Sample records for oxidative stress decrease

  1. Oxidation of Proline by Mitochondria Isolated from Water-Stressed Maize Shoots 1

    PubMed Central

    Sells, Gary D.; Koeppe, David E.

    1981-01-01

    Proline oxidation and coupled phosphorylation were measured in mitochondria after isolation from shoots of water-stressed, etiolated maize (Zea mays L.) seedlings. Both state III and state IV rates of proline oxidation decreased as a logarithmic function of increased seedling water stress between −5 and −10 bars. Proline oxidation rates decreased 62% (state III) and 58% (state IV) as seedling water potentials were decreased from −5 to −10 bars. By comparison, oxidation of succinate, exogenous NADH, or malate + pyruvate decreased only 10 to 15% in this stress range. These decreases were a linear function of increased stress and were comparable to oxidation rates of mitochondria subjected to varying in vitro osmotic potentials. Osmotically induced in vitro stress reduced proline oxidation rates linearly with more negative osmotic potentials, a decrease that was similar to the responses of the other substrates to more negative osmotic potentials. Some decrease in coupling, with all substrates as determined by ADP/O ratios, was observed under osmotic stress. Mitochondria were also isolated from shoot tissue that had been stressed and then rewatered. On a percentage basis, the recovery of proline oxidation was greater than that of the other substrates. The decreases in the proline oxidase activity of mitochondria after only slight stress indicate a mitochondrial sensitivity to water stress at significantly less negative water potentials than previously reported for measurements of maize membrane permeability and respiratory activity. PMID:16662051

  2. Hypertension and physical exercise: The role of oxidative stress.

    PubMed

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Dual behavior of N-acetylcysteine during ethanol-induced oxidative stress in embryonic chick brains.

    PubMed

    Bauer, Alison K; Fitzgerald, Mary; Ladzinski, Adam T; Lenhart Sherman, Sydney; Maddock, Benjamin H; Norr, Zoe M; Miller, Robert R

    2017-10-01

    Ethanol (EtOH) causes oxidative stress in embryos. Because N-acetylcysteine (NAC) failures and successes in ameliorating EtOH-induced oxidative stress have been reported, the objective was to determine if exogenous NAC ameliorated EtOH-induced oxidative stress within embryonic chick brains. Control eggs were injected with approximately 25 µl of water on day 0, 1, and 2 of development (E 0-2 ). Experimental eggs were injected with dosages of either 3.0 mmol EtOH/kg egg; 747 µmol NAC/kg egg; 3.0 mmol EtOH and 747 µmol NAC/kg egg; 1000 µmol NAC/kg egg; or 3.0 mmol EtOH and 1000 µmol NAC/kg during the first 3 days of development (E 0-2 ). At 11 days of development (E 11 ; late embryogenesis), brains were harvested and subsequently assayed for oxidative stress markers including the loss of long-chain membrane polyunsaturated fatty acids (PUFAs); the accumulation of lipid hydroperoxides (LPO); decreased glutathione (GSH) and glutathione/glutathione disulfide (GSSG) levels; and decreased glutathione peroxidase (GPx) activities. EtOH (3 mmol/kg egg), medium NAC (747 µmol/kg egg), and EtOH and medium NAC promoted oxidative stress. These treatments caused decreased brain membrane long-chain PUFAs; increased LPO levels; decreased GSH levels and GSH/GSSG levels; and decreased Se-dependent GPx activities. High NAC dosages (1000 µmol/kg egg) attenuated EtOH-induced oxidative stress within EtOH and high NAC-treated chick brains. Exogenous EtOH and/or medium NAC propagated oxidative stress. Meanwhile, high NAC ameliorated EtOH-induced oxidative stress.

  5. Relationship between hyposalivation and oxidative stress in aging mice.

    PubMed

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  6. Oxidative stress-induced increase of intracellular zinc in astrocytes decreases their functional expression of P2X7 receptors and engulfing activity.

    PubMed

    Furuta, Takahiro; Mukai, Ayumi; Ohishi, Akihiro; Nishida, Kentaro; Nagasawa, Kazuki

    2017-12-01

    Neuron-glia communication mediated by neuro- and glio-transmitters such as ATP and zinc is crucial for the maintenance of brain homeostasis, and its dysregulation is found under pathological conditions. It is reported that under oxidative stress-loaded conditions, astrocytes exhibit increased intra- and extra-cellular labile zinc, the latter triggering microglial M1 activation, while the pathophysiological role of the former remains unrevealed. In this study, we examined whether the oxidative stress-induced increase of intracellular labile zinc is involved in the P2X7 receptor (P2X7R)-mediated regulation of astrocytic engulfing activity. The exposure of cultured astrocytes to sub-lethal oxidative stress through their treatment with 400 μM H 2 O 2 increased intracellular labile zinc, of which the concentration reached a peak level of approximately 2 μM at 2 h after the treatment. In astrocytes under sub-lethal oxidative stress, the uptake of YO-PRO-1 and latex beads as markers for P2X7R channel/pore activity and astrocytic engulfing activity, respectively, was decreased, and these decreased activities were accompanied by decreased expression of P2X7R at the plasma membrane via intracellular labile zinc-mediated translocation of it. With the oxidative stress, the expression level of full length P2X7R relative to that of its splice variants in astrocytes was decreased, leading to a decrease of the relative expression of the trimer consisting of full length P2X7R. Collectively, sub-lethal oxidative stress induces an astrocytic modal shift from the normal resting engulfing mode to the activated astrogliosis mode via an intracellular labile zinc-mediated decrease of the functional expression of P2X7R.

  7. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  8. [Free radical modification of proteins in brain structure of Sprague-Dawley rats and some behaviour indicators after prenatal stress].

    PubMed

    V'iushina, A V; Pritvorova, A V; Flerov, M A

    2012-08-01

    We studied the influence of late prenatal stress on free radical oxidation processes in Sprague-Dawley rats cortex, striatum, hippocampus, hypothalamus proteins. It was shown that after prenatal stress most changes were observed in hypothalamus and hippocampus. It was shown that in hypothalamus spontaneous oxidation level increased, but level of induced oxidation decreased, the opposite changes were found in hippocampus. Simultaneously minor changes of protein modification were observed in cortex and striatum. It was shown that prenatal stress changed both correlation of proteins free radical oxidation in studied structures and values of these data regarding to control. In test of "open field" motor activity in rats after prenatal stress decreased and time of freezing and grooming increased; opposite, in T-labyrinth motor activity and time of grooming in rats after prenatal stress increased, but time of freezing decreased.

  9. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis.

    PubMed

    Kasajima, Ichiro

    2017-04-26

    Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress tolerance is one of the agricultural traits prerequisite for improvement of modern rice cultivars. Data presented in this study would enable breeding of rice cultivars having strong tolerance to oxidative stress.

  10. Effects of peripherally and centrally applied ghrelin on the oxidative stress induced by renin angiotensin system in a rat model of renovascular hypertension.

    PubMed

    Boshra, Vivian; Abbas, Amr M

    2017-07-26

    Renovascular hypertension (RVH) is a result of renal artery stenosis, which is commonly due to astherosclerosis. In this study, we aimed to clarify the central and peripheral effects of ghrelin on the renin-angiotensin system (RAS) in a rat model of RVH. RVH was induced in rats by partial subdiaphragmatic aortic constriction. Experiment A was designed to assess the central effect of ghrelin via the intracerebroventricular (ICV) injection of ghrelin (5 μg/kg) or losartan (0.01 mg/kg) in RVH rats. Experiment B was designed to assess the peripheral effect of ghrelin via the subcutaneous (SC) injection of ghrelin (150 μg/kg) or losartan (10 mg/kg) for 7 consecutive days. Mean arterial blood pressure (MAP), heart rate, plasma renin activity (PRA), and oxidative stress markers were measured in all rats. In addition, angiotensin II receptor type 1 (AT1R) concentration was measured in the hypothalamus of rats in Experiment B. RVH significantly increased brain AT1R, PRA, as well as the brain and plasma oxidative stress. Either SC or ICV ghrelin or losartan caused a significant decrease in MAP with no change in the heart rate. Central ghrelin or losartan caused a significant decrease in brain AT1R with significant alleviation of the brain oxidative stress. Central ghrelin caused a significant decrease in PRA, whereas central losartan caused a significant increase in PRA. SC ghrelin significantly decreased PRA and plasma oxidative stress, whereas SC losartan significantly increased PRA and decreased plasma oxidative stress. The hypotensive effect of ghrelin is mediated through the amelioration of oxidative stress, which is induced by RAS centrally and peripherally.

  11. Strawberry polyphenols decrease oxidative stress in chronic diseases

    PubMed

    Oviedo-Solís, Cecilia Isabel; Cornejo-Manzo, Sinthia; Murillo-Ortiz, Blanca Olivia; Guzmán-Barrón, Michelle Montserrat; Ramírez-Emiliano, Joel

    2018-01-01

    Consumption of hypercaloric diets leads to increase of free fatty acids (FFA), pro-inflammatory cytokines and production of oxygen and nitrogen reactive species. These alterations induce oxidative and nitrosative stress causing dysfunction of tissues and consequently the development of chronic diseases. Therefore, it is important to decrease oxidative stress and thus preventing the development of these diseases. Strawberry has a lot of Vitamin C and polyphenols, compounds with excellent antioxidant properties, which may be an option for reducing oxidative stress and therefore to prevent the development of some diseases. Studies conducted in vitro in animal models and clinical studies support that this fruit can be a good alternative to reduce oxidative stress and thus reducing and/or preventing the development of diseases in humans. Copyright: © 2018 SecretarÍa de Salud.

  12. Soft-food diet induces oxidative stress in the rat brain.

    PubMed

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Rhynchophylla total alkaloid rescues autophagy, decreases oxidative stress and improves endothelial vasodilation in spontaneous hypertensive rats.

    PubMed

    Li, Chao; Jiang, Feng; Li, Yun-Lun; Jiang, Yue-Hua; Yang, Wen-Qing; Sheng, Jie; Xu, Wen-Juan; Zhu, Qing-Jun

    2018-03-01

    Autophagy plays an important role in alleviating oxidative stress and stabilizing atherosclerotic plaques. However, the potential role of autophagy in endothelial vasodilation function has rarely been studied. This study aimed to investigate whether rhynchophylla total alkaloid (RTA) has a positive role in enhancing autophagy through decreasing oxidative stress, and improving endothelial vasodilation. In oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs), RTA (200 mg/L) significantly suppressed ox-LDL-induced oxidative stress through rescuing autophagy, and decreased cell apoptosis. In spontaneous hypertensive rats (SHR), administration of RTA (50 mg·kg -1 ·d -1 , ip, for 6 weeks) improved endothelin-dependent vasodilation of thoracic aorta rings. Furthermore, RTA administration significantly increased the antioxidant capacity and alleviated oxidative stress through enhancing autophagy in SHR. In ox-LDL-treated HUVECs, we found that the promotion of autophagy by RTA resulted in activation of the AMP-activated protein kinase (AMPK) signaling pathway. Our results show that RTA treatment rescues the ox-LDL-induced autophagy impairment in HUVECs and improves endothelium-dependent vasodilation function in SHR.

  14. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il; Guillemin, Claire; Neeman-azulay, Meytal

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSDmore » or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper supplementation. • Global DNA hypomethylation was resolved both by Tempol and by copper supplementation. • Placental oxidative stress parameters coincides previous findings in the fetal liver.« less

  15. Oxidative stress as a damage mechanism in porcine cumulus-oocyte complexes exposed to malathion during in vitro maturation.

    PubMed

    Flores, Diana; Souza, Verónica; Betancourt, Miguel; Teteltitla, Mario; González-Márquez, Humberto; Casas, Eduardo; Bonilla, Edmundo; Ramírez-Noguera, Patricia; Gutiérrez-Ruíz, María Concepción; Ducolomb, Yvonne

    2017-06-01

    Malathion is one of the most commonly used insecticides. Recent findings have demonstrated that it induces oxidative stress in somatic cells, but there are not enough studies that have demonstrated this effect in germ cells. Malathion impairs porcine oocyte viability and maturation, but studies have not shown how oxidative stress damages maturation and which biochemical mechanisms are affected in this process in cumulus-oocyte complexes (COCs). The aims of the present study were to determine the amount of oxidative stress produced by malathion in porcine COCs matured in vitro, to define how biochemical mechanisms affect this process, and determine whether trolox can attenuate oxidative damage. Sublethal concentrations 0, 750, and 1000 µM were used to evaluate antioxidant enzyme expressions, reactive oxygen species (ROS production), protein oxidation, and lipid peroxidation, among other oxidation products. COCs viability and oocyte maturation decreased in a concentration-dependent manner. Malathion increased Cu, Zn superoxide dismutase (SOD1), glutathione-S-transferase (GST), and glucose 6 phosphate dehydrogenase (G6PD) protein level and decreased glutathione peroxidase (GSH-Px) and catalase (CAT) protein level. Species reactives of oxygen (ROS), protein oxidation and Thiobarbituric acid reactive substances (TBARS) levels increased in COCs exposed to the insecticide, but when COCs were pre-treated with the trolox (50 µM) 30 min before and during malathion exposure, these parameters decreased down to control levels. This study showed that malathion has a detrimental effect on COCs during in vitro maturation, inducing oxidative stress, while trolox attenuated malathion toxicity by decreasing oxidative damage. © 2017 Wiley Periodicals, Inc.

  16. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis.

    PubMed

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F; Burnett, Arthur L

    2012-08-01

    Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Relative to hemi mice, SCD increased (P<0.05) protein expression of NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) , 4-HNE-modified proteins, induced eNOS uncoupling, and reduced Gpx1 expression in the penis. Apocynin treatment of sickle mice reversed (P<0.05) the abnormalities in protein expressions of p47(phox) , gp91(phox) (but not p67(phox) ) and 4-HNE, but only slightly (P>0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. © 2012 International Society for Sexual Medicine.

  17. Targeting NADPH Oxidase Decreases Oxidative Stress in the Transgenic Sickle Cell Mouse Penis

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F.; Burnett, Arthur L.

    2012-01-01

    Introduction Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. Aims We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. Methods SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67phox, p47phox, and gp91phox), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Main Outcome Measures Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Results Relative to hemi mice, SCD increased (P < 0.05) protein expression of NADPH oxidase subunits p67phox, p47phox, and gp91phox, 4-HNE-modified proteins, induced eNOS uncoupling, and reduced Gpx1 expression in the penis. Apocynin treatment of sickle mice reversed (P < 0.05) the abnormalities in protein expressions of p47phox, gp91phox (but not p67phox) and 4-HNE, but only slightly (P > 0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. Conclusion NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. PMID:22620981

  18. Chronic high fat, high cholesterol supplementation decreases 18 kDa Translocator Protein binding capacity in association with increased oxidative stress in rat liver and aorta.

    PubMed

    Dimitrova-Shumkovska, Jasmina; Veenman, Leo; Ristoski, Trpe; Leschiner, Svetlana; Gavish, Moshe

    2010-03-01

    It is well known that high fat and high cholesterol levels present a contributing factor to pathologies including fatty liver and atherosclerosis. Oxidative stress is also considered to play a role in these pathologies. The 18 kDa Translocator Protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, is known to be involved in cholesterol metabolism, oxidative stress, and cardiovascular pathology. We applied a high fat high cholesterol atherogenic (HFHC) diet to rats to study correlations between cardiovascular and liver pathology, oxidative stress, and TSPO expression in the liver and the cardiovascular system. This study corroborates the presence of increased oxidative stress markers and decreased anti-oxidants in liver and aorta. In addition, it appeared that induction of oxidative stress in the liver and aorta by atherogenic HFHC diet was accompanied by a reduction in TSPO binding density in both these tissues. Our data suggest that involvement of TSPO in oxidative stress and ROS generation, as reported in other studies, may also take part in atherogenesis as induced by HFHC diet. Presently, it is not clear whether this TSPO response is compensatory for the stress induced by HFHC diet or is a participant in the induction of oxidative stress. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Aging-associated oxidative stress leads to decrease in IAS tone via RhoA/ROCK downregulation.

    PubMed

    Singh, Jagmohan; Kumar, Sumit; Krishna, Chadalavada Vijay; Rattan, Satish

    2014-06-01

    Internal anal sphincter (IAS) tone plays an important role in rectoanal incontinence (RI). IAS tone may be compromised during aging, leading to RI in certain patients. We examined the influence of oxidative stress in the aging-associated decrease in IAS tone (AADI). Using adult (4-6 mo old) and aging (24-30 mo old) rats, we determined the effect of oxidative stress on IAS tone and the regulatory RhoA/ROCK signal transduction cascade. We determined the effect of the oxidative stress inducer LY83583, which produces superoxide anions (O2 (·-)), on basal and stimulated IAS tone before and after treatment of intact smooth muscle strips and smooth muscle cells with the O2 (·-) scavenger SOD. Our data showed that AADI was associated with a decrease in RhoA/ROCK expression at the transcriptional and translational levels. Oxidative stress with a LY83583-mediated decrease in IAS tone and relaxation of IAS smooth muscle cells was associated with a decrease in RhoA/ROCK signal transduction, which was reversible by SOD. In addition, LY83583 caused a significant decrease in IAS contraction produced by the RhoA activator and a known RhoA/ROCK agonist, U46619, that was also reversible by SOD. The inhibitory effects of LY83583 and the ROCK inhibitor Y27632 on the U46619-induced increase in IAS tone were similar. We conclude that an increase in oxidative stress plays an important role in AADI in the elderly and may be one of the underlying mechanisms of RI in certain aging patients. Copyright © 2014 the American Physiological Society.

  20. Aging-associated oxidative stress leads to decrease in IAS tone via RhoA/ROCK downregulation

    PubMed Central

    Singh, Jagmohan; Kumar, Sumit; Krishna, Chadalavada Vijay

    2014-01-01

    Internal anal sphincter (IAS) tone plays an important role in rectoanal incontinence (RI). IAS tone may be compromised during aging, leading to RI in certain patients. We examined the influence of oxidative stress in the aging-associated decrease in IAS tone (AADI). Using adult (4–6 mo old) and aging (24–30 mo old) rats, we determined the effect of oxidative stress on IAS tone and the regulatory RhoA/ROCK signal transduction cascade. We determined the effect of the oxidative stress inducer LY83583, which produces superoxide anions (O2·−), on basal and stimulated IAS tone before and after treatment of intact smooth muscle strips and smooth muscle cells with the O2·− scavenger SOD. Our data showed that AADI was associated with a decrease in RhoA/ROCK expression at the transcriptional and translational levels. Oxidative stress with a LY83583-mediated decrease in IAS tone and relaxation of IAS smooth muscle cells was associated with a decrease in RhoA/ROCK signal transduction, which was reversible by SOD. In addition, LY83583 caused a significant decrease in IAS contraction produced by the RhoA activator and a known RhoA/ROCK agonist, U46619, that was also reversible by SOD. The inhibitory effects of LY83583 and the ROCK inhibitor Y27632 on the U46619-induced increase in IAS tone were similar. We conclude that an increase in oxidative stress plays an important role in AADI in the elderly and may be one of the underlying mechanisms of RI in certain aging patients. PMID:24742984

  1. Flavonoids: Antioxidants Against Atherosclerosis

    PubMed Central

    Grassi, Davide; Desideri, Giovambattista; Ferri, Claudio

    2010-01-01

    Oxidative stress results from an imbalance between excessive formation of reactive oxygen species (ROS) and/or reactive nitrogen species and limited antioxidant defences. Endothelium and nitric oxide (NO) are key regulators of vascular health. NO bioavailability is modulated by ROS that degrade NO, uncouple NO synthase, and inhibit synthesis. Cardiovascular risk conditions contribute to oxidative stress, causing an imbalance between NO and ROS, with a relative decrease in NO bioavailability. Dietary flavonoids represent a range of polyphenolic compounds naturally occurring in plant foods. Flavonoids are potentially involved in cardiovascular prevention mainly by decreasing oxidative stress and increasing NO bioavailability. PMID:22254061

  2. Protective potential of Black grapes against lead induced oxidative stress in rats.

    PubMed

    Lakshmi, B V S; Sudhakar, M; Aparna, M

    2013-05-01

    From time immemorial Vitis vinifera (Black grapes) have been used both for medicinal and nourishment purposes. The aim of this study is to investigate the protective effect of Black grapes against lead nitrate induced oxidative stress. Exposure to lead significantly increased malondialdehyde levels with a significant decrease in superoxide dismutase and catalase activities, and the concentration of GSH in the liver and kidneys of rats. Significantly increased levels of AST, ALT, ALP, BUN and serum creatinine and decreased levels of total protein were observed. The administration of lead significantly decreased the body weight and organ weights at the end of the experimental period. Statistically significant decrease in hemoglobin, red blood cell and total leukocyte count was observed. Pretreatment of hydroalcoholic extract of Black grapes to lead exposed rats significantly ameliorated lead-induced oxidative stress in tissues and produced improvement in hematological parameters over lead-exposed rats, indicating the beneficial role of Black grapes to counteract the lead-induced oxidative stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    PubMed Central

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  4. 3-Keto-1,5-bisphosphonates Alleviate Serum-Oxidative Stress in the High-fat Diet Induced Obesity in Rats.

    PubMed

    Lahbib, Karima; Aouani, Iyadh; Cavalier, Jean-François; Touil, Soufiane

    2015-09-01

    Obesity has become a leading global health problem owing to its strong association with a high incidence of oxidative stress. Many epidemiologic studies showed that an antioxidant supplementation decreases the state of oxidative stress. In the present work, a HFD-induced rat obesity and oxidative stress were used to investigate the link between fat deposition and serum-oxidative stress markers. We also studied the effect of a chronic administration of 3-keto-1,5-bisphosphonates 1 (a & b) (40 μg/kg/8 weeks/i.p.). Exposure of rats to HFD during 16 weeks induced fat deposition, weight gain and metabolic disruption characterized by an increase in cholesterol, triglyceride and glycemia levels, and a decrease in ionizable calcium and free iron concentrations. HFD also induced serum-oxidative stress status vocalized by an increase in ROS (H2 O2 ), MDA and PC levels, with a decrease in antioxidant enzyme activity (CAT, GPx, SOD). Importantly, 3-keto-1,5-bisphosphonates corrected all the deleterious effects of HFD treatment in vivo, but it failed to inhibit lipases in vitro and in vivo. These studies suggest that 3-keto-1,5-bisphosphonates 1 could be considered as safe antioxidant agents that should also find other potential biological applications. © 2014 John Wiley & Sons A/S.

  5. Defective Hematopoietic Stem Cell and Lymphoid Progenitor Development in the Ts65Dn Mouse Model of Down Syndrome: Potential Role of Oxidative Stress

    PubMed Central

    Lorenzo, Laureanne Pilar E.; Chen, Haiyan; Shatynski, Kristen E.; Clark, Sarah; Yuan, Rong; Harrison, David E.; Yarowsky, Paul J.

    2011-01-01

    Abstract Aims Down Syndrome (DS), a genetic disease caused by a triplication of chromosome 21, is characterized by increased markers of oxidative stress. In addition to cognitive defects, patients with DS also display hematologic disorders and increased incidence of infections and leukemia. Using the Ts65Dn mouse model of DS, the goal of this study was to examine hematopoietic stem and lymphoid progenitor cell function in DS. Results Analysis of hematopoietic progenitor populations showed that Ts65Dn mice possessed fewer functional hematopoietic stem cells and a significantly decreased percentage of bone marrow lymphoid progenitors. Increased reactive oxygen species and markers of oxidative stress were detected in hematopoietic stem cell populations and were associated with a loss of quiescence. Bone marrow progenitor populations expressed diminished levels of the IL-7Rα chain, which was associated with decreased proliferation and increased apoptosis. Modulating oxidative stress in vitro suggested that oxidative stress selectively leads to decreased IL-7Rα expression, and inhibits the survival of IL-7Rα-expressing hematopoietic progenitors, potentially linking increased reactive oxygen species and immunopathology. Innovation The study results identify a link between oxidative stress and diminished IL-7Rα expression and function. Further, the data suggest that this decrease in IL-7Rα is associated with defective hematopoietic development in Down Syndrome. Conclusion The data suggest that hematopoietic stem and lymphoid progenitor cell defects underlie immune dysfunction in DS and that increased oxidative stress and reduced cytokine signaling may alter hematologic development in Ts65Dn mice. Antioxid. Redox Signal. 15, 2083–2094. PMID:21504363

  6. Oxidative stress negatively affects human sperm mitochondrial respiration.

    PubMed

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Exercise Increases Cystathionine-γ-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats.

    PubMed

    Tang, Zhiping; Wang, Yujun; Zhu, Xiaoyan; Ni, Xin; Lu, Jianqiang

    2016-01-01

    Exercise could be a therapeutic approach for cardiovascular dysfunction induced by estrogen deficiency. Our previous study has shown that estrogen maintains cystathionine-γ-lyase (CSE) expression and inhibits oxidative stress in the myocardium of female rats. In the present study, we investigated whether exercise improves CSE expression and oxidative stress status and ameliorates isoproterenol (ISO)-induced cardiac damage in ovariectomized (OVX) rats. The results showed that treadmill training restored the ovariectomy-induced reduction of CSE and estrogen receptor (ER)α and decrease of total antioxidant capacity (T-AOC) and increase of malondialdehyde (MDA). The level of CSE was positively correlated to T-AOC and ERα while inversely correlated to MDA. OVX rats showed increases in the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) and the percentage of TUNEL staining in myocardium upon ISO insult compared to sham rats. Exercise training significantly reduced the serum levels of LDH and CK and the percentage of TUNEL staining in myocardium upon ISO insult in OVX rats. In cultured cardiomyocytes, ISO treatment decreased cell viability and increased LDH release, while overexpression of CSE increased cell viability and decreased LDH release in the cells upon ISO insult. The results suggest that exercise training improves the oxidative stress status and ameliorates the cardiac damage induced by oxidative stress in OVX rats. The improvement of oxidative stress status by exercise might be at least partially due to upregulation of CSE/H2S signaling.

  8. Plasma oxidative stress level of IgA nephropathy in children and the effect of early intervention with angiotensin-converting enzyme inhibitors.

    PubMed

    Pei, Yuxin; Xu, Yuanyuan; Ruan, Jingwei; Rong, Liping; Jiang, Mengjie; Mo, Ying; Jiang, Xiaoyun

    2016-01-01

    The purpose of this study was to investigate the change of the plasma oxidative stress level in children with IgA nephropathy (IgAN) and analyze its relativity to the clinical and pathological classification. To discuss the early effects of angiotensin-converting enzyme inhibitors (ACEIs) on the plasma oxidative stress level in children with IgA nephropathy. Thirty-eight children with IgAN were divided into groups according to their clinical features, pathologic grades, and treatments. Twenty healthy children were included in the control group. The plasma level of advanced oxidation protein products (AOPPs), malonaldehyde (MDA), and superoxide dismutase (SOD) were detected. The plasma level of oxidative stress was significantly increased in the IgAN group, including a higher plasma level of AOPP and MDA and a lower plasma level of SOD. After treatment, the plasma level of oxidative stress was significantly decreased in the ACEI group. The children with IgAN had an increase in the plasma level of oxidative stress, expressed as an increased plasma level of AOPP and MDA and a decreased plasma level of SOD. Oxidative stress was associated with the progression of IgAN in children. Early treatment with ACEI therapy can significantly reduce the plasma level of oxidative stress in children with IgAN. © The Author(s) 2016.

  9. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress.

    PubMed

    Oksala, Niku K J; Ekmekçi, F Güler; Ozsoy, Ergi; Kirankaya, Serife; Kokkola, Tarja; Emecen, Güzin; Lappalainen, Jani; Kaarniranta, Kai; Atalay, Mustafa

    2014-01-01

    Heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a family of highly conserved proteins that respond to a wide variety of stress including oxidative stress. Although both acute and chronic oxidative stress have been well demonstrated to induce HSP responses, little evidence is available whether increased HSP levels provide enhanced protection against oxidative stress under elevated yet sublethal temperatures. We studied relationships between oxidative stress and HSPs in a physiological model by using Garra rufa (doctor fish), a fish species naturally acclimatized to different thermal conditions. We compared fish naturally living in a hot spring with relatively high water temperature (34.4±0.6°C) to those living in normal river water temperature (25.4±4.7°C), and found that levels of all the studied HSPs (HSP70, HSP60, HSP90, HSC70 and GRP75) were higher in fish living in elevated water temperature compared with normal river water temperature. In contrast, indicators of oxidative stress, including protein carbonyls and lipid hydroperoxides, were decreased in fish living in the elevated temperature, indicating that HSP levels are inversely associated with oxidative stress. The present results provide evidence that physiologically increased HSP levels provide protection against oxidative stress and enhance cytoprotection. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress.

    PubMed

    Wang, Hao; Sun, Xuming; Lin, Marina S; Ferrario, Carlos M; Van Remmen, Holly; Groban, Leanne

    2018-04-25

    Oxidative stress has been implicated in the unfavorable changes in cardiac function and remodeling that occur after ovarian estrogen loss. Using ovariectomized rat models, we previously reported that the cardioprotective actions of estrogen are mediated by the G protein-coupled estrogen receptor (GPER). Here, in 9-month-old, female cardiomyocyte-specific GPER knockout (KO) mice vs sex- and age-matched wild-type (WT) mice, we found increased cardiac oxidative stress and oxidant damage, measured as a decreased ratio of reduced glutathione to oxidized glutathione, increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine (8-oxo-DG) staining, and increased expression of oxidative stress-related genes. GPER KO mice also displayed increased heart weight, cardiac collagen deposition, and Doppler-derived filling pressure, and decreased percent fractional shortening and early mitral annular velocity compared with WT controls. Treatment of GPER KO mice for 8 weeks with phosphonium [10-(4,5-dimethoxy-2-methyl 3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-,mesylate (MitoQ), a mitochondria-targeted antioxidant, significantly attenuated these measures of cardiac dysfunction, and MitoQ decreased 8-oxo-DG intensity compared with treatment with an inactive comparator compound, (1-decyl)triphenylphosphonium bromide (P <0.05). A real-time polymerase chain reaction array analysis of 84 oxidative stress and antioxidant defense genes revealed that MitoQ attenuates the increase in NADPH oxidase 4 and prostaglandin-endoperoxide synthase 2 and the decrease in uncoupling protein 3 and glutathione S-transferase kappa 1 seen in GPER KO mice. Our findings suggest that the cardioprotective effects of GPER include an antioxidant role and that targeted strategies to limit oxidative stress after early noncancerous surgical extirpation of ovaries or menopause may help limit alterations in cardiac structure and function related to estrogen loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Psychological stress-induced cerebrovascular dysfunction: the role of metabolic syndrome and exercise.

    PubMed

    Brooks, Steven; Brnayan, Kayla W; DeVallance, Evan; Skinner, Roy; Lemaster, Kent; Sheets, J Whitney; Pitzer, Christopher R; Asano, Shinichi; Bryner, Randall W; Olfert, I Mark; Frisbee, Jefferson C; Chantler, Paul D

    2018-05-01

    What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P < 0.05) ex vivo middle cerebral artery (MCA) endothelium-dependent dilatation (EDD), but changes in MCA remodelling and stiffness were not evident, though cerebral microvessel density (MVD) decreased (30%, P < 0.05). The presence of UCMS and MetS (obese Zucker rats; OZR) decreased MCA EDD (35%, P < 0.05) and dilatation to sodium nitroprusside (20%, P < 0.05), while MCA stiffness increased and cerebral MVD decreased (31%, P < 0.05), which were linked to reduced nitric oxide and increased oxidative levels. Aerobic exercise prevented UCMS impairments in MCA function and MVD in LZR, and partly restored MCA function, stiffness and MVD in OZR. Our data suggest that the benefits of exercise with UCMS were due to a reduction in oxidative stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

  12. Knockdown of metallothionein 1 and 2 does not affect atrophy or oxidant activity in a novel in vitro model.

    PubMed

    Hyldahl, Robert D; O'Fallon, Kevin S; Schwartz, Lawrence M; Clarkson, Priscilla M

    2010-11-01

    Skeletal muscle atrophy is a significant health problem that results in decreased muscle size and function and has been associated with increases in oxidative stress. The molecular mechanisms that regulate muscle atrophy, however, are largely unknown. The metallothioneins (MT), a family of genes with antioxidant properties, have been found to be consistently upregulated during muscle atrophy, although their function during muscle atrophy is unknown. Therefore, we hypothesized that MT knockdown would result in greater oxidative stress and an enhanced atrophy response in C(2)C(12) myotubes subjected to serum reduction (SR), a novel atrophy-inducing stimulus. Forty-eight hours before SR, myotubes were transfected with small interfering RNA (siRNA) sequences designed to decrease MT expression. Muscle atrophy and oxidative stress were then measured at baseline and for 72 h following SR. Muscle atrophy was quantified by immunocytochemistry and myotube diameter measurements. Oxidative stress was measured using the fluorescent probe 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein. SR resulted in a significant increase in oxidative stress and a decrease in myotube size and protein content. However, there were no differences observed in the extent of muscle atrophy or oxidant activity following MT knockdown. We therefore conclude that the novel SR model results in a strong atrophy response and an increase in oxidant activity in cultured myotubes and that knockdown of MT does not affect that response.

  13. Comparative studies on the effects of clinically used anticonvulsants on the oxidative stress biomarkers in pentylenetetrazole-induced kindling model of epileptogenesis in mice.

    PubMed

    Mazhar, Faizan; Malhi, Saima M; Simjee, Shabana U

    2017-01-01

    Oxidative stress plays a key role in the pathogenesis of epilepsy and contributes in underlying epileptogenesis process. Anticonvulsant drugs targeting the oxidative stress domain of epileptogenesis may provide better control of seizure. The present study was carried out to investigate the effect of clinically used anti-epileptic drugs (AEDs) on the course of pentylenetetrazole (PTZ)-induced kindling and oxidative stress markers in mice. Six mechanistically heterogeneous anticonvulsants: phenobarbital, phenytoin, levetiracetam, pregabalin, topiramate, and felbamate were selected and their redox profiles were determined. Diazepam was used as a drug control for comparison. Kindling was induced by repeated injections of a sub-convulsive dose of PTZ (50 mg/kg, s.c.) on alternate days until seizure score 5 was evoked in the control kindled group. Anticonvulsants were administered daily. Following PTZ kindling, oxidative stress biomarkers were assessed in homogenized whole brain samples and estimated for the levels of nitric oxide, peroxide, malondialdehyde, protein carbonyl, reduced glutathione, and activities of nitric oxide synthase and superoxide dismutase. Biochemical analysis revealed a significant increase in the levels of reactive oxygen species with a parallel decrease in endogenous anti-oxidants in PTZ-kindled control animals. Daily treatment with levetiracetam and felbamate significantly decreased the PTZ-induced seizure score as well as the levels of nitric oxide (p<0.001), nitric oxide synthase activity (p<0.05), peroxide levels (p<0.05), and malondialdehyde (p<0.05). Levetiracetam and felbamate significantly decreased lipid and protein peroxidation whereas topiramate was found to reduce lipid peroxidation only. An AED that produces anticonvulsant effect by the diversified mechanism of action such as levetiracetam, felbamate, and topiramate exhibited superior anti-oxidative stress activity in addition to their anticonvulsant activity.

  14. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    PubMed

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis

    PubMed Central

    Choudhury, Mahua G.; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment. PMID:26950213

  16. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    PubMed

    Choudhury, Mahua G; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment.

  17. Cytokines and Oxidative Stress Status Following a Handball Game in Elite Male Players

    PubMed Central

    Marin, Douglas Popp; Macedo dos Santos, Rita de Cassia; Bolin, Anaysa Paola; Guerra, Beatriz Alves; Hatanaka, Elaine; Otton, Rosemari

    2011-01-01

    Background. Handball is considered an intermittent sport that places an important stress on a player's aerobic and anaerobic metabolism. However, the oxidative stress responses following a handball game remain unknown. We investigated the responses of plasma and erythrocyte antioxidant system and oxidative stress biomarkers following a single handball game. Methods. Fourteen male elite Brazilian handball athletes were recruited in the present study. Blood samples were taken before, immediately, and 24 hours after the game. Results. After the game and during 24 hours of recovery, the concentration of all oxidative stress indices changed significantly in a way indicating increased oxidative stress in the blood (thiol groups and reduced glutathione decreased, whereas TBARS and plasma antioxidant capacity was increased) as well as in erythrocyte (increased levels of TBARS and protein carbonyls). Erythrocyte antioxidant enzyme activities were also significantly changed by handball. Muscle damage indices (creatine kinase and lactate dehydrogenase) increased significantly after exercise. In addition, IL-6 increased after the game, whereas TNF-α decreased during recovery. Conclusion. This study demonstrates that a single handball game in elite athletes induces a marked state of oxidative stress evidenced by the oxidative modification in plasma and erythrocyte macromolecules, as well as by changes in the enzymatic and nonenzymatic antioxidant system. PMID:21922038

  18. Hypocaloric diet and regular moderate aerobic exercise is an effective strategy to reduce anthropometric parameters and oxidative stress in obese patients.

    PubMed

    Gutierrez-Lopez, Liliana; Garcia-Sanchez, Jose Ruben; Rincon-Viquez, Maria de Jesus; Lara-Padilla, Eleazar; Sierra-Vargas, Martha P; Olivares-Corichi, Ivonne M

    2012-01-01

    Studies show that diet and exercise are important in the treatment of obesity. The aim of this study was to determine whether additional regular moderate aerobic exercise during a treatment with hypocaloric diet has a beneficial effect on oxidative stress and molecular damage in the obese patient. Oxidative stress of 16 normal-weight (NW) and 32 obese 1 (O1) subjects (BMI 30-34.9 kg/m(2)) were established by biomarkers of oxidative stress in plasma. Recombinant human insulin was incubated with blood from NW or O1 subjects, and the molecular damage to the hormone was analyzed. Two groups of treatment, hypocaloric diet (HD) and hypocaloric diet plus regular moderate aerobic exercise (HDMAE), were formed, and their effects in obese subjects were analyzed. The data showed the presence of oxidative stress in O1 subjects. Molecular damage and polymerization of insulin was observed more frequently in the blood from O1 subjects. The treatment of O1 subjects with HD decreased the anthropometric parameters as well as oxidative stress and molecular damage, which was more effectively prevented by the treatment with HDMAE. HD and HDMAE treatments decreased anthropometric parameters, oxidative stress, and molecular damage in O1 subjects. Copyright © 2012 S. Karger GmbH, Freiburg.

  19. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?

    PubMed

    Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G

    2014-11-07

    The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Assessment of Eccentric Exercise-Induced Oxidative Stress Using Oxidation-Reduction Potential Markers

    PubMed Central

    Stagos, Dimitrios; Goutzourelas, Nikolaos; Ntontou, Amalia-Maria; Kafantaris, Ioannis; Deli, Chariklia K.; Poulios, Athanasios; Jamurtas, Athanasios Z.; Bar-Or, David; Kouretas, Dimitrios

    2015-01-01

    The aim of the present study was to investigate the use of static (sORP) and capacity ORP (cORP) oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress. PMID:25874019

  1. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia.

    PubMed

    Ábrigo, Johanna; Elorza, Alvaro A; Riedel, Claudia A; Vilos, Cristian; Simon, Felipe; Cabrera, Daniel; Estrada, Lisbell; Cabello-Verrugio, Claudio

    2018-01-01

    Skeletal muscle atrophy is a pathological condition mainly characterized by a loss of muscular mass and the contractile capacity of the skeletal muscle as a consequence of muscular weakness and decreased force generation. Cachexia is defined as a pathological condition secondary to illness characterized by the progressive loss of muscle mass with or without loss of fat mass and with concomitant diminution of muscle strength. The molecular mechanisms involved in cachexia include oxidative stress, protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction. Oxidative stress is one of the most common mechanisms of cachexia caused by different factors. It results in increased ROS levels, increased oxidation-dependent protein modification, and decreased antioxidant system functions. In this review, we will describe the importance of oxidative stress in skeletal muscles, its sources, and how it can regulate protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction involved in cachexia.

  2. Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid.

    PubMed

    Li, X L; Cui, X H; Han, J R

    2006-09-01

    To determine the effect of oxidative stress and exogenous ascorbic acid on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. In this experiment, high oxidative stress was applied by the inclusion of FeSO(4) in the growth medium and exposure to light. Low oxidative stress was applied by omitting iron from the growth medium and by incubation in the dark. Supplementation of exogenous ascorbic acid (as antioxidant) to the basal medium caused a concentration-dependent delay of sclerotial differentiation (up to 48 h), decrease of sclerotial biomass (up to 40%) and reduction of carotenoid yield (up to 91%). On the contrary, the exogenous ascorbic acid also caused a concentration-dependent decrease of lipid peroxidation in colonies of this fungus. Under high oxidative stress growth condition, the sclerotial biomass and carotenoid yield of PT95 strain in each plate culture reached 305 mg and 32.94 microg, which were 1.23 and 3.71 times higher, respectively, than those at low oxidative stress growth condition. These data prompted us to consider that in order to attain higher sclerotial biomass and pigment yield, the strain PT95 should be grown under high oxidative stress and in the absence of antioxidants. These results suggest that strain PT95 may be used for solid-state fermentation of carotenoid production under high oxidative stress growth conditions.

  3. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    PubMed Central

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583

  4. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  5. Supplementation with Robuvit® in subjects with burnout associated to high oxidative stress.

    PubMed

    Belcaro, Gianni; Hosoi, Morio; Feragalli, Beatrice; Luzzi, Roberta; Dugall, Mark

    2018-06-01

    This supplement registry study evaluated the effect of supplementation with Robuvit® on the burnout syndrome (BOS) of patients with significant fatigue and high oxidative stress. Robuvit® (French oak wood extract) is a standardized supplement, effective in treating chronic fatigue syndrome (CFS), post-traumatic stress disorder (PTSD) and convalescence. A group of 108 subjects with BOS, consisting of a subgroup of 42 young surgeons in training and a subgroup of 66 managers, were studied. Subjects followed a standard management (SM); one half of the subjects received 300 mg/day of Robuvit® for 4 weeks in addition to SM. Robuvit® was (P<0.05) more effective compared to SM in improving parameters evaluated with the aid of Maslach Burnout Inventory: dealing with patients problems, improving the relationship with patients, decreasing emotional drainage and intolerance (P<0.05). The feeling of a positive influence improved. The decrease in strain from interactions at work, the decrease in the lack of care feeling, the improved levels in interest were all positively affected with Robuvit (P<0.05) in comparison with SM. The need for giving up decreased, the level of satisfaction improved and the regrets for being in the profession decreased. BOS symptoms were positively affected by the supplement (P<0.05). Oxidative stress (388;24 Carr Units decreased to 344;22 with Robuvit®; P<0.05), SM had no influence on oxidative stress. Robuvit® was also more effective in professionals with burnout syndrome than the SM only in in decreasing emotional drainage, fatigue and intolerance (P<0.05). Robuvit® significantly improved the feeling of having a positive influence (P<0.05). Also, Robuvit® significantly decreased the strain resulting from interactions at work and improved the care for colleagues/customers (P<0.05). Interest and enthusiasm were significantly increased in subjects taking Robuvit® in comparison with controls with standard management alone (P<0.05). The mean score of the desire to give up was decreased with Robuvit® in comparison with SM (P<0.05) and job satisfaction was significantly improved (P<0.05). The feeling of regrets of being in the profession was significantly reduced with the supplement in comparison to SM (P<0.05). Robuvit® reduced oxidative stress (P<0.05) from 397;33 to 323;29 Carr Units in comparison with a low decrease with SM (from 396;19 vs. 378;27) at 4 weeks. In conclusion, in this registry study on BOS, Robuvit® by controlling fatigue (the primary symptom) and oxidative stress, relieves the most important 'symptoms' associated with BOS. The effects are comparable in young surgeons not accustomed to stress, as well as in professionals in management positions who are used to control stress.

  6. Effect of Sophora subprosrate polysaccharide on oxidative stress induced by PCV2 infection in RAW264.7 cells.

    PubMed

    Su, Zi-Jie; Wei, Ying-Yi; Yin, Dan; Shuai, Xue-Hong; Zeng, Yun; Hu, Ting-Jun

    2013-11-01

    In this study, an oxidative stress model was first developed in a mouse macrophage cell line (RAW264.7 cells) by infecting the cells with porcine circovirus type 2 (PCV2). The regulatory effect of Sophora subprosrate polysaccharide (SSP) on PCV2-induced oxidative stress was investigated. The results showed that after infection with PCV2, reactive oxygen species (ROS) and nitric oxide (NO) production, myeloperoxidase (MPO) activity, and inducible nitric oxide synthase (iNOS) expression were significantly increased. Meanwhile, the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) and hydroxyl radical prevention capacity were greatly reduced. These data indicate successful creation of an oxidative stress model in RAW264.7 cells. A dramatic decrease in cell viability was observed in the cells exposed to oxidative stress compared to the control. When the cells were treated with SSP in concentrations of 100, 200 or 400 μg/mL post PCV2 infection, an increase in the GSH/GSSG ratio and hydroxyl radical prevention capacity was observed. We also observed decreased ROS and NO production, MPO activity, and iNOS expression in the infected cells. Our results demonstrated that PCV2 infection was able to induce oxidative stress in RAW264.7 cells and that SSP could reduce the negative effects resulting from the PCV2 infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Acetylation of hMOF Modulates H4K16ac to Regulate DNA Repair Genes in Response to Oxidative Stress.

    PubMed

    Zhong, Jianing; Ji, Liying; Chen, Huiqian; Li, Xianfeng; Zhang, Jian'an; Wang, Xingxing; Wu, Weilin; Xu, Ying; Huang, Fei; Cai, Wanshi; Sun, Zhong Sheng

    2017-01-01

    Oxidative stress is considered to be a key risk state for a variety of human diseases. In response to oxidative stress, the regulation of transcriptional expression of DNA repair genes would be important to DNA repair and genomic stability. However, the overall pattern of transcriptional expression of DNA repair genes and the underlying molecular response mechanism to oxidative stress remain unclear. Here, by employing colorectal cancer cell lines following exposure to hydrogen peroxide, we generated expression profiles of DNA repair genes via RNA-seq and identified gene subsets that are induced or repressed following oxidative stress exposure. RRBS-seq analyses further indicated that transcriptional regulation of most of the DNA repair genes that were induced or repressed is independent of their DNA methylation status. Our analyses also indicate that hydrogen peroxide induces deacetylase SIRT1 which decreases chromatin affinity and the activity of histone acetyltransferase hMOF toward H4K16ac and results in decreased transcriptional expression of DNA repair genes. Taken together, our findings provide a potential mechanism by which oxidative stress suppresses DNA repair genes which is independent of the DNA methylation status of their promoters.

  8. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells.

    PubMed

    Dejeans, Nicolas; Tajeddine, Nicolas; Beck, Raphaël; Verrax, Julien; Taper, Henryk; Gailly, Philippe; Calderon, Pedro Buc

    2010-05-01

    Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells. 2009 Elsevier Inc. All rights reserved.

  9. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  10. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  11. Decreased plasma thiol antioxidant barrier and selenoproteins as potential biomarkers for ongoing methylmercury intoxication and an individual protective capacity.

    PubMed

    Usuki, Fusako; Fujimura, Masatake

    2016-04-01

    Manifestation of methylmercury (MeHg) toxicity depends on individual susceptibility to MeHg, as well as MeHg burden level. Therefore, biomarkers that reflect the protective capacity against MeHg are needed. The critical role of oxidative stress in the pathogenesis of MeHg cytotoxicity has been demonstrated. Because MeHg has high affinity for selenohydryl groups, sulfhydryl groups, and selenides, and causes posttranscriptional defects in selenoenzymes, proteins with selenohydryl and sulfhydryl groups should play a critical role in mediating MeHg-induced oxidative stress. Here, plasma oxidative stress markers and selenoproteins were investigated in MeHg-intoxicated rats showing neuropathological changes after 4 weeks of MeHg exposure. The thiol antioxidant barrier (-SHp) level significantly decreased 2 weeks after MeHg exposure, which is an early stage at which no systemic oxidative stress, histopathological changes, or clinical signs were detected. Diacron reactive oxidant metabolite (d-ROM) levels significantly increased 3 weeks after MeHg exposure, indicating the occurrence of systemic oxidative stress. Rats treated with lead acetate or cadmium chloride showed no changes in levels of -SHp and d-ROM. Selenoprotein P1 abundance significantly decreased in MeHg-treated rats, whereas it significantly increased in rats treated with Pb or Cd. Plasma selenium-dependent glutathione peroxidase (GPx3) activity also significantly decreased after MeHg exposure, whereas plasma non-selenoenzyme glutathione reductase activity significantly increased in MeHg-treated rats. The results suggest that decreased capacity of -SHp and selenoproteins (GPx3 and selenoprotein P) can be useful biomarkers of ongoing MeHg cytotoxicity and the individual protective capacity against the MeHg body burden.

  12. Intracerebroventricular tempol administration in older rats reduces oxidative stress in the hypothalamus but does not change STAT3 signalling or SIRT1/AMPK pathway.

    PubMed

    Toklu, Hale Z; Scarpace, Philip J; Sakarya, Yasemin; Kirichenko, Nataliya; Matheny, Michael; Bruce, Erin B; Carter, Christy S; Morgan, Drake; Tümer, Nihal

    2017-01-01

    Hypothalamic inflammation and increased oxidative stress are believed to be mechanisms that contribute to obesity. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol), a free radical scavenger, has been shown to reduce inflammation and oxidative stress. We hypothesized that brain infusion of tempol would reduce oxidative stress, and thus would reduce food intake and body weight and improve body composition in rats with age-related obesity and known elevated oxidative stress. Furthermore, we predicted an associated increase in markers of leptin signalling, including the silent mating type information regulator 2 homolog 1 (SIRT1)/5'AMP-activated protein kinase (AMPK) pathway and the signal transducer and activator of transcription 3 (STAT3) pathway. For this purpose, osmotic minipumps were placed in the intracerebroventricular region of young (3 months) and aged (23 months) male Fischer 344 x Brown Norway rats for the continuous infusion of tempol or vehicle for 2 weeks. Tempol significantly decreased (p < 0.01) nicotinamide adenine dinucleotide phosphate oxidase activity in the hypothalamus but failed to reduce food intake or weight gain and did not alter body composition. SIRT1 activity and Acetyl p53 were decreased and phosphorylation of AMPK was increased with age, but they were unchanged with tempol. Basal phosphorylation of STAT3 was unchanged with age or tempol. These results indicate that tempol decreases oxidative stress but fails to alter feeding behaviour, body weight, or body composition. Moreover, tempol does not modulate the SIRT1/AMPK/p53 pathway and does not change leptin signalling. Thus, a reduction in hypothalamic oxidative stress is not sufficient to reverse age-related obesity.

