.org.tw

    2007-05-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17{beta}-estradiol (E{sub 2}) resulted from an interaction between TCDD and E{sub 2} could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE{sub 2}), especially 4-MeOE{sub 2}, accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E{sub 2}. In the present study, we demonstrate unique accumulation of 4-MeOE{sub 2}, as a result of TCDD/E{sub 2} interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE{sub 2}-treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE{sub 2}-treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE{sub 2} were unaffected by NAC. We concluded that 4-MeOE{sub 2} accumulation resulting from TCDD and E{sub 2} interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD.

  19. Hyperoxic Acute Lung Injury

    PubMed Central

    Kallet, Richard H; Matthay, Michael A

    2013-01-01

    Prolonged breathing of very high FIO2 (FIO2 ≥ 0.9) uniformly causes severe hyperoxic acute lung injury (HALI) and, without a reduction of FIO2, is usually fatal. The severity of HALI is directly proportional to PO2 (particularly above 450 mm Hg, or an FIO2 of 0.6) and exposure duration. Hyperoxia produces extraordinary amounts of reactive O2 species that overwhelms natural antioxidant defenses and destroys cellular structures through several pathways. Genetic predisposition has been shown to play an important role in HALI among animals, and some genetics-based epidemiologic research suggests that this may be true for humans as well. Clinically, the risk of HALI likely occurs when FIO2exceeds 0.7, and may become problematic when FIO2 exceeds 0.8 for an extended period of time. Both high-stretch mechanical ventilation and hyperoxia potentiate lung injury and may promote pulmonary infection. During the 1960s, confusion regarding the incidence and relevance of HALI largely reflected such issues as the primitive control of FIO2, the absence of PEEP, and the fact that at the time both ALI and ventilator-induced lung injury were unknown. The advent of PEEP and precise control over FIO2, as well as lung-protective ventilation, and other adjunctive therapies for severe hypoxemia, has greatly reduced the risk of HALI for the vast majority of patients requiring mechanical ventilation in the 21st century. However, a subset of patients with very severe ARDS requiring hyperoxic therapy is at substantial risk for developing HALI, therefore justifying the use of such adjunctive therapies. PMID:23271823

  20. Inhaled nitric oxide alleviates hyperoxia suppressed phosphatidylcholine synthesis in endotoxin-induced injury in mature rat lungs

    PubMed Central

    Gong, Xiaohui; Guo, Chunbao; Huang, Shibing; Sun, Bo

    2006-01-01

    Background We investigated efficacy of inhaled nitric oxide (NO) in modulation of metabolism of phosphatidylcholine (PC) of pulmonary surfactant and in anti-inflammatory mechanism of mature lungs with inflammatory injury. Methods Healthy adult rats were divided into a group of lung inflammation induced by i.v. lipopolysaccharides (LPS) or a normal control (C) for 24 h, and then exposed to: room air (Air), 95% oxygen (O), NO (20 parts per million, NO), both O and NO (ONO) as subgroups, whereas [3H]-choline was injected i.v. for incorporation into PC of the lungs which were processed subsequently at 10 min, 4, 8, 12 and 24 h, respectively, for measurement of PC synthesis and proinflammatory cytokine production. Results LPS-NO subgroup had the lowest level of labeled PC in total phospholipids and disaturated PC in bronchoalveolar lavage fluid and lung tissue (decreased by 46–59%), along with the lowest activity of cytidine triphosphate: phosphocholine cytidylyltransferase (-14–18%) in the lungs, compared to all other subgroups at 4 h (p < 0.01), but not at 8 and 12 h. After 24-h, all LPS-subgroups had lower labeled PC than the corresponding C-subgroups (p < 0.05). LPS-ONO had higher labeled PC in total phospholipids and disaturated PC, activity of cytidylyltransferase, and lower activity of nuclear transcription factor-κB and expression of proinflammatory cytokine mRNA, than that in the LPS-O subgroup (p < 0.05). Conclusion In LPS-induced lung inflammation in association with hyperoxia, depressed PC synthesis and enhanced proinflammatory cytokine production may be alleviated by iNO. NO alone only transiently suppressed the PC synthesis as a result of lower activity of cytidylyltransferase. PMID:16403237

  1. Stress preconditioning attenuates oxidative injury to the alveolar epithelium of the lung following haemorrhage in rats

    PubMed Central

    Pittet, J F; Lu, L N; Geiser, T; Lee, H; Matthay, M A; Welch, W J

    2002-01-01

    Inhibition of cAMP-dependent stimulation of vectorial fluid transport across the alveolar epithelium following haemorrhagic shock is mediated by reactive nitrogen species released within the airspaces of the lung. We tested here the hypothesis that the prior activation of the cellular heat shock or stress response, via exposure to either heat or geldanamycin, would attenuate the release of airspace nitric oxide (NO) responsible for the shock-mediated failure of the alveolar epithelium to respond to catecholamines in rats. Rats were haemorrhaged to a mean arterial pressure of 30–35 mmHg for 60 min, and then resuscitated with a 4 % albumin solution. Alveolar fluid clearance was measured by change in concentration of a protein solution instilled into the airspaces 5 h after the onset of haemorrhage. Stress preconditioning restored the cAMP-mediated upregulation of alveolar liquid clearance after haemorrhage. The protective effect of stress preconditioning was mediated in part by a decrease in the expression of iNOS in the lung. Specifically, stress preconditioning decreased the production of nitrite by endotoxin-stimulated alveolar macrophages removed from haemorrhaged rats or by A549 and rat alveolar epithelial type II cell monolayers stimulated with cytomix (a mixture of TNF-α, IL-1β and IFN-γ) for 24 h. In summary, these results provide the first in vivo evidence that stress preconditioning restores a normal fluid transport capacity of the alveolar epithelium in the early phase following haemorrhagic shock by attenuating NO-mediated oxidative stress to the lung epithelium. PMID:11790821

  2. Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for nuclear factor-κB

    PubMed Central

    Haddad, John J

    2002-01-01

    The primary role of pulmonary airways is to conduct air to the alveolar epithelium, where gas exchange can efficiently occur. Injuries to airways resulting from inhalation of airborne pollutants and parenteral exposure to ingested pollutants that cause oxidative stress have the potential to interfere with this process. A progressive rise of oxidative stress due to altered reduction–oxidation (redox) homeostasis appears to be one of the hallmarks of the processes that regulate gene transcription in lung physiology and pathophysiology. Reactive metabolites serve as signaling messengers for the evolution and perpetuation of the inflammatory process that is often associated with cell death and degeneration. Redox-sensitive transcription factors are often associated with the development and progression of many human disease states and inflammatory-related injury, particularly of the lung. The present review elaborates on the role of the redox-sensitive and oxygen-sensitive transcription factor NF-κB in mediating lung injury. Changes in the pattern of gene expression through regulatory transcription factors are crucial components of the machinery that determines cellular responses to oxidative and redox perturbations. Additionally, the discussion of the possible therapeutic approaches of antioxidants, thiol-related compounds and phosphodiesterase inhibitors as anti-inflammatory agents will thereby help understand the oxidant/redox-mediated lung injury mechanisms. PMID:12493069

  3. Potential Biochemical Mechanisms of Lung Injury in Diabetes

    PubMed Central

    Zheng, Hong; Wu, Jinzi; Jin, Zhen; Yan, Liang-Jun

    2017-01-01

    Accumulating evidence has shown that the lung is one of the target organs for microangiopathy in patients with either type 1 or type 2 diabetes mellitus (DM). Diabetes is associated with physiological and structural abnormalities in the diabetic lung concurrent with attenuated lung function. Despite intensive investigations in recent years, the pathogenic mechanisms of diabetic lung injury remain largely elusive. In this review, we summarize currently postulated mechanisms of diabetic lung injury. We mainly focus on the pathogenesis of diabetic lung injury that implicates key pathways, including oxidative stress, non-enzymatic protein glycosylation, polyol pathway, NF-κB pathway, and protein kinase c pathway. We also highlight that while numerous studies have mainly focused on tissue or cell damage in the lung, studies focusing on mitochondrial dysfunction in the diabetic lung have remained sketchy. Hence, further understanding of mitochondrial mechanisms of diabetic lung injury should provide invaluable insights into future therapeutic approaches for diabetic lung injury. PMID:28203478

  4. OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM)

    EPA Science Inventory

    OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...

  5. Biomarkers in acute lung injury.

    PubMed

    Mokra, Daniela; Kosutova, Petra

    2015-04-01

    Acute respiratory distress syndrome (ARDS) and its milder form acute lung injury (ALI) may result from various diseases and situations including sepsis, pneumonia, trauma, acute pancreatitis, aspiration of gastric contents, near-drowning etc. ALI/ARDS is characterized by diffuse alveolar injury, lung edema formation, neutrophil-derived inflammation, and surfactant dysfunction. Clinically, ALI/ARDS is manifested by decreased lung compliance, severe hypoxemia, and bilateral pulmonary infiltrates. Severity and further characteristics of ALI/ARDS may be detected by biomarkers in the plasma and bronchoalveolar lavage fluid (or tracheal aspirate) of patients. Changed concentrations of individual markers may suggest injury or activation of the specific types of lung cells-epithelial or endothelial cells, neutrophils, macrophages, etc.), and thereby help in diagnostics and in evaluation of the patient's clinical status and the treatment efficacy. This chapter reviews various biomarkers of acute lung injury and evaluates their usefulness in diagnostics and prognostication of ALI/ARDS.

  6. [Ischemia-reperfusion injury after lung transplantation].

    PubMed

    Gennai, Stéphane; Pison, Christophe; Briot, Raphaël

    2014-09-01

    Lung ischemia-reperfusion is characterized by diffuse alveolar damage arising from the first hours after transplantation. The first etiology of the primary graft dysfunction in lung is ischemia-reperfusion. It is burdened by an important morbi-mortality. Lung ischemia-reperfusion increases the oxidative stress, inactivates the sodium pump, increases the intracellular calcium, leads to cellular death and the liberation of pro-inflammatory mediators. Researches relative to the reduction of the lung ischemia-reperfusion injuries are numerous but few of them found a place in common clinical practice, because of an insufficient level of proofs. Ex vivolung evaluation is a suitable technique in order to evaluate therapeutics supposed to limit lung ischemia-reperfusion injuries.

  7. Brain injury requires lung protection

    PubMed Central

    Lopez-Aguilar, Josefina

    2015-01-01

    The paper entitled “The high-mobility group protein B1-Receptor for advanced glycation endproducts (HMGB1-RAGE) axis mediates traumatic brain injury (TBI)-induced pulmonary dysfunction in lung transplantation” published recently in Science Translational Medicine links lung failure after transplantation with alterations in the axis HMGB1-RAGE after TBI, opening a new field for exploring indicators for the early detection of patients at risk of developing acute lung injury (ALI). The lung is one of the organs most vulnerable to the inflammatory cascade triggered by TBI. HMGB1 is an alarm in that can be released from activated immune cells in response to tissue injury. Increased systemic HMGB1 concentration correlates with poor lung function before and after lung transplant, confirming its role in acute ALI after TBI. HMGB1 exerts its influence by interacting with several receptors, including the RAGE receptor. RAGE also plays an important role in the onset of innate immune inflammatory responses, and systemic levels of RAGE are strongly associated with ALI and clinical outcomes in ventilator-induced lung injury. RAGE ligation to HMGB1 triggers the amplification of the inflammatory cascade involving nuclear factor-κB (NF-κB) activation. Identifying early biomarkers that mediate pulmonary dysfunction will improve outcomes not only in lung transplantation, but also in other scenarios. These novel findings show that upregulation of the HMGB1-RAGE axis plays an important role in brain-lung crosstalk. PMID:26046092

  8. Lung Injury After One-Lung Ventilation: A Review of the Pathophysiologic Mechanisms Affecting the Ventilated and the Collapsed Lung.

    PubMed

    Lohser, Jens; Slinger, Peter

    2015-08-01

    Lung injury is the leading cause of death after thoracic surgery. Initially recognized after pneumonectomy, it has since been described after any period of 1-lung ventilation (OLV), even in the absence of lung resection. Overhydration and high tidal volumes were thought to be responsible at various points; however, it is now recognized that the pathophysiology is more complex and multifactorial. All causative mechanisms known to trigger ventilator-induced lung injury have been described in the OLV setting. The ventilated lung is exposed to high strain secondary to large, nonphysiologic tidal volumes and loss of the normal functional residual capacity. In addition, the ventilated lung experiences oxidative stress, as well as capillary shear stress because of hyperperfusion. Surgical manipulation and/or resection of the collapsed lung may induce lung injury. Re-expansion of the collapsed lung at the conclusion of OLV invariably induces duration-dependent, ischemia-reperfusion injury. Inflammatory cytokines are released in response to localized injury and may promote local and contralateral lung injury. Protective ventilation and volatile anesthesia lessen the degree of injury; however, increases in biochemical and histologic markers of lung injury appear unavoidable. The endothelial glycocalyx may represent a common pathway for lung injury creation during OLV, because it is damaged by most of the recognized lung injurious mechanisms. Experimental therapies to stabilize the endothelial glycocalyx may afford the ability to reduce lung injury in the future. In the interim, protective ventilation with tidal volumes of 4 to 5 mL/kg predicted body weight, positive end-expiratory pressure of 5 to 10 cm H2O, and routine lung recruitment should be used during OLV in an attempt to minimize harmful lung stress and strain. Additional strategies to reduce lung injury include routine volatile anesthesia and efforts to minimize OLV duration and hyperoxia.

  9. Protective Effects of Dioscin against Lipopolysaccharide-Induced Acute Lung Injury through Inhibition of Oxidative Stress and Inflammation

    PubMed Central

    Yao, Hong; Sun, Yiping; Song, Shasha; Qi, Yan; Tao, Xufeng; Xu, Lina; Yin, Lianhong; Han, Xu; Xu, Youwei; Li, Hua; Sun, Huijun; Peng, Jinyong

    2017-01-01

    The protective effects of dioscin, a natural steroidal saponin from some medicinal plants including Dioscorea nipponica Makino, against lipopolysaccharide (LPS)- induced acute liver and renal damages have been reported in our previous works. However, the actions of dioscin against LPS-induced acute lung injury (ALI) is still unknown. In the present study, we investigated the effects and mechanisms of dioscin against LPS-induced ALI in vitro and in vivo. The results showed that dioscin obviously inhibited cell proliferation and markedly decreased reactive oxidative species level in 16HBE cells treated by LPS. In addition, dioscin significantly protected LPS-induced histological changes, inhibited the infiltration of inflammatory cells, as well as decreased the levels of MDA, SOD, NO and iNOS in mice and rats (p < 0.05). Mechanistically, dioscin significantly decreased the protein levels of TLR4, MyD88, TRAF6, TKB1, TRAF3, phosphorylation levels of PI3K, Akt, IκBα, NF-κB, and the mRNA levels of IL-1β, IL-6, and TNF-α against oxidative stress and inflammation (p < 0.05). Dioscin significantly reduced the overexpression of TLR4, and obviously down-regulated the levels of MyD88, TRAF6, TKB1, TRAF3, p-PI3K, p-Akt, p-IκBα, and p-NF-κB. These findings provide new perspectives for the study of ALI. Dioscin has protective effects on LPS-induced ALI via adjusting TLR4/MyD88- mediated oxidative stress and inflammation, which should be a potent drug in the treatment of ALI. PMID:28377715

  10. Radionuclide injury to the lung.

    PubMed Central

    Dagle, G E; Sanders, C L

    1984-01-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequency observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. PMID:6376095

  11. Association between inflammatory mediators and response to inhaled nitric oxide in a model of endotoxin-induced lung injury

    PubMed Central

    Trachsel, Sebastien; Deby-Dupont, Ginette; Maurenbrecher, Edwige; Nys, Monique; Lamy, Maurice; Hedenstierna, Göran

    2008-01-01

    Introduction Inhaled nitric oxide (INO) allows selective pulmonary vasodilation in acute respiratory distress syndrome and improves PaO2 by redistribution of pulmonary blood flow towards better ventilated parenchyma. One-third of patients are nonresponders to INO, however, and it is difficult to predict who will respond. The aim of the present study was to identify, within a panel of inflammatory mediators released during endotoxin-induced lung injury, specific mediators that are associated with a PaO2 response to INO. Methods After animal ethics committee approval, pigs were anesthetized and exposed to 2 hours of endotoxin infusion. Levels of cytokines, prostanoid, leucotriene and endothelin-1 (ET-1) were sampled prior to endotoxin exposure and hourly thereafter. All animals were exposed to 40 ppm INO: 28 animals were exposed at either 4 hours or 6 hours and a subgroup of nine animals was exposed both at 4 hours and 6 hours after onset of endotoxin infusion. Results Based on the response to INO, the animals were retrospectively placed into a responder group (increase in PaO2 ≥ 20%) or a nonresponder group. All mediators increased with endotoxin infusion although no significant differences were seen between responders and nonresponders. There was a mean difference in ET-1, however, with lower levels in the nonresponder group than in the responder group, 0.1 pg/ml versus 3.0 pg/ml. Moreover, five animals in the group exposed twice to INO switched from responder to nonresponder and had decreased ET-1 levels (3.0 (2.5 to 7.5) pg/ml versus 0.1 (0.1 to 2.1) pg/ml, P < 0.05). The pulmonary artery pressure and ET-1 level were higher in future responders to INO. Conclusions ET-1 may therefore be involved in mediating the response to INO. PMID:18954441

  12. NMDA Receptor Antagonist Attenuates Bleomycin-Induced Acute Lung Injury

    PubMed Central

    Li, Yang; Liu, Yong; Peng, XiangPing; Liu, Wei; Zhao, FeiYan; Feng, DanDan; Han, JianZhong; Huang, YanHong; Luo, SiWei; Li, Lian; Yue, Shao Jie; Cheng, QingMei; Huang, XiaoTing; Luo, ZiQiang

    2015-01-01

    Background Glutamate is a major neurotransmitter in the central nervous system (CNS). Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR), causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice. Methods C57BL/6 mice were intratracheally injected with bleomycin (BLM) to induce lung injury. Mice were randomized to receive saline, memantine (Me), BLM, BLM plus Me. Lungs and BALF were harvested on day 3 or 7 for further evaluation. Results BLM caused leukocyte infiltration, pulmonary edema and increase in cytokines, and imposed significant oxidative stress (MDA as a marker) in lungs. Memantine significantly mitigated the oxidative stress, lung inflammatory response and acute lung injury caused by BLM. Moreover, activation of NMDAR enhances CD11b expression on neutrophils. Conclusions Memantine mitigates oxidative stress, lung inflammatory response and acute lung injury in BLM challenged mice. PMID:25942563

  13. Mice Deficient in the Gene for Cytochrome P450 (CYP)1A1 Are More Susceptible Than Wild-Type to Hyperoxic Lung Injury: Evidence for Protective Role of CYP1A1 Against Oxidative Stress

    PubMed Central

    Wang, Lihua; Wang, Gangduo; Couroucli, Xanthi I.; Shivanna, Binoy; Welty, Stephen E.; Barrios, Roberto; Khan,  M. Firoze; Nebert, Daniel W.; Roberts, L. Jackson; Moorthy, Bhagavatula

    2014-01-01

    Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known. In this investigation, we hypothesized that Cyp1a1(–/–) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(–/–) mice were exposed to hyperoxia (>95% O2) or room air for 24–72 h. The Cyp1a1(–/–) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24–48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(–/–) mice showed higher levels after 48–72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury. PMID:24893714

  14. Teduglutide, a glucagon-like peptide 2 analogue: a novel protective agent with anti-apoptotic and anti-oxidant properties in mice with lung injury.

    PubMed

    Arda-Pirincci, Pelin; Oztay, Fusun; Bayrak, Bertan Boran; Yanardag, Refiye; Bolkent, Sehnaz

    2012-12-01

    Teduglutide is a long-acting synthetic analogue of human glucagon-like peptide-2 (GLP-2). GLP-2 regulates cell proliferation and apoptosis as well as normal physiology in the gastrointestinal tract. In the present study, possible cytoprotective and reparative effects of teduglutide were analyzed on a mouse model with lung injury induced by tumor necrosis factor-alpha (TNF-α) and actinomycin D (Act D). BALB/c mice were divided into six groups: control mice (I), mice injected intraperitoneally with 15 μg/kg TNF-α (II), 800 μg/kg Act D (III), Act D 2 min prior to TNF-α administration with the same doses (IV), mice injected subcutaneously with 200 μg/kg teduglutide every 12h for 10 consecutive days (V), and mice given Act D 2 min prior to TNF-α administration on day 11 after receiving teduglutide for 10 days (VI). The TNF-α/Act D administration made the lung a sensitive organ to damage. Mice lung subjected to TNF-α/Act D were characterized by the disruption of alveolar wall, induced pulmonary endothelial/epithelial cell apoptosis and expression of active caspase-3. These mice exhibited an increase in lipid peroxidation, glutathione levels, and activities of myeloperoxidase, superoxide dismutase, catalase, glutathione peroxidase and xanthine oxidase, as well as reduced tissue factor and sodium-potassium/ATPase activities. Teduglutide pretreatment regressed the structural damage, cell apoptosis and oxidative stress by reducing lipid peroxidation in mice received TNF-α/Act D. GLP-2 receptors were present on the cell membrane of type II pneumocytes and interstitial cells. Thus, teduglutide can be suggested as a novel protective agent, which possesses anti-apoptotic and anti-oxidant properties, against lung injury.

  15. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  16. Visualizing the Propagation of Acute Lung Injury

    PubMed Central

    Cereda, Maurizio; Xin, Yi; Meeder, Natalie; Zeng, Johnathan; Jiang, YunQing; Hamedani, Hooman; Profka, Harrilla; Kadlecek, Stephen; Clapp, Justin; Deshpande, Charuhas G.; Wu, Jue; Gee, James C.; Kavanagh, Brian P.; Rizi, Rahim R.

    2015-01-01

    Background Mechanical ventilation worsens acute respiratory distress syndrome (ARDS), but this secondary ‘ventilator-associated’ injury is variable and difficult to predict. We aimed to visualize the propagation of such ventilator-induced injury, in the presence (and absence) of a primary underlying lung injury, and to determine the predictors of propagation. Methods Anesthetized rats (n=20) received acid aspiration (HCl) followed by ventilation with moderate tidal volume (VT). In animals surviving ventilation for at least two hours, propagation of injury was quantified using serial computed tomography (CT). Baseline lung status was assessed by oxygenation, lung weight, and lung strain (VT/expiratory lung volume). Separate groups of rats without HCl aspiration were ventilated with large (n=10) or moderate (n=6) VT. Results In 15 rats surviving longer than two hours, CT opacities spread outwards from the initial site of injury. Propagation was associated with higher baseline strain (propagation vs. no propagation, mean ± SD: 1.52 ± 0.13 vs. 1.16 ± 0.20, p<0.01), but similar oxygenation and lung weight. Propagation did not occur where baseline strain <1.29. In healthy animals, large VT caused injury that was propagated inwards from the lung periphery; in the absence of preexisting injury, propagation did not occur where strain was <2.0. Conclusions Compared with healthy lungs, underlying injury causes propagation to occur at a lower strain threshold and, it originates at the site of injury; this suggests that tissue around the primary lesion is more sensitive. Understanding how injury is propagated may ultimately facilitate a more individualized monitoring or management. PMID:26536308

  17. Angiotensin receptor blockade attenuates cigarette smoke-induced lung injury and rescues lung architecture in mice.

    PubMed

    Podowski, Megan; Calvi, Carla; Metzger, Shana; Misono, Kaori; Poonyagariyagorn, Hataya; Lopez-Mercado, Armando; Ku, Therese; Lauer, Thomas; McGrath-Morrow, Sharon; Berger, Alan; Cheadle, Christopher; Tuder, Rubin; Dietz, Harry C; Mitzner, Wayne; Wise, Robert; Neptune, Enid

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-β signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-β signaling would protect against CS-induced lung injury. We first confirmed that TGF-β signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-β signaling in CS-exposed mice. Systemic administration of a TGF-β-specific neutralizing antibody normalized TGF-β signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-β signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-β signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-β-targeted therapies for patients with COPD.

  18. Lung injury-dependent oxidative status and chymotrypsin-like activity of skeletal muscles in hamsters with experimental emphysema

    PubMed Central

    2013-01-01

    Background Peripheral skeletal muscle is altered in patients suffering from emphysema and chronic obstructive pulmonary disease (COPD). Oxidative stress have been demonstrated to participate on skeletal muscle loss of several states, including disuse atrophy, mechanical ventilation, and chronic diseases. No evidences have demonstrated the occurance in a severity manner. Methods We evaluated body weight, muscle loss, oxidative stress, and chymotrypsin-like proteolytic activity in the gastrocnemius muscle of emphysemic hamsters. The experimental animals had 2 different severities of lung damage from experimental emphysema induced by 20 mg/mL (E20) and 40 mg/mL (E40) papain. Results The severity of emphysema increased significantly in E20 (60.52 ± 2.8, p < 0.05) and E40 (52.27 ± 4.7; crossed the alveolar intercepts) groups. As compared to the control group, there was a reduction on body (171.6 ± 15.9 g) and muscle weight (251.87 ± 24.87 mg) in the E20 group (157.5 ± 10.3 mg and 230.12 ± 23.52 mg, for body and muscle weight, respectively), which was accentuated in the E40 group (137.4 ± 7.2 g and 197.87 ± 10.49 mg, for body and muscle weight, respectively). Additionally, the thiobarbituric acid reactive substances (TBARS), tert-butyl hydroperoxide-initiated chemiluminescence (CL), carbonylated proteins, and chymotrypsin-like proteolytic activity were elevated in the E40 group as compared to the E20 group (p < 0.05 for all comparisons). The severity of emphysema significantly correlated with the progressive increase in CL (r = −0.95), TBARS (r = −0.98), carbonyl proteins (r = −0.99), and chymotrypsin-like proteolytic activity (r = −0.90). Furthermore, augmentation of proteolytic activity correlated significantly with CL (r = 0.97), TBARS (r = 0.96), and carbonyl proteins (r = 0.91). Conclusions Taken together, the results of the present study suggest that muscle atrophy observed in this model of emphysema is mediated by increased muscle chymotrypsin

  19. Nicotinamide Exacerbates Hypoxemia in Ventilator-Induced Lung Injury Independent of Neutrophil Infiltration

    PubMed Central

    Jones, Heather D.; Yoo, Jeena; Crother, Timothy R.; Kyme, Pierre; Ben-Shlomo, Anat; Khalafi, Ramtin; Tseng, Ching W.; Parks, William C.; Arditi, Moshe

    2015-01-01

    Background Ventilator-induced lung injury is a form of acute lung injury that develops in critically ill patients on mechanical ventilation and has a high degree of mortality. Nicotinamide phosphoribosyltransferase is an enzyme that is highly upregulated in ventilator-induced lung injury and exacerbates the injury when given exogenously. Nicotinamide (vitamin B3) directly inhibits downstream pathways activated by Nicotinamide phosphoribosyltransferase and is protective in other models of acute lung injury. Methods We administered nicotinamide i.p. to mice undergoing mechanical ventilation with high tidal volumes to study the effects of nicotinamide on ventilator-induced lung injury. Measures of injury included oxygen saturations and bronchoalveolar lavage neutrophil counts, protein, and cytokine levels. We also measured expression of nicotinamide phosophoribosyltransferase, and its downstream effectors Sirt1 and Cebpa, Cebpb, Cebpe. We assessed the effect of nicotinamide on the production of nitric oxide during ventilator-induced lung injury. We also studied the effects of ventilator-induced lung injury in mice deficient in C/EBPε. Results Nicotinamide treatment significantly inhibited neutrophil infiltration into the lungs during ventilator-induced lung injury, but did not affect protein leakage or cytokine production. Surprisingly, mice treated with nicotinamide developed significantly worse hypoxemia during mechanical ventilation. This effect was not linked to increases in nitric oxide production or alterations in expression of Nicotinamide phosphoribosyl transferase, Sirt1, or Cebpa and Cebpb. Cebpe mRNA levels were decreased with either nicotinamide treatment or mechanical ventilation, but mice lacking C/EBPε developed the same degree of hypoxemia and ventilator-induced lung injury as wild-type mice. Conclusions Nicotinamide treatment during VILI inhibits neutrophil infiltration of the lungs consistent with a strong anti-inflammatory effect, but

  20. Ozone therapy ameliorates paraquat-induced lung injury in rats.

    PubMed

    Kaldirim, Umit; Uysal, Bulent; Yuksel, Ramazan; Macit, Enis; Eyi, Yusuf E; Toygar, Mehmet; Tuncer, Salim K; Ardic, Sukru; Arziman, Ibrahim; Aydin, Ibrahim; Oztas, Yesim; Karslioglu, Yildirim; Topal, Turgut

    2014-12-01

    Paraquat (PQ) overdose can cause acute lung injury and death. Ozone therapy (OT) was previously demonstrated to alleviate inflammation and necrosis in various pathologies. We therefore hypothesized that OT has ameliorative and preventive effects on PQ-induced lung damage due to anti-inflammatory and antioxidants properties. Sprague-Dawley rats (n = 24) were separated into three groups: sham, PQ, and PQ+OT groups. 15 mg/kg PQ was administered intraperitoneally in PQ and PQ+OT groups to induce experimental lung injury. One hour after PQ treatment, PQ+OT group was administered a single dose of ozone-oxygen mixture (1 mg/kg/day) by intraperitoneal route for four consecutive days. The animals were sacrificed on fifth day after PQ administration. Blood samples and lung tissues were collected to evaluate the inflammatory processes, antioxidant defense and pulmonary damage. Serum lactate dehydrogenase (LDH) and neopterin levels, tissue oxidative stress parameters, total TGF-β1 levels, and histological injury scores in PQ+OT group were significantly lower than PQ group (P<0.05, PQ vs. PQ+OT). Total antioxidant capacity in PQ+OT group was significantly higher than PQ group (P < 0.05, PQ+OT vs. PQ). These findings suggest that outcome in PQ-induced lung injury may be improved by using OT as an adjuvant therapy.

  1. L-arginine attenuates acute lung injury after smoke inhalation and burn injury in sheep.

    PubMed

    Murakami, Kazunori; Enkhbaatar, Perenlei; Yu, Yong-Ming; Traber, Lillian D; Cox, Robert A; Hawkins, Hal K; Tompkins, Ronald G; Herndon, David; Traber, Daniel L

    2007-10-01

    Thermal injury results in reduced plasma levels of arginine (Arg). With reduced Arg availability, NOS produces superoxide instead of NO. We hypothesized that Arg supplementation after burn and smoke inhalation (B + S) injury would attenuate the acute insult to the lungs and, thus, protect pulmonary function. Seventeen Suffolk ewes (n = 17) were randomly divided into three groups: (1) sham injury group (n = 6), (2) B + S injury plus saline treatment (n = 6), and (3) B + S injury plus L-ARG infusion at 57 mg.kg(-1).h(-1) (n = 5). Burn and smoke inhalation injury was induced by standardized procedures, including a 40% area full thickness flame burn combined with 48 breaths of smoke from burning cottons. All animals were immediately resuscitated by Ringer solution and supported by mechanical ventilation for 48 h, during which various variables of pulmonary function were monitored. The results demonstrated that Arg treatment attenuated the decline of plasma Arg concentration after B + S injury. A higher plasma Arg concentration was associated with a less decline in Pao2/Fio2 ratio and a reduced extent of airway obstruction after B + S injury. Histopathological examinations also indicated a remarkably reduced histopathological scores associated with B + S injury. Nitrotyrosine stain in lung tissue was positive after B + S injury, but was significantly reduced in the group with Arg. Therefore, L-Arg supplementation improved gas exchange and pulmonary function in ovine after B + S injury via its, at least in part, effect on reduction of oxidative stress through the peroxynitrite pathway.

  2. Galangin dampens mice lipopolysaccharide-induced acute lung injury.

    PubMed

    Shu, Yu-Sheng; Tao, Wei; Miao, Qian-Bing; Lu, Shi-Chun; Zhu, Ya-Bing

    2014-10-01

    Galangin, an active ingredient of Alpinia galangal, has been shown to possess anti-inflammatory and antioxidant activities. Inflammation and oxidative stress are known to play vital effect in the pathogenesis of acute lung injury (ALI). In this study, we determined whether galangin exerts lung protection in lipopolysaccharide (LPS)-induced ALI. Male BALB/c mice were randomized to receive galangin or vehicle intraperitoneal injection 3 h after LPS challenge. Samples were harvested 24 h post LPS administration. Galangin administration decreased biochemical parameters of oxidative stress and inflammation, and improved oxygenation and lung edema in a dose-dependent manner. These protective effects of galangin were associated with inhibition of nuclear factor (NF)-κB and upregulation of heme oxygenase (HO)-1. Galangin reduces LPS-induced ALI by inhibition of inflammation and oxidative stress.

  3. Combined effect of low-dose nitric oxide gas inhalation with partial liquid ventilation on hemodynamics, pulmonary function, and gas exchange in acute lung injury of newborn piglets.

    PubMed Central

    Choi, Chang Won; Hwang, Jong Hee; Chang, Yun Sil; Park, Won Soon

    2003-01-01

    We conducted a randomized animal study to determine whether there is a cumulative effect on hemodynamics, pulmonary function, and gas exchange when low-dose nitric oxide (NO) is added to partial liquid ventilation (PLV) in acute lung injury. Eighteen newborn piglets were saline-lavaged repeatedly, and randomly divided into two groups: PLV with perfluorocarbon group (n=8) and lavage only (control) group (n=10). Perfluorodecalin (30 mL/kg) was instilled into the endotracheal tube for 30 min, followed by 5-10 mL/kg/hr. Fifteen minutes after the completion of perfluorodecalin dosing, NO (10 ppm) was added to the inspiratory gas in an "on/off" manner. Perfluorodecalin instillation produced a significant improvement in gas exchange, pulmonary mechanics, shunt, and pulmonary arterial pressure (PAP). The addition of NO produced a further significant improvement in PaO2 and PAP. The "on/off" response to NO was seen apparently in PAP, PaO2, dynamic compliance, and shunt. All the variables in control group were remained at near the after-lavage levels without significant improvements until the end of the experiment. We concluded that NO might have a cumulative effect on gas exchange when combined with PLV, and this might be attributable to deceased PAP and V/Q mismatching. PMID:14676437

  4. DEPLETION OF IRON AND ASCORBATE IN RODENTS DIMINISHES LUNG INJURY AFTER SILICA

    EPA Science Inventory

    Exposures of the lung to iron chelates can be associated with an injury. The catalysis of oxygen-based free radicals is postulated to participate in this injury. Such oxidant generation by mineral oxide particles can be dependent on availability of both iron and a reductant. We t...

  5. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    SciTech Connect

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  6. Lung oxidative damage by hypoxia.

    PubMed

    Araneda, O F; Tuesta, M

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.

  7. Lung Oxidative Damage by Hypoxia

    PubMed Central

    Araneda, O. F.; Tuesta, M.

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described. PMID:22966417

  8. Senegenin Ameliorate Acute Lung Injury Through Reduction of Oxidative Stress and Inhibition of Inflammation in Cecal Ligation and Puncture-Induced Sepsis Rats.

    PubMed

    Liu, Chun-Hong; Zhang, Wei-Dong; Wang, Jian-Jie; Feng, Shan-Dan

    2016-04-01

    The purpose of this study was to assess the protective effect of senegenin on acute lung injury (ALI) in rats induced by sepsis. Rat ALI model was reproduced by cecal ligation and puncture (CLP). All rats were randomly divided into five groups: group 1 (control), group 2 (CLP), group 3 (CLP + senegenin 15 mg/kg), group 4 (CLP + senegenin 30 mg/kg), and group 5 (CLP + senegenin 60 mg/kg). CLP + senegenin groups received senegenin by gavage daily for consecutive 5 days, respectively, while the mice in control and CLP groups were given an equivalent volume of saline. We detected the lung wet/dry weight ratios and the histopathology of the lung. The levels of lung tissue myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were determined. Meanwhile, the nuclear factor-kappa B (NF-κB) activation, tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β) levels were studied. The results demonstrated that senegenin treatment significantly attenuated CLP-induced lung injury, including reduction of lung wet/dry weight ratio, protein leak, infiltration of leukocytes, and MPO activity. In addition, senegenin markedly decreased MDA content and increased SOD activity and GSH level. Serum levels of TNF-α and IL-1β were also decreased by senegenin administration. Furthermore, senegenin administration inhibited the nuclear translocation of NF-κB in the lungs. These findings indicate that senegenin exerts protective effects on CLP-induced septic rats. Senegenin may be a potential therapeutic agent against sepsis.

  9. Smoke Inhalation Lung Injury: An Update

    PubMed Central

    Demling, Robert H.

    2008-01-01

    Objectives: The purpose of this study is to present a multifaceted, definitive review of the past and current status of smoke inhalation injury. History along with current understanding of anatomical, physiology, and biologic components will be discussed. Methods: The literature has been reviewed from the early onset of the concept of smoke inhalation in the 1920s to our current understanding as of 2007. Results: The results indicate that the current pathophysiologic concept is of a disease process that leads to immediate and delayed pulmonary injury best managed by aggressive physiologic support. Management approaches for the biochemical changes have not kept up with current knowledge. The lung injury process is activated by toxins in the smoke's gas and particle components and perpetuated by a resulting lung inflammation. This inflammatory process becomes self-perpetuating through the activation of a large number of inflammatory cascades. In addition, smoke injury leads to significant systemic abnormalities injuring other organs and accentuating the burn injury process and subsequently leading to mediator-induced cellular injury leading potentially to multisystem organ failure. Conclusions: Smoke inhalation injury results in the anatomic finding of denuded and sometimes sloughed airways mucosa. Physiologic findings include small airways containing fibrin casts of mucosa and neutrophils. Airway hyper-reactivity results as well, leading to further decreased collapse, causing obstruction. PMID:18552974

  10. Neurological outcome after experimental lung injury.

    PubMed

    Bickenbach, Johannes; Biener, Ingeborg; Czaplik, Michael; Nolte, Kay; Dembinski, Rolf; Marx, Gernot; Rossaint, Rolf; Fries, Michael

    2011-12-15

    We examined the influences of acute lung injury and hypoxia on neurological outcome. Functional performance was assessed using a neurocognitive test and a neurologic deficit score (NDS) five days before. On experimental day, mechanically ventilated pigs were randomized to hypoxia only (HO group, n=5) or to acute lung injury (ALI group, n=5). Hemodynamics, respiratory mechanics, systemic cytokines and further physiologic variables were obtained at baseline, at the time of ALI, 2, 4 and 8h thereafter. Subsequently, injured lungs were recruited and animals weaned from the ventilator. Neurocognitive testing was re-examined for five days. Then, brains were harvested for neurohistopathology. After the experiment, neurocognitive performance was significantly worsened and the NDS increased in the ALI group. Histopathology revealed no significant differences. Oxygenation was comparable between groups although significantly higher inspiratory pressures occured after ALI. Cytokines showed a trend towards higher levels after ALI. Neurocognitive compromise after ALI seems due to a more pronounced inflammatory response and complex mechanical ventilation.

  11. Thioredoxin-Related Mechanisms in Hyperoxic Lung Injury in Mice

    PubMed Central

    Tipple, Trent E.; Welty, Stephen E.; Rogers, Lynette K.; Hansen, Thomas N.; Choi, Young-Eun; Kehrer, James P.; Smith, Charles V.

    2007-01-01

    Reduction of glutathione disulfide (GSSG) to glutathione (GSH) by glutathione reductase (GR) enhances the efficiency of GSH-dependent antioxidant activities. However, GR-deficient (a1Neu) mice are less susceptible to acute lung injury from continuous exposure to > 95% O2 (96 h: 6.9 ± 0.1 g right lung/kg body versus room air 3.6 ± 0.3) than are C3H/HeN control mice (10.6 ± 1.3 versus 4.2 ± 0.3, P < 0.001). a1Neu mice have greater hepatic thioredoxin (Trx)1 and Trx2 levels than do C3H/HeN mice, suggesting compensation for the absence of GR. a1Neu mice exposed to hyperoxia for 96 hours showed lower levels of inflammatory infiltrates in lungs than did similarly exposed C3H/HeN mice. Pretreatment with aurothioglucose (ATG), a thioredoxin reductase (TrxR) inhibitor, exacerbated the effects of hyperoxia on lung injury in a1Neu mice (11.6 ± 0.8, P < 0.001), but attenuated hyperoxic lung edema and inflammation in C3H/HeN mice (6.3 ± 0.4, P < 0.001). No consistent alterations were observed in lung GSH contents or liver GSH or GSSG levels after ATG pretreatment. The data suggest that modulation of Trx/TrxR systems might provide therapeutically useful alterations of cellular resistance to oxidant stresses. The protective effects of ATG against hyperoxic lung injury could prove to be particularly useful therapeutically. PMID:17575077

  12. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats.

    PubMed

    Liu, Rongfang; Fang, Xianhai; Meng, Chao; Xing, Jingchun; Liu, Jinfeng; Yang, Wanchao; Li, Wenzhi; Zhou, Huacheng

    2015-09-01

    Hydrogen has antioxidant and anti-inflammatory effects on lung ischemia-reperfusion injury when it is inhaled by donor or/and recipient. This study examined the effects of lung inflation with 3% hydrogen during the cold ischemia phase on lung graft function in rats. The donor lung was inflated with 3% hydrogen, 40% oxygen, and 57% nitrogen at 5 mL/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. In the control group, the donor lung was inflated with 40% oxygen and 60% nitrogen at 5 mL/kg. The recipient was euthanized 2 h after orthotropic lung transplantation. The hydrogen concentration in the donor lung during the cold ischemia phase was 1.99-3%. The oxygenation indices in the arterial blood and pulmonary vein blood were improved in the hydrogen group. The inflammation response indices, including lung W/D ratio, the myeloperoxidase activity in the grafts, and the levels of IL-8 and TNF-α in serum, were significantly lower in the hydrogen group (5.2 ± 0.8, 0.76 ± 0.32 U/g, 340 ± 84 pg/mL, and 405 ± 115 pg/mL, respectively) than those in the control group (6.5 ± 0.7, 1.1 ± 0.5 U/g, 443 ± 94 pg/mL, and 657 ± 96 pg/mL, respectively (P < 0.05), and the oxidative stress indices, including the superoxide dismutase activity and the level of malonaldehyde in lung grafts were improved after hydrogen application. Furthermore, the lung injury score determined by histopathology, the cell apoptotic index, and the caspase-3 protein expression in lung grafts were decreased after hydrogen treatment, and the static pressure-volume curve of lung graft was improved by hydrogen inflation. In conclusion, lung inflation with 3% hydrogen during the cold ischemia phase alleviated lung graft injury and improved graft function.

  13. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury

    PubMed Central

    Ávila, Leonardo C. M.; Bruggemann, Thayse R.; Bobinski, Franciane; da Silva, Morgana Duarte; Oliveira, Regiane Carvalho; Martins, Daniel Fernandes; Mazzardo-Martins, Leidiane; Duarte, Marta Maria Medeiros Frescura; de Souza, Luiz Felipe; Dafre, Alcir; Vieira, Rodolfo de Paula; Santos, Adair Roberto Soares; Bonorino, Kelly Cattelan; Hizume Kunzler, Deborah de C.

    2015-01-01

    Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL—10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (p<0.001), neutrophils and lymphocytes (p<0.001; p<0.05) in the BALF, as well as lung levels of IL-1β (p = 0.002), TNF-α (p = 0.003), IL-6 (p = 0.0001) and IFN-ϫ (p = 0.0001). However, the levels of IL-10 (p = 0.01) and IL-1ra (p = 0.0002) increased in the swimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and p<0.002). We concluded that in this experimental model, the high-intensity swimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung

  14. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury.

    PubMed

    Ávila, Leonardo C M; Bruggemann, Thayse R; Bobinski, Franciane; da Silva, Morgana Duarte; Oliveira, Regiane Carvalho; Martins, Daniel Fernandes; Mazzardo-Martins, Leidiane; Duarte, Marta Maria Medeiros Frescura; de Souza, Luiz Felipe; Dafre, Alcir; Vieira, Rodolfo de Paula; Santos, Adair Roberto Soares; Bonorino, Kelly Cattelan; Hizume Kunzler, Deborah de C

    2015-01-01

    Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL-10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (p<0.001), neutrophils and lymphocytes (p<0.001; p<0.05) in the BALF, as well as lung levels of IL-1β (p = 0.002), TNF-α (p = 0.003), IL-6 (p = 0.0001) and IFN-ϫ (p = 0.0001). However, the levels of IL-10 (p = 0.01) and IL-1ra (p = 0.0002) increased in the swimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and p<0.002). We concluded that in this experimental model, the high-intensity swimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung

  15. The Lung Alveolar Lipofibroblast: An Evolutionary Strategy Against Neonatal Hyperoxic Lung Injury

    PubMed Central

    Torday, John S.

    2014-01-01

    Abstract Significance: Oxygen, the main mode of support for premature infants with immature lungs, can cause toxicity by producing reactive oxygen species (ROS) that disrupt homeostasis; yet, these same molecules were entrained to promote vertebrate lung phylogeny. By providing a deeper understanding of this paradox, we propose physiologically rational strategies to prevent chronic lung disease (CLD) of prematurity. Recent Advances: To prevent neonatal hyperoxic lung damage biologically, we have exploited the alveolar defense mechanism(s) that evolutionarily evolved to combat increased atmospheric oxygen during the vertebrate water to land transition. Critical Issues: Over the course of vertebrate lung evolution, ROS promoted the formation of lipofibroblasts, specialized adepithelial cells, which protect the alveoli against oxidant injury; peroxisome proliferator-activated receptor gamma (PPARγ), the master switch for lipofibroblast differentiation, prevents such oxidant lung injury, both by directly promoting mesodermal differentiation and its antioxidant defenses, and indirectly by stimulating the developmental epithelial–mesenchymal paracrine interactions that have physiologically determined lung surfactant production in accord with the lung's phylogenetic adaptation to atmospheric oxygen, preventing Respiratory Distress Syndrome at birth. Future Directions: The molecular strategy (PPARγ agonists) to prevent CLD of prematurity, proposed by us, although seems to be robust, effective, and safe under experimental conditions, it awaits detailed pharmacokinetic and pharmacodynamic studies for its safe and effective clinical translation to human infants. Antioxid. Redox Signal. 21, 1893–1904. “I have procured air [oxygen]…between five and six times as good as the best common air that I have ever met with.” —Joseph Priestley, 1775 PMID:24386954

  16. Ellagic acid ameliorates lung injury after intestinal ischemia-reperfusion

    PubMed Central

    Böyük, Abdullah; Önder, Akin; Kapan, Murat; Gümüş, Metehan; Fιrat, Uğur; Başaralι, Mustafa Kemal; Alp, Harun

    2011-01-01

    Background: The aim of this study was to investigate the possible protective role of antioxidant treatment with ellagic acid (EA) on lung injury after intestinal ischemia-reperfusion (I/R) injury using biochemical and histopatological approaches. Materials and Methods: Forty rats were divided into four groups as control, control + EA, I/R, and I/R + EA. The control and control + EA groups were also anesthetized and subjected to laparotomy, but without clamp application. The control + EA and I/R + EA groups were given EA (85 mg/kg) orally prior to experiment. The I/R and I/R + EA groups underwent 30 minutes of intestinal ischemia and 1 hour of reperfusion. In all groups, serum total antioxidant capacity (TAC) and malondialdehyde (MDA) levels were determined. TAC, total oxidative status (TOS), and oxidative stress index (OSI) in lung tissue were measured. Lung tissue histopathology was also evaluated by light microscopy. Results: TAC levels were higher in control, EA, and I/R + EA groups while TOS, OSI, and MDA levels were lower in these groups compared with I/R group. Serum MDA levels were significantly higher in I/R + EA group than that of control group. Lung tissue TAC levels were lower in I/R + EA group while OSI values were higher in that groups compared with EA group. Histological tissue damage was milder in the EA treatment group than in the I/R group. Conclusion: These results suggest that EA treatment protected the rats lung tissue against intestinal I/R injury. PMID:21969793

  17. Deficiency in the divalent metal transporter 1 augments bleomycin-induced lung injury

    EPA Science Inventory

    Exposure to bleomycin can result in an inflammatory lung injury. The biological effect of this anti-neoplastic agent is dependent on its coordination of iron with subsequent oxidant generation. In lung cells, divalent metal transporter 1 (DMT1) can participate in metal transport ...

  18. Space radiation-associated lung injury in a murine model

    PubMed Central

    Pietrofesa, Ralph A.; Arguiri, Evguenia; Schweitzer, Kelly S.; Berdyshev, Evgeny V.; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S.; Yu, Yongjia; Globus, Ruth K.; Solomides, Charalambos C.; Ullrich, Robert L.; Petrache, Irina

    2014-01-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to 137Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u 56Fe ions, or 350 MeV/u 28Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy 56Fe or 28Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  19. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions.

  20. Influenza lung injury: mechanisms and therapeutic opportunities.

    PubMed

    Gregory, David J; Kobzik, Lester

    2015-11-15

    In this Perspectives, we discuss some recent developments in the pathogenesis of acute lung injury following influenza infection, with an emphasis on promising therapeutic leads. Damage to the alveolar-capillary barrier has been quantified in mice, and agents have been identified that can help to preserve barrier integrity, such as vasculotide, angiopoietin-like 4 neutralization, and sphingosine 1-phosphate mimics. Results from studies using mesenchymal stem cells have been disappointing, despite promising data in other types of lung injury. The roles of fatty acid binding protein 5, prostaglandin E2, and the interplay between IFN-γ and STAT1 in epithelial signaling during infection have been addressed in vitro. Finally, we discuss the role of autophagy in inflammatory cytokine production and the viral life cycle and the opportunities this presents for intervention.

  1. Glutathione reductase targeted to type II cells does not protect mice from hyperoxic lung injury.

    PubMed

    Heyob, Kathryn M; Rogers, Lynette K; Welty, Stephen E

    2008-12-01

    Exposure of the lung epithelium to reactive oxygen species without adequate antioxidant defenses leads to airway inflammation, and may contribute to lung injury. Glutathione peroxidase catalyzes the reduction of peroxides by oxidation of glutathione (GSH) to glutathione disulfide (GSSG), which can in turn be reduced by glutathione reductase (GR). Increased levels of GSSG have been shown to correlate negatively with outcome after oxidant exposure, and increased GR activity has been protective against hyperoxia in lung epithelial cells in vitro. We tested the hypothesis that increased GR expression targeted to type II alveolar epithelial cells would improve outcome in hyperoxia-induced lung injury. Human GR with a mitochondrial targeting sequence was targeted to mouse type II cells using the SPC promoter. Two transgenic lines were identified, with Line 2 having higher lung GR activities than Line 1. Both transgenic lines had lower lung GSSG levels and higher GSH/GSSG ratios than wild-type. Six-week-old wild-type and transgenic mice were exposed to greater than 95% O2 or room air (RA) for 84 hours. After exposure, Line 2 mice had higher right lung/body weight ratios and lavage protein concentrations than wild-type mice, and both lines 1 and 2 had lower GSSG levels than wild-type mice. These findings suggest that GSSG accumulation in the lung may not play a significant role in the development of hyperoxic lung injury, or that compensatory responses to unregulated GR expression render animals more susceptible to hyperoxic lung injury.

  2. The serpentine path to a novel mechanism-based inhibitor of acute inflammatory lung injury

    PubMed Central

    2014-01-01

    The Comroe lecture on which this review is based described my research path during the past 45 years, beginning with studies of oxidant stress (hyperoxia) and eventuating in the discovery of a synthetic inhibitor of phospholipase A2 activity (called MJ33) that prevents acute lung injury in mice exposed to lipopolysaccharide. In between were studies of lung ischemia, lung surfactant metabolism, the protein peroxiredoxin 6 and its phospholipase A2 activity, and mechanisms for NADPH oxidase activation. These seemingly unrelated research activities provided the nexus for identification of a novel target and a potentially novel therapeutic agent for prevention or treatment of acute lung injury. PMID:24744383

  3. Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury

    SciTech Connect

    Lynch, M.J.; Grum, C.M.; Gallagher, K.P.; Bolling, S.F.; Deeb, G.M.; Morganroth, M.L.

    1988-05-01

    Ischemic-reperfusion lung injury is a factor potentially limiting the usefulness of distant organ procurement for heart-lung transplantation. Toxic oxygen metabolites are considered a major etiologic factor in reperfusion injury. Although oxygen-free radicals may be generated by many mechanisms, we investigated the role of xanthine oxidase in this injury process by using lodoxamide, a xanthine oxidase inhibitor, to inhibit ischemic-reperfusion injury in an isolated rat lung model. Isolated rat lungs were perfused with physiologic salt solution (PSS) osmotically stabilized with Ficoll until circulating blood elements were nondetectable in the pulmonary venous effluent. Lungs were rendered ischemic by interrupting ventilation and perfusion for 2 hr at 37/sup 0/C. After the ischemic interval, the lungs were reperfused with whole blood and lung injury was determined by measuring the accumulation of /sup 125/I-bovine serum albumin in lung parenchyma and alveolar lavage fluid as well as by gravimetric measurements. Lung effluent was collected immediately pre- and postischemia for analysis of uric acid by high-pressure liquid chromatography. Lodoxamide (1 mM) caused significant attenuation of postischemic lung injury. Uric acid levels in the lung effluent confirmed inhibition of xanthine oxidase. Protection from injury was not complete, however, implying that additional mechanisms may contribute to ischemic-reperfusion injury in the lung.

  4. Radiation-induced lung injury

    SciTech Connect

    Rosiello, R.A.; Merrill, W.W. )

    1990-03-01

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references.

  5. Alveolar edema fluid clearance and acute lung injury.

    PubMed

    Berthiaume, Yves; Matthay, Michael A

    2007-12-15

    Although lung-protective ventilation strategies have substantially reduced mortality of acute lung injury patients there is still a need for new therapies that can further decrease mortality in patients with acute lung injury. Studies of epithelial ion and fluid transport across the distal pulmonary epithelia have provided important new concepts regarding potential new therapies for acute lung injury. Overall, there is convincing evidence that the alveolar epithelium is not only a tight epithelial barrier that resists the movement of edema fluid into the alveoli, but it is also actively involved in the transport of ions and solutes, a process that is essential for edema fluid clearance and the resolution of acute lung injury. The objective of this article is to consider some areas of recent progress in the field of alveolar fluid transport under normal and pathologic conditions. Vectorial ion transport across the alveolar and distal airway epithelia is the primary determinant of alveolar fluid clearance. The general paradigm is that active Na(+) and Cl(-) transport drives net alveolar fluid clearance, as demonstrated in several different species, including the human lung. Although these transport processes can be impaired in severe lung injury, multiple experimental studies suggest that upregulation of Na(+) and Cl(-) transport might be an effective therapy in acute lung injury. We will review mechanisms involved in pharmacological modulation of ion transport in lung injury with a special focus on the use of beta-adrenergic agonists which has generated considerable interest and is a promising therapy for clinical acute lung injury.

  6. Treatment with either obestatin or ghrelin attenuates mesenteric ischemia-reperfusion-induced oxidative injury of the ileum and the remote organ lung.

    PubMed

    Şen, Leyla Semiha; Karakoyun, Berna; Yeğen, Cumhur; Akkiprik, Mustafa; Yüksel, Meral; Ercan, Feriha; Özer, Ayşe; Yeğen, Berrak Ç

    2015-09-01

    To evaluate the effects of exogenous ghrelin or obestatin on intestinal injury and accompanying pulmonary injury, intestinal ischemia-reperfusion (I/R) was induced in rats by obstructing the superior mesenteric artery for 60min, whereas laparotomy was performed in the sham group. At the beginning of the 90-min reperfusion period, the rats were injected with obestatin (100μg/kg), ghrelin (10ng/kg), or saline intravenously (iv). At the end of reperfusion, the blood, ileum, and lung samples were taken for the histological and biochemical assays. In the saline-treated I/R group, the increased serum interleukin (IL)-1β level, high damage scores, and elevated tissue malondialdehyde level and collagen content in both tissues were significantly reduced by obestatin or ghrelin. Increased ileal myeloperoxidase activity of the saline-treated I/R group was reduced by treatment with obestatin or ghrelin, whereas increased pulmonary myeloperoxidase activity was reduced with administration of obestatin. Increased DNA fragmentation in the ileum of the saline-treated I/R group was reduced by both peptides. Elevated luminol-lucigenin chemiluminescence levels and nuclear factor kappa B (NF-κB) messenger RNA (mRNA) expression in the ileum of the saline-treated-I/R group were significantly decreased by obestatin or ghrelin treatment. I/R-induced depletion of the antioxidant glutathione in both ileal and pulmonary tissues was prevented with either obestatin or ghrelin treatment. Administration of either obestatin or ghrelin exerts similar protective effects against I/R-induced ileal and pulmonary injury, thus warranting further investigation for their possible use against ischemic intestinal injury.

  7. Protective effect of sodium aescinate on lung injury induced by methyl parathion.

    PubMed

    Du, Yuan; Wang, Tian; Jiang, Na; Ren, Ru-Tong; Zhao, De-Lu; Li, Chong; Fu, Feng-Hua

    2011-10-01

    Methyl parathion (MP) is a high venenosus insecticide. It has been used in pest control of agriculture for several years. The present study is performed to investigate the protective effect of sodium aescinate (SA) on lung injury induced by MP. Forty male Sprague-Dawley rats are randomly divided into five groups, with 8 animals in each group: control group, MP administration group, MP plus SA at doses of 0.45 mg/kg, 0.9 mg/kg and 1.8 mg/kg groups. Acetylcholinesterase (AChE) activity and nitric oxide (NO) level in plasma, myeloperoxidase (MPO) activity, NO level, and antioxidative parameters in lung tissue are assayed. Histopathological examination of lung is also performed. The results show that SA has no effect on AChE. Treatment with SA decreases the activity of MPO in lung and the level of NO in plasma and lung. The level of malondialdehyde in lung is decreased after SA treatments. SA increases the activities of superoxide dismutase, glutathione peroxidase and the content of glutathione in lung. SA administration also ameliorates lung injury induced by MP. The findings indicate that SA could protect lung injury induced by MP and the mechanism of action is related to the anti-inflammatory and anti-oxidative effect of SA.

  8. Oleic-acid-induced lung injury in the rat. Failure of indomethacin treatment or complement depletion to ablate lung injury.

    PubMed Central

    Dickey, B. F.; Thrall, R. S.; McCormick, J. R.; Ward, P. A.

    1981-01-01

    The purpose of this study was to establish a rat animal model of acute respiratory distress syndrome using the intravenous injection of oleic acid. Further, we attempted to inhibit the development of lung injury by pretreatment of the rats with indomethacin or cobra venom factor. Histologic evidence of lung injury was apparent within hours after the administration of a single intravenous injection of oleic acid. By 24 hours, interstitial and intraalveolar edema and hemorrhage were noted with vascular congestion and an extensive interstitial infiltrate. The lungs appeared virtually normal by 12 days, with no evidence of chronic lung injury. Multiple injections of oleic acid also did not progress into chronic pulmonary inflammation. Treatment of the rats with indomethacin or cobra venom factor had no effect on ablating acute lung injury. An animal model of adult respiratory distress syndrome is presented which does not progress to chronic lung injury. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7234970

  9. Amelioration of superoxide dismutase on ventilator-induced lung injury by suppressing leukocyte in the lungs and systemic circulation.

    PubMed

    Su, Chien-Ling; Du, Wen-Yuan; Chiang, Ling-Ling; Lin, Yen-Kuang; Lee, Hui-Ling; Chen, Kuan-Hao; Wang, Jiun-; Wang, David

    2013-08-31

    Superoxide dismutase (SOD) is a free radical scavenger and a broad-spectrum antioxidant. Its anti-inflammatory and immunomodulatory effects have recently been noted. We studied the effects of this antioxidant on lung damage, oxidative stress, and inflammation in a model of ventilator-induced lung injury (VILI), using 8- to 12-wk-old Sprange-Dawley rats (n = 40). Animals were randomized and evenly divided into two experimental groups, low tidal volume (V(T)) ventilation (V(T) = 9 ml/kg) and high V(T) ventilation (V(T) = 28 ml/kg). Each group was evenly divided into two subgroups: ten animals were treated with superoxide dismutase (SOD; 10,000 U/kg i.v., 2 h prior to the ventilation) and the rests were treated with vehicle. Lung injury was evaluated by histological examination, and cells counts of red blood cells (RBC) and white blood cells (WBC) in the alveoli and the septal wall thickness in lung tissues and serum lactate dehydrogenase (LDH). The lung permeability was assessed by the wet-to-dry weight ratio (W/D), lung weight to body weight ratio (LW/BW) and protein concentration in broncholavage fluid (BALF). Levels of oxidative stress and lipid peroxidation in the lungs were evaluated by tissue malondialdehyde (MDA) and methylguanidine (MG) in BALF, respectively. SOD pretreatment significantly decreased WBC counts in systemic circulation and in alveoli, and effectively attenuated high V(T) ventilation induced lung injury by reducing hyaline membrane development, septal wall thickness, lung W/D and LW/BW and serum LDH in relation to those of the control. In addition, lung tissues MDA and MG in BALF were also notably reduced.

  10. [Transfusion-related acute lung injury (TRALI)].

    PubMed

    Schweisfurth, H; Sopivnik, I; Moog, R

    2014-09-01

    Transfusion-related acute lung injury (TRALI) is primarily caused by transfusion of fresh frozen plasma or platelet concentrates and occurs by definition within 6 hours after transfusion with acute shortness of breath, hypoxemia and radiographically detectable bilateral infiltrates of the lung. Mostly leucocyte antibodies in the plasma of the blood donor (immunogenic TRALI) are responsible. Apart from antibodies, other substances such as biologically active lipids, mainly arising from the storage of platelet and red blood cell concentrates, can activate neutrophilic granulocytes and trigger a non-immunogenic TRALI. Pathophysiologically, granulocytes in the capillaries of the lung vessels release oxygen radicals and enzymes which damage the endothelial cells and cause pulmonary edema. Therapeutically, nasal oxygen administration may be sufficient. In severe cases, mechanical ventilation, invasive hemodynamic monitoring and fluid intake are required. Diuretics should be avoided. The administration of glucocorticoids is controversial. Antibody-related TRALI reactions occurred mainly after transfusion of fresh frozen plasma, which had been obtained from womenimmunized during pregnancy against leukocyte antigens. Therefore, in Germany, since 2009 only plasma from female donors without a history of prior or current pregnancy or negative testing for antibodies against HLA I, II or HNA has been used with the result that since then no TRALI-related death has been registered.

  11. Role of toxicological interactions in lung injury

    SciTech Connect

    Witschi, H.P.; Hakkinen, P.J.

    1984-04-01

    Interactions between two or more toxic agents can produce lung damage by chemical-chemical interactions, chemical-receptor interactions or by modification, by a first agent, of the cell and tissue response to a second agent. Interactions may occur by simultaneous exposure and if exposure to two agents is separated in time. Chemical-chemical interactions have been mostly studied in the toxicology of air pollutants, where it was shown that the untoward effect of certain oxidants may be enhanced in the presence of other aerosols. Interactions at the receptor site have been found in isolated perfused lung experiments. Oxygen tolerance may be an example, when pre-exposure to one concentration of oxygen mitigates later exposure to 100% oxygen by modifying cellular and enzymatic composition of the lung. Damage of the alveolar zone by the antioxidant butylated hydroxytoluene (BHT) can be greatly enhanced by subsequent exposure to oxygen concentration which, otherwise, would have little if any demonstrable effect. The synergistic interaction between BHT and oxygen results in a resulting interstitial pulmonary fibrosis. Acute or chronic lung disease may then be caused not only by one agent, but very likely in many instances by the interaction of several agents. 121 references.

  12. Prevention of lung injury in cardiac surgery: a review.

    PubMed

    Young, Robert W

    2014-06-01

    Inflammatory lung injury is an inevitable consequence of cardiac surgery with cardiopulmonary bypass. The lungs are particularly susceptible to the effects of the systemic inflammatory response to cardiopulmonary bypass. This insult is further exacerbated by a pulmonary ischemia-reperfusion injury after termination of bypass. Older patients and those with pre-existing lung disease will clearly be less tolerant of any lung injury and more likely to develop respiratory failure in the postoperative period. A requirement for prolonged ventilation has implications for morbidity, mortality, and cost of treatment. This review contains a summary of recent interventions and changes of practice that may reduce inflammatory lung injury after cardiac surgery. The review also focuses on a number of general aspects of perioperative management, which may exacerbate such injury, if performed poorly.

  13. Acute lung injury in fulminant hepatic failure following paracetamol poisoning.

    PubMed Central

    Baudouin, S. V.; Howdle, P.; O'Grady, J. G.; Webster, N. R.

    1995-01-01

    BACKGROUND--There is little information on the incidence of acute lung injury or changes in the pulmonary circulation in acute liver failure. The aim of this study was to record the incidence of acute lung injury in fulminant hepatic failure caused by paracetamol poisoning, to document the associated pulmonary circulatory changes, and to assess the impact of lung injury on patient outcome. METHODS--The degree of lung injury was retrospectively assessed by a standard scoring system (modified from Murray) in all patients with fulminant hepatic failure caused by paracetamol poisoning, admitted to the intensive care unit over a one year period. The severity of liver failure and illness, other organ system failure, and patient outcome were also analysed. RESULTS--Twenty four patients with paracetamol-induced liver failure were admitted and nine developed lung injury of whom eight (33%) had severe injury (Murray score > 2.5). In two patients hypoxaemia contributed to death. Patients with lung injury had higher median encephalopathy grades (4 v 2 in the non-injured group) and APACHE II scores (29 v 16). Circulatory failure, requiring vasoconstrictor support, occurred in all patients with lung injury but in only 40% of those without. Cerebral oedema, as detected by abnormal rises in intracranial pressure, also occurred in all patients with lung injury but in only 27% of the non-injured patients. The incidence of renal failure requiring renal replacement therapy was similar in both groups (67% and 47%). Pulmonary artery occlusion pressures were normal in the lung injury group. Cardiac output was high (median 11.2 1/min), systemic vascular resistance low (median 503 dynes/s/cm-5), and pulmonary vascular resistance low (median 70 dynes/s/cm-5), but not significantly different from the group without lung injury. Mortality was much higher in the lung injury group than in the non-injured group (89% v 13%). CONCLUSIONS--Acute lung injury was common in patients with paracetamol

  14. Bronchoscopy-Derived Correlates of Lung Injury Following Inhalational Injuries: A Prospective Obervational Study

    EPA Science Inventory

    Acute lung injury (ALI) is a major factor determining morbidity following burns and inhalational injury. In experimental models, factors potentially contributing to ALI risk include inhalation of toxins directly causing cell damage; inflammation; and infection. However, few studi...

  15. Smoked marijuana as a cause of lung injury.

    PubMed

    Tashkin, D P

    2005-06-01

    In many societies, marijuana is the second most commonly smoked substance after tobacco. While delta9-tetrahydrocannabinol (THC) is unique to marijuana and nicotine to tobacco, the smoke of marijuana, like that of tobacco, consists of a toxic mixture of gases and particulates, many of which are known to be harmful to the lung. Although far fewer marijuana than tobacco cigarettes are generally smoked on a daily basis, the pulmonary consequences of marijuana smoking may be magnified by the greater deposition of smoke particulates in the lung due to the differing manner in which marijuana is smoked. Whereas THC causes modest short-term bronchodilation, regular marijuana smoking produces a number of long-term pulmonary consequences, including chronic cough and sputum, histopathologic evidence of widespread airway inflammation and injury and immunohistochemical evidence of dysregulated growth of respiratory epithelial cells, that may be precursors to lung cancer. The THC in marijuana could contribute to some of these injurious changes through its ability to augment oxidative stress, cause mitochondrial dysfunction, and inhibit apoptosis. On the other hand, physiologic, clinical or epidemiologic evidence that marijuana smoking may lead to chronic obstructive pulmonary disease or respiratory cancer is limited and inconsistent. Habitual use of marijuana is also associated with abnormalities in the structure and function of alveolar macrophages, including impairment in microbial phagocytosis and killing that is associated with defective production of immunostimulatory cytokines and nitric oxide, thereby potentially predisposing to pulmonary infection. In view of the growing interest in medicinal marijuana, further epidemiologic studies are needed to clarify the true risks of regular marijuana smoking on respiratory health.

  16. Nilotinib ameliorates lipopolysaccharide-induced acute lung injury in rats

    SciTech Connect

    El-Agamy, Dina S.

    2011-06-01

    The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10 mg/kg) by oral gavage twice daily for 1 week prior to exposure to aerosolized LPS. At 24 h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO{sub 2}{sup -}/NO{sub 3}{sup -}) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-{alpha} (TNF-{alpha}), transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1}) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO{sub 2}{sup -}/NO{sub 3}{sup -} levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-{alpha}, TGF-{beta}{sub 1} and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells

  17. Transfusion-related acute lung injury (TRALI).

    PubMed

    Roberts, George H

    2004-01-01

    Transfusion is an inevitable event in the life of many individuals. Transfusion medicine personnel attempt to provide blood products that will result in a safe and harmless transfusion. However, this is not always possible since no laboratory test gives totally accurate and reliable results all the time and testing in routine transfusion services is devoted primarily to the identification of red blood cell problems. Thus, when patients are transfused, several possible adverse effects may occur in the transfused patient even though quality testing indicates no potential problem. These adverse events include infectious complications, hemolytic reactions, anaphylaxis, urticaria, circulatory overload, transfusion-associated graft-versus-host disease, chills and fever, immunomodulation, and transfusion-related acute lung injury (TRALI).

  18. Transfusion-related acute lung injury.

    PubMed

    Federico, Anne

    2009-02-01

    Approximately one person in 5,000 will experience an episode of transfusion-related acute lung injury (TRALI) in conjunction with the transfusion of whole blood or blood components. Its hallmarks include hypoxemia, dyspnea, fever, hypotension, and bilateral pulmonary edema (noncardiogenic). The mortality for reported cases is 16.3%. The incidence and mortality may be even higher than estimated because of under-recognition and under-reporting. Although TRALI was identified as a clinical entity in the 1980s, a lack of consensus regarding a definition was present until 2004. An exact cause has yet to be identified; however, there are two theories regarding the etiology: the "antibody" and the "two-hit" theories. These theories involve both donor and recipient factors. Further education and research are needed to assist in the development of strategies for the prevention and treatment of TRALI.

  19. Pretreatment with perfluorohexane vapor attenuates fMLP-induced lung injury in isolated perfused rabbit lungs.

    PubMed

    Bleyl, Jörg U; Heller, Axel R; Fehrenbach, Antonia; Heintz, Manuel; Fehrenbach, Heinz; Klenz, Gesa; Gama de Abreu, Marcelo; Hübler, Matthias; Spieth, Peter M; Koch, Thea

    2010-08-01

    The authors investigated the protective effects and dose dependency of perfluorohexane (PFH) vapor on leukocyte-mediated lung injury in isolated, perfused, and ventilated rabbit lungs. Lungs received either 18 vol.% (n = 7), 9 vol.% (n = 7), or 4.5 vol.% (n = 7) PFH. Fifteen minutes after beginning of PFH application, lung injury was induced with formyl-Met-Leu-Phe (fMLP). Control lungs (n = 7) received fMLP only. In addition 5 lungs (PFH-sham) remained uninjured receiving 18 vol.% PFH only. Pulmonary artery pressure (mPAP), peak inspiratory pressure (P(max)), and lung weight were monitored for 90 minutes. Perfusate samples were taken at regular intervals for analysis and representative lungs were fixed for histological analysis. In the control, fMLP application led to a significant increase of mPAP, P(max), lung weight, and lipid mediators. Pretreatment with PFH attenuated the rise in these parameters. This was accompanied by preservation of the structural integrity of the alveolar architecture and air-blood barrier. In uninjured lungs, mPAP, P(max), lung weight, and lipid mediator formation remained uneffected in the presence of PFH. The authors concluded that pretreatment with PFH vapor leads to an attenuation of leukocyte-mediated lung injury. Vaporization of perfluorocarbons (PFCs) offers new therapeutic options, making use of their protective and anti-inflammatory properties in prophylaxis or in early treatment of acute lung injury.

  20. Platelets protect lung from injury induced by systemic inflammatory response

    PubMed Central

    Luo, Shuhua; Wang, Yabo; An, Qi; Chen, Hao; Zhao, Junfei; Zhang, Jie; Meng, Wentong; Du, Lei

    2017-01-01

    Systemic inflammatory responses can severely injure lungs, prompting efforts to explore how to attenuate such injury. Here we explored whether platelets can help attenuate lung injury in mice resulting from extracorporeal circulation (ECC)-induced systemic inflammatory responses. Mice were subjected to ECC for 30 min, then treated with phosphate-buffered saline, platelets, the GPIIb/IIIa inhibitor Tirofiban, or the combination of platelets and Tirofiban. Blood and lung tissues were harvested 60 min later, and lung injury and inflammatory status were assessed. As expected, ECC caused systemic inflammation and pulmonary dysfunction, and platelet transfusion resulted in significantly milder lung injury and higher lung function. It also led to greater numbers of circulating platelet-leukocyte aggregates and greater platelet accumulation in the lung. Platelet transfusion was associated with higher production of transforming growth factor-β and as well as lower levels of tumour necrosis factor-α and neutrophil elastase in plasma and lung. None of these platelet effects was observed in the presence of Tirofiban. Our results suggest that, at least under certain conditions, platelets can protect lung from injury induced by systemic inflammatory responses. PMID:28155889

  1. Development of Antisense Therapeutic and Imaging Agents to Detect and Suppress Inducible Nitric Oxide Synthase (iNOS) Expression in Acute Lung Injury (ALI)

    NASA Astrophysics Data System (ADS)

    Shen, Yuefei

    This dissertation focuses on the development and investigation of antisense imaging and therapeutic agents, combined with nanotechnology, to detect and suppress inducible nitric oxide synthase (iNOS) expression for the diagnosis and treatment of acute lung injury (ALI). To achieve this goal, several efforts were made. The first effort was the identification and characterization of high binding affinity antisense peptide nucleic acids (PNAs) and shell-crosslinked knedel-like nanoparticle (SCK)-PNA conjugates to the iNOS mRNA. Antisense binding sites on the iNOS mRNA were first mapped by a procedure for rapidly generating a library of antisense accessible sites on native mRNAs (MASL) which involves reverse transcription of whole cell mRNA extracts with a random oligodeoxynucleotide primer followed by mRNA-specific PCR. Antisense PNAs against the antisense accessible sites were accordingly synthesized and characterized. The second effort was the investigation of cationic shell crosslinked knedel-like nanoparticle (cSCK)-mediated siRNA delivery to suppress iNOS expression for the treatment of ALI. siRNA with its unique gene-specific properties could serve as a promising therapeutic agent, however success in this area has been challenged by a lack of efficient biocompatible transfection agents. cSCK with its nanometer size and positive charge previously showed efficient cellular delivery of phosphorothioate ODNs (oligodeoxynucleotides), plasmid DNA and PNA. Herein, cSCK showed good siRNA binding and facilitated efficient siRNA transfection in HeLa, a mouse macrophage cell line and other human cell lines. cSCK led to greater silencing efficiency than Lipofectamine 2000 in HeLa cells as determined by the viability following transfection with cytotoxic and non-cytotoxic siRNAs, as well in 293T and HEK cells, and was comparable in BEAS-2B and MCF10a cells. The third effort was the preparation of an iNOS imaging probe through electrostatic complexation between a radiolabeled

  2. Endothelial dysfunction and lung capillary injury in cardiovascular diseases.

    PubMed

    Guazzi, Marco; Phillips, Shane A; Arena, Ross; Lavie, Carl J

    2015-01-01

    Cardiac dysfunction of both systolic and diastolic origins leads to increased left atrial pressure, lung capillary injury and increased resistance to gas transfer. Acutely, pressure-induced trauma disrupts the endothelial and alveolar anatomical configuration and definitively causes an impairment of cellular pathways involved in fluid-flux regulation and gas exchange efficiency, a process well identified as stress failure of the alveolar-capillary membrane. In chronic heart failure (HF), additional stimuli other than pressure may trigger the true remodeling process of capillaries and small arteries characterized by endothelial dysfunction, proliferation of myofibroblasts, fibrosis and extracellular matrix deposition. In parallel there is a loss of alveolar gas diffusion properties due to the increased path from air to blood (thickening of extracellular matrix) and loss of fine molecular mechanism involved in fluid reabsorption and clearance. Deleterious changes in gas transfer not only reflect the underlying lung tissue damage but also portend independent prognostic information and may play a role in the pathogenesis of exercise limitation and ventilatory abnormalities observed in these patients. Few currently approved treatments for chronic HF have the potential to positively affect structural remodeling of the lung capillary network; angiotensin-converting enzyme inhibitors are one of the few currently established options. Recently, more attention has been paid to novel therapies specifically targeting the nitric oxide pathway as a suitable target to improve endothelial function and permeability as well as alveolar gas exchange properties.

  3. Adenosine promotes vascular barrier function in hyperoxic lung injury

    PubMed Central

    Davies, Jonathan; Karmouty‐Quintana, Harry; Le, Thuy T.; Chen, Ning‐Yuan; Weng, Tingting; Luo, Fayong; Molina, Jose; Moorthy, Bhagavatula; Blackburn, Michael R.

    2014-01-01

    Abstract Hyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response in the lung with cellular infiltration and pulmonary edema. Adenosine is a signaling molecule that is generated extracellularly by CD73 in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to be elevated and plays a protective role in acute injury situations. In particular, ADORA2B activation is protective in acute lung injury. However, little is known about the role of adenosine signaling in hyperoxic lung injury. We hypothesized that hyperoxia‐induced lung injury leads to CD73‐mediated increases in extracellular adenosine, which is protective through ADORA2B signaling pathways. To test this hypothesis, we exposed C57BL6, CD73−/−, and Adora2B−/− mice to 95% oxygen or room air and examined markers of pulmonary inflammation, edema, and monitored lung histology. Hyperoxic exposure caused pulmonary inflammation and edema in association with elevations in lung adenosine levels. Loss of CD73‐mediated extracellular adenosine production exacerbated pulmonary edema without affecting inflammatory cell counts. Furthermore, loss of the ADORA2B had similar results with worsening of pulmonary edema following hyperoxia exposure without affecting inflammatory cell infiltration. This loss of barrier function correlated with a decrease in occludin in pulmonary vasculature in CD73−/− and Adora2B−/− mice following hyperoxia exposure. These results demonstrate that exposure to a hyperoxic environment causes lung injury associated with an increase in adenosine concentration, and elevated adenosine levels protect vascular barrier function in hyperoxic lung injury through the ADORA2B‐dependent regulation of occludin. PMID:25263205

  4. Body temperature control in sepsis-induced acute lung injury.

    PubMed

    Wang, Giueng-Chueng; Chi, Wei-Ming; Perng, Wan-Cherng; Huang, Kun-Lun

    2003-12-31

    Body temperature is precisely regulated to maintain homeostasis in homeothermic animals. Although it remains unproved whether change of body temperature constitutes a beneficial or a detrimental component of the septic response, temperature control should be an important entity in septic experiments. We investigated the effect of body temperature control on the lipopolysaccharide (LPS)-induced lung injury. Acute lung injury in rats was induced by intratracheal spray of LPS and body temperature was either clamped at 37 degrees C for 5 hours or not controlled. The severity of lung injury was evaluated at the end of the experiment. Intratracheal administration of aerosolized LPS caused a persistent decline in body temperature and a significant lung injury as indicated by an elevation of protein-concentration and LDH activity in the bronchoalveolar lavage (BAL) fluid and wet/dry weight (W/D) ratio of lungs. Administration of LPS also caused neutrophil sequestration and lipid peroxidation in the lung tissue as indicated by increase in myeloperoxidase (MPO) activity and malondialdehyde (MDA) production, respectively. Control of body temperature at 37 degrees C after LPS (LPS/BT37, n = 11) significantly reduced acute lung injury as evidenced by decreases in BAL fluid protein concentration (983 +/- 189 vs. 1403 +/- 155 mg/L) and LDH activity (56 +/- 10 vs. 123 +/- 17 deltamAbs/min) compared with the LPS group (n = 11). Although the W/D ratio of lung and MDA level were lower in the rats received temperature control compared with those received LPS only, the differences were not statistically significant. Our results demonstrated that intratracheal administration of aerosolized LPS induced a hypothermic response and acute lung injury in rats and controlling body temperature at a normal range may alleviate the LPS-induced lung injury.

  5. TYLOXAPOL CONFERS DURABLE PROTECTION AGAINST HYPEROXIC LUNG INJURY IN THE RAT

    EPA Science Inventory

    We tested the hypothesis that the non-lipid components of ExosurfR, tyloxapol (TY) and cetyl alcohol (CA), protect against hyperoxic lung injury by either 1) direct radical scavenging activity or 2) induction of the animals? endogenous anti-oxidant defenses. Adult rats were in...

  6. [Positive end-expiratory pressure : adjustment in acute lung injury].

    PubMed

    Bruells, C S; Dembinski, R

    2012-04-01

    Treatment of patients suffering from acute lung injury is a challenge for the treating physician. In recent years ventilation of patients with acute hypoxic lung injury has changed fundamentally. Besides the use of low tidal volumes, the most beneficial setting of positive end-expiratory pressure (PEEP) has been in the focus of researchers. The findings allow adaption of treatment to milder forms of acute lung injury and severe forms. Additionally computed tomography techniques to assess the pulmonary situation and recruitment potential as well as bed-side techniques to adjust PEEP on the ward have been modified and improved. This review gives an outline of recent developments in PEEP adjustment for patients suffering from acute hypoxic and hypercapnic lung injury and explains the fundamental pathophysiology necessary as a basis for correct treatment.

  7. Effect of hypertonic saline treatment on the inflammatory response after hydrochloric acid-induced lung injury in pigs

    PubMed Central

    Holms, Carla Augusto; Otsuki, Denise Aya; Kahvegian, Marcia; Massoco, Cristina Oliveira; Fantoni, Denise Tabacchi; Gutierrez, Paulo Sampaio; Junior, Jose Otavio Costa Auler

    2015-01-01

    OBJECTIVES: Hypertonic saline has been proposed to modulate the inflammatory cascade in certain experimental conditions, including pulmonary inflammation caused by inhaled gastric contents. The present study aimed to assess the potential anti-inflammatory effects of administering a single intravenous dose of 7.5% hypertonic saline in an experimental model of acute lung injury induced by hydrochloric acid. METHODS: Thirty-two pigs were anesthetized and randomly allocated into the following four groups: Sham, which received anesthesia and were observed; HS, which received intravenous 7.5% hypertonic saline solution (4 ml/kg); acute lung injury, which were subjected to acute lung injury with intratracheal hydrochloric acid; and acute lung injury + hypertonic saline, which were subjected to acute lung injury with hydrochloric acid and treated with hypertonic saline. Hemodynamic and ventilatory parameters were recorded over four hours. Subsequently, bronchoalveolar lavage samples were collected at the end of the observation period to measure cytokine levels using an oxidative burst analysis, and lung tissue was collected for a histological analysis. RESULTS: Hydrochloric acid instillation caused marked changes in respiratory mechanics as well as blood gas and lung parenchyma parameters. Despite the absence of a significant difference between the acute lung injury and acute lung injury + hypertonic saline groups, the acute lung injury animals presented higher neutrophil and tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and IL-8 levels in the bronchoalveolar lavage analysis. The histopathological analysis revealed pulmonary edema, congestion and alveolar collapse in both groups; however, the differences between groups were not significant. Despite the lower cytokine and neutrophil levels observed in the acute lung injury + hypertonic saline group, significant differences were not observed among the treated and non-treated groups. CONCLUSIONS: Hypertonic saline

  8. Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model

    PubMed Central

    Huang, Kun-Lun; Lan, Chou-Chin; Hsu, Yu-Juei; Wu, Geng-Chin; Peng, Chia-Hui

    2017-01-01

    Lung ischemia reperfusion injury (LIRI) is one of important complications following lung transplant and cardiopulmonary bypass. Although patients on hemodialysis are still excluded as lung transplant donors because of the possible effects of renal failure on the lungs, increased organ demand has led us to evaluate the influence of chronic kidney disease (CKD) on LIRI. A CKD model was induced by feeding Sprague-Dawley rats an adenine-rich (0.75%) diet for 2, 4 and 6 weeks, and an isolated rat lung in situ model was used to evaluate ischemia reperfusion (IR)-induced acute lung injury. The clinicopathological parameters of LIRI, including pulmonary edema, lipid peroxidation, histopathological changes, immunohistochemistry changes, chemokine CXCL1, inducible nitric oxide synthase (iNOS), proinflammatory and anti-inflammatory cytokines, heat shock protein expression, and nuclear factor-κB (NF-κB) activation were determined. Our results indicated that adenine-fed rats developed CKD as characterized by increased blood urea nitrogen and creatinine levels and the deposition of crystals in the renal tubules and interstitium. IR induced a significant increase in the pulmonary arterial pressure, lung edema, lung injury scores, the expression of CXCL1 mRNA, iNOS level, and protein concentration of the bronchial alveolar lavage fluid (BALF). The tumor necrosis factor-α levels in the BALF and perfusate; the interleukin-10 level in the perfusate; and the malondialdehyde levels in the lung tissue and perfusate were also significantly increased by LIRI. Counterintuitively, adenine-induced CKD significantly attenuated the severity of lung injury induced by IR. CKD rats exhibited increased heat shock protein 70 expression and decreased activation of NF-κB signaling. In conclusion, adenine-induced CKD attenuated LIRI by inhibiting the NF-κB pathway. PMID:28291795

  9. Nicotinamide Phosphoribosyltransferase Inhibitor Is a Novel Therapeutic Candidate in Murine Models of Inflammatory Lung Injury

    PubMed Central

    Moreno-Vinasco, Liliana; Quijada, Hector; Sammani, Saad; Siegler, Jessica; Letsiou, Eleftheria; Deaton, Ryan; Saadat, Laleh; Zaidi, Rafe S.; Messana, Joe; Gann, Peter H.; Machado, Roberto F.; Camp, Sara M.; Wang, Ting

    2014-01-01

    We previously identified the intracellular nicotinamide phosphoribosyltransferase (iNAMPT, aka pre–B-cell colony enhancing factor) as a candidate gene promoting acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) with circulating nicotinamide phosphoribosyltransferase potently inducing NF-κB signaling in lung endothelium. iNAMPT also synthesizes intracellular nicotinamide adenine dinucleotide (iNAD) in response to extracellular oxidative stress, contributing to the inhibition of apoptosis via ill-defined mechanisms. We now further define the role of iNAMPT activity in the pathogenesis of ARDS/VILI using the selective iNAMPT inhibitor FK-866. C57/B6 mice were exposed to VILI (40 ml/kg, 4 h) or LPS (1.5 mg/kg, 18 h) after osmotic pump delivery of FK-866 (100 mg/kg/d, intraperitoneally). Assessment of total bronchoalveolar lavage (BAL) protein, polymorphonuclear neutrophil (PMN) levels, cytokine levels (TNF-α, IL-6, IL-1α), lung iNAD levels, and injury scores revealed that FK-866–mediated iNAMPT inhibition successfully reduced lung tissue iNAD levels, BAL injury indices, inflammatory cell infiltration, and lung injury scores in LPS- and VILI-exposed mice. FK-866 further increased lung PMN apoptosis, as reflected by caspase-3 activation in BAL PMNs. These findings support iNAMPT inhibition via FK-866 as a novel therapeutic agent for ARDS via enhanced apoptosis in inflammatory PMNs. PMID:24588101

  10. Adrenomedullin ameliorates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Itoh, Takefumi; Obata, Hiroaki; Murakami, Shinsuke; Hamada, Kaoru; Kangawa, Kenji; Kimura, Hiroshi; Nagaya, Noritoshi

    2007-08-01

    Adrenomedullin (AM), an endogenous peptide, has been shown to have a variety of protective effects on the cardiovascular system. However, the effect of AM on acute lung injury remains unknown. Accordingly, we investigated whether AM infusion ameliorates lipopolysaccharide (LPS)-induced acute lung injury in rats. Rats were randomized to receive continuous intravenous infusion of AM (0.1 microg x kg(-1) x min(-1)) or vehicle through a microosmotic pump. The animals were intratracheally injected with either LPS (1 mg/kg) or saline. At 6 and 18 h after intratracheal instillation, we performed histological examination and bronchoalveolar lavage and assessed the lung wet/dry weight ratio as an index of acute lung injury. Then we measured the numbers of total cells and neutrophils and the levels of tumor necrosis factor (TNF)-alpha and cytokine-induced neutrophil chemoattractant (CINC) in bronchoalveolar lavage fluid (BALF). In addition, we evaluated BALF total protein and albumin levels as indexes of lung permeability. LPS instillation caused severe acute lung injury, as indicated by the histological findings and the lung wet/dry weight ratio. However, AM infusion attenuated these LPS-induced abnormalities. AM decreased the numbers of total cells and neutrophils and the levels of TNF-alpha and CINC in BALF. AM also reduced BALF total protein and albumin levels. In addition, AM significantly suppressed apoptosis of alveolar wall cells as indicated by cleaved caspase-3 staining. In conclusion, continuous infusion of AM ameliorated LPS-induced acute lung injury in rats. This beneficial effect of AM on acute lung injury may be mediated by inhibition of inflammation, hyperpermeability, and alveolar wall cell apoptosis.

  11. Linking lung function and inflammatory responses in ventilator-induced lung injury.

    PubMed

    Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D; Zosky, Graeme R

    2011-01-01

    Despite decades of research, the mechanisms of ventilator-induced lung injury are poorly understood. We used strain-dependent responses to mechanical ventilation in mice to identify associations between mechanical and inflammatory responses in the lung. BALB/c, C57BL/6, and 129/Sv mice were ventilated using a protective [low tidal volume and moderate positive end-expiratory pressure (PEEP) and recruitment maneuvers] or injurious (high tidal volume and zero PEEP) ventilation strategy. Lung mechanics and lung volume were monitored using the forced oscillation technique and plethysmography, respectively. Inflammation was assessed by measuring numbers of inflammatory cells, cytokine (IL-6, IL-1β, and TNF-α) levels, and protein content of the BAL. Principal components factor analysis was used to identify independent associations between lung function and inflammation. Mechanical and inflammatory responses in the lung were dependent on ventilation strategy and mouse strain. Three factors were identified linking 1) pulmonary edema, protein leak, and macrophages, 2) atelectasis, IL-6, and TNF-α, and 3) IL-1β and neutrophils, which were independent of responses in lung mechanics. This approach has allowed us to identify specific inflammatory responses that are independently associated with overstretch of the lung parenchyma and loss of lung volume. These data provide critical insight into the mechanical responses in the lung that drive local inflammation in ventilator-induced lung injury and the basis for future mechanistic studies in this field.

  12. The Field of Tissue Injury in the Lung and Airway

    PubMed Central

    Steiling, Katrina; Ryan, John; Brody, Jerome S.; Spira, Avrum

    2009-01-01

    The concept of field cancerization was first introduced over six decades ago in the setting of oral cancer. Later, field cancerization involving histologic and molecular changes of neoplasms and adjacent tissue began to be characterized in smokers with or without lung cancer. Investigators also described a diffuse, non-neoplastic field of molecular injury throughout the respiratory tract that is attributable to cigarette smoking and susceptibility to smoking-induced lung disease. The potential molecular origins of field cancerization and the field of injury following cigarette smoke exposure in lung and airway epithelia are critical to understanding the impact of the field of injury on clinical diagnostics and therapeutics for smoking-induced lung disease. PMID:19138985

  13. Role of mesenchymal cell death in lung remodeling after injury.

    PubMed Central

    Polunovsky, V A; Chen, B; Henke, C; Snover, D; Wendt, C; Ingbar, D H; Bitterman, P B

    1993-01-01

    Repair after acute lung injury requires elimination of granulation tissue from the alveolar airspace. We hypothesized that during lung repair, signals capable of inducing the death of the two principal cellular elements of granulation tissue, fibroblasts and endothelial cells, would be present at the air-lung interface. Bronchoalveolar lavage fluid obtained from patients during lung repair induced both fibroblast and endothelial cell death, while fluid obtained at the time of injury or from patient controls did not. The mode of cell death for endothelial cells was apoptosis. Fibroblast death, while morphologically distinct from necrosis, also differed from typical apoptosis. Only proliferating cells were susceptible to the bioactivities in lavage fluid, which were trypsin sensitive and lipid insoluble. Histological examination of lung tissue from patients after lung injury revealed evidence of apoptotic cells within airspace granulation tissue. Our results suggest that cell death induced by peptide(s) present at the air-lung interface may participate in the remodeling process that accompanies tissue repair after injury. Images PMID:8326006

  14. Ventilator-induced lung injury in preterm infants

    PubMed Central

    Carvalho, Clarissa Gutierrez; Silveira, Rita C; Procianoy, Renato Soibelmann

    2013-01-01

    In preterm infants, the need for intubation and mechanical ventilation is associated with ventilator-induced lung injuries and subsequent bronchopulmonary dysplasia. The aim of the present review was to improve the understanding of the mechanisms of injury that involve cytokine-mediated inflammation to contribute to the development of new preventive strategies. Relevant articles were retrieved from the PubMed database using the search terms "ventilator-induced lung injury preterm", "continuous positive airway pressure", "preterm", and "bronchopulmonary dysplasia". The resulting data and other relevant information were divided into several topics to ensure a thorough, critical view of ventilation-induced lung injury and its consequences in preterm infants. The role of pro-inflammatory cytokines (particularly interleukins 6 and 8 and tumor necrosis factor alpha) as mediators of lung injury was assessed. Evidence from studies conducted with animals and human newborns is described. This evidence shows that brief periods of mechanical ventilation is sufficient to induce the release of pro-inflammatory cytokines. Other forms of mechanical and non-invasive ventilation were also analyzed as protective alternatives to conventional mechanical ventilation. It was concluded that non-invasive ventilation, intubation followed by early surfactant administration and quick extubation for nasal continuous positive airway pressure, and strategies that regulate tidal volume and avoid volutrauma (such as volume guarantee ventilation) protect against ventilator-induced lung injury in preterm infants. PMID:24553514

  15. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action

    PubMed Central

    Ionescu, Lavinia; Byrne, Roisin N.; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S.; Rey-Parra, Gloria J.; Weissmann, Gaia; Hall, Adam; Eaton, Farah

    2012-01-01

    Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 “healer” phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I. PMID:23023971

  16. Serum copper concentration as an index of experimental lung injury

    SciTech Connect

    Ward, W.F.; Molteni, A.; Ts'ao, C.; Ischiropoulos, H. )

    1989-01-01

    Serum copper (Cu) concentration was evaluated as an index of lung injury in two rat models of pneumotoxicity: hemithoracic irradiation and monocrotaline ingestion. In both models there was a dose- and time-dependent increase in serum Cu concentration. This hypercupremia paralleled the development of pulmonary endothelial dysfunction (decreased lung plasminogen activator activity and increased prostacyclin production) and pulmonary fibrosis (hydroxyproline accumulation). In the radiation model, lung injury and hypercupremia persisted for at least 6 months, and were spared similarly when the total dose was delivered in multiple daily fractions as compared to single doses. In irradiated rats, the elevated serum Cu concentration was accompanied by increases in plasma ceruloplasmin, lung Cu concentration, and lung Cu/Zn superoxide dismutase (SOD) activity. In monocrotaline-treated rats, lung damage and hypercupremia also were accompanied by a reduction in liver Cu concentration, and by a direct correlation between the concentrations of Cu and SGOT in the serum. In both models, some but not all modifiers of lung damage (penicillamine, angiotensin converting enzyme inhibitors, pentoxifylline) also partially prevented the insult-induced hypercupremia. In contrast, serum iron concentration was largely independent of treatment in all experiments. These data suggest that elevated serum copper concentration is an accurate and minimally invasive index of lung injury in irradiated and monocrotaline-treated rats.

  17. Aerosolized alpha-tocopherol ameliorates acute lung injury following combined burn and smoke inhalation injury in sheep.

    PubMed

    Morita, Naoki; Traber, Maret G; Enkhbaatar, Perenlei; Westphal, Martin; Murakami, Kazunori; Leonard, Scott W; Cox, Robert A; Hawkins, Hal K; Herndon, David; Traber, Lillian D; Traber, Daniel L

    2006-03-01

    Victims of fire accidents who sustain both thermal injury to the skin and smoke inhalation have gross evidence of oxidant injury. Therefore, we hypothesized that delivery of vitamin E, an oxygen superoxide scavenger, directly into the airway would attenuate acute lung injury postburn and smoke inhalation. Sheep (N = 17 female, 35 +/- 5 kg) were divided into 3 groups: (1) injured, then nebulized with vitamin E (B&S, Vitamin E, n = 6); (2) injured, nebulized with saline (B&S, Saline, n = 6); and (3) not injured, not treated (Sham, n = 5). While under deep anesthesia with isoflurane, the sheep were subjected to a flame burn (40% total body surface area, 3rd degree) and inhalation injury (48 breaths of cotton smoke, <40 degrees C). All groups were resuscitated with Ringer lactate solution (4 mL/kg/%burn/24 h) and placed on a ventilator [positive end-expiratory pressure (PEEP) = 5 cm H2O, tidal volume = 15 mL/kg] for 48 h. B&S injury halved the lung alpha-tocopherol concentrations (0.9 +/- 0.1 nmol/g) compared with sham-injured animals (1.5 +/- 0.3), whereas vitamin E treatment elevated the lung alpha-tocopherol concentrations (7.40 +/- 2.61) in the injured animals. B&S injury decreased pulmonary gas exchange (PaO2/FiO2 ratios) from 517 +/- 15 at baseline to 329 +/- 49 at 24 h and to 149 +/- 32 at 48 h compared with sham ratios of 477 +/- 14, 536 +/- 48, and 609 +/- 49, respectively. Vitamin E treatment resulted in a significant improvement of pulmonary gas exchange; ratios were 415 +/- 34 and 283 +/- 42 at 24 and 48 h, respectively. Vitamin E nebulization therapy improved the clinical responses to burn and smoke inhalation-induced acute lung injury.

  18. Metallothionein-induced zinc partitioning exacerbates hyperoxic acute lung injury

    PubMed Central

    Lee, Sang-Min; McLaughlin, Joseph N.; Frederick, Daniel R.; Zhu, Lin; Thambiayya, Kalidasan; Wasserloos, Karla J.; Kaminski, Iris; Pearce, Linda L.; Peterson, Jim; Li, Jin; Latoche, Joseph D.; Peck Palmer, Octavia M.; Stolz, Donna Beer; Fattman, Cheryl L.; Alcorn, John F.; Oury, Tim D.; Angus, Derek C.; Pitt, Bruce R.

    2013-01-01

    Hypozincemia, with hepatic zinc accumulation at the expense of other organs, occurs in infection, inflammation, and aseptic lung injury. Mechanisms underlying zinc partitioning or its impact on extrahepatic organs are unclear. Here we show that the major zinc-binding protein, metallothionein (MT), is critical for zinc transmigration from lung to liver during hyperoxia and preservation of intrapulmonary zinc during hyperoxia is associated with an injury-resistant phenotype in MT-null mice. Particularly, lung-to-liver zinc ratios decreased in wild-type (WT) and increased significantly in MT-null mice breathing 95% oxygen for 72 h. Compared with female adult WT mice, MT-null mice were significantly protected against hyperoxic lung injury indicated by reduced inflammation and interstitial edema, fewer necrotic changes to distal airway epithelium, and sustained lung function at 72 h hyperoxia. Lungs of MT-null mice showed decreased levels of immunoreactive LC3, an autophagy marker, compared with WT mice. Analysis of superoxide dismutase (SOD) activity in the lungs revealed similar levels of manganese-SOD activity between strains under normoxia and hyperoxia. Lung extracellular SOD activity decreased significantly in both strains at 72 h of hyperoxia, although there was no difference between strains. Copper-zinc-SOD activity was ∼4× higher under normoxic conditions in MT-null compared with WT mice but was not affected in either group by hyperoxia. Collectively the data suggest that genetic deletion of MT-I/II in mice is associated with compensatory increase in copper-zinc-SOD activity, prevention of hyperoxia-induced zinc transmigration from lung to liver, and hyperoxia-resistant phenotype strongly associated with differences in zinc homeostasis during hyperoxic acute lung injury. PMID:23275622

  19. Lung injury after cigarette smoking is particle related.

    PubMed

    Sangani, Rahul G; Ghio, Andrew J

    2011-01-01

    The specific component responsible and the mechanistic pathway for increased human morbidity and mortality after cigarette smoking are yet to be delineated. We propose that 1) injury and disease following cigarette smoking are associated with exposure to and retention of particles produced during smoking and 2) the biological effects of particles associated with cigarette smoking share a single mechanism of injury with all particles. Smoking one cigarette exposes the human respiratory tract to between 15,000 and 40,000 μg particulate matter; this is a carbonaceous product of an incomplete combustion. There are numerous human exposures to other particles, and these vary widely in composition, absolute magnitude, and size of the particle. Individuals exposed to all these particles share a common clinical presentation with a loss of pulmonary function, increased bronchial hyperresponsiveness, pathologic changes of emphysema and fibrosis, and comorbidities, including cardiovascular disease, cerebrovascular disease, peripheral vascular disease, and cancers. Mechanistically, all particle exposures produce an oxidative stress, which is associated with a series of reactions, including an activation of kinase cascades and transcription factors, release of inflammatory mediators, and apoptosis. If disease associated with cigarette smoking is recognized to be particle related, then certain aspects of the clinical presentation can be predicted; this would include worsening of pulmonary function and progression of pathological changes and comorbidity (eg, emphysema and carcinogenesis) after smoking cessation since the particle is retained in the lung and the exposure continues.

  20. Mustard vesicant-induced lung injury: Advances in therapy.

    PubMed

    Weinberger, Barry; Malaviya, Rama; Sunil, Vasanthi R; Venosa, Alessandro; Heck, Diane E; Laskin, Jeffrey D; Laskin, Debra L

    2016-08-15

    Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.

  1. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation

    PubMed Central

    Gonçalves-de-Albuquerque, Cassiano Felippe; Silva, Adriana Ribeiro; Burth, Patrícia; Castro-Faria, Mauro Velho; Castro-Faria-Neto, Hugo Caire

    2015-01-01

    Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation. PMID:26640323

  2. Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury.

    PubMed

    Rey-Parra, G J; Vadivel, A; Coltan, L; Hall, A; Eaton, F; Schuster, M; Loibner, H; Penninger, J M; Kassiri, Z; Oudit, G Y; Thébaud, B

    2012-06-01

    Despite substantial progress, mortality and morbidity of the acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), remain unacceptably high. There is no effective treatment for ARDS/ALI. The renin-angiotensin system (RAS) through Angiotensin-converting enzyme (ACE)-generated Angiotensin II contributes to lung injury. ACE2, a recently discovered ACE homologue, acts as a negative regulator of the RAS and counterbalances the function of ACE. We hypothesized that ACE2 prevents Bleomycin (BLM)-induced lung injury. Fourteen to 16-week-old ACE2 knockout mice-male (ACE2(-/y)) and female (ACE2(-/-))-and age-matched wild-type (WT) male mice received intratracheal BLM (1.5U/kg). Male ACE2(-/y) BLM injured mice exhibited poorer exercise capacity, worse lung function and exacerbated lung fibrosis and collagen deposition compared with WT. These changes were associated with increased expression of the profibrotic genes α-smooth muscle actin (α-SMA) and Transforming Growth Factor ß1. Compared with ACE2(-/y) exposed to BLM, ACE2(-/-) exhibited better lung function and architecture and decreased collagen deposition. Treatment with intraperitoneal recombinant human (rh) ACE2 (2 mg/kg) for 21 days improved survival, exercise capacity, and lung function and decreased lung inflammation and fibrosis in male BLM-WT mice. Female BLM WT mice had mild fibrosis and displayed a possible compensatory upregulation of the AT2 receptor. We conclude that ACE2 gene deletion worsens BLM-induced lung injury and more so in males than females. Conversely, ACE2 protects against BLM-induced fibrosis. rhACE2 may have therapeutic potential to attenuate respiratory morbidity in ALI/ARDS.

  3. Bixin protects mice against ventilation-induced lung injury in an NRF2-dependent manner

    PubMed Central

    Tao, Shasha; Rojo de la Vega, Montserrat; Quijada, Hector; Wondrak, Georg T.; Wang, Ting; Garcia, Joe G. N.; Zhang, Donna D.

    2016-01-01

    Mechanical ventilation (MV) is a therapeutic intervention widely used in the clinic to assist patients that have difficulty breathing due to lung edema, trauma, or general anesthesia. However, MV causes ventilator-induced lung injury (VILI), a condition characterized by increased permeability of the alveolar-capillary barrier that results in edema, hemorrhage, and neutrophil infiltration, leading to exacerbated lung inflammation and oxidative stress. This study explored the feasibility of using bixin, a canonical NRF2 inducer identified during the current study, to ameliorate lung damage in a murine VILI model. In vitro, bixin was found to activate the NRF2 signaling pathway through blockage of ubiquitylation and degradation of NRF2 in a KEAP1-C151 dependent manner; intraperitoneal (IP) injection of bixin led to pulmonary upregulation of the NRF2 response in vivo. Remarkably, IP administration of bixin restored normal lung morphology and attenuated inflammatory response and oxidative DNA damage following MV. This observed beneficial effect of bixin derived from induction of the NRF2 cytoprotective response since it was only observed in Nrf2+/+ but not in Nrf2−/− mice. This is the first study providing proof-of-concept that NRF2 activators can be developed into pharmacological agents for clinical use to prevent patients from lung injury during MV treatment. PMID:26729554

  4. Disruption of Cytochrome P4501A2 in mice leads to increased susceptibility to hyperoxic lung injury

    PubMed Central

    Wang, Lihua; Lingappan, Krithika; Jiang, Weiwu; Couroucli, Xanthi I.; Welty, Stephen E.; Shivanna, Binoy; Barrios, Roberto; Wang, Gangduo; Khan, M. Firoze; Gonzalez, Frank J.; Roberts, L Jackson; Moorthy, Bhagavatula

    2015-01-01

    Hyperoxia contributes to acute lung injury (ALI) in diseases such as acute respiratory distress syndrome (ARDS). Cytochrome P450 (CYP)1A enzymes have been implicated in hyperoxic lung injury, but the mechanistic role(s) of CYP1A2 in pulmonary injury is not known. We hypothesized that mice lacking the gene for Cyp1a2 (which is predominantly expressed in the liver) will be more sensitive to lung injury and inflammation mediated by hyperoxia, and that CYP1A2 will play a protective role by attenuating lipid peroxidation and oxidative stress in the lung. Eight to ten week old WT (C57BL/6) or Cyp1a2(−/−) mice were exposed to hyperoxia (>95% O2) or maintained in room air for 24–72 h. Lung injury was assessed by determining the ratios of lung weight/body weight (LW/BW), and by histology. Extent of inflammation was determined by measuring the number of neutrophils in the lung as well as cytokine expression. The Cyp1a2(−/−) mice under hyperoxic conditions showed increased LW/BW ratios, lung injury, neutrophil infiltration, IL-6 and TNF-α levels, and augmented lipid peroxidation, as evidenced by increased formation of malondialdehyde (MDA)- and 4-hydroxynonenal (4-HNE)-protein adducts, and pulmonary isofurans compared to those of WT mice. In vitro experiments showed that the F2-isoprostane PGF2-α is metabolized by CYP1A2 to a dinor metabolite, providing evidence for a catalytic role for CYP1A2 in the metabolism of F2-isoprostanes. In summary, our results support the hypothesis that hepatic CYP1A2 plays a critical role in the attenuation against hyperoxic lung injury by decreasing lipid peroxidation and oxidative stress in vivo. PMID:25680282

  5. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress

    NASA Astrophysics Data System (ADS)

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said; Ranji, Mahsa

    2012-04-01

    Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs.

  6. Diallyl Trisulfide Inhibits Growth of NCI-H460 in Vitro and in Vivo, and Ameliorates Cisplatin-Induced Oxidative Injury in the Treatment of Lung Carcinoma in Xenograft Mice

    PubMed Central

    Jiang, Xiaoyan; Zhu, Xiaosong; Liu, Na; Xu, Hongya; Zhao, Zhongxi; Li, Siying; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2017-01-01

    Diallyl trisulfide (DATS), an organosulfuric component of garlic oil, exhibits potential anticancer and chemopreventive effects. Cisplatin (DDP), a common chemotherapeutic agent, has provided great therapeutic contributions to treating solid tumors, but with serious side effects. Here, we verified the anti-tumor properties of DATS on lung cancer in vitro and in vivo, and evaluated synergistic effects of DATS combined with DDP on the NCI-H460 xenograft model. Significantly decreased cell viabilities, cell cycle G1 arrest, and apoptosis induction were observed in DATS treated NCI-H460 cells (p<0.05). And injection of DATS (30 or 40 mg/kg) to female Balb/c mice significantly inhibited the growth of human NCI-H460 cell tumor xenograft (p<0.001). Moreover, DATS in combination with DDP exhibited enhanced anti-tumor activity via induction of apoptosis. Apoptosis pathways were confirmed by modulation of p53, Bcl-2 family members; induction of active caspase-3/8/9 and activation of JNK- and p38-MAPK pathways. Interestedly, DATS+DDP administration exerted fewer side effects, such as suppressing the weight loss and ameliorating DDP-induced oxidative injury, especially in renal parenchyma. In addition, increased E-cadherin and decreased MMP-9 expression levels were observed in DATS-treated tumor tissues. These studies provide supports that DATS might be a potential candidate for combination with DDP in cancer treatment. PMID:28255269

  7. Diallyl Trisulfide Inhibits Growth of NCI-H460 in Vitro and in Vivo, and Ameliorates Cisplatin-Induced Oxidative Injury in the Treatment of Lung Carcinoma in Xenograft Mice.

    PubMed

    Jiang, Xiaoyan; Zhu, Xiaosong; Liu, Na; Xu, Hongya; Zhao, Zhongxi; Li, Siying; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2017-01-01

    Diallyl trisulfide (DATS), an organosulfuric component of garlic oil, exhibits potential anticancer and chemopreventive effects. Cisplatin (DDP), a common chemotherapeutic agent, has provided great therapeutic contributions to treating solid tumors, but with serious side effects. Here, we verified the anti-tumor properties of DATS on lung cancer in vitro and in vivo, and evaluated synergistic effects of DATS combined with DDP on the NCI-H460 xenograft model. Significantly decreased cell viabilities, cell cycle G1 arrest, and apoptosis induction were observed in DATS treated NCI-H460 cells (p<0.05). And injection of DATS (30 or 40 mg/kg) to female Balb/c mice significantly inhibited the growth of human NCI-H460 cell tumor xenograft (p<0.001). Moreover, DATS in combination with DDP exhibited enhanced anti-tumor activity via induction of apoptosis. Apoptosis pathways were confirmed by modulation of p53, Bcl-2 family members; induction of active caspase-3/8/9 and activation of JNK- and p38-MAPK pathways. Interestedly, DATS+DDP administration exerted fewer side effects, such as suppressing the weight loss and ameliorating DDP-induced oxidative injury, especially in renal parenchyma. In addition, increased E-cadherin and decreased MMP-9 expression levels were observed in DATS-treated tumor tissues. These studies provide supports that DATS might be a potential candidate for combination with DDP in cancer treatment.

  8. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    SciTech Connect

    Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai; Bai, Xianyong

    2013-11-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and the PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may

  9. Obesity-induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-03-09

    Obesity is a significant risk factor for the acute respiratory distress syndrome (ARDS). The mechanisms underlying this association are unknown. We recently showed that diet-induced obese (DIO) mice exhibit pulmonary vascular endothelial dysfunction which is associated with enhanced susceptibility to lipopolysaccharide (LPS)-induced lung injury. Here, we demonstrate that lung endothelial dysfunction in DIO mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins including PERK, IREα and ATF6, in whole lung and in lung endothelial cells isolated from DIO mice. Further, we found that lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of DIO mice. Similar changes were observed in lung endothelial cells and in whole lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation; indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-PBA, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in DIO mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the endoplasmic reticulum of pulmonary endothelial cells might protect against ARDS in obese individuals.

  10. IL-6 ameliorates acute lung injury in influenza virus infection

    PubMed Central

    Yang, Mei-Lin; Wang, Chung-Teng; Yang, Shiu-Ju; Leu, Chia-Hsing; Chen, Shun-Hua; Wu, Chao-Liang; Shiau, Ai-Li

    2017-01-01

    Interleukin 6 (IL-6) is involved in innate and adaptive immune responses to defend against pathogens. It also participates in the process of influenza infection by affecting viral clearance and immune cell responses. However, whether IL-6 impacts lung repair in influenza pathogenesis remains unclear. Here, we studied the role of IL-6 in acute influenza infection in mice. IL-6-deficient mice infected with influenza virus exhibited higher lethality, lost more body weight and had higher fibroblast accumulation and lower extracellular matrix (ECM) turnover in the lung than their wild-type counterparts. Deficiency in IL-6 enhanced proliferation, migration and survival of lung fibroblasts, as well as increased virus-induced apoptosis of lung epithelial cells. IL-6-deficient lung fibroblasts produced elevated levels of TGF-β, which may contribute to their survival. Furthermore, macrophage recruitment to the lung and phagocytic activities of macrophages during influenza infection were reduced in IL-6-deficient mice. Collectively, our results indicate that IL-6 is crucial for lung repair after influenza-induced lung injury through reducing fibroblast accumulation, promoting epithelial cell survival, increasing macrophage recruitment to the lung and enhancing phagocytosis of viruses by macrophages. This study suggests that IL-6 may be exploited for lung repair during influenza infection. PMID:28262742

  11. Low Tidal Volume Ventilation in Patients Without Acute Lung Injury.

    PubMed

    Tang, Weibing; Wang, Zhi; Liu, Ye; Zhu, Jing

    2015-05-01

    Acute respiratory distress syndrome is a life threatening respiratory condition characterized by breakdown of the alveolar-capillary barrier, leading to flooding of the alveolar space producing the classical chest radiograph of bilateral pulmonary infiltrates. In this study, we employed lung protective ventilation strategies in patients without acute lung injury (ALI) to determine whether mechanical ventilation with lower tidal volume would provide more clinical benefits to patients without ALI.

  12. Effect of dexmedetomidine on lung ischemia-reperfusion injury

    PubMed Central

    JIANG, LILI; LI, LI; SHEN, JINMEI; QI, ZEYOU; GUO, LIANG

    2014-01-01

    Dexmedetomidine, a specific selective α2-adrenergic agonist, does not only have the characteristics of being a sedative and analgesic, but also exhibits a protective role in brain ischemia-reperfusion injury and inhibits the inflammation in animals with sepsis. The objective of the present study was to investigate whether dexmedetomidine is capable of attenuating rat pulmonary damage induced by ischemia-reperfusion injury, which is a type of acute sterile lung injury. Sprague-Dawley rats were randomly assigned into six groups: The sham-operated (sham) group, the lung ischemia-reperfusion (I/R) group, intravenous injection of dexmedetomidine 2.5 μg/kg/h (Dex2.5) or 5 μg/kg/h (Dex5) for 1 h prior to ischemia, combination of α2-adrenergic antagonist yohimbine prior to dexmedetomidine pre-treatment (Dex+Yoh) and pre-administration of yohimbine alone (Yoh) prior to ischemia. Lung injury was assessed by the histopathological changes, arterial blood gas, wet/dry (w/d) weight ratio and myeloperoxidase (MPO) activity of the lung. The concentration of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) in bronchoalveolar lavage fluid (BALF) was measured by an enzyme-linked immunosorbent assay. The expression of toll-like receptor-4 (TLR4) and myeloid differentiation factor 88 (MyD88) mRNA in the lung were determined by quantitative PCR, and phosphorylated levels of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK)1/2 were determined by western blotting. Pre-treatment with dexmedetomidine significantly reduced the lung injury, w/d weight ratio and MPO activity, and decreased the concentration of TNF-α, IL-6 and MCP-1 in BALF compared with the I/R group. The expression of TLR4 and MyD88 mRNA and the levels of phosphorylated JNK and ERK1/2 in the lung tissue were markedly downregulated by intravenous injection of dexmedetomidne for 1 h prior to lung I/R. The protective effects of dexmedetomidine

  13. Supplementary catechins attenuate cooking-oil-fumes-induced oxidative stress in rat lung.

    PubMed

    Yang, Chao-Huei; Lin, Chun-Yao; Yang, Joan-Hwa; Liou, Shaw-Yih; Li, Ping-Chia; Chien, Chiang-Ting

    2009-06-30

    Cooking-oil-fumes containing toxic components may induce reactive oxygen species (ROS) to oxidize macromolecules and lead to acute lung injury. Our previous study showed that a decaffineated green tea extract containing (+)-catechin, (-)-epicatechin, (+)-gallocatechin, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate can inhibit oxidation, inflammation, and apoptosis. We determined whether the catechins supplement may reduce cooking-oil-fumes-induced acute lung injury in rat. In the urethane-anesthetized Wistar rat subjected to 30-120 min of cooking-oil-fumes exposure, blood ROS significantly increased in the recovery stage. After 30-min cooking-oil-fumes exposure, the enhanced blood ROS level further increased in a time-dependent manner during the recovery stage (321 +/- 69 counts/10 s after 1 h, 540 +/- 89 counts/10 s after 2 h, and 873 +/- 112 counts/10 s after 4 h). Four hours after 30-min cooking-oil-fumes exposure, lung lavage neutrophils and ROS as well as lung tissue dityrosine and 4-hydroxy-2-nonenal increased significantly. Two weeks of catechins supplememnt significantly reduced the enhanced lavage ROS, lung dityrosine and 4-hydroxy-2-nonenal level. Cooking-oil-fumes-induced oxidative stress decreased lung Bcl-2/Bax ratio and HSP70 expression, but catechins treatment preserved the downregulation of Bcl-2/Bax ratio and HSP70 expression. We conclude that catechins supplement attenuates cooking-oil-fumes-induced acute lung injury via the preservation of oil-smoke induced downregulation of antioxidant, antiapoptosis, and chaperone protein expression.

  14. Sports-related lung injury during breath-hold diving.

    PubMed

    Mijacika, Tanja; Dujic, Zeljko

    2016-12-01

    The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage.