  13. Therapeutic Role of Resveratrol and Quercetin on Aortic Fibroblasts of Psammomys obesus After Oxidative Stress by Hydrogen Peroxide.

    PubMed

    Boumaza, Saliha; Belkebir, Aicha; Neggazi, Samia; Sahraoui, Hamid; Berdja, Sihem; Smail, Leila; Benazzoug, Yasmina; Kacimi, Ghoti; Aouichat Bouguerra, Souhila

    In our study, we propose to analyze the effects of resveratrol (RES) and quercetin (QRC) on proliferation markers, oxidative stress, apoptosis, and inflammation of aortic fibroblasts of Psammomys obesus after induced oxidative stress by hydrogen peroxide (H2O2). Fibroblasts were incubated in RES 375 μM and QRC 0.083 μM for 24 hours after exposure to H2O2 1.2 mM for 6 hours. We performed the proliferation rate, cells viability, morphological analyses, cytochrome c, Akt, ERK1/2, and p38 MAPK quantification. The redox status was achieved by proportioning of malondialdehyde, nitric monoxide, advanced oxidation protein products, carbonyl proteins, catalase, and superoxide dismutase activity. The inflammation was measured by TNFα, MCP1, and NF-kB assay. The extracellular matrix (ECM) remodeling was performed by SDS-PAGE. Stressed fibroblasts showed a decrease of cell proliferation and viability, hypertrophy and oncosis, chromatin hypercondensation and increase of cytochrome c release characteristic of apoptosis, activation of ERK1/2 and Akt pathway, and decreases in p38 MAPK pathways marking the cellular resistance. The redox state was disrupted by increased malondialdehyde, nitric monoxide, advanced oxidation protein products, carbonyl protein production, catalase and superoxide dismutase activity, and a decreased production of proteins including collagens. Inflammation state was marked by MCP-1, TNFα, and NF-kB increase. Treatment of fibroblasts stressed by RES and QRC inverted the oxidative stress situation decreasing apoptosis and inflammation, and improving the altered redox status and rearrangement of disorders observed in extracellular matrix. H2O2 induced biochemical and morphological alterations leading to apoptosis. An improved general condition is observed after treatment with RES and QRC; this explains the antioxidant and antiapoptotic effects of polyphenols.

  14. Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study.

    PubMed

    Hierso, Régine; Lemonne, Nathalie; Villaescusa, Rinaldo; Lalanne-Mistrih, Marie-Laure; Charlot, Keyne; Etienne-Julan, Maryse; Tressières, Benoit; Lamarre, Yann; Tarer, Vanessa; Garnier, Yohann; Hernandez, Ada Arce; Ferracci, Serge; Connes, Philippe; Romana, Marc; Hardy-Dessources, Marie-Dominique

    2017-03-01

    Painful vaso-occlusive crisis, a hallmark of sickle cell anaemia, results from complex, incompletely understood mechanisms. Red blood cell (RBC) damage caused by continuous endogenous and exogenous oxidative stress may precipitate the occurrence of vaso-occlusive crises. In order to gain insight into the relevance of oxidative stress in vaso-occlusive crisis occurrence, we prospectively compared the expression levels of various oxidative markers in 32 adults with sickle cell anaemia during vaso-occlusive crisis and steady-state conditions. Compared to steady-state condition, plasma levels of free haem, advanced oxidation protein products and myeloperoxidase, RBC caspase-3 activity, as well as the concentrations of total, neutrophil- and RBC-derived microparticles were increased during vaso-occlusive crises, whereas the reduced glutathione content was decreased in RBCs. In addition, natural anti-band 3 autoantibodies levels decreased during crisis and were negatively correlated with the rise in plasma advanced oxidation protein products and RBC caspase-3 activity. These data showed an exacerbation of the oxidative stress during vaso-occlusive crises in sickle cell anaemia patients and strongly suggest that the higher concentration of harmful circulating RBC-derived microparticles and the reduced anti-band 3 autoantibodies levels may be both related to the recruitment of oxidized band 3 into membrane aggregates. © 2016 John Wiley & Sons Ltd.

  15. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    PubMed

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p < 0.05) after chronic cold stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p < 0.05) in both of the acute and chronic cold stress groups. Malondialdehyde (MDA) content was significantly increased (p < 0.05) under cold stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  16. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans.

    PubMed

    Bito, Tomohiro; Misaki, Taihei; Yabuta, Yukinori; Ishikawa, Takahiro; Kawano, Tsuyoshi; Watanabe, Fumio

    2017-04-01

    Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B 12 deficiency, although the underlying disease mechanisms associated with vitamin B 12 deficiency are poorly understood. Vitamin B 12 deficiency was found to significantly increase cellular H 2 O 2 and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B 12 deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B 12 deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B 12 deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B 12 deficiency is partially attributable to oxidative stress. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Effects of isoquinoline alkaloid berberine on lipid peroxidation, antioxidant defense system, and liver damage induced by lead acetate in rats.

    PubMed

    Hasanein, Parisa; Ghafari-Vahed, Masumeh; Khodadadi, Iraj

    2017-01-01

    Liver is considered a target organ affected by lead toxicity. Oxidative stress is among the mechanisms involved in liver damage. Here we investigated the effects of the natural alkaloid berberine on oxidative stress and hepatotoxicity induced by lead in rats. Animals received an aqueous solution of lead acetate (500 mg Pb/l in the drinking water) and/or daily oral gavage of berberine (50 mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical, molecular, and histological evaluations. Lead-induced oxidative stress, shown by increasing lipid peroxidation along with a concomitant decrease in hepatic levels of thiol groups, total antioxidant capacity, the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and reduced versus oxidized glutathione ratio. Berberine corrected all the disturbances in oxidative stress markers induced by lead administration. Berberine also prevented the elevated levels of enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) and the decrease in body weight and albumin. The protective effects of berberine were comparable with silymarin. Furthermore, berberine attenuated liver damage, shown by decreased necrosis and inflammatory cell infiltration. Berberine represents a potential therapeutic option against lead-induced hepatotoxicity through inhibiting lipid peroxidation and enhancing antioxidant defenses. Berberine exerted protective effects on lead-induced oxidative stress and hepatotoxicity in rats.

  18. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    PubMed

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Detection and Quantification of Free Radicals in Peroxisomal Disorders: A Comparative Study with Oxidative Stress Parameters.

    PubMed

    Abd-Elmaksoud, Sohair Abd-El Mawgood; El-Bassyouni, Hala; Afifi, Hanan; Thomas, Manal Micheal; Ibrahim, Alshaymaa Ahmed; Shalaby, Aliaa; Hamid, Tamer Ahmed Abdel; Hamid, Nehal Abdel; El-Ghobary, Hany

    2015-11-01

    Free radicals have been thought to participate in pathogenesis of peroxisomal disorders. The aim of the work is to detect free oxide radicals in blood of patients with peroxisomal disorders and to study their relation with various oxidative stress parameters. Twenty patients with peroxisomal disorders and 14 age and sex matched healthy subjects were included in the study. Patients with peroxisomal disorders were subdivided according to diagnosis into peroxisomal biogenesis disorders and single enzyme deficiency. Oxidative stress was evaluated in both patients and control subjects by assessment of free radicals, malondialdehyde, nitric oxide metabolites and superoxide dismutase. There was increase in free radicals, malondialdehyde, nitric oxide metabolites in patients compared with control subjects. However, there was decrease in superoxide dismutase levels in patients compared with control subjects. We concluded that there is excess free radicals production accompanied with decrease in antioxidant defenses in patients with peroxisomal disorders. These results strongly support a role of free radicals in the pathophysiology of peroxisomal disorders and strengthen the importance of oxidative stress phenomenon in peroxisomal disorders pathogenesis.

  20. Physical exercise and oxidative stress in muscular dystrophies: is there a good balance?

    PubMed

    Chico, L; Ricci, G; Cosci O Di Coscio, M; Simoncini, C; Siciliano, G

    2017-07-01

    The effect of oxidative stress on muscle damage inducted by physical exercise is widely debated. It is generally agreed that endurance and intense exercise can increase oxidative stress and generate changes in antioxidant power inducing muscle damage; however, regular and moderate exercise can be beneficial for the health improving the antioxidant defense mechanisms in the majority of cases. Growing evidences suggest that an increased oxidative/nitrosative stress is involved in the pathogenesis of several muscular dystrophies (MDs). Notably, physical training has been considered useful for patients with these disorders. This review will focus on the involvement of oxidative stress in MDs and on the possible effects of physical activities to decrease oxidative damage and improve motor functions in MDs patients.

  1. Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related Factor 2).

    PubMed

    Sharma, Ritu S; Harrison, David J; Kisielewski, Dorothy; Cassidy, Diane M; McNeilly, Alison D; Gallagher, Jennifer R; Walsh, Shaun V; Honda, Tadashi; McCrimmon, Rory J; Dinkova-Kostova, Albena T; Ashford, Michael L J; Dillon, John F; Hayes, John D

    2018-03-01

    Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. Nrf2 +/+ and Nrf2 -/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.

  2. Hypothyroidism and oxidative stress: differential effect on the heart of virgin and pregnant rats.

    PubMed

    Carmona, Y V; Coria, M J; Oliveros, L B; Gimenez, M S

    2014-01-01

    The present study investigates the effects of hypothyroidism on both the redox state and the thyroid hormone receptors expression in the heart ventricle of virgin and pregnant rats.Hypothyroid state was induced by 6-n-propyl-2-thiouracil in drinking water given to Wistar rats starting 8 days before mating until day 21 of pregnancy or for 30 days in virgin rats. Serum paraoxonase-1 (PON-1) activity, serum and heart nitrites, and thiobarbituric acid-reactive substances (TBARS) were analyzed. Heart protein oxidation, as carbonyls, and copper-zinc superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx), and catalase (CAT) activities, were determined. In addition, heart expressions of NADPH oxidase (NOX-2), CAT, SOD, GPx, and thyroid receptors (TRα and TRβ) mRNA were assessed by RT-PCR. Inducible and endothelial Nitric Oxide Synthase (iNOS and eNOS) were determined by Western blot. Hypothyroidism in the heart of virgin rats decreased TRα and TRβ expressions, and induced oxidative stress, leading to a decrease of nitrites and an increase of carbonyls, NOX-2 mRNA, and GPx activity. A decreased PON-1 activity suggested low protection against oxidative stress in blood circulation. Pregnancy reduced TRα and TRβ mRNA expressions and induced oxidative stress by increasing nitrite and TBARS levels, SOD and CAT activities and NOX-2, eNOS and iNOS expressions, while hypothyroidism, emphasized the decreases of TRα mRNA levels and did not alter the redox state in the heart. TR expressions and redox balance of rat hearts depend on the physiological state. Pregnancy per se seems to protect the heart against oxidative stress induced by hypothyroidism. Supporting Information for this article is available online at http://www.thieme-connect.de/ejournals/toc/hmr. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Local and systemic oxidative stress and glucocorticoid receptor levels in chronic obstructive pulmonary disease patients

    PubMed Central

    Zeng, Mian; Li, Yue; Jiang, Yujie; Lu, Guifang; Huang, Xiaomei; Guan, Kaipan

    2013-01-01

    BACKGROUND: Previous studies have indicated that oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). OBJECTIVES: To study local and systemic oxidative stress status in COPD patients, and to clarify the relationship between local and systemic oxidative stress. METHODS: Lipid peroxide malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and GSH peroxidase (GSH-PX) levels in induced sputum and plasma, as well as glucocorticoid receptor (GR) levels in peripheral blood leukocytes were examined in 43 acute exacerbation of COPD patients (group A), 35 patients with stable COPD (group B) and 28 healthy controls (14 smokers [group C]; 14 nonsmokers [group D]). RESULTS: MDA levels in induced sputum and plasma decreased progressively in groups A to D, with significant differences between any two groups (P<0.001). GSH, SOD and GSH-PX levels in both induced sputum and plasma increased progressively in groups A to D, with significant differences between any two groups (P<0.001). GR levels in peripheral blood leukocytes decreased progressively in groups D to A (all comparisons P<0.001). Pearson analysis revealed strong correlations between MDA, GSH, SOD and GSH-PX levels in plasma and induced sputum. The activity of SOD in plasma and sputum were both positively correlated with GR levels (partial correlation coefficients 0.522 and 0.574, respectively [P<0.001]). CONCLUSIONS: Oxidative stress levels were elevated in COPD patients. There was a correlation between local and systemic oxidative status in COPD, and between decreased SOD activity and decreased GR levels in COPD patients. PMID:23457673

  4. Evolution of residual stresses in micro-arc oxidation ceramic coatings on 6061 Al alloy

    NASA Astrophysics Data System (ADS)

    Shen, Dejiu; Cai, Jingrui; Guo, Changhong; Liu, Peiyu

    2013-11-01

    Most researches on micro-arc oxidation mainly focus on the application rather than discovering the evolution of residual stresses. However, residual stresses in the surface coatings of structural components have adverse effects on their properties, such as fatigue life, dimensional stability and corrosion resistance, etc. The micro-arc oxidation ceramic coatings are produced on the surfaces of 6061 aluminum alloy by a homemade asymmetric AC type of micro-arc oxidation equipment of 20 kW. A constant current density of 4.4±0.1 A/dm2 and a self-regulated composite electrolyte are used. The micro-arc oxidation treatment period ranges from 10 min to 40 min, and the thickness of the ceramic coatings is more than 20 μm. Residual stresses attributed to γ-Al2O3 constituent in the coatings at different micro-arc oxidation periods are analyzed by an X-ray diffractometer using the sin2 ψ method. The analysis results show that the residual stress in the ceramic coatings is compressive in nature, and it increases first and then decreases with micro-arc oxidation time increase. The maximum stress value is 1 667±20 MPa for period of 20 min. Through analyzing the coating thickness, surface morphology and phase composition, it is found that the residual stress in the ceramic coatings is linked closely with the coating growth, the phase composition and the micro cracks formed. It is also found that both the heat treatment and the ultrasonic action release remarkably the residual compressive stress. The heat treatment makes the residual compressive stress value decrease 1 378 MPa. The ultrasonic action even alters the nature of the residual stress, making the residual compressive stress change into a residual tensile stress.

  5. Effect of alpha-tocopherol supplementation on renal oxidative stress and Na+/K+ -adenosine triphosphatase in ethanol treated Wistar rats.

    PubMed

    Mailankot, Maneesh; Jayalekshmi, H; Chakrabarti, Amit; Alang, Neha; Vasudevan, D M

    2009-07-01

    Ethanol intoxication resulted in high extent of lipid peroxidation, and reduction in antioxidant defenses (decreased GSH, GSH/GSSG ratio, and catalase, SOD and GPx activities) and (Na+/K+)-ATPase activity in kidney. Alpha-tocopherol treatment effectively protected kidney from ethanol induced oxidative challenge and improved renal (Na+/K+)-ATPase activity. Ethanol induced oxidative stress in the kidney and decreased (Na+/K+)-ATPase activity could be reversed by treatment with ascorbic acid.

  6. Tart cherry extracts reduce inflammatory and oxidative stress signaling in microglial cells

    USDA-ARS?s Scientific Manuscript database

    Tart cherries contain an array of polyphenols that can decrease inflammation and oxidative stress (OS), which contribute to cognitive declines seen in aging populations. Previous studies have shown that polyphenols from dark-colored fruits can reduce stress-mediated signaling in BV-2 mouse microglia...

  7. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    PubMed

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  8. Protective Effects of Vitamin E Consumption against 3MT Electromagnetic Field Effects on Oxidative Parameters in Substantia Nigra in Rats.

    PubMed

    Ghanbari, Ahmad Ali; Shabani, Kobra; Mohammad Nejad, Daryoush

    2016-10-01

    Electromagnetic fields (EMFs) can influence the biological system by the formation of free radicals in cells. The EMFs are able to deteriorate defense system against free radicals that leads to oxidative stress (OS). Lipid peroxidation process (LPO) is an index of oxidative stress, and the Malandialdehyde (MDA) is the final product of LPO. Vitamin E is the most important antioxidant which inhibits the LPO process. The aim of this study was to evaluate the effects of 3MT EMF exposure on oxidative stress parameters in substantia nigra and the role of vitamin E in reducing oxidative stress and preventing of LPO process. 40 male Wistar rats were randomly divided into 4 groups: 1) Control group: received standard food without exposure to EMF and without consumption of vitamin E, 2) Experimental group 1: was exposed to EMF (3MT) 4 h/day for 50 days, 3) The experimental group 2: received 200 mg/kg vitamin E with gavage every day and also was exposed to EMF (3MT) 4 h/day for 50 days, 4) Sham group: received water with gavage for 50 days. A significant increase in MDA levels and Glutation peroxidase (GSH-Px) activity of the substantia nigra following 50 days exposure to EMF was detected, but the superoxide dismutase (SOD) activity was decreased. Exposure did not change total antioxidant capacity (TAC) levels in plasma. Vitamin E treatment significantly prevented the increase of the MDA levels and GSHPx activity and also prevented the decrease of SOD activity in tissue but did not alter TAC levels. The GSH-Px activity increased because the duration and intensity of exposure were not enough to decrease it. We demonstrated two important findings; that 50 days exposure to 3 MT electromagnetic field caused oxidative stress by increasing the levels of MDA, and decreasing SOD activity in the substantia nigra; and that treatment with the vitamin E significantly prevented the oxidative stress and lipid peroxidation.

  9. Elevation of Glutathione as a Therapeutic Strategy in Alzheimer Disease

    PubMed Central

    Pocernich, Chava B.; Butterfield, D. Allan

    2011-01-01

    Oxidative stress has been associated with the onset and progression of mild cognitive impairment (MCI) and Alzheimer disease (AD). AD and MCI brain and plasma display extensive oxidative stress as indexed by protein oxidation, lipid peroxidation, free radical formation, DNA oxidation, and decreased antioxidants. The most abundant endogenous antioxidant, glutathione, plays a significant role in combating oxidative stress. The ratio of oxidized to reduced glutathione is utilized as a measure of intensity of oxidative stress. Antioxidants have long been considered as an approach to slow down AD progression. In this review, we focus on the elevation on glutathione through N-acytl-cysteine (NAC) and γ-glutamylcysteine ethyl ester (GCEE) as a potential therapeutic approach for Alzheimer disease. PMID:22015471

  10. PML is a ROS sensor activating p53 upon oxidative stress.

    PubMed

    Niwa-Kawakita, Michiko; Ferhi, Omar; Soilihi, Hassane; Le Bras, Morgane; Lallemand-Breitenbach, Valérie; de Thé, Hugues

    2017-11-06

    Promyelocytic leukemia (PML) nuclear bodies (NBs) recruit partner proteins, including p53 and its regulators, thereby controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB biogenesis. However, physiological links between PML and oxidative stress response in vivo remain unexplored. Here, we identify PML as a reactive oxygen species (ROS) sensor. Pml -/- cells accumulate ROS, whereas PML expression decreases ROS levels. Unexpectedly, Pml -/- embryos survive acute glutathione depletion. Moreover, Pml -/- animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml -/- animals fail to properly activate oxidative stress-responsive p53 targets, whereas the NRF2 response is amplified and accelerated. Finally, in an oxidative stress-prone background, Pml -/- animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal antioxidant properties but also drives oxidative stress-induced changes in cell survival/proliferation or metabolism in vivo. Through NB biogenesis, PML therefore couples ROS sensing to p53 responses, shedding a new light on the role of PML in senescence or stem cell biology. © 2017 Niwa-Kawakita et al.

  11. The Role of Oxidative Stress in Apoptosis of Breast Cancer.

    DTIC Science & Technology

    1995-09-27

    supported by studies demonstrating that inappropriate expression of an oncogene, bcl - 2 , prevents cell death and thereby promotes Page _1L ANNUAL REPORT...see Appendix: Baker et al., "Decreased Antioxidant Defense and Increased Oxidant Stress During Dexamethasone-Induced Apoptosis: bcl - 2 Selectively...Alzheimer’s disease. The bcl - 2 oncogene blocks apoptosis in diverse systems and protects cells against oxidative stress- induced damage (Hockenbery et

  12. Exercise through a cardiac rehabilitation program attenuates oxidative stress in patients submitted to coronary artery bypass grafting.

    PubMed

    Taty Zau, José Francisco; Costa Zeferino, Rodrigo; Sandrine Mota, Nádia; Fernandes Martins, Gerez; Manoel Serra, Salvador; Bonates da Cunha, Therezil; Medeiros Lima, Daniel; Bragança Pereira, Basilio de; Matos do Nascimento, Emília; Filho, Danilo Wilhelm; Curi Pedrosa, Rozangela; Pedrosa, Roberto Coury

    2018-12-01

    Cardiovascular disease is the main cause of morbidity and mortality in the world and oxidative stress has been implicated in the pathogenesis. Cardiac rehabilitation in patients with coronary artery disease submitted to coronary artery bypass grafting may prevent cardiovascular events probably through the attenuation of oxidative stress. The aim of this study was to evaluate the benefits of a cardiac rehabilitation program in the control of the systemic oxidative stress. The studied population consisted of 40 patients, with chronic stable coronary artery disease submitted to coronary artery bypass grafting, who attended a cardiac rehabilitation program. Biomarkers of oxidative stress were evaluated in the blood of these patients at different moments. After the onset of cardiac rehabilitation, there was a significant and progressive decrease in thiobarbituric acid reactive substances levels and protein carbonyls, an initial increase and subsequent decrease in superoxide dismutase, catalase and glutathione peroxidase activities. Also, a progressive increase of uric acid, while ferric reducing antioxidant power levels increased only at the end of the cardiac rehabilitation and a tendency to increase of glutathione contents. The results suggest that regular exercise through a cardiac rehabilitation program can attenuate oxidative stress in chronic coronary artery disease patients submitted to coronary artery bypass grafting.

  13. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health

    PubMed Central

    Prasad, Ananda S.

    2014-01-01

    Zinc supplementation trials in the elderly showed that the incidence of infections was decreased by approximately 66% in the zinc group. Zinc supplementation also decreased oxidative stress biomarkers and decreased inflammatory cytokines in the elderly. In our studies in the experimental model of zinc deficiency in humans, we showed that zinc deficiency per se increased the generation of IL-1β and its mRNA in human mononuclear cells following LPS stimulation. Zinc supplementation upregulated A20, a zinc transcription factor, which inhibited the activation of NF-κB, resulting in decreased generation of inflammatory cytokines. Oxidative stress and chronic inflammation are important contributing factors for several chronic diseases attributed to aging, such as atherosclerosis and related cardiac disorders, cancer, neurodegeneration, immunologic disorders and the aging process itself. Zinc is very effective in decreasing reactive oxygen species (ROS). In this review, the mechanism of zinc actions on oxidative stress and generation of inflammatory cytokines and its impact on health in humans will be presented. PMID:25988117

  14. Association of military training with oxidative stress and overreaching.

    PubMed

    Tanskanen, Minna M; Uusitalo, Arja L; Kinnunen, Hannu; Häkkinen, Keijo; Kyröläinen, Heikki; Atalay, Mustafa

    2011-08-01

    We hypothesized that increased oxidative stress and disrupted redox balance may be predisposing factors and markers for overreaching (OR). The study's purpose was to examine whether oxidative stress markers and antioxidant status and physical fitness are related to OR during an 8-wk military basic training (BT) period. Oxidative stress and antioxidant status were evaluated in the beginning and after 4 and 7 wk of training in 35 males (age = 19.7 ± 0.3 yr) at rest and immediately after a 45-min submaximal exercise. Physical activity (PA) was monitored by an accelerometer throughout BT. Indicators of OR were also examined. From baseline to week 4, increased daytime moderate to vigorous PA led to concomitant decreases in the ratio of oxidized to total glutathione (GSSG/TGSH) and GSSG. After 4 wk of BT, GSSG/TGSH and GSSG returned to the baseline values at rest, whereas PA remained unchanged. At every time point, acute exercise decreased TGSH and increased GSSG and GSSG/TGSH, whereas a decrease was observed in antioxidant capacity after 4 wk of training. In the beginning of BT, OR subjects (11 of the 35 males) had higher GSSG, GSSG/TGSH, and malondialdehyde (a marker of lipid peroxidation) at rest (P < 0.01-0.05) and lower response of GSSG and GSSG/TGSH ratio (P < 0.01) to exercise than non-OR subjects. Moreover, OR subjects had higher PA during BT than non-OR (P < 0.05). The sustained training load during the last 4 wk of BT led to oxidative stress observable both at rest and after submaximal exercise. Increased oxidative stress may be a marker of insufficient recovery leading possibly to OR.

  15. Age-Related Decrease in Heat Shock 70-kDa Protein 8 in Cerebrospinal Fluid Is Associated with Increased Oxidative Stress.

    PubMed

    Loeffler, David A; Klaver, Andrea C; Coffey, Mary P; Aasly, Jan O; LeWitt, Peter A

    2016-01-01

    Age-associated declines in protein homeostasis mechanisms ("proteostasis") are thought to contribute to age-related neurodegenerative disorders. The increased oxidative stress which occurs with aging can activate a key proteostatic process, chaperone-mediated autophagy. This study investigated age-related alteration in cerebrospinal fluid (CSF) concentrations of heat shock 70-kDa protein 8 (HSPA8), a molecular chaperone involved in proteostatic mechanisms including chaperone-mediated autophagy, and its associations with indicators of oxidative stress (8-hydroxy-2'-deoxyguanosine [8-OHdG] and 8-isoprostane) and total anti-oxidant capacity. We examined correlations between age, HSPA8, 8-OHdG, 8-isoprostane, and total antioxidant capacity (TAC) in CSF samples from 34 healthy subjects ranging from 20 to 75 years of age. Age was negatively associated with HSPA8 (ρ = -0.47; p = 0.005). An age-related increase in oxidative stress was indicated by a positive association between age and 8-OHdG (ρ = 0.61; p = 0.0001). HSPA8 was moderately negatively associated with 8-OHdG (ρ = -0.58; p = 0.0004). Age and HSPA8 were weakly associated with 8-isoprostane and TAC (range of ρ values: -0.15 to 0.16). Our findings in this exploratory study suggest that during healthy aging, CSF HSPA8 may decrease, perhaps due in part to an increase in oxidative stress. Our results also suggest that 8-OHdG may be more sensitive than 8-isoprostane for measuring oxidative stress in CSF. Further studies are indicated to determine if our findings can be replicated with a larger cohort, and if the age-related decrease in HSPA8 in CSF is reflected by a similar change in the brain.

  16. Age-Related Decrease in Heat Shock 70-kDa Protein 8 in Cerebrospinal Fluid Is Associated with Increased Oxidative Stress

    PubMed Central

    Loeffler, David A.; Klaver, Andrea C.; Coffey, Mary P.; Aasly, Jan O.; LeWitt, Peter A.

    2016-01-01

    Age-associated declines in protein homeostasis mechanisms (“proteostasis”) are thought to contribute to age-related neurodegenerative disorders. The increased oxidative stress which occurs with aging can activate a key proteostatic process, chaperone-mediated autophagy. This study investigated age-related alteration in cerebrospinal fluid (CSF) concentrations of heat shock 70-kDa protein 8 (HSPA8), a molecular chaperone involved in proteostatic mechanisms including chaperone-mediated autophagy, and its associations with indicators of oxidative stress (8-hydroxy-2′-deoxyguanosine [8-OHdG] and 8-isoprostane) and total anti-oxidant capacity. We examined correlations between age, HSPA8, 8-OHdG, 8-isoprostane, and total antioxidant capacity (TAC) in CSF samples from 34 healthy subjects ranging from 20 to 75 years of age. Age was negatively associated with HSPA8 (ρ = –0.47; p = 0.005). An age-related increase in oxidative stress was indicated by a positive association between age and 8-OHdG (ρ = 0.61; p = 0.0001). HSPA8 was moderately negatively associated with 8-OHdG (ρ = –0.58; p = 0.0004). Age and HSPA8 were weakly associated with 8-isoprostane and TAC (range of ρ values: –0.15 to 0.16). Our findings in this exploratory study suggest that during healthy aging, CSF HSPA8 may decrease, perhaps due in part to an increase in oxidative stress. Our results also suggest that 8-OHdG may be more sensitive than 8-isoprostane for measuring oxidative stress in CSF. Further studies are indicated to determine if our findings can be replicated with a larger cohort, and if the age-related decrease in HSPA8 in CSF is reflected by a similar change in the brain. PMID:27507943

  17. Evaluation of oxidative status in patients with brucellosis.

    PubMed

    Serefhanoglu, Kivanc; Taskin, Abdullah; Turan, Hale; Timurkaynak, Funda Ergin; Arslan, Hande; Erel, Ozcan

    2009-08-01

    Oxidative stress can be defined as an increase in oxidants and/or a decrease in antioxidant capacity. We aimed to determine total antioxidant capacity (TAC), total peroxide, malondialdehyde and catalase levels in plasma samples, and calculation of oxidative stress index (OSI) in patients with brucellosis to evaluate their oxidative status using a novel automated method. Sixty-nine patients with brucellosis and 69 healthy control subjects were included in the present study. Plasma levels of total peroxide and malondialdehyde were significantly increased in patients as compared with healthy controls (p<0.001 and p<0.001, respectively). In contrast, TAC level was significantly lower in patients as compared with controls (p<0.001). There was no statistically significant difference between the catalase results of the two groups (p>0.05). OSI level was significantly increased in patients as compared with healthy controls (p<0.001). In conclusion, oxidants were increased and antioxidants were decreased in patients with brucellosis. Oxidative stress was increased in patients with brucellosis.

  18. Mild zinc deficiency in male and female rats: early postnatal alterations in renal nitric oxide system and morphology.

    PubMed

    Tomat, Analia Lorena; Veiras, Luciana Cecilia; Aguirre, Sofía; Fasoli, Héctor; Elesgaray, Rosana; Caniffi, Carolina; Costa, María Ángeles; Arranz, Cristina Teresa

    2013-03-01

    Fetal and postnatal zinc deficiencies induce an increase in arterial blood pressure and impair renal function in male adult rats. We therefore hypothesized that these renal alterations are present in early stages of life and that there are sexual differences in the adaptations to this nutritional injury. The aim was to study the effects of moderate zinc deficiency during fetal life and lactation on renal morphology, oxidative stress, apoptosis, and the nitric oxide system in male and female rats at 21 d of life. Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy to weaning. Glomerulus number, morphology, oxidative stress, apoptotic cells, nitric oxide synthase activity, and protein expression were evaluated in the kidneys of offspring at 21 d. Zinc deficiency decreased the nephron number, induced glomerular hypertrophy, increased oxidative damage, and decreased nitric oxide synthase activity in the male and female rat kidneys. Nitric oxide synthase activity was not affected by inhibitors of the neuronal or inducible isoforms, so nitric oxide was mainly generated by the endothelial isoenzyme. Gender differences were observed in glomerular areas and antioxidant enzyme activities. Zinc deficiency during fetal life and lactation induces an early decrease in renal functional units, associated with a decrease in nitric oxide activity and an increase in oxidative stress, which would contribute to increased arterial blood pressure and renal dysfunction in adulthood. The sexual differences observed in this model may explain the dissimilar development of hypertension and renal diseases in adult life. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A review: oxidative stress in fish induced by pesticides.

    PubMed

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  20. Antioxidants Modulate the Antiproliferative Effects of Nitric Oxide on Vascular Smooth Muscle Cells and Adventitial Fibroblasts by Regulating Oxidative Stress

    PubMed Central

    Gregory, Elaine K.; Vavra, Ashley K.; Moreira, Edward S.; Havelka, George E.; Jiang, Qun; Lee, Vanessa R.; Van Lith, Robert; Ameer, Guillermo A.; Kibbe, Melina R.

    2011-01-01

    Background S-nitrosothiols (SNO) release nitric oxide (NO) through interaction with ascorbic acid (AA). However, little is known about their combined effect in the vasculature. The aim of this study is to investigate the effect of AA on SNO-mediated NO release, proliferation, cell cycle progression, cell death and oxidative stress in vascular cells. Methods VSMC and adventitial fibroblasts (AF) harvested from the aortae of Sprague Dawley rats were treated with AA, ± S-nitrosoglutathione (GSNO), or ± diethylenetriamine NONOate (DETA/NO). NO release, proliferation, cell cycle progression, cell death, and oxidative stress were determined by the Greiss reaction, [3H]-thymidine incorporation, flow cytometry, trypan blue exclusion, and DCF staining, respectively. Results AA increased NO release from GSNO 3-fold (p<0.001). GSNO and DETA/NO significantly decreased proliferation, but AA abrogated this effect (p<0.05). Mirroring the proliferation data, changes in cell cycle progression induced by GSNO and DETA/NO were reversed by addition of AA. GSNO- and DETA/NO-mediated increases in oxidative stress were significantly decreased by addition of AA (p<0.001). Conclusion Despite causing increased NO release from GSNO, AA reduced the antiproliferative and cell cycle effects of GSNO and DETA/NO through modulation of oxidative stress. PMID:21944289

  1. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat.

    PubMed

    Wang, Lin-Lin; Yu, Qun-Li; Han, Ling; Ma, Xiu-Li; Song, Ren-De; Zhao, Suo-Nan; Zhang, Wen-Hua

    2018-04-01

    This study investigated the effect of reactive oxygen species-mediated oxidative stress on activation of mitochondrial apoptosis and tenderness of yak meat during postmortem ageing. Oxidative stress degree, Ca 2+ levels, membrane permeability transition pore opening, mitochondrial membrane potential, apoptotic factors and the shear force were examined. Results showed that the ROS generated by H 2 O 2 significantly increased mitochondrial oxidative stress by decreasing the activities of superoxide dismutase, catalase and glutathione peroxidase, and increasing lipid peroxidation. Furthermore, oxidative stress enhanced Ca 2+ production and cytochrome c release, changed the levels of Bcl-2 family proteins and activated caspase-9 and -3 activities. Ultimately, oxidative stress increased the apoptosis rate and tenderness of yak meat. These observations confirmed that ROS-mediated oxidative stress participates in the activation of the apoptotic cascade reaction involving Ca 2+ and Bcl-2 family proteins. The results further suggested that ROS-mediated oxidative stress plays a significant role in meat tenderization through the mitochondrial apoptotic pathway. Copyright © 2017. Published by Elsevier Ltd.

  2. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats

    PubMed Central

    Azman, Khairunnuur Fairuz; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system. PMID:27119005

  3. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress

    PubMed Central

    Du, Gaofei; Sun, Xuesong; He, Qing-Yu; Zhang, Gong

    2015-01-01

    Translational systems can respond promptly to sudden environmental changes to provide rapid adaptations to environmental stress. Unlike the well-studied translational responses to oxidative stress in eukaryotic systems, little is known regarding how prokaryotes respond rapidly to oxidative stress in terms of translation. In this study, we measured protein synthesis from the entire Escherichia coli proteome and found that protein synthesis was severely slowed down under oxidative stress. With unchanged translation initiation, this slowdown was caused by decreased translation elongation speed. We further confirmed by tRNA sequencing and qRT-PCR that this deceleration was caused by a global, enzymatic downregulation of almost all tRNA species shortly after exposure to oxidative agents. Elevation in tRNA levels accelerated translation and protected E. coli against oxidative stress caused by hydrogen peroxide and the antibiotic ciprofloxacin. Our results showed that the global regulation of tRNAs mediates the rapid adjustment of the E. coli translation system for prompt adaptation to oxidative stress. PMID:26090660

  4. Lifestyle and metabolic approaches to maximizing erectile and vascular health.

    PubMed

    Meldrum, D R; Gambone, J C; Morris, M A; Esposito, K; Giugliano, D; Ignarro, L J

    2012-01-01

    Oxidative stress and inflammation, which disrupt nitric oxide (NO) production directly or by causing resistance to insulin, are central determinants of vascular diseases including ED. Decreased vascular NO has been linked to abdominal obesity, smoking and high intakes of fat and sugar, which all cause oxidative stress. Men with ED have decreased vascular NO and circulating and cellular antioxidants. Oxidative stress and inflammatory markers are increased in men with ED, and all increase with age. Exercise increases vascular NO, and more frequent erections are correlated with decreased ED, both in part due to stimulation of endothelial NO production by shear stress. Exercise and weight loss increase insulin sensitivity and endothelial NO production. Potent antioxidants or high doses of weaker antioxidants increase vascular NO and improve vascular and erectile function. Antioxidants may be particularly important in men with ED who smoke, are obese or have diabetes. Omega-3 fatty acids reduce inflammatory markers, decrease cardiac death and increase endothelial NO production, and are therefore critical for men with ED who are under age 60 years, and/or have diabetes, hypertension or coronary artery disease, who are at increased risk of serious or even fatal cardiac events. Phosphodiesterase inhibitors have recently been shown to improve antioxidant status and NO production and allow more frequent and sustained penile exercise. Some angiotensin II receptor blockers decrease oxidative stress and improve vascular and erectile function and are therefore preferred choices for lowering blood pressure in men with ED. Lifestyle modifications, including physical and penile-specific exercise, weight loss, omega-3 and folic acid supplements, reduced intakes of fat and sugar, and improved antioxidant status through diet and/or supplements should be integrated into any comprehensive approach to maximizing erectile function, resulting in greater overall success and patient satisfaction, as well as improved vascular health and longevity.

  5. Modulation of apoptosis by sulforaphane is associated with PGC-1α stimulation and decreased oxidative stress in cardiac myoblasts.

    PubMed

    Fernandes, Rafael O; Bonetto, Jéssica H P; Baregzay, Boran; de Castro, Alexandre L; Puukila, Stephanie; Forsyth, Heidi; Schenkel, Paulo C; Llesuy, Susana F; Brum, Ilma Simoni; Araujo, Alex Sander R; Khaper, Neelam; Belló-Klein, Adriane

    2015-03-01

    Sulforaphane is a naturally occurring isothiocyanate capable of stimulating cellular antioxidant defenses and inducing phase 2 detoxifying enzymes, which can protect cells against oxidative damage. Oxidative stress and apoptosis are intimately involved in the pathophysiology of cardiac diseases. Although sulforaphane is known for its anticancer benefits, its role in cardiac cells is just emerging. The aim of the present study was to investigate whether sulforaphane can modulate oxidative stress, apoptosis, and correlate with PGC-1α, a transcriptional cofactor involved in energy metabolism. H9c2 cardiac myoblasts were incubated with R-sulforaphane 5 µmol/L for 24 h. Cell viability, ANP gene expression, oxidative stress and apoptosis markers, and protein expression of PGC-1α were studied. In cells treated with sulforaphane, cellular viability increased (12 %) and ANP gene expression decreased (46 %) compared to control cells. Moreover, sulforaphane induced a significant increase in superoxide dismutase (103 %), catalase (101 %), and glutathione S-transferase (72 %) activity, reduced reactive oxygen species levels (15 %) and lipid peroxidation (65 %), as well as stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (4-fold). Sulforaphane also promoted an increase in the expression of the anti-apoptotic protein Bcl-2 (60 %), decreasing the Bax/Bcl-2 ratio. Active Caspase 3\\7 and p-JNK/JNK were also reduced by sulforaphane, suggesting a reduction in apoptotic signaling. This was associated with an increased protein expression of PGC-1α (42 %). These results suggest that sulforaphane offers cytoprotection to cardiac cells by activating PGC1-α, reducing oxidative stress, and decreasing apoptosis signaling.

  6. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients

    PubMed Central

    L Gupta, Krishan; Sahni, Nancy

    2012-01-01

    Context Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Evidence Acquisitions Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Results Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Conclusions Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients. PMID:24475404

  7. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients.

    PubMed

    L Gupta, Krishan; Sahni, Nancy

    2012-10-01

    Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients.

  8. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis.

    PubMed

    Altindag, Ozlem; Erel, Ozcan; Aksoy, Nurten; Selek, Sahabettin; Celik, Hakim; Karaoglanoglu, Mustafa

    2007-02-01

    The purpose of this study was to determine serum oxidative/antioxidative status in patients with knee osteoarthritis and its relation with prolidase activity, which plays an important role in collagen metabolism. Serum antioxidative status was evaluated by measuring total antioxidant capacity (TAC), thiol level and catalase enzyme activity in patients with osteoarthritis and in healthy controls. Serum oxidative status was evaluated by measuring total peroxide (TP) and lipid hydroperoxide. Oxidative stress index (OSI) was calculated. Prolidase enzyme activity was measured to investigate the collagen metabolism. Serum TAC, thiol level, catalase activity and prolidase activity were significantly lower in patients than in controls (P < 0.001, for all). In contrast, TP, lipid hydroperoxide and OSI values were significantly higher in patients than in controls (P < 0.001 for all). Further, prolidase activity was negatively correlated with TP and OSI, and positively correlated with TAC. The present results indicate that the oxidant parameters increased and antioxidant parameters decreased in patients with osteoarthritis; therefore, these patients may be exposed to a potent oxidative stress. Decreased collagen metabolism may be related with oxidative stress, which has a role in the ethiopathogenesis and/or in the progression of the disease.

  9. Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams

    USGS Publications Warehouse

    Niyogi, Dev K.; Lewis, William M.; McKnight, Diane M.

    2002-01-01

    This paper proposes a hypothesis that relates biodi- versity, community biomass, and ecosystem func- tion to a gradient of stress. According to this hy- pothesis, biodiversity has a low threshold of response to stress, whereas biomass and function are stable or increase under low to moderate stress and decrease only under high stress. This hypothe- sis was tested by examining communities of pri- mary producers in streams under stress from mine drainage in the Rocky Mountains of Colorado, USA. Mine drainage exerts chemical stress (low pH, dis- solved metals) as well as physical stress (deposition of metal oxides) on stream biota. Diversity of pri- mary producers was usually more sensitive to stress from mine drainage than community biomass (chlorophyll a) or primary production. Diversity was negatively related to all stresses from mine drainage, but it was especially low in streams with low pH or high concentration of dissolved zinc. Biomass and production were high in streams with only chemical stress, but they were often low in streams with physical stress caused by metal oxide deposition. Stream sites with aluminum oxide dep- osition usually had very little algal biomass. The rate of metal oxide deposition, presence of alumi- num oxides, and pH together explained 65% of the variation in biomass. The rate of net primary pro- duction was highly correlated with biomass and had a similar response to stress from mine drainage. Overall, chemical stresses (low pH, high concentra- tion of zinc) generally led to the hypothesized trends in our model of ecosystems under stress. Physical stress (deposition of metal oxides), how- ever, led to variable responses, and often decreased biomass and function even at low intensity, con- trary to the original hypothesis. Thus, the nature of ecosystem response to stress may differ for chemical and physical stresses

  10. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    PubMed

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  11. An oral absorbent, surface-deacetylated chitin nano-fiber ameliorates renal injury and oxidative stress in 5/6 nephrectomized rats.

    PubMed

    Anraku, Makoto; Tabuchi, Ryo; Ifuku, Shinsuke; Nagae, Tomone; Iohara, Daisuke; Tomida, Hisao; Uekama, Kaneto; Maruyama, Toru; Miyamura, Shigeyuki; Hirayama, Fumitoshi; Otagiri, Masaki

    2017-04-01

    In this study, we report that surface-deacetylated chitin nano-fibers (SDACNFs) are more effective in decreasing renal injury and oxidative stress than deacetylated chitin powder (DAC) in 5/6 nephrectomized rats. An oral administration of low doses of SDACNFs (40mg/kg/day) over a 4 week period resulted in a significant decrease in serum indoxyl sulfate, creatinine and urea nitrogen levels, compared with a similar treatment with DAC or AST-120. The SDACNFs treatment also resulted in an increase in antioxidant potential, compared with that for DAC or AST-120. Immunohistochemical analyses also demonstrated that SDACNFs treated CRF rats showed a decrease in the amount of accumulated 8-OHdG compared with the CRF group. These results suggest that the ingestion of SDCH-NF results in a significant reduction in the levels of pro-oxidants, such as uremic toxins, in the gastrointestinal tract, thereby inhibiting the subsequent development of oxidative stress in the systemic circulation. Copyright © 2016. Published by Elsevier Ltd.

  12. Effects of combined candesartan and ACE inhibitors on BNP, markers of inflammation and oxidative stress, and glucose regulation in patients with symptomatic heart failure.

    PubMed

    White, Michel; Lepage, Serge; Lavoie, Joel; De Denus, Simon; Leblanc, Marie-Hélène; Gossard, Denis; Whittom, Lucette; Racine, Normand; Ducharme, Anique; Dabouz, Farida; Rouleau, Jean-Lucien; Touyz, Rhian

    2007-03-01

    We assessed the effects of candesartan in addition to angiotensin-converting enzyme (ACE) inhibitors on N-terminal pro-type natriuretic peptide (Nt-proBNP), systemic markers of inflammation and oxidative stress as well as on glucose regulation in patients with heart failure (HF). Eighty patients with HF ages 62.5 +/- 8.4 years presenting mostly with New York Heart Association class II symptoms (class II = 57.5%, III = 41.3%), and mean left ventricular ejection fraction 27.1 +/- 7.3% were recruited. The patients were randomized to receive candesartan titrated to 32 mg 1 per day versus placebo in double-blind fashion for 6 months. Nt-proBNP, markers of inflammation and oxidative stress, glucose, insulin, and fasting insulin resistance index were analyzed. Candesartan decreased Nt-proBNP (median value = 12.4% versus -20.4%; [candesartan] P = .05), and high-sensitivity C-reactive protein (hsCRP) (+5.32% versus -20.3% [candesartan]; P = 0.046), without significantly influencing serum interleukin-6, interleukin-18, adhesion molecules, or markers of oxidative stress. Blood glucose decreased in patients treated with candesartan with a significantly greater effect in patients with higher blood glucose levels (P < .01 for interaction). The addition of candesartan to ACE inhibitor and beta-blocker decreases Nt-proBNP and hsCRP, but does not change the other markers of inflammation or oxidative stress in patients with heart failure. Dual angiotensin-II suppression also decreased blood glucose with a greater impact in patients with higher blood glucose level.

  13. An association of cocoa consumption with improved physical fitness and decreased muscle damage and oxidative stress in athletes.

    PubMed

    González-Garrido, José A; García-Sánchez, José R; Garrido-Llanos, Silvia; Olivares-Corichi, Ivonne M

    2017-04-01

    Several studies have demonstrated the protective effects of cocoa consumption, due to its anti-inflammatory and antioxidant properties. Acute exercise induces oxidative stress and causes muscular damage during training. This study was designed to examine the effect of cocoa consumption on the markers of muscle damage, oxidative stress and physical fitness in professional soccer players. Fifteen players (15-18 years old) were included in the study. Biochemical parameters, markers of muscle damage and oxidative stress, and physical performance were evaluated before and after cocoa consumption. Biochemical parameters determined the healthy metabolic status of the study group; biomarkers of muscle and oxidative damage were measured in blood to establish muscle and redox status. However, high levels of biomarkers of muscle damage were detected. Interestingly, cocoa consumption decreased the muscle damage biomarkers of CK and LDH by 39.4% and 23.03%, respectively. The redox status was modified by a decrease in oxidative damage (carbonyl groups, 26.31%; thiol groups, 27.52%; MDA, 32.42%) and an increase in total antioxidant capacity (15.98%) and GSH-Px activity (26.37%). In addition, we observed an increase in physical performance by 4% in the Cooper Test. Our findings suggest that a short period of cocoa consumption could be useful in maintaining a good physical fitness, due to the favourable effects on muscle and redox status in athletes during exhaustive exercise.

  14. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells.

    PubMed

    Sangani, Rajnikumar; Pandya, Chirayu D; Bhattacharyya, Maryka H; Periyasamy-Thandavan, Sudharsan; Chutkan, Norman; Markand, Shanu; Hill, William D; Hamrick, Mark; Isales, Carlos; Fulzele, Sadanand

    2014-03-01

    Bone marrow stromal cell (BMSC) adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38) and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions. Published by Elsevier B.V.

  15. Sigma receptor 1 modulates endoplasmic reticulum stress in retinal neurons.

    PubMed

    Ha, Yonju; Dun, Ying; Thangaraju, Muthusamy; Duplantier, Jennifer; Dong, Zheng; Liu, Kebin; Ganapathy, Vadivel; Smith, Sylvia B

    2011-01-01

    To investigate the mechanism of σ receptor 1 (σR1) neuroprotection in retinal neurons. Oxidative stress, which is implicated in diabetic retinopathy, was induced in mouse primary ganglion cells (GCs) and RGC-5 cells, and the effect of the σR1 ligand (+)-pentazocine on pro- and anti-apoptotic and endoplasmic reticulum (ER) stress gene expression was examined. Binding of σR1 to BiP, an ER chaperone protein, and σR1 phosphorylation status were examined by immunoprecipitation. Retinas were harvested from Ins2Akita/+ diabetic mice treated with (+)-pentazocine, and the expression of ER stress genes and of the retinal transcriptome was evaluated. Oxidative stress induced the death of primary GCs and RGC-5 cells. The effect was decreased by the application of (+)-pentazocine. Stress increased σR1 binding to BiP and enhanced σR1 phosphorylation in RGC-5 cells. BiP binding was prevented, and σR1 phosphorylation decreased in the presence of (+)-pentazocine. The ER stress proteins PERK, ATF4, ATF6, IRE1α, and CHOP were upregulated in RGC-5 cells during oxidative stress, but decreased in the presence of (+)-pentazocine. A similar phenomenon was observed in retinas of Ins2Akita/+ diabetic mice. Retinal transcriptome analysis of Ins2Akita/+ mice compared with wild-type revealed differential expression of the genes critically involved in oxidative stress, differentiation, and cell death. The expression profile of those genes was reversed when the Ins2Akita/+ mice were treated with (+)-pentazocine. In retinal neurons, the molecular chaperone σR1 binds BiP under stressful conditions; (+)-pentazocine may exert its effects by dissociating σR1 from BiP. As stress in retinal cells increases, phosphorylation of σR1 is increased, which is attenuated when agonists bind to the receptor.

  16. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme

    PubMed Central

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa -/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa -/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa -/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123

  17. The Protective Effect of Lipoic Acid on Selected Cardiovascular Diseases Caused by Age-Related Oxidative Stress

    PubMed Central

    Goraca, Anna

    2015-01-01

    Oxidative stress is considered to be the primary cause of many cardiovascular diseases, including endothelial dysfunction in atherosclerosis and ischemic heart disease, hypertension, and heart failure. Oxidative stress increases during the aging process, resulting in either increased reactive oxygen species (ROS) production or decreased antioxidant defense. The increase in the incidence of cardiovascular disease is directly related to age. Aging is also associated with oxidative stress, which in turn leads to accelerated cellular senescence and organ dysfunction. Antioxidants may help lower the incidence of some pathologies of cardiovascular diseases and have antiaging properties. Lipoic acid (LA) is a natural antioxidant which is believed to have a beneficial effect on oxidative stress parameters in relation to diseases of the cardiovascular system. PMID:25949771

  18. Nrf2 protects against oxidative stress induced by SiO2 nanoparticles.

    PubMed

    Liu, Wei; Hu, Tao; Zhou, Li; Wu, Desheng; Huang, Xinfeng; Ren, Xiaohu; Lv, Yuan; Hong, Wenxu; Huang, Guanqin; Lin, Zequn; Liu, Jianjun

    2017-10-01

    The aim of our study was to explore the role of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) on the exposure of SiO 2 nanoparticles (NPs) and its influence. To understand the mechanism of NP-induced oxidative stress, the involvement of oxidative-stress-responding transcription factors and the Nrf2/antioxidant reactive element (ARE) signaling pathway in the toxicity of SiO 2 NPs' exposure was investigated via in vivo and in vitro models. A549 cells showed a significant cytotoxic effect while A549-shNrf2 cells showed decreased cell viability after nm-SiO 2 exposure. SiO 2 NPs' exposure activated the Nrf2/ARE signaling pathway. Nrf2 -/- exposed mice showed increased reactive oxygen species, 8-hydroxyl deoxyguanosine level and decreased total antioxidant capacity. Nrf2/ARE signaling pathway activation disrupted, leading inhibition of heme oxygenase-1 and upregulation of PKR-like endoplasmic-reticulum-regulated kinase. Our findings suggested that Nrf2 could protect against oxidative stress induced by SiO 2 NPs, and the Nrf2/ARE pathway might be involved in mild-to-moderate SiO 2 NP-induced oxidative stress that was evident from dampened activity of Nrf2.

  19. Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility.

    PubMed

    Leung, Ting-Kai; Chen, Chien-Ho; Tsai, Shih-Ying; Hsiao, George; Lee, Chi-Ming

    2012-10-31

    The present study examined the effects of BIOCERAMIC on psychological stress-conditioned elevated heart rate, blood pressure and oxidative stress-suppressed cardiac contractility using in vivo and in vitro animal models. We investigated the effects of BIOCERAMIC on the in vivo cardiovascular hemodynamic parameters of rats by monitoring their heart rates, systolic blood pressure, mean blood pressure and diastolic blood pressure. Thereafter, we assayed its effects on the heart rate in an isolated frog heart with and without adrenaline stimulation, and on cardiac contractility under oxidative stress. BIOCERAMIC caused significant decreases in heart rates and systolic and mean blood pressure in the stress-conditioned heart rate rat models (P < 0.05), as well as in the experimental models of an isolated frog heart with and without adrenaline stimulation (P < 0.05), and normalized cardiac contractility under oxidative stress (P < 0.05). BIOCERAMIC may, therefore, normalize the effects of psychological stress and oxidative stress conditions.

  20. Modulation of oxidative stress by beta-carotene in chicken embryo fibroblasts.

    PubMed

    Lawlor, S M; O'Brien, N M

    1995-06-01

    The ability of beta-carotene to protect against oxidative stress in vitro was assessed. Primary cultures of chicken embryo fibroblasts (CEF) were oxidatively stressed by exposure to paraquat (PQ). Activities of the antioxidant enzymes superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione peroxidase (GSH-Px; EC 1.11.19) were measured as indices of oxidative stress. CEF incubated with 0.25 mM-PQ for 18 h exhibited increased SOD and CAT activities and decreased GSH-Px activity compared with the control (P < 0.001). Incorporation of added beta-carotene (0.1 microM) into 0.25 mM-PQ-treated CEF returned SOD activity to that seen in non-PQ-treated cells. beta-Carotene (0.1 microM) reduced the CAT activity from that seen in PQ-treated cells and returned the GSH-Px activity to its control value thus protecting the cells against PQ-induced oxidative stress. However, at higher concentrations of beta-carotene (10 microM), SOD and CAT activities increased significantly (P < 0.001) relative to non-PQ-treated cells and GSH-Px activity decreased relative to its control value. Similar trends were observed when CEF grown in beta-carotene-enriched media (0.1-10 microM) were oxidatively stressed by exposure to 0.25 mM-PQ for 18 h.

  1. Short-term and long-term effects of transient exogenous cortisol manipulation on oxidative stress in juvenile brown trout.

    PubMed

    Birnie-Gauvin, Kim; Peiman, Kathryn S; Larsen, Martin H; Aarestrup, Kim; Willmore, William G; Cooke, Steven J

    2017-05-01

    In the wild, animals are exposed to a growing number of stressors with increasing frequency and intensity, as a result of human activities and human-induced environmental change. To fully understand how wild organisms are affected by stressors, it is crucial to understand the physiology that underlies an organism's response to a stressor. Prolonged levels of elevated glucocorticoids are associated with a state of chronic stress and decreased fitness. Exogenous glucocorticoid manipulation reduces an individual's ability to forage, avoid predators and grow, thereby limiting the resources available for physiological functions like defence against oxidative stress. Using brown trout ( Salmo trutta ), we evaluated the short-term (2 weeks) and long-term (4 months over winter) effects of exogenous cortisol manipulations (versus relevant shams and controls) on the oxidative status of wild juveniles. Cortisol caused an increase in glutathione over a 2 week period and appeared to reduce glutathione over winter. Cortisol treatment did not affect oxidative stress levels or low molecular weight antioxidants. Cortisol caused a significant decrease in growth rates but did not affect predation risk. Over-winter survival in the stream was associated with low levels of oxidative stress and glutathione. Thus, oxidative stress may be a mechanism by which elevated cortisol causes negative physiological effects. © 2017. Published by The Company of Biologists Ltd.

  2. EGFR inhibition attenuates diabetic nephropathy through decreasing ROS and endoplasmic reticulum stress

    PubMed Central

    Zhong, Peng; Wang, Jingying; Weng, Qiaoyou; Qian, Yuanyuan; Han, Jibo; Zou, Chunpeng; Liang, Guang

    2017-01-01

    Diabetic nephropathy (DN) is a progressive kidney disease due to glomerular capillary damage in diabetic patients. Endoplasmic reticulum (ER) stress caused by reactive oxygen species (ROS) is associated with DN progression. Epidermal growth factor receptor (EGFR) mediates oxidative stress and damage of cardiomyocytes in diabetic mice. Here we demonstrated that AG1478, a specific inhibitor of EGFR, blocked EGFR and AKT phosphorylation in diabetic mice. Oxidative stress and ER stress markers were eliminated after AG1478 administration. AG1478 decreased pro-fibrotic genes TGF-β and collagen IV. Furthermore, we found that high glucose (HG) induced oxidative stress and ER stress, and subsequently increased ATF4 and CHOP. These changes were eliminated by either AG1478 or ROS scavenger N-acetyl-L-cysteine (NAC) administration. These results were confirmed by knock-down approaches in renal mesangial SV40 cells. However, AG1478, not NAC, reversed HG induced EGFR and AKT phosphorylation. These results suggest that EGFR/AKT/ROS/ER stress signaling plays an essential role in DN development and inhibiting EGFR may serve as a potential therapeutic strategy in diabetic kidney diseases. PMID:28427241

  3. Modulatory effects of caffeine on oxidative stress and anxiety-like behavior in ovariectomized rats.

    PubMed

    Caravan, Ionut; Sevastre Berghian, Alexandra; Moldovan, Remus; Decea, Nicoleta; Orasan, Remus; Filip, Gabriela Adriana

    2016-09-01

    Menopause is accompanied by enhanced oxidative stress and behavioral changes, effects attenuated by antioxidants. The aim of this study was to evaluate the effects of caffeine on behavior and oxidative stress in an experimental model of menopause. Female rats were divided into the following groups: sham-operated (CON), sham-operated and caffeine-treated (CAF), ovariectomized (OVX), ovariectomized and caffeine-treated (OVX+CAF). Caffeine (6 mg/kg) and vehicle were administered for 21 days (subchronic) and 42 days (chronic), using 2 experimental subsets. Behavioral tests and oxidative stress parameters in the blood, whole brain, and hippocampus were assessed. The subchronic administration of caffeine decreased the lipid peroxidation and improved the antioxidant defense in the blood and brain. The GSH/GGSG ratio in the brain was improved by chronic administration, with reduced activities of antioxidant enzymes and enhanced nitric oxide and malondialdehyde levels. In particular, the lipid peroxidation in the hippocampus decreased in both experiments. The rats became hyperactive after 21 days of treatment, but no effect was observed after chronic administration. In both experimental subsets, caffeine had anxiolytic effects as tested in elevated plus maze. The administration of low doses of caffeine, for a short period of time, may be a new therapeutic approach to modulating the oxidative stress and anxiety in menopause.

  4. Let-7a modulates particulate matter (≤ 2.5 μm)-induced oxidative stress and injury in human airway epithelial cells by targeting arginase 2.

    PubMed

    Song, Lei; Li, Dan; Gu, Yue; Li, Xiaoping; Peng, Liping

    2016-10-01

    Epidemiological studies show that particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm (PM2.5) is associated with cardiorespiratory diseases via the induction of excessive oxidative stress. However, the precise mechanism underlying PM2.5-mediated oxidative stress injury has not been fully elucidated. Accumulating evidence has indicated the microRNA let-7 family might play a role in PM-mediated pathological processes. In this study, we investigated the role of let-7a in oxidative stress and cell injury in human bronchial epithelial BEAS2B (B2B) cells after PM2.5 exposure. The let-7a level was the most significantly decreased in B2B cells after PM2.5 exposure. The overexpression of let-7a suppressed intracellular reactive oxygen species levels and the percentage of apoptotic cells after PM2.5 exposure, while the let-7a level decreased arginase 2 (ARG2) mRNA and protein levels in B2B cells by directly targeting the ARG2 3'-untranslated region. ARG2 expression was upregulated in B2B cells during PM2.5 treatment, and ARG2 knockdown could remarkably reduce oxidative stress and cellular injury. Moreover, its restoration could abrogate the protective effects of let-7a against PM2.5-induced injury. In conclusion, let-7a decreases and ARG2 increases resulting from PM2.5 exposure may exacerbate oxidative stress, cell injury and apoptosis of B2B cells. The let-7a/ARG2 axis is a likely therapeutic target for PM2.5-induced airway epithelial injury. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. A natural pharma standard supplement formulation to control treatment-related toxicity and oxidative stress in genitourinary cancer: a preliminary study.

    PubMed

    Ledda, A; Belcaro, G; Dugall, M; Luzzi, R; Hosoi, M; Feragalli, B; Cotellese, R; Cosentino, V; Cosentino, M; Eggenhoffner, R; Pellizzato, M; Fratter, A; Giacomelli, L

    2017-09-01

    Oncological treatments are associated with toxicities that may decrease compliance to treatment in most genitourinary cancer patients. Supplementation with pharmaceutical-standardized supplement may be a supplementary method to control the side effects after chemo- and radiotherapy and the increased oxidative stress associated to treatments. This registry study evaluated a natural combination of supplements containing curcumin, cordyceps, and astaxanthin (Oncotris™) used as supplementary management in genitourinary cancer patients who had undergone oncological therapy. Patients with genitourinary cancers (prostate or bladder malignancies) who had undergone and completed cancer treatments (radiotherapy, chemotherapy or intravesical immunotherapy with increased oxidative stress and residual symptoms) were recruited in this registry, supplement study. Registry subjects (n = 61) freely decided to follow either a standard management (SM) (control group = 35) or SM plus oral daily supplementation (supplement group = 26). Evaluation of severity of treatment-related residual side effects, blood count test, prostate-specific antigen (PSA) test and plasma free radicals (oxidative stress) were performed at inclusion and at the end of the observational period (6 weeks). Two patients dropped out during the registry. Therefore, the analysis included 59 participants: 26 individuals in the supplementation group and 33 in the control group. In the supplement group, the intensity of signs and symptoms (treatment-related) and residual side effects significantly decreased at 6 weeks: minimal changes were observed in controls. Supplementation with Oncotris™ was associated with a significant improvement in blood cell count and with a decreased level of plasmatic PSA and oxidative stress. Naturally-derived supplements, specifically Oncotris™ (patent pending), could support the body to overcome the treatment-related toxicities - and the relative oxidative stress in cancer patients.

  6. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil.

    PubMed

    Abbas, Tahir; Rizwan, Muhammad; Ali, Shafaqat; Adrees, Muhammad; Mahmood, Abid; Zia-Ur-Rehman, Muhammad; Ibrahim, Muhammad; Arshad, Muhammad; Qayyum, Muhammad Farooq

    2018-02-01

    Cadmium (Cd) and drought stress in plants is a worldwide problem, whereas little is known about the effect of biochar (BC) under combined Cd and drought stress. The current study was conducted to determine the impact of BC on Cd uptake in wheat sown in Cd-contaminated soil under drought stress. Wheat was grown in a soil after incubating the soil for 15 days with three levels of BC (0%, 3.0% and 5.0% w/w). Three levels of drought stress (well-watered, mild drought and severe drought containing 70%, 50%, and 35% of soil water holding capacity respectively) were applied to 45-d-old wheat plants. Drought stress decreased plant height, spike length, chlorophyll contents, gas exchange parameters, root and shoot dry biomasses and grain yields. Drought stress also caused oxidative stress and decreased the antioxidant enzymes activities whereas increased the Cd concentration in plants. Biochar increased morphological and physiological parameters of wheat under combined drought and Cd stress and reduced the oxidative stress and Cd contents and increased antioxidant enzymes activities. The decrease in Cd concentration with BC application in drought-stressed plant might be attributed to BC-induced increase in crop biomass production and reduction in oxidative stress. These results indicate that BC could be used as an amendment in metal contaminated soil for improving wheat growth and reducing Cd concentrations under semiarid conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of drought stress on growth, solute accumulation and membrane stability of leafy vegetable, huckleberry (Solanum scabrum Mill.).

    PubMed

    Assaha, Dekoum Vincent Marius; Liu, Liyun; Ueda, Akihiro; Nagaoka, Toshinori; Saneoka, Hirofumi

    2016-01-01

    The present study sought to investigate the factors implicated in growth impairment of huckleberry (a leafy vegetable) under water stress conditions. To achieve this, seedlings of plant were subjected to control, mild stress and severe stress conditions for 30 days. Plant growth, plant water relation, gas exchange, oxidative stress damage, electrolyte leakage rate, mineral content and osmolyte accumulation were measured. Water deficit markedly decreased leaf, stem and root growth. Leaf photosynthetic rate was tremendously reduced by decrease in stomatal conductance under stress conditions. Malondialdehyde (MDA) content markedly increased under mild (82%) and severe (131%) stress conditions, while electrolyte leakage rate (ELR) increased by 59% under mild stress and 3-fold under severe stress. Mineral content in leafwas high in stressed plants, while proline content markedly increased under mild stress (12-fold) and severe stress (15-fold), with corresponding decrease in osmotic potential at full turgor and an increase in osmotic adjustment. These results suggest that maintenance of high mineral content and osmotic adjustment constitute important adaptations in huckleberry under water deficit conditions and that growth depression under drought stress would be mainly caused by increased electrolyte leakage resulting from membrane damage induced by oxidative stress.

  8. C-Phycocyanin Confers Protection against Oxalate-Mediated Oxidative Stress and Mitochondrial Dysfunctions in MDCK Cells

    PubMed Central

    Farooq, Shukkur M.; Boppana, Nithin B.; Asokan, Devarajan; Sekaran, Shamala D.; Shankar, Esaki M.; Li, Chunying; Gopal, Kaliappan; Bakar, Sazaly A.; Karthik, Harve S.; Ebrahim, Abdul S.

    2014-01-01

    Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis. PMID:24691130

  9. Synergist effects of n-acetylcysteine and deferoxamine treatment on behavioral and oxidative parameters induced by chronic mild stress in rats.

    PubMed

    Arent, Camila O; Réus, Gislaine Z; Abelaira, Helena M; Ribeiro, Karine F; Steckert, Amanda V; Mina, Francielle; Dal-Pizzol, Felipe; Quevedo, João

    2012-12-01

    A growing body of evidence has pointed to a relationship between oxidative stress and depression. Thus, the present study was aimed at evaluating the effects of the antioxidants n-acetylcysteine (NAC), deferoxamine (DFX) or their combination on sweet food consumption and oxidative stress parameters in rats submitted to 40days of exposure to chronic mild stress (CMS). Our results showed that in stressed rats treated with saline, there was a decrease in sweet food intake and treatment with NAC or NAC in combination with DFX reversed this effect. Treatment with NAC and DFX decreased the oxidative damage, which include superoxide and TBARS production in submitochondrial particles, and also thiobarbituric acid reactive substances (TBARS) levels and carbonyl proteins in the prefrontal cortex, amygdala and hippocampus. Treatment with NAC and DFX also increased the activity of the antioxidant enzymes, superoxide dismutase and catalase in the same brain areas. Even so, a combined treatment with NAC and DFX produced a stronger increase of antioxidant activities in the prefrontal cortex, amygdala and hippocampus. The results described here indicate that co-administration may induce a more pronounced antidepressant activity than each treatment alone. In conclusion, these results suggests that treatment with NAC or DFX alone or in combination on oxidative stress parameters could have positive effects against neuronal damage caused by oxidative stress in major depressive disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Myricetin Attenuates Depressant-Like Behavior in Mice Subjected to Repeated Restraint Stress

    PubMed Central

    Ma, Zegang; Wang, Guilin; Cui, Lin; Wang, Qimin

    2015-01-01

    Increasing evidence has shown that oxidative stress may be implicated in chronic stress-induced depression. Several flavonoids with anti-oxidative effects have been proved to be anti-depressive. Myricetin is a well-defined flavonoid with the anti-oxidative, anti-inflammatory, anti-apoptotic, and neuroprotective properties. The aim of the present study is to investigate the possible effects of chronic administration of myricetin on depressant-like behaviors in mice subjected to repeated restraint (4 h/day) for 21 days. Our results showed that myricetin administration specifically reduced the immobility time in mice exposed to chronic stress, as tested in both forced swimming test and tail suspension test. Myricetin treatment improved activities of glutathione peroxidase (GSH-PX) in the hippocampus of stressed mice. In addition, myricetin treatment decreased plasma corticosterone levels of those mice subjected to repeated restraint stress. The effects of myricetin on the brain-derived neurotrophic factor (BDNF) levels in hippocampus were also investigated. The results revealed that myricetin normalized the decreased BDNF levels in mice subjected to repeated restraint stress. These findings provided more evidence that chronic administration of myricetin improves helpless behaviors. The protective effects of myricetin might be partially mediated by an influence on BDNF levels and might be attributed to myricetin-mediated anti-oxidative stress in the hippocampus. PMID:26633366

  11. Wheat peptides reduce oxidative stress and inhibit NO production through modulating μ-opioid receptor in a rat NSAID-induced stomach damage model.

    PubMed

    Yin, Hong; Cai, Hui-Zhen; Wang, Shao-Kang; Yang, Li-Gang; Sun, Gui-Ju

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) induce tissue damage and oxidative stress in animal models of stomach damage. In the present study, the protective effects of wheat peptides were evaluated in a NSAID-induced stomach damage model in rats. Different doses of wheat peptides or distilled water were administered daily by gavage for 30 days before the rat stomach damage model was established by administration of NSAIDs (aspirin and indomethacin) into the digestive tract twice. The treatment of wheat peptides decreased the NSAID-induced gastric epithelial cell degeneration and oxidative stress and NO levels in the rats. Wheat peptides significantly increased the superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and decreased iNOS activity in stomach. The mRNA expression level of μ-opioid receptor was significantly decreased in wheat peptides-treated rats than that in in the control rats. The results suggest that NSAID drugs induced stomach damage in rats, wchih can be prevented by wheat peptides. The mechanisms for the protective effects were most likely through reducing NSAID-induced oxidative stress. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  12. D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats.

    PubMed

    Rehman, Muneeb U; Tahir, Mir; Khan, Abdul Quaiyoom; Khan, Rehan; Oday-O-Hamiza; Lateef, Abdul; Hassan, Syed Kazim; Rashid, Sumaya; Ali, Nemat; Zeeshan, Mirza; Sultana, Sarwat

    2014-04-01

    D-limonene is a naturally occurring monoterpene and has been found to posses numerous therapeutic properties. In this study, we used D-limonene as a protective agent against the nephrotoxic effects of anticancer drug doxorubicin (Dox). Rats were given D-limonene at doses of 5% and 10% mixed with diet for 20 consecutive days. Dox was give at the dose of 20 mg/kg body weight intraperitoneally. The protective effects of D-limonene on Dox-induced oxidative stress and inflammation were investigated by assaying oxidative stress biomarkers, lipid peroxidation, serum toxicity markers, proinflammatory cytokines, and expression of nuclear factor kappa B (NFκB), cyclo-oxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and Nitrite levels. Administration of Dox (20 mg/kg body weight) in rats enhanced renal lipid peroxidation; depleted glutathione content and anti-oxidant enzymes; elevated levels of kidney toxicity markers viz. kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine; enhanced expression of NFκB, COX-2, and iNOS and nitric oxide. Treatment with D-limonene prevented oxidative stress by restoring the levels of antioxidant enzymes, further both doses of 5% and 10% showed significant decrease in inflammatory response. Both the doses of D-limonene significantly decreased the levels of kidney toxicity markers KIM-1, BUN, and creatinine. D-limonene also effectively decreased the Dox induced overexpression of NF-κB, COX-2, and iNOS and nitric oxide. Data from the present study indicate the protective role of D-limonene against Dox-induced renal damage.

  13. Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.

    PubMed

    Salehi-Abargouei, Amin; Ghiasvand, Reza; Hariri, Mitra

    2017-03-01

    This study assessed the effectiveness of presybiotics, prosybiotics and synbiotics on reducing serum oxidative stress parameters. PubMed/Medline, Ovid, Google Scholar, ISI Web of Science and SCOPUS were searched up to September 2016. English language randomized clinical trials reporting the effect of presybiotics, prosybiotics or synbiotic interventions on serum oxidative stress parameters in human adults were included. Twenty-one randomized clinical trials met the inclusion criteria for systematic review. Two studies investigated prebiotics, four studies synbiotics and fifteen studies probiotics. According to our systematic review, prebiotic could decrease malondialdehyde and increase superoxidative dismutase, but evidence is not enough. In comparison with fructo-oligosaccharide, inulin is much more useful for oxidative stress reduction. Using probiotics with dairy products could reduce oxidative stress significantly, but probiotic in form of supplementation did not have any effect on oxidative stress. There is limited but supportive evidence that presybiotics, prosybiotics and synbiotics are effective for reducing oxidative stress parameters. Further randomized clinical trials with longer duration of intervention especially on population with increased oxidative stress are needed to provide more definitive results before any recommendation for clinical use of these interventions.

  14. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans.

    PubMed

    Dues, Dylan J; Schaar, Claire E; Johnson, Benjamin K; Bowman, Megan J; Winn, Mary E; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2017-07-01

    Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Oxidative stress in a model of toxic demyelination in rat brain: the effect of piracetam and vinpocetine.

    PubMed

    Abdel-Salam, Omar M E; Khadrawy, Yasser A; Salem, Neveen A; Sleem, Amany A

    2011-06-01

    We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.

  16. Antioxidants modulate the antiproliferative effects of nitric oxide on vascular smooth muscle cells and adventitial fibroblasts by regulating oxidative stress.

    PubMed

    Gregory, Elaine K; Vavra, Ashley K; Moreira, Edward S; Havelka, George E; Jiang, Qun; Lee, Vanessa R; Van Lith, Robert; Ameer, Guillermo A; Kibbe, Melina R

    2011-11-01

    S-nitrosothiols (SNO) release nitric oxide (NO) through interaction with ascorbic acid (AA). However, little is known about their combined effect in the vasculature. The aim of this study was to investigate the effect of AA on SNO-mediated NO release, proliferation, cell cycle progression, cell death, and oxidative stress in vascular cells. Vascular smooth muscle cells and adventitial fibroblasts harvested from the aortae of Sprague-Dawley rats were treated with AA, ± S-nitrosoglutathione (GSNO), or ± diethylenetriamine NONOate (DETA/NO). NO release, proliferation, cell cycle progression, cell death, and oxidative stress were determined by the Griess reaction, [(3)H]-thymidine incorporation, flow cytometry, trypan blue exclusion, and 5-(and-6)chloromethyl-2',7'dichlorodihydrofluorescein staining, respectively. AA increased NO release from GSNO 3-fold (P < .001). GSNO and DETA/NO significantly decreased proliferation, but AA abrogated this effect (P < .05). Mirroring the proliferation data, changes in cell cycle progression induced by GSNO and DETA/NO were reversed by the addition of AA. GSNO- and DETA/NO-mediated increases in oxidative stress were significantly decreased by the addition of AA (P < .001). Despite causing increased NO release from GSNO, AA reduced the antiproliferative and cell cycle effects of GSNO and DETA/NO through the modulation of oxidative stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The Levels of Cortisol, Oxidative Stress, and DNA Damage in the Victims of Childhood Sexual Abuse: A Preliminary Study.

    PubMed

    Şimşek, Şeref; Kaplan, İbrahim; Uysal, Cem; Yüksel, Tuğba; Alaca, Rümeysa

    2016-01-01

    In this study we aimed to investigate serum cortisol, oxidative stress, and DNA damage in children who are sexual abuse victims. The study included 38 children who sustained child sexual abuse and 38 age- and gender-matched children who did not have a history of trauma. Cortisol levels reflecting the status of the hypothalamic-pituitary-adrenal axis, anti-oxidant enzymes glutathione peroxidase, superoxide dismutase, natural anti-oxidant coenzyme Q, and 8-hydroxy-2-deoxyguanosine as the indicator of DNA damage were analyzed in serum samples using the enzyme linked immunosorbent assay method. Cortisol levels were significantly higher in the child sexual abuse group compared to the control group. There were no significant differences between the groups in terms of oxidative stress and DNA damage. Cortisol and 8-hydroxy-2-deoxyguanosine levels decreased as the time elapsed since the sexual abuse increased. Coenzyme Q level was lower in victims who sustained multiple assaults than in the victims of a single assault. Cortisol and superoxide dismutase levels were lower in the victims of familial sexual abuse. Decreases in cortisol and 8-hydroxy-2-deoxyguanosine levels as time elapsed may be an adaptation to the toxic effects of high cortisol levels over a prolonged period of time. Child sexual abuse did not result in oxidative stress and DNA damage; however, some features of sexual abuse raised the level of oxidative stress.

  18. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition.

    PubMed

    Barbehenn, Raymond V; Jaros, Adam; Lee, Grace; Mozola, Cara; Weir, Quentin; Salminen, Juha-Pekka

    2009-04-01

    The ability of foliar tannins to increase plant resistance to herbivores is potentially determined by the composition of the tannins; hydrolyzable tannins are much more active as prooxidants in the guts of caterpillars than are condensed tannins. By manipulating the tannin compositions of two contrasting tree species, this work examined: (1) whether increased levels of hydrolyzable tannins increase the resistance of red oak (Quercus rubra L.), a tree with low resistance that produces mainly condensed tannins, and (2) whether increased levels of condensed tannins decrease the resistance of sugar maple (Acer saccharum Marsh.), a tree with relatively high resistance that produces high levels of hydrolyzable tannins. As expected, when Lymantria dispar L. caterpillars ingested oak leaves coated with hydrolyzable tannins, levels of hydrolyzable tannin oxidation increased in their midgut contents. However, increased tannin oxidation had no significant impact on oxidative stress in the surrounding midgut tissues. Although growth efficiencies were decreased by hydrolyzable tannins, growth rates remained unchanged, suggesting that additional hydrolyzable tannins are not sufficient to increase the resistance of oak. In larvae on condensed tannin-coated maple, no antioxidant effects were observed in the midgut, and levels of tannin oxidation remained high. Consequently, neither oxidative stress in midgut tissues nor larval performance were significantly affected by high levels of condensed tannins. Post hoc comparisons of physiological mechanisms related to tree resistance revealed that maple produced not only higher levels of oxidative stress in the midgut lumen and midgut tissues of L. dispar, but also decreased protein utilization efficiency compared with oak. Our results suggest that high levels of hydrolyzable tannins are important for producing oxidative stress, but increased tree resistance to caterpillars may require additional factors, such as those that produce nutritional stress.

  19. Ethanol exposure induces oxidative stress and impairs nitric oxide availability in the human placental villi: a possible mechanism of toxicity.

    PubMed

    Kay, H H; Grindle, K M; Magness, R R

    2000-03-01

    We undertook this investigation to explore the effects of ethanol exposure on nitric oxide synthase levels and nitric oxide release. Our hypothesis was that ethanol exposure modifies nitric oxide activity within the placenta as a result of oxidative stress. Four 10-g samples of term normal human placental villous tissue were perifused with nonrecirculating Dulbecco's modified Eagle's medium and 25-mmol/L N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] with 0-, 50-, 100-, or 200-mmol/L ethanol. After 2 hours of exposure, tissue was removed, fixed, and frozen for analysis. Immunohistochemical analysis was performed for subtype I or neuronal nitric oxide synthase (nNOS), subtype II or inducible nitric oxide synthase (iNOS), and subtype III or endothelial nitric oxide synthase (eNOS) localization. Western blot analysis was performed for eNOS quantitation. Cyclic guanosine monophosphate and copper-zinc superoxide dismutase levels were measured by electroimmunoassay and kinetic assay, respectively. Nitric oxide release was analyzed by a Sievers nitric oxide analyzer. Immunohistochemical examination confirmed that only eNOS was localized to the syncytiotrophoblasts. After ethanol exposure, eNOS protein expression increased 2.5- to 3.0-fold over that of the control. Tissue cyclic guanosine monophosphate content and nitric oxide release into the effluent were decreased, whereas superoxide dismutase levels were increased at higher ethanol levels (P <.05). Ethanol exposure appears to induce oxidative stress, which may account for the decreased nitric oxide release, because nitric oxide may be shunted toward scavenging free radicals. Increased eNOS protein expression may be a response to the increased demand for nitric oxide. Decreased nitric oxide availability could adversely affect placental blood flow regulation, which could, in turn, account for the growth restriction seen in ethanol-exposed fetuses.

  20. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  1. [Effects of exogenous nitric oxide on physiological characteristics of longan (Dimocarpus longana) seedlings under acid rain stress].

    PubMed

    Liu, Jian-fu; Wang, Ming-yuan; Yang, Chen; Zhu, Ai-jun

    2013-08-01

    This paper studied the effects of exogenous nitric oxide donor sodium nitroprusside (SNP) on the chlorophyll content, antioxidant enzyme activities, and osmotic regulation substances of longan (Dimocarpus longana 'Fuyan') seedlings under acid rain (pH 3.0) stress. Under the acid rain stress, the seedling leaf superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and chlorophyll, soluble protein and soluble sugar contents decreased obviously, while the leaf malondialdedyde content had a remarkable increase, suggesting the toxic effect of the acid rain on the seedlings. Exogenous nitric oxide had dual nature on the physiological characteristics of longan seedlings under acid rain stress. Applying 0.1-0.5 mmol x L(-1) of SNP improved the SOD, POD and CAT activities and the chlorophyll, soluble protein and soluble sugar contents significantly, and decreased the malondialdedyde content. Low concentrations SNP reduced the oxidative damage caused by the acid rain stress, and 0.5 mmol x L(-1) of SNP had the best effect. Under the application of 0.5 mmol x L(-1) of SNP, the total chlorophyll, soluble protein, and soluble sugar contents and the SOD, POD and CAT activities increased by 76.0%, 107.0%, 216.1%, 150. 0%, 350.9% and 97.1%, respectively, and the malondialdedyde content decreased by 46.4%. It was suggested that low concentration (0.1-0.5 mmol x L(-1)) SNP could alleviate the toxic effect of acid rain stress on longan seedlings via activating the leaf antioxidant enzyme activities and reducing oxidative stress, while high concentration SNP (1.0 mmol x L(-1)) lowered the mitigation effect.

  2. Postprandial effects of wine consumption on lipids and oxidative stress biomarkers.

    PubMed

    Covas, M I; Konstantinidou, V; Mysytaki, E; Fitó, M; Weinbrenner, T; De La Torre, R; Farré-Albadalejo, M; Lamuela-Raventós, R

    2003-01-01

    Postprandial lipemia has been recognized as a risk factor for atherosclerosis development. Consuming meals with suitable sources of antioxidants such as red wine reduces postprandial oxidative stress. However, information about the postprandial effects of wine ingestion outside meals on lipids and on in vivo low-density lipoprotein (LDL) oxidation in humans is scarce. The aim of this study was to investigate postprandial changes in lipids and in vivo LDL oxidation after moderate (250 ml) red wine ingestion, before and after sustained wine consumption of 250 ml/day for 4 days. After 4 days of sustained wine consumption a decrease in the LDL/high-density lipoprotein cholesterol ratio was observed after wine ingestion (p = 0.026). On day 4, a decrease in oxidized LDL levels and an increase in the antioxidant enzyme glutathione peroxidase activity (p = 0.025) were observed after wine ingestion. Our results show that consumption of red wine at moderate doses outside meals does not promote oxidative stress. Daily consumption of moderate doses of red wine can improve postprandial lipid profile and oxidative status when wine is ingested outside meals.

  3. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  4. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress].

    PubMed

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2004-01-01

    We have examined the influence of ATP-sensitive potassium (KATP) channel opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on the changes of energy metabolism in the liver of rats under the stress conditions. The rats were divided in two groups with high and low resistance to hypoxia. The stress was modeled by placing the rats in a cage filled with water and closed with a net. The distance from water to the net was only 5 cm. The effects of KATP opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on ADP-stimulating mitochondrial respiration by Chance, calcium capacity of organellas and processes of lipid peroxidation in the liver of rats with different resistance to hypoxia under the stress condition have been investigated. We have used the next substrates of oxidation: 0.35 mM succinate and 1 mM alpha-ketoglutarate. The additional analyses were conducted with the use of inhibitors: mitochondrial enzyme complex I 10 mM rotenone and succinate dehydrohenase 2 mM malonic acid. It was shown that the stress condition evoked the succinate oxidation and the decrease of alpha-ketoglutarate efficacy, the increase of calcium mitochondrial capacity and the intensification of lipid peroxidation processes. Under the presence of succinate, the increase of O2 uptake with simultaneous decrease of ADP/O ratio in rats with high resistance under stress was observed. Simultaneously, oxidation of alpha-ketoglutarate, a NAD-dependent substrate, was inhibited. Pinacidil caused the reorganization of mitochondrial energy metabolism in favour of NAD-dependent oxidation and the improvment of the protection against stress. The decrease of the efficacy of mitochondrial energy processes functioning was shown in animals with low resistance to hypoxia. KATP channel opener pinacidil has a protective effect on the processes of mitochondrial liver energy support under stress. These changes deal with the increase of alpha-ketoglutarate oxidation (respiratory rate and ADP/O) and the decrease of lipid peroxidation processes. We concluded about protective effect ofpinacidil on mitochondrial functioning under stress.

  5. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Protective Effects of Vitamin E Consumption against 3MT Electromagnetic Field Effects on Oxidative Parameters in Substantia Nigra in Rats

    PubMed Central

    Ghanbari, Ahmad Ali; Shabani, Kobra; Mohammad Nejad, Daryoush

    2016-01-01

    Introduction: Electromagnetic fields (EMFs) can influence the biological system by the formation of free radicals in cells. The EMFs are able to deteriorate defense system against free radicals that leads to oxidative stress (OS). Lipid peroxidation process (LPO) is an index of oxidative stress, and the Malandialdehyde (MDA) is the final product of LPO. Vitamin E is the most important antioxidant which inhibits the LPO process. The aim of this study was to evaluate the effects of 3MT EMF exposure on oxidative stress parameters in substantia nigra and the role of vitamin E in reducing oxidative stress and preventing of LPO process. Methods: 40 male Wistar rats were randomly divided into 4 groups: 1) Control group: received standard food without exposure to EMF and without consumption of vitamin E, 2) Experimental group 1: was exposed to EMF (3MT) 4 h/day for 50 days, 3) The experimental group 2: received 200 mg/kg vitamin E with gavage every day and also was exposed to EMF (3MT) 4 h/day for 50 days, 4) Sham group: received water with gavage for 50 days. Results: A significant increase in MDA levels and Glutation peroxidase (GSH-Px) activity of the substantia nigra following 50 days exposure to EMF was detected, but the superoxide dismutase (SOD) activity was decreased. Exposure did not change total antioxidant capacity (TAC) levels in plasma. Vitamin E treatment significantly prevented the increase of the MDA levels and GSHPx activity and also prevented the decrease of SOD activity in tissue but did not alter TAC levels. The GSH-Px activity increased because the duration and intensity of exposure were not enough to decrease it. Conclusion: We demonstrated two important findings; that 50 days exposure to 3 MT electromagnetic field caused oxidative stress by increasing the levels of MDA, and decreasing SOD activity in the substantia nigra; and that treatment with the vitamin E significantly prevented the oxidative stress and lipid peroxidation. PMID:27872692

  7. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    PubMed

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  8. Effects of dietary omega-3 on dystrophic cardiac and diaphragm muscles as evaluated by 1H magnetic resonance spectroscopy: Metabolic profile and calcium-related proteins.

    PubMed

    Maurício, Adriana Fogagnolo; de Carvalho, Samara Camaçari; Santo Neto, Humberto; Marques, Maria Julia

    2017-08-01

    Duchenne muscular dystrophy (DMD) is characterized by the absence of dystrophin and muscle degeneration. Calcium dysregulation and oxidative stress also contribute to the disease progression. We evaluated the potential therapeutic benefits of supplementation with omega-3 on the metabolic profile, calcium-related proteins and oxidative stress response in the heart and diaphragm (DIA) of the mdx mouse model of DMD at later stages of the disease (13 months). Mdx mice (8 months old) received omega-3 via a dietary supplement for 5 months. Metabolites were analyzed by 1 H magnetic resonance spectroscopy. Muscle total calcium was evaluated by inductively coupled plasma-optical emission spectrometry. Calsequestrin, TRPC1 and 4-HNE were determined via Western blot. Omega-3 decreased the metabolites taurine (related to calcium regulation and oxidative stress), aspartate (related to inflammation) and oxypurinol (related to oxidative stress) in the heart (aspartate) and DIA (taurine, aspartate and oxypurinol). Omega-3 also significantly decreased total calcium and TRPC1 levels in cardiac and DIA muscles and increased the levels of calsequestrin (cardiac and skeletal) and decreased the oxidative stress marker 4-HNE. The current study suggests that supplementation with omega-3 may generate therapeutic benefits on dystrophy progression, at later stages of the disease, with changes in the metabolic profile that may be correlated to omega-3 therapy. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  9. Vernonia cinerea Less. supplementation and strenuous exercise reduce smoking rate: relation to oxidative stress status and beta-endorphin release in active smokers.

    PubMed

    Leelarungrayub, Donrawee; Pratanaphon, Sainatee; Pothongsunun, Prapas; Sriboonreung, Thanyaluck; Yankai, Araya; Bloomer, Richard J

    2010-05-26

    The aim of this study was to evaluate the effects of Vernonia cinerea Less. (VC) supplementation and exercise on oxidative stress biomarkers, beta-endorphin release, and the rate of cigarette smoking. Volunteer smokers were randomly divided into four groups: group 1: VC supplement; group 2: exercise with VC supplement; group 3: exercise; and group 4: control. VC was prepared by wash and dry techniques and taken orally before smoking, matching the frequency of strenuous exercise (three times weekly). Before and after a two month period, exhaled carbon monoxide (CO), blood oxidative stress (malondialdehyde [MDA], nitric oxide [NOx], protein hydroperoxide [PrOOH] and total antioxidant capacity [TAC]), beta-endorphin and smoking rate were measured, and statistically analyzed. In Group 1, MDA, PrOOH, and NOx significantly decreased, whereas TAC increased (p < 0.05). In Group 2, MDA and PrOOH decreased (p < 0.05), with no other changes noted (p > 0.05). In Group 3, MDA, PrOOH, NOx, TAC, and beta-endorphin levels increased significantly (p < 0.05). Group 4 showed no change in oxidative stress variables or beta-endorphine levels (p > 0.05). All groups had lower levels of CO after the intervention. The smoking rate for light cigarette decreased in group 2(62.7%), 1(59.52%), 3 (53.57%) and 4(14.04%), whereas in self-rolled cigarettes it decreased in group 1 (54.47%), 3 (42.30%), 2 (40%) and 4 (9.2%). Supplementation with Vernonia cinerea Less and exercise provided benefit related to reduced smoking rate, which may be related to oxidaive stress and beta-endorphine levels.

  10. Vernonia cinerea Less. supplementation and strenuous exercise reduce smoking rate: relation to oxidative stress status and beta-endorphin release in active smokers

    PubMed Central

    2010-01-01

    Purpose The aim of this study was to evaluate the effects of Vernonia cinerea Less. (VC) supplementation and exercise on oxidative stress biomarkers, beta-endorphin release, and the rate of cigarette smoking. Methods Volunteer smokers were randomly divided into four groups: group 1: VC supplement; group 2: exercise with VC supplement; group 3: exercise; and group 4: control. VC was prepared by wash and dry techniques and taken orally before smoking, matching the frequency of strenuous exercise (three times weekly). Before and after a two month period, exhaled carbon monoxide (CO), blood oxidative stress (malondialdehyde [MDA], nitric oxide [NOx], protein hydroperoxide [PrOOH] and total antioxidant capacity [TAC]), beta-endorphin and smoking rate were measured, and statistically analyzed. Results In Group 1, MDA, PrOOH, and NOx significantly decreased, whereas TAC increased (p < 0.05). In Group 2, MDA and PrOOH decreased (p < 0.05), with no other changes noted (p > 0.05). In Group 3, MDA, PrOOH, NOx, TAC, and beta-endorphin levels increased significantly (p < 0.05). Group 4 showed no change in oxidative stress variables or beta-endorphine levels (p > 0.05). All groups had lower levels of CO after the intervention. The smoking rate for light cigarette decreased in group 2(62.7%), 1(59.52%), 3 (53.57%) and 4(14.04%), whereas in self-rolled cigarettes it decreased in group 1 (54.47%), 3 (42.30%), 2 (40%) and 4 (9.2%). Conclusion Supplementation with Vernonia cinerea Less and exercise provided benefit related to reduced smoking rate, which may be related to oxidaive stress and beta-endorphine levels. PMID:20500899

  11. Effect of chronic unpredictable stress on short term dietary restriction and its modulation by multivitamin-mineral supplementation.

    PubMed

    Hasan, Shirin; Fatima, Naureen; Bilal, Nayeem; Suhail, Nida; Fatima, Sabiha; Morgan, Enas N; Aldebasy, Yousef; Alzohairy, Mohammad A; Banu, Naheed

    2013-06-01

    Dietary restriction (DR) lowers steady-state levels of oxidative stress and alters behavioral, physiological and biochemical responses in mammals. However, various factors effect its application in humans like socio-cultural, appetite and the daily life stress. Physiological and psychological stress owing to fast-paced lifestyles, translates into oxidative stress. In this work, the role of chronic unpredictable stress (CUS) on the effects of short term DR in mice in terms of biochemical and oxidative stress parameters was investigated. Further, the modulatory role of multivitamin-mineral supplement (MVM) on CUS and DR induced biochemical changes was studied to delineate the role of micronutrient supplementation. DR treatment increased the antioxidant status in the circulation and liver of mice but in the presence of chronic stressors there was a significant shift towards the pro-oxidant state. A decrease was found in the activities of antioxidant enzymes superoxide dismutase, catalase, and glutathione-S-transferase and glutathione reductase in the rats exposed to CUS with DR (CUS+DR), with an increased malondialdehyde and a decreased glutathione (GSH) levels as compared to the controls. Liver function enzymes-glutamate oxaloacetate transaminase and glutamate pyruvate transaminase were increased and a significant DNA damage was observed. Oral MVM supplement significantly improved this oxidative deterioration. Hence, MVM supplementation appears to potentially offer an effective intervention in the DR regimen to combat daily life physical and mental stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Grape seed and skin extract protects kidney from doxorubicin-induced oxidative injury.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safwen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2016-05-01

    The study investigated the protective effect of grape seed and skin extract (GSSE) against doxorubicin-induced renal toxicity in healthy rats. Animals were treated with GSSE or not (control), for 8 days, administered with doxorubicin (20mg/kg) in the 4th day, and renal function as well as oxidative stress parameters were evaluated. Data showed that doxorubicin induced renal toxicity by affecting renal architecture and plasma creatinine. Doxorubicin also induced an oxidative stress characterized by an increase in malondialdehyde (MDA), calcium and H(2)O(2) and a decrease in catalase (CAT) and superoxide dismutase (SOD). Unexpectedly doxorubicin increased peroxidase (POD) and decreased carbonyl protein and plasma urea. Treatment with GSSE counteracted almost all adverse effects induced by doxorubicin. Data suggest that doxorubicin induced an oxidative stress into rat kidney and GSSE exerted antioxidant properties, which seem to be mediated by the modulation of intracellular calcium.

  13. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of differentmore » concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.« less

  14. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation.

    PubMed

    Xu, Peng-Xin; Wang, Shao-Wei; Yu, Xiao-Lin; Su, Ya-Jing; Wang, Teng; Zhou, Wei-Wei; Zhang, He; Wang, Yu-Jiong; Liu, Rui-Tian

    2014-05-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates. We have previously reported a polyphenol compound rutin that could inhibit Aβ aggregation and cytotoxicity, attenuate oxidative stress, and decrease the production of nitric oxide and proinflammatory cytokines in vitro. In the current study, we investigated the effect of rutin on APPswe/PS1dE9 transgenic mice. Results demonstrated that orally administered rutin significantly attenuated memory deficits in AD transgenic mice, decreased oligomeric Aβ level, increased super oxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio, reduced GSSG and malondialdehyde (MDA) levels, downregulated microgliosis and astrocytosis, and decreased interleukin (IL)-1β and IL-6 levels in the brain. These results indicated that rutin is a promising agent for AD treatment because of its antioxidant, anti-inflammatory, and reducing Aβ oligomer activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    PubMed

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  16. Vitamin D3 contributes to enhanced osteogenic differentiation of MSCs under oxidative stress condition via activating the endogenous antioxidant system.

    PubMed

    Zhou, J; Wang, F; Ma, Y; Wei, F

    2018-06-02

    The anti-oxidative effects of vitamin D3 (Vd3) on mesenchymal stem cells (MSCs) have not been studied before. The present study suggested that Vd3 could not only promote the osteogenic differentiation of MSCs under normal condition but also partly protect it from oxidative stress damage by activating the endogenous antioxidant system. Evolving evidence proved that oxidative stress caused by reactive oxygen species (ROS) overproduction might lead to bone loss. Vd3, a commonly used osteogenic induction drug, was proved to exhibit potent anti-oxidative effects on other cell types. The present study aims to investigate the protective effects of Vd3 on oxidative stress-induced dysfunctions of MSCs, as well as its underlying mechanisms. The H 2 O 2 was used as exogenous reactive oxygen species (ROS). The influence of ROS and anti-oxidative protection of Vd3 on MSCs were analyzed too. Multi-techniques were used to assess the beneficial effects of Vd3 on MSCs under oxidative stress condition. The results demonstrated that Vd3 could significantly attenuate the H 2 O 2 -induced cell injury of MSCs via Sirt1/FoxO1 signaling pathway, and reduced the H 2 O 2 exposure-induced intracellular oxidative stress status of MSCs. What's more, the H 2 O 2 exposure resulted in the decreased osteogenic differentiation of MSCs, as evidenced by decreased alkaline phosphatase activity, calcium deposition level, and osteogenic differentiation gene mRNA levels, but the injury was restored via Vd3 administration. The results suggested that Vd3 could not only promote the osteogenic differentiation of osteoblastic cells under normal condition but also partly protect the cell from oxidative stress damage by activating endogenous antioxidant system. The study shed light on the new roles of Vd3 in bone modeling and remodeling regulation.

  17. (-)Epigallocatechin-3-gallate decreases the stress-induced impairment of learning and memory in rats.

    PubMed

    Soung, Hung-Sheng; Wang, Mao-Hsien; Tseng, Hsiang-Chien; Fang, Hsu-Wei; Chang, Kuo-Chi

    2015-08-18

    Stress induces reactive oxygen species (ROS) and causes alterations in brain cytoarchitecture and cognition. Green tea has potent antioxidative properties especially the tea catechin (-) epigallocatechin-3-gallate (EGCG). These powerful antioxidative properties are able to protect against various oxidative damages. In this study we investigated the impact of stress on rats' locomotor activity, learning and memory. Many tea catechins, including EGCG, were examined for their possible therapeutic effects in treating stress-induced impairment. Our results indicated that locomotor activity was decreased, and the learning and memory were impaired in stressed rats (SRs). EGCG treatment was able to prevent the decreased locomotor activity as well as improve the learning and memory in SRs. EGCG treatment was also able to reduce the increased oxidative status in SRs' hippocampi. The above results suggest a therapeutic effect of EGCG in treating stress-induced impairment of learning and memory, most likely by means of its powerful antioxidative properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Buffer Modulation of Menadione-Induced Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Lushchak, Oleh V.; Bayliak, Maria M.; Korobova, Olha V.; Levine, Rodney L.; Lushchak, Volodymyr I.