  15. First-pass studies of acute lung injury.

    PubMed

    Chu, R Y; Sidhu, N; Basmadjian, G; Burow, R; Allen, E W

    1993-10-01

    Mild hydrochloric acid was introduced to a caudal lung section in each of eight dogs to induce injury. Transits of 99mTc-labeled red blood cells (RBC) and [123I]iodoantipyrine (IAP) injected intravenously were recorded by a scintillation camera. Lungs and blood samples were analyzed post-mortem. Peak-to-equilibrium ratios (P/E) of RBC time-activity curves were computed to be 3.83 +/- 0.54 for the control lung, 2.58 +/- 0.55 for the injured lung and 2.23 +/- 0.58 for the injured caudal section. For IAP, the respective results were 3.78 +/- 0.29, 2.02 +/- 0.18 and 1.77 +/- 0.17. The decrease of P/E in injured areas was attributed to reduced blood flow. Using mean transit times of the tracers, we computed extravascular lung water per unit blood volume to be 0.35 +/- 0.18 for the control lungs and an increased value of 0.68 +/- 0.24 for the injured lungs. These results displayed sensitivity to injury, but were gross underestimates relative to the corresponding values of 2.04 +/- 0.54 and 4.56 +/- 1.85 in post-mortem analyses.

  16. Aminophylline treatment in meconium-induced acute lung injury in a rabbit model.

    PubMed

    Mokra, D; Mokry, J; Tatarkova, Z; Redfors, B; Petraskova, M; Calkovska, A

    2007-11-01

    Administration of methylxanthines may diminish meconium-induced acute lung injury. Meconium-instilled rabbits intravenously received aminophylline (2.0 mg/kg) at two doses 0.5 h and 2.5 h after meconium instillation or were left without treatment, and were oxygen-ventilated for additional 5 h. At the end of experiment, lungs and trachea were excised. Within 5 h after the first dose of treatment, aminophylline significantly improved gas exchange and decreased right-to-left pulmonary shunts, central venous pressure, and ventilatory pressures. Moreover, aminophylline reduced meconium-induced lung edema formation, airway hyperreactivity to histamine, count of neutrophils in bronchoalveolar lavage fluid associated with higher total white blood cells and neutrophils in the blood, and diminished oxidative modifications of proteins and lipids in lung tissue compared with the non-treated meconium-instilled group. In a rabbit model of the meconium aspiration syndrome, aminophylline treatment enhanced pulmonary functions and alleviated oxidative injury and changes in airway reactivity related to lung inflammation.

  17. Dose impact in radiographic lung injury following lung SBRT: Statistical analysis and geometric interpretation

    SciTech Connect

    Yu, Victoria; Kishan, Amar U.; Cao, Minsong; Low, Daniel; Lee, Percy; Ruan, Dan

    2014-03-15

    Purpose: To demonstrate a new method of evaluating dose response of treatment-induced lung radiographic injury post-SBRT (stereotactic body radiotherapy) treatment and the discovery of bimodal dose behavior within clinically identified injury volumes. Methods: Follow-up CT scans at 3, 6, and 12 months were acquired from 24 patients treated with SBRT for stage-1 primary lung cancers or oligometastic lesions. Injury regions in these scans were propagated to the planning CT coordinates by performing deformable registration of the follow-ups to the planning CTs. A bimodal behavior was repeatedly observed from the probability distribution for dose values within the deformed injury regions. Based on a mixture-Gaussian assumption, an Expectation-Maximization (EM) algorithm was used to obtain characteristic parameters for such distribution. Geometric analysis was performed to interpret such parameters and infer the critical dose level that is potentially inductive of post-SBRT lung injury. Results: The Gaussian mixture obtained from the EM algorithm closely approximates the empirical dose histogram within the injury volume with good consistency. The average Kullback-Leibler divergence values between the empirical differential dose volume histogram and the EM-obtained Gaussian mixture distribution were calculated to be 0.069, 0.063, and 0.092 for the 3, 6, and 12 month follow-up groups, respectively. The lower Gaussian component was located at approximately 70% prescription dose (35 Gy) for all three follow-up time points. The higher Gaussian component, contributed by the dose received by planning target volume, was located at around 107% of the prescription dose. Geometrical analysis suggests the mean of the lower Gaussian component, located at 35 Gy, as a possible indicator for a critical dose that induces lung injury after SBRT. Conclusions: An innovative and improved method for analyzing the correspondence between lung radiographic injury and SBRT treatment dose has

  18. N-acetylcysteine alleviates the meconium-induced acute lung injury.

    PubMed

    Mokra, D; Drgova, A; Petras, M; Mokry, J; Antosova, M; Calkovska, A

    2015-01-01

    Meconium aspiration in newborns causes lung inflammation and injury, which may lead to meconium aspiration syndrome (MAS). In this study, the effect of the antioxidant N-acetylcysteine on respiratory and inflammatory parameters were studied in a model of MAS. Oxygen-ventilated rabbits were intratracheally given 4 mL/kg of meconium (25 mg/mL) or saline. Thirty minutes later, meconium-instilled animals were administered N-acetylcysteine (10 mg/kg; i.v.), or were left without treatment. The animals were oxygen-ventilated for additional 5 h. Ventilatory pressures, oxygenation, right-to-left pulmonary shunts, and leukocyte count were measured. At the end of experiment, trachea and lung were excised. The left lung was saline-lavaged and a total and differential count of cells in bronchoalveolar lavage fluid (BAL) was determined. Right lung tissue strips were used for detection of lung edema (expressed as wet/dry weight ratio) and peroxidation (expressed by thiobarbituric acid-reactive substances, TBARS). In lung and tracheal strips, airway reactivity to acetylcholine was measured. In addition, TBARS and total antioxidant status were determined in the plasma. Meconium instillation induced polymorphonuclear-derived inflammation and oxidative stress. N-acetylcysteine improved oxygenation, reduced lung edema, decreased polymorphonuclears in BAL fluid, and diminished peroxidation and meconium-induced airway hyperreactivity compared with untreated animals. In conclusion, N-acetylcysteine effectively improved lung functions in an animal model of MAS.

  19. Betulin attenuates lung and liver injuries in sepsis.

    PubMed

    Zhao, Hongyu; Liu, Zhenning; Liu, Wei; Han, Xinfei; Zhao, Min

    2016-01-01

    Sepsis is a complex condition with unacceptable mortality. Betulin is a natural extract with multiple bioactivities. This study aims to evaluate the potential effects of betulin on lung and liver injury in sepsis. Cecal ligation and puncture was used to establish the rat model of sepsis. A single dose of 4mg/kg or 8mg/kg betulin was injected intraperitoneally immediately after the model establishment. The survival rate was recorded every 12h for 96h. The organ injury was examined using hematoxylin and eosin staining and serum biochemical test. The levels of proinflammatory cytokines and high mobility group box 1 in the serum were measured using ELISA. Western blotting was used to detect the expression of proteins in NF-κB and MAPK signaling pathways. Betulin treatment significantly improved the survival rate of septic rats, and attenuated lung and liver injury in sepsis, including the reduction of lung wet/dry weight ratio and activities of alanine aminotransferase and aspartate aminotransferase in the serum. In addition, levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 and high mobility group box 1 in the serum were also lowered by betulin treatment. Moreover, sepsis-induced activation of the NF-κB and MAPK signaling pathway was inhibited by betulin as well. Our findings demonstrate the protective effect of betulin in lung and liver injury in sepsis. This protection may be mediated by its anti-inflammatory and NF-κB and MAPK inhibitory effects.

  20. [Transfusion-associated lung injury (TRALI): obvious and incomprehensible].

    PubMed

    Bulanov, A Iu

    2009-01-01

    Acute transfusion-associated lung injury (TRALI) is an acute lung injury associated with and develops within 6 hours after the transfusion of components and blood preparations. Today there are no uniform views on the pathogenesis of TRALI. The discussion of immune and non-immune mechanisms is relevant. The key link of the former is that the presence of anti-leukocytic antibodies in a donor or a recipient and their interaction during transfusion with the leukocytes of the recipient or the donor, respectively; that of the latter link is the accumulation of biologically active substances in the transfusion media during storage and their passive administration to the recipient during transfusion. In both cases, the total link is drastic increased pulmonary capillary permeability. The clinical presentation of TRALI is nonspecific and generally similar to that of the adult respiratory distress syndrome and lung injuries of another genesis. It is necessary to make its differential diagnosis with allergic reactions, the transfusion of bacterially contaminated media and mainly with circulatory overload. Specific treatments for transfusion-associated lung injury are unavailable. Diferent variants of respiratory therapy are effective. Prevention of TRALI is mainly based on its immune mechanism. The leading direction of its prevention is to select donors.

  1. Preventive Effects of Carnosine on Lipopolysaccharide-induced Lung Injury

    PubMed Central

    Tanaka, Ken-Ichiro; Sugizaki, Toshifumi; Kanda, Yuki; Tamura, Fumiya; Niino, Tomomi; Kawahara, Masahiro

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute lung injury, which involves neutrophilic inflammation and pulmonary cell death. Reactive oxygen species (ROS) play important roles in ARDS development. New compounds for inhibiting the onset and progression of ARDS are required. Carnosine (β-alanyl-L-histidine) is a small di-peptide with numerous activities, including antioxidant effects, metal chelation, proton buffering capacity and the inhibition of protein carbonylation and glycoxidation. We have examined the preventive effects of carnosine on tissue injury, oedema and inflammation in a murine model for ARDS. Oral administration of carnosine suppressed lipopolysaccharide (LPS)-induced vascular permeability, tissue injury and inflammation in the lung. In vivo imaging analysis revealed that LPS administration increased the level of ROS and that this increase was inhibited by carnosine administration. Carnosine also suppressed LPS-induced neutrophilic inflammation (evaluated by activation of myeloperoxidase in the lung and increased extracellular DNA in bronchoalveolar lavage fluid). Furthermore, carnosine administration suppressed the LPS-induced endoplasmic reticulum stress response in vivo. These results suggest that the oral administration of carnosine suppresses LPS-induced lung injury via carnosine’s ROS-reducing activity. Therefore, carnosine may be beneficial for suppressing the onset and progression of ARDS. PMID:28205623

  2. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice

    PubMed Central

    Chen, Jinmei; Zhang, Weijian; Zhang, Lurong; Zhang, Jiemin; Chen, Xiuying; Yang, Meichun; Chen, Ting; Hong, Jinsheng

    2017-01-01

    Radiation-induced lung injury (RILI) is a common complication of thoracic radiotherapy, but efficacious therapy for RILI is lacking. This study ascertained whether glycyrrhetinic acid (GA; a functional hydrolyzed product of glycyrrhizic acid, which is extracted from herb licorice) can protect against RILI and investigated its relationship to the transforming growth factor (TGF)-β1/Smads signaling pathway. C57BL/6 mice were divided into four groups: a control group, a GA group and two irradiation (IR) groups. IR groups were exposed to a single fraction of X-rays (12 Gy) to the thorax and administered normal saline (IR + NS group) or GA (IR + GA group). Two days and 17 days after irradiation, histologic analyses were performed to assess the degree of lung injury, and the expression of TGF-β1, Smad2, Smad3 and Smad7 was recorded. GA administration mitigated the histologic changes of lung injury 2 days and 17 days after irradiation. Protein and mRNA expression of TGF-β1, Smad2 and Smad3, and the mRNA level of Smad7, in lung tissue were significantly elevated after irradiation. GA decreased expression of TGF-β1, Smad2 and Smad3 in lung tissue, but did not increase Smad7 expression. GA can protect against early-stage RILI. This protective effect may be associated with inhibition of the TGF-β1/Smads signaling pathway. PMID:27672101

  3. Susceptibility of the Aging Lung to Environmental Injury

    PubMed Central

    Wang, Lei; Green, Francis H.Y.; Smiley-Jewell, Suzette M.

    2015-01-01

    With an ever increasing number of elderly individuals in the world, a better understanding of the issues associated with aging and the environment is needed. The respiratory system is one of the primary interfaces between the body and the external environment. An expanding number of studies suggest that the aging pulmonary system (>65 years) is at increased risk for adverse health effects from environmental insult, such as by air pollutants, infection, and climate change. However, the mechanism(s) for increased susceptibility in this subpopulation is not well understood. In this review, we provide a limited, but comprehensive overview of how the lung ages, examples of environmental exposures associated with injury to the aging lung and potential mechanisms underlining the increased vulnerability of the aging lung to injury from environmental factors. PMID:20941655

  4. Phosphatidic acid signaling mediates lung cytokine expression and lung inflammatory injury after hemorrhage in mice.

    PubMed

    Abraham, E; Bursten, S; Shenkar, R; Allbee, J; Tuder, R; Woodson, P; Guidot, D M; Rice, G; Singer, J W; Repine, J E

    1995-02-01

    Because phosphatidic acid (PA) pathway signaling may mediate many basic reactions involving cytokine-dependent responses, we investigated the effects of CT1501R, a functional inhibitor of the enzyme lysophosphatidic acid acyltransferase (LPAAT) which converts lysophosphatidic acid (Lyso-PA) to PA. We found that CT1501R treatment not only prevented hypoxia-induced PA increases and lyso-PA consumption in human neutrophils, but also prevented neutrophil chemotaxis and adherence in vitro, and lung injury and lung neutrophil accumulation in mice subjected to hemorrhage and resuscitation. In addition, CT1501R treatment prevented increases in mRNA levels and protein production of a variety of proinflammatory cytokines in multiple lung cell populations after blood loss and resuscitation. Our results indicate the fundamental role of PA metabolism in the development of acute inflammatory lung injury after blood loss.

  5. Lung injury in dimethyl sulfate poisoning

    SciTech Connect

    Ip, M.; Wong, K.L.; Wong, K.F.; So, S.Y.

    1989-02-01

    Two manual laborers were exposed to dimethyl sulfate during work and sustained mucosal injury to the eyes and respiratory tract. In one of them, noncardiogenic pulmonary edema occurred and improved with high-dose methylprednisolone. On follow-up for 10 months, this patient developed persistent productive cough with no evidence of bronchiectasis or bronchial hyperreactivity.

  6. Malondialdehyde-acetaldehyde-adducted protein inhalation causes lung injury.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; McCaskill, Michael L; Tuma, Dean J; Yanov, Daniel; DeVasure, Jane; Sisson, Joseph H

    2012-02-01

    that the lung surfactant protein is a biologically relevant target for malondialdehyde and acetaldehyde adduction. These data further implicate MAA-adduct formation as a potential mechanism for smoke- and alcohol-induced lung injury.

  7. Antioxidant effects of selenium on lung injury in paraquat intoxicated rats

    USGS Publications Warehouse

    Kim, K.S.; Suh, G.J.; Kwon, W.Y.; Kwak, Y.H.; Lee, Kenneth; Lee, H.J.; Jeong, K.Y.; Lee, M.W.

    2012-01-01

    CONTEXT: Paraquat (PQ) causes lethal intoxication by inducing oxidant injury to the lung. Selenium is a cofactor for glutathione peroxidase (GPx), which is one of the major endogenous antioxidant enzymes. OBJECTIVE: To determine whether selenium post-treatment activates GPx, decreases lung injury, and improves survival in PQ intoxicated rats. MATERIALS AND METHODS: Male Spraque-Dawley rats were categorized into three groups: sham (n = 6), PQ (n = 12), and PQ + Se (n = 12). In the PQ and PQ + Se groups, 50 mg/kg of PQ was administered intraperitoneally. After 10 minutes, 60 μg/kg of Se (PQ + Se) or saline (PQ) was administered via the tail vein. Six rats per group were euthanized 6 hours or 24 hours later. Lung tissues were harvested for the measurement of GPx activity, reduced glutathione (GSH), glutathione disulfide (GSSG) and malondialdehyde (MDA) and for histological analysis. Using separated set of rats, survival of PQ (n = 10) and PQ + Se (n = 10) were observed for 72 hours. RESULTS: GPx activity in the PQ group at the 6-hour and 24-hour time points was lower than in the sham group (p CONCLUSION: Single dose of selenium post-treatment activates GPx and attenuates lipid peroxidation and lung injury early after paraquat intoxication, but does not improve 72 hours of survival.

  8. Circulating Histones Are Mediators of Trauma-associated Lung Injury

    PubMed Central

    Abrams, Simon T.; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping

    2013-01-01

    Rationale: Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. Objectives: To investigate the pathological roles of circulating histones in trauma-induced lung injury. Methods: Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause–effect relationship was studied using cells and mouse models. Measurements and Main Results: In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. Conclusions: This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival

  9. A micro-CT analysis of murine lung recruitment in bleomycin-induced lung injury

    PubMed Central

    Shofer, Scott; Badea, Cristian; Qi, Yi; Potts, Erin; Foster, W. Michael; Johnson, G. Allan

    2008-01-01

    The effects of lung injury on pulmonary recruitment are incompletely understood. X-ray computed tomography (CT) has been a valuable tool in assessing changes in recruitment during lung injury. With the development of preclinical CT scanners designed for thoracic imaging in rodents, it is possible to acquire high-resolution images during the evolution of a pulmonary injury in living mice. We quantitatively assessed changes in recruitment caused by intratracheal bleomycin at 1 and 3 wk after administration using micro-CT in 129S6/SvEvTac mice. Twenty female mice were administered 2.5 U of bleomycin or saline and imaged with micro-CT at end inspiration and end expiration. Mice were extubated and allowed to recover from anesthesia and then reevaluated in vivo for quasi-static compliance measurements, followed by harvesting of the lungs for collagen analysis and histology. CT images were converted to histograms and analyzed for mean lung attenuation (MLA). MLA was significantly greater for bleomycin-exposed mice at week 1 for both inspiration (P < 0.0047) and exhalation (P < 0.0377) but was not significantly different for week 3 bleomycin-exposed mice. However, week 3 bleomycin-exposed mice did display significant increases in MLA shift from expiration to inspiration compared with either group of control mice (P < 0.005), suggesting increased lung recruitment at this time point. Week 1 bleomycin-exposed mice displayed normal shifts in MLA with inspiration, suggesting normal lung recruitment despite significant radiographic and histological changes. Lung alveolar recruitment is preserved in a mouse model of bleomycin-induced parenchymal injury despite significant changes in radiographic and physiological parameters. PMID:18566189

  10. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.

    PubMed

    Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M

    2016-06-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.

  11. Superoxide dismutase 3 dysregulation in a murine model of neonatal lung injury.

    PubMed

    Poonyagariyagorn, Hataya K; Metzger, Shana; Dikeman, Dustin; Mercado, Armando Lopez; Malinina, Alla; Calvi, Carla; McGrath-Morrow, Sharon; Neptune, Enid R

    2014-09-01

    Bronchopulmonary dysplasia (BPD), a common chronic respiratory disease that occurs after premature birth, is believed to be secondary to oxidative damage from hyperoxia and inflammation, which leads to impaired alveolar formation and chronic lung dysfunction. We hypothesized that extracellular superoxide dismutase (SOD)3, an antioxidant uniquely targeted to the extracellular matrix (ECM) and alveolar fluid, might have a different response (down-regulation) to hyperoxic injury and recovery in room air (RA), thereby contributing to the persistent airspace injury and inflammation. We used a murine BPD model using postnatal hyperoxia (O2) (4 or 5 d) followed by short-term recovery (14 d) in RA, which mimics the durable effects after injury during alveolar development. This was associated with significantly increased mRNA expression for antioxidant genes mediated by nuclear factor erythroid 2-related factor (Nrf2) in the O2 (n = 4) versus RA group (n = 5). SOD3, an Nrf2-independent antioxidant, was significantly reduced in the O2-exposed mice compared with RA. Immunohistochemistry revealed decreased and disrupted SOD3 deposition in the alveolar ECM of O2-exposed mice. Furthermore, this distinct hyperoxic antioxidant and injury profile was reproducible in murine lung epithelial 12 cells exposed to O2. Overexpression of SOD3 rescued the injury measures in the O2-exposed cells. We establish that reduced SOD3 expression correlates with alveolar injury measures in the recovered neonatal hyperoxic lung, and SOD3 overexpression attenuates hyperoxic injury in an alveolar epithelial cell line. Such findings suggest a candidate mechanism for the pathogenesis of BPD that may lead to targeted interventions.

  12. Pulmonary expression of nitric oxide synthase isoforms in sheep with smoke inhalation and burn injury.

    PubMed

    Cox, Robert A; Jacob, Sam; Oliveras, Gloria; Murakami, Kazunori; Enkhbaatar, Perenlei; Traber, Lillian; Schmalstieg, Frank C; Herndon, David N; Traber, Daniel L; Hawkins, Hal K

    2009-03-01

    Previous studies have indicated increased plasma levels of inducible nitric oxide synthase in lung. This study further examines the pulmonary expression of nitric oxide synthase (NOS) isoforms in an ovine model of acute lung injury induced by smoke inhalation and burn injury (S+B injury). Female range bred sheep (4 per group) were sacrificed at 4, 8, 12, 24, and 48 hours after injury and immunohistochemistry was performed in tissues for various NOS isoforms. The study indicates that in uninjured sheep lung, endothelial (eNOS) is constitutively expressed in the endothelial cells associated with the airways and parenchyma, and in macrophages. Similarly, neuronal (nNOS) is constitutively present in the mucous cells of the epithelium and in neurons of airway ganglia. In uninjured lung, inducible (iNOS) was present in bronchial secretory cells and macrophages. In tissue after S+B injury, new expression of iNOS was evident in bronchial ciliated cells, basal cells, and mucus gland cells. In the parenchyma, a slight increase in iNOS immunostaining was seen in type I cells at 12 and 24 hours after injury only. Virtually no change in eNOS or nNOS was seen after injury.

  13. Hepatic cryoablation-induced acute lung injury: histopathologic findings.

    PubMed

    Washington, K; Debelak, J P; Gobbell, C; Sztipanovits, D R; Shyr, Y; Olson, S; Chapman, W C

    2001-01-01

    We have previously shown that hepatic cryoablation (cryo), but not partial hepatectomy, induces a systemic inflammatory response, with distant organ injury and overproduction of NF-kappaB-dependent cytokines. Serum tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-2 (MIP-2) levels are markedly increased 1 h and beyond after cryo compared with partial hepatectomy where no elevation occurs. NF-kappaB activation (by electrophoretic mobility shift assay) is strikingly increased in the noncryo liver (but not in the lung) at 30 min and in both the liver and lung tissue 1 h after cryo, returning to the baseline by 2 h and beyond. The current study investigated the histopathologic changes associated with cryoablation-induced acute lung injury. Animals underwent 35% hepatic resection or a similar volume hepatic cryo and were sacrificed at 1, 2, 6, and 24 h. Pulmonary histologic features were assessed using hematoxylin and eosin and immunoperoxidase staining with a macrophage-specific antibody (anti-lysozyme, 1:200 dilution, Dako, Carpinteria, CA). The following features were graded semiquantitatively (0-3): perivascular lymphoid cuffs, airspace edema and hemorrhage, margination of neutrophils within pulmonary vasculature, and the presence of macrophages with foamy cytoplasm in the pulmonary interstitium. Hepatic resection (n = 21) resulted in slight perivascular edema at 1, 2, 6, and 24 h post-resection, but there were no other significant changes. Pulmonary findings after hepatic cryo (n = 22) included prominent perivascular lymphoid cuffs 1 and 2 h following hepatic injury that were not present at any other time point (P 0.01). Marginating PMNs and foamy macrophages were more common after cryo at all time points (P<0.05, cryo vs resection). Severe lung injury, as evidenced by airspace edema and parenchymal hemorrhage, was present in four of six (67%) animals at 24 h (P 0.03). In follow-up studies immediate resection (n = 15) of the cryo

  14. Genetic Targets of Hydrogen Sulfide in Ventilator-Induced Lung Injury – A Microarray Study

    PubMed Central

    Spassov, Sashko; Pfeifer, Dietmar; Strosing, Karl; Ryter, Stefan; Hummel, Matthias; Faller, Simone; Hoetzel, Alexander

    2014-01-01

    Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection. PMID:25025333

  15. Oxidant Mechanisms in Renal Injury and Disease

    PubMed Central

    Ratliff, Brian B.; Abdulmahdi, Wasan; Pawar, Rahul

    2016-01-01

    Abstract Significance: A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. Recent Advances: Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. Critical Issues: The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. Future Directions: Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119–146. PMID:26906267

  16. Anti-Inflammatory Effects of Adrenomedullin on Acute Lung Injury Induced by Carrageenan in Mice

    PubMed Central

    Elena, Talero; Rosanna, Di Paola; Emanuela, Mazzon; Esposito, Emanuela; Virginia, Motilva; Salvatore, Cuzzocrea

    2012-01-01

    Adrenomedullin (AM) is a 52 amino acid peptide that has shown predominant anti-inflammatory activities. In the present study, we evaluated the possible therapeutic effect of this peptide in an experimental model of acute inflammation, the carrageenan- (CAR-) induced pleurisy. Pleurisy was induced by injection of CAR into the pleural cavity of mice. AM (200 ng/kg) was administered by intraperitoneal route 1 h after CAR, and the animals were sacrificed 4 h after that. AM treatment attenuated the recruitment of leucocytes in the lung tissue and the generation and/or the expression of the proinflammatory cytokines as well as the expression of the intercellular cell adhesion molecules. Moreover, AM inhibited the induction of inducible nitric oxide synthase (iNOS), thereby abating the generation of nitric oxide (NO) and prevented the oxidative and nitroxidative lung tissue injury, as shown by the reduction of nitrotyrosine, malondialdehyde (MDA), and poly (ADP-ribose) polymerase (PARP) levels. Finally, we demonstrated that these anti-inflammatory effects of AM were associated with the inhibition of nuclear factor-κB (NF-κB) activation. All these parameters were markedly increased by intrapleural CAR in the absence of any treatment. We report that treatment with AM significantly reduces the development of acute lung injury by downregulating a broad spectrum of inflammatory factors. PMID:22685374

  17. Experimental Models of Transfusion-Related Acute Lung Injury (TRALI)

    PubMed Central

    Gilliss, Brian M.; Looney, Mark R.

    2010-01-01

    Transfusion-related acute lung injury (TRALI) is defined clinically as acute lung injury occurring within six hours of the transfusion of any blood product. It is the leading cause of transfusion-related death in the United States, but under-recognition and diagnostic uncertainty have limited clinical research to smaller case control studies. In this review we will discuss the contribution of experimental models to the understanding of TRALI pathophysiology and potential therapeutic approaches. Experimental models suggest that TRALI occurs when a host, with a primed immune system, is exposed to an activating agent such as anti-leukocyte antibody or a biologic response modifier such as lysophosphatidylcholines. Recent work has suggested a critical role for platelets in antibody-based experimental models and identified potential therapeutic strategies for TRALI. PMID:21134622

  18. [Current concept of TRALI (transfusion-related acute lung injury)].

    PubMed

    Iijima, Takehiko; Okazai, Hitoshi

    2007-11-01

    It is only 20 years since TRALI was clinically recognized. As it is gradually recognized among Japanese medical community, the number of cases reported is increasing gradually. In the past nine years (1997-2005), Japanese Red Cross confirmed 118 TRALI cases and 38 possible TRALI cases in Japan. Twelve TRALI cases among them occurred during or after anesthesia on the day of operation. Since acute lung injury is caused by multiple pathological factors, it is difficult to identify its main cause as transfusion. Therefore, TRALI has been underdiagnosed and underreported. Several mechanisms have been proposed. Although anti-HLA antibody, anti-HNA antibody, or other immunoreactive substances appear to be involved in developing TRALI, underlying conditions like systemic inflammation may be required for igniting TRALI Although TRALI developed in the operating theater seems to be a small fraction of whole TRALI cases, anesthesiologists should be aware of TRALI, and remember it as one of the causes of acute lung injury.

  19. Hydrogen Gas Inhalation Attenuates Seawater Instillation-Induced Acute Lung Injury via the Nrf2 Pathway in Rabbits.

    PubMed

    Diao, Mengyuan; Zhang, Sheng; Wu, Lifeng; Huan, Le; Huang, Fenglou; Cui, Yunliang; Lin, Zhaofen

    2016-12-01

    Seawater instillation-induced acute lung injury involves oxidative stress and apoptosis. Although hydrogen gas inhalation is reportedly protective in multiple types of lung injury, the effect of hydrogen gas inhalation on seawater instillation-induced acute lung injury remains unknown. This study investigated the effect of hydrogen gas on seawater instillation-induced acute lung injury and explored the mechanisms involved. Rabbits were randomly assigned to control, hydrogen (2 % hydrogen gas inhalation), seawater (3 mL/kg seawater instillation), and seawater + hydrogen (3 mL/kg seawater instillation + 2 % hydrogen gas inhalation) groups. Arterial partial oxygen pressure and lung wet/dry weight ratio were detected. Protein content in bronchoalveolar lavage fluid (BALF) and serum as well as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were determined. Hematoxylin-eosin staining was used to monitor changes in lung specimens, and malondialdehyde (MDA) content and myeloperoxidase (MPO) activity were assayed. In addition, NF-E2-related factor (Nrf) 2 and heme oxygenase (HO)-1 mRNA and protein expression were measured, and apoptosis was assessed by measuring caspase-3 expression and using terminal deoxy-nucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. Hydrogen gas inhalation markedly improved lung endothelial permeability and decreased both MDA content and MPO activity in lung tissue; these changes were associated with decreases in TNF-α, IL-1β, and IL-6 in BALF. Hydrogen gas also alleviated histopathological changes and cell apoptosis. Moreover, Nrf2 and HO-1 expressions were significantly activated and caspase-3 expression was inhibited. These results demonstrate that hydrogen gas inhalation attenuates seawater instillation-induced acute lung injury in rabbits and that the protective effects observed may be related to the activation of the Nrf2 pathway.

  20. Budesonide inhalation ameliorates endotoxin-induced lung injury in rabbits

    PubMed Central

    Gao, Wei

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is a serious clinical problem that has a 30–50% mortality rate. Budesonide has been used to reduce lung injury. This study aims to investigate the effects of nebulized budesonide on endotoxin-induced ARDS in a rabbit model. Twenty-four rabbits were randomized into three groups. Rabbits in the control and budesonide groups were injected with endotoxin. Thereafter, budesonide or saline was instilled, ventilated for four hours, and recovered spontaneous respiratory. Peak pressure, compliance, and PaO2/FiO2 were monitored for 4 h. After seven days, PaO2/FiO2 ratios were measured. Wet-to-dry weight ratios, total protein, neutrophil elastase, white blood cells, and percentage of neutrophils in BALF were evaluated. TNF-α, IL-1β, IL-8, and IL-10 in BALF were detected. Lung histopathologic injury and seven-day survival rate of the three groups were recorded. Peak pressure was downregulated, but compliance and PaO2/FiO2 were upregulated by budesonide. PaO2/FiO2 ratios significantly increased due to budesonide. Wet-to-dry weight ratios, total protein, neutrophil elastase, white blood cells and percentage of neutrophils in BALF decreased in the budesonide group. TNF-α, IL-1β, and IL-8 levels decreased in BALF, while IL-10 levels increased in the budesonide group. Lung injuries were reduced and survival rate was upregulated by budesonide. Budesonide effectively ameliorated respiratory function, attenuated endotoxin-induced lung injury, and improved the seven-day survival rate. PMID:25956681

  1. Transfusion related acute lung injury (TRALI): a review.

    PubMed

    Menitove, Jay E

    2007-01-01

    Transfusion Related Acute Lung Injury, or TRALI, denotes the most frequently reported fatal complication of blood transfusion. TRALI accounted for 34% of transfusion associated mortalities reported to the Food and Drug Administration (FDA) in 2005. TRALI caused more deaths than those attributed to hemolytic reactions following incorrect blood administration or sepsis resulting from bacterial contamination of platelet and red cell components. (Holness, Leslie. Food and Drug Administration. Personal Communication, 2006) This paper reviews TRALI for the clinical physician.

  2. Presumptive acute lung injury following multiple surgeries in a cat.

    PubMed

    Katayama, Masaaki; Okamura, Yasuhiko; Katayama, Rieko; Sasaki, Jun; Shimamura, Shunsuke; Uzuka, Yuji; Kamishina, Hiroaki; Nezu, Yoshinori

    2013-04-01

    A 12-year-old, 3.5-kg spayed female domestic shorthair cat had a tracheal mass identified as malignant B-cell lymphoma. The cat had tracheal resection and subsequently developed laryngeal paralysis. Due to multiple episodes of respiratory distress the cat subsequently had tracheal surgeries. Finally, the cat had a sudden onset of severe respiratory distress and collapsed. Computed tomography imaging and arterial blood gas analysis supported a diagnosis of acute lung injury.

  3. IL-13 is a therapeutic target in radiation lung injury

    PubMed Central

    Chung, Su I.; Horton, Jason A.; Ramalingam, Thirumalai R.; White, Ayla O.; Chung, Eun Joo; Hudak, Kathryn E.; Scroggins, Bradley T.; Arron, Joseph R.; Wynn, Thomas A.; Citrin, Deborah E.

    2016-01-01

    Pulmonary fibrosis is a potentially lethal late adverse event of thoracic irradiation. Prior research indicates that unrestrained TGF-β1 and/or type 2 cytokine-driven immune responses promote fibrosis following radiation injury, but the full spectrum of factors governing this pathology remains unclear. Interleukin 13 (IL-13) is a key factor in fibrotic disease associated with helminth infection, but it is unclear whether it plays a similar role in radiation-induced lung fibrosis. Using a mouse model, we tested the hypothesis that IL-13 drives the progression of radiation-induced pulmonary fibrosis. Irradiated lungs from wild-type c57BL/6NcR mice accumulated alternatively-activated macrophages, displayed elevated levels of IL-13, and extensive fibrosis, whereas IL-13 deficient mice were resistant to these changes. Furthermore, plasma from irradiated wild-type mice showed a transient increase in the IL-13 saturated fraction of the circulating decoy receptor IL-13Rα2. Finally, we determined that therapeutic neutralization of IL-13, during the period of IL-13Rα2 saturation was sufficient to protect mice from lung fibrosis. Taken together, our results demonstrate that IL-13 is a major regulator of radiation-induced lung injury and demonstrates that strategies focusing on IL-13 may be useful in screening for timely delivery of anti-IL-13 therapeutics. PMID:28004808

  4. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity

    PubMed Central

    ZHU, GUANG-FA; GUO, HONG-JUAN; HUANG, YAN; WU, CHUN-TING; ZHANG, XIANG-FENG

    2015-01-01

    Acute lung injury (ALI) is characterized by excessive inflammatory responses and oxidative injury in the lung tissue. It has been suggested that anti-inflammatory or antioxidative agents could have therapeutic effects in ALI, and eriodictyol has been reported to exhibit antioxidative and anti-inflammatory activity in vitro. The aim of the present study was to investigate the effect of eriodictyol on lipopolysaccharide (LPS)-induced ALI in a mouse model. The mice were divided into four groups: Phosphate-buffered saline-treated healthy control, LPS-induced ALI, vehicle-treated ALI (LPS + vehicle) and eriodictyol-treated ALI (LPS + eriodictyol). Eriodictyol (30 mg/kg) was administered orally once, 2 days before the induction of ALI. The data showed that eriodictyol pretreatment attenuated LPS-induced ALI through its antioxidative and anti-inflammatory activity. Furthermore, the eriodictyol pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in the ALI mouse model, which attenuated the oxidative injury and inhibited the inflammatory cytokine expression in macrophages. In combination, the results of the present study demonstrated that eriodictyol could alleviate the LPS-induced lung injury in mice by regulating the Nrf2 pathway and inhibiting the expression of inflammatory cytokines in macrophages, suggesting that eriodictyol could be used as a potential drug for the treatment of LPS-induced lung injury. PMID:26668626

  5. Mitigation of Lung Injury after Accidental Exposure to Radiation

    PubMed Central

    Mahmood, J.; Jelveh, S.; Calveley, V.; Zaidi, A.; Doctrow, S. R.; Hill, R. P.

    2011-01-01

    There is a serious need to develop effective mitigators against accidental radiation exposures. In radiation accidents, many people may receive nonuniform whole-body or partial-body irradiation. The lung is one of the more radiosensitive organs, demonstrating pneumonitis and fibrosis that are believed to develop at least partially because of radiation-induced chronic inflammation. Here we addressed the crucial questions of how damage to the lung can be mitigated and whether the response is affected by irradiation to the rest of the body. We examined the widely used dietary supplement genistein given at two dietary levels (750 or 3750 mg/kg) to Fischer rats irradiated with 12 Gy to the lung or 8 Gy to the lung + 4 Gy to the whole body excluding the head and tail (whole torso). We found that genistein had promising mitigating effects on oxidative damage, pneumonitis and fibrosis even at late times (36 weeks) when drug treatment was initiated 1 week after irradiation and stopped at 28 weeks postirradiation. The higher dose of genistein showed no greater beneficial effect. Combined lung and whole-torso irradiation caused more lung-related severe morbidity resulting in euthanasia of the animals than lung irradiation alone. PMID:22013884

  6. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation.

    PubMed

    Jiang, Lei; Zhang, Lei; Kang, Kai; Fei, Dongsheng; Gong, Rui; Cao, Yanhui; Pan, Shangha; Zhao, Mingran; Zhao, Mingyan

    2016-12-01

    NLRP3 inflammasome plays a pivotal role in the development of acute lung injury (ALI), accelerating IL-1β and IL-18 release and inducing lung inflammation. Resveratrol, a natural phytoalexin, has anti-inflammatory properties via inhibition of oxidation, leukocyte priming, and production of inflammatory mediators. In this study, we aimed to investigate the effect of resveratrol on NLRP3 inflammasome in lipopolysaccharide-induced ALI. Mice were intratracheally instilled with 3mg/kg lipopolysaccharide (LPS) to induce ALI. Resveratrol treatment alleviated the LPS-induced lung pathological damage, lung edema and neutrophil infiltration. In addition, resveratrol reversed the LPS-mediated elevation of IL-1β and IL-18 level in the BAL fluids. In lung tissue, resveratrol also inhibited the LPS-induced NLRP3, ASC, caspase-1 mRNA and protein expression, and NLRP3 inflammasome activation. Moreover, resveratrol administration not only suppressed the NF-κB p65 nuclear translocation, NF-κB activity and ROS production in the LPS-treated mice, but also inhibited the LPS-induced thioredoxin-interacting protein (TXNIP) protein expression and interaction of TXNIP-NLRP3 in lung tissue. Meanwhile, resveratrol obviously induced SIRT1 mRNA and protein expression in the LPS-challenged mice. Taken together, our study suggests that resveratrol protects against LPS-induced lung injury by NLRP3 inflammasome inhibition. These findings further suggest that resveratrol may be of great value in the treatment of ALI and a potential and an effective pharmacological agent for inflammasome-relevant diseases.

  7. Acute lung injury following refrigeration coil deicing.

    PubMed

    McKeown, Nathanael J; Burton, Brent T

    2012-03-01

    We report a case of a worker who developed ALI requiring mechanical ventilatory support after attempting to melt ice condensate by applying the flame of an oxy-acetylene torch to refrigeration coils charged with a halocarbon refrigerant in a closed environment. A discussion of possible etiologies are discussed, including phosgene, carbonyl fluoride, and nitrogen oxides. Primary prevention with adequate respiratory protection is recommended whenever deicing is performed in a closed space environment.

  8. Adult Lysophosphatidic Acid Receptor 1-Deficient Rats with Hyperoxia-Induced Neonatal Chronic Lung Disease Are Protected against Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Chen, Xueyu; Walther, Frans J.; Laghmani, El H.; Hoogeboom, Annemarie M.; Hogen-Esch, Anne C. B.; van Ark, Ingrid; Folkerts, Gert; Wagenaar, Gerry T. M.

    2017-01-01

    Aim: Survivors of neonatal chronic lung disease or bronchopulmonary dysplasia (BPD) suffer from compromised lung function and are at high risk for developing lung injury by multiple insults later in life. Because neonatal lysophosphatidic acid receptor-1 (LPAR1)-deficient rats are protected against hyperoxia-induced lung injury, we hypothesize that LPAR1-deficiency may protect adult survivors of BPD from a second hit response against lipopolysaccharides (LPS)-induced lung injury. Methods: Directly after birth, Wistar control and LPAR1-deficient rat pups were exposed to hyperoxia (90%) for 8 days followed by recovery in room air. After 7 weeks, male rats received either LPS (2 mg kg−1) or 0.9% NaCl by intraperitoneal injection. Alveolar development and lung inflammation were investigated by morphometric analysis, IL-6 production, and mRNA expression of cytokines, chemokines, coagulation factors, and an indicator of oxidative stress. Results: LPAR1-deficient and control rats developed hyperoxia-induced neonatal emphysema, which persisted into adulthood, as demonstrated by alveolar enlargement and decreased vessel density. LPAR1-deficiency protected against LPS-induced lung injury. Adult controls with BPD exhibited an exacerbated response toward LPS with an increased expression of pro-inflammatory mRNAs, whereas LPAR1-deficient rats with BPD were less sensitive to this “second hit” with a decreased pulmonary influx of macrophages and neutrophils, interleukin-6 (IL-6) production, and mRNA expression of IL-6, monocyte chemoattractant protein-1, cytokine-induced neutrophil chemoattractant 1, plasminogen activator inhibitor-1, and tissue factor. Conclusion: LPAR1-deficient rats have increased hyperoxia-induced BPD survival rates and, despite the presence of neonatal emphysema, are less sensitive to an aggravated “second hit” than Wistar controls with BPD. Intervening in LPA-LPAR1-dependent signaling may not only have therapeutic potential for neonatal chronic

  9. The Effects of Dexamethasone and L-NAME on Acute Lung Injury in Rats with Lung Contusion.

    PubMed

    Kozan, Ahmet; Kilic, Nermin; Alacam, Hasan; Guzel, Ahmet; Guvenc, Tolga; Acikgoz, Mehmet

    2016-10-01

    The therapeutic efficiency of an anti-inflammatory agent, dexamethasone (DXM), and a nitric oxide synthase (NOS) inhibitor, Nitro-L-arginine methyl ester (L-NAME), in lung tissue injury after lung contusion was investigated. Serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), YKL-40, an inflammatory peptide, inducible NOS (iNOS), and Clara cell protein 16 (CC-16) were evaluated. Immunohistochemical analyses were also performed, and the lung tissue was examined histopathologically. The study consisted of eight groups of Sprague-Dawley rats (n = 10 in each group), weighing 250-300 g: (1) control, (2) contusion, (3) control + DXM, (4) contusion + DXM, (5) control + L-NAME (6) contusion + L-NAME, (7) control + DXM + L-NAME, and (8) contusion + DXM + L-NAME. A previously developed lung contusion model was used, in addition to the control group. The rats were administered DXM and L-NAME intraperitoneally (i.p.) at doses of 15 and 60 mg/kg/day, respectively. DXM and L-NAME administration decreased the iNOS level in the contusion groups. DXM increased the levels of YKL-40 and IL-10 in both the control and contusion groups, with higher levels in the contusion groups. L-NAME increased the serum level of IL-10 in the lung contusion groups. DXM increased the synthesis of CC-16 in the control and contusion groups. The combined use of a high-dose steroid and NOS inhibitor resulted in the death of the rats. Steroids can increase the level of cytokines, such as YKL-40 and IL-10, and the synthesis of CC-16 and prevent pneumonia, ALI/ARDS, and sepsis in lung contusion.

  10. Lung contusion: inflammatory mechanisms and interaction with other injuries.

    PubMed

    Raghavendran, Krishnan; Notter, Robert H; Davidson, Bruce A; Helinski, Jadwiga D; Kunkel, Steven L; Knight, Paul R

    2009-08-01

    This article reviews current animal models and laboratory studies investigating the pathophysiology of lung contusion (LC), a common and severe condition in patients with blunt thoracic trauma. Emphasis is on studies elucidating cells, mediators, receptors, and processes important in the innate pulmonary inflammatory response that contribute to LC injury. Surfactant dysfunction in the pathogenesis of LC is also discussed, as is the potential role of epithelial cell or neutrophil apoptosis. Studies examining combination injuries where LC is exacerbated by secondary insults such as gastric aspiration in trauma patients are also noted. The need for continuing mechanism-based research to further clarify the pathophysiology of LC injury, and to define and test potential therapeutic interventions targeting specific aspects of inflammation or surfactant dysfunction to improve clinical outcomes in patients with LC, is also emphasized.

  11. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  12. Computerized tomography versus perfusion lung scanning in canine radiation lung injury

    SciTech Connect

    Ahmed, I.H.; Logus, J.W.; El-Khatib, E.; Battista, J.J.; Ferri, H.; Lentle, B.C.; Man, G.C.; Man, S.F. )

    1990-03-01

    Computerized tomographic (CT) measurements of lung density were obtained before and serially after thoracic irradiation in dogs to detect the alterations caused by radiation therapy. Fourteen mongrel dogs were given either 2000 cGy (Group A, 10 dogs, right lower zone irradiation), 1000 cGy (Group B, 2 dogs, right lower zone irradiation), or 500 cGy (Group C, 2 dogs, right lung irradiation) in one fraction. Once before and bi-weekly after irradiation, the anesthetized dogs had thoracic CT scans. CT numbers for the irradiated area were compared to their preirradiation control values. Macro-aggregated albumin (MAA) perfusion lung scans were also obtained before and at weekly intervals after irradiation and were evaluated visually and quantitatively for abnormalities. When both these tests were abnormal, or at the end of the scheduled study, the dogs were sacrificed to confirm radiation lung injury histologically. Our results showed that CT numbers (as a measure of tissue density) were higher with higher doses of radiation. Among all the techniques used, only the quantitative assessment of macro-aggregated albumin perfusion scan detected abnormalities in all the dogs given 2000 cGy. Their abnormalities correlated well with the presence of radiation lung damage histologically, however, the applicability of these methods in the detection of early injury has to be further evaluated.

  13. Betulin protects mice from bacterial pneumonia and acute lung injury.

    PubMed

    Wu, Qianchao; Li, Hongyu; Qiu, Jiaming; Feng, Haihua

    2014-10-01

    Betulin, a naturally occurring triterpene, has shown anti-HIV activity, but details on the anti-inflammatory activity are scanty. In this study, we sought to investigate the effect of Betulin on LPS-induced activation of cell lines with relevance for lung inflammation in vitro and on lung inflammation elicited by either LPS or viable Escherichia coli (E. coli) in vivo. In vitro, Betulin inhibited LPS-induced tumor necrosis factor α (TNF-α) and (interleukin) IL-6 levels and up-regulated the level of IL-10. Also Betulin suppressed the phosphorylation of nuclear factor-κB (NF-κB) p65 protein in LPS-stimulated RAW 264.7 cells. In vivo, Betulin alleviated LPS-induced acute lung injury. Treatment with Betulin diminished pro-inflammatory cytokines, myeloperoxidase activity and bacterial loads in lung tissue during gram-negative pneumonia. Our findings demonstrated that Betulin inhibits pro-inflammatory responses induced by the gram-negative stimuli LPS and E. coli, suggesting that Betulin may represent a novel strategy for the treatment of lung inflammation.

  14. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats.

    PubMed

    Cadirci, Elif; Halici, Zekai; Bayir, Yasin; Albayrak, Abdulmecit; Karakus, Emre; Polat, Beyzagul; Unal, Deniz; Atamanalp, Sabri S; Aksak, Selina; Gundogdu, Cemal

    2013-10-01

    Sepsis is a complex pathophysiological event involving metabolic acidosis, systemic inflammatory response syndrome, tissue damage and multiple organ dysfunction syndrome. Although many new mechanisms are being investigated to enlighten the pathophysiology of sepsis, there is no effective treatment protocol yet. Presence of 5-HT7 receptors in immune tissues prompted us to hypothesize that these receptors have roles in inflammation and sepsis. We investigated the effects of 5-HT7 receptor agonists and antagonists on serum cytokine levels, lung oxidative stress, lung histopathology, nuclear factor κB (NF-κB) positivity and lung 5-HT7 receptor density in cecal ligation and puncture (CLP) induced sepsis model of rats. Agonist administration to septic rats increased survival time; decreased serum cytokine response against CLP; decreased oxidative stress and increased antioxidant system in lungs; decreased the tissue NF-κB immunopositivity, which is high in septic rats; and decreased the sepsis-induced lung injury. In septic rats, as a result of high inflammatory response, 5-HT7 receptor expression in lungs increased significantly and agonist administration, which decreased inflammatory response and related mortality, decreased the 5-HT7 receptor expression. In conclusion, all these data suggest that stimulation of 5-HT7 receptors may be a new therapeutic target for prevention of impaired inflammatory response related lung injury and mortality.

  15. Effects of methylene blue in acute lung injury induced by oleic acid in rats

    PubMed Central

    Cassiano Silveira, Ana Paula; Vento, Daniella Alves; Albuquerque, Agnes Afrodite Sumarelli; Celotto, Andrea Carla; Tefé-Silva, Cristiane; Ramos, Simone Gusmão; Rubens de Nadai, Tales; Rodrigues, Alfredo José; Poli-Neto, Omero Benedicto

    2016-01-01

    Background In acute lung injury (ALI), rupture of the alveolar-capillary barrier determines the protein-rich fluid influx into alveolar spaces. Previous studies have reported that methylene blue (MB) attenuates such injuries. This investigation was carried out to study the MB effects in pulmonary capillary permeability. Methods Wistar rats were divided into five groups: (I) Sham: saline bolus; (II) MB, MB infusion for 2 h; (III) oleic acid (OA), OA bolus; (IV) MB/OA, MB infusion for 2 h, and at 5 min after from the beginning, concurrently with an OA bolus; and (V) OA/MB, OA bolus, and after 2 h, MB infusion for 2 h. After 4 h, blood, bronchoalveolar lavage (BAL), and lung tissue were collected from all groups for analysis of plasma and tissue nitric oxide, calculation of the wet weight to dry weight ratio (WW/DW), and histological examination of lung tissue. Statistical analysis was performed using nonparametric test. Results Although favourable trends have been observed for permeability improvement parameters (WW/WD and protein), the results were not statistically significant. However, histological analysis of lung tissue showed reduced lesion areas in both pre- and post-treatment groups. Conclusions The data collected using this experimental model was favourable only through macroscopic and histological analysis. These observations are valid for both MB infusions before or after induction of ALI. PMID:26855944

  16. Acute Lung Injury: Making the Injured Lung Perform Better and Rebuilding Healthy Lungs

    DTIC Science & Technology

    2014-04-01

    regenerate 3D alveolar lung structure (Figures 4C–4H). To examine this, sorted day 15 Nkx2-1GFP+ ESC-derived cells, delivered by intra-tracheal...indicative of lung and thyroid lineages and can recellularize a 3D lung tissue scaffold. Thus, we have derived a pure population of progenitors able to...Media and Recellularize 3D Lung Tissue Scaffolds A known feature of primary fetal lung epithelial cells late in devel- opment is their capacity to respond

  17. The protective effect of infliximab against carbon tetrachloride-induced acute lung injury

    PubMed Central

    Kurt, Aysel; Tumkaya, Levent; Yuce, Suleyman; Turut, Hasan; Cure, Medine Cumhur; Sehitoglu, Ibrahim; Kalkan, Yildiray; Pusuroglu, Gokhan; Cure, Erkan

    2016-01-01

    Objective(s): Carbon tetrachloride (CCl4) causes pulmonary toxicity. Infliximab (Ib) is a potent inhibitor of tumor necrosis factor-alpha (TNF-α). We aimed to investigate whether Ib has a protective effect on CCl4 induced lung injury. Materials and Methods: Rats were divided into control, CCl4, and CCl4+Ib groups. A single dose of 2 ml/kg CCI4 was administered to CCI4 group and a single dose of 7 mg/kg Ib was given to CCl4+Ib group 24 hr before applying CCI4. Results: TNF-α, malondialdehyde (MDA), nitric oxide (NO) and caspase-3 levels of the CCl4 group were markedly higher than both the control and CCl4+Ib groups. The CCI4+Ib group had lower histopathological injury than the CCl4 group. Conclusion: Ib as a strong TNF-α blocker decreases the production of proinflammatory cytokines, MDA, and oxidative stress leading to a protective effect against CCl4 induced lung tissue injury. PMID:27482351

  18. [Acute lung injury as a consequence of blood transfusion].

    PubMed

    Rodríguez-Moyado, Héctor

    2011-01-01

    Acute lung injury (ALI) has been recognized as a consequence of blood transfusion (BT) since 1978; the Food and Drug Administration, has classified it as the third BT mortality issue, in 2004, and in first place related with ALI. It can be mainly detected as: Acute respiratory distress syndrome (ARDS), transfusion associated circulatory overload (TACO) and transfusion related acute lung injury (TRALI). The clinical onset is: severe dyspnea, bilateral lung infiltration and low oxygen saturation. In USA, ARDS has an incidence of three to 22.4 cases/100 000 inhabitants, with 58.3 % mortality. TACO and TRALI are less frequent; they have been reported according to the number of transfusions: one in 1275 to 6000 for TRALI and one in 356 transfusions for TACO. Mortality is reported from two to 20 % in TRALI and 20 % in TACO. Antileukocyte antibodies in blood donors plasma, caused TRALI in 89 % of cases; also it has been found antigen specificity against leukocyte blood receptor in 59 %. The UCI patients who received a BT have ALI as a complication in 40 % of cases. The capillary pulmonary endothelia is the target of leukocyte antibodies and also plasma biologic modifiers of the stored plasma, most probable like a Sanarelli-Shwar-tzman phenomenon.

  19. Pleiotropic Effects of Levofloxacin, Fluoroquinolone Antibiotics, against Influenza Virus-Induced Lung Injury.

    PubMed

    Enoki, Yuki; Ishima, Yu; Tanaka, Ryota; Sato, Keizo; Kimachi, Kazuhiko; Shirai, Tatsuya; Watanabe, Hiroshi; Chuang, Victor T G; Fujiwara, Yukio; Takeya, Motohiro; Otagiri, Masaki; Maruyama, Toru

    2015-01-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are major pathogenic molecules produced during viral lung infections, including influenza. While fluoroquinolones are widely used as antimicrobial agents for treating a variety of bacterial infections, including secondary infections associated with the influenza virus, it has been reported that they also function as anti-oxidants against ROS and as a NO regulator. Therefore, we hypothesized that levofloxacin (LVFX), one of the most frequently used fluoroquinolone derivatives, may attenuate pulmonary injuries associated with influenza virus infections by inhibiting the production of ROS species such as hydroxyl radicals and neutrophil-derived NO that is produced during an influenza viral infection. The therapeutic impact of LVFX was examined in a PR8 (H1N1) influenza virus-induced lung injury mouse model. ESR spin-trapping experiments indicated that LVFX showed scavenging activity against neutrophil-derived hydroxyl radicals. LVFX markedly improved the survival rate of mice that were infected with the influenza virus in a dose-dependent manner. In addition, the LVFX treatment resulted in a dose-dependent decrease in the level of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress) and nitrotyrosine (a nitrative marker) in the lungs of virus-infected mice, and the nitrite/nitrate ratio (NO metabolites) and IFN-γ in BALF. These results indicate that LVFX may be of substantial benefit in the treatment of various acute inflammatory disorders such as influenza virus-induced pneumonia, by inhibiting inflammatory cell responses and suppressing the overproduction of NO in the lungs.

  20. Experimental lung injury promotes alterations in energy metabolism and respiratory mechanics in the lungs of rats: prevention by exercise.

    PubMed

    da Cunha, Maira J; da Cunha, Aline A; Scherer, Emilene B S; Machado, Fernanda Rossato; Loureiro, Samanta O; Jaenisch, Rodrigo B; Guma, Fátima; Lago, Pedro Dal; Wyse, Angela T S

    2014-04-01

    In the present study we investigated the effects of lung injury on energy metabolism (succinate dehydrogenase, complex II, cytochrome c oxidase, and ATP levels), respiratory mechanics (dynamic and static compliance, elastance and respiratory system resistance) in the lungs of rats, as well as on phospholipids in bronchoalveolar lavage fluid. The protective effect of physical exercise on the alterations caused by lung injury, including lung edema was also evaluated. Wistar rats were submitted to 2 months of physical exercise. After this period the lung injury was induced by intratracheal instillation of lipopolysaccharide. Adult Wistar rats were submitted to 2 months of physical exercise and after this period the lung injury was induced by intratracheal instillation of lipopolysaccharide in dose 100 μg/100 g body weight. The sham group received isotonic saline instillation. Twelve hours after the injury was performed the respiratory mechanical and after the rats were decapitated and samples were collected. The rats subjected to lung injury presented a decrease in activities of the enzymes of the electron transport chain and ATP levels in lung, as well as the formation of pulmonary edema. A decreased lung dynamic and static compliance, as well as an increase in respiratory system resistance, and a decrease in phospholipids content were observed. Physical exercise was able to totally prevent the decrease in succinate dehydrogenase and complex II activities and the formation of pulmonary edema. It also partially prevented the increase in respiratory system resistance, but did not prevent the decrease in dynamic and static compliance, as well as in phospholipids content. These findings suggest that the mitochondrial dysfunction may be one of the important contributors to lung damage and that physical exercise may be beneficial in this pathology, although it did not prevent all changes present in lung injury.

  1. Protective Effects of Apigenin Against Paraquat-Induced Acute Lung Injury in Mice.

    PubMed

    Luan, Rui-Ling; Meng, Xiang-Xi; Jiang, Wei

    2016-04-01

    This study aimed to investigate the protective effects of apigenin against paraquat (PQ)-induced acute lung injury (ALI) in mice. Male Kunming mice were randomly divided into five groups: group 1 (control), group 2 (PQ), group 3 (PQ + apigenin 25 mg/kg), group 4 (PQ + apigenin 50 mg/kg), and group 5 (PQ + apigenin 100 mg/kg). The PQ + apigenin group received apigenin by gavage daily for consecutive 7 days, respectively, while the mice in control and PQ groups were given an equivalent volume of saline. We detected the lung wet/dry weight ratios and the histopathology of the lung. The levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined using enzyme-linked immunosorbent assay (ELISA) kits. The activity of nuclear factor (NF)-κB was also determined. The results indicated that apigenin administration decreased biochemical parameters of inflammation and oxidative stress, and improved oxygenation and lung edema in a dose-dependent manner. These protective effects of apigenin were associated with inhibition of NF-κB. In conclusion, apigenin reduces PQ-induced ALI by inhibition of inflammation and oxidative stress.

  2. Protective Effect of Isorhamnetin on Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Yang, Bo; Li, Xiao-Ping; Ni, Yun-Feng; Du, Hong-Yin; Wang, Rong; Li, Ming-Jiang; Wang, Wen-Chen; Li, Ming-Ming; Wang, Xu-Hui; Li, Lei; Zhang, Wei-Dong; Jiang, Tao

    2016-02-01

    Isorhamnetin has been reported to have anti-inflammatory, anti-oxidative, and anti-proliferative effects. The aim of this study was to investigate the protective effect of isorhamnetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice by inhibiting the expression of cyclooxygenase-2 (COX-2). The effects of isorhamnetin on LPS-induced lung pathological damage, wet/dry ratios and the total protein level in bronchoalveolar lavage fluid (BALF), inflammatory cytokine release, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and malondialdehyde (MDA) level were examined. In addition, the COX-2 activation in lung tissues was detected by Western blot. Isorhamnetin pretreatment improved the mice survival rates. Moreover, isorhamnetin pretreatment significantly attenuated edema and the pathological changes in the lung and inhibited protein extravasation in BALF. Isorhamnetin also significantly decreased the levels of inflammatory cytokines in BALF. In addition, isorhamnetin markedly prevented LPS-induced oxidative stress. Furthermore, isorhamnetin pretreatment significantly suppressed LPS-induced activation of COX-2. Isorhamnetin has been demonstrated to protect mice from LPS-induced ALI by inhibiting the expression of COX-2.