    2012-01-01

    The objective of this study was to compare in vivo the effects of bicarbonate and phosphate buffers on surviving and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. If at 25 mM concentration of buffers menadione only slightly reduced yeast surviving, at 50 mM concentration cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed. PMID:19843376

  19. Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Lushchak, Oleh V; Bayliak, Maria M; Korobova, Olha V; Levine, Rodney L; Lushchak, Volodymyr I

    2009-01-01

    The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.

  20. Protective effect of Ginkgo biloba leaves extract, EGb761, on myocardium injury in ischemia reperfusion rats via regulation of TLR-4/NF-κB signaling pathway.

    PubMed

    Tang, Yuping; Zhou, Guisheng; Yao, Lijun; Xue, Ping; Yu, Danhong; Xu, Renjie; Shi, Wen; Yao, Xin; Yan, Zhaowei; Duan, Jin-Ao

    2017-10-17

    Beneficial actions of EGb 761 against ischemia/reperfusion (I/R) injury in lung, brain and renal ischemia have been described. However, the relationship between EGb 761 and signal molecules in myocardial ischemia reperfusion has not been well elucidated. In this study, we investigated the effects and mechanism of EGb 761 preconditioning on anti-myocardial I/R injuries in vivo . Meanwhile, their potential anti-oxidative stress and anti-inflammation effect were assessed. Hemodynamic parameters were monitored as left ventricular systolic pressure, LV end-diastolic pressure and maximal rate of increase and decrease of left ventricular pressure (dP/dtmax). The oxidative stress indicators and inflammatory factors were also evaluated. Western blot method was used for analysis of toll-like receptor 4 (TLR4), p-TLR4, nuclear factor-κB (NF-κB), p-NF-κB p65, Bax and Bcl-2 protein expressions. EGb 761 significantly improved cardiac function, decreased levels of creatine kinase, aspartate aminotransferase and lactate dehydrogenase. EGb 761 also restrained the oxidative stress related to myocardial ischemia injury as evidenced by decreased malondialdehyde, superoxide dismutase, catalase, glutathione-peroxidase, glutathione reductase activity. Meanwhile, the inflammatory cascade was inhibited as evidenced by decreased cytokines such as tumor necrosis factor-α, interleukin-6 and interleukin-1β. Our results still showed that EGb 761 pretreatment significantly decrease the level of cleaved Bax, and increase the level of Bcl-2 in rats subjected to I/R injury. Simultaneously, the expressions of myocardial TLR4 and NF-κB were significantly decreased. It can be concluded that EGb 761 pretreatment was protected against myocardium I/R injury by decreasing oxidative stress, repressing inflammatory cascade in vivo and inhibiting TLR4/NF-κB pathway.

  1. Temperature stress effects in Bemisia tabaci (Hemiptera: Aleyrodidae) type B whiteflies

    USDA-ARS?s Scientific Manuscript database

    Oxidative stress occurs in response to changes in the redox equilibiurm, which may be caused by increases in reactive oxygen species (ROS), a decrease in antioxidant protection or failure of cells to repair oxidative damage. ROS are either free radicals, reactive molecules containing oxygen atoms or...

  2. Supplementation with vitamin A enhances oxidative stress in the lungs of rats submitted to aerobic exercise.

    PubMed

    Gasparotto, Juciano; Petiz, Lyvia Lintzmaier; Girardi, Carolina Saibro; Bortolin, Rafael Calixto; de Vargas, Amanda Rodrigues; Henkin, Bernardo Saldanha; Chaves, Paloma Rodrigues; Roncato, Sabrina; Matté, Cristiane; Zanotto-Filho, Alfeu; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2015-12-01

    Exercise training induces reactive oxygen species production and low levels of oxidative damage, which are required for induction of antioxidant defenses and tissue adaptation. This process is physiological and essential to improve physical conditioning and performance. During exercise, endogenous antioxidants are recruited to prevent excessive oxidative stress, demanding appropriate intake of antioxidants from diet or supplements; in this context, the search for vitamin supplements that enhance the antioxidant defenses and improve exercise performance has been continuously increasing. On the other hand, excess of antioxidants may hinder the pro-oxidant signals necessary for this process of adaptation. The aim of this study was to investigate the effects of vitamin A supplementation (2000 IU/kg, oral) upon oxidative stress and parameters of pro-inflammatory signaling in lungs of rats submitted to aerobic exercise (swimming protocol). When combined with exercise, vitamin A inhibited biochemical parameters of adaptation/conditioning by attenuating exercise-induced antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreasing the content of the receptor for advanced glycation end-products. Increased oxidative damage to proteins (carbonylation) and lipids (lipoperoxidation) was also observed in these animals. In sedentary animals, vitamin A decreased superoxide dismutase and increased lipoperoxidation. Vitamin A also enhanced the levels of tumor necrosis factor alpha and decreased interleukin-10, effects partially reversed by aerobic training. Taken together, the results presented herein point to negative effects associated with vitamin A supplementation at the specific dose here used upon oxidative stress and pro-inflammatory cytokines in lung tissues of rats submitted to aerobic exercise.

  3. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  4. Citrus peel extract attenuates acute cyanide poisoning-induced seizures and oxidative stress in rats.

    PubMed

    Abdel Moneim, Ahmed E

    2014-01-01

    The primary aimed of this study was to investigate the potential protective effects of methanolic extract of citrus peel (MECP) on acute cyanide (KCN) poisoning-induced seizures and oxidative stress in rats. The intraperitoneal LD50 value of KCN (6.3 mg/Kg bwt), based on 24 hrs mortality, was significantly increased by 9, 52 or 113% by oral administration of MECP (500 mg/Kg bwt) pre-administered for 1, 2 and 3 days, respectively, in rats in a time-dependent manner. Intraperitoneal injection of the sublethal dose of KCN (3 mg/Kg bwt) into rats increased, 24 hrs later, lipid peroxidation (LPO), nitric oxide (NO), glutamate levels and acetylcholinesterase (AChE) activity in hippocampus, striatum and cerebral cortex. KCN also decreased brain glutathione (GSH) level and superoxide dismutase (SOD) and catalase (CAT) activities in these animals. Pre-treatment of rats with MECP inhibited KCN-induced increases in LPO, NO, and glutamate levels and AChE activity as well as decreases in brain GSH level and SOD and CAT activities. In addition, KCN significantly decreased norepinephrine, dopamine and serotonin levels in different brain regions which were resolved by MECP. From the present results, it can be concluded that the neuroprotective effects of MECP against KCN-induced seizures and oxidative stress may be due to the inhibition of oxidative stress overproduction and maintenance of antioxidant defense mechanisms.

  5. [Alteration mechanisms of oxidative stress at periodontal tissues of rats in a simulated periodontitis and elaborate methods of their correction].

    PubMed

    Хмиль, Елена В; Ляшенко, Лилия И; Янко, Наталия В; Хмиль, Дмитрий А; Каськова, Людмила Ф

    2016-01-01

    one of the peroxidation stress mechanisms is inducible NO synthase (iNOS) expression involved in the pathogenesis of periodontitis. to access the influence of isoform NO synthase (NOS) on alteration mechanisms of oxidative stress at periodontal tissues of 50 mature rats in a simulated periodontitis (SP). a SP at rats was induced by a high-carbohydrate, high-fat (HCHF) diet. Тreated SP rat groups were intragastrically administered with selective neuronal NOS (nNOS) inhibitor 7-nitroindazole, selective inducible NOS (iNOS) inhibitor aminoguanidine, and nitric oxide synthase substrate L-arginine. Oxidative stress level in the homogenated soft periodontal tissues was evaluated by TBARS (thiobarbituric acid reactive substances) level before and after 1,5 hours of incubation. Antioxidant response was evaluated by the increase in concentration of TBARS for incubation, аnd by antioxidant enzyme activity - superoxide dismutase and catalase. nNOS activity increase in a SP considerably limits oxidative stress activation at periodontal tissues, decreases antioxidant response, but heightens catalase activity. iNOS functional activity stimulates oxidative stress at periodontal tissues of rats, decreases antioxidant response. L-arginine in a MS effectively repaired antioxidant response at periodontal tissues that probably will give positive result at complex treatment of periodontitis and MS generally. in the near future, the appropriate regulation of NO activity by using NOS-active agents may provide a novel strategy for the periodontal disease prevention and correction in a MS.

  6. [Alteration mechanisms of oxidative stress at periodontal tissues of rats in a simulated periodontitis and elaborate methods of their correction].

    PubMed

    Хмиль, Елена В; Ляшенко, Лилия И; Янко, Наталия В; Хмиль, Дмитрий А; Каськова, Людмила Ф

    one of the peroxidation stress mechanisms is inducible NO synthase (iNOS) expression involved in the pathogenesis of periodontitis. to access the influence of isoform NO synthase (NOS) on alteration mechanisms of oxidative stress at periodontal tissues of 50 mature rats in a simulated periodontitis (SP). a SP at rats was induced by a high-carbohydrate, high-fat (HCHF) diet. Тreated SP rat groups were intragastrically administered with selective neuronal NOS (nNOS) inhibitor 7-nitroindazole, selective inducible NOS (iNOS) inhibitor aminoguanidine, and nitric oxide synthase substrate L-arginine. Oxidative stress level in the homogenated soft periodontal tissues was evaluated by TBARS (thiobarbituric acid reactive substances) level before and after 1,5 hours of incubation. Antioxidant response was evaluated by the increase in concentration of TBARS for incubation, аnd by antioxidant enzyme activity - superoxide dismutase and catalase. nNOS activity increase in a SP considerably limits oxidative stress activation at periodontal tissues, decreases antioxidant response, but heightens catalase activity. iNOS functional activity stimulates oxidative stress at periodontal tissues of rats, decreases antioxidant response. L-arginine in a MS effectively repaired antioxidant response at periodontal tissues that probably will give positive result at complex treatment of periodontitis and MS generally. in the near future, the appropriate regulation of NO activity by using NOS-active agents may provide a novel strategy for the periodontal disease prevention and correction in a MS.

  7. Early in vivo changes in calcium ions, oxidative stress markers, and ion channel immunoreactivity following partial injury to the optic nerve.

    PubMed

    Wells, Jonathan; Kilburn, Matthew R; Shaw, Jeremy A; Bartlett, Carole A; Harvey, Alan R; Dunlop, Sarah A; Fitzgerald, Melinda

    2012-03-01

    CNS injury is often localized but can be followed by more widespread secondary degenerative events that usually result in greater functional loss. Using a partial transection model in rat optic nerve (ON). we recently demonstrated in vivo increases in the oxidative stress-associated enzyme MnSOD 5 min after injury. However, mechanisms by which early oxidative stress spreads remain unclear. In the present study, we assessed ion distributions, additional oxidative stress indicators, and ion channel immunoreactivity in ON in the first 24 hr after partial transection. Using nanoscale secondary ion mass spectroscopy (NanoSIMS), we demonstrate changes in the distribution pattern of Ca ions following partial ON transection. Regions of elevated Ca ions in normal ON in vivo rapidly decrease following partial ON transection, but there is an increasingly punctate distribution at 5 min and 24 hr after injury. We also show rapid decreases in catalase activity and later increases in immunoreactivity of the advanced glycation end product carboxymethyl lysine in astrocytes. Increased oxidative stress in astrocytes is accompanied by significantly increased immunoreactivity of the AMPA receptor subunit GluR1 and aquaporin 4 (AQP4). Taken together, the results indicate that Ca ion changes and oxidative stress are early events following partial ON injury that are associated with changes in GluR1 AMPA receptor subunits and altered ionic balance resulting from increased AQP4. Copyright © 2011 Wiley Periodicals, Inc.

  8. Effects of valsartan and amlodipine on oxidative stress in type 2 diabetic patients with hypertension: a randomized, multicenter study.

    PubMed

    Kim, Hae Jin; Han, Seung Jin; Kim, Dae Jung; Jang, Hak Chul; Lim, Soo; Choi, Sung Hee; Kim, Yong Hyun; Shin, Dong Hyun; Kim, Se Hwa; Kim, Tae Ho; Ahn, Yu Bae; Ko, Seung Hyun; Kim, Nan Hee; Seo, Ji A; Kim, Ha Young; Lee, Kwan Woo

    2017-05-01

    Oxidative stress plays an important role in the pathogenesis and progression of diabetic complications and antagonists of renin-angiotensin system and amlodipine have been reported previously to reduce oxidative stress. In this study, we compared the changes in oxidative stress markers after valsartan and amlodipine treatment in type 2 diabetic patients with hypertension and compared the changes in metabolic parameters. Type 2 diabetic subjects with hypertension 30 to 80 years of age who were not taking antihypertensive drugs were randomized into either valsartan (n = 33) or amlodipine (n = 35) groups and treated for 24 weeks. We measured serum nitrotyrosine levels as an oxidative stress marker. Metabolic parameters including serum glucose, insulin, lipid profile, and urine albumin and creatinine were also measured. After 24 weeks of valsartan or amlodipine treatment, systolic and diastolic blood pressure decreased, with no significant difference between the groups. Both groups showed a decrease in serum nitrotyrosine (7.74 ± 7.30 nmol/L vs. 3.95 ± 4.07 nmol/L in the valsartan group and 8.37 ± 8.75 nmol/L vs. 2.68 ± 2.23 nmol/L in the amlodipine group) with no significant difference between the groups. Other parameters including glucose, lipid profile, albumin-to-creatinine ratio, and homeostasis model assessment of insulin resistance showed no significant differences before and after treatment in either group. Valsartan and amlodipine reduced the oxidative stress marker in type 2 diabetic patients with hypertension.

  9. Wet-cupping removes oxidants and decreases oxidative stress.

    PubMed

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Dependence of electrical and time stress in organic field effect transistor with low temperature forming gas treated Al2O3 gate dielectrics.

    PubMed

    Lee, Sunwoo; Chung, Keum Jee; Park, In-Sung; Ahn, Jinho

    2009-12-01

    We report the characteristics of the organic field effect transistor (OFET) after electrical and time stress. Aluminum oxide (Al2O3) was used as a gate dielectric layer. The surface of the gate oxide layer was treated with hydrogen (H2) and nitrogen (N2) mixed gas to minimize the dangling bond at the interface layer of gate oxide. According to the two stress parameters of electrical and time stress, threshold voltage shift was observed. In particular, the mobility and subthreshold swing of OFET were significantly decreased due to hole carrier localization and degradation of the channel layer between gate oxide and pentacene by electrical stress. Electrical stress is a more critical factor in the degradation of mobility than time stress caused by H2O and O2 in the air.

  11. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles.

    PubMed

    Djanaguiraman, M; Boyle, D L; Welti, R; Jagadish, S V K; Prasad, P V V

    2018-04-05

    High temperature is a major abiotic stress that limits wheat (Triticum aestivum L.) productivity. Variation in levels of a wide range of lipids, including stress-related molecular species, oxidative damage, cellular organization and ultrastructural changes were analyzed to provide an integrated view of the factors that underlie decreased photosynthetic rate under high temperature stress. Wheat plants of cultivar Chinese Spring were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of the booting stage. Thereafter, plants were exposed to high temperature (35/25 °C) for 16 d. Compared with optimum temperature, a lower photosynthetic rate was observed at high temperature which is an interplay between thylakoid membrane damage, thylakoid membrane lipid composition, oxidative damage of cell organelle, and stomatal and non-stomatal limitations. Triacylglycerol levels were higher under high temperature stress. Polar lipid fatty acyl unsaturation was lower at high temperature, while triacylglycerol unsaturation was the same at high temperature and optimum temperature. The changes in lipid species indicates increases in activities of desaturating, oxidizing, glycosylating and acylating enzymes under high temperature stress. Cumulative effect of high temperature stress led to generation of reactive oxygen species, cell organelle and membrane damage, and reduced antioxidant enzyme activity, and imbalance between reactive oxygen species and antioxidant defense system. Taken together with recent findings demonstrating that reactive oxygen species are formed from and are removed by thylakoid lipids, the data suggest that reactive oxygen species production, reactive oxygen species removal, and changes in lipid metabolism contribute to decreased photosynthetic rate under high temperature stress.

  12. N-Acetylcysteine supplementation reduces oxidative stress and DNA damage in children with β-thalassemia.

    PubMed

    Ozdemir, Zeynep Canan; Koc, Ahmet; Aycicek, Ali; Kocyigit, Abdurrahim

    2014-01-01

    There are several reports that increased oxidative stress and DNA damage were found in β-thalassemia major (β-TM) patients. In this study, we aimed to evaluate the effects of N-acetylcysteine (NAC) and vitamin E on total oxidative stress and DNA damage in children with β-TM. Seventy-five children with transfusion-dependent β-thalassemia (β-thal) were randomly chosen to receive 10 mg/kg/day of NAC or 10 IU/kg/day of vitamin E or no supplementation; 28 healthy controls were also included in the study. Serum total oxidant status (TOS) and total antioxidant capacity (TAC) were measured, oxidative stress index (OSI) was calculated, and mononuclear DNA damage was assessed by alkaline comet assay; they were determined before treatment and after 3 months of treatment. Total oxydent status, OSI, and DNA damage levels were significantly higher and TAC levels were significantly lower in the thalassemic children than in the healthy controls (p < 0.001). In both supplemented groups, mean TOS and OSI levels were decreased; TAC and pre transfusion hemoglobin (Hb) levels were significantly increased after 3 months (p ≤ 0.002). In the NAC group, DNA damage score decreased (p = 0.001). N-Acetylcysteine and vitamin E may be effective in reducing serum oxidative stress and increase pre transfusion Hb levels in children with β-thal. N-Acetylcysteine also can reduce DNA damage.

  13. Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of Grape seed proanthocyanidin extract.

    PubMed

    Niu, Qiang; He, Ping; Xu, Shangzhi; Ma, Ruling; Ding, Yusong; Mu, Lati; Li, Shugang

    2018-01-01

    Emerging evidence has demonstrated that iron overload plays an important role in oxidative stress in the liver. This study aimed to explore whether fluoride-induced hepatic oxidative stress is associated with iron overload and whether grape seed proanthocyanidin extract (GSPE) alleviates oxidative stress by reducing iron overload. Forty Kunming male mice were randomly divided into 4 groups and treated for 5 weeks with distilled water (control), sodium fluoride (NaF) (100 mg/L), GSPE (400 mg/kg bw), or NaF (100 mg/L) + GSPE (400 mg/kg bw). Mice exposed to NaF showed typical poisoning changes of morphology, increased aspartate aminotransferase and alanine aminotransferase activities in the liver. NaF treatment also increased MDA accumulation, decreased GSH-Px, SOD and T-AOC levels in liver, indicative of oxidative stress. Intriguingly, all these detrimental effects were alleviated by GSPE. Further study revealed that NaF induced disorders of iron metabolism, as manifested by elevated iron level with increased hepcidin but decreased ferroportin expression, which contributed to hepatic oxidative stress. Importantly, the iron dysregulation induced by NaF could be normalized by GSPE. Collectively, these data provide a novel insight into mechanisms underlying fluorosis and highlight the potential of GSPE as a naturally occurring prophylactic treatment for fluoride-induced hepatotoxicity associated with iron overload.

  14. Oxidative stress in blood and testicle of rat following intraperitoneal administration of aluminum and indium.

    PubMed

    Maghraoui, S; Clichici, Simona; Ayadi, A; Login, C; Moldovan, R; Daicoviciu, D; Decea, N; Mureşan, A; Tekaya, L

    2014-03-01

    Aluminum (Al) and indium (In) have embryotoxic, neurotoxic and genotoxic effects, oxidative stress being one of the possible mechanisms involved in their cytotoxicity. We have recently demonstrated that indium intraperitoneal (ip) administration induced histological disorganization of testicular tissue. In the present research we aimed at investigating the effect of Al and In ip administration on systemic and testicular oxidative stress status. Studies were performed on Wistar rats ip injected with Al, In or physiological solution for two weeks. Our results showed that In significantly decreased the absolute weight of testicles. Measurements of lactate dehydrogenase (LDH) and paraoxonase (PON) activities showed that In induced a significant augmentation in the first parameter but no changes were observed in the second. Both Al and In caused oxidative stress in testicles by increasing malondialdehyde (MDA) and protein carbonyls (PC) production. Concomitantly, thiol group (-SH) and glutathione (GSH) level were enhanced in the testicles. In the blood, while concentrations of MDA was not changed, those of GSH was significantly decreased in the Al and In groups. Our results indicated that Al and In cause oxidative stress both in blood and testicles but In has cytotoxic effect as well as negative impact on testicle weights. These findings could explain the testicular histological alterations previously described after In ip administration.

  15. Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Matsuo, Ryo; Mizobuchi, Shogo; Nakashima, Maya; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2017-10-01

    Oxygen is essential for aerobic organisms but causes cytotoxicity probably through the generation of reactive oxygen species (ROS). In this study, we screened for the genes that regulate oxidative stress in the yeast Saccharomyces cerevisiae, and found that expression of CTH2/TIS11 caused an increased resistance to ROS. CTH2 is up-regulated upon iron starvation and functions to remodel metabolism to adapt to iron starvation. We showed here that increased resistance to ROS by CTH2 would likely be caused by the decreased ROS production due to the decreased activity of mitochondrial respiration, which observation is consistent with the fact that CTH2 down-regulates the mitochondrial respiratory proteins. We also found that expression of CTH1, a paralog of CTH2, also caused an increased resistance to ROS. This finding supported the above view, because mitochondrial respiratory proteins are the common targets of CTH1 and CTH2. We further showed that supplementation of iron in medium augmented the growth of S. cerevisiae under oxidative stress, and expression of CTH2 and supplementation of iron collectively enhanced its growth under oxidative stress. Since CTH2 is regulated by iron, these findings suggested that iron played crucial roles in the regulation of oxidative stress in S. cerevisiae.

  16. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone)

    PubMed Central

    Hara, Hideaki

    2017-01-01

    Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress. PMID:28194256

  17. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone).

    PubMed

    Masuda, Tomomi; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress.

  18. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis.

    PubMed

    Findeisen, Hannes M; Pearson, Kevin J; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; de Cabo, Rafael; Bruemmer, Dennis

    2011-04-14

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G(1)→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction.

  19. Oxidative Stress Accumulates in Adipose Tissue during Aging and Inhibits Adipogenesis

    PubMed Central

    Findeisen, Hannes M.; Pearson, Kevin J.; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L.; Cohn, Dianne; Heywood, Elizabeth B.; de Cabo, Rafael; Bruemmer, Dennis

    2011-01-01

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G1→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction. PMID:21533223

  20. Roles of oxidative stress in synchrotron radiation X-ray-induced testicular damage of rodents

    PubMed Central

    Ma, Yingxin; Nie, Hui; Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Shao, Jiaxiang; He, Xin; Zhang, Tingting; Zheng, Chaobo; Xia, Weiliang; Ying, Weihai

    2012-01-01

    Synchrotron radiation (SR) X-ray has characteristic properties such as coherence and high photon flux, which has excellent potential for its applications in medical imaging and cancer treatment. However, there is little information regarding the mechanisms underlying the damaging effects of SR X-ray on biological tissues. Oxidative stress plays an important role in the tissue damage induced by conventional X-ray, while the role of oxidative stress in the tissue injury induced by SR X-ray remains unknown. In this study we used the male gonads of rats as a model to study the roles of oxidative stress in SR X-ray-induced tissue damage. Exposures of the testes to SR X-ray at various radiation doses did not significantly increase the lipid peroxidation of the tissues, assessed at one day after the irradiation. No significant decreases in the levels of GSH or total antioxidation capacity were found in the SR X-ray-irradiated testes. However, the SR X-ray at 40 Gy induced a marked increase in phosphorylated H2AX – a marker of double-strand DNA damage, which was significantly decreased by the antioxidant N-acetyl cysteine (NAC). NAC also attenuated the SR X-ray-induced decreases in the cell layer number of seminiferous tubules. Collectively, our observations have provided the first characterization of SR X-ray-induced oxidative damage of biological tissues: SR X-ray at high doses can induce DNA damage and certain tissue damage during the acute phase of the irradiation, at least partially by generating oxidative stress. However, SR X-ray of various radiation doses did not increase lipid peroxidation. PMID:22837810

  1. The COFU3 Study. Improvement in cognitive function, attention, mental performance with Pycnogenol® in healthy subjects (55-70) with high oxidative stress.

    PubMed

    Belcaro, G; Dugall, M; Ippolito, E; Hu, S; Saggino, A; Feragalli, B

    2015-12-01

    This 12-month product registry study evaluated the effects of supplementation with French pine bark extract (Pycnogenol(®)) on cognitive function, attention, and mental performance in healthy subjects with high oxidative stress. Healthy subjects (age range 55-70) were screened - within a cardiovascular screening program - for oxidative stress. Out of 150 subjects, high oxidative stress was present in 44; the use of the supplement Pycnogenol(®) was suggested (100 mg/day). These subjects decided to use Pycnogenol(®) and accepted to be evaluated by assessing cognitive functions. A group of subjects with comparable oxidative stress was followed as a reference. IQ Code (Informant Questionnaire on Cognitive Decline in the Elderly), daily tasks, cognitive function, oxidative stress and the short Blessed tests (SBT) were used (in defined scales) to evaluate cognitive functions (COFU). As for the IQ Code, at 12 months there was a significantlty total lower score in Pycnogenol(®) patients and also a lower value (P<0.05) for 14 out of 16 items in the questionnaire. Daily tasks: all items were improved (P<0.05) with supplementation in comparison with controls. The improvement was seen for all 12 items (P<0.05) with the supplement. Cognitive function values (visual scale line) indicated a significant improvement (P<0.05) in all elements present in the questionnaire with the 12-month supplementation (no significant variations in controls). Oxidative stress was comparable in both groups at inclusion. It was significantly decreased with Pycnogenol(®) (-28.07%; P<0.05) at 12 months; there was no decrease in controls. The short blessed test (SBT) value was significantly increased in controls (P<0.05); but significantly decreased in the Pycnogenol(®) group (P<0.05). Values for supplemented patients at 12 months were almost within the normal range (21 out or 38 were below the normal value of 4). Tolerability and compliance for Pycnogenol(®) were optimal with >97% of the doses of the supplement correctly used. No side effects were observed, recorded or described. Pycnogenol(®) supplementation for 12 months appears to improve cognitive function and oxidative stress in normal subjects between 55 and 70 years of age.

  2. N-Acetylcysteine Reverses Anxiety and Oxidative Damage Induced by Unpredictable Chronic Stress in Zebrafish.

    PubMed

    Mocelin, Ricieri; Marcon, Matheus; D'ambros, Simone; Mattos, Juliane; Sachett, Adrieli; Siebel, Anna M; Herrmann, Ana P; Piato, Angelo

    2018-06-06

    There is accumulating evidence on the use of N-acetylcysteine (NAC) in the treatment of patients with neuropsychiatric disorders. As a multi-target drug and a glutathione precursor, NAC is a promising molecule in the management of stress-related disorders, for which there is an expanding field of research investigating novel therapies targeting oxidative pathways. The deleterious effects of chronic stress in the central nervous system are a result of glutamatergic hyperactivation, glutathione (GSH) depletion, oxidative stress, and increased inflammatory response, among others. The aim of this study was to investigate the effects of NAC in zebrafish submitted to unpredictable chronic stress (UCS). Animals were initially stressed or not for 7 days, followed by treatment with NAC (1 mg/L, 10 min) or vehicle for 7 days. UCS decreased the number of entries and time spent in the top area in the novel tank test, which indicate increased anxiety levels. It also increased reactive oxygen species (ROS) levels and lipid peroxidation (TBARS) while decreased non-protein thiols (NPSH) and superoxide dismutase (SOD) activity. NAC reversed the anxiety-like behavior and oxidative damage observed in stressed animals. Additional studies are needed to investigate the effects of this agent on glutamatergic modulation and inflammatory markers related to stress. Nevertheless, our study adds to the existing body of evidence supporting the clinical evaluation of NAC in mood disorders, anxiety, post-traumatic stress disorder, and other conditions associated with stress.

  3. Nutritional history does not modulate hepatic oxidative status of European sea bass (Dicentrarchus labrax) submitted to handling stress.

    PubMed

    Castro, Carolina; Peréz-Jiménez, Amalia; Coutinho, Filipe; Corraze, Geneviève; Panserat, Stéphane; Peres, Helena; Teles, Aires Oliva; Enes, Paula

    2018-06-01

    The aim of the present study was to assess the impact of an acute handling stress on hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed diets differing in lipid so urce and carbohydrate content. For that purpose, four diets were formulated with fish oil (FO) and vegetable oils (VO) as lipid source and with 20 or 0% gelatinized starch as carbohydrate source. Triplicate groups of fish with 74 g were fed each diet during 13 weeks and then subjected to an acute handling stress. Stress exposure decreased hematocrit (Ht) and hemoglobin (Hb) levels. Independent of dietary treatment, stress exposure increased hepatic lipid peroxidation (LPO). Stressed fish exhibited lower glucose 6-phosphate dehydrogenase (G6PD), catalase (CAT), and superoxide dismutase (SOD) activities, independent of previous nutritional history. In the VO groups, stress exposure increased glutathione peroxidase (GPX) activity. Diet composition had no effect on Ht and Hb levels. In contrast, dietary carbohydrate decreased hepatic LPO and CAT activity and increased glutathione reductase (GR) and G6PD activities. Dietary lipids had no effect on LPO. Fish fed the VO diets exhibited higher G6PD activity than fish fed the FO diets. In conclusion, dietary carbohydrates contributed to the reduction of oxidative stress in fish. However, under the imposed handling stress conditions, liver enzymatic antioxidant mechanisms were not enhanced, which may explain the overall increased oxidative stress.

  4. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici.

    PubMed

    Wang, Xiuna; Wu, Fan; Liu, Ling; Liu, Xingzhong; Che, Yongsheng; Keller, Nancy P; Guo, Liyun; Yin, Wen-Bing

    2015-08-01

    The bZIP transcription factors are conserved in all eukaryotes and play critical roles in organismal responses to environmental challenges. In filamentous fungi, several lines of evidence indicate that secondary metabolism (SM) is associated with oxidative stress mediated by bZIP proteins. Here we uncover a connection with a bZIP protein and oxidative stress induction of SM in the plant endophytic fungus Pestalotiopsis fici. A homology search of the P. fici genome with the bZIP protein RsmA, involved in SM and the oxidative stress response in Aspergillus nidulans, identified PfZipA. Deletion of PfzipA resulted in a strain that displayed resistant to the oxidative reagents tert-butylhydroperoxide (tBOOH), diamide, and menadione sodium bisulfite (MSB), but increased sensitivity to H2O2 as compared to wild type (WT). Secondary metabolite production presented a complex pattern dependent on PfzipA and oxidative reagents. Without oxidative treatment, the ΔPfzipA strain produced less isosulochrin and ficipyroneA than WT; addition of tBOOH further decreased production of iso-A82775C and pestaloficiol M in ΔPfzipA; diamide treatment resulted in equivalent production of isosulochrin and ficipyroneA in the two strains; MSB treatment further decreased production of RES1214-1 and iso-A82775C but increased pestaloficiol M production in the mutant; and H2O2 treatment resulted in enhanced production of isosulochrin, RES1214-1 and pestheic acid but decreased ficipyroneA and pestaloficiol M in ΔPfzipA compared to WT. Our results suggest that PfZipA regulation of SM is modified by oxidative stress pathways and provide insights into a possible role of PfZipA in mediating SM synthesis in the endophytic lifestyle of P. fici. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. [Effect of a hypocaloric diet in the oxidative stress in obese subjects without prescription of exercise and antioxidants].

    PubMed

    Gutiérrez, Liliana; García, José R; Rincón, María de Jesús; Ceballos, Guillermo M; Olivares, Ivonne M

    2015-07-06

    Obesity is characterized by a generalized increase of adipose tissue, high production of adipocytokines and presence of oxidative systemic stress. The objective of this study was to evaluate the changes generated in the oxidative stress and anthropometric parameters in obese subjects by the prescription of a hypocaloric diet in combination with moderate aerobic exercise and supplementation with antioxidants. Oxidative damage was determined in the plasma from 30 normal weight and 30 obese subjects. Three groups of treatment were established: Hypocaloric diet (HD), HD plus moderate aerobic exercise (HDE) and HDE plus antioxidants (DHEA). Biomarkers of oxidative stress (thiobarbituric acid reactive substances [TBARS], carbonyl groups, dityrosine) and anthropometric parameters were determined. Higher values of biomarkers of oxidative damage were observed in obese (TBARS 13.74 ± 1.2 μM; carbonyl groups 0.89 ± 0.04 nmol of osazone/mg of protein; dityrosine 478.9 ± 27.4 RFU/mg of protein) in comparison to normal weight subjects (TBARS 7.08 ± 0.8 μM; carbonyl groups 0.65 ± 0.04 nmol of osazone/mg of protein; dityrosine 126.3 ± 12.6 RFU/mg of protein), thus showing the presence of an oxidative damage. The prescription of HD decreased the oxidative damage and anthropometric parameters in the obese subjects. We did not observe additional benefit effects on these determinations with HDE or HDEA treatments. We demonstrated that an HD decreases the oxidative damage in obese subjects. Oxidative stress is an important factor in the development of comorbidity in obesity. Therefore, the prescription of a HD could be a key issue in the treatment of the disease. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  6. Effects of complete water fasting and regeneration diet on kidney function, oxidative stress and antioxidants.

    PubMed

    Mojto, V; Gvozdjakova, A; Kucharska, J; Rausova, Z; Vancova, O; Valuch, J

    2018-01-01

    The aim of the study was to observe the influence of 11-days complete water fasting (WF) and regeneration diet (RD) on renal function, body weight, blood pressure and oxidative stress. Therapeutic WF is considered a healing method. Ten volunteers drank only water for 11 days, followed by RD for the next 11 days. Data on body weight, blood pressure, kidney functions, antioxidants, lipid peroxidation, cholesterols, triacylglycerols and selected biochemical parameters were obtained. WF increased uric acid and creatinine and decreased glomerular filtration rate. After RD, the parameters were comparable to baseline values. Urea was not affected. Lipid peroxidation (TBARS) decreased and maintained stable after RD. Fasting decreased α-tocopherol and increased γ-tocopherol, no significant changes were found after RD. Coenzyme Q10 decreased after RD. HDL-cholesterol decreased in WF. Total- and LDL-cholesterol decreased after RD. Other biochemical parameters were within the range of reference values. The effect of the complete fasting on kidney function was manifested by hyperuricemia. Renal function was slightly decreased, however maintained within the reference values. After RD, it returned to baseline values. The positive effect of the complete water fasting was in the reduction of oxidative stress, body weight and blood pressure (Tab. 3, Ref. 25).

  7. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid

    PubMed Central

    Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel CT; Li, Rui; Yang, Xu

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects. PMID:24596461

  8. Protective effects of coenzyme q(10) on decreased oxidative stress resistance induced by simvastatin.

    PubMed

    Kettawan, Aikkarach; Takahashi, Takayuki; Kongkachuichai, Ratchanee; Charoenkiatkul, Somsri; Kishi, Takeo; Okamoto, Tadashi

    2007-05-01

    The effects of simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase), on oxidative stress resistance and the protective effects of coenzyme Q (CoQ) were investigated. When simvastatin was administered orally to mice, the levels of oxidized and reduced CoQ(9) and CoQ(10) in serum, liver, and heart, decreased significantly when compared to those of control. The levels of thiobarbituric acid reactive substances induced by Fe(2+)-ascorbate in liver and heart mitochondria also increased significantly with simvastatin. Furthermore, cultured cardiac myocytes treated with simvastatin exhibited less resistance to oxidative stress, decreased time to the cessation of spontaneous beating in response to H(2)O(2) addition, and decreased responsiveness to electrical field stimulation. These results suggested that oral administration of simvastatin suppresses the biosynthesis of CoQ, which shares the same biosynthesis pathway as cholesterol up to farnesyl pyrophosphate, thus compromising the physiological function of reduced CoQ, which possesses antioxidant activity. However, these undesirable effects induced by simvastatin were alleviated by coadministering CoQ(10) with simvastatin to mice. Simvastatin also reduced the activity of NADPH-CoQ reductase, a biological enzyme that converts oxidized CoQ to the corresponding reduced CoQ, while CoQ(10) administration improved it. These findings may also support the efficacy of coadministering CoQ(10) with statins.

  9. The effect of plasma electrolytic oxidation on the mean stress sensitivity of the fatigue life of the 6082 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Winter, L.; Morgenstern, R.; Hockauf, K.; Lampke, T.

    2016-03-01

    In this work the mean stress influence on the high cycle fatigue behavior of the plasma electrolytic oxidized (PEO) 6082 aluminum alloy (AlSi1MgMn) is investigated. The present study is focused on the fatigue life time and the susceptibility of fatigue-induced cracking of the oxide coating and their dependence on the applied mean stress. Systematic work is done comparing conditions with and without PEO treatment, which have been tested using three different load ratios. For the uncoated substrate the cycles to failure show a significant dependence on the mean stress, which is typical for aluminum alloys. With increased load ratio and therefore increased mean stress, the fatigue strength decreases. The investigation confirms the well-known effect of PEO treatment on the fatigue life: The fatigue strength is significantly reduced by the PEO process, compared to the uncoated substrate. However, also the mean stress sensitivity of the fatigue performance is reduced. The fatigue limit is not influenced by an increasing mean stress for the PEO treated conditions. This effect is firstly shown in these findings and no explanation for this effect can be found in literature. Supposedly the internal compressive stresses and the micro-cracks in the oxide film have a direct influence on the crack initiation and growth from the oxide film through the interface and in the substrate. Contrary to these findings, the susceptibility of fatigue-induced cracking of the oxide coating is influenced by the load ratio. At tension-tension loading a large number of cracks, which grow partially just in the aluminum substrate, are present. With decreasing load ratio to alternating tension-compression stresses, the crack number and length increases and shattering of the oxide film is more pronounced due to the additional effective compressive part of the load cycle.

  10. Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium.

    PubMed

    Rush, James W E; Turk, James R; Laughlin, M Harold

    2003-04-01

    Vascular oxidative stress contributes to endothelial dysfunction. Aerobic exercise training improves vascular function. The purpose of this study was to test the hypothesis that exercise training would improve the balance of antioxidant to prooxidant enzymes and reduce markers of oxidative stress in aortic endothelial cells (AEC). Female Yucatan miniature pigs either remained sedentary (SED) or were exercise trained (EX) for 16-19 wk. EX pigs had increased AEC SOD-1 protein levels and Cu/Zn SOD activity of the whole aorta compared with SED pigs. Protein levels of other antioxidant enzymes (SOD-2, catalase) were not affected by exercise training. Protein levels of p67(phox), a subunit of the prooxidant enzyme NAD(P)H oxidase, were reduced in EX vs. SED AEC. These EX adaptations were associated with lower AEC malondialdehyde levels and decreased phosphorylation of ERK-1/2. Endothelial nitric oxide synthase protein, protein nitrotyrosine content, and heme oxygenase-1 protein were not different in EX vs. SED pigs. We conclude that chronic aerobic exercise training influenced both antioxidant and prooxidant enzymes and decreased indexes of oxidative stress in AEC. These adaptations may contribute to improved endothelial function with exercise training.

  11. In vitro potential cytogenetic and oxidative stress effects of roxithromycin.

    PubMed

    Arslan, Mehmet; Timocin, Taygun; Ila, Hasan B

    2017-10-01

    Macrolide antibiotic roxithromycin was evaluated in terms of its genotoxic, cytotoxic and oxidative stress effects. For this purpose; 25, 50, 100 and 200 μg/mL concentrations of roxithromycin were dissolved in dimethyl sulfoxide and treated to human peripheral blood lymphocytes for two different treatment periods (24 and 48 h). In chromosome aberration (CA) and micronucleus (MN) tests, roxithromycin did not show genotoxic effect. But it induced sister chromatid exchange (SCE) at the highest concentration (200 μg/mL) for the 24-h treatment period and at all concentrations (except 25 μg/mL) for the 48-h treatment period. Looking at cytotoxic effect of roxithromycin, statistically insignificant decreases on mitotic index and proliferation index were observed. Roxithromycin decreased nuclear division index (NDI) at highest two concentrations (100 and 200 μg/mL) for the 24-h treatment period and at all concentrations (expect 25 μg/mL) for the 48-h treatment period. Total oxidant values, total antioxidant values and oxidative stress index did not change with roxithromycin treatment. Eventually, roxithromycin did not have genotoxic and oxidative stress effects in human-cultured lymphocytes.

  12. Gypenosides protect retinal pigment epithelium cells from oxidative stress.

    PubMed

    Alhasani, Reem Hasaballah; Biswas, Lincoln; Tohari, Ali Mohammad; Zhou, Xinzhi; Reilly, James; He, Jian-Feng; Shu, Xinhua

    2018-02-01

    Oxidative stress plays a critical role in the pathogenesis of retinal degeneration. Gypenosides are the major functional components isolated from Gynostemma pentaphyllum. They have been shown to protect against oxidative stress and inflammation and have also demonstrated a protective effect on experimental optic neuritis. In order to determine the protective properties of gypenosides against oxidative stress in human retinal pigment epithelium (RPE) cells, ARPE-19 cells were treated with H 2 O 2 or H 2 O 2 plus gypenosides for 24 h. ARPE-19 cells co-treated with gypenosides had significantly increased cell viability and decreased cell death rate when compared to cells treated with H 2 O 2 alone. The level of GSH, the activities of SOD and catalase, and the expression of NRF2 and antioxidant genes were notably decreased, while there were marked increases in ROS, MDA and pro-inflammatory cytokines in ARPE-19 cells exposed to H 2 O 2 ; co-treatment with gypenosides significantly counteract these changes. Our study suggests that gypenosides protect RPE cells from oxidative damage and offer therapeutic potential for the treatment of retinal degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chlorogenic acid attenuates hydrogen peroxide-induced oxidative stress in lens epithelial cells

    PubMed Central

    Song, Jike; Guo, Dadong; Bi, Hongsheng

    2018-01-01

    Oxidative stress has an important role in the degradation, oxidation, cross-linking and aggregation of lens proteins, and can trigger lens epithelial cell apoptosis. To investigate the protective effect of chlorogenic acid (CGA) against hydrogen peroxide (H2O2)-induced oxidative stress, human lens epithelial cells (hLECs) were exposed to various concentrations of H2O2 in the presence and absence of CGA. Using MTT assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA techniques, cell viability, and protein/mRNA levels of BCL2 apoptosis regulator (Bcl-2) and BCL2 associated X apoptosis regulator (Bax) were investigated. Additionally, the levels of intracellular reactive oxygen species (ROS) and apoptosis within cells were measured using flow cytometry to determine the protective effect of CGA on H2O2-induced oxidative stress. Furthermore, the protective effect of CGA on H2O2-induced apoptosis was also examined using rabbit lenses ex vivo. The results indicated that CGA reduced H2O2-induced cytotoxicity in a dose-dependent manner. Flow cytometry analysis demonstrated that simultaneous exposure of hLECs to H2O2 and CGA significantly decreased apoptosis and the levels of ROS. RT-qPCR analysis revealed a decrease in Bcl-2 and an increase in Bax in hLECs following exposure to H2O2 for 24 h, regardless of CGA presence. Furthermore, ELISA results indicate that CGA increased Bcl-2 expression and decreased Bax expression following treatment with H2O2 for 24 h and the Bax/Bcl-2 ratio was significantly decreased by CGA treatment. Lens organ culture experiments indicated a dose-dependent decrease in H2O2-induced lens opacity following CGA treatment. These results suggest that CGA suppresses hLECs apoptosis and prevents lens opacity induced by H2O2 via Bax/Bcl-2 signaling pathway. CGA may provide effective defenses against oxidative stress and, thus, haσ potential as treatment for a variety of diseases in clinical practice. PMID:29207051

  14. Parastar insecticide induced changes in reproductive parameters and testicular oxidative stress biomarkers in Wistar male rats.

    PubMed

    Nantia, Edouard Akono; Kada, Antoine S; Manfo, Faustin Pt; Tangu, Nehemiah N; Mbifung, Kaghou M; Mbouobda, Desire H; Kenfack, Augustave

    2018-07-01

    Parastar is an insecticide formulation of lambda-cyhalothrin and imidacloprid, and it is largely used for crop production improvement in Santa, North West Region of Cameroon. This study aimed at evaluating the effects of Parastar on reproductive parameters and testicular oxidative stress in adult albino Wistar male rats. Twenty rats (154 g ± 28 g) were divided into four groups of five animals each and treated daily with either distilled water (10 mL/kg), 1.25, 2.49 or 6.23 mg/kg of Parastar, respectively, for 35 days. After treatment, animal reproductive function was evaluated through fertility tests, sperm characteristics, testosterone levels and organ weights, while oxidative stress biomarkers were determined on testicular homogenates. Parastar administration resulted into increased seminal vesicle and prostate weights, while body weight remained unaffected. Parastar dose-dependently reduced sperm density and mobility, and the highest dose decreased serum testosterone levels. Parastar also modulated stress biomarkers with increased thiobarbituric acid reactive substances levels, decreased glutathione levels and inhibition of catalase and superoxide dismutase activities. In conclusion, Parastar negatively affected male reproductive function through alteration of testosterone levels, sperm parameters and induction of oxidative stress in rats.

  15. The impact of levothyroxine sodium treatment on oxidative stress in Hashimoto's thyroiditis.

    PubMed

    Ates, Ihsan; Altay, Mustafa; Yilmaz, Fatma Meric; Topcuoglu, Canan; Yilmaz, Nisbet; Berker, Dilek; Guler, Serdar

    2016-06-01

    Although several studies reported increased oxidative stress in Hashimoto's thyroiditis (HT), the effect of levothyroxine treatment on oxidative status is not studied extensively. Therefore, we conducted this study to investigate the effects of levothyroxine replacement on oxidative stress in HT. Thirty-six patients recently diagnosed with HT-related hypothyroidism and 36 healthy controls were included in the study. Levothyroxine replacement was started to patients with hypothyroidism, and had been followed-up for 6 months. Mean basal serum total antioxidant status (TAS), total thiol, arylesterase, and paraoxonase 1 (PON1) levels were significantly lower, and serum total oxidant status (TOS) and oxidative stress index (OSI) were significantly higher in the patients with hypothyroid than the controls. In the hypothyroid group serum TAS, total thiol, arylesterase, and PON1 levels increased and serum TOS and OSI levels decreased significantly after levothyroxine treatment. Pretreatment serum TAS, total thiol, PON1, and arylesterase levels were positively correlated with free levothyroxine (fT4) and negatively correlated with thyroid-stimulating hormone (TSH), antithyroid peroxidase (anti-TPO), and antithyroglobulin (anti-TG) levels. Also, pretreatment serum TOS and OSI levels were negatively correlated with fT4 levels and positively correlated with TSH, anti-TPO, and anti-TG. We have also found that the fT4 and anti-TPO levels are independent predictors of the oxidative stress parameters in stepwise multivariable linear regression analysis. This study suggests that levothyroxine replacement decreases oxidant status and increases antioxidant status following the 6 months of levothyroxine replacement in hypothyroidism that develops in accordance with the HT. © 2016 European Society of Endocrinology.

  16. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats.

    PubMed

    Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Büyükbaş, Sadık

    2013-05-01

    The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.

  17. Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production

    PubMed Central

    Uchino, Yuichi; Kawakita, Tetsuya; Miyazawa, Masaki; Ishii, Takamasa; Onouchi, Hiromi; Yasuda, Kayo; Ogawa, Yoko; Shimmura, Shigeto; Ishii, Naoaki; Tsubota, Kazuo

    2012-01-01

    Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1) using a modified tetracycline system (Tet-On/Off system). This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC) in humans). The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease. PMID:23071526

  18. Total antioxidant capacity, total oxidant status and oxidative stress index in the men exposed to 1.5 T static magnetic field.

    PubMed

    Sirmatel, O; Sert, C; Sirmatel, F; Selek, S; Yokus, B

    2007-06-01

    The aim of this study was to investigate the effects of a high-strength magnetic field produced by a magnetic resonance imaging (MRI) apparatus on oxidative stress. The effects of a 1.5 T static magnetic field on the total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) in male subjects were investigated. In this study, 33 male volunteers were exposed to a 1.5 T static magnetic field for a short time and the TAC, TOS and OSI of each subject were determined. Magnetic field exposure was provided using a magnetic resonance apparatus; radiofrequency was not applied. Blood samples were taken from subjects and TAC, TOS and OSI values were measured using the methods of Erel. TAC showed a significant increase in post-exposures compared to pre-exposures to the magnetic field (p < 0.05). OSI and TOS showed a significant decrease in post-exposures compared to pre-exposures to a 1.5 T magnetic field (for each of two, p < 0.01). The 1.5 T static magnetic field used in the MRI apparatus did not yield a negative effect; on the contrary, it produced the positive effect of decreasing oxidative stress in men following short-term exposure.

  19. The Synergistic Effect of Valsartan and LAF237 [(S)-1-[(3-Hydroxy-1-Adamantyl)Ammo]acetyl-2-Cyanopyrrolidine] on Vascular Oxidative Stress and Inflammation in Type 2 Diabetic Mice

    PubMed Central

    Shen, Min; Sun, Dongdong; Li, Weijie; Liu, Bing; Wang, Shenxu; Zhang, Zheng; Cao, Feng

    2012-01-01

    Aim. To investigate the combination effects and mechanisms of valsartan (angiotensin II type 1 receptor blocker) and LAF237 (DPP-IV inhibitor) on prevention against oxidative stress and inflammation injury in db/db mice aorta. Methods. Db/db mice (n = 40) were randomized to receive valsartan, LAF237, valsartan plus LAF237, or saline. Oxidative stress and inflammatory reaction in diabetic mice aorta were examined. Results. Valsartan or LAF237 pretreatment significantly increased plasma GLP-1 expression, reduced apoptosis of endothelial cells isolated from diabetic mice aorta. The expression of NAD(P)H oxidase subunits also significantly decreased resulting in decreased superoxide production and ICAM-1 (fold change: valsartan : 7.5 ± 0.7, P < 0.05; LAF237: 10.2 ± 1.7, P < 0.05), VCAM-1 (fold change: valsartan : 5.2 ± 1.2, P < 0.05; LAF237: 4.8 ± 0.6, P < 0.05), and MCP-1 (fold change: valsartan: 3.2 ± 0.6, LAF237: 4.7 ± 0.8; P < 0.05) expression. Moreover, the combination treatment with valsartan and LAF237 resulted in a more significant increase of GLP-1 expression. The decrease of the vascular oxidative stress and inflammation reaction was also higher than monotherapy with valsartan or LAF237. Conclusion. These data indicated that combination treatment with LAF237 and valsartan acts in a synergistic manner on vascular oxidative stress and inflammation in type 2 diabetic mice. PMID:22474415

  20. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells†

    PubMed Central

    Jayaram, Dhanya T.; Runa, Sabiha; Kemp, Melissa L.

    2017-01-01

    Titanium dioxide nanoparticles (TiO2 NPs), used as pigments and photocatalysts, are ubiquitous in our daily lives. Previous work has observed cellular oxidative stress in response to the UV-excitation of photocatalytic TiO2 NPs. In comparison, most human exposure to TiO2 NPs takes place in the dark, in the lung following inhalation or in the gut following consumption of TiO2 NP food pigment. Our spectroscopic characterization shows that both photocatalytic and food grade TiO2 NPs, in the dark, generate low levels of reactive oxygen species (ROS), specifically hydroxyl radicals and superoxides. These ROS oxidize serum proteins that form a corona of proteins on the NP surface. This protein layer is the interface between the NP and the cell. An oxidized protein corona triggers an oxidative stress response, detected with PCR and western blotting. Surface modification of TiO2 NPs to increase or decrease surface defects correlates with ROS generation and oxidative stress, suggesting that NP surface defects, likely oxygen vacancies, are the underlying cause of TiO2 NP-induced oxidative stress. PMID:28537609

  1. Decreased total antioxidant capacity and increased oxidative stress in passive smoker infants and their mothers.

    PubMed

    Aycicek, Ali; Erel, Ozcan; Kocyigit, Abdurrahim

    2005-12-01

    Smoking has many adverse health effects in infants and adults. The purpose of the study was to study the effect of passive cigarette smoking on oxidative and antioxidative status of plasma in passive smoker infants and their mothers and to compare with those of non-smokers. Subjects were randomly chosen from infants aged 8-26 weeks and their mothers aged 20-34 years. Passive smoker infants (n = 29) and their mothers (n = 29) were defined as having other family members who smoked six or more cigarettes per day continually for at least 8 weeks. Non-smokers were defined as infants (n = 30) and their mothers (n = 24) who had never been exposed to passive smoking. The antioxidative status of plasma were perused by measuring the total antioxidant capacity. Oxidative status was evaluated by predicating total peroxide level, oxidative stress index, protein oxidation and lipid peroxidation. Plasma concentrations of total antioxidant capacity were significantly lower in passive smoker infants and their mothers than non-passive smoker infants and their mothers. However, lipid peroxidation and oxidative stress index were remarkably higher in passive smoker infants and their mothers than those of non-passive smoker infants and their mothers. There were significant correlations between the oxidative and antioxidative parameters of the passive smoker infants and their mothers. Oxidants are increased and antioxidants are decreased in passive smoker infants and their mothers than those of non-smokers. Passive smoker infants and their mothers are exposed to potent oxidative stress.

  2. Sigma Receptor 1 Modulates Endoplasmic Reticulum Stress in Retinal Neurons

    PubMed Central

    Ha, Yonju; Dun, Ying; Thangaraju, Muthusamy; Duplantier, Jennifer; Dong, Zheng; Liu, Kebin; Ganapathy, Vadivel

    2011-01-01

    Purpose. To investigate the mechanism of σ receptor 1 (σR1) neuroprotection in retinal neurons. Methods. Oxidative stress, which is implicated in diabetic retinopathy, was induced in mouse primary ganglion cells (GCs) and RGC-5 cells, and the effect of the σR1 ligand (+)-pentazocine on pro- and anti-apoptotic and endoplasmic reticulum (ER) stress gene expression was examined. Binding of σR1 to BiP, an ER chaperone protein, and σR1 phosphorylation status were examined by immunoprecipitation. Retinas were harvested from Ins2Akita/+ diabetic mice treated with (+)-pentazocine, and the expression of ER stress genes and of the retinal transcriptome was evaluated. Results. Oxidative stress induced the death of primary GCs and RGC-5 cells. The effect was decreased by the application of (+)-pentazocine. Stress increased σR1 binding to BiP and enhanced σR1 phosphorylation in RGC-5 cells. BiP binding was prevented, and σR1 phosphorylation decreased in the presence of (+)-pentazocine. The ER stress proteins PERK, ATF4, ATF6, IRE1α, and CHOP were upregulated in RGC-5 cells during oxidative stress, but decreased in the presence of (+)-pentazocine. A similar phenomenon was observed in retinas of Ins2Akita/+ diabetic mice. Retinal transcriptome analysis of Ins2Akita/+ mice compared with wild-type revealed differential expression of the genes critically involved in oxidative stress, differentiation, and cell death. The expression profile of those genes was reversed when the Ins2Akita/+ mice were treated with (+)-pentazocine. Conclusions. In retinal neurons, the molecular chaperone σR1 binds BiP under stressful conditions; (+)-pentazocine may exert its effects by dissociating σR1 from BiP. As stress in retinal cells increases, phosphorylation of σR1 is increased, which is attenuated when agonists bind to the receptor. PMID:20811050

  3. Cerium Improves Growth of Maize Seedlings via Alleviating Morphological Structure and Oxidative Damages of Leaf under Different Stresses.

    PubMed

    Hong, Fashui; Qu, Chunxiang; Wang, Ling

    2017-10-18

    It had been indicated that cerium (Ce) could promote maize growth involving photosynthetic improvement under potassium (K) deficiency, salt stress, and combined stress of K + deficiency and salt stress. However, whether the improved growth is related to leaf morphological structure, oxidative stress in maize leaves is not well understood. The present study showed that K + deficiency, salt stress, and their combined stress inhibited growth of maize seedlings, affecting the formation of appendages of leaf epidermal cells, and stomatal opening, which may be due to increases in H 2 O 2 and malondialdehyde levels, and reductions in Ca 2+ content, ratios of glutathione/oxidized glutathione, ascorbic acid/dehydroascorbic acid, and the activities of superoxide dismutase, catalase, ascorbic acid peroxidase, guaiacol peroxidase, and glutathione reductase in leaves under different stresses. The adverse effects caused by combined stress were higher than those of single stress. Furthermore, our findings demonstrated that adding Ce 3+ could significantly promote seedling growth, and alleviate morphological and structural damage of leaf, decrease oxidative stress and increase antioxidative capacity in maize leaves caused by different stresses.

  4. Protective effect of cinnamaldehyde against glutamate-induced oxidative stress and apoptosis in PC12 cells.

    PubMed

    Lv, Chao; Yuan, Xing; Zeng, Hua-Wu; Liu, Run-Hui; Zhang, Wei-Dong

    2017-11-15

    Cinnamaldehyde is a main ingredient of cinnamon oils from the stem bark of Cinnamomum cassia, which has been widely used in food and traditional herbal medicine in Asia. In the present study, the neuroprotective effects and the potential mechanisms of cinnamaldehyde against glutamate-induced oxidative stress in PC12 cells were investigated. Exposure to 4mM glutamate altered the GSH, MDA levels and SOD activity, caused the generation of reactive oxygen species, resulted in the induction of oxidative stress in PC12 cell, ultimately induced cell death. However, pretreatment with cinnamaldehyde at 5, 10 and 20μM significantly attenuated cell viability loss, reduced the generation of reactive oxygen species, stabilised mitochondrial membrane potential (MMP), decreased the release of cytochrome c and limited the activities of caspase-9 and -3. In addition, cinnamaldehyde also markedly increased Bcl-2 while inhibiting Bax expression,and decreased the LC3-II/LC3-I ratio. These results indicate that cinnamaldehyde exists a potential protective effect against glutamate-induced oxidative stress and apoptosis in PC12 cells. Copyright © 2017. Published by Elsevier B.V.

  5. Effects of Laminaria japonica polysaccharides on exercise endurance and oxidative stress in forced swimming mouse model.

    PubMed

    Yan, Feiwei; Hao, Haitao

    2016-12-01

    Polysaccharides are the major active ingredients responsible for the bioactivities of Laminaria japonica. However, the effects of L. japonica polysaccharides (LJP) on exercise endurance and oxidative stress have never been investigated. Therefore, this study was conducted to investigate the effects of LJP on exercise endurance and oxidative stress in a forced swimming mouse model. The animals were divided into four groups, namely the control (C), LJP-75, LJP-150, and LJP-300 groups, which received physiological saline and 75, 150, and 300 mg kg(-1) LJP, respectively, by gavage once a day for 28 days. This was followed by a forced swimming test and measurements of various biochemical parameters. LJP increased swimming time to exhaustion, the liver and muscle glycogen content, and levels of superoxide dismutase, glutathione peroxidase, and catalase in the serum, liver, and muscle, which were accompanied by corresponding decreases in the malondialdehyde (MDA) content of the same tissues. Furthermore, decreases in blood lactic acid and serum myeloperoxidase (MPO) levels were observed. LJP enhanced exercise endurance and protected mice against exhaustive exercise-induced oxidative stress.

  6. [Oxidative stress, lung function and exposure to air pollutants in Mexican schoolchildren with and without asthma].

    PubMed

    Romero-Calderón, Ana Teresa; Moreno-Macías, Hortensia; Manrique-Moreno, Joel David Francisco; Riojas-Rodríguez, Horacio; Torres-Ramos, Yessica Dorín; Montoya-Estrada, Araceli; Hicks-Gómez, Juan José; Linares-Segovia, Benigno; Cárdenas, Beatriz; Bárcenas, Claudia; Barraza-Villarreal, Albino

    2017-01-01

    To assess the association between the air pollutants exposure on markers of oxidative stress and lung function in schoolchildren with and without asthma from Salamanca and Leon Guanajuato, Mexico. We realized determinations of oxidative stress biomarkers and lung function tests in 314 schoolchildren. Information of air pollutants (O3, SO2, CO, PM2.5 and PM10) were obtained from monitoring stations and multiple linear regression models were run to assess the association. An increase of 0.09 pmol in conjugated dienes was observed by exposure to PM10 lag 1 in asthmatics from Salamanca (p<0.05). The exposure to O3 during the same day increased the concentration of Lipohydroperoxides in 4.38 nmol in asthmatics of Salamanca, as well as in 2.31 nmol by exposure to PM10 lag 2 (p<0.05). The forced vital capacity decreased by 138 and 203 ml in children without asthma, respectively, due to exposure to carbon monoxide (p<0.05). Exposure to air pollutants increase oxidative stress and decreased lung function in schoolchildren, with and without asthma.

  7. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  8. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice

    PubMed Central

    Zabielski, Piotr; Lanza, Ian R.; Gopala, Srinivas; Holtz Heppelmann, Carrie J.; Bergen, H. Robert; Dasari, Surendra

    2016-01-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  9. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchini, T.; Magnani, N.D.; Paz, M.L.

    2014-01-15

    It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acidmore » levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: • An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. • Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. • ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. • PMN activation is a relevant source of reactive oxygen species in this model. • These findings may account for previously described cardiopulmonary alterations.« less

  10. Uranium induces oxidative stress in lung epithelial cells

    PubMed Central

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.

    2009-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system’s response to the oxidative stress induced by uranium in the cells. PMID:17124605

  11. Acylcarnitines: potential implications for skeletal muscle insulin resistance.

    PubMed

    Aguer, Céline; McCoin, Colin S; Knotts, Trina A; Thrush, A Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H; Adams, Sean H; Harper, Mary-Ellen

    2015-01-01

    Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20-30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2-3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance. © FASEB.

  12. Anti-ageing effects of dentifrices containing anti-oxidative, anti-inflammatory, and anti-bacterial agents (Tomarina®) on gingival collagen degradation in rats.

    PubMed

    Koichiro, Irie; Tomofuji, Takaaki; Ekuni, Daisuke; Endo, Yasumasa; Kasuyama, Kenta; Azuma, Tetsuji; Tamaki, Naofumi; Yoneda, Toshiki; Morita, Manabu

    2014-01-01

    Previous studies have demonstrated the relationship between ageing and oxidative stress. In this study, we examined the effects of topical application of a dentifrice containing anti-oxidative, anti-inflammatory, and anti-bacterial agents (Tomarina®) to the gingival surface on gingival collagen degradation in rats. Fischer 344 male rats (4 or 8 months old) were divided into two groups: experimental group and control group. Tomarina® (the experimental group) or control dentifrice (the control group) was applied 5 days per week for 2 months. In the control group, gingival collagen density decreased with ageing. In the experimental group, the collagen density did not change with ageing, and was greater than that in the control group at 10 months of age (p < 0.0083). In addition, the control group showed an increase in serum oxidative stress with ageing. The experimental group also showed increased serum oxidative stress, but the value was lower than the control group at 10 months of age (p < 0.0083). Furthermore, low expressions of protein oxidative damage in the periodontal tissue were observed in the experimental group, compared to the control group at 6 months and 10 months. These findings indicate that Tomarina® might suppress the effects of ageing on gingival collagen degradation, by decreasing oxidative stress in the rat model.

  13. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    PubMed

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury.

    PubMed

    Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R

    2016-02-15

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.

  15. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury

    PubMed Central

    Requena, Daniela F.; Abdullah, Osama M.; Casper, T. Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R.

    2016-01-01

    Abstract Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI. PMID:26247583

  16. Fertility in a high-altitude environment is compromised by luteal dysfunction: the relative roles of hypoxia and oxidative stress

    PubMed Central

    2013-01-01

    Background At high altitudes, hypoxia, oxidative stress or both compromise sheep fertility. In the present work, we tested the relative effect of short- or long-term exposure to high altitude hypobaric hypoxia and oxidative stress on corpora luteal structure and function. Methods The growth dynamics of the corpora lutea during the estrous cycle were studied daily by ultrasonography in cycling sheep that were either native or naïve to high-altitude conditions and that were supplemented or not supplemented with antioxidant vitamins. Arterial and venous blood samples were simultaneously drawn for determination of gases and oxidative stress biomarkers and progesterone measurement. On day five after ovulation in the next cycle, the ovaries were removed for immunodetection of luteal HIF-1alpha and VEGF and IGF-I and to detect IGF-II gene expression. Results The results showed that both short- and long-term exposure to high-altitude conditions decreased luteal growth and IGF-I and IGF-II gene expression but increased HIF-1 alpha and VEGF immunoexpression. The level of plasma progesterone was also increased at a high altitude, although an association with increased corpus luteum vascularization was only found in sheep native to a high-altitude location. Administration of antioxidant vitamins resulted in a limited effect, which was restricted to decreased expression of oxidative stress biomarkers and luteal HIF-1alpha and VEGF immunoexpression. Conclusions Exposure of the sheep to high-altitude hypobaric hypoxia for short or long time periods affects the development and function of the corpus luteum. Moreover, the observed association of oxidative stress with hypoxia and the absence of any significant effect of antioxidant vitamins on most anatomical and functional corpus luteum traits suggests that the effects of high altitude on this ovarian structure are mainly mediated by hypoxia. Thus, these findings may help explain the decrease in sheep fertility at a high altitude. PMID:23521851

  17. Fertility in a high-altitude environment is compromised by luteal dysfunction: the relative roles of hypoxia and oxidative stress.

    PubMed

    Parraguez, Víctor H; Urquieta, Bessie; Pérez, Laura; Castellaro, Giorgio; De los Reyes, Mónica; Torres-Rovira, Laura; Aguado-Martínez, Adriana; Astiz, Susana; González-Bulnes, Antonio

    2013-03-23

    At high altitudes, hypoxia, oxidative stress or both compromise sheep fertility. In the present work, we tested the relative effect of short- or long-term exposure to high altitude hypobaric hypoxia and oxidative stress on corpora luteal structure and function. The growth dynamics of the corpora lutea during the estrous cycle were studied daily by ultrasonography in cycling sheep that were either native or naïve to high-altitude conditions and that were supplemented or not supplemented with antioxidant vitamins. Arterial and venous blood samples were simultaneously drawn for determination of gases and oxidative stress biomarkers and progesterone measurement. On day five after ovulation in the next cycle, the ovaries were removed for immunodetection of luteal HIF-1alpha and VEGF and IGF-I and to detect IGF-II gene expression. The results showed that both short- and long-term exposure to high-altitude conditions decreased luteal growth and IGF-I and IGF-II gene expression but increased HIF-1 alpha and VEGF immunoexpression. The level of plasma progesterone was also increased at a high altitude, although an association with increased corpus luteum vascularization was only found in sheep native to a high-altitude location. Administration of antioxidant vitamins resulted in a limited effect, which was restricted to decreased expression of oxidative stress biomarkers and luteal HIF-1alpha and VEGF immunoexpression. Exposure of the sheep to high-altitude hypobaric hypoxia for short or long time periods affects the development and function of the corpus luteum. Moreover, the observed association of oxidative stress with hypoxia and the absence of any significant effect of antioxidant vitamins on most anatomical and functional corpus luteum traits suggests that the effects of high altitude on this ovarian structure are mainly mediated by hypoxia. Thus, these findings may help explain the decrease in sheep fertility at a high altitude.

  18. Tetrahydrobiopterin, l-Arginine and Vitamin C Act Synergistically to Decrease Oxidant Stress and Increase Nitric Oxide That Increases Blood Flow Recovery after Hindlimb Ischemia in the Rat

    PubMed Central

    Yan, Jinglian; Tie, Guodong; Messina, Louis M

    2012-01-01

    Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays essential roles in neovascularization. During limb ischemia, decreased NO bioavailability occurs secondary to increased oxidant stress, decreased l-arginine and tetrahydrobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine and vitamin C acts synergistically to decrease oxidant stress, increase NO and thereby increase blood flow recovery after hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of hindlimb ischemia. In the is-chemic hindlimb, cosupplementation with BH4 + l-arginine resulted in greater eNOS and phospho-eNOS (P-eNOS) expression, Ca2+-dependent NOS activity and NO concentration in the ischemic calf region (gastrocnemius), as well as greater NO concentration in the region of collateral arteries (gracilis). Rats receiving cosupplementation of BH4 + l-arginine led to greater recovery of foot perfusion and greater collateral enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen further increased these dependent variables. In addition, rats given all three supplements showed significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione (GSH)–to–glutathione disulfide (GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, co-supplementation with BH4 + l-arginine + vitamin C significantly increased blood flow recovery after hindlimb ischemia by reducing oxidant stress, increasing NO bioavailability, enlarging collateral arteries and reducing muscle necrosis. Oral cosupplementation of BH4, l-arginine and vitamin C holds promise as a biological therapy to induce collateral artery enlargement. PMID:23212846

  19. Resveratrol Ameliorates Contrast Induced Nephropathy Through the Activation of SIRT1-PGC-1α-Foxo1 Signaling in Mice.

    PubMed

    Hong, Yu Ah; Bae, So Yeon; Ahn, Shin Young; Kim, Jieun; Kwon, Young Joo; Jung, Woon Yong; Ko, Gang Jee

    2017-01-01

    SIRT1 activation promotes the resistance of renal tubular cells to oxidative stress, and resveratrol is known as a SIRT1 activator. Resveratrol was injected intraperitoneally with iohexol for 24 hours. NRK-52E cells were pretreated with resveratrol for 24 hours and then exposed to iohexol for 3 hours. Renal function was measured by serum creatinine and cell survival was assessed by MTT assay. We investigated whether resveratrol attenuates oxidative stress and apoptosis in contrast-induced nephropathy (CIN). Serum creatinine and tubular injury increased significantly after iohexol treatment, and resveratrol co-treatment attenuated the renal injury. Cell survival decreased after iohexol exposure and resveratrol reduced cell death induced by iohexol. Resveratrol was accompanied with the activation of SIRT1 and PGC-1α and dephosphorylation of FoxO1 in mice with CIN. SIRT1 and PGC-1α expression were decreased by iohexol, and increased significantly in resveratrol-pretreated cells. These processes resulted in reduction of oxidative stress and apoptosis both in vivo and in vitro experiments. Resveratrol decreased inflammatory cell infiltration induced by iohexol in mice with CIN. SIRT1 inhibition using siRNA in tubular cells accentuated the decrease of cell viability by iohexol. Resveratrol attenuated CIN by modulating renal oxidative stress and apoptosis through activation of SIRT1-PGC-1α-FoxO1 signaling. The Author(s). Published by S. Karger AG, Basel.

  20. Protective Effects of Tualang Honey against Oxidative Stress and Anxiety-Like Behaviour in Stressed Ovariectomized Rats

    PubMed Central

    Al-Rahbi, Badriya; Zakaria, Rahimah; Othman, Zahiruddin; Hassan, Asma'; Ahmad, Asma Hayati

    2014-01-01

    The present study aims to evaluate the antioxidant and anxiolytic-like effect of Tualang honey in stressed ovariectomized (OVX) rats. The animals were divided into; (i) nonstressed sham-operated control rats, (ii) sham-operated control rats exposed to stress, (iii) nonstressed OVX rats, (iv) OVX rats exposed to stress, (v) OVX rats exposed to stress and treated with 17 β-oestradiol (E2) (20 μg daily, sc), and (vi) OVX rats exposed to stress and treated with Tualang honey (0.2 g/kg body weight, orally). The open field test was used to evaluate the anxiety-like behaviour and ELISA kits were used to measure oxidant/antioxidant status of the brain homogenates. The result showed that anxiety-like behavior was significantly increased in stressed OVX compared to other groups, and administering either E2 or Tualang honey significantly decreased anxiety-like behaviour in stressed OVX rats. The levels of malondialdehyde (MDA) and protein carbonyl (PCO) were significantly decreased while the levels/activities of superoxide dismutase (SOD), glutathione S-transferases (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) were significantly increased in the brain homogenates of treated stressed OVX groups compared to untreated stressed OVX. In conclusion, Tualang honey has protective effects against brain oxidative stress and may be useful alternative anxiolytic agent especially for postmenopausal women. PMID:27379299

  1. N2 Fixation, Carbon Metabolism, and Oxidative Damage in Nodules of Dark-Stressed Common Bean Plants.

    PubMed Central

    Gogorcena, Y.; Gordon, A. J.; Escuredo, P. R.; Minchin, F. R.; Witty, J. F.; Moran, J. F.; Becana, M.

    1997-01-01

    Common beans (Phaseolus vulgaris L.) were exposed to continuous darkness to induce nodule senescence, and several nodule parameters were investigated to identify factors that may be involved in the initial loss of N2 fixation. After only 1 d of darkness, total root respiration decreased by 76% and in vivo nitrogenase (N2ase) activity decreased by 95%. This decline coincided with the almost complete depletion (97%) of sucrose and fructose in nodules. At this stage, the O2 concentration in the infected zone increased to 1%, which may be sufficient to inactivate N2ase; however, key enzymes of carbon and nitrogen metabolism were still active. After 2 d of dark stress there was a significant decrease in the level of N2ase proteins and in the activities of enzymes involved in carbon and nitrogen assimilation. However, the general collapse of nodule metabolism occurred only after 4 d of stress, with a large decline in leghemoglobin and antioxidants. At this final senescent stage, there was an accumulation of oxidatively modified proteins. This oxidative stress may have originated from the decrease in antioxidant defenses and from the Fe-catalyzed generation of activated oxygen due to the increased availability of catalytic Fe and O2 in the infected region. PMID:12223669

  2. Studies on the effects of aspartame on memory and oxidative stress in brain of mice.

    PubMed

    Abdel-Salam, O M E; Salem, N A; El-Shamarka, M E S; Hussein, J S; Ahmed, N A S; El-Nagar, M E S

    2012-12-01

    The dipeptide aspartame (N-L-alpha-aspartyl-Lphenylalanine, 1-methyl ester; alpha-APM) is one of the most widely used artificial sweeteners. The present study aimed to investigate the effect of repeated administration of aspartame in the working memory version of Morris water maze test, on oxidative stress and brain monoamines in brain of mice. Aspartame (0.625, 1.875 or 5.625 mg/kg) was administered once daily subcutaneously for 2 weeks and mice were examined four times a week for their ability to locate a submerged plate. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide levels (the concentrations of nitrite/nitrate) and glucose were determined in brain. Only at the highest dose of 5.625 mg/kg, did aspartame significantly impaired water maze performance. The mean time taken to find the escape platform (latency) over 2 weeks was significantly delayed by aspartame 5.625 mg/kg, compared with the saline-treated control group. Significant differences occurred only on the first trial to find the escape platform. Significant increase in brain MDA by 16.5% and nitric oxide by 16.2% and a decrease in GSH by 25.1% and glucose by 22.5% occurred after treatment with aspartame at 1.875 mg/kg. Aspartame administered at 5.625 mg/kg significantly increased brain MDA by 43.8%, nitric oxide by 18.6% and decreased GSH by 32.7% and glucose by 25.8%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline and dopamine. These findings suggest impaired memory performance and increased brain oxidative stress by repeated aspartame administration. The impaired memory performance is likely to involve increased oxidative stress as well as decreased brain glucose availability.

  3. Resuscitation With 100% Oxygen Causes Intestinal Glutathione Oxidation and Reoxygenation Injury in Asphyxiated Newborn Piglets

    PubMed Central

    Haase, Erika; Bigam, David L.; Nakonechny, Quentin B.; Jewell, Laurence D.; Korbutt, Gregory; Cheung, Po-Yin

    2004-01-01

    Objective: To compare mesenteric blood flow, oxidative stress, and mucosal injury in piglet small intestine during hypoxemia and reoxygenation with 21%, 50%, or 100% oxygen. Summary Background Data: Necrotizing enterocolitis is a disease whose pathogenesis likely involves hypoxia-reoxygenation and the generation of oxygen-free radicals, which are known to cause intestinal injury. Resuscitation of asphyxiated newborns with 100% oxygen has been shown to increase oxidative stress, as measured by the glutathione redox ratio, and thus may predispose to free radical-mediated tissue injury. Methods: Newborn piglets subjected to severe hypoxemia for 2 hours were resuscitated with 21%, 50%, or 100% oxygen while superior mesenteric artery (SMA) flow and hemodynamic parameters were continuously measured. Small intestinal tissue samples were analyzed for histologic injury and levels of oxidized and reduced glutathione. Results: SMA blood flow decreased to 34% and mesenteric oxygen delivery decreased to 9% in hypoxemic piglets compared with sham-operated controls. With reoxygenation, SMA blood flow increased to 177%, 157%, and 145% of baseline values in piglets resuscitated with 21%, 50%, and 100% oxygen, respectively. Mesenteric oxygen delivery increased to more than 150% of baseline values in piglets resuscitated with 50% or 100% oxygen, and this correlated significantly with the degree of oxidative stress, as measured by the oxidized-to-reduced glutathione ratio. Two of eight piglets resuscitated with 100% oxygen developed gross and microscopic evidence of pneumatosis intestinalis and severe mucosal injury, while all other piglets were grossly normal. Conclusions: Resuscitation of hypoxemic newborn piglets with 100% oxygen is associated with an increase in oxygen delivery and oxidative stress, and may be associated with the development of small intestinal hypoxia-reoxygenation injury. Resuscitation of asphyxiated newborns with lower oxygen concentrations may help to decrease the risk of necrotizing enterocolitis. PMID:15273563

  4. Liver-Specific Knockdown of IGF-1 Decreases Vascular Oxidative Stress Resistance by Impairing the Nrf2-Dependent Antioxidant Response: A Novel Model of Vascular Aging

    PubMed Central

    Bailey-Downs, Lora C.; Mitschelen, Matthew; Sosnowska, Danuta; Toth, Peter; Pinto, John T.; Ballabh, Praveen; Valcarcel-Ares, M.Noa; Farley, Julie; Koller, Akos; Henthorn, Jim C.; Bass, Caroline; Sonntag, William E.; Csiszar, Anna

    2012-01-01

    Recent studies demonstrate that age-related dysfunction of NF-E2–related factor-2 (Nrf2)–driven pathways impairs cellular redox homeostasis, exacerbating age-related cellular oxidative stress and increasing sensitivity of aged vessels to oxidative stress–induced cellular damage. Circulating levels of insulin-like growth factor (IGF)-1 decline during aging, which significantly increases the risk for cardiovascular diseases in humans. To test the hypothesis that adult-onset IGF-1 deficiency impairs Nrf2-driven pathways in the vasculature, we utilized a novel mouse model with a liver-specific adeno-associated viral knockdown of the Igf1 gene using Cre-lox technology (Igf1f/f + MUP-iCre-AAV8), which exhibits a significant decrease in circulating IGF-1 levels (∼50%). In the aortas of IGF-1–deficient mice, there was a trend for decreased expression of Nrf2 and the Nrf2 target genes GCLC, NQO1 and HMOX1. In cultured aorta segments of IGF-1–deficient mice treated with oxidative stressors (high glucose, oxidized low-density lipoprotein, and H2O2), induction of Nrf2-driven genes was significantly attenuated as compared with control vessels, which was associated with an exacerbation of endothelial dysfunction, increased oxidative stress, and apoptosis, mimicking the aging phenotype. In conclusion, endocrine IGF-1 deficiency is associated with dysregulation of Nrf2-dependent antioxidant responses in the vasculature, which likely promotes an adverse vascular phenotype under pathophysiological conditions associated with oxidative stress (eg, diabetes mellitus, hypertension) and results in accelerated vascular impairments in aging. PMID:22021391

  5. Postprandial antioxidant effect of the Mediterranean diet supplemented with coenzyme Q10 in elderly men and women.

    PubMed

    Yubero-Serrano, Elena M; Delgado-Casado, Nieves; Delgado-Lista, Javier; Perez-Martinez, Pablo; Tasset-Cuevas, Inmaculada; Santos-Gonzalez, Monica; Caballero, Javier; Garcia-Rios, Antonio; Marin, Carmen; Gutierrez-Mariscal, Francisco M; Fuentes, Francisco; Villalba, Jose M; Tunez, Isaac; Perez-Jimenez, Francisco; Lopez-Miranda, Jose

    2011-12-01

    Postprandial oxidative stress is characterized by an increased susceptibility of the organism towards oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. We have investigated whether the quality of dietary fat alters postprandial cellular oxidative stress and whether the supplementation with coenzyme Q(10) (CoQ) lowers postprandial oxidative stress in an elderly population. In this randomized crossover study, 20 participants were assigned to receive three isocaloric diets for periods of 4 week each: (1) Mediterranean diet supplemented with CoQ (Med+CoQ diet), (2) Mediterranean diet (Med diet), and (3) saturated fatty acid-rich diet (SFA diet). After a 12-h fast, the volunteers consumed a breakfast with a fat composition similar to that consumed in each of the diets. CoQ, lipid peroxides (LPO), oxidized low-density lipoprotein (oxLDL), protein carbonyl (PC), total nitrite, nitrotyrosine plasma levels, catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities and ischemic reactive hyperaemia (IRH) were determined. Med diet produced a lower postprandial GPx activity and a lower decrease in total nitrite level compared to the SFA diet. Med and Med+CoQ diets induced a higher postprandial increase in IRH and a lower postprandial LPO, oxLDL, and nitrotyrosine plasma levels than the SFA diet. Moreover, the Med+CoQ diet produced a lower postprandial decrease in total nitrite and a greater decrease in PC levels compared to the other two diets and lower SOD, CAT, and GPx activities than the SFA diet.In conclusion, Med diet reduces postprandial oxidative stress by reducing processes of cellular oxidation and increases the action of the antioxidant system in elderly persons and the administration of CoQ further improves this redox balance.

  6. Oxidative stress in Nipah virus-infected human small airway epithelial cells.

    PubMed

    Escaffre, Olivier; Halliday, Hailey; Borisevich, Viktoriya; Casola, Antonella; Rockx, Barry

    2015-10-01

    Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development.

  7. Voluntary locomotor activity mitigates oxidative damage associated with isolation stress in the prairie vole (Microtus ochrogaster).

    PubMed

    Fletcher, Kelsey L; Whitley, Brittany N; Treidel, Lisa A; Thompson, David; Williams, Annie; Noguera, Jose C; Stevenson, Jennie R; Haussmann, Mark F

    2015-07-01

    Organismal performance directly depends on an individual's ability to cope with a wide array of physiological challenges. For social animals, social isolation is a stressor that has been shown to increase oxidative stress. Another physiological challenge, routine locomotor activity, has been found to decrease oxidative stress levels. Because we currently do not have a good understanding of how diverse physiological systems like stress and locomotion interact to affect oxidative balance, we studied this interaction in the prairie vole (Microtus ochrogaster). Voles were either pair housed or isolated and within the isolation group, voles either had access to a moving wheel or a stationary wheel. We found that chronic periodic isolation caused increased levels of oxidative stress. However, within the vole group that was able to run voluntarily, longer durations of locomotor activity were associated with less oxidative stress. Our work suggests that individuals who demonstrate increased locomotor activity may be better able to cope with the social stressor of isolation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    PubMed

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  9. Vitamin E supplementation during the dry period in dairy cattle. Part II: oxidative stress following vitamin E supplementation may increase clinical mastitis incidence postpartum.

    PubMed

    Bouwstra, R J; Nielen, M; Newbold, J R; Jansen, E H J M; Jelinek, H F; van Werven, T

    2010-12-01

    The aim of this study was to evaluate, retrospectively, which physiological states influenced the effect of vitamin E supplements during the dry period on the level of oxidative stress at 2 wk antepartum. Furthermore the effect of oxidative stress at 2 wk antepartum on the risk of clinical mastitis in early lactation was investigated. Cows experience oxidative stress around calving. Vitamin E is able to decrease oxidative stress by scavenging free radicals. Normally, vitamin E radicals formed when vitamin E reacts with free radicals are regenerated by a network of other antioxidants, termed the "vitamin E regeneration system" (VERS). In case of vitamin E supplementation, VERS should be sufficient to regenerate formed vitamin E radicals; if not, oxidative stress might increase instead of decrease. Additionally, the level of oxidative stress and vitamin E might be important physiological states to evaluate before supplementation. In a clinical trial, 296 cows on 5 farms were randomly divided into 2 groups, supplemented with a mineral mix between dry off and calving that supplied 3,000 or 135 IU/d, respectively. Blood samples collected at dry off and 2 wk antepartum were analyzed for vitamin E, reactive oxygen metabolites, ferric-reducing ability of plasma, glutathione peroxidase, and malondialdehyde. Cows were allocated retrospectively into 8 subgroups based on the level of oxidative stress, vitamin E, and VERS status at dry off. To evaluate whether differences in physiological states at dry off influenced the effect of vitamin E supplementation on the level of oxidative stress, group effects (supplemented vs. control) were studied with Student's t-test for all 8 subgroup at 2 wk antepartum. Differences in physiological states at dry off influenced the effect of vitamin E supplements. In 2 insufficient VERS subgroups, the supplemented group had higher levels of free radicals at 2 wk antepartum compared with the control group. Relative risk calculation was used to study the effect of oxidative stress at 2 wk antepartum on the incidence of mastitis in the first 100 d of lactation. Higher levels of oxidative stress at 2 wk antepartum were related to higher risk of clinical mastitis. In conclusion, not every dry cow responded well to high vitamin E supplementation. This subgroup analysis provides a possible explanation for the unexpected adverse effects observed in the clinical trial. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs.

    PubMed

    Liu, Fan; Cottrell, Jeremy J; Furness, John B; Rivera, Leni R; Kelly, Fletcher W; Wijesiriwardana, Udani; Pustovit, Ruslan V; Fothergill, Linda J; Bravo, David M; Celi, Pietro; Leury, Brian J; Gabler, Nicholas K; Dunshea, Frank R

    2016-07-01

    What is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.p.m.) and vitamin E (200 IU kg(-1) ) greater than those usually recommended for pigs reduced intestinal leakiness caused by heat stress. This finding suggests that oxidative stress plays a role in compromising intestinal epithelial barrier integrity in heat-stressed pigs and also provides a nutritional strategy for mitigating these effects. Heat stress compromises the intestinal epithelial barrier integrity of mammals through mechanisms that may include oxidative stress. Our objective was to test whether dietary supplementation with antioxidants, selenium (Se) and vitamin E (VE), protects intestinal epithelial barrier integrity in heat-stressed pigs. Female growing pigs (n = 48) were randomly assigned to four diets containing from 0.2 p.p.m. Se and 17 IU kg(-1) VE (control, National Research Council recommended) to 1.0 p.p.m. Se and 200 IU kg(-1) VE for 14 days. Six pigs from each dietary treatment were then exposed to either thermoneutral (20°C) or heat-stress conditions (35°C 09.00-17.00 h and 28°C overnight) for 2 days. Transepithelial electrical resistance and fluorescein isothiocyanate-dextran (4 kDa; FD4) permeability were measured in isolated jejunum and ileum using Ussing chambers. Rectal temperature, respiratory rate and intestinal HSP70 mRNA abundance increased (all P < 0.001), and respiratory alkalosis occurred, suggesting that pigs were heat stressed. Heat stress also increased FD4 permeability and decreased transepithelial electrical resistance (both P < 0.01). These changes were associated with changes indicative of oxidative stress, a decreased glutathione peroxidase (GPX) activity and an increased glutathione disulfide (GSSG)-to-glutathione (GSH) ratio (both P < 0.05). With increasing dosage of Se and VE, GPX-2 mRNA (P = 0.003) and GPX activity (P = 0.049) increased linearly, the GSSG:GSH ratio decreased linearly (P = 0.037), and the impacts of heat stress on intestinal barrier function were reduced (P < 0.05 for both transepithelial electrical resistance and FD4 permeability). In conclusion, in pigs an increase of dietary Se and VE mitigated the impacts of heat stress on intestinal barrier integrity, associated with a reduction in oxidative stress. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  11. Oxidative stress in schizophrenia: a case-control study on the effects on social cognition and neurocognition.

    PubMed

    Gonzalez-Liencres, Cristina; Tas, Cumhur; Brown, Elliot C; Erdin, Soner; Onur, Ece; Cubukcoglu, Zeynep; Aydemir, Omer; Esen-Danaci, Aysen; Brüne, Martin

    2014-09-24

    Schizophrenia is a debilitating mental disorder that presents impairments in neurocognition and social cognition. Several studies have suggested that the etiology of schizophrenia can be partly explained by oxidative stress. However, our knowledge about the implications of oxidative stress on illness-related cognitive deficits is still far from being clear. The aim of this work was to study the role of oxidative stress molecules on social cognition and neurocognition in patients with schizophrenia. We assessed the peripheral levels of several molecules associated with oxidative stress, namely nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), homocysteine, superoxide dismutase (SOD) and neurotrophin 4/5 (NT4/5), in forty-one patients with schizophrenia and forty-three healthy participants. A battery of tests to measure neurocognition and social cognition was also administered to the schizophrenia group. We found that the schizophrenia group presented substantially higher levels of oxidative stress than the control group, as revealed by elevated quantities of the pro-oxidants NO and MDA, and decreased levels of the antioxidants GSH, SOD and NT4/5. Interestingly, the levels of NT4/5, which have been shown to have antioxidant effects, correlated with executive functioning, as measured by two distinct tests (WCST and TMT). However, social cognition and symptom severity were not found to be associated with oxidative stress. We propose a protective role of NT4/5 against oxidative stress, which appears to have a potentially beneficial impact on neurocognition in schizophrenia.

  12. Rapamycin inhibits oxidative and angiogenic mediators in diabetic retinopathy.

    PubMed

    Ozdemir, Gökhan; Kılınç, Metin; Ergün, Yusuf; Sahin, Elif

    2014-10-01

    To evaluate the role of rapamycin in the prevention of diabetic oxidative stress and the regulation of angiogenic factors. Experimental animal study. Diabetes was induced in 20 adult male Wistar rats by a single intraperitoneal administration of streptozotocin (60 mg/kg). Rats were randomly assigned into diabetic and rapamycin groups (n = 10). Ten healthy normal adult male rats of same age formed the control group. All groups were followed for 3 months. Rapamycin group received 1 mg/kg rapamycin via orogastric gavage during the last 4 weeks. At the end of 12 weeks, rats were sacrificed and biochemical oxidative stress markers (malondialdehyde and nitrotyrosine), together with vascular endothelial growth factor, hypoxia-inducible factor-1α, and pigment epithelium-derived factor, were measured in the retina. Blood biochemical analyses were also done. In the diabetic group, retinal malondialdehyde and nitrotyrosine levels were increased in comparison with control and rapamycin groups (p < 0.05). Rapamycin suppressed oxidative stress and showed a beneficial effect. It also decreased all angiomodulator cytokines compared with the diabetic group (p < 0.05). Correspondingly, rapamycin also decreased plasma malondialdehyde levels compared with the diabetic group (p = 0.037). Rapamycin may have a protective role against diabetes-induced oxidative retinal injury and may decrease angiomodulator cytokines. Copyright © 2014 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  13. Vitamin E Supplementation Ameliorates Newcastle Disease Virus-Induced Oxidative Stress and Alleviates Tissue Damage in the Brains of Chickens

    PubMed Central

    Rehman, Zaib Ur; Qiu, Xusheng; Sun, Yingjie; Liao, Ying; Tan, Lei; Song, Cuiping; Yu, Shengqing; Ding, Zhuang; Nair, Venugopal; Meng, Chunchun; Ding, Chan

    2018-01-01

    Newcastle disease (ND), characterized by visceral, respiratory, and neurological pathologies, causes heavy economic loss in the poultry industry around the globe. While significant advances have been made in effective diagnosis and vaccine development, molecular mechanisms of ND virus (NDV)-induced neuropathologies remain elusive. In this study, we report the magnitude of oxidative stress and histopathological changes induced by the virulent NDV (ZJ1 strain) and assess the impact of vitamin E in alleviating these pathologies. Comparative profiling of plasma and brains from mock and NDV-infected chicken demonstrated alterations in several oxidative stress makers such as nitric oxide, glutathione, malondialdehyde, total antioxidant capacity, glutathione S-transferase, superoxide dismutase, and catalases. While decreased levels of glutathione and total antioxidant capacity and increased concentrations of malondialdehyde and nitric oxide were observed in NDV-challenged birds at all time points, these alterations were eminent at latter time points (5 days post infection). Additionally, significant decreases in the activities of glutathione S-transferase, superoxide dismutase, and catalase were observed in the plasma and brains collected from NDV-infected chickens. Intriguingly, we observed that supplementation of vitamin E can significantly reduce the alteration of oxidative stress parameters. Under NDV infection, extensive histopathological alterations were observed in chicken brain including neural inflammation, capillary hyperemia, necrosis, and loss of prominent axons, which were reduced with the treatment of vitamin E. Taken together, our findings highlight that neurotropic NDV induces extensive tissue damage in the brain and alters plasma oxidative stress profiles. These findings also demonstrate that supplementing vitamin E ameliorates these pathologies in chickens and proposes its supplementation for NDV-induced stresses. PMID:29614025

  14. Association of oxidative DNA damage, protein oxidation and antioxidant function with oxidative stress induced cellular injury in pre-eclamptic/eclamptic mothers during fetal circulation.

    PubMed

    Negi, Reena; Pande, Deepti; Karki, Kanchan; Kumar, Ashok; Khanna, Ranjana S; Khanna, Hari D

    2014-02-05

    Pre-eclampsia is a devastating multi system syndrome and a major cause of maternal, fetal, neonatal morbidity and mortality. Pre-eclampsia is associated with oxidative stress in the maternal circulation. To have an insight on the effect of pre-eclampsia/eclampsia on the neonates, the study was made to explore the oxidative status by quantification of byproducts generated during protein oxidation and oxidative DNA damage and deficient antioxidant activity in umbilical cord blood of pre-eclamptic/eclamptic mothers during fetal circulation. Umbilical cord blood during delivery from neonates born to 19 pre-eclamptic mothers, 14 eclamptic mothers and 18 normotensive mothers (uncomplicated pregnancy) as control cases was collected. 8-OHdG (8-hydroxy-2-deoxyguanosine), protein carbonyl, nitrite, catalase, non-enzymatic antioxidants (vitamin A, E, C), total antioxidant status and iron status were determined. Significant elevation in the levels of 8-OHdG, protein carbonyl, nitrite and iron along with decreased levels of catalase, vitamin A, E, C, total antioxidant status were observed in the umbilical cord blood of pre-eclamptic and eclamptic pregnancies. These parameters might be influential variables for the risk of free radical damage in infants born to pre-eclamptic/eclamptic pregnancies. Increased oxidative stress causes oxidation of DNA and protein which alters antioxidant function. Excess iron level and decreased unsaturated iron binding capacity may be the important factor associated with oxidative stress and contribute in the pathogenesis of pre-eclampsia/eclampsia which is reflected in fetal circulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Chronic predation risk reduces escape speed by increasing oxidative damage: a deadly cost of an adaptive antipredator response.

    PubMed

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage.

  16. Chronic Predation Risk Reduces Escape Speed by Increasing Oxidative Damage: A Deadly Cost of an Adaptive Antipredator Response

    PubMed Central

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage. PMID:24968142

  17. Role of Oxidative Stress in Male Reproductive Dysfunctions with Reference to Phthalate Compounds.

    PubMed

    Sedha, Sapna; Kumar, Sunil; Shukla, Shruti

    2015-11-14

    A wide variety of environmental chemicals/xenobiotics including phthalates have been shown to cause oxidative stress targeting the endocrine system and cause reproductive anomalies. The present review describes various issues by oxidative stress causing male reproductive dysfunctions. Here in this review, the importance and role of phthalate compounds in male reproductive dysfunction has been well documented. One class of environmental endocrine disruptors is phthalates. Phthalate compounds are mostly used as plasticizers, which increase the flexibility, durability, longevity, and etc. of the plastics. Large-scale use of plastic products in our daily life as well as thousands of workers engaged in the manufacture of plastic and plastic products and recycling plastic industry are potentially exposed to these chemicals. Further, general population as well as vulnerable groups i.e. children and pregnant women are also exposed to these chemicals. Phthalates are among wide variety of environmental toxicants capable of compromising male fertility by inducing a state of oxidative stress in the testes. They may also generate reactive oxygen species (ROS) that may affect various physiological and reproductive functions. The available data points out that phthalate compounds may also induce oxidative stress in the male reproductive organs mainly testis and epididymis. They impair spermatogenic process by inducing oxidative stress and apoptosis in germ cells or target sertoli cells and thereby hamper spermatogenesis. They also impair the Leydig cell function by inducing ROS, thereby decreasing the levels of steroidogenic enzymes. Thus in utero and postnatal exposure to phthalate compounds might lead to decreased sperm count and various other reproductive anomalies in the young male.

  18. Effects of valsartan and amlodipine on oxidative stress in type 2 diabetic patients with hypertension: a randomized, multicenter study

    PubMed Central

    Kim, Hae Jin; Han, Seung Jin; Kim, Dae Jung; Jang, Hak Chul; Lim, Soo; Choi, Sung Hee; Kim, Yong Hyun; Shin, Dong Hyun; Kim, Se Hwa; Kim, Tae Ho; Ahn, Yu Bae; Ko, Seung Hyun; Kim, Nan Hee; Seo, Ji A; Kim, Ha Young; Lee, Kwan Woo

    2017-01-01

    Background/Aims Oxidative stress plays an important role in the pathogenesis and progression of diabetic complications and antagonists of renin-angiotensin system and amlodipine have been reported previously to reduce oxidative stress. In this study, we compared the changes in oxidative stress markers after valsartan and amlodipine treatment in type 2 diabetic patients with hypertension and compared the changes in metabolic parameters. Methods Type 2 diabetic subjects with hypertension 30 to 80 years of age who were not taking antihypertensive drugs were randomized into either valsartan (n = 33) or amlodipine (n = 35) groups and treated for 24 weeks. We measured serum nitrotyrosine levels as an oxidative stress marker. Metabolic parameters including serum glucose, insulin, lipid profile, and urine albumin and creatinine were also measured. Results After 24 weeks of valsartan or amlodipine treatment, systolic and diastolic blood pressure decreased, with no significant difference between the groups. Both groups showed a decrease in serum nitrotyrosine (7.74 ± 7.30 nmol/L vs. 3.95 ± 4.07 nmol/L in the valsartan group and 8.37 ± 8.75 nmol/L vs. 2.68 ± 2.23 nmol/L in the amlodipine group) with no significant difference between the groups. Other parameters including glucose, lipid profile, albumin-to-creatinine ratio, and homeostasis model assessment of insulin resistance showed no significant differences before and after treatment in either group. Conclusions Valsartan and amlodipine reduced the oxidative stress marker in type 2 diabetic patients with hypertension. PMID:28490725

  19. Decrease of total antioxidant capacity during coronary artery bypass surgery.

    PubMed

    Kunt, Alper Sami; Selek, Sahbettin; Celik, Hakim; Demir, Deniz; Erel, Ozcan; Andac, Mehmet Halit

    2006-09-01

    Cardiac surgery induces an oxidative stress, which may lead to impairment of cardiac function. In this study, we aimed to measure the changes of oxidative and antioxidative status of patients undergoing coronary artery bypass surgery (CABG). We studied 79 patients who underwent CABG with and without cardiopulmonary bypass (CPB). Of the 79 patients, 39 had CPB and 40 did not. Blood samples were drawn before, during, and after the surgery. Antioxidant status was evaluated by measuring total antioxidant capacity (TAC), and oxidative status was evaluated by measuring total peroxide (TP) levels and oxidative stress index (OSI). TP and OSI levels increased, while TAC decreased progressively after the beginning of surgery, for all patients. There were negative correlations between TAC levels and aortic cross-clamping period and anastomosis time ( r = -0.553, p < 0.001 and r = -0.500, p < 0.001, respectively). In addition, there was a positive correlation between TAC and ejection fraction (r = 0.647, p < 0.001). During CABG, oxidant and OSI levels significantly increase and TAC significantly decreases. This situation is influenced by long CPB and anastomosis time, and also by low ventricular ejection fraction. We concluded that the patients who undergo CABG are exposed to potent oxidative stress that impairs their TAC. We speculate that supplementation with antioxidant vitamins such as vitamins C and E may be beneficial for patients undergoing CABG.