  3. Peptide nanomedicines for treatment of acute lung injury.

    PubMed

    Sadikot, Ruxana T

    2012-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a heterogenous group of lung disease in critically ill patients. Despite the increased understanding of the molecular pathogenesis of ARDS, the mortality remains unacceptably high, ranging from 34% to 64%. Hence, ARDS represents an unmet medical need with an urgency to develop effective pharmacotherapies. Several promising targets that have been identified as potential therapies for ARDS have been limited because of difficulty with delivery. In particular, delivery of peptides and proteins to the lung is an ongoing challenge. Nanobiotechnology and nanoscience are the basis of innovative techniques to deliver drugs targeted to the site of inflamed organs, such as the lungs. Nanoscale drug delivery systems have the ability to improve the pharmacokinetics and pharmakodynamics of agents allowing an increase in the biodistribution of therapeutic agents to target organs, resulting in improved efficacy with reduction in drug toxicity. These systems are exploited for therapeutic purpose to carry the drug in the body in a controlled manner from the site of administration to the therapeutic target. Hence, it is an attractive strategy to test potential targets for ALI/ARDS using nanotechnology. To this end, we have identified several potential targets and proposed the delivery of these agents using nanomicelles to improve the drug delivery.

  4. Plasminogen activator inhibitor-1 in acute hyperoxic mouse lung injury.

    PubMed Central

    Barazzone, C; Belin, D; Piguet, P F; Vassalli, J D; Sappino, A P

    1996-01-01

    Hyperoxia-induced lung disease is associated with prominent intraalveolar fibrin deposition. Fibrin turnover is tightly regulated by the concerted action of proteases and antiproteases, and inhibition of plasmin-mediated proteolysis could account for fibrin accumulation in lung alveoli. We show here that lungs of mice exposed to hyperoxia overproduce plasminogen activator inhibitor-1 (PAI-1), and that PAI-1 upregulation impairs fibrinolytic activity in the alveolar compartment. To explore whether increased PAI-1 production is a causal or only a correlative event for impaired intraalveolar fibrinolysis and the development of hyaline membrane disease, we studied mice genetically deficient in PAI-1. We found that these mice fail to develop intraalveolar fibrin deposits in response to hyperoxia and that they are more resistant to the lethal effects of hyperoxic stress. These observations provide clear and novel evidence for the pathogenic contribution of PAI-1 in the development of hyaline membrane disease. They identify PAI-1 as a major deleterious mediator of hyperoxic lung injury. PMID:8981909

  5. Enhancement of ozone-induced lung injury by exercise

    SciTech Connect

    Mautz, W.J.; McClure, T.R.; Reischl, P.; Phalen, R.F.; Crocker, T.T.

    1985-01-01

    Rats were exposed for up to 3.75 h to 0.20-0.80 ppm O/sub 3/ under conditions of rest and treadmill exercise up to 30 m/min, 20% grade, to assess the importance of exposure duration, O/sub 3/ concentration, and exercise on lung tissue injury. Focal lung parenchymal lesions increased in abundance and severity in response to the three variables; however, exercise was the most important. Lesion response to exercise was greater than that predicted by a simple proportion to estimated effective dose of O/sub 3/. The results emphasize the importance of including exercise in assessment of possible adverse health effects of exposure to airborne pollutants.

  6. Mesenchymal stem cells improves survival in LPS-induced acute lung injury acting through inhibition of NETs formation.

    PubMed

    Pedrazza, Leonardo; Cunha, Aline Andrea; Luft, Carolina; Nunes, Nailê Karine; Schimitz, Felipe; Gassen, Rodrigo Benedetti; Breda, Ricardo Vaz; Donadio, Marcio Vinícius Fagundes; de Souza Wyse, Angela Terezinha; Pitrez, Paulo Marcio Condessa; Rosa, Jose Luis; de Oliveira, Jarbas Rodrigues

    2017-01-23

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute hypoxemic respiratory failure resulting from a variety of direct and indirect injuries to the gas exchange parenchyma of the lungs. During the ALI, we have an increase release of proinflammatory cytokines and high reactive oxygen species (ROS) formation. These factors are responsible for the release and activation of neutrophil-derived proteases and the formation of neutrophil extracellular traps (NETs). The excessive increase in the release of NETs cause damage to lung tissue. Recent studies have studies involving the administration of mesenchymal stem cells (MSCs) for the treatment of experimental ALI has shown promising results. In this way, the objective of our study is to evaluate the ability of MSCs, in a lipopolysaccharide (LPS)-induced ALI model, to reduce inflammation, oxidative damage, and consequently decrease the release of NETs. Mice were submitted lung injury induced by intratracheal instillation of LPS and subsequently treated or not with MSCs. Treatment with MSCs was able to modulate pulmonary inflammation, decrease oxidative damage, and reduce the release of NETs. These benefits from treatment are evident when we observe a significant increase in the survival curve in the treated animals. Our results demonstrate that MSCs treatment is effective for the treatment of ALI. For the first time, it is described that MSCs can reduce the formation of NETs and an experimental model of ALI. This finding is directly related to these cells modulate the inflammatory response and oxidative damage in the course of the pathology.

  7. Efferent vagal nerve stimulation attenuates acute lung injury following burn: The importance of the gut-lung axis

    PubMed Central

    Krzyzaniak, Michael J.; Peterson, Carrie Y.; Cheadle, Gerald; Loomis, William; Wolf, Paul; Kennedy, Vince; Putnam, James G.; Bansal, Vishal; Eliceiri, Brian; Baird, Andrew; Coimbra, Raul

    2014-01-01

    Background The purpose of this study was to assess acute lung injury when protection to the gut mucosal barrier offered by vagus nerve stimulation is eliminated by an abdominal vagotomy. Methods Male balb/c mice were subjected to 30% total body surface area steam burn with and without electrical stimulation to the right cervical vagus nerve. A cohort of animals were subjected to abdominal vagotomy. Lung histology, myeloperoxidase and ICAM-1 immune staining, myeloperoxidase enzymatic assay, and tissue KC levels were analyzed 24 hours after burn. Additionally, lung IkB-α, NF-kB immunoblots, and NF-kB-DNA binding measured by photon emission analysis using NF-kB-luc transgenic mice were performed. Results Six hours post burn, phosphorylation of both NF-kB p65 and IkB-α were observed. Increased photon emission signal was seen in the lungs of NF-kB-luc transgenic animals. Vagal nerve stimulation blunted NF-kB activation similar to sham animals whereas abdominal vagotomy eliminated the anti-inflammatory effect. After burn, MPO positive cells and ICAM-1 expression in the lung endothelium was increased, and lung histology demonstrated significant injury at 24 hours. Vagal nerve stimulation markedly decreased neutrophil infiltration as demonstrated by MPO immune staining and enzyme activity. Vagal stimulation also markedly attenuated acute lung injury at 24 hours. The protective effects of vagal nerve stimulation were reversed by performing an abdominal vagotomy. Conclusion Vagal nerve stimulation is an effective strategy to protect against acute lung injury following burn. Moreover, the protective effects of vagal nerve stimulation in the prevention of acute lung injury are eliminated by performing an abdominal vagotomy. These results establish the importance of the gut-lung axis after burn in the genesis of acute lung injury. PMID:21783215

  8. Characterization of Distinct Macrophage Subpopulations during Nitrogen Mustard–Induced Lung Injury and Fibrosis

    PubMed Central

    Venosa, Alessandro; Malaviya, Rama; Choi, Hyejeong; Gow, Andrew J.; Laskin, Jeffrey D.

    2016-01-01

    Nitrogen mustard (NM) is an alkylating agent known to cause extensive pulmonary injury progressing to fibrosis. This is accompanied by a persistent macrophage inflammatory response. In these studies, we characterized the phenotype of macrophages accumulating in the lung over time following NM exposure. Treatment of rats with NM (0.125 mg/kg, intratracheally) resulted in an increase in CD11b+ macrophages in histologic sections. These cells consisted of inducible nitric oxide synthase+ (iNOS) proinflammatory M1 macrophages, and CD68+, CD163+, CD206+, YM-1+, and arginase-II+antiinflammatory M2 macrophages. Although M1 macrophages were prominent 1–3 days after NM, M2 macrophages were most notable at 28 days. At this time, they were enlarged and vacuolated, consistent with a profibrotic phenotype. Flow cytometric analysis of isolated lung macrophages identified three phenotypically distinct subpopulations: mature CD11b−, CD43−, and CD68+ resident macrophages, which decreased in numbers after NM; and two infiltrating (CD11b+) macrophage subsets: immature CD43+ M1 macrophages and mature CD43− M2 macrophages, which increased sequentially. Time-related increases in M1 (iNOS, IL-12α, COX-2, TNF-α, matrix metalloproteinase-9, matrix metalloproteinase-10) and M2 (IL-10, pentraxin-2, connective tissue growth factor, ApoE) genes, as well as chemokines/chemokine receptors associated with trafficking of M1 (CCR2, CCR5, CCL2, CCL5) and M2 (CX3CR1, fractalkine) macrophages to sites of injury, were also noted in macrophages isolated from the lung after NM. The appearance of M1 and M2 macrophages in the lung correlated with NM-induced acute injury and the development of fibrosis, suggesting a potential role of these macrophage subpopulations in the pathogenic response to NM. PMID:26273949

  9. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury

    PubMed Central

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A.; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Abstract Aims: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. Results: C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1−/−) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. Innovation: This is the first study delineating the role of heme in ALI caused by Br2. Conclusion: The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI. Antioxid. Redox Signal. 24, 99–112. PMID:26376667

  10. Characterization of Distinct Macrophage Subpopulations during Nitrogen Mustard-Induced Lung Injury and Fibrosis.

    PubMed

    Venosa, Alessandro; Malaviya, Rama; Choi, Hyejeong; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2016-03-01

    Nitrogen mustard (NM) is an alkylating agent known to cause extensive pulmonary injury progressing to fibrosis. This is accompanied by a persistent macrophage inflammatory response. In these studies, we characterized the phenotype of macrophages accumulating in the lung over time following NM exposure. Treatment of rats with NM (0.125 mg/kg, intratracheally) resulted in an increase in CD11b(+) macrophages in histologic sections. These cells consisted of inducible nitric oxide synthase(+) (iNOS) proinflammatory M1 macrophages, and CD68(+), CD163(+), CD206(+), YM-1(+), and arginase-II(+)antiinflammatory M2 macrophages. Although M1 macrophages were prominent 1-3 days after NM, M2 macrophages were most notable at 28 days. At this time, they were enlarged and vacuolated, consistent with a profibrotic phenotype. Flow cytometric analysis of isolated lung macrophages identified three phenotypically distinct subpopulations: mature CD11b(-), CD43(-), and CD68(+) resident macrophages, which decreased in numbers after NM; and two infiltrating (CD11b(+)) macrophage subsets: immature CD43(+) M1 macrophages and mature CD43(-) M2 macrophages, which increased sequentially. Time-related increases in M1 (iNOS, IL-12α, COX-2, TNF-α, matrix metalloproteinase-9, matrix metalloproteinase-10) and M2 (IL-10, pentraxin-2, connective tissue growth factor, ApoE) genes, as well as chemokines/chemokine receptors associated with trafficking of M1 (CCR2, CCR5, CCL2, CCL5) and M2 (CX3CR1, fractalkine) macrophages to sites of injury, were also noted in macrophages isolated from the lung after NM. The appearance of M1 and M2 macrophages in the lung correlated with NM-induced acute injury and the development of fibrosis, suggesting a potential role of these macrophage subpopulations in the pathogenic response to NM.

  11. S100A8 induces IL-10 and protects against acute lung injury.

    PubMed

    Hiroshima, Yuka; Hsu, Kenneth; Tedla, Nicodemus; Chung, Yuen Ming; Chow, Sharron; Herbert, Cristan; Geczy, Carolyn L

    2014-03-15

    S100A8 is considered proinflammatory by activating TLR4 and/or the receptor for advanced glycation end products. The aim was to investigate inflammatory effects of S100A8 in murine lung. S100A8 was administered to BALB/c mice by nasal inhalation and genes induced over a time-course assessed. LPS was introduced intranasally either alone or 2 h after pretreatment of mice with intranasal application of S100A8 or dexamethasone. A Cys(42)-Ala(42) mutant S100A8 mutant was used to assess whether S100A8's effects were via pathways that were dependent on reactive oxygen species. S100A8 induced IL-10 mRNA, and expression was apparent only in airway epithelial cells. Importantly, it suppressed acute lung injury provoked by LPS inhalation by suppressing mast-cell activation and induction of mediators orchestrating leukocyte recruitment, possibly by reducing NF-κB activation via an IκBα/Akt pathway and by downmodulating pathways generating oxidative stress. The Cys(42)-Ala(42) S100A8 mutant did not induce IL-10 and was less immunosuppressive, indicating modulation by scavenging oxidants. S100A8 inhibition of LPS-mediated injury was as potent, and outcomes were remarkably similar to immunosuppression by dexamethasone. We challenge the notion that S100A8 is an agonist for TLR4 or the receptor for advanced glycation end products. S100A8 induced IL-10 in vivo and initiates a feedback loop that attenuates acute lung injury.

  12. Stressed lungs: unveiling the role of circulating stress hormones in ozone-induced lung injury and inflammation.

    EPA Science Inventory

    Ozone, a major component of smog generated through the interaction of light and anthropogenic emissions, induces adverse pulmonary, cardiovascular, and systemic health effects upon inhalation. It is generally accepted that ozone-induced lung injury is mediated by its interaction ...

  13. Effect of tramadol on lung injury induced by skeletal muscle ischemia-reperfusion: an experimental study*

    PubMed Central

    Takhtfooladi, Mohammad Ashrafzadeh; Jahanshahi, Amirali; Sotoudeh, Amir; Jahanshahi, Gholamreza; Takhtfooladi, Hamed Ashrafzadeh; Aslani, Kimia

    2013-01-01

    OBJECTIVE: To determine whether tramadol has a protective effect against lung injury induced by skeletal muscle ischemia-reperfusion. METHODS: Twenty Wistar male rats were allocated to one of two groups: ischemia-reperfusion (IR) and ischemia-reperfusion + tramadol (IR+T). The animals were anesthetized with intramuscular injections of ketamine and xylazine (50 mg/kg and 10 mg/kg, respectively). All of the animals underwent 2-h ischemia by occlusion of the femoral artery and 24-h reperfusion. Prior to the occlusion of the femoral artery, 250 IU heparin were administered via the jugular vein in order to prevent clotting. The rats in the IR+T group were treated with tramadol (20 mg/kg i.v.) immediately before reperfusion. After the reperfusion period, the animals were euthanized with pentobarbital (300 mg/kg i.p.), the lungs were carefully removed, and specimens were properly prepared for histopathological and biochemical studies. RESULTS: Myeloperoxidase activity and nitric oxide levels were significantly higher in the IR group than in the IR+T group (p = 0.001 for both). Histological abnormalities, such as intra-alveolar edema, intra-alveolar hemorrhage, and neutrophil infiltration, were significantly more common in the IR group than in the IR+T group. CONCLUSIONS: On the basis of our histological and biochemical findings, we conclude that tramadol prevents lung tissue injury after skeletal muscle ischemia-reperfusion. PMID:24068264

  14. Assessment of Oxidative Stress in Lungs from Sheep After Inhalation of Wood Smoke

    DTIC Science & Technology

    2004-01-01

    hypoxia. Plasma and expired breath samples were collected pre-smoke, and 6, 12, 18, 24, 36 and 48 h after smoke exposure. Sheep were euthanatized 48... h after smoke exposure and lung and airway sections were evaluated histologically for injury and biochemically for indices of oxidative stress. Plasma...thiobarbituric acid reactive substances (TBARS) were 66 and 69% higher than controls after moderate and severe smoke exposure at 48 h , whereas total

  15. Transfusion-related acute lung injury: a review.

    PubMed

    Looney, Mark R; Gropper, Michael A; Matthay, Michael A

    2004-07-01

    Transfusion-related acute lung injury (TRALI) is an underreported complication of transfusion therapy, and it is the third most common cause of transfusion-associated death. TRALI is defined as noncardiogenic pulmonary edema temporally related to transfusion therapy. The diagnosis of TRALI relies on excluding other diagnoses such as sepsis, volume overload, and cardiogenic pulmonary edema. Supportive diagnostic evidence includes identifying neutrophil or human leukocyte antigen (HLA) antibodies in the donor or recipient plasma. All plasma-containing blood products have been implicated in TRALI, with the majority of cases linked to whole blood, packed RBCs, platelets, and fresh-frozen plasma. The pathogenesis of TRALI may be explained by a "two-hit" hypothesis, with the first "hit" being a predisposing inflammatory condition commonly present in the operating room or ICU. The second hit may involve the passive transfer of neutrophil or HLA antibodies from the donor or the transfusion of biologically active lipids from older, cellular blood products. Treatment is supportive, with a prognosis substantially better than most causes of clinical acute lung injury.

  16. Mitochondrial biogenesis in the pulmonary vasculature during inhalation lung injury and fibrosis

    EPA Science Inventory

    Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammatio...

  17. Traumatic forequarter amputation associated acute lung injury (ALI): report of one case.

    PubMed

    Liang, K; Gan, X; Deng, Z

    2012-07-01

    One case of traumatic forequarter amputation associated acute lung injury (ALI) was presented. A discussion reviewing the treatment guidelines for this devastating injury, and pointing out the importance of supporting the lung and preventing the development of acute respiratory distress syndrome (ARDS) was included.

  18. Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung

    PubMed Central

    Duch, Matthew C.; Scott Budinger, G. R.; Liang, Yu Teng; Soberanes, Saul; Urich, Daniela; Chiarella, Sergio E.; Campochiaro, Laura A; Gonzalez, Angel; Chandel, Navdeep S.; Hersam, Mark C.; Mutlu, Gökhan M.

    2011-01-01

    To facilitate the proposed use of graphene and its derivative graphene oxide (GO) in widespread applications, we explored strategies that improve the biocompatibility of graphene nanomaterials in the lung. In particular, solutions of aggregated graphene, Pluronic dispersed graphene, and GO were administered directly into the lungs of mice. The introduction of GO resulted in severe and persistent lung injury. Furthermore, in cells, GO increased the rate of mitochondrial respiration and the generation of reactive oxygen species, activating inflammatory and apoptotic pathways. In contrast, this toxicity was significantly reduced in the case of pristine graphene after liquid phase exfoliation, and was further minimized when the unoxidized graphene was well-dispersed with the block copolymer Pluronic. Our results demonstrate that the covalent oxidation of graphene is a major contributor to its pulmonary toxicity and suggest that dispersion of pristine graphene in Pluronic provides a pathway for the safe handling and potential biomedical application of two-dimensional carbon nanomaterials. PMID:22023654

  19. Riboflavin supplementation does not attenuate hyperoxic lung injury in transgenic (spc-mt)hGR mice.

    PubMed

    Heyob, Kathryn M; Rogers, Lynette K; Tipple, Trent E; Welty, Stephen E

    2011-04-01

    The aims of this study were to test the hypothesis that mice expressing mitochondrially targeted human glutathione reductase (GR) driven by a surfactant protein C promoter ((spc-mt)hGR) are functionally riboflavin deficient and that this deficiency exacerbates hyperoxic lung injury. The authors further hypothesized that dietary supplementation with riboflavin (FADH) will improve the bioactivity of GR, thus enhancing resistance to hyperoxic lung injury. Transgenic (mt-spc)hGR mice and their nontransgenic littermates were fed control or riboflavin-supplemented diets upon weaning. At 6 weeks of age the mice were exposed to either room air (RA) or >95% O(2) for up to 84 hours. GR activities (with and without exogenous FADH) and GR protein levels were measured in lung tissue homogenates. Glutathione (GSH) and glutathione disulfide (GSSG) concentrations were assayed to identify changes in GR activity in vivo. Lung injury was assessed by right lung to body weight ratios and bronchoalveolar lavage protein concentrations. The data showed that enhanced GR activity in the mitochondria of lung type II cells does not protect adult mice from hyperoxic lung injury. Furthermore, the addition of riboflavin to the diets of (spc-mt)hGR mice neither enhances GR activities nor offers protection from hyperoxic lung injury. The results indicated that modulation of mitochondrial GR activity in lung type II cells is not an effective therapy to minimize hyperoxic lung injury.

  20. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  1. Caveolin-1: a critical regulator of lung injury

    PubMed Central

    Lee, Seon-Jin; Minshall, Richard D.; Choi, Augustine M. K.

    2011-01-01

    Caveolin-1 (cav-1), a 22-kDa transmembrane scaffolding protein, is the principal structural component of caveolae. Cav-1 regulates critical cell functions including proliferation, apoptosis, cell differentiation, and transcytosis via diverse signaling pathways. Abundant in almost every cell type in the lung, including type I epithelial cells, endothelial cells, smooth muscle cells, fibroblasts, macrophages, and neutrophils, cav-1 plays a crucial role in the pathogenesis of acute lung injury (ALI). ALI and its severe form, acute respiratory distress syndrome (ARDS), are responsible for significant morbidity and mortality in intensive care units, despite improvement in ventilation strategies. The pathogenesis of ARDS is still poorly understood, and therapeutic options remain limited. In this article, we summarize recent data regarding the regulation and function of cav-1 in lung biology and pathology, in particular as it relates to ALI. We further discuss the potential molecular and cellular mechanisms by which cav-1 expression contributes to ALI. Investigating the cellular functions of cav-1 may provide new insights for understanding the pathogenesis of ALI and provide novel targets for therapeutic interventions in the future. PMID:21097526

  2. The pathogenesis of transfusion-related acute lung injury (TRALI).

    PubMed

    Bux, Jürgen; Sachs, Ulrich J H

    2007-03-01

    In recent years, transfusion-related acute lung injury (TRALI) has developed from an almost unknown transfusion reaction to the most common cause of transfusion-related major morbidities and fatalities. A clinical definition of TRALI was established in 2004, based on acute respiratory distress, non-cardiogenic lung oedema temporal association with transfusion and hypoxaemia. Histological findings reveal lung oedema, capillary leucostasis and neutrophil extravasation. However, the pathogenesis of TRALI remains controversial. Leucocyte antibodies, present in fresh frozen plasma and platelet concentrates from multiparous donors, and neutrophil priming agents released in stored cellular blood components have been considered to be causative. As neutrophils and endothelial cells are pivotal in the pathogenesis of TRALI, a threshold model was established to try to unify the various reported findings on pathogenesis. This model comprises the priming of neutrophils and/or endothelium by the patient's co-morbidity, neutrophil and/or endothelial cell activation by the transfused blood component, and the severity of the TRALI reaction.

  3. Beneficial Effects of Concomitant Neuronal and Inducible Nitric Oxide Synthase Inhibition in Ovine Burn and Inhalation Injury

    PubMed Central

    Lange, Matthias; Hamahata, Atsumori; Enkhbaatar, Perenlei; Cox, Robert A.; Nakano, Yoshimitsu; Westphal, Martin; Traber, Lillian D.; Herndon, David N.; Traber, Daniel L.

    2013-01-01

    Different isoforms of nitric oxide synthase are critically involved in the development of pulmonary failure secondary to acute lung injury. Here we tested the hypothesis that simultaneous blockade of inducible and neuronal nitric oxide synthase effectively prevents the pulmonary lesions in an ovine model of acute respiratory distress syndrome (ARDS) induced by combined burn and smoke inhalation injury. Chronically instrumented sheep were allocated to a sham-injured group (n = 6), an injured and untreated group (n = 6), or an injured group treated with simultaneous infusion of selective inducible and neuronal nitric oxide synthase inhibitors (n = 5). The injury was induced by 48 breath of cotton smoke and a 3rd degree burn of 40% total body surface area. All sheep were mechanically ventilated and fluid resuscitated. The injury induced severe pulmonary dysfunction as indicated by decreases in PaO2/FiO2 ratio and increases in pulmonary shunt fraction, ventilatory pressures, lung lymph flow, and lung wet/dry weight ratio. The treatment fully prevented the elevations in lymph and plasma nitrate/nitrite levels, pulmonary shunting, ventilatory pressures, lung lymph flow, and wet/dry weight ratio and significantly attenuated the decline in PaO2/FiO2 ratio. In conclusion, simultaneous blockade of inducible and neuronal nitric oxide synthase exerts beneficial pulmonary effects in an ovine model of ARDS secondary to combined burn and smoke inhalation injury. This novel treatment strategy may represent a useful therapeutic adjunct for patients with these injuries. PMID:21263377

  4. The role of toxicological interactions in lung injury.

    PubMed Central

    Witschi, H P; Hakkinen, P J

    1984-01-01

    Interactions between two or more toxic agents can produce lung damage by chemical-chemical interactions, chemical-receptor interactions or by modification, by a first agent, of the cell and tissue response to a second agent. Interactions may occur by simultaneous exposure and if exposure to the two agents is separated in time. Chemical-chemical interactions have been mostly studied in the toxicology of air pollutants, where it was shown that the untoward effect of certain oxidants may be enhanced in the presence of other aerosols. Interactions at the receptor site have been found in isolated perfused lung experiments. Oxygen tolerance may be an example, when pre-exposure to one concentration of oxygen mitigates later exposure to 100% oxygen by modifying cellular and enzymatic composition of the lung. Damage of the alveolar zone by the antioxidant butylated hydroxytoluene (BHT) can be greatly enhanced by subsequent exposure to oxygen concentration which, otherwise, would have little if any demonstrable effect. The synergistic interaction between BHT and oxygen results in a resulting interstitial pulmonary fibrosis. Acute or chronic lung disease may then be caused not only by one agent, but very likely in many instances by the interaction of several agents. PMID:6376096

  5. Protective effects of imipramine in murine endotoxin-induced acute lung injury.

    PubMed

    Yang, Jin; Qu, Jie-ming; Summah, Hanssa; Zhang, Jin; Zhu, Ying-gang; Jiang, Hong-ni

    2010-07-25

    The tricyclic antidepressant imipramine has recently emerged as a cytoprotective agent, exerting beneficial effects in inflammatory tissue injury. The present study aimed to investigate therapeutic effects of imipramine in murine model of endotoxin-induced acute lung injury. Mice were administrated intraperitoneally with LPS (lipopolysaccharide) from Escherichia coli or vehicle. Imipramine was administrated intraperitoneally 30 min before LPS challenge. Pretreatment of mice with imipramine reduced lethality. Impramine also significantly attenuated lung inflammation, lung edema, MPO (myeloperoxidase) activity, lung tissue pathological changes and nuclear factor-kappaB DNA binding activity. The results of this study suggest that imipramine can exert protective effects in endotoxin-induced acute lung injury by suppressing nuclear factor-kappaB-mediated expression of inflammatory genes. Thus, imipramine could be a potential novel therapeutic agent for the treatment for acute lung injury.

  6. Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis.

    PubMed

    Lin, Wei-Chieh; Chen, Chang-Wen; Huang, Yu-Wen; Chao, Lee; Chao, Julie; Lin, Yee-Shin; Lin, Chiou-Feng

    2015-07-22

    Kallistatin, an endogenous plasma protein, exhibits pleiotropic properties in inhibiting inflammation, oxidative stress and apoptosis, as evidenced in various animal models and cultured cells. Here, we demonstrate that kallistatin levels were positively correlated with the concentration of total protein in bronchoalveolar lavage fluids (BALF) from patients with sepsis-related acute respiratory distress syndrome (ARDS), indicating a compensatory mechanism. Lower ratio of kallistatin to total protein in BALF showed a significant trend toward elevated neutrophil counts (P = 0.002) in BALF and increased mortality (P = 0.046). In lipopolysaccharide (LPS)-treated mice, expression of human kallistatin in lung by gene transfer with human kallistatin-encoding plasmid ameliorated acute lung injury (ALI) and reduced cytokine/chemokine levels in BALF. These mice exhibited attenuated lung epithelial apoptosis and decreased Fas/FasL expression compared to the control mice. Mouse survival was improved by kallistatin gene transfer or recombinant human kallistatin treatment after LPS challenge. In LPS-stimulated A549 human lung epithelial cells, kallistatin attenuated apoptosis, down-regulated Fas/FasL signaling, suppressed intracellular reactive oxygen species (ROS) and inhibited ROS-mediated NF-κB activation and inflammation. Furthermore, LPS-induced apoptosis was blocked by antioxidant N-acetylcysteine or NF-κB inhibitor via down-regulating Fas expression. These findings suggest the therapeutic potential of kallistatin for sepsis-related ALI/ARDS.

  7. Alterations of lung microbiota in a mouse model of LPS-induced lung injury

    PubMed Central

    Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A.; Birukov, Konstantin G.

    2015-01-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3–V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents. PMID:25957290

  8. Alterations of lung microbiota in a mouse model of LPS-induced lung injury.

    PubMed

    Poroyko, Valeriy; Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A; Birukov, Konstantin G

    2015-07-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents.

  9. Leptin treatment ameliorates acute lung injury in rats with cerulein-induced acute pancreatitis

    PubMed Central

    Gultekin, Fatma Ayca; Kerem, Mustafa; Tatlicioglu, Ertan; Aricioglu, Aysel; Unsal, Cigdem; Bukan, Neslihan

    2007-01-01

    AIM: To determine the effect of exogenous leptin on acute lung injury (ALI) in cerulein-induced acute pancreatitis (AP). METHODS: Forty-eight rats were randomly divided into 3 groups. AP was induced by intraperitoneal (i.p.) injection of cerulein (50 μg/kg) four times, at 1 h intervals. The rats received a single i.p. injection of 10 μg/kg leptin (leptin group) or 2 mL saline (AP group) after cerulein injections. In the sham group, animals were given a single i.p. injection of 2 mL saline. Experimental samples were collected for biochemical and histological evaluations at 24 h and 48 h after the induction of AP or saline administration. Blood samples were obtained for the determination of amylase, lipase, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, macrophage inflammatory peptide (MIP)-2 and soluble intercellular adhesion molecule (sICAM)-1 levels, while pancreatic and lung tissues were removed for myeloperoxidase (MPO) activity, nitric oxide (NOx) level, CD40 expression and histological evaluation. RESULTS: Cerulein injection caused severe AP, confirmed by an increase in serum amylase and lipase levels, histopathological findings of severe AP, and pancreatic MPO activity, compared to the values obtained in the sham group. In the leptin group, serum levels of MIP-2, sICMA-1, TNF-α, and IL-1β, pancreatic MPO activity, CD40 expression in pancreas and lung tissues, and NOx level in the lung tissue were lower compared to those in the AP group. Histologically, pancreatic and lung damage was less severe following leptin administration. CONCLUSION: Exogenous leptin attenuates inflamma-tory changes, and reduces pro-inflammatory cytokines, nitric oxide levels, and CD40 expression in cerulein-induced AP and may be protective in AP associated ALI. PMID:17589942

  10. Glycyrrhizic Acid Prevents Sepsis-Induced Acute Lung Injury and Mortality in Rats.

    PubMed

    Zhao, Hongyu; Zhao, Min; Wang, Yu; Li, Fengchun; Zhang, Zhigang

    2016-02-01

    Glycyrrhizic acid (GA), an active ingredient in licorice, has multiple pharmacological activities. However, the effects of GA on sepsis-induced acute lung injury (ALI) have not been determined. Tthe aim of this study was to investigate the molecular mechanism involved in the effects of GA against sepsis-induced ALI in rats. We found that GA alleviated sepsis-induced ALI through improvements in various pathological changes, as well as decreases in the lung wet/dry weight ratio and total protein content in bronchoalveolar lavage fluid, and a significant increase in the survival rate of treated rats. Additionally, GA markedly inhibited sepsis-induced pulmonary inflammatory responses. Moreover, we found that treatment with GA inhibited oxidative stress damage and apoptosis in lung tissue induced by ALI. Finally, GA treatment significantly inhibited NF-κ B, JNK and P38 MAPK activation. Our data indicate that GA has a protective effect against sepsis-induced ALI by inhibiting the inflammatory response, damage from oxidative stress, and apoptosis via inactivation of NF-κB and MAPK signaling pathways, providing a molecular basis for a new medical treatment for sepsis-induced ALI.

  11. Preventive Effects of Dexmedetomidine on the Liver in a Rat Model of Acid-Induced Acute Lung Injury

    PubMed Central

    Şen, Velat; Güzel, Abdulmenap; Selimoğlu Şen, Hadice; Ece, Aydın; Uluca, Ünal; Söker, Sevda; Doğan, Erdal; Kaplan, İbrahim; Deveci, Engin

    2014-01-01

    The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300–350 g were allocated randomly to four groups. In group 1, normal saline (NS) was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV) in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI) was found to be associated with increased malondialdehyde (MDA), total oxidant activity (TOA), oxidative stress index (OSI), and decreased total antioxidant capacity (TAC). Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P < 0.05). The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF) expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI. PMID:25165710

  12. Increased susceptibility to hyperoxic lung injury and alveolar simplification in newborn rats by prenatal administration of benzo[a]pyrene

    PubMed Central

    Thakur, Vijay S.; Liang, Yanhong W.; Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Barrios, Roberto; Zhou, Guodong; Guntupalli, Bharath; Shivanna, Binoy; Maturu, Paramahamsa; Welty, Stephen E.; Moorthy, Bhagavatula; Couroucli, Xanthi I.

    2014-01-01

    Maternal smoking is one of the risk factors for preterm birth and for the development of bronchopulmonary dysplasia (BPD). In this study, we tested the hypothesis that prenatal exposure of rats to benzo[a]pyrene (BP), a component of cigarette smoke, will result in increased susceptibility of newborns to oxygen-mediated lung injury and alveolar simplification, and that cytochrome P450 (CYP)1A and 1B1 enzymes and oxidative stress mechanistically contribute to this phenomenon. Timed pregnant Fisher 344 rats were administered BP (25 mg/Kg) or the vehicle corn oil (CO) on gestational days 18, 19 and 20, and newborn were either maintained in room air or exposed to hyperoxia (85% O2) for 7 or 14 days. Hyperoxic newborn rats prenatally exposed to the vehicle CO showed lung injury and alveolar simplification, and inflammation, and these effects were potentiated in rats that were prenatally exposed to BP. Prenatal exposure to BP, followed by hyperoxia, also resulted in significant modulation of hepatic and pulmonary cytochrome P450 (CYP)1A and 1B1 enzymes at PND 7-14. These rats displayed significant oxidative stress in lungs at postnatal day (PND) 14, as evidenced by increased levels of the F2-isoprostane 8-iso-PGF2α. Furthermore, these animals showed BP-derived DNA adducts and oxidative DNA adducts in the lung. In conclusion, our results show increased susceptibility of newborns to oxygen-mediated lung injury and alveolar simplification following maternal exposure to BP, and our results suggest that modulation of CYP1A/1B1 enzymes, increases in oxidative stress, and BP-DNA adducts contributed to this phenomenon. PMID:24657529

  13. Stem cell factor improves lung recovery in rats following neonatal hyperoxia-induced lung injury

    PubMed Central

    Miranda, Luis F.; Rodrigues, Claudia O.; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Klim, Jammie; Hehre, Dorothy; McNiece, Ian; Hare, Joshua M.; Suguihara, Cleide Y.; Young, Karen C.

    2016-01-01

    BACKGROUND Stem cell factor (SCF) and its receptor, c-kit, are modulators of angiogenesis. Neonatal hyperoxia-induced lung injury (HILI) is characterized by disordered angiogenesis. The objective of this study was to determine whether exogenous SCF improves recovery from neonatal HILI by improving angiogenesis. METHODS Newborn rats assigned to normoxia (RA: 20.9% O2) or hyperoxia (90% O2) from postnatal day (P) 2 to 15, received daily injections of SCF 100 µg/kg or placebo (PL) from P15 to P21. Lung morphometry was performed at P28. Capillary tube formation in SCF-treated hyperoxia-exposed pulmonary microvascular endothelial cells (HPMECs) was determined by Matrigel assay. RESULTS As compared with RA, hyperoxic-PL pups had decrease in alveolarization and in lung vascular density, and this was associated with increased right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and vascular remodeling. In contrast, SCF-treated hyperoxic pups had increased angiogenesis, improved alveolarization, and attenuation of pulmonary hypertension as evidenced by decreased RVSP, right ventricular hypertrophy, and vascular remodeling. Moreover, in an in vitro model, SCF increased capillary tube formation in hyperoxia-exposed HPMECs. CONCLUSION Exogenous SCF restores alveolar and vascular structure in neonatal rats with HILI by promoting neoangiogenesis. These findings suggest a new strategy to treat lung diseases characterized by dysangiogenesis. PMID:24153399

  14. Acute Lung Injury Following Smoke Inhalation: Predictive Value of Sputum Biomarkers and Time Course of Lung Inflammation

    DTIC Science & Technology

    2007-05-01

    acute lung injury (ALI) and acute respiratory distress syndrome ( ARDS ). Criteria for diagnosing ALI and predicting...Rationale: Smoke inhalation victims are at high risk of developing acute respiratory distress syndrome ( ARDS ). Given the delay of 12 or more hours...Background: Although smoke inhalation injury victims frequently develop acute respiratory distress syndrome ( ARDS ), no early prognostic

  15. Acute Lung Injury Following Smoke Inhalation: Predictive Value of Sputum Biomarkers and Time Course of Lung Inflammation

    DTIC Science & Technology

    2006-04-01

    acute respiratory distress syndrome ( ARDS ). Given the delay of 12 or...Keywords: Inhalation Burns, Acute Respiratory Distress Syndrome , Interleukin-8, Interleukin- 1 beta. 4/14/2006 Markers of Smoke Inhalation Injury 2...Zimmerman 2005; Park et al., 2001), all hallmarks of acute lung injury (ALI) and acute respiratory distress syndrome ( ARDS ). The general

  16. Effect of Valproic Acid on Acute Lung Injury in a Rodent Model of Intestinal Ischemia Reperfusion

    PubMed Central

    Kim, Kyuseok; Li, Yongqing; Jin, Guang; Chong, Wei; Liu, Baoling; Lu, Jennifer; Lee, Kyoungbun; deMoya, Marc; Velmahos, George; Alam, Hasan B.

    2011-01-01

    Objectives Acute lung injury (ALI) is developed in many clinical situations and associated with significant morbidity and mortality. Valproic acid (VPA), a well-known anti-epileptic drug, has been shown to have anti-oxidant and anti-inflammatory effects in various ischemia/reperfusion (I/R) models. The purpose of this study was to investigate whether VPA could affect survival and development of ALI in a rat model of intestinal I/R. Methods Two experiments were performed. Experiment I: Male Sprague-Dawley rats (250–300 g) were subjected to intestinal ischemia (1 hour) and reperfusion (3 hours). They were randomized into 2 groups (n=7/group) 30 min after ischemia: Vehicle (Veh) and VPA (300 mg/kg, IV). Primary end-point for this study was survival over 4 hours from the start of ischemia. Experiment II: The histological and biochemical effects of VPA treatment on lungs were examined 3 hours (1 hr ischemia + 2 hrs reperfusion) after intestinal I/R injury (Veh vs. VPA, n = 9/group). An objective histological score was used to grade the degree of ALI. Enzyme linked immunosorbent assay (ELISA) was performed to measure serum levels of cytokine interleukins (IL-6 and 10), and lung tissue of cytokine-induced neutrophil chemoattractant (CINC) and myeloperoxidase (MPO). In addition, the activity of 8-isoprostane was analyzed for pulmonary oxidative damage. Results In Experiment I, four-hour survival rate was significantly higher in VPA treated animals compared to Veh animals (71.4% vs. 14.3%, p = 0.006). In Experiment II, ALI was apparent in all of the Veh group animals. Treatment with VPA prevented the development of ALI, with a reduction in the histological score (3.4 ± 0.3 vs. 5.3 ± 0.6, p = 0.025). Moreover, compared to the Veh control group the animals from the VPA group displayed decreased serum levels of IL-6 (952 ± 213 vs. 7709 ± 1990 pg/ml, p = 0.011), and lung tissue concentrations of CINC (1188 ± 28 vs. 1298 ± 27, p < 0.05), MPO activity (368 ± 23 vs. 490

  17. Relationship of Acute Lung Inflammatory Injury to Fas/FasL System

    PubMed Central

    Neff, Thomas A.; Guo, Ren-Feng; Neff, Simona B.; Sarma, J. Vidya; Speyer, Cecilia L.; Gao, Hongwei; Bernacki, Kurt D.; Huber-Lang, Markus; McGuire, Stephanie; Hoesel, L. Marco; Riedemann, Niels C.; Beck-Schimmer, Beatrice; Zetoune, Firas S.; Ward, Peter A.

    2005-01-01

    There is mounting evidence that apoptosis plays a significant role in tissue damage during acute lung injury. To evaluate the role of the apoptosis mediators Fas and FasL in acute lung injury, Fas (lpr)- or FasL (gld)-deficient and wild-type mice were challenged with intrapulmonary deposition of IgG immune complexes. Lung injury parameters (125I-albumin leak, accumulation of myeloperoxidase, and wet lung weights) were measured and found to be consistently reduced in both lpr and gld mice. In wild-type mice, lung injury was associated with a marked increase in Fas protein in lung. Inflamed lungs of wild-type mice showed striking evidence of activated caspase-3, which was much diminished in inflamed lungs from lpr mice. Intratracheal administration of a monoclonal Fas-activating antibody (Jo2) in wild-type mice induced MIP-2 and KC production in bronchoalveolar lavage fluids, and a murine alveolar macrophage cell line (MH-S) showed significantly increased MIP-2 production after incubation with this antibody. Bronchoalveolar lavage fluid content of MIP-2 and KC was substantially reduced in lpr mice after lung injury when compared to levels in wild-type mice. These data suggest that the Fas/FasL system regulates the acute lung inflammatory response by positively affecting CXC-chemokine production, ultimately leading to enhanced neutrophil influx and tissue damage. PMID:15743781

  18. Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury

    PubMed Central

    Yabuuchi, Nozomi; Sagata, Masataka; Saigo, Chika; Yoneda, Go; Yamamoto, Yuko; Nomura, Yui; Nishi, Kazuhiko; Fujino, Rika; Jono, Hirofumi; Saito, Hideyuki

    2016-01-01

    High mortality of acute kidney injury (AKI) is associated with acute lung injury (ALI), which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS), in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5), in bilateral nephrectomy (BNx)-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr), blood urea nitrogen (BUN) and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk. PMID:28025487

  19. Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury.

    PubMed

    Yabuuchi, Nozomi; Sagata, Masataka; Saigo, Chika; Yoneda, Go; Yamamoto, Yuko; Nomura, Yui; Nishi, Kazuhiko; Fujino, Rika; Jono, Hirofumi; Saito, Hideyuki

    2016-12-23

    High mortality of acute kidney injury (AKI) is associated with acute lung injury (ALI), which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS), in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5), in bilateral nephrectomy (BNx)-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr), blood urea nitrogen (BUN) and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk.

  20. Inhalation Lung Injury Associated with Humidifier Disinfectants in Adults

    PubMed Central

    2016-01-01

    We recently established a novel disease entity presented as progressive respiratory failure associated with the inhalation of humidifier disinfectants. In April 2011, we encountered a series of peripartum patients with complaints of respiratory distress of unknown etiology, which was an uncommon phenomenon. Accordingly, we created a multidisciplinary team comprising intensivists, radiologists, pathologists, epidemiologists, and the Korea Centers for Disease Control and Prevention (KCDC). Further, we defined the disease entity and performed a case-control study, epidemiologic investigation, and animal study to determine the etiology. The study findings indicated that the lung injury outbreak was related to the inhalation of humidifier disinfectants and showed that household chemical inhalation can cause severe respiratory failure. Following the withdrawal of humidifier disinfectants from the Korean market in 2012, no such cases were reported. This tragic event is a warning that appropriate safety regulations and monitoring for potential toxic household chemicals are critical to protect public health. PMID:27822921

  1. Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo

    2013-01-01

    Background Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Methods Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Results Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly

  2. Lung vascular injury with protease infusion. Relationship to plasma fibronectin.

    PubMed Central

    Cohler, L F; Saba, T M; Lewis, E P

    1985-01-01

    Fibronectin exists in a soluble form in plasma and in an insoluble form in tissues. Plasma fibronectin can modulate phagocytic function as well as incorporate into the tissue matrix where it is believed to influence microvascular integrity and tissue repair. The temporal alterations in plasma and lung lymph fibronectin were studied in relation to increased pulmonary vascular permeability induced by protease infusion. The acute sheep lung lymph fistula model was used. A 39% decrease in plasma fibronectin (control = 421 +/- 67 micrograms/ml) was observed 2.5 hours (255 +/- 43 micrograms/ml) after protease infusion. There was an elevation of lymph fibronectin early after protease infusion, followed by a progressive decline. Concomitant with the decrease in plasma fibronectin, an increase in lymph flow (QL) of greater than 200% (from a control of 6.7 +/- 1.0 ml/hr to 13.9 +/- 1.4 ml/hr) was observed within 2.5 hours. Also, there was a sustained elevation in the total protein lymph/plasma concentration (L/P) ratio, which was maximal at 2.5 hours. The transvascular protein clearance (TVPC = QL X L/P) was 4.5 +/- 0.7 ml/hr at the control period and 13.1 +/- 2.0 ml/hr by 2.5 hours. This was indicative of increased flux of protein-rich fluid across the pulmonary endothelial barrier. Lung vascular permeability stabilized after 2.5 hours as manifested by a slowly declining L/P ratio. Thus, plasma fibronectin deficiency may contribute to the etiology of increased lung vascular permeability with protease infusion. Since the progressive decline in plasma fibronectin was not reflected in a proportional increase in lymph fibronectin, plasma fibronectin may have sequestered in tissues such as the lung, or perhaps in reticuloendothelial cells during the injury phase. Whether the progressive decrease in plasma fibronectin reflects its incorporation into the endothelial barrier matrix where it may mediate stabilization of the pulmonary microvascular barrier remains to be determined

  3. Intra-Peritoneal Administration of Mitochondrial DNA Provokes Acute Lung Injury and Systemic Inflammation via Toll-Like Receptor 9

    PubMed Central

    Zhang, Lemeng; Deng, Songyun; Zhao, Shuangping; Ai, Yuhang; Zhang, Lina; Pan, Pinhua; Su, Xiaoli; Tan, Hongyi; Wu, Dongdong

    2016-01-01

    The pathogenesis of sepsis is complex. Mitochondrial dysfunction, which is responsible for energy metabolism, intrinsic apoptotic pathway, oxidative stress, and systemic inflammatory responses, is closely related with severe sepsis induced death. Mitochondria DNA (mtDNA) contain un-methylated cytosine phosphate guanine (CpG) motifs, which exhibit immune stimulatory capacities. The aim of this study was to investigate the role and mechanism of mtDNA release on lipopolysaccharide (LPS) induced acute lung injury (ALI) and systemic inflammation. Following LPS injection, plasma mtDNA copies peak at 8 h. Compared with wild-type (WT) mice, mtDNA in toll like receptor 4 knockout (TLR4 KO) mice were significantly decreased. MtDNA intra-peritoneal administration causes apparent ALI as demonstrated by increased lung injury score, bronchoalveolar lavage fluid (BALF) total protein and wet/dry (W/D) ratio; mtDNA injection also directly provokes systemic inflammation, as demonstrated by increased IL-1β, IL-6, high-mobility group protein B1 (HMGB1) level; while nuclear DNA (nDNA) could not induce apparent ALI and systemic inflammation. However, compared with WT mice, TLR4 KO could not protect from mtDNA induced ALI and systemic inflammation. Specific TLR9 inhibitor, ODN 2088 pretreatment can significantly attenuate mtDNA induced ALI and systemic inflammation, as demonstrated by improved lung injury score, decreased lung wet/dry ratio, BALF total protein concentration, and decreased systemic level of IL-1β, IL-6 and HMGB1. MtDNA administration activates the expression of p-P38 mitogen-activated protein kinases (MAPK) in lung tissue and specific TLR9 inhibitor pretreatment can attenuate this activation. Thus, LPS-induced mtDNA release occurs in a TLR4-dependent manner, and mtDNA causes acute lung injury and systemic inflammation in a TLR9-dependent and TLR4-independent manner. PMID:27589725

  4. Depletion of tissue plasminogen activator attenuates lung ischemia-reperfusion injury via inhibition of neutrophil extravasation

    PubMed Central

    Zhao, Yunge; Sharma, Ashish K.; LaPar, Damien J.; Kron, Irving L.; Ailawadi, Gorav; Liu, Yuan; Jones, David R.; Laubach, Victor E.

    2011-01-01

    Ischemia-reperfusion (IR) injury following lung transplantation remains a major source of early morbidity and mortality. Histologically, this inflammatory process is characterized by neutrophil infiltration and activation. We previously reported that lung IR injury was significantly attenuated in plasminogen activator inhibitor-1-deficient mice. In this study, we explored the potential role of tissue plasminogen activator (tPA) in a mouse lung IR injury model. As a result, tPA knockout (KO) mice were significantly protected from lung IR injury through several mechanisms. At the cellular level, tPA KO specifically blocked neutrophil extravasation into the interstitium, and abundant homotypic neutrophil aggregation (HNA) was detected in the lung microvasculature of tPA KO mice after IR. At the molecular level, inhibition of neutrophil extravasation was associated with reduced expression of platelet endothelial cell adhesion molecule-1 mediated through the tPA/ LDL receptor-related protein/NF-κB signaling pathway, whereas increased P-selectin triggered HNA. At the functional level, tPA KO mice incurred significantly decreased vascular permeability and improved lung function following IR. Protection from lung IR injury in tPA KO mice occurs through a fibrinolysis-independent mechanism. These results suggest that tPA could serve as an important therapeutic target for the prevention and treatment of acute IR injury after lung transplantation. PMID:21378024

  5. Omeprazole Attenuates Pulmonary Aryl Hydrocarbon Receptor Activation and Potentiates Hyperoxia-Induced Developmental Lung Injury in Newborn Mice

    PubMed Central

    Shivanna, Binoy; Zhang, Shaojie; Patel, Ananddeep; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in human preterm infants and a similar lung phenotype characterized by alveolar simplification in newborn mice. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury (HLI) in adult mice. Whether OM activates pulmonary AhR and protects C57BL/6J newborn mice against hyperoxia-induced developmental lung (alveolar and pulmonary vascular simplification, inflammation, and oxidative stress) injury (HDLI) is unknown. Therefore, we tested the hypothesis that OM will activate pulmonary AhR and mitigate HDLI in newborn mice. Newborn mice were treated daily with i.p. injections of OM at doses of 10 (OM10) or 25 (OM25) mg/kg while being exposed to air or hyperoxia (FiO2 of 85%) for 14 days, following which their lungs were harvested to determine alveolarization, pulmonary vascularization, inflammation, oxidative stress, vascular injury, and AhR activation. To our surprise, hyperoxia-induced alveolar and pulmonary vascular simplification, inflammation, oxidative stress, and vascular injury were augmented in OM25-treated animals. These findings were associated with attenuated pulmonary vascular endothelial growth factor receptor 2 expression and decreased pulmonary AhR activation in the OM25 group. We conclude that contrary to our hypothesis, OM decreases functional activation of pulmonary AhR and potentiates HDLI in newborn mice. These observations are consistent with our previous findings, which suggest that AhR activation plays a protective role in HDLI in newborn mice. PMID:26272953

  6. Evaluation report on the causal association between humidifier disinfectants and lung injury

    PubMed Central

    2016-01-01

    OBJECTIVES As of November 2011, the Korean government recalled and banned humidifier disinfectants (HDs) from the market, because four case-control studies and one retrospective epidemiological study proved the association between HDs and lung injury of unknown cause. The report reviewed the causal role of HDs in lung injury based on scientific evidences. METHODS A careful examination on the association between the HDs and lung injury was based on the criteria of causality inference by Hill and the US Surgeon General Expert Committee. RESULTS We found that all the evidences on the causality fulfilled the criteria (strength of association, consistency, specificity, temporality, biologic gradient, plausibility, coherence, experiment, analogy, consideration of alternative explanations, and cessation of exposure), which proved the unknown cause lung injury reported in 2011 was caused by the HDs. In particular, there was no single reported case of lung injury since the ban in selling HDs in November 2011 as well as before the HDs were sold in markets. CONCLUSIONS Although only a few epidemiological studies in Korea have evaluated the association between lung injury and the use of HDs, those studies contributed to proving the strong association between the use of the HDs and lung injury, based on scientific evidence. PMID:27733036

  7. High Bias Gas Flows Increase Lung Injury in the Ventilated Preterm Lamb

    PubMed Central

    Bach, Katinka P.; Kuschel, Carl A.; Hooper, Stuart B.; Bertram, Jean; McKnight, Sue; Peachey, Shirley E.; Zahra, Valerie A.; Flecknoe, Sharon J.; Oliver, Mark H.; Wallace, Megan J.; Bloomfield, Frank H.

    2012-01-01

    Background Mechanical ventilation of preterm babies increases survival but can also cause ventilator-induced lung injury (VILI), leading to the development of bronchopulmonary dysplasia (BPD). It is not known whether shear stress injury from gases flowing into the preterm lung during ventilation contributes to VILI. Methods Preterm lambs of 131 days’ gestation (term = 147 d) were ventilated for 2 hours with a bias gas flow of 8 L/min (n = 13), 18 L/min (n = 12) or 28 L/min (n = 14). Physiological parameters were measured continuously and lung injury was assessed by measuring mRNA expression of early injury response genes and by histological analysis. Control lung tissue was collected from unventilated age-matched fetuses. Data were analysed by ANOVA with a Tukey post-hoc test when appropriate. Results High bias gas flows resulted in higher ventilator pressures, shorter inflation times and decreased ventilator efficiency. The rate of rise of inspiratory gas flow was greatest, and pulmonary mRNA levels of the injury markers, EGR1 and CTGF, were highest in lambs ventilated with bias gas flows of 18 L/min. High bias gas flows resulted in increased cellular proliferation and abnormal deposition of elastin, collagen and myofibroblasts in the lung. Conclusions High ventilator bias gas flows resulted in increased lung injury, with up-regulation of acute early response genes and increased histological lung injury. Bias gas flows may, therefore, contribute to VILI and BPD. PMID:23056572

  8. Lipopolysaccharide-Induced Lung Injury Is Independent of Serum Vitamin D Concentration

    PubMed Central

    Klaff, Lindy S.; Gill, Sean E.; Wisse, Brent E.; Mittelsteadt, Kristen; Matute-Bello, Gustavo; Chen, Peter; Altemeier, William A.

    2012-01-01

    Vitamin D deficiency is increasing in incidence around the world. Vitamin D, a fat-soluble vitamin, has documented effects on the innate and adaptive immune system, including macrophage and T regulatory (Treg) cell function. Since Treg cells are important in acute lung injury resolution, we hypothesized that vitamin D deficiency increases the severity of injury and delays injury resolution in lipopolysaccharide (LPS) induced acute lung injury. Vitamin D deficient mice were generated, using C57BL/6 mice, through diet modification and limited exposure to ultraviolet light. At 8 weeks of age, vitamin D deficient and sufficient mice received 2.5 g/kg of LPS or saline intratracheal. At 1 day, 3 days and 10 days, mice were anesthetized and lung elastance measured. Mice were euthanized and bronchoalveolar lavage fluid, lungs and serum were collected. Ex vivo neutrophil chemotaxis was evaluated, using neutrophils from vitamin D sufficient and deficient mice exposed to the chemoattractants, KC/CXCL1 and C5a, and to bronchoalveolar lavage fluid from LPS-exposed mice. We found no difference in the degree of lung injury. Leukocytes were mildly decreased in the bronchoalveolar fluid of vitamin D deficient mice at 1 day. Ex-vivo, neutrophils from vitamin D deficient mice showed impaired chemotaxis to KC but not to C5a. Vitamin D deficiency modestly impairs neutrophil chemotaxis; however, it does not affect lung injury or its resolution in an LPS model of acute lung injury. PMID:23185294

  9. Transfusion related acute lung injury presenting with acute dyspnoea: a case report

    PubMed Central

    Haji, Altaf Gauhar; Sharma, Shekhar; Vijaykumar, DK; Paul, Jerry

    2008-01-01

    Introduction Transfusion-related acute lung injury is emerging as a common cause of transfusion-related adverse events. However, awareness about this entity in the medical fraternity is low and it, consequently, remains a very under-reported and often an under-diagnosed complication of transfusion therapy. Case presentation We report a case of a 46-year old woman who developed acute respiratory and hemodynamic instability following a single unit blood transfusion in the postoperative period. Investigation results were non-specific and a diagnosis of transfusion-related acute lung injury was made after excluding other possible causes of acute lung injury. She responded to symptomatic management with ventilatory and vasopressor support and recovered completely over the next 72 hours. Conclusion The diagnosis of transfusion-related acute lung injury relies on excluding other causes of acute pulmonary edema following transfusion, such as sepsis, volume overload, and cardiogenic pulmonary edema. All plasma containing blood products have been implicated in transfusion-related acute lung injury, with the majority being linked to whole blood, packed red blood cells, platelets, and fresh-frozen plasma. The pathogenesis of transfusion-related acute lung injury may be explained by a "two-hit" hypothesis, involving priming of the inflammatory machinery and then activation of this primed mechanism. Treatment is supportive, with prognosis being substantially better than for most other causes of acute lung injury. PMID:18957111

  10. VEGF Promotes Malaria-Associated Acute Lung Injury in Mice

    PubMed Central

    Carapau, Daniel; Pena, Ana C.; Ataíde, Ricardo; Monteiro, Carla A. A.; Félix, Nuno; Costa-Silva, Artur; Marinho, Claudio R. F.; Dias, Sérgio; Mota, Maria M.

    2010-01-01

    The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies. PMID:20502682

  11. Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment

    PubMed Central

    Cox, Ruan; Phillips, Oluwakemi; Fukumoto, Jutaro; Fukumoto, Itsuko; Parthasarathy, Prasanna Tamarapu; Arias, Stephen; Cho, Young; Lockey, Richard F.

    2015-01-01

    Acute lung injury (ALI), which presents as acute respiratory failure, is a major clinical problem that requires aggressive care, and patients who require prolonged oxygen exposure are at risk of developing this disease. Although molecular determinants of ALI have been reported, the molecules involved in disease catabasis associated with oxygen toxicity have not been well studied. It has been reported that lung mucosa is rich in omega-3 fatty acid dicosahexanoic acid (DHA), which has antiinflammatory properties. Aspirin-triggered resolvin D1 (AT-RvD1) is a potent proresolution metabolite of DHA that can curb the inflammatory effects in various acute injuries, yet the effect of AT-RvD1 on hyperoxic acute lung injury (HALI) or in the oxygen toxicity setting in general has not been investigated. The effects of AT-RvD1 on HALI were determined for the first time in 8- to 10-week-old C57BL/6 mice that were exposed to hyperoxia (≥95% O2) for 48 hours. Mice were given AT-RvD1 (100 ng) in saline or a saline vehicle for 24 hours in normoxic (≈21% O2) conditions after hyperoxia. Lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analysis associated with proinflammatory signaling and lung inflammation. AT-RvD1 treatment resulted in reduced oxidative stress, increased glutathione production, and significantly decreased tissue inflammation. AT-RvD1 treatment also significantly reduced the lung wet/dry ratio, protein in BAL fluid, and decreased apoptotic and NF-κB signaling. These results show that AT-RvD1 curbs oxygen-induced lung edema, permeability, inflammation, and apoptosis and is thus an effective therapy for prolonged hyperoxia exposure in this murine model. PMID:25647402

  12. [Transfusion related acute lung injury (TRALI): an unrecognised pathology].