  20. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts.

    PubMed

    Xie, Xiaoxian; Wang, Liangliang; Zhao, Binggong; Chen, Yangyang; Li, Jiaqi

    2017-05-15

    Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Vitamin E and vitamin C supplementation improves antioxidant status and immune function in oxidative-stressed breeder roosters by up-regulating expression of GSH-Px gene.

    PubMed

    Min, Y N; Niu, Z Y; Sun, T T; Wang, Z P; Jiao, P X; Zi, B B; Chen, P P; Tian, D L; Liu, F Z

    2018-04-01

    This study aimed to evaluate the effects of vitamin C and vitamin E on antioxidant capacity and immune function in oxidative-stressed breeder roosters. One hundred twenty 45-week-old Lveyang black-boned breeder roosters were randomly assigned to 5 dietary treatments, including negative control group (NC), positive control group (PC), and 3 trial groups, which were fed the diets containing 300 mg/kg VC, 200 mg/kg VE, or 300 mg/kg VC and 200 mg/kg VE (VC+VE). At 47 wk of age, the positive control and trial groups were subcutaneously injected 3 times every other d with dexamethasone (DEX) 4 mg/kg of body weight, the negative control group was injected with saline. The experiment lasted for 35 d. The results showed that at 50 wk of age, average daily feed intake of birds challenged with DEX significantly increased (P < 0.05). During post-stress recovery period (52 wk of age), dietary supplemental VE or VC+VE notably increased body weight under oxidative stress (P < 0.01). Oxidative stress induced by DEX could significantly decrease superoxide dismutase (SOD), IgM, antibody titer of ND and mRNA expression of SOD or glutathion peroxidase activity (GSH-Px), increase serous malondialdehyde (MDA) (P < 0.05). Supplementation of VC or VE significantly decreased serous MDA, and increased SOD under oxidative stress (P < 0.05). Supplementation of VC or VE, or their combination significantly increased the relative expression of GSH-Px mRNA when compared to the oxidative-stressed control treatment (P < 0.05), whereas did not alleviate the relative expression of SOD mRNA (P > 0.05). Therefore, the results suggest that addition of 300 mg/kg VC, 200 mg/kg VE or their combination could improve antioxidant ability and immune performance in oxidative-stressed breeder roosters through up-regulating the expression of GSH-Px gene.

  2. Red wine consumption increases antioxidant status and decreases oxidative stress in the circulation of both young and old humans

    PubMed Central

    Micallef, Michelle; Lexis, Louise; Lewandowski, Paul

    2007-01-01

    Background Red wine contains a naturally rich source of antioxidants, which may protect the body from oxidative stress, a determinant of age-related disease. The current study set out to determine the in vivo effects of moderate red wine consumption on antioxidant status and oxidative stress in the circulation. Methods 20 young (18–30 yrs) and 20 older (≥ 50 yrs) volunteers were recruited. Each age group was randomly divided into treatment subjects who consumed 400 mL/day of red wine for two weeks, or control subjects who abstained from alcohol for two weeks, after which they crossed over into the other group. Blood samples were collected before and after red wine consumption and were used for analysis of whole blood glutathione (GSH), plasma malondialdehyde (MDA) and serum total antioxidant status. Results Results from this study show consumption of red wine induced significant increases in plasma total antioxidant status (P < 0.03), and significant decreases in plasma MDA (P < 0.001) and GSH (P < 0.004) in young and old subjects. The results show that the consumption of 400 mL/day of red wine for two weeks, significantly increases antioxidant status and decreases oxidative stress in the circulation Conclusion It may be implied from this data that red wine provides general oxidative protection and to lipid systems in circulation via the increase in antioxidant status. PMID:17888186

  3. Protective effects of melatonin and memantine in human retinal pigment epithelium (ARPE-19) cells against 2-ethylpyridine-induced oxidative stress: implications for age-related macular degeneration.

    PubMed

    Bardak, Handan; Uğuz, Abdülhadi Cihangir; Bardak, Yavuz

    2018-06-01

    To investigate the possible protective effects of melatonin and memantine (MMT) against 2-ethylpyridine (2-EP)-induced oxidative stress and mitochondrial dysfunction in human RPE (ARPE-19) cells in vitro. The ARPE-19 cells were divided into seven groups. Oxidative stress was triggered by incubating the ARPE-19 cells with 30 μM of 2-EP for 24 h. Then, 200 μM of melatonin was administered over three days and 20 μM of MMT over six hours prior to the experiment. The effects of melatonin and MMT on the intracellular calcium release mechanism, reactive oxygen species production, caspase-3 and caspase-9 activities, as well as vascular endothelial growth factor levels were measured. Melatonin and MMT were found to significantly decrease apoptosis levels. The intracellular calcium release was regulated by both melatonin and MMT. Further, melatonin and MMT significantly decreased both caspase-3 and caspase-9 activities, as well as pro-caspase and poly(ADP-ribose) polymerase expression, in ARPE-19 cells. Moreover, melatonin significantly increased the protective effect of MMT. The combination of melatonin and MMT significantly decreased 2-EP-induced oxidative toxicity and apoptosis by inhibiting the intracellular reactive oxygen species production and mitochondrial depolarization levels. These notable findings are the first to demonstrate the synergistic protective effects of melatonin and MMT against 2-EP-induced oxidative stress in ARPE-19 cells.

  4. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress.

    PubMed

    Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun

    2014-05-01

    The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. TRPC1 Deletion Causes Striatal Neuronal Cell Apoptosis and Proteomic Alterations in Mice.

    PubMed

    Wang, Dian; Yu, Haitao; Xu, Benhong; Xu, Hua; Zhang, Zaijun; Ren, Xiaohu; Yuan, Jianhui; Liu, Jianjun; Guo, Yi; Spencer, Peter S; Yang, Xifei

    2018-01-01

    Transient receptor potential channel 1 (TRPC1) is widely expressed throughout the nervous system, while its biological role remains unclear. In this study, we showed that TRPC1 deletion caused striatal neuronal loss and significantly increased TUNEL-positive and 8-hydroxy-2'-deoxyguanosine (8-OHdG) staining in the striatum. Proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) revealed a total of 51 differentially expressed proteins (26 increased and 25 decreased) in the stratum of TRPC1 knockout (TRPC1 -/- ) mice compared to that of wild type (WT) mice. Bioinformatics analysis showed these dysregulated proteins included: oxidative stress-related proteins, synaptic proteins, endoplasmic reticulum (ER) stress-related proteins and apoptosis-related proteins. STRING analysis showed these differential proteins have a well-established interaction network. Based on the proteomic data, we revealed by Western-blot analysis that TRPC1 deletion caused ER stress as evidenced by the dysregulation of GRP78 and PERK activation-related signaling pathway, and elevated oxidative stress as suggested by increased 8-OHdG staining, increased NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUV2) and decreased protein deglycase (DJ-1), two oxidative stress-related proteins. In addition, we also demonstrated that TRPC1 deletion led to significantly increased apoptosis in striatum with concurrent decrease in both 14-3-3Z and dynamin-1 (D2 dopamine (DA) receptor binding), two apoptosis-related proteins. Taken together, we concluded that TRPC1 deletion might cause striatal neuronal apoptosis by disturbing multiple biological processes (i.e., ER stress, oxidative stress and apoptosis-related signaling). These data suggest that TRPC1 may be a key player in the regulation of striatal cellular survival and death.

  6. Increased pulmonary arteriolar tone associated with lung oxidative stress and nitric oxide in a mouse model of Alzheimer's disease.

    PubMed

    Roberts, Andrew M; Jagadapillai, Rekha; Vaishnav, Radhika A; Friedland, Robert P; Drinovac, Robert; Lin, Xingyu; Gozal, Evelyne

    2016-09-01

    Vascular dysfunction and decreased cerebral blood flow are linked to Alzheimer's disease (AD). Loss of endothelial nitric oxide (NO) and oxidative stress in human cerebrovascular endothelium increase expression of amyloid precursor protein (APP) and enhance production of the Aβ peptide, suggesting that loss of endothelial NO contributes to AD pathology. We hypothesize that decreased systemic NO bioavailability in AD may also impact lung microcirculation and induce pulmonary endothelial dysfunction. The acute effect of NO synthase (NOS) inhibition on pulmonary arteriolar tone was assessed in a transgenic mouse model (TgAD) of AD (C57BL/6-Tg(Thy1-APPSwDutIowa)BWevn/Mmjax) and age-matched wild-type controls (C57BL/6J). Arteriolar diameters were measured before and after the administration of the NOS inhibitor, L-NAME Lung superoxide formation (DHE) and formation of nitrotyrosine (3-NT) were assessed as indicators of oxidative stress, inducible NOS (iNOS) and tumor necrosis factor alpha (TNF-α) expression as indicators of inflammation. Administration of L-NAME caused either significant pulmonary arteriolar constriction or no change from baseline tone in wild-type (WT) mice, and significant arteriolar dilation in TgAD mice. DHE, 3-NT, TNF-α, and iNOS expression were higher in TgAD lung tissue, compared to WT mice. These data suggest L-NAME could induce increased pulmonary arteriolar tone in WT mice from loss of bioavailable NO In contrast, NOS inhibition with L-NAME had a vasodilator effect in TgAD mice, potentially caused by decreased reactive nitrogen species formation, while significant oxidative stress and inflammation were present. We conclude that AD may increase pulmonary microvascular tone as a result of loss of bioavailable NO and increased oxidative stress. Our findings suggest that AD may have systemic microvascular implications beyond central neural control mechanisms. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Substance P promotes the recovery of oxidative stress-damaged retinal pigmented epithelial cells by modulating Akt/GSK-3β signaling.

    PubMed

    Baek, Sang-Min; Yu, Seung-Young; Son, Youngsook; Hong, Hyun Sook

    2016-01-01

    Senescence of the retina causes an accumulation of reactive oxygen species (ROS). Oxidative stress associated with ROS can damage RPE cells, leading to neovascularization and severe ocular disorders, including age-related macular degeneration (AMD). Thus, the early treatment of the damage caused by oxidative stress is critical for preventing the development of ocular diseases such as AMD. In this study, we examined the role of substance P (SP) in the recovery of RPE cells damaged by oxidative stress. To induce oxidative stress, RPE cells were treated with H2O2 at various doses. Recovery from oxidative stress was studied following treatment with SP by analyzing cell viability, cell proliferation, cell apoptosis, and Akt/glycogen synthase kinase (GSK)-3β activation in RPE cells in vitro. H2O2 treatment reduced cellular viability in a dose-dependent manner. SP inhibited the reduction of cell viability due to H2O2 and caused increased cell proliferation and decreased cell apoptosis. Cell survival under oxidative stress requires the activation of Akt signaling that enables cells to resist oxidative stress-induced damage. SP treatment activated Akt/GSK-3β signaling in RPE cells, which were damaged due to oxidative stress, and the inhibition of Akt signaling in SP-treated RPE cells prevented SP-induced recovery. Pretreatment with the neurokinin 1 receptor (NK1R) antagonist reduced the recovery effect of SP on damaged RPE cells. SP can protect RPE cells from oxidant-induced cell death by activating Akt/GSK-3β signaling via NK1R. This study suggests the possibility of SP as a treatment for oxidative stress-related diseases.

  8. Effect of the tocotrienol-rich fraction on the lifespan and oxidative biomarkers in Caenorhabditis elegans under oxidative stress

    PubMed Central

    Aan, Goon Jo; Zainudin, Mohd Shahril Aszrin; Karim, Noralisa Abdul; Ngah, Wan Zurinah Wan

    2013-01-01

    OBJECTIVE: This study was performed to determine the effect of the tocotrienol-rich fraction on the lifespan and oxidative status of C. elegans under oxidative stress. METHOD: Lifespan was determined by counting the number of surviving nematodes daily under a dissecting microscope after treatment with hydrogen peroxide and the tocotrienol-rich fraction. The evaluated oxidative markers included lipofuscin, which was measured using a fluorescent microscope, and protein carbonyl and 8-hydroxy-2′-deoxyguanosine, which were measured using commercially available kits. RESULTS: Hydrogen peroxide-induced oxidative stress significantly decreased the mean lifespan of C. elegans, which was restored to that of the control by the tocotrienol-rich fraction when administered before or both before and after the hydrogen peroxide. The accumulation of the age marker lipofuscin, which increased with hydrogen peroxide exposure, was decreased with upon treatment with the tocotrienol-rich fraction (p<0.05). The level of 8-hydroxy-2′-deoxyguanosine significantly increased in the hydrogen peroxide-induced group relative to the control. Treatment with the tocotrienol-rich fraction before or after hydrogen peroxide induction also increased the level of 8-hydroxy-2′-deoxyguanosine relative to the control. However, neither hydrogen peroxide nor the tocotrienol-rich fraction treatment affected the protein carbonyl content of the nematodes. CONCLUSION: The tocotrienol-rich fraction restored the lifespan of oxidative stress-induced C. elegans and reduced the accumulation of lipofuscin but did not affect protein damage. In addition, DNA oxidation was increased. PMID:23778402

  9. Effect of the tocotrienol-rich fraction on the lifespan and oxidative biomarkers in Caenorhabditis elegans under oxidative stress.

    PubMed

    Aan, Goon Jo; Zainudin, Mohd Shahril Aszrin; Karim, Noralisa Abdul; Ngah, Wan Zurinah Wan

    2013-05-01

    This study was performed to determine the effect of the tocotrienol-rich fraction on the lifespan and oxidative status of C. elegans under oxidative stress. Lifespan was determined by counting the number of surviving nematodes daily under a dissecting microscope after treatment with hydrogen peroxide and the tocotrienol-rich fraction. The evaluated oxidative markers included lipofuscin, which was measured using a fluorescent microscope, and protein carbonyl and 8-hydroxy-2'-deoxyguanosine, which were measured using commercially available kits. Hydrogen peroxide-induced oxidative stress significantly decreased the mean lifespan of C. elegans, which was restored to that of the control by the tocotrienol-rich fraction when administered before or both before and after the hydrogen peroxide. The accumulation of the age marker lipofuscin, which increased with hydrogen peroxide exposure, was decreased with upon treatment with the tocotrienol-rich fraction (p<0.05). The level of 8-hydroxy-2'-deoxyguanosine significantly increased in the hydrogen peroxide-induced group relative to the control. Treatment with the tocotrienol-rich fraction before or after hydrogen peroxide induction also increased the level of 8-hydroxy-2'-deoxyguanosine relative to the control. However, neither hydrogen peroxide nor the tocotrienol-rich fraction treatment affected the protein carbonyl content of the nematodes. The tocotrienol-rich fraction restored the lifespan of oxidative stress-induced C. elegans and reduced the accumulation of lipofuscin but did not affect protein damage. In addition, DNA oxidation was increased.

  10. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    PubMed

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4-phenylbutyrate increased the nuclear levels of nuclear factor-E2-related factor 2, and decreased the nuclear levels of nuclear factor κB in hypoxic vascular smooth muscle cells. 4-phenylbutyrate has beneficial effects for traumatic hemorrhagic shock including improving animal survival and protecting organ function. These beneficial effects of 4-phenylbutyrate in traumatic hemorrhagic shock result from its vascular function protection via attenuation of the oxidative stress and mitochondrial permeability transition pore opening. Nuclear factor-E2-related factor 2 and nuclear factor-κB may be involved in 4-phenylbutyrate-mediated inhibition of oxidative stress.

  11. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity.

    PubMed

    Sharbeen, George; Youkhana, Janet; Mawson, Amanda; McCarroll, Joshua; Nunez, Andrea; Biankin, Andrew; Johns, Amber; Goldstein, David; Phillips, Phoebe

    2017-02-07

    Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread.

  12. SIRT1 exhibits antioxidative effects in HT22 cells induced by tert-butyl alcohol.

    PubMed

    Ma, Junxiang; Song, Dongmei; Zhang, Yuanyuan; Chen, Li; Zhang, Shixuan; Jia, Jiaxin; Chen, Tian; Guo, Caixia; Tian, Lin; Gao, Ai; Niu, Piye

    2018-02-01

    Tertiary butyl alcohol (TBA) is a principal metabolite of methyl tertiary-butyl ether (MTBE), a common pollutant worldwide in the ground or underground water, which is found to produce nervous system damage. Nevertheless, few data regarding the effects of TBA has been reported. Studies indicated that oxidative stress plays a pivotal role in MTBE neurotoxic mechanism. Sirtuin 1 (SIRT1) has been reported to exert a neuroprotective effect on various neurologic diseases via resistance to oxidative stress by deacetylating its substrates. In this study, we examined levels of oxidative stress after exposure to TBA for 6 h in HT22 cells and HT22 cells with SIRT1 silencing (transfected with SIRT1 siRNA) or high expression (preconditioned with agonists SRT1720). We found that TBA activated oxidative stress by increasing generation of intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and Oxidized glutathione (GSSG), and decreasing contents of superoxide dismutase (SOD) and glutathione reductase (GSH). In additional, levels of TBA-induced oxidative stress were aggravated when SIRT1 silenced but alleviated when SIRT1 enhanced. Our study indicated that SIRT1 mitigated oxidative stress induced by TBA. © 2017 Wiley Periodicals, Inc.

  13. Mechanism of H₂O₂-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis.

    PubMed

    Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2015-01-16

    The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. ARGININOSUCCINATE SYNTHASE CONDITIONS THE RESPONSE TO ACUTE AND CHRONIC ETHANOL-INDUCED LIVER INJURY IN MICE

    PubMed Central

    Yan, Wei; Morón-Concepción, Jose A.; Ward, Stephen C.; Ge, Xiaodong; de la Rosa, Laura Conde; Nieto, Natalia

    2012-01-01

    Background and Aim Argininosuccinate synthase (ASS) is the rate-limiting enzyme in both the urea and the l-citrulline/nitric oxide (NO·) cycles regulating protein catabolism, ammonia levels and NO· generation (1-2). Since a proteomics analysis identified ASS and nitric oxide synthase-2 (NOS2) as co-induced in rat hepatocytes by chronic ethanol consumption, which also occurred in alcoholic liver disease (ALD) and in cirrhotic patients, we hypothesized that ASS could play a role in ethanol binge and chronic ethanol-induced liver damage. Methods To investigate the contribution of ASS to the pathophysiology of ALD, wild-type (WT) and Ass+/− mice (Ass−/− are lethal due to hyperammonemia) were exposed to an ethanol binge or to chronic ethanol drinking. Results Compared with WT, Ass+/− mice given an ethanol binge exhibited decreased steatosis, lower NOS2 induction and less 3-nitrotyrosine (3-NT) protein residues, indicating that reducing nitrosative stress via the l-citrulline/NO· pathway plays a significant role in preventing liver damage. However, chronic ethanol treated Ass+/− mice displayed enhanced liver injury compared with WT mice. This was due to hyperammonemia, lower phosphorylated AMP-activated protein kinase (pAMPKα) to total AMPKα ratio, decreased sirtuin (Sirt-1) and peroxisomal proliferator-activated receptor coactivator-1α (Pgc1α) mRNAs, lower fatty acid β-oxidation due to down-regulation of carnitine palmitoyl transferase-II (CPT-II), decreased antioxidant defense and elevated lipid peroxidation end-products in spite of comparable nitrosative stress but likely reduced NOS3. Conclusion Partial Ass ablation protects only in acute ethanol-induced liver injury by decreasing nitrosative stress but not in a more chronic scenario where oxidative stress and impaired fatty acid β-oxidation are key events. PMID:22213272

  15. Argininosuccinate synthase conditions the response to acute and chronic ethanol-induced liver injury in mice.

    PubMed

    Leung, Tung Ming; Lu, Yongke; Yan, Wei; Morón-Concepción, Jose A; Ward, Stephen C; Ge, Xiaodong; Conde de la Rosa, Laura; Nieto, Natalia

    2012-05-01

    Argininosuccinate synthase (ASS) is the rate-limiting enzyme in both the urea and the L-citrulline/nitric oxide (NO·) cycles regulating protein catabolism, ammonia levels, and NO· generation. Because a proteomics analysis identified ASS and nitric oxide synthase-2 (NOS2) as coinduced in rat hepatocytes by chronic ethanol consumption, which also occurred in alcoholic liver disease (ALD) and in cirrhosis patients, we hypothesized that ASS could play a role in ethanol binge and chronic ethanol-induced liver damage. To investigate the contribution of ASS to the pathophysiology of ALD, wildtype (WT) and Ass(+/-) mice (Ass(-/-) are lethal due to hyperammonemia) were exposed to an ethanol binge or to chronic ethanol drinking. Compared with WT, Ass(+/-) mice given an ethanol binge exhibited decreased steatosis, lower NOS2 induction, and less 3-nitrotyrosine (3-NT) protein residues, indicating that reducing nitrosative stress by way of the L-citrulline/NO· pathway plays a significant role in preventing liver damage. However, chronic ethanol-treated Ass(+/-) mice displayed enhanced liver injury compared with WT mice. This was due to hyperammonemia, lower phosphorylated AMP-activated protein kinase alpha (pAMPKα) to total AMPKα ratio, decreased sirtuin-1 (Sirt-1) and peroxisomal proliferator-activated receptor coactivator-1α (Pgc1α) messenger RNAs (mRNAs), lower fatty acid β-oxidation due to down-regulation of carnitine palmitoyl transferase-II (CPT-II), decreased antioxidant defense, and elevated lipid peroxidation end-products in spite of comparable nitrosative stress but likely reduced NOS3. Partial Ass ablation protects only in acute ethanol-induced liver injury by decreasing nitrosative stress but not in a more chronic scenario where oxidative stress and impaired fatty acid β-oxidation are key events. Copyright © 2011 American Association for the Study of Liver Diseases.

  16. Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

    PubMed Central

    Lynch, Thomas L.; Sivaguru, Mayandi; Velayutham, Murugesan; Cardounel, Arturo J.; Michels, Michelle; Barefield, David; Govindan, Suresh; dos Remedios, Cristobal; van der Velden, Jolanda; Sadayappan, Sakthivel

    2015-01-01

    Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C). However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM) expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t)) was used, compared to wild-type (WT) mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG) ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure. PMID:26508994

  17. Total Glucosides of Danggui Buxue Tang Attenuate BLM-Induced Pulmonary Fibrosis via Regulating Oxidative Stress by Inhibiting NOX4

    PubMed Central

    Zhao, Ping; Zhou, Wen-Cheng; Li, De-Lin; Mo, Xiao-Ting; Xu, Liang; Li, Liu-Cheng; Cui, Wen-Hui; Gao, Jian

    2015-01-01

    Pulmonary fibrosis (PF) is a serious chronic lung disease with unknown pathogenesis. Researches have confirmed that oxidative stress which is regulated by NADPH oxidase-4 (NOX4), a main source of reactive oxygen species (ROS), is an important molecular mechanism underlying PF. Previous studies showed that total glucosides of Danggui Buxue Tang (DBTG), an extract from a classical traditional Chinese herbal formula, Danggui Buxue Tang (DBT), attenuated bleomycin-induced PF in rats. However, the mechanisms of DBTG are still not clear. We hypothesize that DBTG attenuates PF through regulating the level of oxidative stress by inhibiting NOX4. And we found that fibrosis indexes hydroxyproline (HYP) and type I collagen (Col-I) were lower in DBTG groups compared with the model group. In addition, the expression of transforming growth factor-β1 (TGF-β1) and expression of alpha smooth muscle actin (α-SMA) were also much more decreased than the model group. For oxidative stress indicators, DBTG blunted the decrease of superoxide dismutase (SOD) activity, total antioxidant capacity (T-AOC), and the increase in malondialdehyde (MDA), 8-iso-prostaglandin in lung homogenates. Treatment with DBTG restrained the expression of NOX4 compared to the model group. Present study confirms that DBTG inhibits BLM-induced PF by modulating the level of oxidative stress via suppressing NOX4. PMID:26347805

  18. Olive leaf down-regulates the oxidative stress and immune dysregulation in streptozotocin-induced diabetic mice.

    PubMed

    Park, Jung-Hyun; Jung, Ji-Hye; Yang, Jin-Young; Kim, Hyun-Sook

    2013-11-01

    Type 1 diabetes is an endocrinologic disorder characterized by uncontrolled glucose regulation and oxidative stress. Olive leaves have been studied extensively for their antioxidant activity and capacity to improve immune function. We hypothesized that olive leaf powder supplementation will be effective in inhibiting the oxidative stress and immune dysregulation in streptozotocin (STZ)-induced diabetic mice. Mice were assigned to 1 of 5 groups: control (C), STZ-induced diabetes (D), and STZ-induced diabetes supplemented with very low dose (VLOL), low dose (LOL), or high dose of olive leaf powder (HOL). Blood glucose in the VLOL and LOL groups was lower than that in the D group (P < .05). Insulin levels were increased in all experimental groups in comparison with that in the D group, (P < .05). Superoxide dismutase, glutathione peroxidase, and catalase activities were shown to decrease in the D group, whereas these were increased in the VLOL and LOL groups. Nitric oxide levels decreased in the VLOL and LOL groups, as compared with the D group. The messenger RNA expression levels of inducible nitric oxide synthase were significantly decreased in the VLOL and HOL groups, and interferon-γ levels were significantly decreased in the liver of the VLOL, LOL, and HOL groups compared with the levels in the D group. Interleukin-17 levels were significantly decreased in the VLOL and HOL groups. Th1 and Th17 cytokine levels were increased in the D group but decreased in all the experimental groups. Th2 cytokine levels were increased in all olive leaf-supplemented groups compared with those in the D group. These results indicate a reduction in the levels of proinflammatory cytokines, suggesting that olive leaves have the potential to provide therapeutic inhibition of diabetic complications. © 2013.

  19. Effect of yoga exercise therapy on oxidative stress indicators with end-stage renal disease on hemodialysis

    PubMed Central

    Gordon, Lorenzo; McGrowder, Donovan A; Pena, Yeiny T; Cabrera, Elsa; Lawrence-Wright, Marilyn B

    2013-01-01

    Background: Oxidative stress promotes endothelial dysfunction and atherosclerosis in chronic renal disease. Objectives: This study investigated the impact of Hatha yoga on oxidative stress indicators and oxidant status, in patients with end-stage renal disease (ESRD) on hemodialysis. Design: This prospective randomized study consisted of 33 ESRD patients in the Hatha yoga exercise group who were matched with 35 ESRD patients in the control group. Outcome Measures: The oxidative stress indicators (malondialdehyde - MDA, protein oxidation - POX, phospholipase A2 - PLA2 activity) and the oxidative status (superoxide dismutase (SOD) and catalase activities) were determined in the blood samples taken at the pre-hemodialysis treatment, at baseline (0 months) and after four months. Results: In patients in the Hatha yoga exercise group, lipid peroxidation, as indicated by MDA decreased by 4.0% after four months (P = 0.096). There was also a significant reduction in the activity of PLA from 2.68 ± 0.02 IU / L to 2.34 IU / L (− 12.7%; P = 0.010) and POX from 2.28 ± 0.02 nmol / mg to 2.22 ± 0.01 nmol / mg (− 22.6%; P = 0.0001). The activity of SOD significantly increased from 12.91 ± 0.17 U / L to 13.54 ± 0.15 U / L (4.65%; P = 0.0001) and catalase from 79.83 ± 0.63 U / L to 80.54 ± 0.80 U / L (0.90%; P = 0.0001). There was a significant correlation between the pre-hemodialysis oxidative stress parameters at the zero month and after four months for the activities of PLA (r = 0.440), catalase (r = 0.872), and SOD (r = 0.775). Conclusions: These findings suggest that the Hatha yoga exercise has therapeutic, preventative, and protective effects in ESRD subjects, by decreasing oxidative stress. PMID:23440311

  20. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants.

    PubMed

    Naya, Loreto; Ladrera, Ruben; Ramos, Javier; González, Esther M; Arrese-Igor, Cesar; Minchin, Frank R; Becana, Manuel

    2007-06-01

    Alfalfa (Medicago sativa) plants were exposed to drought to examine the involvement of carbon metabolism and oxidative stress in the decline of nitrogenase (N(2)ase) activity. Exposure of plants to a moderate drought (leaf water potential of -1.3 MPa) had no effect on sucrose (Suc) synthase (SS) activity, but caused inhibition of N(2)ase activity (-43%), accumulation of succinate (+36%) and Suc (+58%), and up-regulation of genes encoding cytosolic CuZn-superoxide dismutase (SOD), plastid FeSOD, cytosolic glutathione reductase, and bacterial MnSOD and catalases B and C. Intensification of stress (-2.1 MPa) decreased N(2)ase (-82%) and SS (-30%) activities and increased malate (+40%), succinate (+68%), and Suc (+435%). There was also up-regulation (mRNA) of cytosolic ascorbate peroxidase and down-regulation (mRNA) of SS, homoglutathione synthetase, and bacterial catalase A. Drought stress did not affect nifH mRNA level or leghemoglobin expression, but decreased MoFe- and Fe-proteins. Rewatering of plants led to a partial recovery of the activity (75%) and proteins (>64%) of N(2)ase, a complete recovery of Suc, and a decrease of malate (-48%) relative to control. The increase in O(2) diffusion resistance, the decrease in N(2)ase-linked respiration and N(2)ase proteins, the accumulation of respiratory substrates and oxidized lipids and proteins, and the up-regulation of antioxidant genes reveal that bacteroids have their respiratory activity impaired and that oxidative stress occurs in nodules under drought conditions prior to any detectable effect on SS or leghemoglobin. We conclude that a limitation in metabolic capacity of bacteroids and oxidative damage of cellular components are contributing factors to the inhibition of N(2)ase activity in alfalfa nodules.

  1. The sex differences in nature of vascular endothelial stress: nitrergic mechanisms

    NASA Astrophysics Data System (ADS)

    Sindeev, Sergey; Gekaluyk, Artem; Ulanova, Maria; Agranovich, Ilana; Sharref, Ali Esmat; Semyachkina-Glushkovskaya, Oxana

    2016-04-01

    Here we studied the role of nitric oxide in cardiovascular regulation in male and female hypertensive rats under normal and stress conditions. We found that the severity of hypertension in females was lower than in males. Hypertensive females demonstrated more favorable pattern of cardiovascular responses to stress. Nitric oxide blockade by NG-nitro-L-arginine methyl ester (L-NAME) increased the mean arterial pressure and decreased the heart rate more effectively in females than in males. During stress, L-NAME modified the stress-induced cardiovascular responses more significantly in female compared with male groups. Our data show that hypertensive females demonstrated the more effective nitric oxide control of cardiovascular activity under normal and especially stress conditions than male groups. This sex differences may be important mechanism underlying greater in females vs. males stress-resistance of cardiovascular system and hypertension formation.

  2. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    PubMed

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  3. Cell-Specific Oxidative Stress and Cytotoxicity after Wildfire Coarse Particulate Matter Instillation into Mouse Lung

    PubMed Central

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.

    2012-01-01

    Our previous work has shown that coarse particulate matter (PM10-2.5) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At one hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2 pg/mL to 83.9±12.2 pg/mL was observed a half-hour after PM instillation. By one hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. PMID:23142465

  4. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung.

    PubMed

    Williams, Keisha M; Franzi, Lisa M; Last, Jerold A

    2013-01-01

    Our previous work has shown that coarse particulate matter (PM(10-2.5)) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2pg/mL to 83.9±12.2pg/mL was observed a half-hour after PM instillation. By 1hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Increased total DNA damage and oxidative stress in brain are associated with decreased longevity in high sucrose diet fed WNIN/Gr-Ob obese rats.

    PubMed

    Potukuchi, Aruna; Addepally, Uma; Sindhu, Kirankumar; Manchala, Raghunath

    2017-06-01

    Obesity and Type 2 Diabetes (T2D) are chronic nutrient-related disorders that occur together and pose a grave burden to society. They are among the most common causes of ageing and death. Obesity and T2D per se accelerate ageing albeit the underlying mechanisms are unclear yet. Also, it is not clear whether or not superimposing T2D on obesity accelerates ageing. Present study validated the hypothesis, 'super-imposing T2D on obesity accelerates ageing' in WNIN/Gr-Ob, the impaired glucose tolerant, obese rat as the model and evaluated probable underlying mechanisms. To estimate the survival analysis of WNIN/Gr-Ob rats induced with T2D. To determine the extent of DNA damage and oxidative stress in the brain, the master controller of the body, in WNIN/Gr-Ob rats with/without high sucrose induced T2D/aggravation of insulin resistance (IR) after 3 and 6 months of feeding. T2D was induced/IR was aggravated by feeding high sucrose diet (HSD) to 9-10 weeks old, male WNIN/Gr-Ob rats. Survival percentage was determined statistically by Kaplan-Meier estimator. Neuronal DNA damage was quantified by the Comet assay while the oxidative stress and antioxidant status were evaluated from the levels of malonaldialdehyde, reduced glutathione, and superoxide dismutase (SOD) activity. HSD feeding decreased longevity of WNIN/Gr-Ob rats and was associated with significantly higher total neuronal DNA damage after three months of feeding but not later. In line with this was the increased neuronal oxidative stress (lipid peroxidation) and decreased antioxidant status (reduced glutathione and SOD activity) in HSD than Starch-based diet (SBD) fed rats. The results suggest that HSD feeding decreased the longevity of WNIN/Gr-Ob obese rats probably by increasing oxidative stress and aggravating IR, a condition that precedes T2D.

  6. Metformin Induces Apoptosis and Cell Cycle Arrest Mediated by Oxidative Stress, AMPK and FOXO3a in MCF-7 Breast Cancer Cells

    PubMed Central

    Queiroz, Eveline A. I. F.; Puukila, Stephanie; Eichler, Rosangela; Sampaio, Sandra C.; Forsyth, Heidi L.; Lees, Simon J.; Barbosa, Aneli M.; Dekker, Robert F. H.; Fortes, Zuleica B.; Khaper, Neelam

    2014-01-01

    Recent studies have demonstrated that the anti-diabetic drug, metformin, can exhibit direct antitumoral effects, or can indirectly decrease tumor proliferation by improving insulin sensitivity. Despite these recent advances, the underlying molecular mechanisms involved in decreasing tumor formation are not well understood. In this study, we examined the antiproliferative role and mechanism of action of metformin in MCF-7 cancer cells treated with 10 mM of metformin for 24, 48, and 72 hours. Using BrdU and the MTT assay, it was found that metformin demonstrated an antiproliferative effect in MCF-7 cells that occurred in a time- and concentration- dependent manner. Flow cytometry was used to analyze markers of cell cycle, apoptosis, necrosis and oxidative stress. Exposure to metformin induced cell cycle arrest in G0-G1 phase and increased cell apoptosis and necrosis, which were associated with increased oxidative stress. Gene and protein expression were determined in MCF-7 cells by real time RT-PCR and western blotting, respectively. In MCF-7 cells metformin decreased the activation of IRβ, Akt and ERK1/2, increased p-AMPK, FOXO3a, p27, Bax and cleaved caspase-3, and decreased phosphorylation of p70S6K and Bcl-2 protein expression. Co-treatment with metformin and H2O2 increased oxidative stress which was associated with reduced cell number. In the presence of metformin, treating with SOD and catalase improved cell viability. Treatment with metformin resulted in an increase in p-p38 MAPK, catalase, MnSOD and Cu/Zn SOD protein expression. These results show that metformin has an antiproliferative effect associated with cell cycle arrest and apoptosis, which is mediated by oxidative stress, as well as AMPK and FOXO3a activation. Our study further reinforces the potential benefit of metformin in cancer treatment and provides novel mechanistic insight into its antiproliferative role. PMID:24858012

  7. Antioxidant modulation in response to heavy metal induced oxidative stress in Cladophora glomerata.

    PubMed

    Murugan, K; Harish, S R

    2007-11-01

    The present investigation was carried out to study the induction of oxidative stress subjected to heavy metal environment. Lipoperoxides showed positive correlation at heavy metal accumulation sites indicating the tissue damage resulting from the reactive oxygen species and resulted in unbalance to cellular redox status. The high activities of ascorbate peroxidase and superoxide dismutase probably counter balance this oxidative stress. Glutathione and soluble phenols decreased, whereas dehydroascorbate content increased in the algae from polluted sites. The results suggested that alga responded to heavy metals effectively by antioxidant compounds and scavenging enzymes.

  8. Mycotoxin-Containing Diet Causes Oxidative Stress in the Mouse

    PubMed Central

    Hou, Yan-Jun; Zhao, Yong-Yan; Xiong, Bo; Cui, Xiang-Shun; Kim, Nam-Hyung; Xu, Yin-Xue; Sun, Shao-Chen

    2013-01-01

    Mycotoxins which mainly consist of Aflatoxin (AF), Zearalenone (ZEN) and Deoxynivalenol (DON) are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize) was incorporated into the diet at three different doses (0, 5 and 20%) to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx) activity and malondialdehyde (MDA) level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT) activity in the serum, liver and kidney as well as superoxide dismutase (SOD) activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse. PMID:23555961

  9. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils' oxidative stress in chronic exercise.

    PubMed

    Funes, Lorena; Carrera-Quintanar, Lucrecia; Cerdán-Calero, Manuela; Ferrer, Miguel D; Drobnic, Franchek; Pons, Antoni; Roche, Enrique; Micol, Vicente

    2011-04-01

    Intense exercise is directly related to muscular damage and oxidative stress due to excessive reactive oxygen species (ROS) in both, plasma and white blood cells. Nevertheless, exercise-derived ROS are essential to regulate cellular adaptation to exercise. Studies on antioxidant supplements have provided controversial results. The purpose of this study was to determine the effect of moderate antioxidant supplementation (lemon verbena extract) in healthy male volunteers that followed a 90-min running eccentric exercise protocol for 21 days. Antioxidant enzymes activities and oxidative stress markers were measured in neutrophils. Besides, inflammatory cytokines and muscular damage were determined in whole blood and serum samples, respectively. Intense running exercise for 21 days induced antioxidant response in neutrophils of trained male through the increase of the antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase. Supplementation with moderate levels of an antioxidant lemon verbena extract did not block this cellular adaptive response and also reduced exercise-induced oxidative damage of proteins and lipids in neutrophils and decreased myeloperoxidase activity. Moreover, lemon verbena supplementation maintained or decreased the level of serum transaminases activity indicating a protection of muscular tissue. Exercise induced a decrease of interleukin-6 and interleukin-1β levels after 21 days measured in basal conditions, which was not inhibited by antioxidant supplementation. Therefore, moderate antioxidant supplementation with lemon verbena extract protects neutrophils against oxidative damage, decreases the signs of muscular damage in chronic running exercise without blocking the cellular adaptation to exercise.

  10. Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction.

    PubMed

    Marinello, Poliana Camila; da Silva, Thamara Nishida Xavier; Panis, Carolina; Neves, Amanda Fouto; Machado, Kaliana Larissa; Borges, Fernando Henrique; Guarnier, Flávia Alessandra; Bernardes, Sara Santos; de-Freitas-Junior, Júlio Cesar Madureira; Morgado-Díaz, José Andrés; Luiz, Rodrigo Cabral; Cecchini, Rubens; Cecchini, Alessandra Lourenço

    2016-04-01

    The participation of oxidative stress in the mechanism of metformin action in breast cancer remains unclear. We investigated the effects of clinical (6 and 30 μM) and experimental concentrations of metformin (1000 and 5000 μM) in MCF-7 and in MDA-MB-231 cells, verifying cytotoxicity, oxidative stress, DNA damage, and intracellular pathways related to cell growth and survival after 24 h of drug exposure. Clinical concentrations of metformin decreased metabolic activity of MCF-7 cells in the MTT assay, which showed increased oxidative stress and DNA damage, although cell death and impairment in the proliferative capacity were observed only at higher concentrations. The reduction in metabolic activity and proliferation in MDA-MB-231 cells was present only at experimental concentrations after 24 h of drug exposition. Oxidative stress and DNA damage were induced in this cell line at experimental concentrations. The drug decreased cytoplasmic extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT and increased nuclear p53 and cytoplasmic transforming growth factor β1 (TGF-β1) in both cell lines. These findings suggest that metformin reduces cell survival by increasing reactive oxygen species, which induce DNA damage and apoptosis. A relationship between the increase in TGF-β1 and p53 levels and the decrease in ERK1/2 and AKT was also observed. These findings suggest the mechanism of action of metformin in both breast cancer cell lineages, whereas cell line specific undergoes redox changes in the cells in which proliferation and survival signaling are modified. Taken together, these results highlight the potential clinical utility of metformin as an adjuvant during the treatment of luminal and triple-negative breast cancer.

  11. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress.

    PubMed

    Zhang, Wenlin; Tan, Nicole G J; Fu, Baohui; Li, Sam F Y

    2015-03-01

    Industrial wastewaters often contain high levels of metal mixtures, in which metal mixtures may have synergistic or antagonistic effects on aquatic organisms. A combination of metallomics and nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was employed to understand the consequences of multi-metal systems (Cu, Cd, Pb) on freshwater microalgae. Morphological characterization, cell viability and chlorophyll a determination of metal-spiked Chlorella sp. suggested synergistic effects of Cu and Cd on growth inhibition and toxicity. While Pb has no apparent effect on Chlorella sp. metabolome, a substantial decrease of sucrose, amino acid content and glycerophospholipid precursors in Cu-spiked microalgae revealed Cu-induced oxidative stress. Addition of Cd to Cu-spiked cultures induced more drastic metabolic perturbations, hence we confirmed that Cu and Cd synergistically influenced photosynthesis inhibition, oxidative stress and membrane degradation. Total elemental analysis revealed a significant decrease in K, and an increase in Na, Mg, Zn and Mn concentrations in Cu-spiked cultures. This indicated that Cu is more toxic to Chlorella sp. as compared to Cd or Pb, and the combination of Cu and Cd has a strong synergistic effect on Chlorella sp. oxidative stress induction. Oxidative stress is confirmed by liquid chromatography tandem mass spectrometry analysis, which demonstrated a drastic decrease in the GSH/GSSG ratio solely in Cu-spiked cultures. Interestingly, we observed Cu-facilitated Cd and Pb bioconcentration in Chlorella sp. The absence of phytochelatins and an increment of extracellular polymeric substances (EPS) yields in Cu-spiked cultures suggested that the mode of bioconcentration of Cd and Pb is through adsorption of free metals onto the algal EPS rather than intracellular chelation to phytochelatins.

  12. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease.

    PubMed

    Farr, Susan A; Ripley, Jessica L; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L; Platt, Thomas L; Murphy, M Paul; Morley, John E; Kumar, Vijaya; Butterfield, D Allan

    2014-02-01

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased levels of the antioxidant transcriptional activity of Nrf2, and decreases tau phosphorylation. Our study supports the notion of GAO as a possible treatment for AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Decreasing oxidative stress and neuroinflammation with a multifunctional peptide rescues memory deficits in mice with Alzheimer disease.

    PubMed

    Zhou, Wei-wei; Lu, Shuai; Su, Ya-jing; Xue, Di; Yu, Xiao-lin; Wang, Shao-wei; Zhang, He; Xu, Peng-xin; Xie, Xi-xiu; Liu, Rui-tian

    2014-09-01

    Alzheimer disease (AD) is characterized by extracellular senile plaques, intracellular neurofibrillary tangles, and memory loss. Aggregated amyloid-β (Aβ), oxidative stress, and inflammation have pivotal roles in the pathogenesis of AD. Therefore, the inhibition of Aβ-induced neurotoxicity, oxidative stress, and inflammation is a potential therapeutic strategy for the treatment of AD. In this study, a heptapeptide, isolated from a Ph.D.-C7C library by phage display, attenuated Aβ42-induced cytotoxicity in SH-SY5Y neuroblastoma cells and reduced Aβ42-induced oxidative stress by decreasing the production of reactive oxygen species and glutathione disulfide. As a result, glutathione level increased and superoxide dismutase and glutathione peroxidase activities were enhanced in vitro and in vivo. This peptide also suppressed the inflammatory response by decreasing the release of proinflammatory cytokines, such as tumor necrosis factor α and interleukin 1β, in microglia and by reducing microgliosis and astrogliosis in AD transgenic mice. This peptide was intracerebroventricularly administered to APPswe/PS1dE9 transgenic mice. We found that this peptide significantly improved spatial memory and reduced the amyloid plaque burden and soluble and insoluble Aβ levels. Our findings suggest that this multifunctional peptide has therapeutic potential for an Aβ-targeted treatment of AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Inhibitory Effect of a French Maritime Pine Bark Extract-Based Nutritional Supplement on TNF-α-Induced Inflammation and Oxidative Stress in Human Coronary Artery Endothelial Cells

    PubMed Central

    McGrath, Kristine C. Y.; Li, Xiao-Hong; McRobb, Lucinda S.; Heather, Alison K.

    2015-01-01

    Oxidative stress and inflammation, leading to endothelial dysfunction, contribute to the pathogenesis of atherosclerosis. The popularity of natural product supplements has increased in recent years, especially those with purported anti-inflammatory and/or antioxidant effects. The efficacy and mechanism of many of these products are not yet well understood. In this study, we tested the antioxidant and anti-inflammatory effects of a supplement, HIPER Health Supplement (HIPER), on cytokine-induced inflammation and oxidative stress in human coronary artery endothelial cells (HCAECs). HIPER is a mixture of French maritime pine bark extract (PBE), honey, aloe vera, and papaya extract. Treatment for 24 hours with HIPER reduced TNF-α-induced reactive oxygen species (ROS) generation that was associated with decreased NADPH oxidase 4 and increased superoxide dismutase-1 expression. HIPER inhibited TNF-α induced monocyte adhesion to HCAECs that was in keeping with decreased expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1 and decreased nuclear factor-kappa B (NF-κB) activation. Further investigation of mechanism showed HIPER reduced TNF-α induced IκBα and p38 and MEK1/2 MAP kinases phosphorylation. Our findings show that HIPER has potent inhibitory effects on HCAECs inflammatory and oxidative stress responses that may protect against endothelial dysfunction that underlies early atherosclerotic lesion formation. PMID:26664450

  15. Transport stress-induced cerebrum oxidative stress is not mitigated by activating the Nrf2 antioxidant defense response in newly hatched chicks.

    PubMed

    Ge, J; Li, H; Sun, F; Li, X-N; Lin, J; Xia, J; Zhang, C; Li, J-L

    2017-07-01

    Transportation of newly hatched chicks from the hatchery to the farm is inevitable, especially for parent stock and grandsire parent stock chicks. However, the possible effects of transport stress in the newly hatched chicks are poorly understood. The aim of this study was to determine the adaptive responses to transport stress by activing the nuclear factor-erythroid 2-related factor 2 (Nrf2)-induced antioxidant defense. One hundred twenty newly hatched chicks were divided into 3 groups (control group, transport group, and simulation transport group) for 2, 4, and 8 h of real or simulated transportation. Transport stress could cause oxidative stress in the cerebrum of newly hatched chicks by increasing lipid peroxidation and production of free radicals and decreasing the activities of antioxidant enzymes and the glutathione:oxidized glutathione ratio. Transport stress activated the Nrf2 signaling pathway and triggered the transcription of antioxidant parameters. However, transport stress-induced cerebrum oxidative stress was not mitigated by activating the Nrf2 antioxidant defense response in newly hatched chicks.

  16. Chemometrics models for assessment of oxidative stress risk in chrome-electroplating workers.

    PubMed

    Zendehdel, Rezvan; Shetab-Boushehri, Seyed Vahid; Azari, Mansoor R; Hosseini, Vajihe; Mohammadi, Hamidreza

    2015-04-01

    Oxidative stress is the main cause of hexavalant chromium-induced damage in chrome electroplating workers. The main goal of this study is toxicity analysis and the possibility of toxicity risk categorizing in the chrome electroplating workers based on oxidative stress parameters as prognostic variables. We assessed blood chromium levels and biomarkers of oxidative stress such as lipid peroxidation, thiol (SH) groups and antioxidant capacity of plasma. Data were subjected to principle component analysis (PCA) and artificial neuronal network (ANN) to obtain oxidative stress pattern for chrome electroplating workers. Blood chromium levels increased from 4.42 ppb to 10.6 ppb. Induction of oxidative stress was observed by increased in lipid peroxidation (22.38 ± 10.47 μM versus 14.74 ± 4.82 μM, p < 0.0008), decreased plasma antioxidant capacity (3.17 ± 1.35 μM versus 7.74 ± 4.45 μM, p < 0.0001) and plasma total thiol (SH groups) (0.21 ± 0.07 μM versus 0.45 ± 0.41 μM, p < 0.0042) in comparison to controls. Based on the oxidative parameters, two groups were identified by PCA methods. One category is workers with the risk of oxidative stress and second group is subjects with probable risk of oxidative stress induction. ANN methods can predict oxidative-risk category for assessment of toxicity induction in chrome electroplaters. The result showed multivariate modeling can be interpreted as the induced biochemical toxicity in the workers exposed to hexavalent chromium. Different occupation groups were assessed on the basis of risk level of oxidative stress which could further justify proceeding engineering control measures.

  17. Assessment of oxidative stress markers in recurrent pregnancy loss: a prospective study.

    PubMed

    Yiyenoğlu, Özgür Bilgin; Uğur, Mete Gürol; Özcan, Hüseyin Çağlayan; Can, Günay; Öztürk, Ebru; Balat, Özcan; Erel, Özcan

    2014-06-01

    To determine the levels of oxidative stress markers in recurrent pregnancy loss using a novel automated method. 30 pregnant women in their first trimester with a history of recurrent pregnancy loss (RPL) and 30 healthy pregnant women were enrolled in this prospective controlled study. Total antioxidant capacity (TAC), total oxidant level (TOL) and oxidative stress index (OSI) in maternal serum were measured using the more recently designated Erel method. We observed statistically significant increased TOL and OSI levels in patient group (p = 0.032, p = 0.007, respectively). We also demonstrated statistically significant decreased TAC in pregnant women who had a history of RPL (p = 0.013). Our results support the concept that oxidative stress plays a central role in the etiopathogenesis of RPL. Further studies to evaluate the predictive role of TAC, TOL, OSI levels using Erel method are needed.

  18. Antioxidant Defenses against Activated Oxygen in Pea Nodules Subjected to Water Stress.

    PubMed Central

    Gogorcena, Y.; Iturbe-Ormaetxe, I.; Escuredo, P. R.; Becana, M.

    1995-01-01

    The involvement of activated oxygen in the drought-induced damage of pea (Pisum sativum L. cv Frilene) nodules was examined. To this purpose, various pro-oxidant factors, antioxidant enzymes and related metabolites, and markers of oxidative damage were determined in nodules of well-watered (nodule water potential approximately -0.29 MPa) and water-stressed (nodule water potential approximately -2.03 MPa) plants. Water-stressed nodules entered senescence as evidenced by the 30% decrease in leghemoglobin and total soluble protein. Drought also caused a decrease in the activities of catalase (25%), ascorbate peroxidase (18%), dehydroascorbate reductase (15%), glutathione reductase (31%), and superoxide dismutase (30%), and in the contents of ascorbate (59%), reduced (57%) and oxidized (38%) glutathione, NAD+ and NADH (43%), NADP+ (31%), and NADPH (17%). The decline in the antioxidant capacity of nodules may result from a restricted supply of NAD(P)H in vivo for the ascorbate-glutathione pathway and from the Fe-catalyzed Fenton reactions of ascorbate and glutathione with activated oxygen. The 2-fold increase in the content of "catalytic Fe" would also explain the augmented levels of lipid peroxides (2.4-fold) and oxidatively modified proteins (1.4-fold) found in water-stressed nodules because of the known requirement of lipid and protein oxidation for a transition catalytic metal. PMID:12228507

  19. Effects of alpha-lipoic acid on spatial learning and memory, oxidative stress, and central cholinergic system in a rat model of vascular dementia.

    PubMed

    Zhao, Ran-Ran; Xu, Fei; Xu, Xiao-Chen; Tan, Guo-Jun; Liu, Liang-Min; Wu, Ning; Zhang, Wen-Zhong; Liu, Ji-Xiang

    2015-02-05

    Brain oxidative stress due to chronic cerebral hypoperfusion was considered to be the major risk factor in the pathogenesis of vascular dementia. In this study, we investigated the protective efficacy of alpha-lipoic acid, an antioxidant, against vascular dementia in rats, as well as the potential mechanism. Bilateral common carotid arteries occlusion (BCCAO) induced severe cognitive deficits tested by Morris water maze (MWM), along with oxidative stress and disturbance of central cholinergic system. However, administration of alpha-lipoic acid (50mg/kg, i.p.) for 28 days significantly restored cognitive deficits induced by BCCAO. Biochemical determination revealed that alpha-lipoic acid markedly decreased the production of malondialdehyde (MDA) and the generation of reactive oxidative species (ROS), and increased the level of reduced glutathione (GSH) in the hippocampal tissue. Additionally, alpha-lipoic acid raised the level of acetylcholine (ACh) and choline acetyltransferase (ChAT) and decreased the activity of acetycholinesterase (AChE) in the hippocampus. These results indicated that treatment with alpha-lipoic acid significantly improved behavioral alterations, protected against oxidative stress, and restored central cholinergic system in the rat model of vascular dementia induced by BCCAO. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Pathogenesis of Chronic Cardiorenal Syndrome: Is There a Role for Oxidative Stress?

    PubMed Central

    Rubattu, Speranza; Mennuni, Silvia; Testa, Marco; Mennuni, Mara; Pierelli, Giorgia; Pagliaro, Beniamino; Gabriele, Erica; Coluccia, Roberta; Autore, Camillo; Volpe, Massimo

    2013-01-01

    Cardiorenal syndrome is a frequently encountered clinical condition when the dysfunction of either the heart or kidneys amplifies the failure progression of the other organ. Complex biochemical, hormonal and hemodynamic mechanisms underlie the development of cardiorenal syndrome. Both in vitro and experimental studies have identified several dysregulated pathways in heart failure and in chronic kidney disease that lead to increased oxidative stress. A decrease in mitochondrial oxidative metabolism has been reported in cardiomyocytes during heart failure. This is balanced by a compensatory increase in glucose uptake and glycolysis with consequent decrease in myocardial ATP content. In the kidneys, both NADPH oxidase and mitochondrial metabolism are important sources of TGF-β1-induced cellular ROS. NOX-dependent oxidative activation of transcription factors such as NF-kB and c-jun leads to increased expression of renal target genes (phospholipaseA2, MCP-1 and CSF-1, COX-2), thus contributing to renal interstitial fibrosis and inflammation. In the present article, we postulate that, besides contributing to both cardiac and renal dysfunction, increased oxidative stress may also play a crucial role in cardiorenal syndrome development and progression. In particular, an imbalance between the renin-angiotensin-aldosterone system, the sympathetic nervous system, and inflammation may favour cardiorenal syndrome through an excessive oxidative stress production. This article also discusses novel therapeutic strategies for their potential use in the treatment of patients affected by cardiorenal syndrome. PMID:24264044

  1. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats.

    PubMed

    Yonguc, Goksin Nilufer; Dodurga, Yavuz; Adiguzel, Esat; Gundogdu, Gulsah; Kucukatay, Vural; Ozbal, Seda; Yilmaz, Ismail; Cankurt, Ulker; Yilmaz, Yusuf; Akdogan, Ilgaz

    2015-01-25

    We aimed to investigate the effects of grape seed extract (GSE) and vitamin E (Vit E) on oxidative stress and apoptosis in the hippocampus of streptozotocin-induced diabetic rats. In Control, Diabetic, and Diabetic treated with GSE (Diabetic+GSE) and vitamin E (Diabetic+Vit E) groups, oxidative stress index (OSI), TUNEL staining and Bcl-2, Bcl-XL, Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB gene expressions were evaluated. OSI was significantly increased in the plasma and hippocampus of the Diabetic compared to Control group and decreased in Diabetic+GSE and Diabetic+Vit E groups compared to Diabetic. TUNEL positive neurons significantly increased in the hippocampus of the Diabetic group compared to Control and decreased in Diabetic+GSE (more prominently) and Diabetic+Vit E groups compared to Diabetic. In the hippocampus of the Diabetic group, Bcl-2 and Bcl-XL gene expressions were significantly decreased; Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB gene expressions were significantly increased compared to Control. In Diabetic+GSE and Diabetic+Vit E groups, Bcl-2 gene expressions were significantly increased; Bcl-XL gene expressions did not differ compared to the Diabetic group. The expression of Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB genes in the Diabetic+GSE group and the expression of caspase-3 and -9, TNF-α, and NF-κB genes in the Diabetic+Vit E group were significantly decreased compared to Diabetic. In conclusion, GSE (more prominently) and vitamin E decreased oxidative stress and neuronal apoptosis occurring in the hippocampus of diabetic rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modulation of sestrin confers protection to Cr(VI) induced neuronal cell death in Drosophila melanogaster.

    PubMed

    Singh, Pallavi; Chowdhuri, D Kar

    2018-01-01

    Increased oxidative stress is one of the major causes of hexavalent chromium [Cr(VI)], a heavy metal with diverse applications and environmental presence, induced neuronal adversities in exposed organism including Drosophila. Sestrin (sesn), an oxidative stress responsive gene, emerges as a novel player in the management of oxidative stress response. It is reported to be regulated by Target of rapamycin (TOR) and the former regulates autophagy and plays an important role in the prevention of neurodegeneration. Due to limited information regarding the role of sesn in chemical induced cellular adversities, it was hypothesized that modulation of sesn may improve the Cr(VI) induced neuronal adversities in Drosophila. Upon exposure of Cr(VI) (5.0-20.0 μg/ml) to D. melanogaster larvae (w 1118 ; background control), neuronal cell death was observed at 20.0 μg/ml of Cr(VI) concentration which was found to be reversed by targeted sesn overexpression (Elav-GAL4>UAS-sesn) in those cells of exposed organism by the induction of autophagy concomitant with decreased reactive oxygen species (ROS) level, p-Foxo-, p-JNK- and p-Akt-levels with decreased apoptosis. Conversely, after sesn knockdown (Elav-GAL4>UAS-sesn RNAi ) in neuronal cells, they become more vulnerable to oxidative stress and apoptosis. Furthermore, knockdown of sesn in neuronal cells of exposed organism resulted in decreased autophagy with increased TOR and p-S6k levels while overexpression of sesn led to their decreased levels suggestive of decreased anabolic and increased catabolic activity in neuronal cells shifting energy towards the augmentation of cellular repair. Taken together, the study suggests therapeutic implications of sesn against chemical induced neuronal adversities in an organism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy

    PubMed Central

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A.; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-01-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy. PMID:24398069

  4. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis

    PubMed Central

    2014-01-01

    Background Renal ischemia-reperfusion injury (IRI) increases the rates of acute kidney failure, delayed graft function, and early mortality after kidney transplantation. The pathophysiology involved includes oxidative stress, mitochondrial dysfunction, and immune-mediated injury. The anti-oxidation, anti-apoptosis, and anti-inflammation properties of baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, have been verified. This study therefore assessed the effects of baicalin against renal IRI in rats. Methods Baicalin was intraperitoneally injected 30 min before renal ischemia. Serum and kidneys were harvested 24 h after reperfusion. Renal function and histological changes were assessed. Markers of oxidative stress, the Toll-like receptor (TLR)2 and TLR4 signaling pathway, mitochondrial stress, and cell apoptosis were also evaluated. Results Baicalin treatment decreased oxidative stress and histological injury, and improved kidney function, as well as inhibiting proinflammatory responses and tubular apoptosis. Baicalin pretreatment also reduced the expression of TLR2, TLR4, MyD88, p-NF-κB, and p-IκB proteins, as well as decreasing caspase-3 activity and increasing the Bcl-2/Bax ratio. Conclusions Baicalin may attenuate renal ischemia-reperfusion injury by inhibiting proinflammatory responses and mitochondria-mediated apoptosis. These effects are associated with the TLR2/4 signaling pathway and mitochondrial stress. PMID:24417870

  5. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis.

    PubMed

    Lin, Miao; Li, Long; Li, Liping; Pokhrel, Gaurab; Qi, Guisheng; Rong, Ruiming; Zhu, Tongyu

    2014-01-13

    Renal ischemia-reperfusion injury (IRI) increases the rates of acute kidney failure, delayed graft function, and early mortality after kidney transplantation. The pathophysiology involved includes oxidative stress, mitochondrial dysfunction, and immune-mediated injury. The anti-oxidation, anti-apoptosis, and anti-inflammation properties of baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, have been verified. This study therefore assessed the effects of baicalin against renal IRI in rats. Baicalin was intraperitoneally injected 30 min before renal ischemia. Serum and kidneys were harvested 24 h after reperfusion. Renal function and histological changes were assessed. Markers of oxidative stress, the Toll-like receptor (TLR)2 and TLR4 signaling pathway, mitochondrial stress, and cell apoptosis were also evaluated. Baicalin treatment decreased oxidative stress and histological injury, and improved kidney function, as well as inhibiting proinflammatory responses and tubular apoptosis. Baicalin pretreatment also reduced the expression of TLR2, TLR4, MyD88, p-NF-κB, and p-IκB proteins, as well as decreasing caspase-3 activity and increasing the Bcl-2/Bax ratio. Baicalin may attenuate renal ischemia-reperfusion injury by inhibiting proinflammatory responses and mitochondria-mediated apoptosis. These effects are associated with the TLR2/4 signaling pathway and mitochondrial stress.

  6. A theoretical model and phase field simulation on the evolution of interface roughness in the oxidation process

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Fang, Dai-Ning; Liu, Bin

    2012-01-01

    An oxidation kinetics model is developed to account for the effects of the oxidation interface curvature and the oxidation-induced volume change or Pilling-Bedworth ratio. For the oxidation of Fe-Cr-Al-Y alloy fiber, the predictions agree well with experimental results. By considering the influence of the oxidation interface curvature on oxidation rates, the evolution of fluctuant oxidation interface is predicted. We also developed the phase field method (PFM) to simulate the evolution of the interface roughness. Both the theoretical model and the PFM results show that the interface will become smooth during high temperature oxidation. Stress distribution and evolution are calculated by PFM, which indicates that the stress level decreases as the interface morphology evolves.

  7. Protective effect of exercise and sildenafil on acute stress and cognitive function.

    PubMed

    Ozbeyli, Dilek; Gokalp, Ayse Gizem; Koral, Tolga; Ocal, Onur Yuksel; Dogan, Berkay; Akakin, Dilek; Yuksel, Meral; Kasimay, Ozgur

    2015-11-01

    There are contradictory results about the effects of exercise and sildenafil on cognitive functions. To investigate the effects of sildenafil pretreatment and chronic exercise on anxiety and cognitive functions. Wistar rats (n=42) were divided as sedentary and exercise groups. A moderate-intensity swimming exercise was performed for 6 weeks, 5 days/week, 1h/day. Some of the rats were administered orogastrically with sildenafil (25mg/kg/day) either acutely or chronically. Exposure to cat odor was used for induction of stress. The level of anxiety was evaluated by elevated plus maze test, while object recognition test was used to determine cognitive functions. Brain tissues were removed for the measurement of myeloperoxidase (MPO), malondialdehyde (MDA), nitric oxide levels, lucigenin-enhanced chemiluminescence, and for histological analysis. Increased MPO and MDA levels in sedentary-stressed rats were decreased with sildenafil applications. Chronic exercise inhibited the increase in MPO levels. Increased nitric oxide and lucigenin chemiluminescence levels in sedentary-stressed rats, were diminished with chronic sildenafil pretreatment. The time spent in the open arms of the plus maze was declined in sedentary-stressed rats, while chronic sildenafil pretreatment increased the time back to that in non-stressed rats. Acute sildenafil application to exercised rats prolonged the time spent in open arms as compared to non-treated exercise group. The time spent with the novel object, which was decreased in sedentary-stressed rats, was increased with sildenafil pretreatment. Our results suggest that sildenafil pretreatment or exercise exerts a protective effect against acute stress and improves cognitive functions by decreasing oxidative damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging.

    PubMed

    Mohanty, Joy G; Nagababu, Enika; Rifkind, Joseph M

    2014-01-01

    Red Blood Cells (RBCs) need to deform and squeeze through narrow capillaries. Decreased deformability of RBCs is, therefore, one of the factors that can contribute to the elimination of aged or damaged RBCs from the circulation. This process can also cause impaired oxygen delivery, which contributes to the pathology of a number of diseases. Studies from our laboratory have shown that oxidative stress plays a significant role in damaging the RBC membrane and impairing its deformability. RBCs are continuously exposed to both endogenous and exogenous sources of reactive oxygen species (ROS) like superoxide and hydrogen peroxide (H2O2). The bulk of the ROS are neutralized by the RBC antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including catalase, glutathione peroxidase and peroxiredoxin-2. However, the autoxidation of hemoglobin (Hb) bound to the membrane is relatively inaccessible to the predominantly cytosolic RBC antioxidant system. This inaccessibility becomes more pronounced under hypoxic conditions when Hb is partially oxygenated, resulting in an increased rate of autoxidation and increased affinity for the RBC membrane. We have shown that a fraction of peroxyredoxin-2 present on the RBC membrane may play a major role in neutralizing these ROS. H2O2 that is not neutralized by the RBC antioxidant system can react with the heme producing fluorescent heme degradation products (HDPs). We have used the level of these HDP as a measure of RBC oxidative Stress. Increased levels of HDP are detected during cellular aging and various diseases. The negative correlation (p < 0.0001) between the level of HDP and RBC deformability establishes a contribution of RBC oxidative stress to impaired deformability and cellular stiffness. While decreased deformability contributes to the removal of RBCs from the circulation, oxidative stress also contributes to the uptake of RBCs by macrophages, which plays a major role in the removal of RBCs from circulation. The contribution of oxidative stress to the removal of RBCs by macrophages involves caspase-3 activation, which requires oxidative stress. RBC oxidative stress, therefore, plays a significant role in inducing RBC aging.

  9. Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium: a meta-analysis of individual participant data.

    PubMed

    Schöttker, Ben; Brenner, Hermann; Jansen, Eugène H J M; Gardiner, Julian; Peasey, Anne; Kubínová, Růžena; Pająk, Andrzej; Topor-Madry, Roman; Tamosiunas, Abdonas; Saum, Kai-Uwe; Holleczek, Bernd; Pikhart, Hynek; Bobak, Martin

    2015-12-15

    The free radical/oxidative stress theory of ageing has received considerable attention, but the evidence on the association of oxidative stress markers with mortality is sparse. We measured derivatives of reactive oxygen metabolite (D-ROM) levels as a proxy for the reactive oxygen species concentration and total thiol levels (TTL) as a proxy for the redox control status in 10,622 men and women (age range, 45-85 years), from population-based cohorts from Germany, Poland, Czech Republic, and Lithuania, of whom 1,702 died during follow-up. Both oxidative stress markers were significantly associated with all-cause mortality independently from established risk factors (including inflammation) and from each other in all cohorts. Regarding cause-specific mortality, compared to low D-ROM levels (≤ 340 Carr U), very high D-ROM levels (>500 Carr U) were strongly associated with both cardiovascular (relative risk (RR), 5.09; 95 % CI, 2.67-9.69) and cancer mortality (RR, 4.34; 95 % CI, 2.31-8.16). TTL was only associated with CVD mortality (RR, 1.30; 95 % CI, 1.15-1.48, for one-standard-deviation-decrease). The strength of the association of TTL with CVD mortality increased with age of the participants (RR for one-standard-deviation-decrease in those aged 70-85 years was 1.65; 95 % CI, 1.22-2.24). In these four population-based cohort studies from Central and Eastern Europe, the oxidative stress serum markers D-ROM and TTL were independently and strongly associated with all-cause and CVD mortality. In addition, D-ROM levels were also strongly associated with cancer mortality. This study provides epidemiological evidence supporting the free radical/oxidative stress theory of ageing and suggests that d-ROMs and TTL are useful oxidative stress markers associated with premature mortality.

  10. Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis

    PubMed Central

    Das, Suvarthi; Seth, Ratanesh Kumar; Kumar, Ashutosh; Kadiiska, Maria B.; Michelotti, Gregory; Diehl, Anna Mae

    2013-01-01

    Recent studies indicate that metabolic oxidative stress, autophagy, and inflammation are hallmarks of nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanisms that link these important events in NASH remain unclear. In this study, we investigated the mechanistic role of purinergic receptor X7 (P2X7) in modulating autophagy and resultant inflammation in NASH in response to metabolic oxidative stress. The study uses two rodent models of NASH. In one of them, a CYP2E1 substrate bromodichloromethane is used to induce metabolic oxidative stress and NASH. Methyl choline-deficient diet feeding is used for the other NASH model. CYP2E1 and P2X7 receptor gene-deleted mice are used to establish their roles in regulating metabolic oxidative stress and autophagy. Autophagy gene expression, protein levels, confocal microscopy based-immunolocalization of lysosome-associated membrane protein (LAMP)2A and histopathological analysis were performed. CYP2E1-dependent metabolic oxidative stress induced increases in P2X7 receptor expression and chaperone-mediated autophagy markers LAMP2A and heat shock cognate 70 but caused depletion of light chain 3 isoform B (LC3B) protein levels. P2X7 receptor gene deletion significantly decreased LAMP2A and inflammatory indicators while significantly increasing LC3B protein levels compared with wild-type mice treated with bromodichloromethane. P2X7 receptor-deleted mice were also protected from NASH pathology as evidenced by decreased inflammation and fibrosis. Our studies establish that P2X7 receptor is a key regulator of autophagy induced by metabolic oxidative stress in NASH, thereby modulating hepatic inflammation. Furthermore, our findings presented here form a basis for P2X7 receptor as a potential therapeutic target in the treatment for NASH. PMID:24157968

  11. AsrR Is an Oxidative Stress Sensing Regulator Modulating Enterococcus faecium Opportunistic Traits, Antimicrobial Resistance, and Pathogenicity

    PubMed Central

    Lebreton, François; van Schaik, Willem; Sanguinetti, Maurizio; Posteraro, Brunella; Torelli, Riccardo; Le Bras, Florian; Verneuil, Nicolas; Zhang, Xinglin; Giard, Jean-Christophe; Dhalluin, Anne; Willems, Rob J. L.; Leclercq, Roland; Cattoir, Vincent

    2012-01-01

    Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and adaptation for survival within the host, thereby contributes importantly to the opportunistic traits of E. faecium. PMID:22876178

  12. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels.

    PubMed

    Anedda, Andrea; Rial, Eduardo; González-Barroso, M Mar

    2008-10-01

    Metformin is a drug widely used to treat type 2 diabetes. It enhances insulin sensitivity by improving glucose utilization in tissues like liver or muscle. Metformin inhibits respiration, and the decrease in cellular energy activates the AMP-activated protein kinase that in turn switches on catabolic pathways. Moreover, metformin increases lipolysis and beta-oxidation in white adipose tissue, thereby reducing the triglyceride stores. The uncoupling proteins (UCPs) are transporters that lower the efficiency of mitochondrial oxidative phosphorylation. UCP2 is thought to protect against oxidative stress although, alternatively, it could play an energy dissipation role. The aim of this work was to analyse the involvement of UCP2 on the effects of metformin in white adipocytes. We studied the effect of this drug in differentiating 3T3-L1 adipocytes and found that metformin causes oxidative stress since it increases the levels of reactive oxygen species (ROS) and lowers the aconitase activity. Variations in UCP2 protein levels parallel those of ROS. Metformin also increases lipolysis in these cells although only when the levels of ROS and UCP2 have decreased. Hence, UCP2 does not appear to be needed to facilitate fatty acid oxidation. Furthermore, treatment of C57BL/6 mice with metformin also augmented the levels of UCP2 in epididymal white adipose tissue. We conclude that metformin treatment leads to the overexpression of UCP2 in adipocytes to minimize the oxidative stress that is probably due to the inhibition of respiration caused by the drug.

  13. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  14. Arginine metabolism and its protective effects on intestinal health and functions in weaned piglets under oxidative stress induced by diquat.

    PubMed

    Zheng, Ping; Yu, Bing; He, Jun; Yu, Jie; Mao, Xiangbing; Luo, Yuheng; Luo, Junqiu; Huang, Zhiqing; Tian, Gang; Zeng, Qiufeng; Che, Lianqiang; Chen, Daiwen

    2017-06-01

    The intestine plays key roles in maintaining body arginine (Arg) homoeostasis. Meanwhile, the intestine is very susceptible to reactive oxygen species. In light of this, the study aimed to explore the effects of Arg supplementation on intestinal morphology, Arg transporters and metabolism, and the potential protective mechanism of Arg supplementation in piglets under oxidative stress. A total of thirty-six weaned piglets were randomly allocated to six groups with six replicates and fed a base diet (0·95 % Arg,) or base diet supplemented with 0·8 % and 1·6 % l-Arg for 1 week, respectively. Subsequently, a challenge test was conducted by intraperitoneal injection of diquat, an initiator of radical production, or sterile saline. The whole trial lasted 11 d. The diquat challenge significantly decreased plasma Arg concentration at 6 h after injection (P<0·05), lowered villus height in the jejunum and ileum (P<0·05) as well as villus width and crypt depth in the duodenum, jejunum and ileum (P<0·05). Oxidative stress significantly increased cationic amino acid transporter (CAT)-1, CAT-2 and CAT-3, mRNA levels (P<0·05), decreased arginase II (ARGII) and inducible nitric oxide synthase mRNA levels, and increased TNF- α mRNA level in the jejunum (P<0·05). Supplementation with Arg significantly decreased crypt depth (P<0·05), suppressed CAT-1 mRNA expression induced by diquat (P<0·05), increased ARGII and endothelial nitric oxide synthase mRNA levels (P<0·05), and effectively relieved the TNF- α mRNA expression induced by diquat in the jejunum (P<0·05). It is concluded that oxidative stress decreased Arg bioavailability and increased expression of inflammatory cytokines in the jejunum, and that Arg supplementation has beneficial effects in the jejunum through regulation of the metabolism of Arg and suppression of inflammatory cytokine expression in piglets.

  15. Environmentally persistent free radicals decrease cardiac function before and after ischemia/reperfusion injury in vivo

    PubMed Central

    Lord, Kevin; Moll, David; Lindsey, John K.; Mahne, Sarah; Raman, Girija; Dugas, Tammy; Cormier, Stephania; Troxlair, Dana; Lomnicki, Slawo; Dellinger, Barry; Varner, Kurt

    2011-01-01

    Exposure to airborne particles is associated with increased cardiovascular morbidity and mortality. During the combustion of chlorine-containing hazardous materials and fuels, chlorinated hydrocarbons chemisorb to the surface of transition metal-oxide-containing particles, reduce the metal, and form an organic free radical. These radical-particle systems can survive in the environment for days and are called environmentally persistent free radicals (EPFRs). This study determined whether EPFRs could decrease left ventricular function before and after ischemia and reperfusion (I/R) in vivo. Male Brown Norway rats were dosed (8 mg/kg, i.t.) 24 hr prior to testing with particles containing the EPFR of 1, 2-dichlorobenzene (DCB230). DCB230 treatment decreased systolic and diastolic function. DCB230 also produced pulmonary and cardiac inflammation. After ischemia, systolic, but not diastolic function was significantly decreased in DCB230-treated rats. Ventricular function was not affected by I/R in control rats. There was greater oxidative stress in the heart and increased 8-isoprostane (biomarker of oxidative stress) in the plasma of treated vs control rats after I/R. These data demonstrate for the first time that DCB230 can produce inflammation and significantly decrease cardiac function at baseline and after I/R in vivo. Furthermore, these data suggest that EPFRs may be a risk factor for cardiac toxicity in healthy individuals and individuals with ischemic heart disease. Potential mechanisms involving cytokines/chemokines and/or oxidative stress are discussed. PMID:21385100

  16. Glial glutamate transporters expression, glutamate uptake, and oxidative stress in an experimental rat model of intracerebral hemorrhage.

    PubMed

    Neves, J D; Vizuete, A F; Nicola, F; Da Ré, C; Rodrigues, A F; Schmitz, F; Mestriner, R G; Aristimunha, D; Wyse, A T S; Netto, C A

    2018-06-01

    Glial glutamate transporters (EAAT1 and EAAT2), glutamate uptake, and oxidative stress are important players in the pathogenesis of ischemic brain injury. However, the changes in EAAT1 and EAAT2 expression, glutamate uptake and the oxidative profile during intracerebral hemorrhage (ICH) development have not been described. The present study sought to investigate the changes of the above-mentioned variables, as well as the Na + /K + -ATP ase and glutamine synthetase activities (as important contributors of glutamate homeostasis) and the percentage of neuronal cells after 6 h, 24 h, 72 h and 7 days of ICH. An injection of 0.2U of bacterial collagenase in the ipsilateral striatum was used to induce ICH in male Wistar rats; naïve animals were used as controls. EAAT1 and EAAT2 expression and glutamate uptake in the ipsilateral striatum were assessed. Additionally, the percentage of MAP2+ cells, Na + /K + -ATP ase and GS activities, as well as the oxidative profile were analyzed. It is shown a decrease of EAAT1 expression and glutamate uptake 6 h post-ICH, whereas EAAT2 decreased 72 h after the event; conversely EAAT2 and glutamate uptake were increased after 7 days. The oxidative stress and endogenous defense system exhibited a remarkable response at 72 h of injury. ICH also increased Na + /K + -ATP ase activity and selectively decreased GS activity, variables known to be important contributors of glial glutamate transporters activities. Altogether, present findings indicate that ICH induces different temporal EAAT1 and EAAT2 responses, culminating with an imbalance of glutamate uptake capacity, increased oxidative stress and sustained neuronal loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Chronic antioxidant therapy reduces oxidative stress in a mouse model of Alzheimer's disease.

    PubMed

    Siedlak, Sandra L; Casadesus, Gemma; Webber, Kate M; Pappolla, Miguel A; Atwood, Craig S; Smith, Mark A; Perry, George

    2009-02-01

    Oxidative modifications are a hallmark of oxidative imbalance in the brains of individuals with Alzheimer's, Parkinson's and prion diseases and their respective animal models. While the causes of oxidative stress are relatively well-documented, the effects of chronically reducing oxidative stress on cognition, pathology and biochemistry require further clarification. To address this, young and aged control and amyloid-beta protein precursor-over-expressing mice were fed a diet with added R-alpha lipoic acid for 10 months to determine the effect of chronic antioxidant administration on the cognition and neuropathology and biochemistry of the brain. Both wild type and transgenic mice treated with R-alpha lipoic acid displayed significant reductions in markers of oxidative modifications. On the other hand, R-alpha lipoic acid had little effect on Y-maze performance throughout the study and did not decrease end-point amyloid-beta load. These results suggest that, despite the clear role of oxidative stress in mediating amyloid pathology and cognitive decline in ageing and AbetaPP-transgenic mice, long-term antioxidant therapy, at levels within tolerable nutritional guidelines and which reduce oxidative modifications, have limited benefit.

  18. Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae

    PubMed Central

    Zechmann, Bernd; Liou, Liang-Chun; Koffler, Barbara E; Horvat, Lucija; Tomašić, Ana; Fulgosi, Hrvoje; Zhang, Zhaojie

    2011-01-01

    Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H2O2) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress. PMID:22093747

  19. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer.

    PubMed

    Arsova-Sarafinovska, Zorica; Eken, Ayse; Matevska, Nadica; Erdem, Onur; Sayal, Ahmet; Savaser, Ayhan; Banev, Saso; Petrovski, Daniel; Dzikova, Sonja; Georgiev, Vladimir; Sikole, Aleksandar; Ozgök, Yaşar; Suturkova, Ljubica; Dimovski, Aleksandar J; Aydin, Ahmet

    2009-08-01

    The study was aimed to evaluate the oxidative/nitrosative stress status in prostate cancer (CaP) and benign prostatic hyperplasia (BPH). 312 men from two different populations were included: 163 men from Macedonia (73 CaP patients, 67 BPH patients and 23 control subjects) and 149 men from Turkey (34 prostate cancer patients, 100 BPH patients and 15 control subjects). We measured erythrocyte malondialdehyde (MDA) levels, erythrocyte activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase (GPX) and catalase (CAT); plasma nitrite/nitrate (NO(2)(-)/NO(3)(-)), cGMP and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. A similar pattern of alteration in the oxidative/nitrosative stress-related parameters was found in both, Macedonian and Turkish studied samples: higher MDA concentrations with lower GPX and CuZn-SOD activities in CaP patients versus controls and BPH groups. The CAT activity was decreased in the CaP patients versus controls in the Turkish studied sample. Furthermore, CaP patients had increased plasma NO(2)(-)/NO(3)(-) and cGMP levels versus controls and BPH groups in both studied samples. This study has confirmed an imbalance in the oxidative stress/antioxidant status and revealed an altered nitrosative status in prostate cancer patients.

  20. Influences of rich in saturated and unsaturated fatty acids diets in rat myocardium.

    PubMed

    Pinotti, Matheus Fécchio; Silva, Maeli Dal-Pai; Sugizaki, Mário Mateus; Novelli, Yeda Santana Diniz; Sant'ana, Lea Sílvia; Aragon, Flávio Ferrari; Padovani, Carlos Roberto; Novelli, Ethel Lourenzi Barbosa; Cicogna, Antonio Carlos

    2007-03-01

    To study the influence of saturated (SFA) and unsaturated fatty acid (UFA) rich diets on mechanical function, morphology and oxidative stress in rat myocardium. Male, 60-day-old Wistar rats were fed a control (n=8), a SFA (n=8), or a UFA-rich diet (n=8) for sixty days. Mechanical function was studied in isolated left ventricle papillary muscle under isometric and isotonic contractions, in basal conditions (1.25 mM calcium chloride) and after 5.2 mM calcium chloride and beta-adrenergic stimuli with 1.0 microM isoproterenol. Left ventricle fragments were used to study oxidative stress and morphology under light and electron microscopy. SFA and UFA-rich diets did not change myocardium mechanical function. Both diets caused oxidative stress, with high lipid hydroperoxide and low superoxide-dismutase concentrations. UFA rich diet decreased catalase expression and SFA rich diet decreased the amount of myocardial glutathione-peroxidase. Both diets promoted light ultrastructural injuries such as lipid deposits and cell membrane injuries. Results suggest that SFA and UFA rich diets do not alter isolated muscle mechanical function, but promote light myocardial morphological injuries and oxidative stress.

  1. Effect of Inhaling Cymbopogon martinii Essential Oil and Geraniol on Serum Biochemistry Parameters and Oxidative Stress in Rats.

    PubMed

    Andrade, Bruna Fernanda Murbach Teles; Braga, Camila Pereira; Dos Santos, Klinsmann Carolo; Barbosa, Lidiane Nunes; Rall, Vera Lúcia Mores; Sforcin, José Maurício; Fernandes, Ana Angélica Henrique; Fernandes Júnior, Ary

    2014-01-01

    The effects of the inhalation of Cymbopogon martinii essential oil (EO) and geraniol on Wistar rats were evaluated for biochemical parameters and hepatic oxidative stress. Wistar rats were divided into three groups (n = 8): G1 was control group, treated with saline solution; G2 received geraniol; and G3 received C. martinii EO by inhalation during 30 days. No significant differences were observed in glycemia and triacylglycerol levels; G2 and G3 decreased (P < 0.05) total cholesterol level. There were no differences in serum protein, urea, aspartate aminotransferase activity, and total hepatic protein. Creatinine levels increased in G2 but decreased in G3. Alanine aminotransferase activity and lipid hydroperoxide were higher in G2 than in G3. Catalase and superoxide dismutase activities were higher in G3. C. martinii EO and geraniol increased glutathione peroxidase. Oxidative stress caused by geraniol may have triggered some degree of hepatic toxicity, as verified by the increase in serum creatinine and alanine aminotransferase. Therefore, the beneficial effects of EO on oxidative stress can prevent the toxicity in the liver. This proves possible interactions between geraniol and numerous chemical compounds present in C. martinii EO.

  2. Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells.

    PubMed

    Liu, Xiaoxi; Jiang, Linshu; Liu, Fenghua; Chen, Yuping; Xu, Lei; Li, Deyin; Ma, Yunfei; Li, Huanrong; Xu, Jianqin

    2016-08-01

    Purpose Patchouli alcohol (PA) is used to treat gastrointestinal dysfunction. The purpose of this study was to ascertain the function of PA in the regulated process of oxidative stress in rat intestinal epithelial cells (IEC-6). Materials and methods Oxidative stress was stimulated by exposing IEC-6 cells to heat shock (42 °C for 3 h). IEC-6 cells in treatment groups were pretreated with various concentrations of PA (10, 40, and 80 ng/mL) for 3 h before heat shock. Results Heat shock caused damage to the morphology of IEC-6 cells, and increased reactive oxygen species (ROS) level and malondialdehyde (MDA) content. Moreover, mRNA and protein expression by target genes related to oxidative stress in heat shock were also altered. Specifically, the mRNA expression by HSP70, HSP90, GSH-px, NRF2 nd HO-1were all increased, and Nrf2 and Keap1 protein expression were increased after heat shock. However, pretreatment with PA weakened the level of damage to the cellular morphology, and decreased the MDA content caused by heat shock, indicating PA had cytoprotective activities. Pretreatment with PA at high dose significantly increased generation of intracellular ROS. Compared with the heat shock group alone, PA pretreatment significantly decreased the mRNA expression by HSP70, HSP90, SOD, CAT, GSH-px, KEAP1 and HO-1. Furthermore, the high dose of PA significantly increased Nrf2 protein expression, while both the intermediate and high dose of PA significantly increased HO-1 protein expression. Conclusion Heat-shock-induced oxidative stress in IEC-6 cells, and PA could alleviate the Nrf2-Keap1 cellular oxidative stress responses.

  3. Dietary Lycopene Supplementation Improves Cognitive Performances in Tau Transgenic Mice Expressing P301L Mutation via Inhibiting Oxidative Stress and Tau Hyperphosphorylation.

    PubMed

    Yu, Lixia; Wang, Weiguang; Pang, Wei; Xiao, Zhonghai; Jiang, Yugang; Hong, Yan

    2017-01-01

    Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies and participates in their development by promoting hyperphosphorylation of microtubule-associated protein tau. Lycopene, as an effective antioxidant, combined with vitamin E seemed to be additive against oxidative stress. The present study was undertaken to examine whether lycopene or lycopene/vitamin E could exert protective effects on memory deficit and oxidative stress in tau transgenic mice expressing P301L mutation. P301L transgenic mice were assigned to three groups: P301L group (P301L), P301L+lycopene (Lyc), and P301L+lycopene/vitamin E (Lyc+VE). Age-matched C57BL/6J mice as wild type controls (Con) were used in the present study. Spatial memory was assessed by radial arm while passive memories were evaluated by step-down and step-through tests. Levels of tau phosphorylation were detected by western blot. Oxidative stress biomarkers were measured in the serum using biochemical assay kits. Compared with the control group, P301L mice displayed significant spatial and passive memory impairments, elevated malondialdehyde (MDA) levels and decreased glutathione peroxidase (GSH-Px) activities in serum, and increased tau phosphorylation at Thr231/Ser235, Ser262, and Ser396 in brain. Supplementations of lycopene or lycopene/vitamin E could significantly ameliorate the memory deficits, observably decreased MDA concentrations and increased GSH-Px activities, and markedly attenuated tau hyperphosphorylation at multiple AD-related sites. Our findings indicated that the combination of lycopene and vitamin E antioxidants acted in a synergistic fashion to bring significant effects against oxidative stress in tauopathies.

  4. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show thatmore » down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.« less

  5. Oxidative status and serum PON1 activity in beta-thalassemia minor.

    PubMed

    Selek, Sahbettin; Aslan, Mehmet; Horoz, Mehmet; Gur, Mustafa; Erel, Ozcan

    2007-03-01

    Paraoxonase-1 (PON1) deficiency is related to increased susceptibility to low density lipoprotein oxidation and development of atherosclerosis. The aim of this study was to investigate paraoxonase and arylesterase activities along with oxidative status parameters, and to find out if there is any increased susceptibility to atherogenesis, which might be reflected with increased oxidative stress and decreased serum PON1 activity in beta-thalassemia minor (BTM) subjects. Thirty-two subjects with BTM and 28 healthy subjects as control were enrolled in the study. Serum paraoxonase and arylesterase activities, lipid hydroperoxide (LOOH) levels, total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) were determined. Serum TAC, paraoxonase and arylesterase activities were significantly lower in BTM subjects than controls (for all p<0.001), while TOS, LOOH levels and OSI were significantly higher (p<0.001, p<0.05 and p<0.001; respectively). In BTM subjects, OSI, TOS, LOOH levels and TAC were significantly correlated with serum paraoxonase (r=-0.245, p<0.05; r=-0.231, p<0.05; r=-0.264, p<0.05 and, r=0.342, p<0.05, respectively) and arylesterase activities (r=-0.332, p<0.05, r=-0.308, p<0.05; r=-0.320, p<0.05 and r=0.443, p<0.05). Additionally, hemoglobin level was also correlated with serum paraoxonase (r=0.501, p<0.001) and arylesterase activities (r=0.501, p<0.001), TAC (r=0.402, p<0.05), TOS (r=-0.274, p<0.05) and OSI (r=-0.352, p<0.05). Oxidative stress is increased, while serum PON1 activity is decreased in BTM subjects. Decrease in PON1 activity seems to be associated with both the degree of oxidative stress and anemia. BTM subjects may be more prone to development of atherogenesis due to low serum PON1 activity.

  6. A study of the effect of oral glucose loading on plasma oxidant:antioxidant balance in normal subjects.

    PubMed

    Ma, Shuk-Woon; Tomlinson, Brian; Benzie, Iris F F

    2005-06-01

    Antioxidant defence has been reported to decrease, and oxidative stress to increase, after oral glucose loading in both normal and diabetic subjects. If confirmed in normal subjects, glucose-induced antioxidant depletion has important implications for health in relation to the modern, sugar-rich diet. To investigate changes in plasma biomarkers of oxidant:antioxidant balance in non-diabetic subjects following oral glucose loading. Baseline inter-relationships between biomarkers of glycaemic control, oxidant:antioxidant balance and inflammation were also explored. A single-blinded, placebo-controlled, crossover intervention trial involving 10 healthy, consenting subjects. Venous blood was collected after ingestion of 75 g glucose in 300 mL water, or of water alone. Blood was collected at 0 time (fasting) and 30, 60, 90, 120 min post-ingestion. Within 2 weeks the procedure was repeated with volunteers crossed-over onto the other treatment. Plasma total antioxidant capacity (as the FRAP value), ascorbic acid, alpha-tocopherol, uric acid, malondialdehyde (MDA), allantoin and high sensitivity C-reactive protein (hsCRP), glucose and insulin, were measured in all samples. Paired results post-glucose and post-water at each time interval were compared using the Wilcoxon matched-pairs signed-ranks test. Normal glucose tolerance was observed in all subjects, although, as expected, plasma glucose and insulin increased significantly (p < 0.05, n = 10) after glucose loading. Post-glucose responses in plasma FRAP and the individual antioxidants tested were not significantly different to the responses seen post-water, although both FRAP and alpha-tocopherol decreased slightly. Neither were post-glucose changes in plasma MDA and allantoin, putative biomarkers of oxidative stress, significantly different to those after intake of water alone. Plasma FRAP and alpha-tocopherol also decreased slightly, but not significantly, after intake of water. A significant direct correlation (r = 0.867, p < 0.001, n = 10) was found between fasting allantoin and (log transformed) hsCRP concentrations. These new data from a controlled intervention trial indicate that acute, transient increases in plasma glucose following oral intake of a large glucose load do not, as previously reported, cause a significant decrease in plasma antioxidants or increase oxidative stress in non-diabetic subjects. This is reassuring given the large quantities of sugar ingested by children and adolescents. However, a small decrease in plasma antioxidant capacity was seen after ingestion of water and of glucose, and it is possible that intake of glucose without concomitant intake of antioxidants in susceptible individuals may cause oxidative stress. Further work is needed in relation to diabetic subjects and a possible glucose threshold for this. The finding of a direct relationship between allantoin, a biomarker of oxidative stress, and hsCRP, a marker of inflammation and CHD predictor, in healthy subjects is interesting and indicates a link between sub-clinical inflammation and oxidative stress.

  7. Testosterone Deficiency Causes Endothelial Dysfunction via Elevation of Asymmetric Dimethylarginine and Oxidative Stress in Castrated Rats.

    PubMed

    Kataoka, Tomoya; Hotta, Yuji; Maeda, Yasuhiro; Kimura, Kazunori

    2017-12-01

    Testosterone is believed to mediate the penile erectile response by producing adequate nitric oxide; therefore, testosterone deficiency results in erectile dysfunction through decreased nitric oxide bioavailability. However, the mechanisms underlying endothelial dysfunction in testosterone deficiency remain unclear. To investigate the mechanism of endothelial dysfunction in a rat model of testosterone deficiency. Rats were distributed into 3 groups: castrated (Cast), castrated and supplemented with testosterone (Cast + T), and sham (Sham). In the Cast + T group, castrated rats were treated daily with subcutaneous testosterone (3 mg/kg daily) for 4 weeks; Sham and Cast rats received only the vehicle. Erectile function using intracavernosal pressure and mean arterial pressure measurements after electrical stimulation of the cavernous nerve, endothelial function using isometric tension, asymmetric dimethylarginine (ADMA) levels using ultra-performance liquid chromatography and tandem mass spectrometry, and inflammatory biomarker expression were performed 4 weeks after the operation. In the Cast group, the ratio of intracavernosal pressure to mean arterial pressure significantly decreased, acetylcholine-induced relaxation was lower, and serum ADMA, oxidative stress, and inflammation biomarker levels were significantly increased (P < .01). Testosterone injection significantly improved each of these parameters (P < .01). The present results provide scientific evidence of the effect of testosterone deficiency on erectile function and the effect of testosterone replacement therapy. This study provides evidence of the influence of testosterone deficiency on endothelial function by investigating ADMA and oxidative stress. A major limitation of this study is the lack of a direct link of increased ADMA by oxidative stress to inflammation. Testosterone deficiency increased not only ADMA levels but also oxidative stress and inflammation in castrated rats, which can cause damage to the corpus cavernosum, resulting in erectile dysfunction. Kataoka T, Hotta Y, Maeda Y, Kimura K. Testosterone Deficiency Causes Endothelial Dysfunction via Elevation of Asymmetric Dimethylarginine and Oxidative Stress in Castrated Rats. J Sex Med 2017;14:1540-1548. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  8. Nitric oxide mitigates arsenic-induced oxidative stress and genotoxicity in Vicia faba L.

    PubMed

    Shukla, Pratiksha; Singh, A K

    2015-09-01

    The protective effects of nitric oxide (NO) against arsenic (As)-induced structural disturbances in Vicia faba have been investigated. As treatment (0.25, 0.50, and 1 mM) resulted in a declined growth of V. faba seedlings. Arsenic treatment stimulates the activity of SOD and CAT while the activities of APX and GST content were decreased. The oxidative stress markers such as superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) contents were enhanced by As. Overall results revealed that significant accumulation of As suppressed growth, photosynthesis, antioxidant enzymes (SOD, CAT, APX, and GST activity), mitotic index, and induction of different chromosomal abnormalities, hence led to oxidative stress. The concentration of SNP (0.02 mM) was very effective in counteracting the adverse effect of As toxicity. These abnormalities use partially or fully reversed by a simultaneous application of As and NO donor and sodium nitroprusside and has an ameliorating effect against As-induced oxidative stress and genotoxicity in V. faba roots.

  9. [Oxidative stress promotes hepatocyte apoptosis mediated by glycogen synthase kinase 3β].

    PubMed

    Zhang, Xiangying; Guo, Yuanyuan; Zhang, Li; Wen, Tao; Piao, Zhengfu; Shi, Hongbo; Chen, Dexi; Duan, Zhongping; Ren, Feng

    2015-01-01

    To analyze the role of glycogen synthase kinase 3β (GSK3β) in hepatocyte apoptosis induced by oxidative stress. Human HL-7702 hepatoma cells were induced by H₂O₂/antimycin A to establish oxidative stress-induced cell apoptosis models. SB216763, a specific inhibitor of GSK3β, was given to the cells two hours before H₂O₂/antimycin A induction. Cell survival was observed using calcein acetoxymethyl ester/propidium iodide (PI) double staining, and cell apoptosis was detected using annexin V-FITC/PI staining combined with flow cytometry. In the meanwhile, the cell culture supernatant was subjected to lactate dehydrogenase (LDH) assay to evaluate the extent of cell death. The expressions of p-GSK3β, GSK3β, caspase-3, cleaved caspase-3, c-Jun N-terminal kinase (JNK) and cytochrome C (CytC) proteins were examined using Western blotting. Oxidative stress triggered by H₂O₂/antimycin A promoted GSK3β activity; inhibition of GSK3β activity by SB216763 relieved oxidative stress and reduced cell apoptosis induced by oxidative stress. Compared with the model groups, SB216763 intervened group showed that the cell apoptosis rate and the level of LDH were reduced significantly, and that the expressions of cleaved caspase-3, JNK, CytC proteins decreased. GSK3β is an important signaling molecule in the apoptosis pathway induced by oxidative stress. The inhibition on GSK3β may alleviate the oxidative stress-induced hepatocyte apoptosis.

  10. Oxidative stress involvement in Physalis angulata-induced apoptosis in human oral cancer cells.

    PubMed

    Lee, H-Z; Liu, W-Z; Hsieh, W-T; Tang, F-Y; Chung, J-G; Leung, Henry W-C

    2009-03-01

    In this report, we investigated the role of oxidative stress in Physalis angulata-induced apoptosis of human oral cancer cells. P. angulata-induced apoptosis was characterized by nuclear morphological changes, membrane blebbing and activation of caspase-9. Exposure of HSC-3 cells to P. angulata caused production of reactive oxygen species and up-regulation of oxidative stress markers heme oxygenase-1 (HO-1), superoxide dismutase (SOD), heat shock protein 70 (HSP70) and caspase-4. Down-regulation of HO-1, SOD and HSP70 proteins expression by attenuation of oxidative stress, pretreatment with glutathione or N-acetylcysteine, significantly decreased P. angulata-triggered cell death. The present study also demonstrated that the mitochondria and the endoplasmic reticulum are the targets of P. angulata in HSC-3 cells. Our results revealed that: (1) reactive oxygen species may play a dominant role in this process, (2) P. angulata induces oxidative stress in HSC-3 cells, (3) P. angulata-initiated apoptosis is caused through oxidative stress-dependent induction of heme oxygenase-1, Cu/Zn SOD and HSP70 proteins expression and (4) antioxidants inhibited P. angulata-induced cell death through inhibition of the proteins expression of HO-1, Cu/Zn SOD and HSP70.