    PubMed

    Moalic, V; Vaillant, C; Ferec, C

    2005-03-01

    Transfusion related acute lung injury (TRALI) is a rare but potentially severe complication of blood transfusion, manifested by pulmonary oedema, fever and hypotension. The signs and symptoms are often attributed to other clinical aspects of a patient's condition, and therefore, TRALI may go unrecognised. It has been estimated to be the third cause of transfusion related mortality, so it should be better diagnosed. Cases are related to multiple blood units, such as white blood cells, red blood cells, fresh frozen plasma, platelets or intravenous immunoglobulins. Physiopathology of TRALI is poorly understood, and still controversial. It is often due to an immunological conflict between transfused plasma antibodies and recipients' blood cells. These antibodies are either HLA (class I or II) or granulocyte-specific. They appear to act as mediators, which result in granulocytes aggregation, activation and micro vascular pulmonary injury. Lipids or cytokines in blood units are also involved as TRALI priming agents. Diagnosis is based on antibody screening in blood components and on specific-antigen detection in the recipient. The screening of anti-HLA or anti-granulocytes is recommended as part of prevention for female donors who had been pregnant. Preventative measures should also include leucoreduction and measures to decrease the amount of priming agents in blood components. In this article, we summarise what is known about TRALI, and we focus attention on unanswered questions and controversial issues related to TRALI.

  13. Effects of N-acetylcysteine and pentoxifylline on remote lung injury in a rat model of hind-limb ischemia/reperfusion injury

    PubMed Central

    Takhtfooladi, Hamed Ashrafzadeh; Hesaraki, Saeed; Razmara, Foad; Takhtfooladi, Mohammad Ashrafzadeh; Hajizadeh, Hadi

    2016-01-01

    Objective : To investigate the effects of N-acetylcysteine (NAC) and pentoxifylline in a model of remote organ injury after hind-limb ischemia/reperfusion (I/R) in rats, the lungs being the remote organ system. Methods : Thirty-five male Wistar rats were assigned to one of five conditions (n = 7/group), as follows: sham operation (control group); hind-limb ischemia, induced by clamping the left femoral artery, for 2 h, followed by 24 h of reperfusion (I/R group); and hind-limb ischemia, as above, followed by intraperitoneal injection (prior to reperfusion) of 150 mg/kg of NAC (I/R+NAC group), 40 mg/kg of pentoxifylline (I/R+PTX group), or both (I/R+NAC+PTX group). At the end of the trial, lung tissues were removed for histological analysis and assessment of oxidative stress. Results : In comparison with the rats in the other groups, those in the I/R group showed lower superoxide dismutase activity and glutathione levels, together with higher malondialdehyde levels and lung injury scores (p < 0.05 for all). Interstitial inflammatory cell infiltration of the lungs was also markedly greater in the I/R group than in the other groups. In addition, I/R group rats showed various signs of interstitial edema and hemorrhage. In the I/R+NAC, I/R+PTX, and I/R+NAC+PTX groups, superoxide dismutase activity, glutathione levels, malondialdehyde levels, and lung injury scores were preserved (p < 0.05 for all). The differences between the administration of NAC or pentoxifylline alone and the administration of the two together were not significant for any of those parameters (p > 0.05 for all). Conclusions : Our results suggest that NAC and pentoxifylline both protect lung tissue from the effects of skeletal muscle I/R. However, their combined use does not appear to increase the level of that protection. PMID:26982035

  14. Ventilation-induced lung injury is not exacerbated by growth restriction in preterm lambs.

    PubMed

    Allison, Beth J; Hooper, Stuart B; Coia, Elise; Zahra, Valerie A; Jenkin, Graham; Malhotra, Atul; Sehgal, Arvind; Kluckow, Martin; Gill, Andrew W; Sozo, Foula; Miller, Suzanne L; Polglase, Graeme R

    2016-02-01

    Intrauterine growth restriction (IUGR) and preterm birth are frequent comorbidities and, combined, increase the risk of adverse respiratory outcomes compared with that in appropriately grown (AG) infants. Potential underlying reasons for this increased respiratory morbidity in IUGR infants compared with AG infants include altered fetal lung development, fetal lung inflammation, increased respiratory requirements, and/or increased ventilation-induced lung injury. IUGR was surgically induced in preterm fetal sheep (0.7 gestation) by ligation of a single umbilical artery. Four weeks later, preterm lambs were euthanized at delivery or delivered and ventilated for 2 h before euthanasia. Ventilator requirements, lung inflammation, early markers of lung injury, and morphological changes in lung parenchymal and vascular structure and surfactant composition were analyzed. IUGR preterm lambs weighed 30% less than AG preterm lambs, with increased brain-to-body weight ratio, indicating brain sparing. IUGR did not induce lung inflammation or injury or alter lung parenchymal and vascular structure compared with AG fetuses. IUGR and AG lambs had similar oxygenation and respiratory requirements after birth and had significant, but similar, increases in proinflammatory cytokine expression, lung injury markers, gene expression, and surfactant phosphatidylcholine species compared with unventilated controls. IUGR does not induce pulmonary structural changes in our model. Furthermore, IUGR and AG preterm lambs have similar ventilator requirements in the immediate postnatal period. This study suggests that increased morbidity and mortality in IUGR infants is not due to altered lung tissue or vascular structure, or to an altered response to early ventilation.

  15. Mitigation of Radiation-Induced Lung Injury with EUK-207 and Genistein: Effects in Adolescent Rats

    PubMed Central

    Mahmood, J.; Jelveh, S.; Zaidi, A.; Doctrow, S. R.; Hill, R. P.

    2013-01-01

    Exposure of civilian populations to radiation due to accident, war or terrorist act is an increasing concern. The lung is one of the more radiosensitive organs that may be affected in people receiving partial-body irradiation and radiation injury in lung is thought to be associated with the development of a prolonged inflammatory response. Here we examined how effectively damage to the lung can be mitigated by administration of drugs initiated at different times after radiation exposure and examined response in adolescent animals for comparison with the young adult animals that we had studied previously. We studied the mitigation efficacy of the isoflavone genistein (50 mg/kg) and the salen-Mn superoxide dismutase-catalase mimetic EUK-207 (8 mg/kg), both of which have been reported to scavenge reactive oxygen species and reduce activity of the NFkB pathway. The drugs were given by subcutaneous injection to 6- to 7-week-old Fisher rats daily starting either immediately or 2 weeks after irradiation with 12 Gy to the whole thorax. The treatment was stopped at 28 weeks post irradiation and the animals were assessed for levels of inflammatory cytokines, activated macrophages, oxidative damage and fibrosis at 48 weeks post irradiation. We demonstrated that both genistein and EUK-207 delayed and suppressed the increased breathing rate associated with pneumonitis. These agents also reduced levels of oxidative damage (50–100%), levels of TGF-β1 expression (75–100%), activated macrophages (20–60%) and fibrosis (60–80%). The adolescent rats developed pneumonitis earlier following irradiation of the lung than did the adult rats leading to greater severe morbidity requiring euthanasia (~37% in adolescents vs. ~10% in young adults) but the extent of the mitigation of the damage was similar or slightly greater. PMID:23237541

  16. CXCR4 Blockade Attenuates Hyperoxia Induced Lung Injury in Neonatal Rats

    PubMed Central

    Drummond, Shelley; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Suguihara, Cleide; Young, Karen C.

    2015-01-01

    Background Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. Whether antagonism of CXCR4 will alleviate lung inflammation in neonatal hyperoxia-induced lung injury is unknown. Objective To determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods Newborn rats exposed to normoxia (RA) or hyperoxia (FiO2=0.9) from postnatal day 2 (P2)-P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis, and inflammation were evaluated at P16. Results As compared to RA, hyperoxic-PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in bronchoalveolar lavage fluid macrophage and neutrophil count and reduced lung myeloperoxidase activity. Conclusion CXCR4 antagonism decreases lung inflammation and improves alveolar as well as vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD. PMID:25825119

  17. Eupatorium lindleyanum DC. flavonoids fraction attenuates lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Chu, Chunjun; Yao, Shi; Chen, Jinglei; Wei, Xiaochen; Xia, Long; Chen, Daofeng; Zhang, Jian

    2016-10-01

    Eupatorium lindleyanum DC., "Ye-Ma-Zhui" called by local residents in China, showed anti-inflammatory activity and is used to treat tracheitis. We had isolated and identified the flavonoids, diterpenoids and sesquiterpenes compounds from the herb. In the present study, we evaluated the protective effects of the flavonoids fraction of E. lindleyanum (EUP-FLA) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanisms of action. EUP-FLA could significantly decrease lung wet-to-dry weight (W/D) ratio, nitric oxide (NO) and protein concentration in BALF, lower myeloperoxidase (MPO) activity, increase superoxide dismutase (SOD) activity and down-regulate the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Additionally, EUP-FLA attenuated lung histopathological changes and significantly reduced complement deposition with decreasing the levels of Complement 3 (C3) and Complement 3c (C3c) in serum. These results demonstrated that EUP-FLA may attenuate LPS-induced ALI via reducing productions of pro-inflammatory mediators, decreasing the level of complement and affecting the NO, SOD and MPO activity.

  18. Trapa japonica Pericarp Extract Reduces LPS-Induced Inflammation in Macrophages and Acute Lung Injury in Mice.

    PubMed

    Kim, Yon-Suk; Hwang, Jin-Woo; Jang, Jae-Hyuk; Son, Sangkeun; Seo, Il-Bok; Jeong, Jae-Hyun; Kim, Ee-Hwa; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2016-03-21

    In this study, we found that chloroform fraction (CF) from TJP ethanolic extract inhibited lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and intracellular ROS in RAW264.7 cells. In addition, expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes was reduced, as evidenced by western blot. Our results indicate that CF exerts anti-inflammatory effects by down-regulating expression of iNOS and COX-2 genes through inhibition of MAPK (ERK, JNK and p38) and NF-κB signaling. Similarly we also evaluated the effects of CF on LPS-induced acute lung injury. Male Balb/c mice were pretreated with dexamethasone or CF 1 h before intranasal instillation of LPS. Eight hours after LPS administration, the inflammatory cells in the bronchoalveolar lavage fluid (BALF) were determined. The results indicated that CF inhibited LPS-induced TNF-α and IL-6 production in a dose dependent manner. It was also observed that CF attenuated LPS-induced lung histopathologic changes. In conclusion, these data demonstrate that the protective effect of CF on LPS-induced acute lung injury (ALI) in mice might relate to the suppression of excessive inflammatory responses in lung tissue. Thus, it can be suggested that CF might be a potential therapeutic agent for ALI.

  19. Pulmonary Epithelial TLR4 Activation Leads to Lung Injury in Neonatal Necrotizing Enterocolitis.

    PubMed

    Jia, Hongpeng; Sodhi, Chhinder P; Yamaguchi, Yukihiro; Lu, Peng; Martin, Laura Y; Good, Misty; Zhou, Qinjie; Sung, Jungeun; Fulton, William B; Nino, Diego F; Prindle, Thomas; Ozolek, John A; Hackam, David J

    2016-08-01

    We seek to define the mechanisms leading to the development of lung disease in the setting of neonatal necrotizing enterocolitis (NEC), a life-threatening gastrointestinal disease of premature infants characterized by the sudden onset of intestinal necrosis. NEC development in mice requires activation of the LPS receptor TLR4 on the intestinal epithelium, through its effects on modulating epithelial injury and repair. Although NEC-associated lung injury is more severe than the lung injury that occurs in premature infants without NEC, the mechanisms leading to its development remain unknown. In this study, we now show that TLR4 expression in the lung gradually increases during postnatal development, and that mice and humans with NEC-associated lung inflammation express higher levels of pulmonary TLR4 than do age-matched controls. NEC in wild-type newborn mice resulted in significant pulmonary injury that was prevented by deletion of TLR4 from the pulmonary epithelium, indicating a role for pulmonary TLR4 in lung injury development. Mechanistically, intestinal epithelial TLR4 activation induced high-mobility group box 1 release from the intestine, which activated pulmonary epithelial TLR4, leading to the induction of the neutrophil recruiting CXCL5 and the influx of proinflammatory neutrophils to the lung. Strikingly, the aerosolized administration of a novel carbohydrate TLR4 inhibitor prevented CXCL5 upregulation and blocked NEC-induced lung injury in mice. These findings illustrate the critical role of pulmonary TLR4 in the development of NEC-associated lung injury, and they suggest that inhibition of this innate immune receptor in the neonatal lung may prevent this devastating complication of NEC.

  20. Lung injury, inflammation and Akt signaling following inhalation of particulate hexavalent chromium

    SciTech Connect

    Beaver, Laura M.; Stemmy, Erik J.; Constant, Stephanie L.; Schwartz, Arnold; Little, Laura G.; Gigley, Jason P.; Chun, Gina; Sugden, Kent D.

    2009-02-15

    Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0-24 h) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-{alpha} levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis.

  1. Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2013-06-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3 h) resulted in rapid (within 3 h) and persistent (up to 72 h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24 h post-exposure. Ozone also induced the appearance of 8-hydroxy-2'-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3-24 h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning.

  2. Chronic ethanol ingestion impairs alveolar type II cell glutathione homeostasis and function and predisposes to endotoxin-mediated acute edematous lung injury in rats.

    PubMed Central

    Holguin, F; Moss, I; Brown, L A; Guidot, D M

    1998-01-01

    Chronic alcohol abuse increases the incidence and mortality of the acute respiratory distress syndrome (ARDS) in septic patients. To examine a potential mechanism, we hypothesized that ethanol ingestion predisposes to sepsis-mediated acute lung injury by decreasing alveolar type II cell glutathione homeostasis and function. Lungs isolated from rats fed ethanol (20% in water for >/= 3 wk), compared with lungs from control-fed rats, had greater (P < 0. 05) edematous injury (reflected by nonhydrostatic weight gain) after endotoxin (2 mg/kg intraperitoneally) and subsequent perfusion ex vivo with n-formylmethionylleucylphenylalanine (fMLP, 10(-7) M). Ethanol ingestion decreased (P < 0.05) glutathione levels in the plasma, lung tissue, and lung lavage fluid, and increased (P < 0.05) oxidized glutathione levels in the lung lavage fluid. Furthermore, ethanol ingestion decreased type II cell glutathione content by 95% (P < 0.05), decreased (P < 0.05) type II cell surfactant synthesis and secretion, and decreased (P < 0.05) type II cell viability, in vitro. Finally, treatment with the glutathione precursors S-adenosyl-L-methionine and N-acetylcysteine in the final week of ethanol ingestion significantly reduced lung edema during perfusion ex vivo. We conclude that ethanol ingestion in rats alters alveolar type II cell glutathione levels and function, thereby predisposing the lung to acute edematous injury after endotoxemia. We speculate that chronic alcohol abuse in humans predisposes to ARDS through similar mechanisms. PMID:9466970

  3. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice.

    PubMed

    Eldredge, Laurie C; Treuting, Piper M; Manicone, Anne M; Ziegler, Steven F; Parks, William C; McGuire, John K

    2016-02-01

    Bronchopulmonary dysplasia (BPD) is a common consequence of life-saving interventions for infants born with immature lungs. Resident tissue myeloid cells regulate lung pathology, but their role in BPD is poorly understood. To determine the role of lung interstitial myeloid cells in neonatal responses to lung injury, we exposed newborn mice to hyperoxia, a neonatal mouse lung injury model with features of human BPD. In newborn mice raised in normoxia, we identified a CD45(+) F4/80(+) CD11b(+), Ly6G(lo-int) CD71(+) population of cells in lungs of neonatal mice present in significantly greater percentages than in adult mice. In response to hyperoxia, surface marker and gene expression in whole lung macrophages/monocytes was biased to an alternatively activated phenotype. Partial depletion of these CD11b(+) mononuclear cells using CD11b-diphtheria toxin (DT) receptor transgenic mice resulted in 60% mortality by 40 hours of hyperoxia exposure with more severe lung injury, perivascular edema, and alveolar hemorrhage compared with DT-treated CD11b-DT receptor-negative controls, which displayed no mortality. These results identify an antiinflammatory population of CD11b(+) mononuclear cells that are protective in hyperoxia-induced neonatal lung injury in mice, and suggest that enhancing their beneficial functions may be a treatment strategy in infants at risk for BPD.

  4. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury.

    PubMed

    Tong, Lin; Zhou, Jian; Rong, Linyi; Seeley, Eric J; Pan, Jue; Zhu, Xiaodan; Liu, Jie; Wang, Qin; Tang, Xinjun; Qu, Jieming; Bai, Chunxue; Song, Yuanlin

    2016-02-12

    FGF-10 can prevent or reduce lung specific inflammation due to traumatic or infectious lung injury. However, the exact mechanisms are poorly characterized. Additionally, the effect of FGF-10 on lung-resident mesenchymal stem cells (LR-MSCs) has not been studied. To better characterize the effect of FGF-10 on LR-MSCs, FGF-10 was intratracheally delivered into the lungs of rats. Three days after instillation, bronchoalveolar lavage was performed and plastic-adherent cells were cultured, characterized and then delivered therapeutically to rats after LPS intratracheal instillation. Immunophenotyping analysis of FGF-10 mobilized and cultured cells revealed expression of the MSC markers CD29, CD73, CD90, and CD105, and the absence of the hematopoietic lineage markers CD34 and CD45. Multipotency of these cells was demonstrated by their capacity to differentiate into osteocytes, adipocytes, and chondrocytes. Delivery of LR-MSCs into the lungs after LPS injury reduced the inflammatory response as evidenced by decreased wet-to-dry ratio, reduced neutrophil and leukocyte recruitment and decreased inflammatory cytokines compared to control rats. Lastly, direct delivery of FGF-10 in the lungs of rats led to an increase of LR-MSCs in the treated lungs, suggesting that the protective effect of FGF-10 might be mediated, in part, by the mobilization of LR-MSCs in lungs.

  5. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury

    PubMed Central

    Tong, Lin; Zhou, Jian; Rong, Linyi; Seeley, Eric J.; Pan, Jue; Zhu, Xiaodan; Liu, Jie; Wang, Qin; Tang, Xinjun; Qu, Jieming; Bai, Chunxue; Song, Yuanlin

    2016-01-01

    FGF-10 can prevent or reduce lung specific inflammation due to traumatic or infectious lung injury. However, the exact mechanisms are poorly characterized. Additionally, the effect of FGF-10 on lung-resident mesenchymal stem cells (LR-MSCs) has not been studied. To better characterize the effect of FGF-10 on LR-MSCs, FGF-10 was intratracheally delivered into the lungs of rats. Three days after instillation, bronchoalveolar lavage was performed and plastic-adherent cells were cultured, characterized and then delivered therapeutically to rats after LPS intratracheal instillation. Immunophenotyping analysis of FGF-10 mobilized and cultured cells revealed expression of the MSC markers CD29, CD73, CD90, and CD105, and the absence of the hematopoietic lineage markers CD34 and CD45. Multipotency of these cells was demonstrated by their capacity to differentiate into osteocytes, adipocytes, and chondrocytes. Delivery of LR-MSCs into the lungs after LPS injury reduced the inflammatory response as evidenced by decreased wet-to-dry ratio, reduced neutrophil and leukocyte recruitment and decreased inflammatory cytokines compared to control rats. Lastly, direct delivery of FGF-10 in the lungs of rats led to an increase of LR-MSCs in the treated lungs, suggesting that the protective effect of FGF-10 might be mediated, in part, by the mobilization of LR-MSCs in lungs. PMID:26869337

  6. Effects of JAM-A deficiency or blocking antibodies on neutrophil migration and lung injury in a murine model of ALI.

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Naik, Meghna U; Naik, Ulhas P; Reddy, Raju C

    2012-11-01

    Transmigration of neutrophils (PMNs) from the vasculature into inflamed tissues, mediated by interactions between PMNs and adhesion molecules on endothelial cells, is an essential aspect of inflammation. The crucial adhesion molecules include junctional adhesion molecule (JAM)-A. Investigation of the role of this molecule in models of inflammatory disease has been limited, however, and results in different disease models have varied. No previous study has addressed JAM-A in lung disease or effects on oxidant stress and proinflammatory cytokines. We use JAM-A knockout mice and blocking antibodies to investigate the role of JAM-A in a murine model of acute lung injury (ALI). With either experimental system, we find that absence of JAM-A activity significantly reduces migration of PMNs into the alveolar space, with a resulting decrease in oxidative stress. However, there is no reduction in whole lung activity of PMN-associated myeloperoxidase, presumably reflecting the histologically observed retention of PMNs in lung tissue. Activity of these retained PMNs may account for our failure to find significant change in markers of lung oxidative stress or cytokine and chemokine levels in plasma, lung, and bronchoalveolar lavage fluid. We likewise see no JAM-A-related changes in markers of capillary permeability or lung injury. A similar lack of congruence between effects on PMN migration and tissue injury has been reported in other disease models and for other adhesion molecules in models of ALI. Our results thus confirm the crucial role of JAM-A in PMN transmigration but demonstrate that transmigration is not essential for other aspects of inflammation or for lung injury in ALI.

  7. Scutellaria baicalensis Ameliorates Acute Lung Injury by Suppressing Inflammation In Vitro and In Vivo.

    PubMed

    Chen, Jian-Jung; Huang, Chung-Chun; Chang, Heng-Yuan; Li, Pei-Ying; Liang, Yu-Chia; Deng, Jeng-Shyan; Huang, Shyh-Shyun; Huang, Guan-Jhong

    2017-01-01

    Scutellaria baicalensis has been widely used as both a dietary ingredient and traditional herbal medicine in Taiwan to treat inflammation, cancer, and bacterial and viral infections of the respiratory tract and gastrointestinal tract. This paper aims to investigate the in vitro and in vivo anti-inflammatory effects of S. baicalensis. In HPLC analysis, the fingerprint chromatogram of the water extract of S. baicalensis (WSB) was established. The anti-inflammatory effects of WSB were inverstigated using lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) in vitro and LPS-induced lung injury in vivo. WSB attenuated the production of LPS-induced nitric oxide (NO), tumor necrosis factor-alpha (TNF-[Formula: see text], interleukin-[Formula: see text] (IL-1[Formula: see text], and IL-6 in vitro and in vivo. Pretreatment with WSB markedly reduced the LPS-induced histological alterations in lung tissues. Furthermore, WSB significantly reduced the number of total cells and the protein concentration levels in the BALF. WSB blocked protein expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylation of I[Formula: see text]B-[Formula: see text] protein and MAPKs in LPS-stimulated RAW 264.7 cells and LPS-induce lung injury was also blocked. This study suggests that WSB possesses anti-inflammatory effects in vitro and in vivo, and the results suggested that WSB may be a potential therapeutic candidate for the treatment of inflammatory diseases.

  8. Development and assessment of countermeasure formulations for treatment of lung injury induced by chlorine inhalation.

    PubMed

    Hoyle, Gary W; Chen, Jing; Schlueter, Connie F; Mo, Yiqun; Humphrey, David M; Rawson, Greg; Niño, Joe A; Carson, Kenneth H

    2016-05-01

    Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation.

  9. Critical modifier role of membrane-CFTR dependent ceramide signaling in lung injury and emphysema

    PubMed Central

    Bodas, Manish; Min, Taehong; Mazur, Steven; Vij, Neeraj

    2010-01-01

    Ceramide accumulation mediates the pathogenesis of chronic obstructive lung diseases. Although, an association between lack of CFTR and ceramide accumulation has been described, it is unclear how membrane-CFTR may modulate ceramide signaling in lung injury and emphysema. The Cftr+/+- and Cftr−/−- mice and cells were used to evaluate the CFTR-dependent ceramide signaling in lung injury. Lung tissue from control and COPD patients was used to verify the role of CFTR-dependent ceramide signaling in pathogenesis of chronic emphysema. Our data reveals a novel finding that CFTR expression inversely correlates with severity of emphysema and ceramide-accumulation in COPD subjects compared to controls. We found that chemical inhibition of de novo- ceramide-synthesis controls Pa-LPS induced lung injury in Cftr+/+-mice, while its efficacy was significantly lower in Cftr−/−-mice indicating that membrane-CFTR is required for controlling lipid-raft ceramide levels. Inhibition of membrane-ceramide release showed enhanced protective effect in controlling Pa-LPS induced lung injury in Cftr−/−- mice as compared to the Cftr+/+, confirming our observation that CFTR regulates lipid-raft ceramide- levels and signaling. Our results indicate that inhibition of de novo- ceramide-synthesis may be effective in disease states with low-CFTR expression like emphysema and chronic lung injury but not in complete absence of lipid-raft CFTR as in ΔF508-CF. In contrast, inhibiting membrane ceramide release has the potential of a more effective drug candidate for ΔF508-CF but may not be effectual in treating lung injury and emphysema. Our data demonstrates the critical role of membrane-localized CFTR in regulating ceramide-accumulation and inflammatory-signaling in lung injury and emphysema. PMID:21135173

  10. The role of iron in Libby amphibole-induced acute lung injury and inflammation.

    PubMed

    Shannahan, Jonathan H; Ghio, Andrew J; Schladweiler, Mette C; McGee, John K; Richards, Judy H; Gavett, Stephen H; Kodavanti, Urmila P

    2011-05-01

    Complexation of host iron (Fe) on the surface of inhaled asbestos fibers has been postulated to cause oxidative stress contributing to in vivo pulmonary injury and inflammation. We examined the role of Fe in Libby amphibole (LA; mean length 4.99 µm ± 4.53 and width 0.28 µm ± 0.19) asbestos-induced inflammogenic effects in vitro and in vivo. LA contained acid-leachable Fe and silicon. In a cell-free media containing FeCl(3), LA bound #17 µg of Fe/mg of fiber and increased reactive oxygen species generation #3.5 fold, which was reduced by deferoxamine (DEF) treatment. In BEAS-2B cells exposure to LA, LA loaded with Fe (FeLA), or LA with DEF did not increase HO-1 or ferritin mRNA expression. LA increased IL-8 expression, which was reduced by Fe loading but increased by DEF. To determine the role of Fe in LA-induced lung injury in vivo, spontaneously hypertensive rats were exposed intratracheally to either saline (300 µL), DEF (1 mg), FeCl(3) (21 µg), LA (0.5 mg), FeLA (0.5 mg), or LA + DEF (0.5 mg). LA caused BALF neutrophils to increase 24 h post-exposure. Loading of Fe on LA but not chelation slightly decreased neutrophilic influx (LA + DEF > LA > FeLA). At 4 h post-exposure, LA-induced lung expression of MIP-2 was reduced in rats exposed to FeLA but increased by LA + DEF (LA + DEF > LA > FeLA). Ferritin mRNA was elevated in rats exposed to FeLA compared to LA. In conclusion, the acute inflammatory response to respirable fibers and particles may be inhibited in the presence of surface-complexed or cellular bioavailable Fe. Cell and tissue Fe-overload conditions may influence the pulmonary injury and inflammation caused by fibers.

  11. Oxidative Stress and Therapeutic Development in Lung Diseases

    PubMed Central

    Villegas, Leah; Stidham, Timothy; Nozik-Grayck, Eva

    2016-01-01

    Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies. PMID:27019769

  12. Oxidative Stress and Therapeutic Development in Lung Diseases.

    PubMed

    Villegas, Leah; Stidham, Timothy; Nozik-Grayck, Eva

    2014-08-01

    Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies.

  13. Lung Transcriptomics during Protective Ventilatory Support in Sepsis-Induced Acute Lung Injury.

    PubMed

    Acosta-Herrera, Marialbert; Lorenzo-Diaz, Fabian; Pino-Yanes, Maria; Corrales, Almudena; Valladares, Francisco; Klassert, Tilman E; Valladares, Basilio; Slevogt, Hortense; Ma, Shwu-Fan; Villar, Jesus; Flores, Carlos

    2015-01-01

    Acute lung injury (ALI) is a severe inflammatory process of the lung. The only proven life-saving support is mechanical ventilation (MV) using low tidal volumes (LVT) plus moderate to high levels of positive end-expiratory pressure (PEEP). However, it is currently unknown how they exert the protective effects. To identify the molecular mechanisms modulated by protective MV, this study reports transcriptomic analyses based on microarray and microRNA sequencing in lung tissues from a clinically relevant animal model of sepsis-induced ALI. Sepsis was induced by cecal ligation and puncture (CLP) in male Sprague-Dawley rats. At 24 hours post-CLP, septic animals were randomized to three ventilatory strategies: spontaneous breathing, LVT (6 ml/kg) plus 10 cmH2O PEEP and high tidal volume (HVT, 20 ml/kg) plus 2 cmH2O PEEP. Healthy, non-septic, non-ventilated animals served as controls. After 4 hours of ventilation, lung samples were obtained for histological examination and gene expression analysis using microarray and microRNA sequencing. Validations were assessed using parallel analyses on existing publicly available genome-wide association study findings and transcriptomic human data. The catalogue of deregulated processes differed among experimental groups. The 'response to microorganisms' was the most prominent biological process in septic, non-ventilated and in HVT animals. Unexpectedly, the 'neuron projection morphogenesis' process was one of the most significantly deregulated in LVT. Further support for the key role of the latter process was obtained by microRNA studies, as four species targeting many of its genes (Mir-27a, Mir-103, Mir-17-5p and Mir-130a) were found deregulated. Additional analyses revealed 'VEGF signaling' as a central underlying response mechanism to all the septic groups (spontaneously breathing or mechanically ventilated). Based on this data, we conclude that a co-deregulation of 'VEGF signaling' along with 'neuron projection morphogenesis

  14. NAC is associated with additional alleviation of lung injury induced by invasive pulmonary aspergillosis in a neutropenic model

    PubMed Central

    Xu, Peng; Qu, Jie-ming; Xu, Jin-fu; Zhang, Jing; Jiang, Hong-ni; Zhang, Hui-jun

    2009-01-01

    Aim: Neutropenic individuals are at high risk for invasive pulmonary aspergillosis (IPA), a life-threatening infection. To evaluate the therapeutic potential of antioxidants, IPA was induced in neutropenic mice and the effect of N-acetyl-l-cysteine (NAC) on oxidative stress levels and lung injury was analyzed. Methods: Mice were pretreated with three daily intraperitoneal injections of 150 mg/kg cyclophosphamide, followed by intratracheal inoculation with 4.5×106 conidia of Asperǵillus fumiǵatus. The infected mice were then randomly assigned to an amphotericin B (AMB) group, an AMB plus NAC group, or an untreated control (C) group. In each group, the duration of treatment was 24, 48, or 72 h, and activities such as appearance, feeding, and dermal temperature were observed throughout the experiment. Sera and lung tissues were collected and analyzed by quantitative enzyme-linked immunosorbent assay (ELISA) for total protein, superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) levels. The wet/dry weight ratio of the lung was also calculated and lung sections were stained with hematoxylin-eosin for pathological examination and with methenamine silver stain for fungus detection. Results: Compared with the mice untreated with NAC, mice in the AMB plus NAC group had increased SOD and reduced MDA levels both systemically and locally at 24, 48, and 72 h after inoculation with conidia. NAC treatment also decreased the pulmonary protein content at 48 and 72 h and the lung wet/dry weight ratio at 24 and 48 h. Additionally, NAC enhanced pulmonary production of TNF-α and IL-10 at 24 h and 48 h. Conclusion: In combination with antifungal therapy, NAC treatment can alleviate oxidative stress and lung injury associated with IPA in neutropenic mice. PMID:19575001

  15. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury

    PubMed Central

    Kage, Hidenori; Flodby, Per; Gao, Danping; Kim, Yong Ho; Marconett, Crystal N.; DeMaio, Lucas; Kim, Kwang-Jin; Crandall, Edward D.

    2014-01-01

    Claudins are tight junction proteins that regulate paracellular ion permeability of epithelium and endothelium. Claudin 4 has been reported to function as a paracellular sodium barrier and is one of three major claudins expressed in lung alveolar epithelial cells (AEC). To directly assess the role of claudin 4 in regulation of alveolar epithelial barrier function and fluid homeostasis in vivo, we generated claudin 4 knockout (Cldn4 KO) mice. Unexpectedly, Cldn4 KO mice exhibited normal physiological phenotype although increased permeability to 5-carboxyfluorescein and decreased alveolar fluid clearance were noted. Cldn4 KO AEC monolayers exhibited unchanged ion permeability, higher solute permeability, and lower short-circuit current compared with monolayers from wild-type mice. Claudin 3 and 18 expression was similar between wild-type and Cldn4 KO alveolar epithelial type II cells. In response to either ventilator-induced lung injury or hyperoxia, claudin 4 expression was markedly upregulated in wild-type mice, whereas Cldn4 KO mice showed greater degrees of lung injury. RNA sequencing, in conjunction with differential expression and upstream analysis after ventilator-induced lung injury, suggested Egr1, Tnf, and Il1b as potential mediators of increased lung injury in Cldn4 KO mice. These results demonstrate that claudin 4 has little effect on normal lung physiology but may function to protect against acute lung injury. PMID:25106430

  16. Protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury in a rat model.

    PubMed

    Liu, Wenwu; Liu, Kehuan; Ma, Chunqing; Yu, Jiangang; Peng, Zhaoyun; Huang, Guoyang; Cai, Zhiyu; Li, Runping; Xu, Weigang; Sun, Xuejun; Liu, Kan; Zheng, Juan

    2014-01-01

    Hyperbaric oxygen therapy is one of the most widely used clinical interventions to counteract insufficient pulmonary oxygen delivery in patients with severe lung injury. However, prolonged exposure to hyperoxia leads to inflammation and acute lung injury. This study aimed to investigate the protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury. Rats were intraperitoneally treated with sodium hydrosulphide (NaHS) at 28 μmol/kg immediately before hyperoxia exposure and then exposed to pure oxygen at 2.5 atmospheres absolute (atm abs) with continuous ventilation for six hours, Immediately after hyperoxia exposure, rats were sacrificed via anesthesia. The bronchoalveolar lavage fluid (BALF) was harvested for the detection of protein concentration and IL-1 content, and the lungs were collected for HE staining, TUNEL staining and detection of wet/dry weight ratio. Our results showed hyperbaric hyperoixa exposure could significantly damage the lung (HE staining), increase the protein and IL-13 in the BALF, elevate the wet/dry Weight ratio and raise the TUNEL positive cells. However, pre-treatment with hydrogen sulfide improved the lung morphology, reduced the TUNEL positive cells and attenuated the lung inflammation (reduction in IL-13 of BALF and HE staining). Taken together, our findings indicate that hydrogen sulfide pretreatment may exert protective effects on hyperbaric hyperoxia-induced lung injury.

  17. Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs.

    PubMed

    Shukla, Dhananjay; Saxena, Saurabh; Jayamurthy, Purushotman; Sairam, Mustoori; Singh, Mrinalini; Jain, Swatantra Kumar; Bansal, Anju; Ilavazaghan, Govindaswamy

    2009-01-01

    Shukla, Dhananjay, Saurabh Saxena, Purushotman Jayamurthy, Mustoori Sairam, Mrinalini, Singh, Swatantra Kumar Jain, Anju Bansal, and Govindaswamy Ilavazaghan. High Alt. Med. Biol. 10:57-69, 2009.-Hypoxic preco759nditioning (HPC) provides robust protection against injury from subsequent prolonged hypobaric hypoxia, which is a characteristic of high altitude and is known to induce oxidative injury in lung by increasing the generation of reactive oxygen species (ROS) and decreasing the effectiveness of the antioxidant defense system. We hypothesize that HPC with cobalt might protect the lung from subsequent hypobaric hypoxia-induced lung injury. HPC with cobalt can be achieved by oral feeding of CoCl(2) (12.5 mg kg(-1)) in rats for 7 days. Nonpreconditioned rats responded to hypobaric hypoxia (7619 m) by increased reactive oxygen species (ROS) generation and a decreased GSH/GSSG ratio. They also showed a marked increase in lipid peroxidation, heat-shock proteins (HSP32, HSP70), metallothionins (MT), levels of inflammatory cytokines (TNF-alpha, IFN-gamma, MCP-1), and SOD, GPx, and GST enzyme activity. In contrast, rats preconditioned with cobalt were far less impaired by severe hypobaric hypoxia, as observed by decreased ROS generation, lipid peroxidation, and inflammatory cytokine release and an inceased GSH/GSSG ratio. Increased expression of antioxidative proeins Nrf-1, HSP-32, and MT was also observed in cobalt- preconditioned animals. A marked increase in the protein expression and DNA binding activity of hypoxia-inducible transcriptional factor (HIF-1alpha) and its regulated genes, such as erythropoietin (EPO) and glucose transporter-1 (glut-1), was observed after HPC with cobalt. We conclude that HPC with cobalt enhances antioxidant status in the lung and protects from subsequent hypobaric hypoxia-induced oxidative stress.

  18. Soluble transition metals mediate residual oil fly ash induced acute lung injury.

    PubMed

    Dreher, K L; Jaskot, R H; Lehmann, J R; Richards, J H; McGee, J K; Ghio, A J; Costa, D L

    1997-02-21

    Identification of constituents responsible for the pulmonary toxicity of fugitive combustion emission source particles may provide insight into the adverse health effects associated with exposure to these particles as well as ambient air particulate pollution. Herein, we describe results of studies conducted to identify constituents responsible for the acute lung injury induced by residual oil fly ash (ROFA) and to assess physical-chemical factors that influence the pulmonary toxicity of these constituents. Biochemical and cellular analyses performed on bronchoalveolar lavage fluid obtained from rats following intratracheal instillation of ROFA suspension demonstrated the presence of severe inflammation, an indicator of pulmonary injury, which included recruitment of neutrophils, eosinophils, and monocytes into the airway. A leachate prepared from ROFA, containing predominantly Fe, Ni, V, Ca, Mg, and sulfate, produced similar lung injury to that induced by ROFA suspension. Depletion of Fe, Ni, and V from the ROFA leachate abrogated its pulmonary toxicity. Correspondingly, minimal lung injury was observed in animals exposed to saline-washed ROFA particles. A surrogate transition metal sulfate solution containing Fe, V, and Ni largely reproduced the lung injury induced by ROFA. Metal interactions and pH were found to influence the severity and kinetics of lung injury induced by ROFA and soluble transition metals. These findings provide direct evidence for the role of soluble transition metals in the pulmonary injury induced by the combustion emission source particulate, ROFA.

  19. Autophagy in pulmonary macrophages mediates lung inflammatory injury via NLRP3 inflammasome activation during mechanical ventilation.

    PubMed

    Zhang, Yang; Liu, Gongjian; Dull, Randal O; Schwartz, David E; Hu, Guochang

    2014-07-15

    The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury.

  20. Effect of Thoracentesis on Intubated Patients with Acute Lung Injury.

    PubMed

    Bloom, Matthew B; Serna-Gallegos, Derek; Ault, Mark; Khan, Ahsan; Chung, Rex; Ley, Eric J; Melo, Nicolas; Margulies, Daniel R

    2016-03-01

    Pleural effusions occur frequently in mechanically ventilated patients, but no consensus exists regarding the clinical benefit of effusion drainage. We sought to determine the impact of thoracentesis on gas exchange in patients with differing severities of acute lung injury (ALI). A retrospective analysis was conducted on therapeutic thoracenteses performed on intubated patients in an adult surgical intensive care unit of a tertiary center. Effusions judged by ultrasound to be 400 mL or larger were drained. Subjects were divided into groups based on their initial P:F ratios: normal >300, ALI 200 to 300, and acute respiratory distress syndrome (ARDS) <200. Baseline characteristics, physiologic variables, arterial blood gases, and ventilator settings before and after the intervention were analyzed. The primary end point was the change in measures of oxygenation. Significant improvements in P:F ratios (mean ± SD) were seen only in patients with ARDS (50.4 ± 38.5, P = 0.001) and ALI (90.6 ± 161.7, P = 0.022). Statistically significant improvement was observed in the pO2 (31.1, P = 0.005) and O2 saturation (4.1, P < 0.001) of the ARDS group. The volume of effusion removed did not correlate with changes in individual patient's oxygenation. These data support the role of therapeutic thoracentesis for intubated patients with abnormal P:F ratios.

  1. Permissive hypercapnia to decrease lung injury in ventilated preterm neonates.

    PubMed

    Thome, Ulrich H; Ambalavanan, Namasivayam

    2009-02-01

    Lung injury in ventilated premature infants occurs primarily through the mechanism of volutrauma, often due to the combination of high tidal volumes in association with a high end-inspiratory volume and occasionally end-expiratory alveolar collapse. Tolerating a higher level of arterial partial pressure of carbon dioxide (PaCO2) is considered as 'permissive hypercapnia' and when combined with the use of low tidal volumes may reduce volutrauma and lead to improved pulmonary outcomes. Permissive hypercapnia may also protect against hypocapnia-induced brain hypoperfusion and subsequent periventricular leukomalacia. However, extreme hypercapnia may be associated with an increased risk of intracranial hemorrhage. It may therefore be important to avoid large fluctuations in PaCO2 values. Recent randomized clinical trials in preterm infants have demonstrated that mild permissive hypercapnia is safe, but clinical benefits are modest. The optimal PaCO2 goal in clinical practice has not been determined, and the available evidence does not currently support a general recommendation for permissive hypercapnia in preterm infants.

  2. Pathology consultation on transfusion-related acute lung injury (TRALI).

    PubMed

    Schmidt, Amy E; Adamski, Jill

    2012-10-01

    Transfusion-related acute lung injury (TRALI) is a serious condition characterized by respiratory distress, hypoxia, and bilateral pulmonary infiltrates, which occur within 6 hours of transfusion. Several theories have been proposed to explain the underlying pathologic mechanisms of TRALI. Immune-mediated TRALI accounts for over 80% of reported cases and is mediated by donor antibodies to HLAs and/or human neutrophil antigens (HNA). Immune-mediated TRALI is most commonly associated with donor plasma transfusion or other blood products from multiparous women, which has led many countries to reduce or exclude women from donating high-volume plasma products. This policy change has resulted in a decrease in the incidence of TRALI and highlighted the importance of nonimmune-mediated TRALI, which is thought to be caused by bioreactive lipids and other biologic response modifiers that accumulate during storage of blood products. When TRALI is suspected, clinical consultation with a transfusion medicine specialist helps differentiate it from other transfusion reactions with similar characteristics.

  3. Protein Oxidation in the Lungs of C57BL/6J Mice Following X-Irradiation

    PubMed Central

    Barshishat-Kupper, Michal; McCart, Elizabeth A.; Freedy, James G.; Tipton, Ashlee J.; Nagy, Vitaly; Kim, Sung-Yop; Landauer, Michael R.; Mueller, Gregory P.; Day, Regina M.

    2015-01-01

    Damage to normal lung tissue is a limiting factor when ionizing radiation is used in clinical applications. In addition, radiation pneumonitis and fibrosis are a major cause of mortality following accidental radiation exposure in humans. Although clinical symptoms may not develop for months after radiation exposure, immediate events induced by radiation are believed to generate molecular and cellular cascades that proceed during a clinical latent period. Oxidative damage to DNA is considered a primary cause of radiation injury to cells. DNA can be repaired by highly efficient mechanisms while repair of oxidized proteins is limited. Oxidized proteins are often destined for degradation. We examined protein oxidation following 17 Gy (0.6 Gy/min) thoracic X-irradiation in C57BL/6J mice. Seventeen Gy thoracic irradiation resulted in 100% mortality of mice within 127–189 days postirradiation. Necropsy findings indicated that pneumonitis and pulmonary fibrosis were the leading cause of mortality. We investigated the oxidation of lung proteins at 24 h postirradiation following 17 Gy thoracic irradiation using 2-D gel electrophoresis and OxyBlot for the detection of protein carbonylation. Seven carbonylated proteins were identified using mass spectrometry: serum albumin, selenium binding protein-1, alpha antitrypsin, cytoplasmic actin-1, carbonic anhydrase-2, peroxiredoxin-6, and apolipoprotein A1. The carbonylation status of carbonic anhydrase-2, selenium binding protein, and peroxiredoxin-6 was higher in control lung tissue. Apolipoprotein A1 and serum albumin carbonylation were increased following X-irradiation, as confirmed by OxyBlot immunoprecipitation and Western blotting. Our findings indicate that the profile of specific protein oxidation in the lung is altered following radiation exposure. PMID:28248270

  4. Protection by N-acetylcysteine against pulmonary endothelial cell damage induced by oxidant injury.

    PubMed

    Sala, R; Moriggi, E; Corvasce, G; Morelli, D

    1993-03-01

    The protective effect of N-acetylcysteine (NAC) against oxidant lung injury was investigated in a model of acute immunological alveolitis in the rat. Intrapulmonary immune complex deposition into rat lungs, induced by intratracheal infusion of immunoglobulin G (IgG) anti-bovine serum albumin (BSA) antibodies and intravenous injection of the antigen, caused lung damage associated with a marked decrease in [14C]5-hydroxytryptamine ([14C]5HT) uptake capacity, taken as a biochemical marker of endothelial cell function. The oral administration of a single dose of NAC (2 mmol.kg-1) 60 min before antigen/antibody (Ag/Ab) treatment was effective in preventing pulmonary endothelial cell [14C]5HT uptake loss induced by immune complex deposition. The mechanisms involved in this lung protective action of NAC were investigated by studying the antioxidant activity of NAC on hypoxanthine/xanthine oxidase-induced lung damage in vitro, and the effectiveness of the drug as lung glutathione (reduced form) (GSH) precursor in diethylmaleate-depleted rats. The results obtained provide further evidence on the ability of NAC to reduce the susceptibility of lung tissue to free radical-induced damage, by potentiating the antioxidant defence systems.

  5. Protective Role of Proton-Sensing TDAG8 in Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Tsurumaki, Hiroaki; Mogi, Chihiro; Aoki-Saito, Haruka; Tobo, Masayuki; Kamide, Yosuke; Yatomi, Masakiyo; Sato, Koichi; Dobashi, Kunio; Ishizuka, Tamotsu; Hisada, Takeshi; Yamada, Masanobu; Okajima, Fumikazu

    2015-01-01

    Acute lung injury is characterized by the infiltration of neutrophils into lungs and the subsequent impairment of lung function. Here we explored the role of TDAG8 in lung injury induced by lipopolysaccharide (LPS) administrated intratracheally. In this model, cytokines and chemokines released from resident macrophages are shown to cause neutrophilic inflammation in the lungs. We found that LPS treatment increased TDAG8 expression in the lungs and confirmed its expression in resident macrophages in bronchoalveolar lavage (BAL) fluids. LPS administration remarkably increased neutrophil accumulation without appreciable change in the resident macrophages, which was associated with increased penetration of blood proteins into BAL fluids, interstitial accumulation of inflammatory cells, and damage of the alveolar architecture. The LPS-induced neutrophil accumulation and the associated lung damage were enhanced in TDAG8-deficient mice as compared with those in wild-type mice. LPS also increased several mRNA and protein expressions of inflammatory cytokines and chemokines in the lungs or BAL fluids. Among these inflammatory mediators, mRNA and protein expression of KC (also known as CXCL1), a chemokine of neutrophils, were significantly enhanced by TDAG8 deficiency. We conclude that TDAG8 is a negative regulator for lung neutrophilic inflammation and injury, in part, through the inhibition of chemokine production. PMID:26690120

  6. Changes in breath sound power spectra during experimental oleic acid-induced lung injury in pigs.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2014-01-01

    To evaluate the effect of acute lung injury on the frequency spectra of breath sounds, we made serial acoustic recordings from nondependent, midlung and dependent regions of both lungs in ten 35- to 45-kg anesthetized, intubated, and mechanically ventilated pigs during development of acute lung injury induced with intravenous oleic acid in prone or supine position. Oleic acid injections rapidly produced severe derangements in the gas exchange and mechanical properties of the lung, with an average increase in venous admixture from 16 ± 12 to 62 ± 16% (P < 0.01), and a reduction in dynamic respiratory system compliance from 25 ± 4 to 14 ± 4 ml/cmH2O (P < 0.01). A concomitant increase in sound power was seen in all lung regions (P < 0.05), predominantly in frequencies 150-800 Hz. The deterioration in gas exchange and lung mechanics correlated best with concurrent spectral changes in the nondependent lung regions. Acute lung injury increases the power of breath sounds likely secondary to redistribution of ventilation from collapsed to aerated parts of the lung and improved sound transmission in dependent, consolidated areas.

  7. Protective Role of Proton-Sensing TDAG8 in Lipopolysaccharide-Induced Acute Lung Injury.

    PubMed

    Tsurumaki, Hiroaki; Mogi, Chihiro; Aoki-Saito, Haruka; Tobo, Masayuki; Kamide, Yosuke; Yatomi, Masakiyo; Sato, Koichi; Dobashi, Kunio; Ishizuka, Tamotsu; Hisada, Takeshi; Yamada, Masanobu; Okajima, Fumikazu

    2015-12-04

    Acute lung injury is characterized by the infiltration of neutrophils into lungs and the subsequent impairment of lung function. Here we explored the role of TDAG8 in lung injury induced by lipopolysaccharide (LPS) administrated intratracheally. In this model, cytokines and chemokines released from resident macrophages are shown to cause neutrophilic inflammation in the lungs. We found that LPS treatment increased TDAG8 expression in the lungs and confirmed its expression in resident macrophages in bronchoalveolar lavage (BAL) fluids. LPS administration remarkably increased neutrophil accumulation without appreciable change in the resident macrophages, which was associated with increased penetration of blood proteins into BAL fluids, interstitial accumulation of inflammatory cells, and damage of the alveolar architecture. The LPS-induced neutrophil accumulation and the associated lung damage were enhanced in TDAG8-deficient mice as compared with those in wild-type mice. LPS also increased several mRNA and protein expressions of inflammatory cytokines and chemokines in the lungs or BAL fluids. Among these inflammatory mediators, mRNA and protein expression of KC (also known as CXCL1), a chemokine of neutrophils, were significantly enhanced by TDAG8 deficiency. We conclude that TDAG8 is a negative regulator for lung neutrophilic inflammation and injury, in part, through the inhibition of chemokine production.

  8. Mitochondrial DNA-Induced Inflammatory Responses and Lung Injury in Thermal Injury Rat Model: Protective Effect of Epigallocatechin Gallate.

    PubMed

    Liu, Ruiqi; Xu, Fei; Si, Si; Zhao, Xueshan; Bi, Siwei; Cen, Ying

    2017-02-06

    Lungs are easily damaged by the inflammatory responses induced after extensive burns. The aim here was to investigate the protective role of epigallocatechin gallate (EGCG) in mitochondrial DNA (mtDNA)-mediated inflammatory responses and acute respiratory distress syndrome (ARDS) in a rat model of thermal injury. Male Sprague-Dawley rats were randomly assigned to five groups. In the first experiment, a full-thickness thermal injury or control procedure, covering 30% of the TBSA, was inflicted on three groups designated as the thermal injury, EGCG, and sham control groups. In the second experiment, another two groups were established by transfusion with either mtDNA (mtDNA group) or phosphate-buffered saline (phosphate-buffered saline group). Blood samples and lung tissue from all five groups were collected and the plasma concentrations of mtDNA and inflammatory mediators were measured. Bronchoalveolar lavage fluid was collected and histological analysis of the lung tissue was performed to evaluate the severity of ARDS. Significant increases in mtDNA and inflammatory mediator plasma concentrations were seen in the thermal injury and EGCG groups when compared with controls (P < .05). The plasma concentrations of mtDNA and inflammatory mediators were significantly decreased after the administration of EGCG (P < .05). EGCG also significantly reduced the severity of acute lung injury (P < .05). Intravenous administration of mtDNA significantly increased concentrations of inflammatory mediators and caused severe ARDS (P < .05). Our results suggest that mtDNA is important for thermal injury-induced inflammation and associated ARDS. EGCG possesses anti-inflammatory and lung-protective properties, and might act by limiting mtDNA release after thermal injury.

  9. Injury and repair in the very immature lung following brief mechanical ventilation.

    PubMed

    Brew, Nadine; Hooper, Stuart B; Allison, Beth J; Wallace, Megan J; Harding, Richard

    2011-12-01

    Mechanical ventilation (MV) of very premature infants contributes to lung injury and bronchopulmonary dysplasia (BPD), the effects of which can be long-lasting. Little is currently known about the ability of the very immature lung to recover from ventilator-induced lung injury. Our objective was to determine the ability of the injured very immature lung to repair in the absence of continued ventilation and to identify potential mechanisms. At 125 days gestational age (days GA, 0.85 of term), fetal sheep were partially exposed by hysterotomy under anesthesia and aseptic conditions; they were intubated and ventilated for 2 h with an injurious MV protocol and then returned to the uterus to continue development. Necropsy was performed at either 1 day (short-term group, 126 days GA, n = 6) or 15 days (long-term group, 140 days GA, n = 5) after MV; controls were unventilated (n = 7-8). At 1 day after MV, lungs displayed signs of injury, including hemorrhage, disorganized elastin and collagen deposition in the distal airspaces, altered morphology, significantly reduced secondary septal crest density, and decreased airspace. Bronchioles had thickened epithelium with evidence of injury and sloughing. Relative mRNA levels of early response genes (connective tissue growth factor, cysteine-rich 61, and early growth response-1) and proinflammatory cytokines [interleukins (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, and transforming growth factor-β] were not different between groups 1 day after MV. At 15 days after MV, lung structure was normal with no evidence of injury. We conclude that 2 h of MV induces severe injury in the very immature lung and that these lungs have the capacity to repair spontaneously in the absence of further ventilation.

  10. Praeruptorin D and E attenuate lipopolysaccharide/hydrochloric acid induced acute lung injury in mice.

    PubMed

    Yu, Peng-Jiu; Li, Jing-Rong; Zhu, Zheng-Guang; Kong, Huan-Yu; Jin, Hong; Zhang, Jun-Yan; Tian, Yuan-Xin; Li, Zhong-Huang; Wu, Xiao-Yun; Zhang, Jia-Jie; Wu, Shu-Guang

    2013-06-15

    Acute lung injury is a life-threatening syndrome characterized by overwhelming lung inflammation and increased microvascular permeability, which causes a high mortality rate worldwide. The dry root of Peucedanum praeruptorum Dunn has been long used to treat respiratory diseases in China. In the present study, Praeruptorin A, C, D and E (PA, PC, PD and PE), four pyranocoumarins extracted from this herb, have been investigated for the pharmacological effects in experimental lung injury mouse models. In lipopolysaccharide (LPS) challenged mice, PA and PC did not show protective effect against lung injury at the dose of 80 mg/kg. However, PD and PE significantly inhibited the infiltration of activated polymorphonuclear leukocytes (PMNs) and decreased the levels of TNF-α and IL-6 in bronchoalveolar lavage fluid at the same dose. There was no statistically significant difference between PD and PE group. Further study demonstrated that PD and PE suppressed protein extravasations in bronchoalveolar lavage fluid, attenuated myeloperoxidase (MPO) activity and the pathological changes in the lung. Both PD and PE suppressed LPS induced Nuclear Factor-kappa B (NF-κB) pathway activation in the lung by decreasing the cytoplasmic loss of Inhibitor κB-α (IκB-α) protein and inhibiting the translocation of p65 from cytoplasm to nucleus. We also extended our study to acid-induced acute lung injury and found that these two compounds protected mice from hydrochloric acid (HCl)-induced lung injury by inhibiting PMNs influx, IL-6 release and protein exudation. Taken together, these results suggested that PD and PE might be useful in the therapy of lung injury.

  11. [Oxidative injury and its defense system in vivo].

    PubMed

    Niwa, Y

    1999-03-01

    We and other researchers verified that excessively produced free radicals by neutrophils induce various diseases such as Behçet's disease, MCLS, SLE (neutrophil-stimulated lymphocytes), RA (synovial fluid neutrophils), Crohn's disease, colitis ulcerosa, and dermatitis herpetiformis (Dühring). Recently, it was reported that environmental toxic agents including herbicides such as paraquat, insecticides, nitrogen oxide, and ultraviolet radiation produce free radicals. Nitrogen oxide, a main product of the combustion of petroleum, is a prominent component of exhaust from automobiles. Generation of 1O2 by ultraviolet radiation has also increased by breaks in the earth's ozone layer induced by halogenated hydrocarbon gas. Various diseases have been induced by these agents such as malignancies, severe adult atopic dermatitis, complication of cataract and retinolysis with atopic dermatitis, skin cancer, male infertility, severe collagen diseases, and lung fibrosis. It was also found that PCB, methyl-Hg and Mn, Cd induce neuropathic diseases through the increase in free radical production. On the other hand, a self-defense system exists against oxidative injuries; high-molecular-weight antioxidants such as SOD, catalase, and GSH-Px, and low-molecular-weight antioxidants such as vitamin C, E, A, polyphenols, flavonoids, and catechin. As protection from oxidative injury, various antioxidant products have been developed, however, the development of SOD injection was given up by all the pharmaceutical companies in the world on account of ineffectiveness due to rapid excretion from the kidney, low affinity to the receptor and weak penetration into the cell. A.M. Michelson, a French biochemist succeeded in developing an effective bovine liposomal-encapsulated SOD solving these problems, however, he also gave it up since French government prohibited bovine products due to the prion virus. Regarding low-molecular-weight antioxidants, synthetic products generally show low affinity

  12. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    SciTech Connect

    Sunil, Vasanthi R.; Patel-Vayas, Kinal; Shen, Jianliang; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated

  13. Acute Lung Injury Following Smoke Inhalation: Predictive Value of Sputum Biomarkers and Time Course of Lung Inflammation

    DTIC Science & Technology

    2005-05-01

    acute respiratory distress syndrome ( ARDS ). Laboratory assays on the bronchial lavage samples...at high risk of developing acute respiratory distress syndrome ( ARDS ). Given the delay of 12 or more hours from exposure to development of ARDS , a...AD Award Number: DAMD17-02-1-0673 TITLE : Acute Lung Injury Following Smoke Inhalation: Predictive Value of Sputum Biomarkers and Time Course of

  14. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury

    PubMed Central

    D’Alessio, Franco R.; Tsushima, Kenji; Aggarwal, Neil R.; West, Erin E.; Willett, Matthew H.; Britos, Martin F.; Pipeling, Matthew R.; Brower, Roy G.; Tuder, Rubin M.; McDyer, John F.; King, Landon S.

    2009-01-01

    Acute lung injury (ALI) is characterized by rapid alveolar injury, inflammation, cytokine induction, and neutrophil accumulation. Although early events in the pathogenesis of ALI have been defined, the mechanisms underlying resolution are unknown. As a model of ALI, we administered intratracheal (i.t.) LPS to mice and observed peak lung injury 4 days after the challenge, with resolution by day 10. Numbers of alveolar lymphocytes increased as injury resolved. To examine the role of lymphocytes in this response, lymphocyte-deficient Rag-1–/– and C57BL/6 WT mice were exposed to i.t. LPS. The extent of injury was similar between the groups of mice through day 4, but recovery was markedly impaired in the Rag-1–/– mice. Adoptive transfer studies revealed that infusion of CD4+CD25+Foxp3+ Tregs as late as 24 hours after i.t. LPS normalized resolution in Rag-1–/– mice. Similarly, Treg depletion in WT mice delayed recovery. Treg transfer into i.t. LPS–exposed Rag-1–/– mice also corrected the elevated levels of alveolar proinflammatory cytokines and increased the diminished levels of alveolar TGF-β and neutrophil apoptosis. Mechanistically, Treg-mediated resolution of lung injury was abrogated by TGF-β inhibition. Moreover, BAL of patients with ALI revealed dynamic changes in CD3+CD4+CD25hiCD127loFoxp3+ cells. These results indicate that Tregs modify innate immune responses during resolution of lung injury and suggest potential targets for treating ALI, for which there are no specific therapies currently available. PMID:19770521

  15. Leptin attenuates lipopolysaccharide or oleic acid-induced acute lung injury in mice.

    PubMed

    Dong, Hai-Ying; Xu, Min; Ji, Zhen-Yu; Wang, Yan-Xia; Dong, Ming-Qing; Liu, Man-Ling; Xu, Dun-Quan; Zhao, Peng-Tao; Liu, Yi; Luo, Ying; Niu, Wen; Zhang, Bo; Ye, Jing; Li, Zhi-Chao

    2013-12-01

    Leptin is reported to be involved in acute lung injury (ALI). However, the role and underlying mechanisms of leptin in ALI remain unclear. The aim of this study was to determine whether leptin deficiency promoted the development of ALI. LPS or oleic acid (OA) were administered to wild-type and leptin deficient (ob/ob) mice to induce ALI. Leptin level, survival rate, and lung injury were examined. Results showed that leptin levels were predominantly increased in the lung, but also in the heart, liver, kidney, and adipose tissue after LPS adminiatration. Compared with wild-type mice, LPS- or OA-induced lung injury was worse and the survival rate was lower in ob/ob mice. Moreover, leptin deficiency promoted the release of proinflammatory cytokines. Exogenous administration of leptin reduced lethality in ob/ob mice and ameliorated lung injury partly through inhibiting the activation of NF-κB, p38, and ERK pathways. These results indicated that leptin deficiency contributed to the development of lung injury by enhancing inflammatory response, and a high level of leptin improved survival and protected against ALI.

  16. Polymer-surfactant treatment of meconium-induced acute lung injury.

    PubMed

    Lu, K W; William Taeusch, H; Robertson, B; Goerke, J; Clements, J A

    2000-08-01

    Substances (for example, serum proteins or meconium) that interfere with the activity of pulmonary surfactant in vitro may also be important in the pathogenesis or progression of acute lung injury. Addition of polymers such as dextran or polyethylene glycol (PEG) to surfactants prevents and reverses surfactant inactivation. The purpose of this study was to find out whether surfactant/polymer mixtures are more effective for treating one form of acute lung injury than is surfactant alone. Acute lung injury in adult rats was created by tracheal instillation of human meconium. Injured animals, which were anesthetized, paralyzed, and ventilated with 100% oxygen and not treated with surfactant mixtures, remained hypoxic and required high ventilator pressures to maintain Pa(CO(2)) in the normal range over the 3 h of the experiment. Uninjured animals maintained normal values for oxygen and compliance of the respiratory system. The greatest improvement in both oxygenation (178%) and compliance (42%) occurred in animals with lung injury that were treated with Survanta and PEG (versus untreated control animals; p < 0.01), whereas little improvement was found after treatment with Survanta alone. Similar results were found when postmortem pulmonary pressure-volume curves and histology were examined. We conclude that adding PEG to Survanta improves gas exchange, pulmonary mechanics, and histologic appearance of the lungs in a rat model of acute lung injury caused by meconium.

  17. Effect of Human and Sheep Lung Orientation on Primary Blast Injury Induced by Single Blast

    DTIC Science & Technology

    2010-09-01

    kPa 200 500 700 Positive phase duration, ms 2 2 2 From the wo rk do ne by O ’ Brien et al. an d Coop er et al. [ Refs. 5, 6], pressure w...Effect of human and sheep lung orientation on primary blast injury induced by single blast A. Bouamoul, K. Williams DRDC Valcartier, 2459 Pie...main goal o f this stud y is to verify if the injuries observed in the animal are trul y representative of human lung injuries for simple blast

  18. beta2 adrenergic agonists in acute lung injury? The heart of the matter.

    PubMed

    Lee, Jae W

    2009-01-01

    Despite extensive research into its pathophysiology, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) remains a devastating syndrome with mortality approaching 40%. Pharmacologic therapies that reduce the severity of lung injury in vivo and in vitro have not yet been translated to effective clinical treatment options, and innovative therapies are needed. Recently, the use of beta2 adrenergic agonists as potential therapy has gained considerable interest due to their ability to increase the resolution of pulmonary edema. However, the results of clinical trials of beta agonist therapy for ALI/ARDS have been conflicting in terms of benefit. In the previous issue of Critical Care, Briot and colleagues present evidence that may help clarify the inconsistent results. The authors demonstrate that, in oleic acid lung injury in dogs, the inotropic effect of beta agonists may recruit damaged pulmonary capillaries, leading to increased lung endothelial permeability.

  19. Effect of partial liquid ventilation on pulmonary vascular permeability and edema after experimental acute lung injury.

    PubMed

    Lange, N R; Kozlowski, J K; Gust, R; Shapiro, S D; Schuster, D P

    2000-07-01

    We evaluated the effects of partial liquid ventilation (PLV) with two different dosages of the perfluorocarbon LiquiVent (perflubron) on pulmonary vascular permeability and edema formation after oleic acid (OA)-induced acute lung injury in dogs. We used imaging with positron emission tomography to measure fractional pulmonary blood flow, lung water concentration (LWC), and the pulmonary transcapillary escape rate (PTCER) of (68)Ga-labeled transferrin at 5 and 21 h after lung injury in five dogs undergoing conventional mechanical ventilation (CMV), five dogs undergoing low-dose PLV (perflubron at 10 ml/kg), and four dogs undergoing high dose PLV (perflubron at 30 ml/kg). A positive end-expiratory pressure of 7.5 cm H(2)O was used in all dogs. After OA (0.08 ml/kg)- induced lung injury, there were no significant differences or trends for PTCER or LWC at any time when the PLV groups were compared with the CMV group. However, lung tissue myeloperoxidase activity was significantly lower in the combined PLV group than in the CMV group (p = 0.016). We conclude that after OA-induced lung injury, the addition of PLV to CMV does not directly attenuate pulmonary vascular leak or lung water accumulation. Rather, the benefits of such treatment may be due to modifications of the inflammatory response.

  20. Over-expression of heat shock protein 70 protects mice against lung ischemia/reperfusion injury through SIRT1/AMPK/eNOS pathway

    PubMed Central

    Liu, Shumei; Xu, Junping; Fang, Chunfang; Shi, Chunjing; Zhang, Xin; Yu, Bo; Yin, Yantong

    2016-01-01

    Lung ischemia/reperfusion injury (LIRI) usually occurs during in lung transplantation and extracorporeal circulation operation and may develop into pulmonary infections, acute rejection and bronchiolitis obliterans syndrome. Recent studies have discovered the protective effect of heat shock protein 70 (HSP70) on various types of injuries. In the present study, we firstly explore the role of over-expressed HSP70 on the protection against LIRI. Lung Wet/Dry (W/D) ratio, biomarkers in the bronchoalveolar lavage fluid (BALF), lung histological changes and apoptosis markers, oxidative products and proinflammatory cytokines in the lung tissues were analyzed. Next, the expression of eNOS, SIRT1 and AMPK were measured. Finally, the changes of the lung W/D ratio and biomarkers in the BALF using the inhibitors of SIRT1/AMPK/eNOS pathway were evaluated. Mice exposed to LIRI procedure had significant increases in lung W/D ratio and biomarkers (protein level, LDH level, leukocytes and total cells) in BALF. LIRI also caused histological injury, demonstrated by hemorrhage, alveolar septal thickening and fibrin deposition. Apoptosis, oxidative products and proinflammatory cytokines in lung tissue were also induced by LIRI. The over-expression of HSP70 antagonized the impacts of LIRI by attenuating these parameters. It significantly increased the expression of eNOS, SIRT1 and AMPK, while the inhibition of SIRT1 and AMPK deactivated the eNOS expression. The lung W/D ratio and biomarkers in BALF were increased while mice were given inhibitors of eNOS, SIRT1 and AMPK. We concluded that over-expression of HSP70 had protective effect on LIRI and HSP70 might be involved in the protection through a SIRT1/AMPK/eNOS pathway. PMID:27830023

  1. Antenatal and postnatal corticosteroid and resuscitation induced lung injury in preterm sheep

    PubMed Central

    2009-01-01

    Background Initiation of ventilation using high tidal volumes in preterm lambs causes lung injury and inflammation. Antenatal corticosteroids mature the lungs of preterm infants and postnatal corticosteroids are used to treat bronchopulmonary dysplasia. Objective To test if antenatal or postnatal corticosteroids would decrease resuscitation induced lung injury. Methods 129 d gestational age lambs (n = 5-8/gp; term = 150 d) were operatively delivered and ventilated after exposure to either 1) no medication, 2) antenatal maternal IM Betamethasone 0.5 mg/kg 24 h prior to delivery, 3) 0.5 mg/kg Dexamethasone IV at delivery or 4) Cortisol 2 mg/kg IV at delivery. Lambs then were ventilated with no PEEP and escalating tidal volumes (VT) to 15 mL/kg for 15 min and then given surfactant. The lambs were ventilated with VT 8 mL/kg and PEEP 5 cmH20 for 2 h 45 min. Results High VT ventilation caused a deterioration of lung physiology, lung inflammation and injury. Antenatal betamethasone improved ventilation, decreased inflammatory cytokine mRNA expression and alveolar protein leak, but did not prevent neutrophil influx. Postnatal dexamethasone decreased pro-inflammatory cytokine expression, but had no beneficial effect on ventilation, and postnatal cortisol had no effect. Ventilation increased liver serum amyloid mRNA expression, which was unaffected by corticosteroids. Conclusions Antenatal betamethasone decreased lung injury without decreasing lung inflammatory cells or systemic acute phase responses. Postnatal dexamethasone or cortisol, at the doses tested, did not have important effects on lung function or injury, suggesting that corticosteroids given at birth will not decrease resuscitation mediated injury. PMID:20003512

  2. Artemisitene activates the Nrf2-dependent antioxidant response and protects against bleomycin-induced lung injury.

    PubMed

    Chen, Weimin; Li, Shanshan; Li, Jinwei; Zhou, Wen; Wu, Shouhai; Xu, Shengmei; Cui, Ke; Zhang, Donna D; Liu, Bo

    2016-07-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of the cellular antioxidant response and xenobiotic metabolism. Activation of the Nrf2 signaling pathway has been demonstrated to confer protection against environmental insults and prevent disease or inhibit the progression of diseases related to oxidative stress. In an attempt to identify novel improved Nrf2 inducers for systemic protection against tissue damage by environmental insults, we identified artemisitene as a novel Nrf2 activator using antioxidant responsive element luciferase assay in MDA-MB-231 cells. Further studies suggest that artemisitene activates Nrf2 by decreasing Nrf2 ubiquitination and increasing its stability. In Nrf2 wild-type mice, systemic administration of artemisitene strongly inhibits bleomycin-induced lung damage. Artemisitene represents a novel class of Nrf2 inducer, and artemisitene-based therapeutic approach targeting Nrf2 may also provide antioxidant protection for humans against tissue damage by toxic chemicals.-Chen, W., Li, S., Li, J., Zhou, W., Wu, S., Xu, S., Cui, K., Zhang, D. D., Liu, B. Artemisitene activates the Nrf2-dependent antioxidant response and protects against bleomycin-induced lung injury.

  3. The role of C5a in acute lung injury induced by highly pathogenic viral infections

    PubMed Central

    Wang, Renxi; Xiao, He; Guo, Renfeng; Li, Yan; Shen, Beifen

    2015-01-01

    The complement system, an important part of innate immunity, plays a critical role in pathogen clearance. Unregulated complement activation is likely to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by highly pathogenic virus including influenza A viruses H5N1, H7N9, and severe acute respiratory syndrome (SARS) coronavirus. In highly pathogenic virus-induced acute lung diseases, high levels of chemotactic and anaphylatoxic C5a were produced as a result of excessive complement activaiton. Overproduced C5a displays powerful biological activities in activation of phagocytic cells, generation of oxidants, and inflammatory sequelae named “cytokine storm”, and so on. Blockade of C5a signaling have been implicated in the treatment of ALI induced by highly pathogenic virus. Herein, we review the literature that links C5a and ALI, and review our understanding of the mechanisms by which C5a affects ALI during highly pathogenic viral infection. In particular, we discuss the potential of the blockade of C5a signaling to treat ALI induced by highly pathogenic viruses. PMID:26060601

  4. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury.

    PubMed

    Abraham, E; Carmody, A; Shenkar, R; Arcaroli, J

    2000-12-01

    Acute lung injury is characterized by accumulation of neutrophils in the lungs, accompanied by the development of interstitial edema and an intense inflammatory response. To assess the role of neutrophils as early immune effectors in hemorrhage- or endotoxemia-induced lung injury, mice were made neutropenic with cyclophosphamide or anti-neutrophil antibodies. Endotoxemia- or hemorrhage-induced lung edema was significantly reduced in neutropenic animals. Activation of the transcriptional regulatory factor nuclear factor-kappaB after hemorrhage or endotoxemia was diminished in the lungs of neutropenic mice compared with nonneutropenic controls. Hemorrhage or endotoxemia was followed by increases in pulmonary mRNA and protein levels for interleukin-1beta (IL-1beta), macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor-alpha (TNF-alpha). Endotoxin-induced increases in proinflammatory cytokine expression were greater than those found after hemorrhage. The amounts of mRNA or protein for IL-1beta, MIP-2, and TNF-alpha were significantly lower after hemorrhage in the lungs of neutropenic versus nonneutropenic mice. Neutropenia was associated with significant reductions in IL-1beta and MIP-2 but not in TNF-alpha expression in the lungs after endotoxemia. These experiments show that neutrophils play a central role in initiating acute inflammatory responses and causing injury in the lungs after hemorrhage or endotoxemia.

  5. Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury.

    PubMed

    Mathew, Biji; Takekoshi, Daisuke; Sammani, Saad; Epshtein, Yulia; Sharma, Rajesh; Smith, Brett D; Mitra, Sumegha; Desai, Ankit A; Weichselbaum, Ralph R; Garcia, Joe G N; Jacobson, Jeffrey R

    2015-12-15

    We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk. Mice deficient in GADD45a (GADD45a(-/-)) demonstrated increased susceptibility to radiation-induced lung injury (RILI, 10 Gy) evidenced by increased bronchoalveolar lavage (BAL) fluid total cell counts, protein and albumin levels, and levels of inflammatory cytokines compared with RILI-challenged wild-type animals at 2 and 4 wk. Furthermore, GADD45a(-/-) mice had decreased total and phosphorylated lung Akt levels both at baseline and 6 wk after RILI challenge relative to wild-type mice while increased RILI susceptibility was observed in both Akt(+/-) mice and mice treated with an Akt inhibitor beginning 1 wk prior to irradiation. Additionally, overexpression of a constitutively active Akt1 transgene reversed RILI-susceptibility in GADD45a(-/-) mice. In separate studies, lung fibrotic changes 2 wk after treatment with bleomycin (0.25 U/kg IT) was significantly increased in GADD45a(-/-) mice compared with wild-type mice assessed by lung collagen content and histology. These data implicate GADD45a as an important modulator of lung inflammatory responses across different injury models and highlight GADD45a-mediated signaling as a novel target in inflammatory lung injury clinically.

  6. Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury

    PubMed Central

    Mathew, Biji; Takekoshi, Daisuke; Sammani, Saad; Epshtein, Yulia; Sharma, Rajesh; Smith, Brett D.; Mitra, Sumegha; Desai, Ankit A.; Weichselbaum, Ralph R.; Garcia, Joe G. N.

    2015-01-01

    We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk. Mice deficient in GADD45a (GADD45a−/−) demonstrated increased susceptibility to radiation-induced lung injury (RILI, 10 Gy) evidenced by increased bronchoalveolar lavage (BAL) fluid total cell counts, protein and albumin levels, and levels of inflammatory cytokines compared with RILI-challenged wild-type animals at 2 and 4 wk. Furthermore, GADD45a−/− mice had decreased total and phosphorylated lung Akt levels both at baseline and 6 wk after RILI challenge relative to wild-type mice while increased RILI susceptibility was observed in both Akt+/− mice and mice treated with an Akt inhibitor beginning 1 wk prior to irradiation. Additionally, overexpression of a constitutively active Akt1 transgene reversed RILI-susceptibility in GADD45a−/− mice. In separate studies, lung fibrotic changes 2 wk after treatment with bleomycin (0.25 U/kg IT) was significantly increased in GADD45a−/− mice compared with wild-type mice assessed by lung collagen content and histology. These data implicate GADD45a as an important modulator of lung inflammatory responses across different injury models and highlight GADD45a-mediated signaling as a novel target in inflammatory lung injury clinically. PMID:26498248

  7. Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats.

    PubMed

    Ward, William O; Ledbetter, Allen D; Schladweiler, Mette C; Kodavanti, Urmila P

    2015-01-01

    Acute ozone-induced pulmonary injury and inflammation are well characterized in rats; however, mechanistic understanding of the pathways involved is limited. We hypothesized that acute exposure of healthy rats to ozone will cause transcriptional alterations, and comprehensive analysis of these changes will allow us to better understand the mechanism of pulmonary injury and inflammation. Male Wistar Kyoto rats (10-12 week) were exposed to air, or ozone (0.25, 0.5 or 1.0 ppm) for 4 h and pulmonary injury and inflammation were assessed at 0-h or 20-h (n = 8/group). Lung gene expression profiling was assessed at 0-h (air and 1.0 ppm ozone, n = 3-4/group). At 20-h bronchoalveolar lavage, fluid protein and neutrophils increased at 1 ppm ozone. Numerous genes involved in acute inflammatory response were up-regulated along with changes in genes involved in cell adhesion and migration, steroid metabolism, apoptosis, cell cycle control and cell growth. A number of NRF2 target genes were also induced after ozone exposure. Based on expression changes, Rela, SP1 and TP3-mediated signaling were identified to be mediating downstream changes. Remarkable changes in the processes of endocytosis provide the insight that ozone-induced lung injury and inflammation are likely initiated by changes in cell membrane components and receptors likely from oxidatively modified lung lining lipids and proteins. In conclusion, ozone-induced injury and inflammation are preceded by changes in gene targets for cell adhesion/migration, apoptosis, cell cycle control and growth regulated by Rela, SP1 and TP53, likely mediated by the process of endocytosis and altered steroid receptor signaling.

  8. Depressive Symptoms and Impaired Physical Function after Acute Lung Injury

    PubMed Central

    Colantuoni, Elizabeth; Mendez-Tellez, Pedro A.; Dinglas, Victor D.; Shanholtz, Carl; Husain, Nadia; Dennison, Cheryl R.; Herridge, Margaret S.; Pronovost, Peter J.; Needham, Dale M.

    2012-01-01

    Rationale: Survivors of acute lung injury (ALI) frequently have substantial depressive symptoms and physical impairment, but the longitudinal epidemiology of these conditions remains unclear. Objectives: To evaluate the 2-year incidence and duration of depressive symptoms and physical impairment after ALI, as well as risk factors for these conditions. Methods: This prospective, longitudinal cohort study recruited patients from 13 intensive care units (ICUs) in four hospitals, with follow-up 3, 6, 12, and 24 months after ALI. The outcomes were Hospital Anxiety and Depression Scale depression score greater than or equal to 8 (“depressive symptoms”) in patients without a history of depression before ALI, and two or more dependencies in instrumental activities of daily living (“impaired physical function”) in patients without baseline impairment. Measurements and Main Results: During 2-year follow-up of 186 ALI survivors, the cumulative incidences of depressive symptoms and impaired physical function were 40 and 66%, respectively, with greatest incidence by 3-month follow-up; modal durations were greater than 21 months for each outcome. Risk factors for incident depressive symptoms were education 12 years or less, baseline disability or unemployment, higher baseline medical comorbidity, and lower blood glucose in the ICU. Risk factors for incident impaired physical function were longer ICU stay and prior depressive symptoms. Conclusions: Incident depressive symptoms and impaired physical function are common and long-lasting during the first 2 years after ALI. Interventions targeting potentially modifiable risk factors (e.g., substantial depressive symptoms in early recovery) should be evaluated to improve ALI survivors’ long-term outcomes. PMID:22161158

  9. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.

    PubMed

    Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G

    2016-02-01

    Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.

  10. The mechanism of development of acute lung injury in lethal endotoxic shock using α-galactosylceramide sensitization

    PubMed Central

    Tumurkhuu, G; Koide, N; Dagvadorj, J; Morikawa, A; Hassan, F; Islam, S; Naiki, Y; Mori, I; Yoshida, T; Yokochi, T

    2008-01-01

    The mechanism underlying acute lung injury in lethal endotoxic shock induced by administration of lipopolysaccharide (LPS) into α-galactosylceramide (α-GalCer)-sensitized mice was studied. Sensitization with α-GalCer resulted in the increase of natural killer T (NK T) cells and the production of interferon (IFN)-γ in the lung. The IFN-γ that was produced induced expression of adhesion molecules, especially vascular cell adhesion molecule-1 (VCAM-1), on vascular endothelial cells in the lung. Anti-IFN-γ antibody inhibited significantly the VCAM-1 expression in α-GalCer-sensitized mice. Very late activating antigen-4-positive cells, as the counterpart of VCAM-1, accumulated in the lung. Anti-VCAM-1 antibody prevented LPS-mediated lethal shock in α-GalCer-sensitized mice. The administration of LPS into α-GalCer-sensitized mice caused local production of excessive proinflammatory mediators, such as tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and nitric oxide. LPS caused microvascular leakage of proteins and cells into bronchoalveolar lavage fluid. Taken together, sensitization with α-GalCer was suggested to induce the expression of VCAM-1 via IFN-γ produced by NK T cells and recruit a number of inflammatory cells into the lung. Further, LPS was suggested to lead to the production of excessive proinflammatory mediators, the elevation of pulmonary permeability and cell death. The putative mechanism of acute lung injury in LPS-mediated lethal shock using α-GalCer sensitization is discussed. PMID:18307519

  11. The Effects of Lung Protective Ventilation or Hypercapnic Acidosis on Gas Exchange and Lung Injury in Surfactant Deficient Rabbits

    PubMed Central

    Hummler, Helmut D.; Banke, Katharina; Wolfson, Marla R.; Buonocore, Giuseppe; Ebsen, Michael; Bernhard, Wolfgang; Tsikas, Dimitrios; Fuchs, Hans

    2016-01-01

    Background Permissive hypercapnia has been shown to reduce lung injury in subjects with surfactant deficiency. Experimental studies suggest that hypercapnic acidosis by itself rather than decreased tidal volume may be a key protective factor. Objectives To study the differential effects of a lung protective ventilatory strategy or hypercapnic acidosis on gas exchange, hemodynamics and lung injury in an animal model of surfactant deficiency. Methods 30 anesthetized, surfactant-depleted rabbits were mechanically ventilated (FiO2 = 0.8, PEEP = 7cmH2O) and randomized into three groups: Normoventilation-Normocapnia (NN)-group: tidal volume (Vt) = 7.5 ml/kg, target PaCO2 = 40 mmHg; Normoventilation-Hypercapnia (NH)-group: Vt = 7.5 ml/kg, target PaCO2 = 80 mmHg by increasing FiCO2; and a Hypoventilation-Hypercapnia (HH)-group: Vt = 4.5 ml/kg, target PaCO2 = 80 mmHg. Plasma lactate and interleukin (IL)-8 were measured every 2 h. Animals were sacrificed after 6 h to perform bronchoalveolar lavage (BAL), to measure lung wet-to-dry weight, lung tissue IL-8, and to obtain lung histology. Results PaO2 was significantly higher in the HH-group compared to the NN-group (p<0.05), with values of the NH-group between the HH- and NN-groups. Other markers of lung injury (wet-dry-weight, BAL-Protein, histology-score, plasma-IL-8 and lung tissue IL-8) resulted in significantly lower values for the HH-group compared to the NN-group and trends for the NH-group towards lower values compared to the NN-group. Lactate was significantly lower in both hypercapnia groups compared to the NN-group. Conclusion Whereas hypercapnic acidosis may have some beneficial effects, a significant effect on lung injury and systemic inflammatory response is dependent upon a lower tidal volume rather than resultant arterial CO2 tensions and pH alone. PMID:26840779

  12. Contributions of TRPV1, endovanilloids, and endoplasmic reticulum stress in lung cell death in vitro and lung injury

    PubMed Central

    Thomas, Karen C.; Roberts, Jessica K.; Deering-Rice, Cassandra E.; Romero, Erin G.; Dull, Randal O.; Lee, Jeewoo; Yost, Garold S.

    2012-01-01

    Endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) (endovanilloids) are implicated as mediators of lung injury during inflammation. This study tested the hypothesis that endovanilloids produced following lipopolysaccharide (LPS) treatment activate TRPV1 and cause endoplasmic reticulum stress/GADD153 expression in lung cells, representing a mechanistic component of lung injury. The TRPV1 agonist nonivamide induced GADD153 expression and caused cytotoxicity in immortalized and primary human bronchial, bronchiolar/alveolar, and microvascular endothelial cells, proportional to TRPV1 mRNA expression. In CF-1 mice, Trpv1 mRNA was most abundant in the alveoli, and intratracheal nonivamide treatment promoted Gadd153 expression in the alveolar region. Treatment of CF-1 mice with LPS increased Gadd153 in the lung, lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid, and lung wet-to-dry weight ratio. Cotreating mice with LPS and the TRPV1 antagonist LJO-328 reduced Gadd153 induction and LDH in BAL but did not inhibit increases in lung wet-to-dry ratio. In Trpv1−/− mice treated with LPS, Gadd153 induction and LDH in BAL were reduced relative to wild-type mice, and the wet-to-dry weight ratios of lungs from both wild-type and Trpv1−/− mice decreased. Organic extracts of blood collected from LPS-treated mice were more cytotoxic to TRPV1-overexpressing cells compared with BEAS-2B cells and extracts from control mice, however, most pure endovanilloids did not produce cytotoxicity in a characteristic TRPV1-dependent manner. Collectively, these data indicate a role for TRPV1, and endogenous TRPV1 agonists, in ER stress and cytotoxicity in lung cells but demonstrate that ER stress and cytotoxicity are not essential for pulmonary edema. PMID:21949157

  13. Effects of short-term propofol and dexmedetomidine on pulmonary morphofunction and biological markers in experimental mild acute lung injury.

    PubMed

    Cavalcanti, Vinícius; Santos, Cintia Lourenço; Samary, Cynthia Santos; Araújo, Mariana Neves; Heil, Luciana Boavista Barros; Morales, Marcelo Marcos; Silva, Pedro Leme; Pelosi, Paolo; Fernandes, Fatima Carneiro; Villela, Nivaldo; Rocco, Patricia Rieken Macedo

    2014-11-01

    We evaluated whether the short-term use of dexmedetomidine and propofol may attenuate inflammatory response and improve lung morphofunction in experimental acute lung injury (ALI). Thirty-six Wistar rats were randomly divided into five groups. Control (C) and ALI animals received sterile saline solution and Escherichia coli lipopolysaccharide by intraperitoneal injection respectively. After 24h, ALI animals were randomly treated with dexmedetomidine, propofol, or thiopental sodium for 1h. Propofol reduced static lung elastance and resistive pressure and was associated with less alveolar collapse compared to thiopental sodium and dexmedetomidine. Dexmedetomidine improved oxygenation, but did not modify lung mechanics or histology. Propofol was associated with lower IL (interleukin)-6 and IL-1β expression, whereas dexmedetomidine led to reduced inducible nitric oxide (iNOS) and increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression in lung tissue compared to thiopental sodium. In conclusion, in this model of mild ALI, short-term use of dexmedetomidine and propofol led to different functional effects and activation of biological markers associated with pulmonary inflammation.

  14. Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI).

    PubMed

    Nieman, Gary F; Satalin, Joshua; Andrews, Penny; Habashi, Nader M; Gatto, Louis A

    2016-12-01

    It was recently shown that acute respiratory distress syndrome (ARDS) mortality has not been reduced in over 15 years and remains ~40 %, even with protective low tidal volume (LVt) ventilation. Thus, there is a critical need to develop novel ventilation strategies that will protect the lung and reduce ARDS mortality. Protti et al. have begun to analyze the impact of mechanical ventilation on lung tissue using engineering methods in normal pigs ventilated for 54 h. They used these methods to assess the impact of a mechanical breath on dynamic and static global lung strain and energy load. Strain is the change in lung volume in response to an applied stress (i.e., Tidal Volume-Vt). This study has yielded a number of exciting new concepts including the following: (1) Individual mechanical breath parameters (e.g., Vt or Plateau Pressure) are not directly correlated with VILI but rather any combination of parameters that subject the lung to excessive dynamic strain and energy/power load will cause VILI; (2) all strain is not equal; dynamic strain resulting in a dynamic energy load (i.e., kinetic energy) is more damaging to lung tissue than static strain and energy load (i.e., potential energy); and (3) a critical consideration is not just the size of the Vt but the size of the lung that is being ventilated by this Vt. This key concept merits attention since our current protective ventilation strategies are fixated on the priority of keeping the Vt low. If the lung is fully inflated, a large Vt is not necessarily injurious. In conclusion, using engineering concepts to analyze the impact of the mechanical breath on the lung is a novel new approach to investigate VILI mechanisms and to help design the optimally protective breath. Data generated using these methods have challenged some of the current dogma surrounding the mechanisms of VILI and of the components in the mechanical breath necessary for lung protection.

  15. Supplementation of parenteral nutrition with fish oil attenuates acute lung injury in a rat model

    PubMed Central

    Kohama, Keisuke; Nakao, Atsunori; Terashima, Mariko; Aoyama-Ishikawa, Michiko; Shimizu, Takayuki; Harada, Daisuke; Nakayama, Mitsuo; Yamashita, Hayato; Fujiwara, Mayu; Kotani, Joji

    2014-01-01

    Fish oil rich in n-3 polyunsaturated fatty acids has diverse immunomodulatory properties and attenuates acute lung injury when administered in enternal nutrition. However, enteral nutrition is not always feasible. Therefore, we investigated the ability of parenteral nutrition supplemented with fish oil to ameliorate acute lung injury. Rats were infused with parenteral nutrition solutions (without lipids, with soybean oil, or with soybean oil and fish oil) for three days. Lipopolysaccharide (15 mg/kg) was then administered intratracheally to induce acute lung injury, characterized by impaired lung function, polymorphonuclear leukocyte recruitment, parenchymal tissue damage, and upregulation of mRNAs for inflammatory mediators. Administration of parenteral nutrition supplemented with fish oil prior to lung insult improved gas exchange and inhibited neutrophil recruitment and upregulation of mRNAs for inflammatory mediators. Parenteral nutrition supplemented with fish oil also prolonged survival. To investigate the underlying mechanisms, leukotriene B4 and leukotriene B5 secretion was measured in neutrophils from the peritoneal cavity. The neutrophils from rats treated with fish oil-rich parenteral nutrition released significantly more leukotriene B5, an anti-inflammatory eicosanoid, than neutrophils isolated from rats given standard parenteral nutrition. Parenteral nutrition with fish oil significantly reduced lipopolysaccharide-induced lung injury in rats in part by promoting the synthesis of anti-inflammatory eicosanoids. PMID:24688221

  16. GRANZYME A AND B-CLUSTER DEFICIENCY DELAYS ACUTE LUNG INJURY IN PNEUMOVIRUS-INFECTED MICE

    PubMed Central

    Bem, Reinout A.; van Woensel, Job B.M.; Lutter, Rene; Domachowske, Joseph B.; Medema, Jan Paul; Rosenberg, Helene F.; Bos, Albert P.

    2009-01-01

    Lower respiratory tract infection by the human pneumovirus respiratory syncytial virus is a frequent cause of acute lung injury in children. Severe pneumovirus disease in humans is associated with activation of the granzyme pathway by effector lymphocytes, which may promote pathology by exaggerating pro-apoptotic caspase activity and pro-inflammatory activity. The main goal of this study was to determine whether granzymes contribute to the development of acute lung injury in pneumovirus-infected mice. Granzyme-expressing mice and granzyme A, and B-cluster single and double-gene deleted mice were inoculated with the rodent pneumovirus pneumonia virus of mice strain J3666, and were studied for markers of lung inflammation and injury. Expression of granzyme A and B is detected in effector lymphocytes in mouse lungs in response to pneumovirus infection. Mice deficient for granzyme A and the granzyme B-cluster have unchanged virus titers in the lungs, but show a significantly delayed clinical response to fatal pneumovirus infection, a feature that is associated with delayed neutrophil recruitment, diminished activation of caspase-3 and reduced lung permeability. We conclude that granzyme A and B-cluster deficiency delays the acute progression of pneumovirus disease by reducing alveolar injury. PMID:20018616

  17. Asialoerythropoietin ameliorates bleomycin-induced acute lung injury in rabbits by reducing inflammation

    PubMed Central

    SONODA, AKINAGA; NITTA, NORIHISA; TSUCHIYA, KEIKO; OTANI, HIDEJI; WATANABE, SHOBU; MUKAISHO, KENICHI; TOMOZAWA, YUKI; NAGATANI, YUKIHIRO; OHTA, SHINICHI; TAKAHASHI, MASASHI; MURATA, KIYOSHI

    2014-01-01

    Acute lung injury, a critical illness characterized by acute respiratory failure with bilateral pulmonary infiltrates, remains unresponsive to current treatments. The condition involves injury to the alveolar capillary barrier, neutrophil accumulation and the induction of proinflammatory cytokines followed by lung fibrosis. In the present study, a rabbit model of bleomycin-induced acute lung injury was established to examine the effects of asialoerythropoietin (AEP), an agent with tissue-protective activities, on pulmonary inflammation. Six Japanese white rabbits were randomly divided into two equal groups. Acute lung injury was induced in all rabbits by intratracheally injecting bleomycin. The control group was injected with bleomycin only; the experimental (AEP) group was injected intravenously with AEP (80 μg/kg) prior to the bleomycin injection. Computed tomography (CT) studies were performed seven days later. The CT inflammatory scores of areas exhibiting abnormal density and the pathological inflammatory scores were recorded as a ratio on a 7×7 mm grid. The CT and pathological inflammatory scores were significantly different between the control and AEP groups [122±10 and 16.3±1.5 (controls) vs. 71±8.5 and 9.7±1.4 (AEP), respectively; P<0.01]. Thus, the present study revealed that AEP prevents bleomycin-induced acute lung injury in rabbits. PMID:25289037

  18. Inhibition of Nitro-Oxidative Stress Attenuates Pulmonary and Systemic Injury Induced by High-Tidal Volume Mechanical Ventilation.

    PubMed

    Martínez-Caro, Leticia; Nin, Nicolás; Sánchez-Rodríguez, Carolina; Ferruelo, Antonio; El Assar, Mariam; de Paula, Marta; Fernández-Segoviano, Pilar; Esteban, Andrés; Lorente, José A

    2015-07-01

    Mechanisms contributing to pulmonary and systemic injury induced by high tidal volume (VT) mechanical ventilation are not well known. We tested the hypothesis that increased peroxynitrite formation is involved in organ injury and dysfunction induced by mechanical ventilation. Male Sprague-Dawley rats were subject to low- (VT, 9 mL/kg; positive end-expiratory pressure, 5 cmH2O) or high- (VT, 25 mL/kg; positive end-expiratory pressure, 0 cmH2O) VT mechanical ventilation for 120 min, and received 1 of 3 treatments: 3-aminobenzamide (3-AB, 10 mg/kg, intravenous, a poly adenosine diphosphate ribose polymerase [PARP] inhibitor), or the metalloporphyrin manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP, 5 mg/kg intravenous, a peroxynitrite scavenger), or no treatment (control group), 30 min before starting the mechanical ventilation protocol (n = 8 per group, 6 treatment groups). We measured mean arterial pressure, peak inspiratory airway pressure, blood chemistry, and gas exchange. Oxidation (fluorescence for oxidized dihydroethidium), protein nitration (immunofluorescence and Western blot for 3-nitrotyrosine), PARP protein (Western blot) and gene expression of the nitric oxide (NO) synthase (NOS) isoforms (quantitative real-time reverse transcription polymerase chain reaction) were measured in lung and vascular tissue. Lung injury was quantified by light microscopy. High-VT mechanical ventilation was associated with hypotension, increased peak inspiratory airway pressure, worsened oxygenation; oxidation and protein nitration in lung and aortic tissue; increased PARP protein in lung; up-regulation of NOS isoforms in lung tissue; signs of diffuse alveolar damage at histological examination. Treatment with 3AB or MnTMPyP attenuated the high-VT mechanical ventilation-induced changes in pulmonary and cardiovascular function; down-regulated the expression of NOS1, NOS2, and NOS3; decreased oxidation and nitration in lung and aortic tissue; and attenuated

  19. Type 2 Deiodinase and Host Responses of Sepsis and Acute Lung Injury

    PubMed Central

    Ma, Shwu-Fan; Xie, Lishi; Pino-Yanes, Maria; Sammani, Saad; Wade, Michael S.; Letsiou, Eleftheria; Siegler, Jessica; Wang, Ting; Infusino, Giovanni; Kittles, Rick A.; Flores, Carlos; Zhou, Tong; Prabhakar, Bellur S.; Moreno-Vinasco, Liliana; Villar, Jesus; Jacobson, Jeffrey R.; Dudek, Steven M.

    2011-01-01

    The role of thyroid hormone metabolism in clinical outcomes of the critically ill remains unclear. Using preclinical models of acute lung injury (ALI), we assessed the gene and protein expression of type 2 deiodinase (DIO2), a key driver for synthesis of biologically active triiodothyronine, and addressed potential association of DIO2 genetic variants with ALI in a multiethnic cohort. DIO2 gene and protein expression levels in murine lung were validated by microarrays and immunoblotting. Lung injury was assessed by levels of bronchoalveolar lavage protein and leukocytes. Single-nucleotide polymorphisms were genotyped and ALI susceptibility association assessed. Significant increases in both DIO2 gene and D2 protein expression were observed in lung tissues from murine ALI models (LPS- and ventilator-induced lung injury), with expression directly increasing with the extent of lung injury. Mice with reduced levels of DIO2 expression (by silencing RNA) demonstrated reduced thyroxine levels in plasma and increased lung injury (increased bronchoalveolar lavage protein and leukocytes), suggesting a protective role for DIO2 in ALI. The G (Ala) allele of the Thr92Ala coding single-nucleotide polymorphism (rs225014) was protective in severe sepsis and severe sepsis–associated ALI after adjustments for age, sex, and genetic ancestry in a logistic regression model in European Americans. Our studies indicate that DIO2 is a novel ALI candidate gene, the nonsynonymous Thr92Ala coding variant of which confers ALI protection. Increased DIO2 expression may dampen the ALI inflammatory response, thereby strengthening the premise that thyroid hormone metabolism is intimately linked to the integrated response to inflammatory injury in critically ill patients. PMID:21685153

  20. Lung injury after hemorrhage is age-dependent: role of peroxisome proliferator activated receptor γ

    PubMed Central

    Zingarelli, Basilia; Hake, Paul W.; O’Connor, Michael; Burroughs, Timothy J.; Wong, Hector R.; Solomkin, Joseph S.; Lentsch, Alex B.

    2009-01-01

    Objective The incidence of multiple organ failure in pediatric trauma victims is lower than in the adult population. However, the molecular mechanisms are not yet defined. We investigated whether the pathophysiologic characteristics of hemorrhage-induced lung injury may be age-dependent and may be regulated by the peroxisome proliferator activator receptor γ (PPARγ). Design Prospective, laboratory investigation that used an established rodent model of hemorrhagic shock. Setting University hospital laboratory. Subjects Young (n=67; 3–5 months old) and mature (n=66; 11–13 months old) male rats. Interventions Hemorrhagic shock was induced in young and mature rats by withdrawing blood to a mean arterial blood pressure of 50 mmHg. After 3 hrs, rats were rapidly resuscitated by infusing the shed blood and sacrificed 3 hrs thereafter. Measurements and Main Results In young rats, lung injury was characterized by accumulation of red cells and neutrophils at the end of the resuscitation period; at Western blot analysis, lung expression of intercellular adhesion molecule-1 (ICAM-1) was increased. In contrast, the severity of lung injury was more pronounced in mature rats. Lung myeloperoxidase activity and expression of constitutive and inducible ICAM-1 was significantly higher in mature rats when compared to young rats. Mature rats also had higher plasma levels of cytokines and chemokines when compared to young rats. This heightened inflammation was associated with higher degree of activation of nuclear factor-κB and down-regulation of PPARγ and heat shock factor-1 in the lung of mature rats when compared to young rats. Treatment with the PPARγ ligand, the cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2, ameliorated lung injury in young, but not in mature animals. Conclusions Lung injury after severe hemorrhage is age-dependent and may be secondary to a diverse regulation of PPARγ. PMID:19384226

  1. Radiation injury in rat lung: I. Prostacyclin (PGI/sub 2/) production, arterial perfusion, and ultrastructure

    SciTech Connect

    Ts'ao, C.; Ward, W.F.; Port, C.D.

    1983-11-01

    Pulmonary prostacyclin (PGI/sub 2/) production, arterial perfusion, and ultrastructure were correlated in rats sacrificed from 1 day to 6 months after a single exposure of 25 Gy of gamma rays to the right hemithorax. PGI/sub 2/ production by the irradiated lung decreased to approximately half the normal value 1 day after irradiation (P < 0.05), then increased steadily throughout the study. By 6 months postirradiation, the right lung produced two to three times as much PGI/sub 2/ as did either shielded left lung or sham-irradiated lungs (P < 0.05). Perfusion scans revealed hyperemia of the right lung from 1 to 14 days after irradiation. From its peak at 14 days postirradiation, however, perfusion of the irradiated lung decreased steadily, then reached a plateau from 3 to 6 months at less than half that in the shielded left lung. Electron micrographs of the right lung revealed perivascular edema from 1 to 30 days after irradiation. The right lung then exhibited changes typical of radiation pneumonitis followed by progressive interstitial fibrosis. Platelet aggregates were not observed at any time. Thus, decreased PGI/sub 2/ production is an immediate but transient response of the lung to radiation injury. Then from 2 to 6 months after irradiation, the fibrotic, hypoperfused lung produces increasing amounts of the potent vasodilator and antithrombotic agent, PGI/sub 2/. Pulmonary PGI/sub 2/ production and arterial perfusion are inversely correlated for at least 6 months after hemithoracic irradiation.

  2. Suppression of IRG-1 Reduces Inflammatory Cell Infiltration and Lung Injury in Respiratory Syncytial Virus Infection by Reducing Production of Reactive Oxygen Species

    PubMed Central

    Ren, Ke; Lv, Yuanzi; Zhuo, Yujie; Chen, Changmai; Shi, Hengfei; Guo, Lin; Yang, Guang; Hou, Yayi

    2016-01-01

    ABSTRACT Respiratory syncytial virus (RSV) infection is a common cause of lower respiratory tract illness in infants and children. RSV is a negative-sense, single-strand RNA (ssRNA) virus that mainly infects airway epithelial cells. Accumulating evidence indicates that reactive oxygen species (ROS) production is a major factor for pulmonary inflammation and tissue damage of RSV disease. We investigated immune-responsive gene-1 (IRG1) expression during RSV infection, since IRG1 has been shown to mediate innate immune response to intracellular bacterial pathogens by modulating ROS and itaconic acid production. We found that RSV infection induced IRG1 expression in human A549 cells and in the lung tissues of RSV-infected mice. RSV infection or IRG1 overexpression promoted ROS production. Accordingly, knockdown of IRG1 induction blocked RSV-induced ROS production and proinflammatory cytokine gene expression. Finally, we showed that suppression of IRG1 induction reduced immune cell infiltration and prevented lung injury in RSV-infected mice. These results therefore link IRG1 induction to ROS production and immune lung injury after RSV infection. IMPORTANCE RSV infection is among the most common causes of childhood diseases. Recent studies identify ROS production as a factor contributing to RSV disease. We investigated the cause of ROS production and identified IRG1 as a critical factor linking ROS production to immune lung injury after RSV infection. We found that IRG1 was induced in A549 alveolar epithelial cells and in mouse lungs after RSV infection. Importantly, suppression of IRG1 induction reduced inflammatory cell infiltration and lung injury in mice. This study links IRG1 induction to oxidative damage and RSV disease. It also uncovers a potential therapeutic target in reducing RSV-caused lung injury. PMID:27252532

  3. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation

    PubMed Central

    Periasamy, Srinivasan; Hsu, Dur-Zong; Fu, Yu-Hsuan; Liu, Ming-Yie

    2015-01-01

    Sleep deprivation affects all aspects of health. Adverse health effects by sleep deviation are still underestimated and undervalued in clinical practice and, to a much greater extent in monitoring human health. We hypothesized that sleep deprivation-induced mild organ injuries; oxidative stress and inflammation might play a crucial role in inducing multi-organ injury. Male C57BL/6J mice (n = 6-7) were sleep-deprived for 0-72 h using a modified multiple platform boxes method. Blood and tissue were collected. Liver, heart, kidney, lung, and pancreatic injuries were evaluated using biochemical and histological analyses. Glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total billirubin (TBIL), creatine phosphokinase (CPK), creatine phosphokinase-myocardial band (CKMB), lactic dehydrogenase (LDH), creatinine (CRE), and blood urea nitrogen (BUN) were assayed in blood. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were measured. Histology revealed mild-to-moderate liver and lung injury in sleep-deprived mice. Sleep-deprived mice had significantly higher GOT, GPT, TBIL, CPK, CKMB, LDH, BUN, and α-amylase (AMYL) levels, which indicated liver, heart, kidney, and pancreatic injuries. Serum IL-1β at 24 h and IL-6 at 72 h were significantly higher in sleep-deprived than in control mice. Hepatic TNF-α and IL-1β were significantly higher, but IL-6 significantly lower in mice that had been sleep-deprived for 72 h. Sleep deprivation-mediated inflammation may be associated with mild to moderate multi-organ damage in mice. The implication of this study indicates sleep deprivation in humans may induce multi-organ injury that negatively affects cardiovascular and gastrointestinal health. PMID:26648820

  4. Therapeutic Efficacy of Esomeprazole in Cotton Smoke-Induced Lung Injury Model

    PubMed Central

    Nelson, Christina; Lee, Jameisha; Ko, Kang; Sikora, Andrew G.; Bonnen, Mark D.; Enkhbaatar, Perenlei; Ghebre, Yohannes T.

    2017-01-01

    Proton pump inhibitors (PPIs) are well-known antacid drugs developed to treat gastric disorders. Emerging studies demonstrate that PPIs possess biological activities that extend beyond inhibition of H+/K+ ATPase (proton pumps) expressed in parietal cells of the stomach. Some of the extra-gastric activities of PPIs include modulation of epithelial, endothelial, and immune cell functions. Recently, we reported that PPIs suppress the expression of several proinflammatory and profibrotic molecules, as well as enhance antioxidant mechanisms in order to favorably regulate lung inflammation and fibrosis in an animal model of bleomycin-induced lung injury. In addition, several retrospective clinical studies report that the use of PPIs is associated with beneficial outcomes in chronic lung diseases including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Based on these preclinical and clinical observations, we hypothesized that PPIs ameliorate smoke-induced lung injury. Accordingly, we evaluated the pharmacological efficacy of the PPI esomeprazole in a mouse model of cotton smoke-induced lung injury. The animals were exposed to cotton smoke for 3-weeks in the presence or absence of esomeprazole treatment. We found that therapeutic administration of esomeprazole significantly inhibited the progression of fibrosis throughout the lungs of the animals in this group compared to controls. In addition, esomeprazole also reduced circulating markers of inflammation and fibrosis. Overall, our work extends the emerging anti-inflammatory and antifibrotic potential of PPIs and their role in modulation of chronic lung diseases. PMID:28184197

  5. Dysregulation of lung injury and repair in moesin-deficient mice treated with intratracheal bleomycin.

    PubMed

    Hashimoto, Soshi; Amaya, Fumimasa; Matsuyama, Hiroki; Ueno, Hiroshi; Kikuchi, Shojiro; Tanaka, Masaki; Watanabe, Yoshihisa; Ebina, Masahito; Ishizaka, Akitoshi; Tsukita, Sachiko; Hashimoto, Satoru

    2008-10-01

    Moesin belongs to the ezrin/radixin/moesin (ERM) protein family and participates in cellular functions, such as morphogenesis and motility, by cross-linking between the actin cytoskeleton and plasma membranes. Although moesin seems necessary for tissue construction and repair, its function at the whole body level remains elusive, perhaps because of redundancy among ERM proteins. To determine the role played by moesin in the modulation of pulmonary alveolar structure associated with lung injury and repair, we examined the morphological changes in the lung and the effect of bleomycin-induced lung injury and fibrosis in moesin-deficient (Msn(-/Y)) and control wild-type mice (Msn(+/Y)). Immunohistochemical analysis revealed that moesin was specifically localized in the distal lung epithelium, where ezrin and radixin were faintly detectable in Msn(+/Y) mice. Compared with Msn(+/Y) mice, Msn(-/Y) mice displayed abnormalities of alveolar architecture and, when treated with bleomycin, developed more prominent lung injury and fibrosis and lower body weight and survival rate. Furthermore, Msn(-/Y) mice had abnormal cytokine and chemokine gene expression as shown by real-time PCR. This is the first report of a functional involvement of moesin in the regulation of lung inflammation and repair. Our observations show that moesin critically regulates the preservation of alveolar structure and lung homeostasis.

  6. c-ANCA-induced neutrophil-mediated lung injury: a model of acute Wegener's granulomatosis.

    PubMed

    Hattar, K; Oppermann, S; Ankele, C; Weissmann, N; Schermuly, R T; Bohle, R M; Moritz, R; Krögel, B; Seeger, W; Grimminger, F; Sibelius, U; Grandel, U

    2010-07-01

    Anti-neutrophil cytoplasmic antibodies (c-ANCA) targeting proteinase 3 (PR3) are implicated in the pathogenesis of Wegener's granulomatosis (WG). Fulminant disease can present as acute lung injury (ALI). In this study, a model of ALI in WG was developed using isolated rat lungs. Isolated human polymorphonuclear leukocytes (PMNs) were primed with tumour necrosis factor (TNF) to induce surface expression of PR3. Co-perfusion of TNF-primed neutrophils and monoclonal anti-PR3 antibodies induced a massive weight gain in isolated lungs. This effect was not observed when control immunoglobulin G was co-perfused with TNF-primed PMNs. The c-ANCA-induced oedema formation was paralleled by an increase in the capillary filtration coefficient as a marker of increased pulmonary endothelial permeability. In contrast, pulmonary artery pressure was not affected. In the presence of the oxygen radical scavenger superoxide dismutase and a NADPH oxidase inhibitor, c-ANCA-induced lung oedema could be prevented. Inhibition of neutrophil elastase was equally effective in preventing c-ANCA-induced lung injury. In conclusion, anti-PR3 antibodies induced neutrophil mediated, elastase- and oxygen radical-dependent ALI in the isolated lung. This experimental model supports the hypothesis of a pathogenic role for c-ANCA in WG and offers the possibility of the development of therapeutic strategies for the treatment of lung injury in fulminant WG.

  7. Lung-specific loss of the laminin α3 subunit confers resistance to mechanical injury.

    PubMed

    Urich, Daniela; Eisenberg, Jessica L; Hamill, Kevin J; Takawira, Desire; Chiarella, Sergio E; Soberanes, Saul; Gonzalez, Angel; Koentgen, Frank; Manghi, Tomas; Hopkinson, Susan B; Misharin, Alexander V; Perlman, Harris; Mutlu, Gokhan M; Budinger, G R Scott; Jones, Jonathan C R

    2011-09-01

    Laminins are heterotrimeric glycoproteins of the extracellular matrix that are secreted by epithelial cells and which are crucial for the normal structure and function of the basement membrane. We have generated a mouse harboring a conditional knockout of α3 laminin (Lama3(fl/fl)), one of the main laminin subunits in the lung basement membrane. At 60 days after intratracheal treatment of adult Lama3(fl/fl) mice with an adenovirus encoding Cre recombinase (Ad-Cre), the protein abundance of α3 laminin in whole lung homogenates was more than 50% lower than that in control-treated mice, suggesting a relatively long half-life for the protein in the lung. Upon exposure to an injurious ventilation strategy (tidal volume of 35 ml per kg of body weight for 2 hours), the mice with a knockdown of the α3 laminin subunit had less severe injury, as shown by lung mechanics, histology, alveolar capillary permeability and survival when compared with Ad-Null-treated mice. Knockdown of the α3 laminin subunit resulted in evidence of lung inflammation. However, this did not account for their resistance to mechanical ventilation. Rather, the loss of α3 laminin was associated with a significant increase in the collagen content of the lungs. We conclude that the loss of α3 laminin in the alveolar epithelium results in an increase in lung collagen, which confers resistance to mechanical injury.

  8. Aspirin, but Not Tirofiban Displays Protective Effects in Endotoxin Induced Lung Injury

    PubMed Central

    Gombert, Alexander; Jacobs, Michael J.; Drechsler, Maik; Döring, Yvonne; Soehnlein, Oliver; Grommes, Jochen

    2016-01-01

    Background Treatment of acute lung injury (ALI) remains an unsolved problem in intensive care medicine. Recruitment of neutrophils into the lungs, regarded as a key mechanism in progression of ALI, depends on signaling between neutrophils and platelets. Consequently we explored the effect of platelet-targeted aspirin and tirofiban treatment in endotoxin induced acute lung injury Methods C57Bl/6 mice were exposed to aerosolized LPS (500μg/ml) for 30min and treated with Aspirin (100μg/g bodyweight via intraperitoneal injection, 30 min before or 1 hour after LPS inhalation) or Tirofiban (0.5μg/ g bodyweight via tail vein injection 30 min before or 1 hour after LPS inhalation). The count of alveolar, interstitial, and intravascular neutrophils was assessed 4h later by flow cytometry. Lung permeability changes were assessed by FITC-dextran clearance and protein content in the BAL fluid. Results Aspirin both before and after LPS inhalation reduced neutrophil influx into the lung and lung permeability indicating the protective role of Aspirin in ALI. Tirofiban, however, did not alter neutrophil recruitment after LPS inhalation. Release of platelet-derived chemokines CCL5 and PF4 and neutrophil extracellular traps was reduced by Aspirin but not by Tirofiban. Conclusion Aspirin, but not Tirofiban reduces neutrophil recruitment and displays protective effects during endotoxin induced lung injury. PMID:27583400

  9. Bile acid aspiration associated with lung chemical profile linked to other biomarkers of injury after lung transplantation.

    PubMed

    Neujahr, D C; Uppal, K; Force, S D; Fernandez, F; Lawrence, C; Pickens, A; Bag, R; Lockard, C; Kirk, A D; Tran, V; Lee, K; Jones, D P; Park, Y

    2014-04-01

    Aspiration of gastrointestinal contents has been linked to worse outcomes following lung transplantation but uncertainty exists about underlying mechanisms. We applied high-resolution metabolomics of bronchoalveolar lavage fluid (BALF) in patients with episodic aspiration (defined by bile acids in the BALF) to identify potential metabolic changes associated with aspiration. Paired samples, one with bile acids and another without, from 29 stable lung transplant patients were studied. Liquid chromatography coupled to high-resolution mass spectroscopy was used to interrogate metabolomic contents of these samples. Data were obtained for 7068 ions representing intermediary metabolites, environmental agents and chemicals associated with microbial colonization. A substantial number (2302) differed between bile acid positive and negative samples when analyzed by false discovery rate at q = 0.01. These included pathways associated with microbial metabolism. Hierarchical cluster analysis defined clusters of chemicals associated with bile acid aspiration that were correlated to previously reported biomarkers of lung injury including T cell granzyme B level and the chemoattractants CXCL9 and CXCL10. These data specifically link bile acids presence in lung allografts to inflammatory pathways known to segregate with worsening allograft outcome, and provide additional mechanistic insight into the association between reflux and lung allograft injury.

  10. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications.

    PubMed

    Zhao, Weiling; Robbins, Mike E C

    2009-01-01

    The threat of radiation-induced late normal tissue injury limits the dose of radiation that can be delivered safely to cancer patients presenting with solid tumors. Tissue dysfunction and failure, associated with atrophy, fibrosis and/or necrosis, as well as vascular injury, have been reported in late responding normal tissues, including the central nervous system, gut, kidney, liver, lung, and skin. The precise mechanisms involved in the pathogenesis of radiation-induced late normal tissue injury have not been fully elucidated. It has been proposed recently that the radiation-induced late effects are caused, in part, by chronic oxidative stress and inflammation. Increased production of reactive oxygen species, which leads to lipid peroxidation, oxidation of DNA and proteins, as well as activation of pro-inflammatory factors has been observed in vitro and in vivo. In this review, we will present direct and indirect evidence to support this hypothesis. To improve the long-term survival and quality of life for radiotherapy patients, new approaches have been examined in preclinical models for their efficacy in preventing or mitigating the radiation-induced chronic normal tissue injury. We and others have tested drugs that can either attenuate inflammation or reduce chronic oxidative stress in animal models of late radiation-induced normal tissue injury. The effectiveness of renin-angiotensin system blockers, peroxisome proliferator-activated receptor (PPAR) gamma agonists, and antioxidants/antioxidant enzymes in preventing or mitigating the severity of radiation-induced late effects indicates that radiation-induced chronic injury can be prevented and/or treated. This provides a rationale for the design and development of anti-inflammatory-based interventional approaches for the treatment of radiation-induced late normal tissue injury.

  11. Role of oxidants in interstitial lung diseases: pneumoconioses, constrictive bronchiolitis, and chronic tropical pulmonary eosinophilia.

    PubMed

    Rom, William N

    2011-01-01

    Oxidants such as superoxide anion, hydrogen peroxide, and myeloperoxidase from activated inflammatory cells in the lower respiratory tract contribute to inflammation and injury. Etiologic agents include inorganic particulates such as asbestos, silica, or coal mine dust or mixtures of inorganic dust and combustion materials found in World Trade Center dust and smoke. These etiologic agents are phagocytosed by alveolar macrophages or bronchial epithelial cells and release chemotactic factors that recruit inflammatory cells to the lung. Chemotactic factors attract and activate neutrophils, eosinophils, mast cells, and lymphocytes and further activate macrophages to release more oxidants. Inorganic dusts target alveolar macrophages, World Trade Center dust targets bronchial epithelial cells, and eosinophils characterize tropical pulmonary eosinophilia (TPE) caused by filarial organisms. The technique of bronchoalveolar lavage in humans has recovered alveolar macrophages (AMs) in dust diseases and eosinophils in TPE that release increased amounts of oxidants in vitro. Interestingly, TPE has massively increased eosinophils in the acute form and after treatment can still have ongoing eosinophilic inflammation. A course of prednisone for one week can reduce the oxidant burden and attendant inflammation and may be a strategy to prevent chronic TPE and interstitial lung disease.

  12. Influenza virus-induced lung injury: pathogenesis and implications for treatment.

    PubMed

    Herold, Susanne; Becker, Christin; Ridge, Karen M; Budinger, G R Scott

    2015-05-01

    The influenza viruses are some of the most important human pathogens, causing substantial seasonal and pandemic morbidity and mortality. In humans, infection of the lower respiratory tract of can result in flooding of the alveolar compartment, development of acute respiratory distress syndrome and death from respiratory failure. Influenza-mediated damage of the airway, alveolar epithelium and alveolar endothelium results from a combination of: 1) intrinsic viral pathogenicity, attributable to its tropism for host airway and alveolar epithelial cells; and 2) a robust host innate immune response, which, while contributing to viral clearance, can worsen the severity of lung injury. In this review, we summarise the molecular events at the virus-host interface during influenza virus infection, highlighting some of the important cellular responses. We discuss immune-mediated viral clearance, the mechanisms promoting or perpetuating lung injury, lung regeneration after influenza-induced injury, and recent advances in influenza prevention and therapy.

  13. Role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and fibrosis.

    PubMed

    Xu, Jianguo; Mora, Ana; Shim, Hyunsuk; Stecenko, Arlene; Brigham, Kenneth L; Rojas, Mauricio

    2007-09-01

    Stromal cell-derived factor-1 (SDF-1) participates in mobilizing bone marrow-derived stem cells, via its receptor CXCR4. We studied the role of the SDF-1/CXCR4 axis in a rodent model of bleomycin-induced lung injury in C57BL/6 wild-type and matrix metalloproteinase (MMP)-9 knockout mice. After intratracheal instillation of bleomycin, SDF-1 levels in serum and bronchial alveolar lavage fluid increased. These changes were accompanied by increased numbers of CXCR4(+) cells in the lung and a decrease in a population of CXCR4(+) cells in the bone marrow that did not occur in MMP-9(-)/(-) mice. Both SDF-1 and lung lysates from bleomycin-treated mice induced migration of bone marrow-derived stem cells in vitro that was blocked by a CXCR4 antagonist, TN14003. Treatment of mice with TN14003 with bleomycin-induced lung injury significantly attenuated lung fibrosis. Lung tissue from patients with idiopathic pulmonary fibrosis had higher numbers of cells expressing both SDF-1 and CXCR4 than did normal lungs. Our data suggest that the SDF-1/CXCR4 axis is important in the complex sequence of events triggered by bleomycin exposure that eventuates in lung repair. SDF-1 participates in mobilizing bone marrow-derived stem cells, via its receptor CXCR4.

  14. Serum copper concentration as an index of lung injury in rats exposed to hemithorax irradiation

    SciTech Connect

    Ward, W.F.; Molteni, A.; Fitzsimons, E.J.; Hinz, J.

    1988-06-01

    Serum copper concentration was evaluated as an index of lung injury (monitored by lung prostacyclin production) with respect to the effects of time, dose, dose fractionation, and penicillamine dose modification in rats irradiated to the right hemithorax. Both lung PGI2 production and serum Cu concentration increased with increasing /sup 60/Co gamma-ray dose in animals sacrificed 2 or 6 months postirradiation, and the highest values for both responses were observed at the latter autopsy time. At 2 months postirradiation, the elevations in lung PGI2 production and serum Cu concentration also were spared similarly when total radiation doses were delivered in five equal daily fractions as compared to single doses. Finally, the ability of D-penicillamine to ameliorate the radiation-induced hyperproduction of PGI2 by rat lung was accompanied by an attenuation of the dose-dependent increase in serum Cu concentration at 2 months postirradiation in the drug-treated rats. In contrast, serum iron concentration was independent of time, dose, and penicillamine. At 2 months after irradiation, there also was a dose-dependent increase in lung hydroxyproline (collagen) content, the magnitude of which correlated closely with serum copper concentration in individual animals. Thus serum copper concentration is an accurate and minimally invasive index of lung injury in rats irradiated to the hemithorax and can predict lung hydroxyproline (collagen) content in individual irradiated rats.

  15. Cold-inducible RNA-binding protein (CIRP) causes sepsis-associated acute lung injury via induction of endoplasmic reticulum stress

    PubMed Central

    Khan, Mohammad Moshahid; Yang, Weng-Lang; Brenner, Max; Bolognese, Alexandra Cerutti; Wang, Ping

    2017-01-01

    Cold-inducible RNA-binding protein (CIRP), released into the circulation during sepsis, causes lung injury via an as yet unknown mechanism. Since endoplasmic reticulum (ER) stress is associated with acute lung injury (ALI), we hypothesized that CIRP causes ALI via induction of ER stress. To test this hypothesis, we studied the lungs of wild-type (WT) and CIRP knockout (KO) mice at 20 h after induction of sepsis by cecal ligation and puncture (CLP). WT mice had significantly more severe ALI than CIRP KO mice. Lung ER stress markers (BiP, pIRE1α, sXBP1, CHOP, cleaved caspase-12) were increased in septic WT mice, but not in septic CIRP KO mice. Effector pathways downstream from ER stress – apoptosis, NF-κB (p65), proinflammatory cytokines (IL-6, IL-1β), neutrophil chemoattractants (MIP-2, KC), neutrophil infiltration (MPO activity), lipid peroxidation (4-HNE), and nitric oxide (iNOS) – were significantly increased in WT mice, but only mildly elevated in CIRP KO mice. ER stress markers were increased in the lungs of healthy WT mice treated with recombinant murine CIRP, but not in the lungs of TLR4 KO mice. This suggests CIRP directly induces ER stress via TLR4 activation. In summary, CIRP induces lung ER stress and downstream responses to cause sepsis-associated ALI. PMID:28128330

  16. Cold-inducible RNA-binding protein (CIRP) causes sepsis-associated acute lung injury via induction of endoplasmic reticulum stress.

    PubMed

    Khan, Mohammad Moshahid; Yang, Weng-Lang; Brenner, Max; Bolognese, Alexandra Cerutti; Wang, Ping

    2017-01-27

    Cold-inducible RNA-binding protein (CIRP), released into the circulation during sepsis, causes lung injury via an as yet unknown mechanism. Since endoplasmic reticulum (ER) stress is associated with acute lung injury (ALI), we hypothesized that CIRP causes ALI via induction of ER stress. To test this hypothesis, we studied the lungs of wild-type (WT) and CIRP knockout (KO) mice at 20 h after induction of sepsis by cecal ligation and puncture (CLP). WT mice had significantly more severe ALI than CIRP KO mice. Lung ER stress markers (BiP, pIRE1α, sXBP1, CHOP, cleaved caspase-12) were increased in septic WT mice, but not in septic CIRP KO mice. Effector pathways downstream from ER stress - apoptosis, NF-κB (p65), proinflammatory cytokines (IL-6, IL-1β), neutrophil chemoattractants (MIP-2, KC), neutrophil infiltration (MPO activity), lipid peroxidation (4-HNE), and nitric oxide (iNOS) - were significantly increased in WT mice, but only mildly elevated in CIRP KO mice. ER stress markers were increased in the lungs of healthy WT mice treated with recombinant murine CIRP, but not in the lungs of TLR4 KO mice. This suggests CIRP directly induces ER stress via TLR4 activation. In summary, CIRP induces lung ER stress and downstream responses to cause sepsis-associated ALI.

  17. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment.

    PubMed

    Degryse, Amber L; Tanjore, Harikrishna; Xu, Xiaochuan C; Polosukhin, Vasiliy V; Jones, Brittany R; Boomershine, Chad S; Ortiz, Camila; Sherrill, Taylor P; McMahon, Frank B; Gleaves, Linda A; Blackwell, Timothy S; Lawson, William E

    2011-06-01

    The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.

  18. Effects of alprostadil and iloprost on renal, lung, and skeletal muscle injury following hindlimb ischemia–reperfusion injury in rats

    PubMed Central

    Erer, Dilek; Özer, Abdullah; Demirtaş, Hüseyin; Gönül, İpek Işık; Kara, Halil; Arpacı, Hande; Çomu, Faruk Metin; Oktar, Gürsel Levent; Arslan, Mustafa; Küçük, Ayşegül

    2016-01-01

    Objectives To evaluate the effects of alprostadil (prostaglandin [PGE1] analog) and iloprost (prostacyclin [PGI2] analog) on renal, lung, and skeletal muscle tissues after ischemia reperfusion (I/R) injury in an experimental rat model. Materials and methods Wistar albino rats underwent 2 hours of ischemia via infrarenal aorta clamping with subsequent 2 hours of reperfusion. Alprostadil and iloprost were given starting simultaneously with the reperfusion period. Effects of agents on renal, lung, and skeletal muscle (gastrocnemius) tissue specimens were examined. Results Renal medullary congestion, cytoplasmic swelling, and mean tubular dilatation scores were significantly lower in the alprostadil-treated group than those found in the I/R-only group (P<0.0001, P=0.015, and P<0.01, respectively). Polymorphonuclear leukocyte infiltration, pulmonary partial destruction, consolidation, alveolar edema, and hemorrhage scores were significantly lower in alprostadil- and iloprost-treated groups (P=0.017 and P=0.001; P<0.01 and P<0.0001). Polymorphonuclear leukocyte infiltration scores in skeletal muscle tissue were significantly lower in the iloprost-treated group than the scores found in the nontreated I/R group (P<0.0001). Conclusion Alprostadil and iloprost significantly reduce lung tissue I/R injury. Alprostadil has more prominent protective effects against renal I/R injury, while iloprost is superior in terms of protecting the skeletal muscle tissue against I/R injury. PMID:27601882

  19. Pediatric blast lung injury from a fireworks-related explosion.

    PubMed

    Ratto, Jessica; Johnson, Bernadette K; Condra, Cole S; Knapp, Jane F

    2012-06-01

    Blast injuries related to explosions have been described in the literature but are uncommon in children. We describe a multisystem blast injury in a child resulting from a commercial firework-related explosion in her home. She presented with respiratory failure, shock, altered level of consciousness, and multiple orthopedic injuries. The patient required immediate stabilization and resuscitation in the emergency department and a prolonged hospitalization. This report reviews the spectrum of injuries that are seen in blast-related trauma and the emergency measures needed for rapid stabilization of these critical patients.

  20. Low positive end-expiratory pressure does not exacerbate nebulized-acid lung injury in dogs.

    PubMed

    Pellett, Andrew A; Welsh, David A; deBoisblanc, Bennett P; Lipscomb, Gary; Johnson, Royce W; Lord, Kevin C; Levitzky, Michael G

    2005-03-01

    It is not clear if low end-expiratory pressures contribute to ventilator-induced lung injury in large animals. We sought to determine whether ventilation with a low level of positive end-expiratory pressure (PEEP) worsens preexisting permeability lung injury in dogs. Lung injury was initiated in 20 mongrel dogs by ventilating with nebulized 3N hydrochloric acid until a lower inflection point (LIP) appeared on the respiratory system pressure-volume loop. One group of 10 dogs was then ventilated for 4 hours with PEEP set below the LIP (low PEEP), whereas the remaining group of dogs was ventilated for the same time period with similar tidal volumes but with PEEP set above the LIP (high PEEP). We found histologic evidence of reduced alveolar volumes in the low-PEEP animals. However, there were no differences in neutrophil infiltration, lung lobe weights, pulmonary capillary hemorrhage or congestion, or arterial endothelin-1 concentration between the 2 protocol groups. In conclusion, we were unable to demonstrate that ventilation with PEEP set below the LIP exacerbates hydrochloric acid-induced lung injury in dogs.

  1. Parecoxib Reduces Systemic Inflammation and Acute Lung Injury in Burned Animals with Delayed Fluid Resuscitation

    PubMed Central

    Chong, Si Jack; Wu, Jian; Lu, Jia; Moochhala, Shabbir M.

    2014-01-01

    Burn injuries result in the release of proinflammatory mediators causing both local and systemic inflammation. Multiple organ dysfunctions secondary to systemic inflammation after severe burn contribute to adverse outcome, with the lungs being the first organ to fail. In this study, we evaluate the anti-inflammatory effects of Parecoxib, a parenteral COX-2 inhibitor, in a delayed fluid resuscitation burned rat model. Anaesthetized Sprague Dawley rats were inflicted with 45% total body surface area full-thickness scald burns and subsequently subjected to delayed resuscitation with Hartmann's solution. Parecoxib (0.1, 1.0, and 10 mg/kg) was delivered intramuscularly 20 min after injury followed by 12 h interval and the rats were sacrificed at 6 h, 24 h, and 48 h. Burn rats developed elevated blood cytokines, transaminase, creatinine, and increased lung MPO levels. Animals treated with 1 mg/kg Parecoxib showed significantly reduced plasma level of CINC-1, IL-6, PGEM, and lung MPO. Treatment of 1 mg/kg Parecoxib is shown to mitigate systemic and lung inflammation without significantly affecting other organs. At present, no specific therapeutic agent is available to attenuate the systemic inflammatory response secondary to burn injury. The results suggest that Parecoxib may have the potential to be used both as an analgesic and ameliorate the effects of lung injury following burn. PMID:24579056

  2. Does the use of 50% oxygen at birth in preterm infants reduce lung injury?

    PubMed Central

    Harling, A; Beresford, M; Vince, G; Bates, M; Yoxall, C

    2005-01-01

    Background: Bronchopulmonary dysplasia is an inflammatory fibrotic condition produced as a consequence of injurious influences in the neonatal lung. Exposing the premature lung to high concentrations of oxygen is thought to play an important part in lung injury pathogenesis. Objective: To see if the amount of oxygen used during resuscitation at birth triggers events that lead to the subsequent lung injury and if a reduction in oxygen used leads to a reduction in lung injury. Method: The outcomes of newborn babies less than 31 weeks gestation who were resuscitated using either 50% or 100% oxygen were examined. Eight of the babies receiving 50% oxygen required an increase in their oxygen concentration. Evidence of pulmonary inflammation was determined by quantifying interleukin 6, 1ß, and 10 and tumour necrosis factor α in bronchoalveolar lavage fluid by enzyme linked immunosorbent assay. Results: There were no significant differences in any of the cytokines studied in either of the groups. Death occurred in 5/26 (19%) babies who received 100% oxygen and 4/26 (15%) babies who received 50% oxygen. Survival without bronchopulmonary dysplasia at 36 weeks postmenstrual age occurred in 14/26 (54%) and 13/26 (50%). Conclusion: Reducing the oxygen to 50% at resuscitation did not influence either short or long term outcomes, but a small benefit could not be excluded. There was no increase in adverse clinical outcomes in babies who received 100% oxygen. PMID:15863491

  3. Transfusion of Human Platelets Treated with Mirasol Pathogen Reduction Technology Does Not Induce Acute Lung Injury in Mice.

    PubMed

    Caudrillier, Axelle; Mallavia, Beñat; Rouse, Lindsay; Marschner, Susanne; Looney, Mark R

    2015-01-01

    Pathogen reduction technology (PRT) has been developed in an effort to make the blood supply safer, but there is controversy as to whether it may induce structural or functional changes to platelets that could lead to acute lung injury after transfusion. In this study, we used a commercial PRT system to treat human platelets that were then transfused into immunodeficient mice, and the development of acute lung injury was determined. P-selectin expression was higher in the Mirasol PRT-treated platelets compared to control platelets on storage day 5, but not storage day 1. Transfusion of control vs. Mirasol PRT-treated platelets (day 5 of storage, 109 platelets per mouse) into NOD/SCID mice did not result in lung injury, however transfusion of storage day 5 platelets treated with thrombin receptor-activating peptide increased both extravascular lung water and lung vascular permeability. Transfusion of day 1 platelets did not produce lung injury in any group, and LPS priming 24 hours before transfusion had no effect on lung injury. In a model of transfusion-related acute lung injury, NOD/SCID mice were susceptible to acute lung injury when challenged with H-2Kd monoclonal antibody vs. isotype control antibody. Using lung intravital microscopy, we did not detect a difference in the dynamic retention of platelets in the lung circulation in control vs. Mirasol PRT-treated groups. In conclusion, Mirasol PRT produced an increase in P-selectin expression that is storage-dependent, but transfusion of human platelets treated with Mirasol PRT into immunodeficient mice did not result in greater platelet retention in the lungs or the development of acute lung injury.

  4. Acute Lung Injury Accompanying Alveolar Hemorrhage Associated with Flu Vaccination in the Elderly.

    PubMed

    Satoh, Etsuko; Nei, Takahito; Kuzu, Shinichi; Chubachi, Kumi; Nojima, Daisuke; Taniuchi, Namiko; Yamano, Yoshimitsu; Gemma, Akihiko

    2015-01-01

    Flu vaccinations are administered worldwide every winter for prevention. We herein describe a case of acute lung injury resulting from a pathologically confirmed alveolar hemorrhage, which may have been closely related to a preceding vaccination for pandemic influenza A of 2009/10. The present patient had been hospitalized with an acute lung injury after flu vaccination one year prior to the present hospitalization, however, he received another flu vaccination. We should consider a vaccine-related adverse reaction as a potential cause of pulmonary disease if patients present with this illness during the winter season.

  5. Hemorrhage and resuscitation induce alterations in cytokine expression and the development of acute lung injury.

    PubMed

    Shenkar, R; Coulson, W F; Abraham, E

    1994-03-01

    Acute pulmonary injury occurs frequently following hemorrhage and injury. In order to better examine the sequence of events leading to lung injury in this setting, we investigated lung histology as well as in vivo mRNA levels for cytokines with proinflammatory and immunoregulatory properties (IL-1 beta, IL-6, IL-10, TNF-alpha, TGF-beta, IFN-gamma) over the 3 days following hemorrhage and resuscitation. Significant increases in mRNA levels for IL-1 beta, IL-6, IL-10, and IFN-gamma, but not TNF-alpha, were present among intraparenchymal pulmonary mononuclear cells obtained 1 and 3 days after hemorrhage. Among alveolar macrophages, TNF-alpha and IL-1 beta mRNA levels were increased 3 days after hemorrhage. Few changes in cytokine mRNA levels, with the exception of TNF-alpha at 3 days after hemorrhage, were present among peripheral blood mononuclear cells. Histologic examination of lungs from hemorrhaged animals showed no alterations 1 day after hemorrhage, but neutrophil and mononuclear cell infiltrates, edema, intra-alveolar hemorrhage, and fibrin generation were present 3 days after hemorrhage. These results suggest that hemorrhage-induced enhancement of proinflammatory cytokine gene transcription may be an important mechanism contributing to the frequent development of acute lung injury following blood loss and injury.

  6. Segmental pulmonary vascular resistances during oleic acid lung injury in rabbits.

    PubMed

    Maarek, J M; Grimbert, F

    1994-10-01

    We studied in isolated rabbit lungs the effects of oleic acid (OA) injury on the segmental distribution of vascular resistance. Vascular occlusion pressures were measured in control and OA-injured preparations over 90 min. Capillary filtration coefficient KF,C increased from 0.61 (+/- 0.10) to 0.91 (+/- 0.14) g.min-1.mmHg-1.(100 g)-1 in OA-injured lungs whereas it remained constant in control lungs. Total pulmonary vascular resistance changed little in both control and OA-injured lungs. OA injury resulted in a 15% increase of the double occlusion capillary pressure. In addition, the contribution of the microvascular to the total vascular resistance rose from 8% to 22%. The increase in microvascular resistance was significant 15 min after OA on the arteriolar side and became significant 30 min later on the venular side. Oleic acid injury does not change the total pulmonary vascular resistance but alters the distribution of segmental resistances in the isolated rabbit lung, thereby contributing to the accumulation of lung water in this model of low pressure permeability edema.

  7. Mild hypothermia reduces ventilator-induced lung injury, irrespective of reducing respiratory rate.

    PubMed

    Aslami, Hamid; Kuipers, Maria T; Beurskens, Charlotte J P; Roelofs, Joris J T H; Schultz, Marcus J; Juffermans, Nicole P

    2012-02-01

    In the era of lung-protective mechanical ventilation using limited tidal volumes, higher respiratory rates are applied to maintain adequate minute volume ventilation. However, higher respiratory rates may contribute to ventilator-induced lung injury (VILI). Induced hypothermia reduces carbon dioxide production and might allow for lower respiratory rates during mechanical ventilation. We hypothesized that hypothermia protects from VILI and investigated whether reducing respiratory rates enhance lung protection in an in vivo model of VILI. During 4 h of mechanical ventilation, VILI was induced by tidal volumes of 18 mL/kg in rats, with respiratory rates set at 15 or 10 breaths/min in combination with hypothermia (32°C) or normothermia (37°C). Hypothermia was induced by external cooling. A physiologic model was established. VILI was characterized by increased pulmonary neutrophil influx, protein leak, wet weights, histopathology score, and cytokine levels compared with lung protective mechanical ventilation. Hypothermia decreased neutrophil influx, pulmonary levels, systemic interleukin-6 levels, and histopathology score, and it tended to decrease the pulmonary protein leak. Reducing the respiratory rate in combination with hypothermia did not reduce the parameters of the lung injury. In conclusion, hypothermia protected from lung injury in a physiologic VILI model by reducing inflammation. Decreasing the respiratory rate mildly did not enhance protection.

  8. RAGE/NF-κB signaling mediates lipopolysaccharide induced acute lung injury in neonate rat model.

    PubMed

    Li, Yuhong; Wu, Rong; Tian, Yian; Yu, Min; Tang, Yun; Cheng, Huaipin; Tian, Zhaofang

    2015-01-01

    Lipopolysaccharide (LPS) is known to induce acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Accumulating data suggest the crucial role of RAGE in the pathogenesis of ALI/ARDS. However, the mechanism by which RAGE mediates inflammatory lung injury in the neonates remains elusive. In this study we established LPS-induced ALI model in neonate rats, and investigated the role of RAGE/NF-κB signaling in mediating ALI. We found that RAGE antibody or bortezomib reduced LPS-induced histopathological abnormalities in the lung and lung damage score. RAGE antibody or bortezomib also reduced TNF-α level in both serum and BALF of the rats. Furthermore, RAGE antibody or bortezomib significantly reduced LPS-induced upregulation of RAGE and NF-κB expression in the lung. In conclusion, we established ALI model in neonate rats to demonstrate that LPS induced inflammatory lung injury via RAGE/NF-κB signaling. Interference with RAGE/NF-κB signaling is a potential approach to prevent and treat sepsis-related ALI/ARDS.

  9. Clinical review: the implications of experimental and clinical studies of recruitment maneuvers in acute lung injury.

    PubMed

    Piacentini, Enrique; Villagrá, Ana; López-Aguilar, Josefina; Blanch, Lluis

    2004-04-01

    Mechanical ventilation can cause and perpetuate lung injury if alveolar overdistension, cyclic collapse, and reopening of alveolar units occur. The use of low tidal volume and limited airway pressure has improved survival in patients with acute lung injury or acute respiratory distress syndrome. The use of recruitment maneuvers has been proposed as an adjunct to mechanical ventilation to re-expand collapsed lung tissue. Many investigators have studied the benefits of recruitment maneuvers in healthy anesthetized patients and in patients ventilated with low positive end-expiratory pressure. However, it is unclear whether recruitment maneuvers are useful when patients with acute lung injury or acute respiratory distress syndrome are ventilated with high positive end-expiratory pressure, and in the presence of lung fibrosis or a stiff chest wall. Moreover, it is unclear whether the use of high airway pressures during recruitment maneuvers can cause bacterial translocation. This article reviews the intrinsic mechanisms of mechanical stress, the controversy regarding clinical use of recruitment maneuvers, and the interactions between lung infection and application of high intrathoracic pressures.

  10. Activated protein C protection from lung inflammation in endotoxin-induced injury.

    PubMed

    Pirrone, Federica; Mazzola, Silvia M; Pastore, Camilla; Paltrinieri, Saverio; Sironi, Giuseppe; Riccaboni, Pietro; Viola, Manuela; Passi, Alberto; Clement, Maria G; Albertini, Mariangela

    2008-11-01

    We studied the protection of recombinant human activated protein C (rhAPC) in endotoxin-induced lung inflammation and injury and whether this effect is correlated with modulation of lung matrix metalloproteinase (MMP) activity. We randomly assigned 12 Large White pigs to receive intravenous Escher-ichia coli lipopolysaccharide (LPS; 40 mu g/kg/hr), rhAPC (24 mu g/ kg/hr), or both. We monitored respiratory mechanics and function, cell counts, and cytokine concentrations in bron-choalveolar lavage fluid (BALF). Lung samples were collected for the zymography of MMP-2 and MMP-9 activities and for histology. In septic pigs, rhAPC decreased proMMP-9 release as well as MMP-9 activation, and increased proMMP-2 presence without any evident activation compared with specimens that were given LPS alone. In addition, lung injury in rhAPC-treated animals was significantly attenuated, as shown by higher respiratory compliance, delayed increase in tumor necrosis alfa and interleukin-1beta as well as neutrophil recruitment in the BALF, reduced lung edema, and histologic changes. In conclusion, rhAPC is beneficial in acute lung injury, and the protection may depend, at least in part, on modulation of MMP-2/9 activity.

  11. Erdosteine ameliorates lung injury induced by transient aortic occlusion in rats.

    PubMed

    Kurtoglu, Tunay; Sacar, Mustafa; Inan, Bilal Kaan; Duver, M Harun; Guler, Adem; Ucak, Alper; Us, Melih Hulusi; Yilmaz, Ahmet Turan

    2007-01-01

    The aim of this experimental study was to evaluate the protective effect of erdosteine on lung injury induced by ischaemia-reperfusion (IR) of the lower extremities of rats. Wistar albino rats (n = 21) were divided into three groups. In the IR group (n = 7), the aorta was cross-clamped for two hours, followed by one hour of reperfusion. In the erdosteine group (n = 7), animals were pretreated with erdosteine 100 mg/kg daily via gastric lavage, starting three days before aortic occlusion. In the control group (n 5 7), the lungs were removed and blood samples were taken immediately after sternotomy. No treatment was given in the control and IR groups. After both lungs were removed, biochemical parameters were measured and broncho-alveolar lavage (BAL ) assessment was made. MDA levels and MPO activities in the lung tissue were significantly reduced in the erdosteine group compared to the IR group. BAL assessment revealed decreased neutrophil counts in the erdosteine-treated group. Pretreatment of animals with erdosteine significantly attenuated transient aortic occlusion-induced remote lung injury, characterised by leukocyte accumulation and lipid peroxidation. The results suggest that erdosteine may be beneficial in amelioration of lung injury caused by IR.

  12. Interleukin-22 ameliorates acute severe pancreatitis-associated lung injury in mice

    PubMed Central

    Qiao, Ying-Ying; Liu, Xiao-Qin; Xu, Chang-Qin; Zhang, Zheng; Xu, Hong-Wei

    2016-01-01

    AIM: To investigate the potential protective effect of exogenous recombinant interleukin-22 (rIL-22) on L-arginine-induced acute severe pancreatitis (SAP)-associated lung injury and the possible signaling pathway involved. METHODS: Balb/c mice were injected intraperitoneally with L-arginine to induce SAP. Recombinant mouse IL-22 was then administered subcutaneously to mice. Serum amylase levels and myeloperoxidase (MPO) activity in the lung tissue were measured after the L-arginine administration. Histopathology of the pancreas and lung was evaluated by hematoxylin and eosin (HE) staining. Expression of B cell lymphoma/leukemia-2 (Bcl-2), Bcl-xL and IL-22RA1 mRNAs in the lung tissue was detected by real-time PCR. Expression and phosphorylation of STAT3 were analyzed by Western blot. RESULTS: Serum amylase levels and MPO activity in the lung tissue in the SAP group were significantly higher than those in the normal control group (P < 0.05). In addition, the animals in the SAP group showed significant pancreatic and lung injuries. The expression of Bcl-2 and Bcl-xL mRNAs in the SAP group was decreased markedly, while the IL-22RA1 mRNA expression was increased significantly relative to the normal control group (P < 0.05). Pretreatment with PBS did not significantly affect the serum amylase levels, MPO activity or expression of Bcl-2, Bcl-xL or IL-22RA1 mRNA (P > 0.05). Moreover, no significant differences in the degrees of pancreatic and lung injuries were observed between the PBS and SAP groups. However, the serum amylase levels and lung tissue MPO activity in the rIL-22 group were significantly lower than those in the SAP group (P < 0.05), and the injuries in the pancreas and lung were also improved. Compared with the PBS group, rIL-22 stimulated the expression of Bcl-2, Bcl-xL and IL-22RA1 mRNAs in the lung (P < 0.05). In addition, the ratio of p-STAT3 to STAT3 protein in the rIL-22 group was significantly higher than that in the PBS group (P < 0.05). CONCLUSION

  13. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    SciTech Connect

    Lee, Ye-Ji; Lee, Seung-Hae; Youn, Young-So; Choi, Ji-Yeon; Song, Keung-Sub; Cho, Min-Sun; Kang, Jihee Lee

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  14. Passive targeting of phosphatiosomes increases rolipram delivery to the lungs for treatment of acute lung injury: An animal study.

    PubMed

    Fang, Chia-Lang; Wen, Chih-Jen; Aljuffali, Ibrahim A; Sung, Calvin T; Huang, Chun-Lin; Fang, Jia-You

    2015-09-10

    A novel nanovesicle carrier, phosphatiosomes, was developed to enhance the targeting efficiency of phosphodiesterase 4 (PDE4) inhibitor to the lungs for treating acute lung injury (ALI) by intravenous administration. Phosphatiosomes were the basis of a niosomal system containing phosphatidylcholine (PC) and distearoylphosphatidylethanolamine polyethylene glycol (DSPE-PEG). Rolipram was used as the model drug loaded in the phosphatiosomes. Bioimaging, biodistribution, activated neutrophil inhibition, and ALI treatment were performed to evaluate the feasibility of phosphatiosomes as the lung-targeting carriers. An encapsulation percentage of >90% was achieved for rolipram-loaded nanovesicles. The vesicle size and zeta potential of the phosphatiosomes were 154 nm and -34 mV, respectively. Real-time imaging in rats showed a delayed and lower uptake of phosphatiosomes by the liver and spleen. Ex vivo bioimaging demonstrated a high accumulation of phosphatiosomes in the lungs. In vivo biodistribution exhibited increased lung accumulation and reduced brain penetration of rolipram in phosphatiosomes relative to the control solution. Phosphatiosomes improved the lungs/brain ratio of the drug by more than 7-fold. Interaction with pulmonary lipoprotein surfactants and the subsequent aggregation may be the mechanisms for facilitating lung targeting by phosphatiosomes. Rolipram could continue to inhibit active neutrophils after inclusion in the nanovesicles by suppressing O2(-) generation and elevating cAMP. Phosphatiosomes significantly alleviated ALI in mice as revealed by examining their pulmonary appearance, edema, myeloperoxidase (MPO) activity, and histopathology. This study highlights the potential of nanovesicles to deliver the drug for targeting the lungs and attenuating nervous system side effects.

  15. Genome‑wide analysis of DNA methylation in rat lungs with lipopolysaccharide‑induced acute lung injury.

    PubMed

    Zhang, Xiao-Qiang; Lv, Chang-Jun; Liu, Xiang-Yong; Hao, Dong; Qin, Jing; Tian, Huan-Huan; Li, Yan; Wang, Xiao-Zhi

    2013-05-01

    Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are associated with high morbidity and mortality in patients, however, the precise pathogenesis of ALI/ARDS remains unknown. Lipopolysaccharide (LPS) exhibits a number of critical functions and may be associated with the DNA methylation of genes in the lungs. In the present study a genome‑wide analysis of DNA methylation was performed in rat lungs with LPS‑induced ALI/ARDS. Normal and LPS‑induced lung tissues with ALI were analyzed using methylated DNA immunoprecipitation and a rat DNA methylation promoter plus CpG island microarray and the candidate genes were validated by quantitative reverse transcriptase polymerase chain reaction (qRT‑PCR). Aberrant DNA methylation of the promoter regions of 1,721 genes and the CpG islands of 990 genes was identified when normal lung tissues and lung tissues with LPS‑induced ALI/ARDS were compared. These genes were commonly located on chromosomes 1, 3, 5, 7 and 10 (P<0.01). Methylation level and CpG density were compared and it was found that genes associated with high CpG density promoters had a high ratio of methylation. Furthermore, we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In addition, three genes (Mapk3, Pak1 and Rac2) were validated in the control and lung tissues with ALI by RT‑PCR. The results indicate that aberrant DNA methylation of lung tissues may be involved in the pathophysiology of LPS‑induced ALI/ARDS. Future studies are required to evaluate the therapeutic and prognostic value of the current novel observations in ALI/ARDS.

  16. The protective role of endogenous estrogens in carrageenan-induced lung injury in the rat.

    PubMed Central

    Cuzzocrea, S.; Mazzon, E.; Sautebin, L.; Serraino, I.; Dugo, L.; Calabró, G.; Caputi, A. P.; Maggi, A.

    2001-01-01

    BACKGROUND: We have recently demonstrated that 17beta-estradiol (E2) inhibits the increase of inducible nitric oxide synthetase (iNOS) activity in selected model systems such as macrophages, microglia, smooth muscle cells, and proposed that this effect might be associated with an anti-inflammatory activity of this hormone. Here we investigate the effects of endogenous estrogens in rats subjected to carrageenan-induced pleurisy. MATERIALS AND METHODS: Adult female rats were ovariectomized 3 weeks before the experiments to deplete circulating estrogens. Selected inflammatory markers, landmarks of the delayed phase of carrageenan-induced pleurisy, were measured in intact (N-OVX), and ovariectomized (OVX) female rats. In addition, the effect of hormone replacement was evaluated in ovariectomized rats with intraperitoneal injection of 17beta-estradiol (E2; 50 microg/kg) 1 hr before carrageenan treatment (OVX + E2). RESULTS: Ovariectomy enhanced the carrageenan-induced degree of pleural exudation and polymorphonuclear leukocyte migration in rats subjected to carrageenan-induced pleurisy. Lung myeloperoxidase (MPO) activity and lipid peroxidation were significantly increased in estrogens-deprived rats. The iNOS in lung samples was significantly increased by the surgery. The increase of iNOS activity was correlated with a marked enhancement in the production of TNF-alpha and IL-1beta. Immunohistochemical analysis for P-selectin and ICAM-I, as well as nitrotyrosine and poly (ADP-ribose) synthetase (PARS) revealed a positive staining in lungs from carrageenan-treated rats, which was markedly enhanced in ovariectomized rats when compared to cycling rats, particularly in the estrous phase of the cycle. Estrogen replacement counteracted the effect of surgery on all of the above indicators of lung inflammation, suggesting that in the cycling rat this hormone plays a key role in the increased sensitivity to inflammatory injury observed in the OVX rat. CONCLUSION: This study

  17. Nitrogen dioxide-induced acute lung injury in sheep.

    PubMed

    Januszkiewicz, A J; Mayorga, M A

    1994-05-20

    Lung mechanics, hemodynamics and blood chemistries were assessed in sheep (Ovis aries) before, and up to 24 h following, a 15-20 min exposure to either air (control) or approximately 500 ppm nitrogen dioxide (NO2). Histopathologic examinations of lung tissues were performed 24 h after exposure. Nose-only and lung-only routes of exposure were compared for effects on NO2 pathogenesis. Bronchoalveolar lavage fluids from air- and NO2-exposed sheep were analyzed for biochemical and cellular signs of NO2 insult. The influence of breathing pattern on NO2 dose was also assessed. Five hundred ppm NO2 exposure of intubated sheep (lung-only exposure) was marked by a statistically significant, albeit small, blood methemoglobin increase. The exposure induced an immediate tidal volume decrease, and an increase in both breathing rate and inspired minute ventilation. Pulmonary function, indexed by lung resistance and dynamic lung compliance, progressively deteriorated after exposure. Maximal lung resistance and dynamic lung compliance changes occurred at 24 h post exposure, concomitant with arterial hypoxemia. Bronchoalveolar lavage fluid epithelial cell number and total protein were significantly increased while macrophage number was significantly decreased within the 24 h post-exposure period. Histopathologic examination of lung tissue 24 h after NO2 revealed patchy edema, mild hemorrhage and polymorphonuclear and mononuclear leukocyte infiltration. The NO2 toxicologic profile was significantly attenuated when sheep were exposed to the gas through a face mask (nose-only exposure). Respiratory pattern was not significantly altered, lung mechanics changes were minimal, hypoxemia did not occur, and pathologic evidence of exudation was not apparent in nose-only, NO2-exposed sheep. The qualitative responses of this large animal species to high-level NO2 supports the concept of size dependent species sensitivity to NO2. In addition, when inspired minute ventilation was used as a dose

  18. Nitrogen Dioxide-Induced Acute Lung Injury in Sheep

    DTIC Science & Technology

    1994-01-01

    subsequent to inhalation expo- sure. Non- cardiogenic pulmonary edema is produced by brief exposure and unlike hyperoxia (Newman et al., 1983; Fukushima...macrophage number significantly decreased within the 24-h post-exposure period. Examination of lung tissue 24 after NO2 revealed patchy edema , mild hemorrhage...examination of lung tissue 24 h after NO, revealed patchy edema , mild hemorrhage and polymorphonuclear c, and mononuclear leukocyte infiltration. The NO

  19. Fluorometry of ischemia reperfusion injury in rat lungs in vivo

    NASA Astrophysics Data System (ADS)

    Sepehr, R.; Staniszewski, K.; Jacobs, E. R.; Audi, S.; Ranji, Mahsa

    2013-02-01

    Previously we demonstrated the utility of optical fluorometry to evaluate lung tissue mitochondrial redox state in isolated perfused rats lungs under various chemically-induced respiratory states. The objective of this study was to evaluate the effect of acute ischemia on lung tissue mitochondrial redox state in vivo using optical fluorometry. Under ischemic conditions, insufficient oxygen supply to the mitochondrial chain should reduce the mitochondrial redox state calculated from the ratio of the auto-fluorescent mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavoprotein Adenine Dinucleotide). The chest of anesthetized, and mechanically ventilated Sprague-Dawley rat was opened to induce acute ischemia by clamping the left hilum to block both blood flow and ventilation to one lung for approximately 10 minutes. NADH and FAD fluorescent signals were recorded continuously in a dark room via a fluorometer probe placed on the pleural surface of the left lung. Acute ischemia caused a decrease in FAD and an increase in NADH, which resulted in an increase in the mitochondrial redox ratio (RR=NADH/FAD). Restoration of blood flow and ventilation by unclamping the left hilum returned the RR back to its baseline. These results (increase in RR under ischemia) show promise for the fluorometer to be used in a clinical setting for evaluating the effect of pulmonary ischemia-reperfusion on lung tissue mitochondrial redox state in real time.

  20. Modeling of the Nitric Oxide Transport in the Human Lungs

    PubMed Central

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  1. The anesthetic agent sevoflurane attenuates pulmonary acute lung injury by modulating apoptotic pathways

    PubMed Central

    Wang, L.; Ye, Y.; Su, H.B.; Yang, J.P.

    2017-01-01

    The objective of this study was to evaluate lung protection by the volatile anesthetic sevoflurane (SEVO), which inhibits apoptosis. Male Sprague-Dawley rats (250–280 g; n=18) were randomly divided into three groups. The LPS group received 5 mg/kg endotoxin (lipopolysaccharide), which induced acute lung injury (ALI). The control (CTRL) group received normal saline and the SEVO group received sevoflurane (2.5%) for 30 min after ALI was induced by 5 mg/kg LPS. Samples were collected for analysis 12 h after LPS. Lung injury was assessed by pathological observations and tissue wet to dry weight (W/D) ratios. Apoptotic index (AI) was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and electron microscopy. Caspase-3 and cleaved-caspase-3 protein levels were determined by immunocytochemistry and western blotting, respectively. Bcl-xl levels were measured by western blotting and Bcl-2 levels by quantitative real-time polymerase chain reaction and western blotting. In the LPS group, W/D ratios, AI values, caspase-3 and cleaved-caspase-3 levels were significantly higher than in the CTRL group and lung injury was more severe. In the SEVO group, W/D ratios, AI, caspase-3 and cleaved-caspase-3 were lower than in the LPS group. Bcl-2 and Bcl-xl expression were higher than in the LPS group and lung injury was attenuated. Sevoflurane inhalation protected the lungs from injury by regulating caspase-3 activation and Bcl-xl and Bcl-2 expression to inhibit excessive cell apoptosis, and such apoptosis might be important in the pathogenesis of LPS-induced ALI. PMID:28225890

  2. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation

    PubMed Central

    Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua

    2017-01-01

    Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway. PMID:27922691

  3. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation.

    PubMed

    Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua

    2017-01-01

    Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway.

  4. Protective effect of hesperidin against lung injury induced by intestinal ischemia/reperfusion in adult albino rats: histological, immunohistochemical and biochemical study.

    PubMed

    Bayomy, Naglaa A; Elshafhey, Saad H; ElBakary, Reda H; Abdelaziz, Eman Z

    2014-10-01

    Hesperidin is a naturally common flavonoid. It is an abundant and cheap by-product of citrus cultivation. It is reported to have antioxidative, anti-inflammatory and anticarcinogenic effects. This work was performed to investigate the possible protective role of hesperidin in ameliorating the effect of experimentally induced intestinal ischemia/reperfusion injury (I/R) on lung tissue, histologically, immunohistochemically and biochemically. Thirty male Wistar adult albino rats were randomized into three groups named: group I (control group); group II (I/R); and group III (I/R with hesperidin). Intestinal I/R was induced by occluding the superior mesenteric artery for 60 min, followed by 120 min of reperfusion period. Animals were given hesperidin orally 1h before the onset of ischemia. At the end of the reperfusion period the lung tissues were extracted for histopathological examination and immunohistochemical detection of the distribution of inducible nitric oxide synthase (iNOS). Pulmonary edema was evaluated by lung tissue wet/dry weight ratios. The levels of malondialdehyde (MDA, a biomarker of oxidative damage), myeloperoxidase (MPO, an index of the degree of neutrophil accumulation) and glutathione (GSH, a biomarker of protective oxidative injury) were also determined in all dissected tissues. Pretreatment with hesperidin (in group III) alleviated lung morphological changes noticed in I/R group and the levels of MDA and MPO were significantly decreased whereas those of GSH were significantly increased. Immunohistochemical study revealed a significant decrease in the iNOS. Hesperidin also significantly alleviated the formation of pulmonary edema as evidenced by the decreased organ wet/dry weight ratios. Hesperidin exerts a protective effect against lung damage induced by intestinal I/R injury in rats by reducing oxidative stress.

  5. BURN-INDUCED ACUTE LUNG INJURY REQUIRES A FUNCTIONAL TOLL-LIKE RECEPTOR 4

    PubMed Central

    Krzyzaniak, Michael; Cheadle, Gerald; Peterson, Carrie; Loomis, William; Putnam, James; Wolf, Paul; Baird, Andrew; Eliceiri, Brian; Bansal, Vishal; Coimbra, Raul

    2014-01-01

    The role of the Toll-like receptor 4 (TLR4), a component of the innate immune system, in the development of burn-induced acute lung injury (ALI) has not been completely defined. Recent data suggested that an intact TLR4 plays a major role in the development of organ injury in sterile inflammation. We hypothesized that burn-induced ALI is a TLR4-dependent process. Male C57BL/6J (TLR4 wild-type [WT]) and C57BL/10ScN (TLR4 knockout [KO]) mice were subjected to a 30% total body surface area steam burn. Animals were killed at 6 and 24 h after the insult. Lung specimens were harvested for histological examination after hematoxylin-eosin staining. In addition, lung myeloperoxidase (MPO) and intercellular adhesion molecule 1 immunostaining was performed. Lung MPO was measured by an enzymatic assay. Total lung keratinocyte-derived chemoattractant (IL-8) content was measured by enzyme-linked immunosorbent assay. Western blot was performed to quantify phosphorylated IκBα, phosphorylated nuclear factor κB p65 (NF-κBp65), and high mobility group box 1 expression. Acute lung injury, characterized by thickening of the alveolar-capillary membrane, hyaline membrane formation, intraalveolar hemorrhage, and neutrophil infiltration, was seen in WT but not KO animals at 24 h. Myeloperoxidase and intercellular adhesion molecule 1 immunostaining of KO animals was also similar to sham but elevated in WT animals. In addition, a reduction in MPO enzymatic activity was observed in KO mice as well as a reduction in IL-8 levels compared with their WT counterparts. Burn-induced ALI develops within 24 h after the initial thermal insult in our model. Toll-like receptor 4 KO animals were clearly protected and had a much less severe lung injury. Our data suggest that burn-induced ALI is a TLR4-dependent process. PMID:21330948

  6. Gene Expression Changes during the Development of Acute Lung Injury Role of Transforming Growth Factor β

    PubMed Central

    Wesselkamper, Scott C.; Case, Lisa M.; Henning, Lisa N.; Borchers, Michael T.; Tichelaar, Jay W.; Mason, John M.; Dragin, Nadine; Medvedovic, Mario; Sartor, Maureen A.; Tomlinson, Craig R.; Leikauf, George D.

    2005-01-01

    Rationale: Acute lung injury can occur from multiple causes, resulting in high mortality. The pathophysiology of nickel-induced acute lung injury in mice is remarkably complex, and the molecular mechanisms are uncertain. Objectives: To integrate molecular pathways and investigate the role of transforming growth factor β (TGF-β) in acute lung injury in mice. Methods: cDNA microarray analyses were used to identify lung gene expression changes after nickel exposure. MAPPFinder analysis of the microarray data was used to determine significantly altered molecular pathways. TGF-β1 protein in bronchoalveolar lavage fluid, as well as the effect of inhibition of TGF-β, was assessed in nickel-exposed mice. The effect of TGF-β on surfactant-associated protein B (Sftpb) promoter activity was measured in mouse lung epithelial cells. Measurements and Main Results: Genes that decreased the most after nickel exposure play important roles in lung fluid absorption or surfactant and phospholipid synthesis, and genes that increased the most were involved in TGF-β signaling. MAPPFinder analysis further established TGF-β signaling to be significantly altered. TGF-β–inducible genes involved in the regulation of extracellular matrix function and fibrinolysis were significantly increased after nickel exposure, and TGF-β1 protein was also increased in the lavage fluid. Pharmacologic inhibition of TGF-β attenuated nickel-induced protein in bronchoalveolar lavage. In addition, treatment with TGF-β1 dose-dependently repressed Sftpb promoter activity in vitro, and a novel TGF-β–responsive region in the Sftpb promoter was identified. Conclusions: These data suggest that TGF-β acts as a central mediator of acute lung injury through the alteration of several different molecular pathways. PMID:16100012

  7. Role of β-catenin-regulated CCN matricellular proteins in epithelial repair after inflammatory lung injury

    PubMed Central

    McClendon, Jazalle; Aschner, Yael; Briones, Natalie; Young, Scott K.; Lau, Lester F.; Kahn, Michael; Downey, Gregory P.

    2013-01-01

    Repair of the lung epithelium after injury is integral to the pathogenesis and outcomes of diverse inflammatory lung diseases. We previously reported that β-catenin signaling promotes epithelial repair after inflammatory injury, but the β-catenin target genes that mediate this effect are unknown. Herein, we examined which β-catenin transcriptional coactivators and target genes promote epithelial repair after inflammatory injury. Transmigration of human neutrophils across cultured monolayers of human lung epithelial cells resulted in a fall in transepithelial resistance and the formation of discrete areas of epithelial denudation (“microinjury”), which repaired via cell spreading by 96 h. In mice treated with intratracheal (i.t.) LPS or keratinocyte chemokine, neutrophil emigration was associated with increased permeability of the lung epithelium, as determined by increased bronchoalveolar lavage (BAL) fluid albumin concentration, which decreased over 3–6 days. Activation of β-catenin/p300-dependent gene expression using the compound ICG-001 accelerated epithelial repair in vitro and in murine models. Neutrophil transmigration induced epithelial expression of the β-catenin/p300 target genes Wnt-induced secreted protein (WISP) 1 and cysteine-rich (Cyr) 61, as determined by real-time PCR (qPCR) and immunostaining. Purified neutrophil elastase induced WISP1 upregulation in lung epithelial cells, as determined by qPCR. WISP1 expression increased in murine lungs after i.t. LPS, as determined by ELISA of the BAL fluid and qPCR of whole lung extracts. Finally, recombinant WISP1 and Cyr61 accelerated repair, and Cyr61-neutralizing antibodies delayed repair of the injured epithelium in vitro. We conclude that β-catenin/p300-dependent expression of WISP1 and Cyr61 is critical for epithelial repair and represents a potential therapeutic target to promote epithelial repair after inflammatory injury. PMID:23316072

  8. Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung.

    PubMed

    Takenaka, S; Karg, E; Kreyling, W G; Lentner, B; Schulz, H; Ziesenis, A; Schramel, P; Heyder, J

    2004-01-01

    Female Fischer 344 rats were exposed to ultrafine cadmium oxide particles, generated by spark discharging, for 6 h at a concentration of 70 microg Cd/m(3) (1 x 10(6)/cm(3)) (40 nm modal diameter). Lung morphology and quantification of Cd content/concentration by inductively coupled plasma (ICP)-mass spectrometry were performed on days 0, 1, 4, and 7 after exposure. Cd content in the lung on day 0 was 0.53 +/- 0.12 microg/lung, corresponding to 19% of the estimated total inhaled cumulative dose, and the amount remained constant throughout the study. In the liver no significant increase of Cd content was found up to 4 days. A slight but statistically significant increase was observed in the liver on day 7. We found neither exposure-related morphological changes of lungs nor inflammatory responses in lavaged cells. Another group of rats were exposed to a higher concentration of ultrafine CdO particles (550 microg Cd/m(3) for 6 h, 51 nm modal diameter). The rats were sacrificed immediately and 1 day after exposure. The lavage study performed on day 0 showed an increase in the percentage of neutrophils. Multifocal alveolar inflammation was seen histologically on day 0 and day 1. Although the Cd content in the lung was comparable between day 0 and day 1 (3.9 microg/lung), significant elevation of Cd levels in the liver and kidneys was observed on both days. Two of 4 rats examined on day 0 showed elevation of blood cadmium, indicating systemic translocation of a fraction of deposited Cd from the lung in this group. These results and comparison with reported data using fine CdO particles indicate that inhalation of ultrafine CdO particles results in efficient deposition in the rat lung. With regard to the deposition dose, adverse health effects of ultrafine CdO and fine CdO appear to be comparable. Apparent systemic translocation of Cd took place only in animals exposed to a high concentration that induced lung injury.

  9. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    SciTech Connect

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.; Rando, Roy J.; Pathak, Yashwant V.; Hoyle, Gary W.

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  10. The role of leukocytes in the pathogenesis of fibrin deposition in bovine acute lung injury.

    PubMed Central

    Car, B. D.; Suyemoto, M. M.; Neilsen, N. R.; Slauson, D. O.

    1991-01-01

    The peculiarly fibrinous nature of bovine acute lung injury due to infection with Pasteurella haemolytica A1 suggests an imbalance between leukocyte-directed procoagulant and profibrinolytic influences in the inflamed bovine lung. Calves with experimental pneumonia produced by intratracheal inoculation with P. haemolytica A1 developed acute locally extensive cranioventral fibrinopurulent bronchopneumonia. Pulmonary alveolar macrophages (PAM) recovered by segmental lavage from affected lung lobes were 30 times more procoagulant than PAM obtained from unaffected lung lobes and 37-fold more procoagulant than PAM from control calf lungs. Unlike the enhancement of procoagulant activity, profibrinolytic activity (plasminogen activator amidolysis) of total lung leukocytes (PAM and plasminogen activator neutrophils [PMN]) was decreased 23 times in cells obtained from affected lung lobes and also was decreased four times in cells obtained from unaffected lobes of infected animals. This marked imbalance in cellular procoagulant and fibrinolytic activity probably contributes significantly to enhanced fibrin deposition and retarded fibrin removal. In addition, PAM from inflamed lungs were strongly positive for bovine tissue factor antigen as demonstrated by immunocytochemistry. Intensely tissue factor-positive PAM enmeshed in fibrinocellular exudates and positive alveolar walls were situated such that they were likely to have, in concert, initiated extrinsic activation of coagulation in the acutely inflamed lung. These data collectively suggest that enhanced PAM-directed procoagulant activity and diminished PAM- and PMN-directed profibrinolytic activity represent important modifications of local leukocyte function in bovine acute lung injury that are central to the pathogenesis of lesion development with extensive fibrin deposition and retarded fibrin removal. Images Figure 2 Figure 3 PMID:2024707

  11. Hydrogen Sulfide Prevents Formation of Reactive Oxygen Species through PI3K/Akt Signaling and Limits Ventilator-Induced Lung Injury

    PubMed Central

    Spassov, Sashko Georgiev; Donus, Rosa; Ihle, Paul Mikael; Engelstaedter, Helen; Hoetzel, Alexander

    2017-01-01

    The development of ventilator-induced lung injury (VILI) is still a major problem in mechanically ventilated patients. Low dose inhalation of hydrogen sulfide (H2S) during mechanical ventilation has been proven to prevent lung damage by limiting inflammatory responses in rodent models. However, the capacity of H2S to affect oxidative processes in VILI and its underlying molecular signaling pathways remains elusive. In the present study we show that ventilation with moderate tidal volumes of 12 ml/kg for 6 h led to an excessive formation of reactive oxygen species (ROS) in mice lungs which was prevented by supplemental inhalation of 80 parts per million of H2S. In addition, phosphorylation of the signaling protein Akt was induced by H2S. In contrast, inhibition of Akt by LY294002 during ventilation reestablished lung damage, neutrophil influx, and proinflammatory cytokine release despite the presence of H2S. Moreover, the ability of H2S to induce the antioxidant glutathione and to prevent ROS production was reversed in the presence of the Akt inhibitor. Here, we provide the first evidence that H2S-mediated Akt activation is a key step in protection against VILI, suggesting that Akt signaling limits not only inflammatory but also detrimental oxidative processes that promote the development of lung injury. PMID:28250891

  12. Butyrylcholinesterase in guinea pig lung lavage: a novel biomarker to assess lung injury following inhalation exposure to nerve agent VX.

    PubMed

    Graham, Jacob R; Wright, Benjamin S; Rezk, Peter E; Gordon, Richard K; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2006-06-01

    Respiratory disturbances play a central role in chemical warfare nerve agent (CWNA) induced toxicity; they are the starting point of mass casualty and the major cause of death. We developed a microinstillation technique of inhalation exposure to nerve agent VX and assessed lung injury by biochemical analysis of the bronchoalveolar lavage fluid (BALF). Here we demonstrate that normal guinea pig BALF has a significant amount of cholinesterase activity. Treatment with Huperzine A, a specific inhibitor of acetylcholinesterase (AChE), showed that a minor fraction of BALF cholinesterase is AChE. Furthermore, treatment with tetraisopropyl pyrophosphoramide (iso-OMPA), a specific inhibitor of butyrylcholinesterase (BChE), inhibited more than 90% of BChE activity, indicating the predominance of BChE in BALF. A predominance of BChE expression in the lung lavage was seen in both genders. Substrate specific inhibition indicated that nearly 30% of the cholinesterase in lung tissue homogenate is AChE. BALF and lung tissue AChE and BChE activities were strongly inhibited in guinea pigs exposed for 5 min to 70.4 and 90.4 microg/m3 VX and allowed to recover for 15 min. In contrast, BALF AChE activity was increased 63% and 128% and BChE activity was increased 77% and 88% after 24 h of recovery following 5 min inhalation exposure to 70.4 microg/m3 and 90.4 mg/m3 VX, respectively. The increase in BALF AChE and BChE activity was dose dependent. Since BChE is synthesized in the liver and present in the plasma, an increase in BALF indicates endothelial barrier injury and leakage of plasma into lung interstitium. Therefore, a measure of increased levels of AChE and BChE in the lung lavage can be used to determine the chronology of barrier damage as well as the extent of lung injury following exposure to chemical warfare nerve agents.

  13. Clausena anisata-mediated protection against lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Jeon, Chan-Mi; Shin, In-Sik; Shin, Na-Rae; Hong, Ju-Mi; Kwon, Ok-Kyoung; Kim, Jung-Hee; Oh, Sei-Ryang; Bach, Tran-The; Hai, Do-Van; Quang, Bui-Hong; Choi, Sang-Ho; Lee, Joongku; Myung, Pyung-Keun; Ahn, Kyung-Seop

    2016-04-01

    Clausena anisata (Willd.) Hook.f. ex Benth. (CA), which is widely used in traditional medicine, reportedly exerts antitumor, anti-inflammatory and other important therapeutic effects. The aim of the present study was to investigate the potential therapeutic effects of CA in a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) and in LPS-stimulated RAW 264.7 cells. Male C57BL/6 mice were administered treatments for 3 days by oral gavage. On day 3, the mice were instilled intranasally with LPS or PBS followed 3 h later by oral CA (30 mg/kg) or vehicle administration. In vitro, CA decreased nitric oxide (NO) production and pro-inflammatory cytokines, such as interleukin (IL)-6 and prostaglandin E2 (PGE2), in LPS-stimulated RAW 264.7 cells. CA also reduced the expression of pro-inflammatory mediators, such as cyclooxygenase-2. In vivo, CA administration significantly reduced inflammatory cell numbers in the bronchoalveolar lavage fluid (BALF) and suppressed pro-inflammatory cytokine levels, including tumor necrosis factor-α (TNF-α), IL-6, and IL-1β, as well as reactive oxygen species production in the BALF. CA also effectively reduced airway inflammation in mouse lung tissue of an LPS-induced ALI mouse model, in addition to decreasing inhibitor κB (IκB) and nuclear factor-κB (NF-κB) p65 phosphorylation. Taken together, the findings demonstrated that CA inhibited inflammatory responses in a mouse model of LPS-induced ALI and in LPS-stimulated RAW 264.7 cells. Thus, CA is a potential candidate for development as an adjunctive treatment for inflammatory disorders, such as ALI.

  14. Neuronal modulation of lung injury induced by polymeric hexamethylene diisocyanate in mice

    SciTech Connect

    Lee, C.-T.; Poovey, Halet G.; Rando, Roy J.; Hoyle, Gary W.

    2007-10-01

    1,6-Hexamethylene diisocyanate biuret trimer (HDI-BT) is a nonvolatile isocyanate that is a component of polyurethane spray paints. HDI-BT is a potent irritant that when inhaled stimulates sensory nerves of the respiratory tract. The role of sensory nerves in modulating lung injury following inhalation of HDI-BT was assessed in genetically manipulated mice with altered innervation of the lung. Knockout mice with a mutation in the low-affinity nerve growth factor receptor (NGFR), which have decreased innervation by nociceptive nerve fibers, and transgenic mice expressing nerve growth factor (NGF) from the lung-specific Clara cell secretory protein (CCSP) promoter, which have increased innervation of the airways, were exposed to HDI-BT aerosol and evaluated at various times after exposure. NGFR knockout mice exhibited significantly more, and CCSP-NGF transgenic mice exhibited significantly less injury and inflammation compared with wild-type mice, indicative of a protective effect of nociceptive nerves on the lung following HDI-BT inhalation. Transgenic mice overexpressing the tachykinin 1 receptor (Tacr1) in lung epithelial cells also showed less severe injury and inflammation compared with wild-type mice after HDI-BT exposure, establishing a role for released tachykinins acting through Tacr1 in mediating at least part of the protective effect. Treatment of lung fragments from Tacr1 transgenic mice with the Tacr1 ligand substance P resulted in increased cAMP accumulation, suggesting this compound as a possible signaling mediator of protective effects on the lung following nociceptive nerve stimulation. The results indicate that sensory nerves acting through Tacr1 can exert protective or anti-inflammatory effects in the lung following isocyanate exposure.

  15. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats.

    PubMed

    Wang, Wen; Liu, Zhi; Su, Jie; Chen, Wen-Sheng; Wang, Xiao-Wu; Bai, San-Xing; Zhang, Jin-Zhou; Yu, Shi-Qiang

    2016-08-01

    Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.

  16. Lung injury after cigarette smoking is particle-related

    EPA Science Inventory

    That specific component responsible and the mechanistic pathway for increased human morbidity and mortality after cigarette smoking have yet to be delineated. We propose that 1) injury and disease following cigarette smoking are associated with exposure and retention of particles...

  17. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: a mouse model.

    PubMed

    Namba, Fumihiko; Go, Hayato; Murphy, Jennifer A; La, Ping; Yang, Guang; Sengupta, Shaon; Fernando, Amal P; Yohannes, Mekdes; Biswas, Chhanda; Wehrli, Suzanne L; Dennery, Phyllis A

    2014-01-01

    Premature infants exposed to hyperoxia suffer acute and long-term pulmonary consequences. Nevertheless, neonates survive hyperoxia better than adults. The factors contributing to neonatal hyperoxic tolerance are not fully elucidated. In contrast to adults, heme oxygenase (HO)-1, an endoplasmic reticulum (ER)-anchored protein, is abundant in the neonatal lung but is not inducible in response to hyperoxia. The latter may be important, because very high levels of HO-1 overexpression are associated with significant oxygen cytotoxicity in vitro. Also, in contrast to adults, HO-1 localizes to the nucleus in neonatal mice exposed to hyperoxia. To understand the mechanisms by which HO-1 expression levels and subcellular localization contribute to hyperoxic tolerance in neonates, lung-specific transgenic mice expressing high or low levels of full-length HO-1 (cytoplasmic, HO-1-FL(H) or HO-1-FL(L)) or C-terminally truncated HO-1 (nuclear, Nuc-HO-1-TR) were generated. In HO-1-FL(L), the lungs had a normal alveolar appearance and lesser oxidative damage after hyperoxic exposure. In contrast, in HO-1-FL(H), alveolar wall thickness with type II cell hyperproliferation was observed as well worsened pulmonary function and evidence of abnormal lung cell hyperproliferation in recovery from hyperoxia. In Nuc-HO-1-TR, the lungs had increased DNA oxidative damage, increased poly (ADP-ribose) polymerase (PARP) protein expression, and reduced poly (ADP-ribose) (PAR) hydrolysis as well as reduced pulmonary function in recovery from hyperoxia. These data indicate that low cytoplasmic HO-1 levels protect against hyperoxia-induced lung injury by attenuating oxidative stress, whereas high cytoplasmic HO-1 levels worsen lung injury by increasing proliferation and decreasing apoptosis of alveolar type II cells. Enhanced lung nuclear HO-1 levels impaired recovery from hyperoxic lung injury by disabling PAR-dependent regulation of DNA repair. Lastly both high cytoplasmic and nuclear expression of

  18. Biomarkers of asbestos-induced lung injury: the influence of fiber characteristics and exposure methodology

    EPA Science Inventory

    ATS 2013 Biomarkers of asbestos-induced lung injury: the influence of fiber characteristics and exposure methodology Urmila P Kodavanti, Debora Andrews, Mette C Schaldweiler, Jaime M Cyphert, Darol E Dodd, and Stephen H Gavett NHEERL, U.S. EPA, Research Triangle Park, NC; NIEH...

  19. MATRILYSIN PARTICIPATES IN THE ACUTE LUNG INJURY INDUCED BY OIL COMBUSTION PRODUCTS

    EPA Science Inventory

    ROLE OF MATRILYSIN IN THE ACUTE LUNG INJURY INDUCED BY OIL COMBUSTION PARTICLES.

    K L Dreher1, WY Su2 and C L Wilson3. 1US Environmental Protection Agency, Research Triangle Park, NC; 2Duke University, Durham, NC;3Washington University, St. Louis, MO.

    Mechanisms by ...

  20. Mechanism of Tissue Remodeling in Sepsis-Induced Acute Lung Injury

    DTIC Science & Technology

    2005-04-01

    acute lung injury have been identified (e.g., infection, trauma ), little is known about the factors that control the tissue remodeling response. This...in fibroblasts. This suggests that the main player in this process is acetaldehyde . To test this, we exposed cells to acetaldehyde and found that this

  1. Effects of oleic acid-induced lung injury on oxygen transport and aerobic capacity.

    PubMed

    Crocker, George H; Jones, James H

    2014-06-01

    We tested the hypothesis that oleic-acid (OA) infusion impairs gas exchange, decreases total cardiopulmonary O2 delivery and lowers maximal aerobic capacity ( [Formula: see text] ). We infused 0.05ml OAkg(-1) (∼3ml) and ∼563ml saline into the right atria of four goats [59.1±14.0 (SD) kg] prior to running them on a treadmill at [Formula: see text] 2-h and 1-d following OA-induced acute lung injury, and with no lung injury. Acute lung injury decreased [Formula: see text] , O2 delivery, arterial O2 concentration and arterial O2 partial pressure compared to no lung injury. The [Formula: see text] positively correlated with O2 delivery and inversely correlated with alveolar-arterial O2 partial pressure difference, suggesting that impaired pulmonary gas exchange decreased O2 delivery and uptake. Results indicate OA infusion may be a useful model for acutely impairing pulmonary gas exchange for exercise studies. Seven OA infusions induced smaller chronic gas exchange and arterial O2 partial pressure changes than acute infusion.

  2. ROLE OF CELL SIGNALING IN PROTECTION FROM DIESEL AND LPS INDUCED ACUTE LUNG INJURY

    EPA Science Inventory

    We have previously demonstrated in CD-1 mice that pre-administration of N-acetyl cysteine (NAC) or the p38 MAP kinase inhibitor (SB203580) reduces acute lung injury and inflammation following pulmonary exposures to diesel exhaust particles (DEP) or lipopolysaccharide (LPS). Here ...

  3. Xuebijing Ameliorates Sepsis-Induced Lung Injury by Downregulating HMGB1 and RAGE Expressions in Mice.

    PubMed

    Wang, Qiao; Wu, Xin; Tong, Xiaowen; Zhang, Zhiling; Xu, Bing; Zhou, Wugang

    2015-01-01

    Xuebijing (XBJ) injection, a traditional Chinese medicine, has been reported as a promising approach in the treatment of sepsis in China. However, its actual molecular mechanisms in sepsis-induced lung injury are yet unknown. Therefore, this study aimed to investigate the beneficial effects of XBJ on inflammation and the underlying mechanisms in a model of caecal ligation and puncture-(CLP-) induced lung injury. The mice were divided into CLP group, CLP+XBJ group (XBJ, 4 mL/kg per 12 hours), and sham group. The molecular and histological examinations were performed on the lung, serum, and bronchoalveolar lavage (BAL) fluid samples of mice at the points of 6, 24, and 48 hours after CLP. The results show that XBJ reduces morphological destruction and neutrophil infiltration in the alveolar space and lung wet/dry weight ratio, which improves mortality of CLP-induced lung injury. Meanwhile, XBJ treatment downregulates high mobility group box protein 1 (HMGB1) and the receptor for advanced glycation end products (RAGE) expression, as well as neutrophil counts, production of IL-1β, IL-6, and TNF-α in the BAL fluids. In conclusion, these results indicate that XBJ may reduce the mortality through inhibiting proinflammatory cytokines secretion mediated by HMGB1/RAGE axis.

  4. RAGE deficiency attenuates the protective effect of Lidocaine against sepsis-induced acute lung injury.

    PubMed

    Zhang, Zhuo; Zhou, Jie; Liao, Changli; Li, Xiaobing; Liu, Minghua; Song, Daqiang; Jiang, Xian

    2017-04-01

    Lidocaine (Lido) is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of cecal ligation and puncture (CLP)-induced acute lung injury (ALI). The receptor for advanced glycation end product (RAGE) exerts pro-inflammatory effects by enhancing pro-inflammatory cytokine production. However, the precise mechanism by which Lido confers protection against ALI is not clear. ALI was induced in RAGE WT and RAGE knockout (KO) rats using cecal ligation and puncture (CLP) operations for 24 h. The results showed that Lido significantly inhibited CLP-induced lung inflammation and histopathological lung injury. Furthermore, Lido significantly reduced CLP-induced upregulation of HMGB1 and RAGE expression and activation of the NF-κB and MAPK signaling pathways. With the use of RAGE KO rats, we demonstrate here that RAGE deficiency attenuates the protective effect of Lido against CLP-induced lung inflammatory cell infiltration and histopathological lung injury. These results suggest that RAGE deficiency attenuates the protective effect of Lido against CLP-induced ALI by attenuating the pro-inflammatory cytokines production.

  5. Acute cigarette smoke exposure causes lung injury in rabbits treated with ibuprofen

    SciTech Connect

    Witten, M.L.; Lemen, R.J.; Quan, S.F.; Sobonya, R.E.; Magarelli, J.L.; Bruck, D.C.

    1987-01-01

    We studied lung clearance of aerosolized technetium-labeled diethylenetriamine pentaacetic acid (/sup 99m/TcDTPA), plasma concentrations of 6-keto-PGF1 alpha and thromboxane B2, and pulmonary edema as indices of lung injury in rabbits exposed to cigarette smoke (CSE). Forty-six rabbits were randomly assigned to 4 groups: control sham smoke exposure (SS, N = 9), sham smoke exposure ibuprofen-pretreated (SS-I, N = 10), CSE (N = 9), sham smoke exposure ibuprofen-pretreated (SS-I, N = 10), CSE (N = 9), and CSE ibuprofen-pretreated (CSE-I, N = 19). Ibuprofen (cyclooxygenase eicosanoid inhibitor) was administered as a single daily intramuscular injection (25 mg/kg) for 7 days before the experiment. Cigarette or sham smoke was delivered by syringe in a series of 5, 10, 20, and 30 tidal volume breaths with a 15-min counting period between each subset of breaths to determine /sup 99m/TcDTPA biological half-life (T1/2). In the ibuprofen pretreated group, CSE caused significant decreases in /sup 99m/TcDTPA T1/2 and dynamic lung compliance. Furthermore, these changes in lung function were accompanied by severe injury to type I alveolar cell epithelium, pulmonary edema, and frequently death of the rabbits. These findings suggest that inhibition of the cyclooxygenase pathway before CSE exacerbates lung injury in rabbits.

  6. THE RELATIONSHIP BETWEEN OZONE-INDUCED LUNG INJURY, ANTIOXIDANT COMPENSATION AND UNDERLYING CARDIOVASCULAR DISEASE (CVD).

    EPA Science Inventory

    Increased levels of oxidants and compromised compensatory response are associated with CVD susceptibility. We hypothesized that rat strains demonstrating genetic CVD will have lower levels of antioxidants and greater ozone-induced pulmonary injury relative to healthy strains. Mal...

  7. Serum copper concentration as an index of clinical lung injury

    SciTech Connect

    Molteni, A.; Ward, W.F.; Kim, Y.T.; Shetty, R.; Brizio-Molteni, L.; Giura, R.; Ribner, H.; Lomont, M. )

    1989-01-01

    The purpose of this ongoing study is to determine whether thoracic radiotherapy for lung cancer produces an early increase in serum copper (Cu) concentration, an increase which might predict clinical outcome. Copper and iron concentrations were measured in serum obtained from nonsmall cell lung cancer patients at 0, 1, 2, 4, and 6 weeks after the start of radiotherapy. Control groups included patients irradiated for breast cancer (low dose of radiation to the lung), for endometrial, cervical or prostatic cancer, and patients with congestive heart failure, pulmonary hypertension, chronic obstructive pulmonary disease (COPD), and cutaneous burns with or without smoke inhalation. Serum Cu concentration increased at least 10 micrograms/dl from the pretreatment level in approximately 75% of the adenocarcinoma and squamous cell lung cancer patients, but in only 1 of 4 undifferentiated lung cancer cases. In virtually all of these responders, serum Cu increased to a maximum at 2 weeks after the start of therapy, then plateaued or decreased slightly despite continuing irradiation. Within the subset of squamous cell lung cancers, there was a direct correlation between the degree of histologic differentiation and both baseline serum Cu concentration and the probability of an early increase therein. In contrast, only 33% of breast cancer patients and 15% of endometrial, cervical and prostate cancer patients exhibited an increase in serum Cu concentration at 2 weeks after the start of radiotherapy. Serum Cu concentration was within normal limits in virtually all patients with congestive heart failure, pulmonary hypertension, and COPD. Burn patients exhibited a significant reduction in serum Cu, although concomitant smoke inhalation increased serum Cu back to low-normal levels. Serum iron concentration did not change significantly in any category of patients.

  8. Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

    PubMed Central

    Gu, Sean X.; Blokhin, Ilya O.; Wilson, Katina M.; Dhanesha, Nirav; Doddapattar, Prakash; Grumbach, Isabella M.; Chauhan, Anil K.; Lentz, Steven R.

    2016-01-01

    Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke. PMID:27294204

  9. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.

    PubMed

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H; Barnes, Peter J; Adcock, Ian M; Huang, Mao; Yao, Xin

    2015-12-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development.

  10. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury

    PubMed Central

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H.; Barnes, Peter J.; Adcock, Ian M.; Huang, Mao

    2015-01-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  11. DAP12 expression in lung macrophages mediates ischemia reperfusion injury by promoting neutrophil extravasation

    PubMed Central

    Spahn, Jessica H.; Li, Wenjun; Bribriesco, Alejandro C.; Liu, Jie; Shen, Hua; Ibricevic, Aida; Pan, Jiehong; Zinselmeyer, Bernd H.; Brody, Steven L.; Goldstein, Daniel R.; Krupnick, Alexander S.; Gelman, Andrew E.; Miller, Mark J.; Kreisel, Daniel

    2015-01-01

    Neutrophils are critical mediators of innate immune responses and contribute to tissue injury. However, immune pathways that regulate neutrophil recruitment to injured tissues during noninfectious inflammation remain poorly understood. DAP12 is a cell-membrane associated protein that is expressed in myeloid cells and can either augment or dampen innate inflammatory responses during infections. To elucidate the role of DAP12 in pulmonary ischemia-reperfusion injury, we took advantage of a clinically relevant mouse model of transplant-mediated lung ischemia reperfusion injury. This technique allowed us to dissect the importance of DAP12 in tissue-resident cells and those that infiltrate injured tissue from the periphery during noninfectious inflammation. Macrophages in both mouse and human lungs that have been subjected to cold ischemic storage express DAP12. We found that donor, but not recipient deficiency in DAP12 protected against pulmonary ischemia reperfusion injury. Analysis of the immune response showed that DAP12 promotes the survival of tissue-resident alveolar macrophages and contributes to local production of neutrophil chemoattractants. Intravital imaging demonstrated a transendothelial migration defect into DAP12-deficient lungs, which can be rescued by local administration of the neutrophil chemokine CXCL2. We have uncovered a previously unrecognized role for DAP12 expression in tissue-resident alveolar macrophages in mediating acute noninfectious tissue injury through regulation of neutrophil trafficking. PMID:25762783

  12. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  13. No correlation between initial arterial carboxyhemoglobin level and degree of lung injury following ovine burn and smoke inhalation.

    PubMed

    Lange, Matthias; Cox, Robert A; Traber, Daniel L; Hamahata, Atsumori; Nakano, Yoshimitsu; Traber, Lillian D; Enkhbaatar, Perenlei

    2014-04-01

    Fire victims often suffer from burn injury and concomitant inhalation trauma, the latter significantly contributing to the morbidity and mortality in these patients. Measurement of blood carboxyhemoglobin levels has been proposed as a diagnostic marker to verify and, perhaps, quantify the degree of lung injury following inhalation trauma. However, this correlation has not yet been sufficiently validated. A total of 77 chronically instrumented sheep received sham injury, smoke inhalation injury, or combined burn and inhalation trauma following an established protocol. Arterial carboxyhemoglobin concentrations were determined directly after injury and correlated to several clinical and histopathological determinants of lung injury that were detected 48 hours post-injury. The injury induced severe impairment of pulmonary gas exchange and increases in transvascular fluid flux, lung water content, and airway obstruction scores. No significant correlations were detected between initial carboxyhemoglobin levels and all measured clinical and histopathological determinants of lung injury. In conclusion, the amount of arterial carboxyhemoglobin concentration cannot predict the degree of lung injury at 48 hours after ovine burn and smoke inhalation trauma.

  14. Natural Antioxidant Betanin Protects Rats from Paraquat-Induced Acute Lung Injury Interstitial Pneumonia

    PubMed Central

    Ma, Deshun; Zhang, Miao; Yang, Xuelian; Tan, Dehong

    2015-01-01

    The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. In rats treated only with paraquat, extensive lung injury characteristic of ALI was observed, including histological changes, elevation of lung : body weight ratio, increased lung permeability, increased lung neutrophilia infiltration, increased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, reduced superoxide dismutase (SOD) activity, reduced claudin-4 and zonula occluden-1 protein levels, increased BALF interleukin (IL-1) and tumor necrosis factor (TNF)-α levels, reduced BALF IL-10 levels, and increased lung nuclear factor kappa (NF-κB) activity. In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further. PMID:25861636

  15. Natural antioxidant betanin protects rats from paraquat-induced acute lung injury interstitial pneumonia.

    PubMed

    Han, Junyan; Ma, Deshun; Zhang, Miao; Yang, Xuelian; Tan, Dehong

    2015-01-01

    The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. In rats treated only with paraquat, extensive lung injury characteristic of ALI was observed, including histological changes, elevation of lung : body weight ratio, increased lung permeability, increased lung neutrophilia infiltration, increased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, reduced superoxide dismutase (SOD) activity, reduced claudin-4 and zonula occluden-1 protein levels, increased BALF interleukin (IL-1) and tumor necrosis factor (TNF)-α levels, reduced BALF IL-10 levels, and increased lung nuclear factor kappa (NF-κB) activity. In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further.

  16. The role of leptin in the development of pulmonary neutrophilia in infection and Acute Lung Injury

    PubMed Central

    Ubags, Niki D.; Vernooy, Juanita H.; Burg, Elianne; Hayes, Catherine; Bement, Jenna; Dilli, Estee; Zabeau, Lennart; Abraham, Edward; Poch, Katie R.; Nick, Jerry A.; Dienz, Oliver; Zuñiga, Joaquin; Wargo, Matthew J.; Mizgerd, Joseph P.; Tavernier, Jan; Rincón, Mercedes; Poynter, Matthew E.; Wouters, Emiel F.M.; Suratt, Benjamin T.

    2014-01-01

    Objective One of the hallmarks of severe pneumonia and associated Acute Lung Injury (ALI) is neutrophil recruitment to the lung. Leptin is thought to be up-regulated in the lung following injury and to exert diverse effects on leukocytes, influencing both chemotaxis and survival. We hypothesized that pulmonary leptin contributes directly to the development of pulmonary neutrophilia during pneumonia and ALI. Design Controlled human and murine in vivo and ex vivo experimental studies. Settings Research laboratory of a university hospital. Subjects Healthy human volunteers and subjects hospitalized with bacterial and H1N1 pneumonia. C57Bl/6 and db/db mice were also used. Interventions Lung samples from patients and mice with either bacterial or H1N1 pneumonia and associated ALI were immunostained for leptin. Human bronchoalveolar-lavage (BAL) samples obtained after lipopolysaccharide (LPS)-induced lung injury were assayed for leptin. C57Bl/6 mice were examined after oropharyngeal aspiration of recombinant leptin alone or in combination with E.coli- or K.pneumonia-induced pneumonia. Leptin-resistant (db/db) mice were also examined using the E.coli model. BAL neutrophilia and cytokine levels were measured. Leptin-induced chemotaxis was examined in human blood- and murine marrow-derived neutrophils in vitro. Measurements and Main Results Injured human and murine lung tissue showed leptin induction compared to normal lung, as did human BAL following LPS instillation. BAL neutrophilia in uninjured and infected mice was increased and lung bacterial-load decreased by airway leptin administration, whereas BAL neutrophilia in infected leptin-resistant mice was decreased. In sterile lung injury by LPS, leptin also appeared to decrease airspace neutrophil apoptosis. Both human and murine neutrophils migrated towards leptin in vitro, and this required intact signaling through the JAK2/PI3K pathway. Conclusion We demonstrate that pulmonary leptin is induced in injured human and

  17. Analysis of Clinical and Dosimetric Factors Influencing Radiation-Induced Lung Injury in Patients with Lung Cancer

    PubMed Central

    Han, Shuiyun; Gu, Feiying; Lin, Gang; Sun, Xiaojiang; Wang, Yuezhen; Wang, Zhun; Lin, Qingren; Weng, Denghu; Xu, Yaping; Mao, Weimin

    2015-01-01

    Purpose: Dose escalation of thoracic radiation can improve the local tumor control and surivival, and is in the meantime limited by the occurrence of radiation-induced lung injury (RILI). This study investigated the clinical and dosimetric factors influencing RILI in lung-cancer patients receiving chemoradiotherapy for better radiation planning. Methods and Materials: A retrospective analysis was carried out on 161 patients with non-small-cell or small-cell lung cancer (NSCLC and SCLC, respectively), who underwent chemoradiotherapy between April 2010 and May 2011 with a median follow-up time of 545 days (range: 39-1453). Chemotherapy regimens were based on the histological type (squamous cell carcinoma, adenocarcinoma, or SCLC), and radiotherapy was delivered in 1.8-3.0 Gy (median, 2.0 Gy) fractions, once daily, to a total of 39-66 Gy (median, 60 Gy). Univariate analysis was performed to analyze clinical and dosimetric factors associated with RILI. Multivariate analysis using logistic regression identified independent risk factors correlated to RILI. Results: The incidence of symptomatic RILI (≥grade 2) was 31.7%. Univariate analysis showed that V5, V20, and mean lung dose (MLD) were significantly associated with RILI incidence (P=0.029, 0.048, and 0.041, respectively). The association was not statistically significant for histological type (NSCLC vs. SCLC, P = 0.092) or radiation technology (IMRT vs. 3D-CRT, P = 0.095). Multivariate analysis identified MLD as an independent risk factor for symptomatic RILI (OR=1.249, 95%CI=1.055-1.48, P= 0.01). The incidence of bilateral RILI in cases where the tumor was located unilaterally was 22.7% (32/141) and all dosimetric-parameter values were not significantly different (P>0.05) for bilateral versus ipsilateral injury, except grade-1 (low) RILI (P < 0.05). The RILI grade was higher in cases of ipsilateral lung injury than in bilateral cases (Mann-Whitney U test, z=8.216, P< 0.001). Conclusion: The dosimetric parameter

  18. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment.

    PubMed

    Garibaldi, Brian T; D'Alessio, Franco R; Mock, Jason R; Files, D Clark; Chau, Eric; Eto, Yoshiki; Drummond, M Bradley; Aggarwal, Neil R; Sidhaye, Venkataramana; King, Landon S

    2013-01-01

    Acute lung injury (ALI) causes significant morbidity and mortality. Fibroproliferation in ALI results in worse outcomes, but the mechanisms governing fibroproliferation remain poorly understood. Regulatory T cells (Tregs) are important in lung injury resolution. Their role in fibroproliferation is unknown. We sought to identify the role of Tregs in ALI fibroproliferation, using a murine model of lung injury. Wild-type (WT) and lymphocyte-deficient Rag-1(-/-) mice received intratracheal LPS. Fibroproliferation was characterized by histology and the measurement of lung collagen. Lung fibrocytes were measured by flow cytometry. To dissect the role of Tregs in fibroproliferation, Rag-1(-/-) mice received CD4(+)CD25(+) (Tregs) or CD4(+)CD25(-) Tcells (non-Tregs) at the time of LPS injury. To define the role of the chemokine (C-X-C motif) ligand 12 (CXCL12)-CXCR4 pathway in ALI fibroproliferation, Rag-1(-/-) mice were treated with the CXCR4 antagonist AMD3100 to block fibrocyte recruitment. WT and Rag-1(-/-) mice demonstrated significant collagen deposition on Day 3 after LPS. WT mice exhibited the clearance of collagen, but Rag-1(-/-) mice developed persistent fibrosis. This fibrosis was mediated by the sustained epithelial expression of CXCL12 (or stromal cell-derived factor 1 [SDF-1]) that led to increased fibrocyte recruitment. The adoptive transfer of Tregs resolved fibroproliferation by decreasing CXCL12 expression and subsequent fibrocyte recruitment. Blockade of the CXCL12-CXCR4 axis with AMD3100 also decreased lung fibrocytes and fibroproliferation. These results indicate a central role for Tregs in the resolution of ALI fibroproliferation by reducing fibrocyte recruitment along the CXCL12-CXCR4 axis. A dissection of the role of Tregs in ALI fibroproliferation may inform the design of new therapeutic tools for patients with ALI.

  19. Protective effects of Trifolium alexandrinum L. against lung injury induced by environmental toxin CCl4 in experimental rats

    PubMed Central

    Khan, Rahmat Ali; Alkreathy, Huda Mohammad; Saboorshah, Abdus; Ahmed, Mushtaq; Khan, Samiullah

    2016-01-01

    Background In Pakistan numerous medicinal floras has used in the treatment of various human ailments. Among them Trifolium alexandrinum L. is traditionally used in the curing of disease. Presently we designed to ascertain the protective role of Trifolium alexandrinum methanolic extracts (TAME) against carbon tetrachloride (CCl4)-induced lung injury and oxidative stress in rats. Methods Exposure to CCl4 induces oxidative stress and causes tissue damage by the induction of CCl4 free radicals. Twenty-four male albino rats were divided equally into four groups. Rats in group I had free access to drinking water and laboratory food. Group II was treated with 1 ml/kg body weight (b.w.) CCl4 (30% in olive oil). Groups III and IV rats were fed (p.o.) 200 mg/kg b.w. TAME and 50 mg/kg b.w. silymarin after 24 h of CCl4 treatment for 2 weeks. Results Administration of CCl4 caused a significant (p<0.01) decrease in the activities of antioxidant enzymes (catalase, peroxidase, glutathione peroxidase, glutathione-S-transferase), and glutathione contents were decreased; however, thiobarbituric acid-reactive substances were increased (p<0.01). The alterations caused by CCl4 were significantly (p<0.01) reversed toward control levels by supplementation of TAME and silymarin. Conclusion These results suggest that in rats TAME and silymarin could protect the lungs against CCl4-induced oxidative damage. PMID:27834184

  20. Resolvin D1 protects against inflammation in experimental acute pancreatitis and associated lung injury.

    PubMed

    Liu, Yong; Zhou, Dan; Long, Fei-Wu; Chen, Ke-Ling; Yang, Hong-Wei; Lv, Zhao-Yin; Zhou, Bin; Peng, Zhi-Hai; Sun, Xiao-Feng; Li, Yuan; Zhou, Zong-Guang

    2016-03-01

    Acute pancreatitis is an inflammatory condition that may lead to multisystemic organ failure with considerable mortality. Recently, resolvin D1 (RvD1) as an endogenous anti-inflammatory lipid mediator has been confirmed to protect against many inflammatory diseases. This study was designed to investigate the effects of RvD1 in acute pancreatitis and associated lung injury. Acute pancreatitis varying from mild to severe was induced by cerulein or cerulein combined with LPS, respectively. Mice were pretreated with RvD1 at a dose of 300 ng/mouse 30 min before the first injection of cerulein. Severity of AP was assessed by biochemical markers and histology. Serum cytokines and myeloperoxidase (MPO) levels in pancreas and lung were determined for assessing the extent of inflammatory response. NF-κB activation was determined by Western blotting. The injection of cerulein or cerulein combined with LPS resulted in local injury in the pancreas and corresponding systemic inflammatory changes with pronounced severity in the cerulein and LPS group. Pretreated RvD1 significantly reduced the degree of amylase, lipase, TNF-α, and IL-6 serum levels; the MPO activities in the pancreas and the lungs; the pancreatic NF-κB activation; and the severity of pancreatic injury and associated lung injury, especially in the severe acute pancreatitis model. These results suggest that RvD1 is capable of improving injury of pancreas and lung and exerting anti-inflammatory effects through the inhibition of NF-κB activation in experimental acute pancreatitis, with more notable protective effect in severe acute pancreatitis. These findings indicate that RvD1 may constitute a novel therapeutic strategy in the management of severe acute pancreatitis.

  1. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure.

    PubMed

    Zychowski, Katherine E; Lucas, Selita N; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J

    2016-08-15

    Ozone (O3)-related cardiorespiratory effects are a growing public health concern. Ground level O3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O3-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O2) or hypoxia (10.0% O2), followed by a 4-h exposure to either 1ppm O3 or filtered air (FA). As an additional experimental intervention fasudil (20mg/kg) was administered intraperitoneally prior to and after O3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O3-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability.

  2. Methanol extract of Antrodia camphorata protects against lipopolysaccharide-induced acute lung injury by suppressing NF-κB and MAPK pathways in mice.

    PubMed

    Huang, Guan-Jhong; Deng, Jeng-Shyan; Chen, Chin-Chu; Huang, Ching-Jang; Sung, Ping-Jyun; Huang, Shyh-Shyun; Kuo, Yueh-Hsiung

    2014-06-11

    Antrodia camphorata (AC) has been used as a herbal medicine for drug intoxication for the treatment of inflammation syndromes and liver-related diseases in Taiwan. This study demonstrates the protective effect of the methanol extract of AC (MAC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Mice were treated with MAC 1 h before the intratracheal (I.T.) instillation of LPS challenge model. Lung injury was evaluated 6 h after LPS induction. Pretreatment with MAC markedly improved LPS-induced histological alterations and edema in lung tissues. Moreover, MAC also inhibited the release of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 at 6 h in the bronchoalveolar lavage fluid (BALF) during LPS-induced lung injury. Furthermore, MAC reduced total cell number and protein concentrations in the BALF the pulmonary wet/dry weight (W/D) ratio, and myeloperoxidase activity and enhanced superoxide dismutase (SOD) activity in lung tissues. MAC also efficiently blocked protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylation of mitogen-activated protein kinases (MAPKs) and inhibited the degradation of nuclear factor-kappa B (NF-κB) and IκBα. This is the first investigation in which MAC inhibited acute lung edema effectively, which may provide a potential target for treating ALI. MAC may utilize the NF-κB and MAPKs pathways and the regulation of SOD activity to attenuate LPS-induced nonspecific pulmonary inflammation.

  3. Consecutive CT-guided core needle tissue biopsy of lung lesions in the same dog at different phases of radiation-induced lung injury

    PubMed Central

    Yin, Zhongyuan; Deng, Sisi; Liang, Zhiwen; Wang, Qiong

    2016-01-01

    This project aimed to set up a Beagle dog model of radiation-induced lung injury in order to supply fresh lung tissue samples in the different injury phases for gene and protein research. Three dogs received 18 Gy X-ray irradiation in one fraction, another three dogs received 8 Gy in each of three fractions at weekly intervals, and one control dog was not irradiated. Acute pneumonitis was observed during the first 3 months after radiation, and chronic lung fibrosis was found during the next 4–12 months in all the dogs exposed to radiation. CT-guided core needle lung lesion biopsies were extracted from each dog five times over the course of 1 year. The dogs remained healthy after each biopsy, and 50–100 mg fresh lung lesion tissues were collected in each operation. The incidence of pneumothorax and hemoptysis was 20% and 2.8%, respectively, in the 35 tissue biopsies. A successful and stable radiation-induced lung injury dog model was established. Lung lesion tissue samples from dogs in acute stage, recovery stage and fibrosis stage were found to be sufficient to support cytology, genomics and proteomics research. This model safely supplied fresh tissue samples that would allow future researchers to more easily explore and develop treatments for radiation-induced lung injury. PMID:27422930

  4. Oxidant and antioxidant mechanisms of lung disease caused by asbestos fibres.

    PubMed

    Kinnula, V L

    1999-09-01

    The pathogenesis of asbestos-related lung diseases is complicated and still poorly understood. Studies on animal models and cell cultures have indicated that asbestos fibres generate reactive oxygen and nitrogen species and cause oxidation and/or nitrosylation of proteins and deoxyribonucleic acid as a marker of cell injury. These effects are potentiated by the inflammation caused by the fibres. Recent studies have shown that individual variability in the antioxidant and/or detoxifying mechanisms probably has an important role in the development of asbestos-related lung diseases. Asbestos fibres cause both cell proliferation and apoptosis by multiple mechanisms, one of them being activation of signal transduction pathways by reactive oxygen and nitrogen species. Asbestos activates transcription factors such as nuclear factor kappa B, which has been shown to lead to the upregulation of antioxidant enzymes, most importantly manganese superoxide dismutase. This enzyme is also overexpressed in asbestos-related human malignant mesothelioma, whereas the induction of other antioxidant enzymes (copper-zinc superoxide dismutase, catalase, glutathione peroxidase) by asbestos fibres appears to be marginal. The significance of antioxidant enzymes in asbestos related diseases has, however, remained unclear. Furthermore, previous studies have not been able to offer successful therapies to the patients with asbestos-associated diseases. Only an improved understanding of the pathogenetic mechanisms in the human lung provides a basis for future therapies for asbestos-related diseases.

  5. Effects of endotoxin induced lung injury and exercise in goats/sheep. Final report, 1 February 1992-2 June 1993

    SciTech Connect

    Mundie, T.G.

    1993-06-02

    This study was designed the effects of exercise performed on animals already injured with E. coli endotoxin. This would tell us whether exercise makes the lung injury worse. It would also tell us how much exercise performance is impaired. These studies were designed to give further insights into the underlying causes of acute lung injury. Premature termination of the study prevented completion of the research project. It appeared from the limited experimentation conducted that maximal exercise was impaired by endotoxin-induced lung injury. Conclusions regarding exacerbation of endotoxin-induced lung injury cannot be made.... Acute lung injury, Maximal exercise, Endotoxin.

  6. Stimuli-responsive electrodes detect oxidative stress and liver injury.

    PubMed

    Aran, Kiana; Parades, Jacobo; Rafi, Mohammad; Yau, Jennifer F; Acharya, Abhinav P; Zibinsky, Mikhail; Liepmann, Dorian; Murthy, Niren

    2015-02-25

    A digital point-of-care biosensor for measuring reactive oxygen species is presented based on novel reactive oxygen species responsive polymer-based electrodes. The biosensor is able to detect a drug-induced liver injury by monitoring the oxidative stress in the blood.

  7. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity.

    PubMed

    Choe, Chi-un; Lewerenz, Jan; Fischer, Gerry; Uliasz, Tracy F; Espey, Michael Graham; Hummel, Friedhelm C; King, Stephen Bruce; Schwedhelm, Edzard; Böger, Rainer H; Gerloff, Christian; Hewett, Sandra J; Magnus, Tim; Donzelli, Sonia

    2009-09-01

    Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo.

  8. Phosgene- and chlorine-induced acute lung injury in rats: comparison of cardiopulmonary function and biomarkers in exhaled breath.

    PubMed

    Luo, Sa; Trübel, Hubert; Wang, Chen; Pauluhn, Jürgen

    2014-12-04

    This study compares changes in cardiopulmonary function, selected endpoints in exhaled breath, blood, and bronchoalveolar lavage fluid (BAL) following a single, high-level 30-min nose-only exposure of rats to chlorine and phosgene gas. The time-course of lung injury was systematically examined up to 1-day post-exposure with the objective to identify early diagnostic biomarkers suitable to guide countermeasures to accidental exposures. Chlorine, due to its water solubility, penetrates the lung concentration-dependently whereas the poorly water-soluble phosgene reaches the alveolar region without any appreciable extent of airway injury. Cardiopulmonary endpoints were continually recorded by telemetry and barometric plethysmography for 20h. At several time points blood was collected to evaluate evidence of hemoconcentration, changes in hemostasis, and osteopontin. One day post-exposure, protein, osteopontin, and cytodifferentials were determined in BAL. Nitric oxide (eNO) and eCO2 were non-invasively examined in exhaled breath 5 and 24h post-exposure. Chlorine-exposed rats elaborated a reflexively-induced decreased respiratory rate and bradycardia whereas phosgene-exposed rats developed minimal changes in lung function but a similar magnitude of bradycardia. Despite similar initial changes in cardiac function, the phosgene-exposed rats showed different time-course changes of hemoconcentration and lung weights as compared to chlorine-exposed rats. eNO/eCO2 ratios were most affected in chlorine-exposed rats in the absence of any marked time-related changes. This outcome appears to demonstrate that nociceptive reflexes with changes in cardiopulmonary function resemble typical patterns of mixed airway-alveolar irritation in chlorine-exposed rats and alveolar irritation in phosgene-exposed rats. The degree and time-course of pulmonary injury was reflected best by eNO/eCO2 ratios, hemoconcentration, and protein in BAL. Increased fibrin in blood occurred only in chlorine

  9. Effects of dexmedetomidine pretreatment on heme oxygenase-1 expression and oxidative stress during one-lung ventilation

    PubMed Central

    Gao, Shenqiang; Wang, Yuelan; Zhao, Jun; Su, Aiping

    2015-01-01

    Purpose: This study aimed to explore effects of dexmedetomidine pretreatment on heme oxygenase-1 (HO-1) expression and oxidative stress during one-lung ventilation (OLV) in lung cancer patients. Methods: Fifty patients with lung carcinoma (ASA I-II, 40-65 years old, body mass index [BMI] < 30 kg/m2) undergoing pulmonary lobectomy were enrolled. They were divided randomly into two equal groups before anaesthesia induction to receive either intravenous injection of 1 μg/kg dexmedetomidine for 20 min (Dexmedetomidine) or not (Control). Results: The results showed no difference in heart rate (HR), mean arterial pressure (MAP) and bispectral index (BIS) between the two groups, as well as liquid intake and output volume (LIO), duration of OLV and time from surgery beginning to excision of pathological tissues (P > 0.05). Levels of tumor necrosis factor (TNF-α) and malondialdehyde (MDA) in Dexmedetomidine group were lower than that of Control at OLV 60 and 90 (P < 0.05). Superoxide dismutase (SOD) activity and the expression level of HO-1 were higher in Dexmedetomidine group than in Control (P < 0.05). Conclusions: Dexmedetomidine pretreatment could upregulated expression of HO-1 in lung tissue and reduce oxidative stress and inflammation during OLV. Thus dexmedetomidine played a role in protecting lung injury by promoting HO-1 expression. PMID:26045831

  10. A preclinical rodent model of acute radiation-induced lung injury after ablative focal irradiation reflecting clinical stereotactic body radiotherapy.

    PubMed

    Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho

    2014-07-01

    In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.

  11. Systemic Metabolic Impairment and Lung Injury Following Acrolein Inhalation

    EPA Science Inventory

    A single ozone exposure causes pulmonary injury and systemic metabolic alterations through neuronal and hypothalamus pituitary adrenal axis activation. Metabolically impaired Goto Kakizaki (GK) rats with non-obese type-2 diabetes are more sensitive to ozone induced changes than h...

  12. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells

    SciTech Connect

    Weisheng, Lin; Huang, Yue-wern; Zhou, Xiao Dong; Ma, Yinfa

    2006-12-31

    With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 μg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, α-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and α-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

  13. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

    PubMed

    Wu, Feng; Szczepaniak, William S; Shiva, Sruti; Liu, Huanbo; Wang, Yinna; Wang, Ling; Wang, Ying; Kelley, Eric E; Chen, Alex F; Gladwin, Mark T; McVerry, Bryan J

    2014-12-15

    Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.

  14. Tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury in different models possibly through suppression of NF-κB activation.

    PubMed

    Zhao, Zhanzhong; Tang, Xiangfang; Zhao, Xinghui; Zhang, Minhong; Zhang, Weijian; Hou, Shaohua; Yuan, Weifeng; Zhang, Hongfu; Shi, Lijun; Jia, Hong; Liang, Lin; Lai, Zhi; Gao, Junfeng; Zhang, Keyu; Fu, Ling; Chen, Wei

    2014-07-01

    Tylvalosin, a new broad-spectrum, third-generation macrolides, may exert a variety of pharmacological activities. Here, we report on its anti-oxidative and anti-inflammatory activity in RAW 264.7 macrophages and mouse treated with lipopolysaccharide (LPS) as well as piglet challenged with porcine reproductive and respiratory syndrome virus (PRRSV). Tylvalosin treatment markedly decreased IL-8, IL-6, IL-1β, PGE2, TNF-α and NO levels in vitro and in vivo. LPS and PRRSV-induced reactive oxygen species (ROS) production, and the lipid peroxidation in mice lung tissues reduced after tylvalosin treatments. In mouse acute lung injury model induced by LPS, tylvalosin administration significantly attenuated tissues injury, and reduced the inflammatory cells recruitment and activation. The evaluated phospholipase A2 (PLA2) activity and the increased expressions of cPLA2-IVA, p-cPLA2-IVA and sPLA2-IVE were lowered by tylvalosin. Consistent with the mouse results, tylvalosin pretreatment attenuated piglet lung scores with improved growth performance and normal rectal temperature in piglet model induced by PRRSV. Furthermore, tylvalosin attenuated the IκBα phosphorylation and degradation, and blocked the NF-κB p65 translocation. These results indicate that in addition to its direct antimicrobial effect, tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury through suppression of NF-κB activation.

  15. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    SciTech Connect

    Yoo, Seong Ho; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  16. High frequency oscillatory ventilation attenuates the activation of alveolar macrophages and neutrophils in lung injury.

    PubMed

    Shimaoka; Fujino; Taenaka; Hiroi; Kiyono; Yoshiya

    1998-01-01

    BACKGROUND: Recent investigations have shown that leukocyte activation is involved in the pathogenesis of ventilator-associated lung injury. This study was designed to investigate whether the inflammatory responses and deterioration of oxygenation in ventilator-associated lung injury are attenuated by high-frequency oscillatory ventilation (HFO). We analyzed the effects of HFO compared with conventional mechanical ventilation (CMV) on the activation of pulmonary macrophages and neutrophils in 10 female rabbits. RESULTS: After surfactant depletion, the rabbits were ventilated by CMV or HFO at the same mean airway pressure. Surfactant-depletion followed by 4 h mechanical ventilation hindered pulmonary oxygenation in both groups. Impairment of oxygenation was less severe in the HFO group than in the CMV group. In the HFO group the infiltration of granulocytes into alveolar spaces occurred more readily than in the CMV group. Compared with CMV, HFO resulted in greater attenuation of beta2-integrin expression, not only on granulocytes, but also on macrophages. CONCLUSIONS: In the surfactant-depleted lung, the activation of leukocytes was attenuated by HFO. Reduced inflammatory response correlated with decreased impairment of oxygenation. HFO may reduce lung injury via the attenuation of pulmonary inflammation.

  17. Characterization of the oxidant generation by inflammatory cells lavaged from rat lungs following acute exposure to ozone

    SciTech Connect

    Esterline, R.L.; Bassett, D.J.; Trush, M.A.

    1989-06-15

    Following exposure to 2 ppm ozone for 4 hr, two distinct effects on rat lung inflammatory cell oxidant generation were observed. TPA- and opsonized zymosan-stimulated superoxide production by the inflammatory cell population was found to be maximally inhibited 24 hr following ozone exposure. In contrast, luminol-amplified chemiluminescence increased 24 hr following ozone exposure, coinciding with an increase in the percentage of neutrophils and myeloperoxidase in the inflammatory cell population. Supporting the involvement of myeloperoxidase in the enhanced oxidant-generating status of these cells, the luminol-amplified chemiluminescence was found to be azide-, but not superoxide dismutase-inhibitable. Additionally, this cell population was found to generate taurine chloramines, a myeloperoxidase-dependent function which was absent prior to the ozone exposure and also demonstrated enhanced activation of benzo(a)pyrene-7,8-dihydrodiol to its light-emitting dioxetane intermediate. Addition of myeloperoxidase to control alveolar macrophages resulted in enhanced luminol-amplified chemiluminescence, taurine chloramine generation, and enhanced chemiluminescence from benzo(a)pyrene-7,8-dihydrodiol demonstrating that, in the presence of myeloperoxidase, alveolar macrophages are capable of supporting myeloperoxidase-dependent reactions. The possibility of such an interaction occurring in vivo is suggested by the detection of myeloperoxidase activity in the cell-free lavagates of ozone-exposed rats. These studies suggest that neutrophils recruited to ozone-exposed lungs alter the oxidant-generating capabilities in the lung which could further contribute to lung injury or to the metabolism of inhaled xenobiotics.

  18. Inflammation and lung maturation from stretch injury in preterm fetal sheep.

    PubMed

    Hillman, Noah H; Polglase, Graeme R; Pillow, J Jane; Saito, Masatoshi; Kallapur, Suhas G; Jobe, Alan H

    2011-02-01

    Mechanical ventilation is a risk factor for the development of bronchopulmonary dysplasia in premature infants. Fifteen minutes of high tidal volume (V(T)) ventilation induces inflammatory cytokine expression in small airways and lung parenchyma within 3 h. Our objective was to describe the temporal progression of cytokine and maturation responses to lung injury in fetal sheep exposed to a defined 15-min stretch injury. After maternal anesthesia and hysterotomy, 129-day gestation fetal lambs (n = 7-8/group) had the head and chest exteriorized. Each fetus was intubated, and airway fluid was gently removed. While placental support was maintained, the fetus received ventilation with an escalating V(T) to 15 ml/kg without positive end-expiratory pressure (PEEP) for 15 min using heated, humidified 100% nitrogen. The fetus was then returned to the uterus for 1, 6, or 24 h. Control lambs received a PEEP of 2 cmH(2)O for 15 min. Tissue samples from the lung and systemic organs were evaluated. Stretch injury increased the early response gene Egr-1 and increased expression of pro- and anti-inflammatory cytokines within 1 h. The injury induced granulocyte/macrophage colony-stimulating factor mRNA and matured monocytes to alveolar macrophages by 24 h. The mRNA for the surfactant proteins A, B, and C increased in the lungs by 24 h. The airway epithelium demonstrated dynamic changes in heat shock protein 70 (HSP70) over time. Serum cortisol levels did not increase, and induction of systemic inflammation was minimal. We conclude that a brief period of high V(T) ventilation causes a proinflammatory cascade, a maturation of lung monocytic cells, and an induction of surfactant protein mRNA.

  19. Targeted Type 2 Alveolar Cell Depletion. A Dynamic Functional Model for Lung Injury Repair

    PubMed Central

    Garcia, Orquidea; Hiatt, Michael J.; Lundin, Amber; Lee, Jooeun; Reddy, Raghava; Navarro, Sonia; Kikuchi, Alex

    2016-01-01

    Type 2 alveolar epithelial cells (AEC2) are regarded as the progenitor population of the alveolus responsible for injury repair and homeostatic maintenance. Depletion of this population is hypothesized to underlie various lung pathologies. Current models of lung injury rely on either uncontrolled, nonspecific destruction of alveolar epithelia or on targeted, nontitratable levels of fixed AEC2 ablation. We hypothesized that discrete levels of AEC2 ablation would trigger stereotypical and informative patterns of repair. To this end, we created a transgenic mouse model in which the surfactant protein-C promoter drives expression of a mutant SR39TK herpes simplex virus-1 thymidine kinase specifically in AEC2. Because of the sensitivity of SR39TK, low doses of ganciclovir can be administered to these animals to induce dose-dependent AEC2 depletion ranging from mild (50%) to lethal (82%) levels. We demonstrate that specific levels of AEC2 depletion cause altered expression patterns of apoptosis and repair proteins in surviving AEC2 as well as distinct changes in distal lung morphology, pulmonary function, collagen deposition, and expression of remodeling proteins in whole lung that persist for up to 60 days. We believe SPCTK mice demonstrate the utility of cell-specific expression of the SR39TK transgene for exerting fine control of target cell depletion. Our data demonstrate, for the first time, that specific levels of type 2 alveolar epithelial cell depletion produce characteristic injury repair outcomes. Most importantly, use of these mice will contribute to a better understanding of the role of AEC2 in the initiation of, and response to, lung injury. PMID:26203800

  20. Pulmonary Resection for Non–Small Cell Lung Cancer in Patients With Prior Spinal Cord Injury

    PubMed Central

    Brunworth, Louis S; Dharmasena, Dharson; Virgo, Katherine S; Johnson, Frank E

    2006-01-01

    Background/Objective: We sought to determine the clinical course of patients with spinal cord injury (SCI) who subsequently developed bronchogenic carcinoma and underwent pulmonary resection. Methods: A nationwide retrospective study was conducted of all veterans at Department of Veterans Affairs Medical Centers for fiscal years 1993–2002 who were diagnosed with SCI, subsequently developed non–small cell lung cancer, and were surgically treated with curative intent. Inclusion criteria included American Spinal Injury Association type A injury (complete loss of neural function distal to the injury site) and traumatic etiology. Data were compiled from national Department of Veterans Affairs data sets and supplemented by operative reports, pathology reports, progress notes, and discharge summaries. Results: Seven patients met the inclusion/exclusion criteria and were considered evaluable. Five (71%) had one or more comorbid conditions in addition to their SCIs. All 7 underwent pulmonary lobectomy. Postoperative complications occurred in 4 patients (57%). Two patients died postoperatively on days 29 and 499, yielding a 30-day mortality rate of 14% and an in-hospital mortality rate of 29%. Conclusions: This seems to be the only case study in the English language literature on this topic. Patients with SCI who had resectable lung cancer had a high incidence of comorbid conditions. Those who underwent curative-intent surgery had high morbidity and mortality rates. Available evidence suggests that SCI should be considered a risk factor for adverse outcomes in major surgery of all types, including operations for primary lung cancer. PMID:16739556

  1. Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450

    SciTech Connect

    Verschoyle, R.D.; Dinsdale, D. )

    1990-04-01

    Protection afforded by trialkyl phosphorothionates against the lung injury caused by trialkyl phosphorothiolates probably results from the inhibition by the P{double bond}S moiety of the thionates, of one or more pulmonary cytochrome P-450 isozymes. The aromatic hydrocarbons p-xylene and pseudocumene also protect against this injury and inhibit some P-450 isozymes, but by a different mechanism. OOS-Trimethylphosphorothionate and p-xylene were compared as protective agents against the effect of OOS-trimethylphosphorothiolate and two other lung toxins ipomeanol and 1-nitronaphthalene that are known to be activated by cytochrome P-450. The effects of these protective compounds, in vivo, on pulmonary cytochrome P-450 activity were also determined. Both compounds inhibited pentoxyresorufin O-deethylase activity, but not ethoxyresorufin O-deethylase. The phosphorothionate was most effective against lung injury caused by the phosphorothiolates and 1-nitronaphthalene, whereas p-xylene was much more effective against ipomeanol. {beta}-Naphthoflavone, which induces pulmonary ethoxyresorufin O-deethylase activity, did not protect against phosphorothiolate or 1-nitronaphthalene injury, and it was only marginally effective in decreasing the toxicity or ipomeanol.

  2. Protective effect of wogonin on endotoxin-induced acute lung injury via reduction of p38 MAPK and JNK phosphorylation.

    PubMed

    Wei, Cheng-Yu; Sun, Hai-Lun; Yang, Ming-Ling; Yang, Ching-Ping; Chen, Li-You; Li, Yi-Ching; Lee, Chien-Ying; Kuan, Yu-Hsiang

    2017-02-01

    Acute lung injury (ALI) is a serious inflammatory disorder which remains the primary cause of incidence and mortality in patients with acute pulmonary inflammation. However, there is still no effective medical strategy available clinically for the improvement of ALI. Wogonin, isolated from roots of Scutellaria baicalensis Georgi, is a common medicinal herb which presents biological and pharmacological effects, including antioxidation, anti-inflammation, and anticancer. Preadministration of wogonin inhibited not only lung edema but also protein leakage into the alveolar space in murine model of lipopolysaccharide (LPS)-induced ALI. Moreover, wogonin not only reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 but also inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) induced by LPS. We further found wogonin inhibited the phosphorylation of p38 MAPK and JNK at a concentration lower than ERK. In addition, inhibition of lung edema, protein leakage, expression of iNOS and COX-2, and phosphorylation of p38 MAPK and JNK were all observed in a parallel concentration-dependent manner. These results suggest that wogonin possesses potential protective effect against LPS-induced ALI via downregulation of iNOS and COX-2 expression by blocking phosphorylation of p38 MAPK and JNK. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 397-403, 2017.

  3. The protective effect of C-phycocyanin on paraquat-induced acute lung injury in rats.

    PubMed

    Sun, Yingxin; Zhang, Juan; Yan, Yongjian; Chi, Mingfeng; Chen, Wenwen; Sun, Peng; Qin, Song

    2011-09-01

    To investigate the potential protective effect of C-phycocyanin (PC) on paraquat (PQ)-induced acute lung injury, rats were divided into control, PQ-treated and PQ+PC-treated groups. Rats in PQ-treated group were orally administered with 50mg/kg PQ, and rats in PQ+PC-treated group were intraperitoneally injected with 50mg/kg PC after administration of PQ. At 8, 24, 48 and 72h after treatments, GSH-Px and SOD activities, MDA levels in plasma and BALF, HYP, NF-κB, IκB-α and TNF-α contents in lung tissues were measured. The pathological changes in lung were observed. After treatment with PC, the levels of MDA and the relative contents of NF-κB and TNF-α were significantly decreased, the activities of GSH-Px and SOD and the relative contents of IκB-α were significantly increased. The degree of rat lung damage was obviously reduced in PQ+PC-treated group. The results suggested that PC treatment significantly attenuated PQ-induced acute lung injury.

  4. The ultrastructure of radiation injury in rat lung: modification by D-penicillamine. [/sup 60/Co

    SciTech Connect

    Port, C.D.; Ward, W.F.

    1982-10-01

    The present study compared the ultrastructure of radiation injury in the lungs of penicillamine-treated and untreated male rats sacrificed 3, 6, 9, or 12 months after a single exposure of 25 Gy of /sup 60/Co ..gamma..-rays to the right hemithorax. All morphological components of the irradiated lungs exhibited injury typical of pneumonitis progressing to interstitial fibrosis. In addition to these well-documented responses, several less common ultrastructural changes were noted, including capillary recanalization; focal disappearance of interstitial collagen fibers, initially perivascularly, then throughout some septa; and a low-grade but significant cellular reaction in the shielded left lung. Radiation reactions in the lungs of penicillamine-treated rats were qualitatively similar to those of untreated animals, but differed in the degree of change: collagen deposition was less extensive and less highly organized into fibers, capillary recanalization and disappearance of interstitial collagen were more common, and arterial wall thickening was reduced in the drug-treated rats. Thus the beneficial effect of penicillamine on the histopathology of irradiated rat lung does not appear to be attributable to unique ultrastructural phenomena. Rather, penicillamine treatment produces a generalized inhibition of pathologic events such as collagen accumulation and arterial wall thickening, and acceleration of restorative processes such as revascularization and collagen degradation.

  5. Integrative Assessment of Chlorine-Induced Acute Lung Injury in Mice

    PubMed Central

    Pope-Varsalona, Hannah; Concel, Vincent J.; Liu, Pengyuan; Bein, Kiflai; Berndt, Annerose; Martin, Timothy M.; Ganguly, Koustav; Jang, An Soo; Brant, Kelly A.; Dopico, Richard A.; Upadhyay, Swapna; Di, Y. P. Peter; Hu, Zhen; Vuga, Louis J.; Medvedovic, Mario; Kaminski, Naftali; You, Ming; Alexander, Danny C.; McDunn, Jonathan E.; Prows, Daniel R.; Knoell, Daren L.

    2012-01-01

    The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4. PMID:22447970

  6. Choosing the frequency of deep inflation in mice: balancing recruitment against ventilator-induced lung injury.

    PubMed

    Allen, Gilman B; Suratt, Benjamin T; Rinaldi, Lisa; Petty, Joseph M; Bates, Jason H T

    2006-10-01

    Low tidal volume (Vt) ventilation is protective against ventilator-induced lung injury but can promote development of atelectasis. Periodic deep inflation (DI) can open the lung, but if delivered too frequently may cause damage via repeated overdistention. We therefore examined the effects of varying DI frequency on lung mechanics, gas exchange, and biomarkers of injury in mice. C57BL/6 males were mechanically ventilated with positive end-expiratory pressure (PEEP) of 2 cmH2O for 2 h. One high Vt group received a DI with each breath (HV). Low Vt groups received 2 DIs after each hour of ventilation (LV) or 2 DIs every minute (LVDI). Control groups included a nonventilated surgical sham and a group receiving high Vt with zero PEEP (HVZP). Respiratory impedance was measured every 4 min, from which tissue elastance (H) and damping (G) were derived. G and H rose progressively during LV and HVZP, but returned to baseline after hourly DI during LV. During LVDI and HV, G and H remained low and gas exchange was superior to that of LV. Bronchoalveolar lavage fluid protein was elevated in HV and HVZP but was not different between LV and LVDI. Lung tissue IL-6 and IL-1beta levels were elevated in HVZP and lower in LVDI compared with LV. We conclude that frequent DI can safely improve gas exchange and lung mechanics and may confer protection from biotrauma. Differences between LVDI and HV suggest that an optimal frequency range of DI exists, within which the benefits of maintaining an open lung outweigh injury incurred from overdistention.

  7. NLRP3 inflammasome activation is essential for paraquat-induced acute lung injury.

    PubMed

    Liu, Zhenning; Zhao, Hongyu; Liu, Wei; Li, Tiegang; Wang, Yu; Zhao, Min

    2015-02-01

    The innate immune response is important in paraquat-induced acute lung injury, but the exact pathways involved are not elucidated. The objectives of this study were to determine the specific role of the NLRP3 inflammasome in the process. Acute lung injury was induced by administering paraquat (PQ) intraperitoneally. NLRP3 inflammasome including NLRP3, ASC, and caspase-1 mRNA and protein expression in lung tissue and IL-1β and IL-18 levels in BALF were detected at 4, 8, 24, and 72 h after PQ administration in rats. Moreover, rats were pretreated with 10, 30, and 50 mg/kg NLRP3 inflammasome blocker glybenclamide, respectively, 1 h before PQ exposure. At 72 h after PQ administration, lung histopathology changes, NLRP3, ASC, and caspase-1 protein expression, as well as secretion of cytokines including IL-1β and IL-18 in BALF were investigated. The NLRP3 inflammasome including NLRP3, ASC, caspase-1 expression, and cytokines IL-1β and IL-18 levels in PQ poisoning rats were significantly higher than that in the control group. NLRP3 inflammasome blocker glybenclamide pretreatment attenuated lung edema, inhibited the NLRP3, ASC, and caspase-1 activation, and reduced IL-1β and IL-18 levels in BALF. In the in vitro experiments, IL-1β and IL-18 secreted from RAW264.7 mouse macrophages treated with paraquat were attenuated by glybenclamide. In conclusion, paraquat can induce IL-1β/IL-18 secretion via NLRP3-ASC-caspase-1 pathway, and the NLRP3 inflammasome is essential for paraquat-induced acute lung injury.

  8. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome

    PubMed Central

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G.; Britton, Steven L.; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses. PMID:25978669

  9. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome.

    PubMed

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G; Britton, Steven L; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injur