  11. Lowering Effects of Onion Intake on Oxidative Stress Biomarkers in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Azuma, Keiko; Minami, Yuko; Ippoushi, Katsunari; Terao, Junji

    2007-01-01

    The protective effect of onion against oxidative stress in streptozotosin-induced diabetic rats was investigated in comparison with that of quercetin aglycone. We measured oxidative stress biomarkers involving the susceptibility of the plasma against copper ion-induced lipid peroxidation, which was estimated by the amounts of thiobarbituric acid-reactive substances (TBARS) and cholesteryl ester hydroperoxides, and urine TBARS and 8-hydroxydeoxyguanosine contents. After the 12-week feeding period, plasma glucose levels and these biomarkers increased in diabetic rats compared to normal rats. In diabetic rats fed a 6.0% onion diet (quercetin equivalent: 0.023%), quercetin metabolites accumulated in the plasma at concentrations of approximately 35 µM. Onion intake decreased plasma glucose levels and lowered the oxidative stress biomarkers. On the other hand, quercetin metabolites in the plasma of rats fed a diet with 0.023% quercetin aglycone were found at lower concentrations (14.2 µM) than the rats fed the onion diet. Furthermore, oxidative stress biomarkers were higher in the quercetin diet group compared to the onion diet group. These results strongly suggest that onion intake suppresses diabetes-induced oxidative stress more effectively than the intake of the same amount of quercetin aglycone alone. PMID:18188415

  12. Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation

    PubMed Central

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X.; Villoslada, Pablo

    2013-01-01

    Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines. This model may both facilitate understanding of the events involved in neuroinflammation and aid in the development of neuroprotective therapies for the treatment of MS and other neurodegenerative diseases. PMID:23431360

  13. A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice.

    PubMed

    Nandar, Wint; Neely, Elizabeth B; Unger, Erica; Connor, James R

    2013-06-01

    Because of the increasing evidence that H63D HFE polymorphism appears in higher frequency in neurodegenerative diseases, we evaluated the neurological consequences of H63D HFE in vivo using mice that carry H67D HFE (homologous to human H63D). Although total brain iron concentration did not change significantly in the H67D mice, brain iron management proteins expressions were altered significantly. The 6-month-old H67D mice had increased HFE and H-ferritin expression. At 12 months, H67D mice had increased H- and L-ferritin but decreased transferrin expression suggesting increased iron storage and decreased iron mobilization. Increased L-ferritin positive microglia in H67D mice suggests that microglia increase iron storage to maintain brain iron homeostasis. The 6-month-old H67D mice had increased levels of GFAP, increased oxidatively modified protein levels, and increased cystine/glutamate antiporter (xCT) and hemeoxygenase-1 (HO-1) expression indicating increased metabolic and oxidative stress. By 12 months, there was no longer increased astrogliosis or oxidative stress. The decrease in oxidative stress at 12 months could be related to an adaptive response by nuclear factor E2-related factor 2 (Nrf2) that regulates antioxidant enzymes expression and is increased in the H67D mice. These findings demonstrate that the H63D HFE impacts brain iron homeostasis, and promotes an environment of oxidative stress and induction of adaptive mechanisms. These data, along with literature reports on humans with HFE mutations provide the evidence to overturn the traditional paradigm that the brain is protected from HFE mutations. The H67D knock-in mouse can be used as a model to evaluate how the H63D HFE mutation contributes to neurodegenerative diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Protective effects of Petroselinum crispum (Mill) Nyman ex A. W. Hill leaf extract on D-galactose-induced oxidative stress in mouse brain.

    PubMed

    Vora, Shreya R; Patil, Rahul B; Pillai, Meena M

    2009-05-01

    With an aim to examine the effect of ethanolic extract of P. crispum (Parsley) leaves on the D-galactose-induced oxidative stress in the brain of mouse, the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) involved in oxygen radical (OR)-detoxification and antiperoxidative defense were measured in conjunction with an index of lipid peroxidation in mitochondrial fraction of various regions of the mouse brain. A significant decrease in superoxide dismutase and glutathione peroxidase activity was observed in D-galactose-stressed mice, while catalase activity was increased. Treatment of D-galactose-stressed mice with the ethanolic extract of P. crispum showed protection against the induced oxidative stress in brain regions. Concentration of thiobarbituric acid-reactive product was greatly elevated in D-galactose stress-induced mice and was significantly reduced in the brain regions of these mice upon treatment with P. crispum. It is postulated that parsley shows a protective effect against mitochondrial oxidative damage in the mouse brain.

  15. Postprandial serum triacylglycerols and oxidative stress in mice after consumption of fish oil, soy oil or olive oil: possible role for paraoxonase-1 triacylglycerol lipase-like activity.

    PubMed

    Fuhrman, Bianca; Volkova, Nina; Aviram, Michael

    2006-09-01

    Postprandial triacylglycerols and oxidative stress responses are influenced by the type of fat consumed. We investigated the effect of individual unsaturated fatty acids or oils (fish, soy, or olive) on postprandial triglyceridemia response in association with serum resistance to oxidation and paraoxonase-1 (PON1) activity. Balb/C mice were supplemented with phosphate buffered saline (control), docosahexaenoic acid (omega-3), linoleic acid (omega-6), or oleic acid (omega-9; 500 microg/300 microL of phosphate buffered saline) and with fish, soy, or olive oil (300 microL); blood samples were collected 2 h after feeding. Serum triacylglycerol and oxidative stress responses increased after intake of all unsaturated fatty acids and oil supplements. However, ingestion of fish oil or its major fatty acid, docosahexaenoic acid, induced the most remarkable increase in postprandial serum triacylglycerols and in the susceptibility of serum to in vitro oxidation. Serum PON1 activity was decreased by 24% after fish oil ingestion. The increase in postprandial serum susceptibility to oxidation was lower after soy oil supplementation to PON1-transgenic mice in comparison with Balb/C mice, showing that PON1 attenuates the postprandial serum oxidative response. In parallel, in PON1-transgenic mice, a decreased postprandial triacylglycerol response was noted, suggesting PON1 involvement in triacylglycerol metabolism. PON1 exhibited a triacylglycerol lipase-like activity on chylomicrons. PON1 attenuates the postprandial oxidative stress response, and this could have resulted from PON1 lipase-like activity on chylomicron triacylglycerols.

  16. Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance

    PubMed Central

    Bai, Xuegui; Long, Juan; He, Xiaozhao; Yan, Jinping; Chen, Xuanqin; Tan, Yong; Li, Kunzhi; Chen, Limei; Xu, Huini

    2016-01-01

    A class 1 non-symbiotic hemoglobin family gene, SoHb, was isolated from spinach. qRT-PCR showed that SoHb was induced by excess nitrate, polyethylene glycol, NaCl, H2O2, and salicylic acid. Besides, SoHb was strongly induced by application of nitric oxide (NO) donor, while was suppressed by NO scavenger, nitrate reductase inhibitor, and nitric oxide synthase inhibitor. Overexpression of SoHb in Arabidopsis resulted in decreased NO level and sensitivity to nitrate stress, as shown by reduced root length, fresh weight, the maximum photosystem II quantum ratio of variable to maximum fluorescence (Fv/Fm), and higher malondialdehyde contents. The activities and gene transcription of superoxide dioxidase, and catalase decreased under nitrate stress. Expression levels of RD22, RD29A, DREB2A, and P5CS1 decreased after nitrate treatment in SoHb-overexpressing plants, while increased in the WT plants. Moreover, SoHb-overexpressing plants showed decreased tolerance to NaCl and osmotic stress. In addition, the SoHb-overexpression lines showed earlier flower by regulating the expression of SOC, GI and FLC genes. Our results indicated that the decreasing NO content in Arabidopsis by overexpressing SoHb might be responsible for lowered tolerance to nitrate and other abiotic stresses. PMID:27211528

  17. Angiotensin type 1 receptor mediates chronic ethanol consumption-induced hypertension and vascular oxidative stress.

    PubMed

    Passaglia, Patrícia; Ceron, Carla S; Mecawi, André S; Antunes-Rodrigues, José; Coelho, Eduardo B; Tirapelli, Carlos R

    2015-11-01

    We hypothesized that chronic ethanol intake enhances vascular oxidative stress and induces hypertension through renin-angiotensin system (RAS) activation. Male Wistar rats were treated with ethanol (20% v/v). The increase in blood pressure induced by ethanol was prevented by losartan (10mg/kg/day; p.o. gavage), a selective AT1 receptor antagonist. Chronic ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels and serum aldosterone levels. No differences on plasma osmolality and sodium or potassium levels were detected after treatment with ethanol. Ethanol consumption did not alter ACE activity, as well as the levels of ANG I and ANG II in the rat aorta or mesenteric arterial bed (MAB). Ethanol induced systemic and vascular oxidative stress (aorta and MAB) and these effects were prevented by losartan. The decrease on plasma and vascular nitrate/nitrite (NOx) levels induced by ethanol was prevented by losartan. Ethanol intake did not alter protein expression of ACE, AT1 or AT2 receptors in both aorta and MAB. Aortas from ethanol-treated rats displayed decreased ERK1/2 phosphorylation and increased protein expression of SAPK/JNK. These responses were prevented by losartan. MAB from ethanol-treated rats displayed reduced phosphorylation of p38MAPK and ERK1/2 and losartan did not prevent these responses. Our study provides novel evidence that chronic ethanol intake increases blood pressure, induces vascular oxidative stress and decreases nitric oxide (NO) bioavailability through AT1-dependent mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Melatonin prevents retinal oxidative stress and vascular changes in diabetic rats

    PubMed Central

    Özdemir, G; Ergün, Y; Bakariş, S; Kılınç, M; Durdu, H; Ganiyusufoğlu, E

    2014-01-01

    Purpose To evaluate the role of melatonin, an antioxidant agent, in diabetic oxidative stress and vascular damage. Methods Diabetes was induced in 21 male Wistar rats by intraperitoneal (IP) administration of streptozotocin and then the rats were equally and randomly allocated to diabetic, melatonin, and vehicle groups. Seven healthy normal rats with similar features comprised the control group as the fourth group. All animals were followed for 12 weeks. The melatonin group received IP melatonin daily and the vehicle group received 2.5% ethanol IP at the last month. At the end of 12 weeks, the rats were killed and retinas were harvested. The retinas were investigated for the existence of hypoxia-inducible factor 1-α (HIF-1α), vascular endothelial growth factor A (VEGF-A), and pigment epithelium-derived factor (PEDF) by ELISA. Retinal oxidative stress is quantitated by measuring nitrotyrosine and malondialdehyde levels. Retinal immunohistochemistry with antibody against CD31 antigen was carried out on retinal cross-sections. For statistics, ANOVA test was used for multiple comparisons. Results Hyperglycemia increased retinal oxidation as measured through levels of nitrotyrosine and malondialdehyde. Diabetic retinas are also associated with abnormal vascular changes such as dilatation and deformation. HIF-1α, VEGF-A, and PEDF were all increased because of diabetic injury. Melatonin showed a potential beneficial effect on retinopathy in diabetic rats. It decreased retinal nitrotyrosine and malondialdehyde levels, showing an antioxidative support. The vasculomodulator cytokines are decreased accordingly by melatonin therapy. Melatonin normalized retinal vascular changes as well. Conclusion Melatonin may show some advantage on diabetic vascular changes through decreasing oxidative stress and vessel-related cytokines. PMID:24924441

  19. Effects of 12-week combined exercise therapy on oxidative stress in female fibromyalgia patients.

    PubMed

    Sarıfakıoğlu, Banu; Güzelant, Aliye Yıldırım; Güzel, Eda Celik; Güzel, Savaş; Kızıler, Ali Rıza

    2014-10-01

    The aims of this study were to investigate the effect of exercise therapy on the oxidative stress in fibromyalgia patients and relationship between oxidative stress and fibromyalgia symptoms. Thirty women diagnosed with fibromyalgia according to the American College of Rheumatology preliminary criteria, and 23 healthy women whose age- and weight-matched women were enrolled the study. Pain intensity with visual analog scale (VAS), the number of tender points, the fibromyalgia impact questionnaire (FIQ), the Beck depression inventory (BDI) were evaluated. The oxidative stress parameters thiobarbituric acid reactive substances, protein carbonyls, and nitric oxide, and antioxidant parameters thiols and catalase were investigated in patients and control group. After, combined aerobic and strengthen exercise regimen was given to fibromyalgia group. Exercise therapy consisted of a warming period of 10 min, aerobic exercises period of 20 min, muscle strengthening exercises for 20 min, and 10 min cooling down period. Therapy was lasting 1 h three times per week over a 12-week period. All parameters were reevaluated after the treatment in the patient group. The oxidative stress parameters levels were significantly higher, and antioxidant parameters were significantly lower in patients with fibromyalgia than in the controls. VAS, FIQ, and BDI scores decreased significantly with exercise therapy. The exercise improved all parameters of oxidative stress and antioxidant parameters. Also, all clinical parameters were improved with exercise. We should focus on oxidative stress in the treatment for fibromyalgia with the main objective of reducing oxidative load.

  20. Decreased expression of Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 may be involved in the development of pre-eclampsia.

    PubMed

    Li, Juan; Luo, Xin; Xiao, Xiaoqiu; Zhang, Xuemei; Qi, Hongbo; Liu, Xiru; Zhang, Hua; Gao, Li; Yang, Zhongmei

    2014-01-01

    Wiskott–Aldrich syndrome protein family verprolin-homologous protein 2 (WAVE2) is a protein that mediates actin cytoskeletal reorganization and lamellipodia protrusion formation, which are required for cell migration and invasion. The primary purpose of this study was to determine whether there is an association between reactive oxygen species (ROS) and WAVE2 in pre-eclampsia, and whether WAVE2 expression in trophoblast cells is vulnerable to oxidative stress. This study observed excessive generation of ROS and decreased expression of WAVE2 in pre-eclamptic placentas compared with normotensive controls. Moreover, there was a significant negative correlation between ROS and WAVE2 protein in pre-eclamptic placenta (P < 0.001). An in-vitro model of hypoxia–reoxygenation (H/R) was used to imitate oxidative stress in placental trophoblasts, and it was found that the expression of WAVE2 protein in trophoblasts was decreased after H/R treatment. Additionally, compared with normoxia, decreased cell proliferation, higher cell apoptosis and attenuated cell migration and invasion were detected in trophoblasts exposed to H/R. In conclusion, the findings strongly suggest that excessive oxidative stress can decrease WAVE2 expression in trophoblasts and that the decreased expression of WAVE2 in trophoblast cells may be involved in the development of pre-eclampsia. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Increased oxidative stress in patients with amyotrophic lateral sclerosis and the effect of edaravone administration.

    PubMed

    Nagase, Midori; Yamamoto, Yorihiro; Miyazaki, Yusuke; Yoshino, Hiide

    2016-05-01

    Compared to age-matched healthy controls (n = 55), patients with amyotrophic lateral sclerosis (ALS) (n = 26) showed increased oxidative stress as indicated by a significantly increased percentage of oxidized coenzyme Q10 (%CoQ10) in total plasma coenzyme Q10, a significantly decreased level of plasma uric acid, and a significantly decreased percentage of polyunsaturated fatty acids in total plasma free fatty acids (FFA). Therefore, the efficacy of edaravone, a radical scavenger, in these ALS patients was examined. Among 26 ALS patients, 17 received edaravone (30 mg/day, one to four times a week) for at least 3 months, and 13 continued for 6 months. Changes in revised ALS functional rating scale (ALSFRS-R) were significantly smaller in these patients than in edaravone-untreated ALS patients (n = 19). Edaravone administration significantly reduced excursions of more than one standard deviation from the mean for plasma FFA levels and the contents of palmitoleic and oleic acids, plasma markers of tissue oxidative damage, in the satisfactory progress group (ΔALSFRS-R ≥ 0) as compared to the ingravescent group (ΔALSFRS-R < -5). Edaravone treatment increased plasma uric acid, suggesting that it is an effective scavenger of peroxynitrite. However, edaravone administration did not decrease %CoQ10. Therefore, combined treatment with agents such as coenzyme Q10 may further reduce oxidative stress in ALS patients.

  2. Activation of the Nrf2-ARE Pathway in Hepatocytes Protects Against Steatosis in Nutritionally Induced Non-alcoholic Steatohepatitis in Mice

    PubMed Central

    Lee, Lung-Yi; Köhler, Ulrike A.; Zhang, Li; Roenneburg, Drew; Werner, Sabine; Johnson, Jeffrey A.; Foley, David P.

    2014-01-01

    Oxidative stress is implicated in the development of non-alcoholic steatohepatitis (NASH). The Nrf2-antioxidant response element pathway protects cells from oxidative stress. Studies have shown that global Nrf2 deficiency hastens the progression of NASH. The purpose of this study was to determine whether long-term hepatocyte-specific activation of Nrf2 mitigates NASH progression. Transgenic mice expressing a constitutively active Nrf2 construct in hepatocytes (AlbCre+/caNrf2+) and littermate controls were generated. These mice were fed standard or methionine-choline-deficient (MCD) diet, a diet used to induce NASH development in rodents. After 28 days of MCD dietary feeding, mice developed significant increases in steatosis, inflammation, oxidative stress, and HSC activation compared with those mice on standard diet. AlbCre+/caNrf2+ animals had significantly decreased serum transaminases and reduced steatosis when compared with the AlbCre+/caNrf2− animals. This significant reduction in steatosis was associated with increased expression of genes involved in triglyceride export (MTTP) and β-oxidation (CPT2). However, there were no differences in the increased oxidative stress, inflammation, and HSC activation from MCD diet administration between the AlbCre+/caNrf2− and AlbCre+/caNrf2+ animals. We conclude that hepatocyte-specific activation of Nrf2-mediated gene expression decreased hepatocellular damage and steatosis in a dietary model of NASH. However, hepatocyte-specific induction of Nrf2-mediated gene expression alone is insufficient to mitigate inflammation, oxidative stress, and HSC activation in this nutritional NASH model. PMID:25294219

  3. Prototheca zopfii isolated from bovine mastitis induced oxidative stress and apoptosis in bovine mammary epithelial cells

    PubMed Central

    Shahid, Muhammad; Gao, Jian; Zhou, Yanan; Liu, Gang; Ali, Tariq; Deng, Youtian; Sabir, Naveed; Su, Jingliang; Han, Bo

    2017-01-01

    Bovine protothecal mastitis results in considerable economic losses worldwide. However, Prototheca zopfii induced morphological alterations and oxidative stress in bovine mammary epithelial cells (bMECs) is not comprehensively studied yet. Therefore, the aim of this current study was to investigate the P. zopfii induced pathomorphological changes, oxidative stress and apoptosis in bMECs. Oxidative stress was assessed by evaluating catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA) contents and lactate dehydrogenase (LDH) activity, while ROS generation and apoptosis was measured by confocal laser scanning microscopy. The results revealed that infection of P. zopfii genotype II (GTII) significantly changed bMECs morphology, increased apoptotic rate and MDA contents at 12 h (p < 0.05) and 24 h (p < 0.01) in comparison with control group, in time-dependent manner. LDH activity and ROS generation was also increased (p < 0.01) at 12 h and 24 h. However, SOD and CAT contents in bMECs infected with GTII were decreased (p < 0.05) at 12 h, while GPx (p < 0.01), SOD (p < 0.05) and CAT (p < 0.01) levels were reduced at 24 h. In case of GTI, only CAT and GPx activities were significantly decreased when the duration prolonged to 24 h but lesser than GTII. This suggested that GTII has more devastating pathogenic effects in bMECs, and the findings of this study concluded that GTII induced apoptosis and oxidative stress in bMECs via the imbalance of oxidant and antioxidant defenses as well as the production of intracellular ROS. PMID:28404882

  4. Ethnic-specific relationships between haemostatic and oxidative stress markers in black and white South Africans: The SABPA study.

    PubMed

    Lammertyn, Leandi; Mels, Catharina M C; Pieters, Marlien; Schutte, Aletta E; Schutte, Rudolph

    2015-01-01

    Haemostatic- and oxidative stress markers are associated with increased cardiovascular risk. In the black population, evidence exists that both an imbalance in the haemostatic system and oxidative stress link with the development of hypertension. However, it is unclear whether these two risk components function independently or are related, specifically in the black population, who is known to have a high prevalence of stroke. We aimed to investigate associations between the haemostatic system and oxidative stress in black and white South Africans. We performed a cross-sectional study including 181 black (mean age, 44; 51.4% women) and 209 white (mean age, 45; 51.7% women) teachers. Several markers of the haemostatic- (von Willebrand factor, fibrinogen, plasminogen activator inhibitor-1, d-dimer and clot lysis time) and oxidant-antioxidant (serum peroxides, total glutathione, glutathione peroxidase- and glutathione reductase activities) systems were measured. Along with a worsened cardiovascular profile, the black group had higher haemostatic-, inflammation- and oxidative stress markers as well as decreased glutathione peroxidase activity. In multiple regression analyses, fibrinogen was positively associated with serum peroxides (p < 0.001) in both ethnic groups. In the black population, we found negative associations of von Willebrand factor and clot lysis time with glutathione peroxidase activity (p ≤ 0.008), while a positive association existed between clot lysis time and serum peroxides (p = 0.011) in the white population. We conclude that in the black population, decreased GPx activity accompanies an altered haemostatic profile, while in the white population associations may suggest that serum peroxides impair fibrin clot lysis.

  5. Prototheca zopfii isolated from bovine mastitis induced oxidative stress and apoptosis in bovine mammary epithelial cells.

    PubMed

    Shahid, Muhammad; Gao, Jian; Zhou, Yanan; Liu, Gang; Ali, Tariq; Deng, Youtian; Sabir, Naveed; Su, Jingliang; Han, Bo

    2017-05-09

    Bovine protothecal mastitis results in considerable economic losses worldwide. However, Prototheca zopfii induced morphological alterations and oxidative stress in bovine mammary epithelial cells (bMECs) is not comprehensively studied yet. Therefore, the aim of this current study was to investigate the P. zopfii induced pathomorphological changes, oxidative stress and apoptosis in bMECs. Oxidative stress was assessed by evaluating catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA) contents and lactate dehydrogenase (LDH) activity, while ROS generation and apoptosis was measured by confocal laser scanning microscopy. The results revealed that infection of P. zopfii genotype II (GTII) significantly changed bMECs morphology, increased apoptotic rate and MDA contents at 12 h (p < 0.05) and 24 h (p < 0.01) in comparison with control group, in time-dependent manner. LDH activity and ROS generation was also increased (p < 0.01) at 12 h and 24 h. However, SOD and CAT contents in bMECs infected with GTII were decreased (p < 0.05) at 12 h, while GPx (p < 0.01), SOD (p < 0.05) and CAT (p < 0.01) levels were reduced at 24 h. In case of GTI, only CAT and GPx activities were significantly decreased when the duration prolonged to 24 h but lesser than GTII. This suggested that GTII has more devastating pathogenic effects in bMECs, and the findings of this study concluded that GTII induced apoptosis and oxidative stress in bMECs via the imbalance of oxidant and antioxidant defenses as well as the production of intracellular ROS.

  6. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice

    PubMed Central

    Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim

    2016-01-01

    Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384

  7. Potential role of oxidative stress in mediating the effect of altered gravity on the developing rat cerebellum

    NASA Astrophysics Data System (ADS)

    Sajdel-Sulkowska, Elizabeth M.; Nguon, Kosal; Sulkowski, Zachary L.; Lipinski, Boguslaw

    We have previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that exposure to hypergravity results in oxidative stress that may contribute to the decrease in Purkinje cell number and the impairment of motor coordination in hypergravity-exposed rat neonates. To test this hypothesis we compared cerebellar oxidative stress markers 3-nitrotyrosine (3-NT; an index of oxidative protein modification) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG; an index of oxidative DNA damage) between stationary control (SC) and rat neonates exposed to 1.65 G (HG) on a 24-ft centrifuge from gestational day (G) 8 to postnatal day (P) 21. The levels of 3-NT and 8-OH-dG were determined by specific ELISAs. We also compared the Purkinje cell number (stereorologically) and rotarod performance between the two groups. The levels of 3-NT were increased only in HG females on P6 and on P12 in the cerebellum, and only in HG females on P12 in the extracellabellar tissue. Limited cerebellar data suggests an increase in the levels of 8-OH-dG on P12 only in HG females. In extracerebellar tissue the increase in 8-OH-dG levels was observed in both HG males and HG females except on P6 when it was only observed in HG males. While preliminary, these data suggest that the effect of hypergravity on the developing brain is sex-dependent and may involve oxidative stress. Oxidative stress may, in turn, contribute to the decrease Purkinje cell number and impaired motor behavior observed in hypergravity-exposed rats.

  8. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle.

    PubMed

    Mujahid, Ahmad; Akiba, Yukio; Toyomizu, Masaaki

    2009-09-01

    We have previously shown that avian uncoupling protein (avUCP) is downregulated on exposure to acute heat stress, stimulating mitochondrial reactive oxygen species (ROS) production and oxidative damage. In this study, we investigated whether upregulation of avUCP could attenuate oxidative damage caused by acute heat stress. Broiler chickens (Gallus gallus) were fed either a control diet or an olive oil-supplemented diet (6.7%), which has been shown to increase the expression of UCP3 in mammals, for 8 days and then exposed either to heat stress (34 degrees C, 12 h) or kept at a thermoneutral temperature (25 degrees C). Skeletal muscle mitochondrial ROS (measured as H(2)O(2)) production, avUCP expression, oxidative damage, mitochondrial membrane potential, and oxygen consumption were studied. We confirmed that heat stress increased mitochondrial ROS production and malondialdehyde levels and decreased the amount of avUCP. As expected, feeding birds an olive oil-supplemented diet increased the expression of avUCP in skeletal muscle mitochondria and decreased ROS production and oxidative damage. Studies on mitochondrial function showed that heat stress increased membrane potential in state 4, which was reversed by feeding birds an olive oil-supplemented diet, although no differences in basal proton leak were observed between control and heat-stressed groups. These results show that under heat stress, mitochondrial ROS production and olive oil-induced reduction of ROS production may occur due to changes in respiratory chain activity as well as avUCP expression in skeletal muscle mitochondria.

  9. Mechanisms of Oxidative Stress Resistance in The Brain: Lessons Learned From Hypoxia Tolerant Extremophilic Vertebrates

    PubMed Central

    Garbarino, Valentina R.; Orr, Miranda E.; Rodriguez, Karl A.; Buffenstein, Rochelle

    2016-01-01

    The Oxidative Stress Theory of Aging has had tremendous impact in research involving aging and age-associated diseases including those that affect the nervous system. With over half a century of accrued data showing both strong support for and against this theory, there is a need to critically evaluate the data acquired from common biomedical research models, and to also diversify the species used in studies involving this proximate theory. One approach is to follow Orgel’s second axiom that “evolution is smarter than we are” and judiciously choose species that may have evolved to live with chronic or seasonal oxidative stressors. Vertebrates that have naturally evolved to live under extreme conditions (e.g., anoxia or hypoxia), as well as those that undergo daily or seasonal torpor encounter both decreased oxygen availability and subsequent reoxygenation, with concomitant increased oxidative stress. Due to its high metabolic activity, the brain may be particularly vulnerable to oxidative stress. Here, we focus on oxidative stress responses in the brains of certain mouse models as well as extremophilic vertebrates. Exploring the naturally evolved biological tools utilized to cope with seasonal or environmentally variable oxygen availability may yield key information pertinent for how to deal with oxidative stress and thereby mitigate its propagation of age-associated diseases. PMID:25841340

  10. Relationship between oxidative stress and muscle mass loss in early postmenopause: an exploratory study.

    PubMed

    Zacarías-Flores, Mariano; Sánchez-Rodríguez, Martha A; García-Anaya, Oswaldo Daniel; Correa-Muñoz, Elsa; Mendoza-Núñez, Víctor Manuel

    2018-04-09

    Endocrine changes due to menopause have been associated to oxidative stress and muscle mass loss. The study objective was to determine the relationship between both variables in early postmenopause. An exploratory, cross-sectional study was conducted in 107 pre- and postmenopausal women (aged 40-57 years). Levels of serum lipid peroxides and uric acid and enzymes superoxide dismutase and glutathione peroxidase, as well as total plasma antioxidant capacity were measured as oxidative stress markers. Muscle mass using bioelectrical impedance and muscle strength using dynamometry were also measured. Muscle mass, skeletal muscle index, fat-free mass, and body mass index were calculated. More than 90% of participants were diagnosed with overweight or obesity. Postmenopausal women had lower values of muscle mass and strength markers, with a negative correlation between lipid peroxide level and skeletal muscle index (r= -0.326, p<.05), and a positive correlation between uric acid and skeletal muscle index (r=0.295, p<.05). A multivariate model including oxidative stress markers, age, and waist circumference showed lipid peroxide level to be the main contributor to explain the decrease in skeletal muscle mass in postmenopause, since for every 0.1μmol/l increase in lipid peroxide level, skeletal muscle index decreases by 3.03 units. Our findings suggest an association between increased oxidative stress and muscle mass loss in early postmenopause. Copyright © 2018 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Protective Effects of Houttuynia cordata Thunb. on Gentamicin-induced Oxidative Stress and Nephrotoxicity in Rats

    PubMed Central

    Kang, Changgeun; Lee, Hyungkyoung; Hah, Do-Yun; Heo, Jung Ho; Kim, Chung Hui; Kim, Euikyung

    2013-01-01

    Development of a therapy providing protection from, or reversing gentamicin-sulfate (GS)-induced oxidative stress and nephrotoxicity would be of great clinical significance. The present study was designed to investigate the protective effects of Houttuynia cordata Thunb. (HC) against gentamicin sulfate-induced renal damage in rats. Twenty-eight Sprague-Dawley rats were divided into 4 equal groups as follows: group 1, control; group 2, GS 100 mg/kg/d, intraperitoneal (i.p.) injection; group 3, GS 100 mg/kg/d, i.p. + HC 500 mg/kg/d, oral; and group 4, GS 100 mg/kg/d i.p. + HC 1000 mg/kg/d, oral administration). Treatments were administered once daily for 12 d. After 12 d, biochemical and histopathological analyses were conducted to evaluate oxidative stress and renal nephrotoxicity. Serum levels of creatinine, malondialdehyde (MDA), and blood urea nitrogen (BUN), together with renal levels of MDA, glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were quantified to evaluate antioxidant activity. Animals treated with GS alone showed a significant increase in serum levels of creatinine, BUN, and MDA, with decreased renal levels of GSH, SOD, and CAT. Treatment of rats with HC showed significant improvement in renal function, presumably as a result of decreased biochemical indices and oxidative stress parameters associated with GS-induced nephrotoxicity. Histopathological examination of the rat kidneys confirmed these observations. Therefore, the novel natural antioxidant HC may protect against GSinduced nephrotoxicity and oxidative stress in rats. PMID:24278630

  12. Protective Effects of Houttuynia cordata Thunb. on Gentamicin-induced Oxidative Stress and Nephrotoxicity in Rats.

    PubMed

    Kang, Changgeun; Lee, Hyungkyoung; Hah, Do-Yun; Heo, Jung Ho; Kim, Chung Hui; Kim, Euikyung; Kim, Jong Shu

    2013-03-01

    Development of a therapy providing protection from, or reversing gentamicin-sulfate (GS)-induced oxidative stress and nephrotoxicity would be of great clinical significance. The present study was designed to investigate the protective effects of Houttuynia cordata Thunb. (HC) against gentamicin sulfate-induced renal damage in rats. Twenty-eight Sprague-Dawley rats were divided into 4 equal groups as follows: group 1, control; group 2, GS 100 mg/kg/d, intraperitoneal (i.p.) injection; group 3, GS 100 mg/kg/d, i.p. + HC 500 mg/kg/d, oral; and group 4, GS 100 mg/kg/d i.p. + HC 1000 mg/kg/d, oral administration). Treatments were administered once daily for 12 d. After 12 d, biochemical and histopathological analyses were conducted to evaluate oxidative stress and renal nephrotoxicity. Serum levels of creatinine, malondialdehyde (MDA), and blood urea nitrogen (BUN), together with renal levels of MDA, glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were quantified to evaluate antioxidant activity. Animals treated with GS alone showed a significant increase in serum levels of creatinine, BUN, and MDA, with decreased renal levels of GSH, SOD, and CAT. Treatment of rats with HC showed significant improvement in renal function, presumably as a result of decreased biochemical indices and oxidative stress parameters associated with GS-induced nephrotoxicity. Histopathological examination of the rat kidneys confirmed these observations. Therefore, the novel natural antioxidant HC may protect against GSinduced nephrotoxicity and oxidative stress in rats.

  13. Erythrocyte deformability and oxidative stress in inflammatory bowel disease.

    PubMed

    Akman, Tulay; Akarsu, Mesut; Akpinar, Hale; Resmi, Halil; Taylan, Ebru; Sezer, Ebru

    2012-02-01

    Oxidative stress and reduced microvascular flow are important factors in the pathogenesis of inflammatory bowel disease (IBD). The increased oxidative stress reduces the erythrocyte deformability. However, in IBD, there are no studies in the literature which evaluate erythrocyte deformability. In our study, we investigated the effect of oxidative stress and erythrocyte deformability in IBD. Forty-three patients with active IBD, 48 patients with inactive IBD and 45 healthy controls were included. The erytrocyte deformability, malonyldialdehyde levels, glutation peroxidase and sulfhydryl levels were measured in peripheral venous blood samples. Erytrocyte malonyldialdehyde levels in both active and inactive IBD were significantly increased compared with control groups. Plasma glutation peroxidase levels did not show statistically significant difference between all groups. The decreased plasma sulfhydryl levels in active IBD were statistically significant compared with both the inactive IBD and the control group, but plasma sulfhydryl levels in inactive IBD group did not show statistically significant differences when compared with the control group. Elongation index values in both active and inactive IBD increased significantly compared with the control group. Statistically significant correlations were not found between the elongation index and glutation peroxidase, malonyldialdehyde, sulfhydryl levels in all groups. Our study is the first to evaluate the erythrocyte deformability in IBD. In our study, increased erytrocyte malonyldialdehyde levels and decreased plasma sulfhydryl levels manifested the role of oxidative stress in the pathogenesis of the disease. It is thought that the increased erythrocyte malonyldialdehyde values cause the reduction in erythrocyte deformability.

  14. Sublethal dose of phoxim and Bombyx mori nucleopolyhedrovirus interact to elevate silkworm mortality.

    PubMed

    Gu, ZhiYa; Li, FanChi; Hu, JingSheng; Ding, Chao; Wang, Chaoqian; Tian, JiangHai; Xue, Bin; Xu, KaiZun; Shen, WeiDe; Li, Bing

    2017-03-01

    Silkworm (Bombyx mori) is an economically important insect. It is relatively less resistant to certain chemicals and environment exposures such as pesticides and pathogens. After pesticide exposures, the silkworms are more susceptible to microbial infections. The mechanism underlying the susceptibility might be related to immune response and oxidative stress. A sublethal dose of phoxim combined with Bombyx mori nucleopolyhedrovirus (BmNPV) elevated the silkworm mortality at 96 h. We found a higher content of H 2 O 2 and increased levels of genes related to oxidative stress and immune response after treatment with a sublethal dose of phoxim for 24 h or 48 h. However, such response decreased with longer pesticide treatment. Mortality increased by 44% when B. mori was exposed to combined treatment with BmNPV and phoxim rather than BmNPV alone. The level of examined immune-related and oxidative-stress-related genes significantly decreased in the combined treatment group compared with the BmNPV group. Our results indicated that, with long-term exposure to pesticides such as OPs, even at sublethal dose, the oxidative stress response and immune responses in silkworm were inhibited, which may lead to further immune impairment and accumulation of oxidative stress, resulting in susceptibility to the virus and harm to the silkworm. Our study provided insights for understanding the susceptibility to pathogen after pesticide exposures, which may promote the development of better pesticide controls to avoid significant economic losses. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr; Basaranlar, Goksun; Unal, Mustafa

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK,more » CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.« less

  16. Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria.

    PubMed

    Gutiérrez-Pérez, Areli; Cortés-Rojo, Christian; Noriega-Cisneros, Ruth; Calderón-Cortés, Elizabeth; Manzo-Avalos, Salvador; Clemente-Guerrero, Mónica; Godínez-Hernández, Daniel; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2011-04-01

    Trans-resveratrol is a nutraceutical with known antioxidant, anti-inflammatory, cardioprotective, and anti-apoptotic properties. The aim of this study was to evaluate the effects of resveratrol on heart mitochondria. Resveratrol significantly decreased Fe(2+) + ascorbate oxidant system-induced lipid peroxide levels, preserved physiological levels of glutathione, and increased nitric oxide (NO) levels in mitochondria. Under calcium-mediated stress, there was a 2.7-fold increase in the NO levels, and a mild decoupling in the mitochondrial respiratory chain. These results provide a mechanism for and support the beneficial effects of resveratrol under pathological conditions induced by oxidative stress and calcium overload. In addition, these findings underscore the usefulness of resveratrol in the prevention of cardiovascular diseases.

  17. α-Syntrophin is involved in the survival signaling pathway in myoblasts under menadione-induced oxidative stress.

    PubMed

    Lim, Jeong-A; Choi, Su Jin; Moon, Jae Yun; Kim, Hye Sun

    2016-05-15

    Dystrophin-deficient muscle is known to be more vulnerable to oxidative stress, but not much is known about the signaling pathway(s) responsible for this phenomenon. α-Syntrophin, a component of the dystrophin-glycoprotein complex, can function as a scaffold protein because of its multiple protein interaction domains. In this study, we investigated the role of α-syntrophin in C2 myoblasts under menadione-induced oxidative stress. We found that the protein level of α-syntrophin was elevated when cells were exposed to menadione. To investigate the function of α-syntrophin during oxidative stress, we established α-syntrophin-overexpressing and knockdown cell lines. The α-syntrophin-overexpressing cells were resistant to the menadione-induced oxidative stress. In addition, survival signalings such as protein kinase B (Akt) phosphorylation and the Bcl-2/BAX ratio were increased in these cells. On the other hand, apoptotic signals such as cleavage of caspase-3 and poly ADP ribose polymerase (PARP) were increased in the α-syntrophin knockdown cells. Furthermore, Ca(2+)influx, which is known to increase when cells are exposed to oxidative stress, decreased in the α-syntrophin-overexpressing cells, but increased in the knockdown cells. These results suggest that α-syntrophin plays a pivotal role in the survival pathway triggered by menadione-induced oxidative stress in cultured myoblasts. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Rapid non-genomic effects of glucocorticoids on oxidative stress in a guinea pig model of asthma.

    PubMed

    Long, Fei; Wang, Yan; Qi, Hui-Hui; Zhou, Xin; Jin, Xian-Qiao

    2008-03-01

    Glucocorticoids (GC) may exert therapeutic effects in asthma by a rapid non-genomic mechanism. The lungs of asthmatic patients are exposed to oxidative stress, which is believed to be critical in the pathogenesis of asthma. The aim of this study was to investigate whether GC exert a rapid non-genomic effect on oxidative stress in asthmatic guinea pigs. The guinea pig asthma model was used to assess inhibitory effects of budesonide (BUD) on oxidative stress. BAL fluid (BALF), trolox equivalent antioxidant capacity and lung manganese superoxide dismutase (MnSOD) activity were measured by spectrophotometry. Superoxide anion production was measured by cytochrome c reduction assay. Oxidative stress occurred within minutes following antigen challenge and BUD reduced the severity of oxidative stress in asthmatic guinea pigs within 15 min. BUD significantly decreased BALF trolox equivalent antioxidant capacity and lung MnSOD activity, as compared with those of vehicle-treated asthmatic guinea pigs (P < 0.05). Additionally, BUD rapidly inhibited in vitro superoxide anion production by BALF cells and bronchi harvested from sensitized animals. These rapid effects were not blocked by the GC receptor antagonist RU486 and/or the protein synthesis inhibitor cycloheximide. BUD reduced oxidative stress in a guinea pig model of asthma by a rapid non-genomic mechanism. These data suggest new mechanisms whereby GC treatments may benefit asthma.

  19. Role of surface oxidation on the size dependent mechanical properties of nickel nanowires: a ReaxFF molecular dynamics study.

    PubMed

    Aral, Gurcan; Islam, Md Mahbubul; van Duin, Adri C T

    2017-12-20

    Highly reactive metallic nickel (Ni) is readily oxidized by oxygen (O 2 ) molecules even at low temperatures. The presence of the naturally resulting pre-oxide shell layer on metallic Ni nano materials such as Ni nanowires (NW) is responsible for degrading the deformation mechanisms and related mechanical properties. However, the role of the pre-oxide shell layer on the metallic Ni NW coupled with the complicated mechanical deformation mechanism and related properties have not yet been fully and independently understood. For this reason, the ReaxFF reactive force field for Ni/O interactions was used to investigate the effect of surface oxide layers and the size-dependent mechanical properties of Ni NWs under precisely controlled tensile loading conditions. To directly quantify the size dependent surface oxidation effect on the tensile mechanical deformation behaviour and related properties for Ni NWs, first, ReaxFF-molecular dynamics (MD) simulations were carried out to study the oxidation kinetics on the free surface of Ni NWs in a molecular O 2 environment as a function of various diameters (D = 5.0, 6.5, and 8.0 nm) of the NWs, but at the same length. Single crystalline, pure metallic Ni NWs were also studied as a reference. The results of the oxidation simulations indicate that a surface oxide shell layer with limiting thickness of ∼1.0 nm was formed on the free surface of the bare Ni NW, typically via dissociation of the O-O bonds and the subsequent formation of Ni-O bonds. Furthermore, we investigated the evolution of the size-dependent intrinsic mechanical elastic properties of the core-oxide shell (Ni/Ni x O y ) NWs by comparing them with their un-oxidized counterparts under constant uniaxial tensile loading. We found that the oxide shell layer significantly decreases the mechanical properties of metallic Ni NW as well as facilitates the initiation of plastic deformation as a function of decreasing diameter. The disordered oxide shell layer on the Ni NW's surface remarkably reduces the yield stress and Young's modulus, due to the increased softening effects with the decreasing NW diameter, compared to un-oxidized counterparts. Moreover, the onset of plastic deformation occurs at a relatively low yielding strain and stress level for the smaller diameter of oxide-coated Ni NWs in comparison to their pure counterparts. Furthermore, for pure Ni NWs, Young's modulus, the yielding stress and strain slightly decrease with the decrease in the diameter size of Ni NWs.

  20. The in vitro effect of cypermethrin on quality and oxidative stress indices of rainbow trout Oncorhynchus mykiss spermatozoa.

    PubMed

    Kutluyer, Filiz; Benzer, Fulya; Erişir, Mine; Öğretmen, Fatih; İnanan, Burak Evren

    2016-03-01

    There is limited information on the scientific literature about the effect of in vitro exposure of fish sperm to pesticides. In vitro effect of cypermethrin on sperm quality and oxidative stress has not yet been fully investigated. Therefore, the effects of cypermethrin, a type II pyrethroid insecticide, on quality and oxidative stress of spermatozoa were examined in vitro. To explore the potential in vitro toxicity of cypermethrin, fish spermatozoa were incubated with different concentrations of cypermethrin (1.025, 2.05 and 4.1 μg/l) for 2 h. The motility rate and duration of sperm were determined after exposure to cypermethrin. Reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA) in spermatozoa were analyzed for determination of oxidant and antioxidant balance. Our results indicated that spermatozoa motility and duration significantly decreased with exposure to cypermethrin. Additionally, activity of GSH-Px (P<0.05) and MDA and GSH levels increased in a concentration-dependent manner while CAT activity decreased (P<0.05). Consequently, the oxidant and antioxidant status and sperm quality were affected by quantitative changes and different concentrations of cypermethrin. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effect of the French Oak Wood Extract Robuvit on Markers of Oxidative Stress and Activity of Antioxidant Enzymes in Healthy Volunteers: A Pilot Study

    PubMed Central

    Orszaghova, Zuzana; Laubertova, Lucia; Sabaka, Peter; Rohdewald, Peter; Durackova, Zdenka; Muchova, Jana

    2014-01-01

    We examined in vitro antioxidant capacity of polyphenolic extract obtained from the wood of oak Quercus robur (QR), Robuvit, using TEAC (Trolox equivalent antioxidant capacity) method and the effect of its intake on markers of oxidative stress, activity of antioxidant enzymes, and total antioxidant capacity in plasma of 20 healthy volunteers. Markers of oxidative damage to proteins, DNA, and lipids and activities of Cu/Zn-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined in the erythrocytes. We have found an in vitro antioxidant capacity of Robuvit of 6.37 micromole Trolox equivalent/mg of Robuvit. One month intake of Robuvit in daily dose of 300 mg has significantly decreased the serum level of advanced oxidation protein products (AOPP) and lipid peroxides (LP). Significantly increased activities of SOD and CAT as well as total antioxidant capacity of plasma after one month intake of Robuvit have been shown. In conclusion, we have demonstrated for the first time that the intake of Robuvit is associated with decrease of markers of oxidative stress and increase of activity of antioxidant enzymes and total antioxidant capacity of plasma in vivo. PMID:25254080

  2. Chlorpyrifos and lambda cyhalothrin-induced oxidative stress in human erythrocytes.

    PubMed

    Deeba, Farah; Raza, Irum; Muhammad, Noor; Rahman, Hazir; Ur Rehman, Zia; Azizullah, Azizullah; Khattak, Baharullah; Ullah, Farman; Daud, M K

    2017-04-01

    Pesticides are one of the most potentially harmful chemicals introduced into the environment, and their adverse impacts on non-target organisms can be significant. The present study was conducted to shed light on effects of locally used insecticides chlorpyrifos (CPF) and lambda cyhalothrin (LCT) on oxidative stress biomarkers in human erythrocytes. The activity of catalase (CAT), superoxide dismutase (SOD), and protein contents as well as the levels of malondialdehyde (MDA) and osmotic fragility (OF) were measured in human erythrocytes exposed to CPF at concentrations of 0, 100, 500, 1000, and 2000 ppm and LCT at concentrations of 0, 100, 300, 600, and 800 ppm for 1 h and 3 h at 37°C. MDA levels and OF of erythrocytes were significantly higher in erythrocytes incubated with CPF and LCT at increasing concentrations of both insecticides and increased incubation time. However, erythrocyte CAT and SOD activities were decreased at all concentrations of CPF and LCT tested. Protein oxidation products were decreased at lower doses of CPF (100 and 500 ppm); at higher doses (1000 and 2000 ppm), total protein content was increased compared with control. In contrast LCT was associated with decreased in protein contents at all the concentrations. These results clearly demonstrated that CPF and LCT can induce oxidative stress in human erythrocytes ( in vitro).

  3. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis.

    PubMed

    Manolagas, Stavros C

    2010-06-01

    Estrogen deficiency has been considered the seminal mechanism of osteoporosis in both women and men, but epidemiological evidence in humans and recent mechanistic studies in rodents indicate that aging and the associated increase in reactive oxygen species (ROS) are the proximal culprits. ROS greatly influence the generation and survival of osteoclasts, osteoblasts, and osteocytes. Moreover, oxidative defense by the FoxO transcription factors is indispensable for skeletal homeostasis at any age. Loss of estrogens or androgens decreases defense against oxidative stress in bone, and this accounts for the increased bone resorption associated with the acute loss of these hormones. ROS-activated FoxOs in early mesenchymal progenitors also divert ss-catenin away from Wnt signaling, leading to decreased osteoblastogenesis. This latter mechanism may be implicated in the pathogenesis of type 1 and 2 diabetes and ROS-mediated adverse effects of diabetes on bone formation. Attenuation of Wnt signaling by the activation of peroxisome proliferator-activated receptor gamma by ligands generated from lipid oxidation also contributes to the age-dependent decrease in bone formation, suggesting a mechanistic explanation for the link between atherosclerosis and osteoporosis. Additionally, increased glucocorticoid production and sensitivity with advancing age decrease skeletal hydration and thereby increase skeletal fragility by attenuating the volume of the bone vasculature and interstitial fluid. This emerging evidence provides a paradigm shift from the "estrogen-centric" account of the pathogenesis of involutional osteoporosis to one in which age-related mechanisms intrinsic to bone and oxidative stress are protagonists and age-related changes in other organs and tissues, such as ovaries, accentuate them.

  4. From Estrogen-Centric to Aging and Oxidative Stress: A Revised Perspective of the Pathogenesis of Osteoporosis

    PubMed Central

    Manolagas, Stavros C.

    2010-01-01

    Estrogen deficiency has been considered the seminal mechanism of osteoporosis in both women and men, but epidemiological evidence in humans and recent mechanistic studies in rodents indicate that aging and the associated increase in reactive oxygen species (ROS) are the proximal culprits. ROS greatly influence the generation and survival of osteoclasts, osteoblasts, and osteocytes. Moreover, oxidative defense by the FoxO transcription factors is indispensable for skeletal homeostasis at any age. Loss of estrogens or androgens decreases defense against oxidative stress in bone, and this accounts for the increased bone resorption associated with the acute loss of these hormones. ROS-activated FoxOs in early mesenchymal progenitors also divert ß-catenin away from Wnt signaling, leading to decreased osteoblastogenesis. This latter mechanism may be implicated in the pathogenesis of type 1 and 2 diabetes and ROS-mediated adverse effects of diabetes on bone formation. Attenuation of Wnt signaling by the activation of peroxisome proliferator-activated receptor γ by ligands generated from lipid oxidation also contributes to the age-dependent decrease in bone formation, suggesting a mechanistic explanation for the link between atherosclerosis and osteoporosis. Additionally, increased glucocorticoid production and sensitivity with advancing age decrease skeletal hydration and thereby increase skeletal fragility by attenuating the volume of the bone vasculature and interstitial fluid. This emerging evidence provides a paradigm shift from the “estrogen-centric” account of the pathogenesis of involutional osteoporosis to one in which age-related mechanisms intrinsic to bone and oxidative stress are protagonists and age-related changes in other organs and tissues, such as ovaries, accentuate them. PMID:20051526

  5. NADPH oxidase and redox status in amygdala, hippocampus and cortex of male Wistar rats in an animal model of post-traumatic stress disorder.

    PubMed

    Petrovic, Romana; Puskas, Laslo; Jevtic Dozudic, Gordana; Stojkovic, Tihomir; Velimirovic, Milica; Nikolic, Tatjana; Zivkovic, Milica; Djorovic, Djordje J; Nenadovic, Milutin; Petronijevic, Natasa

    2018-05-26

    Post-traumatic stress disorder (PTSD) is a highly prevalent and impairing disorder. Oxidative stress is implicated in its pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of free radicals. The aim of the study was to assess oxidative stress parameters, activities of respiratory chain enzymes, and the expression of NADPH oxidase subunits (gp91phox, p22phox, and p67phox) in the single prolonged stress (SPS) animal model of PTSD. Twenty-four (12 controls; 12 subjected to SPS), 9-week-old, male Wistar rats were used. SPS included physical restraint, forced swimming, and ether exposure. The rats were euthanized seven days later. Cortex, hippocampus, amygdala, and thalamus were dissected. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Complex I, and cytochrome C oxidase were measured using spectrophotometric methods, while the expression of NADPH oxidase subunits was determined by Western blot. Increased MDA and decreased GSH concentrations were found in the amygdala and hippocampus of the SPS rats. SOD activity was decreased in amygdala and GPx was decreased in hippocampus. Increased expression of the NADPH oxidase subunits was seen in amygdala, while mitochondrial respiratory chain enzyme expression was unchanged both in amygdala and hippocampus. In the cortex concentrations of MDA and GSH were unchanged despite increased Complex I and decreased GPx, while in the thalamus no change of any parameter was noticed. We conclude that oxidative stress is present in hippocampus and amygdala seven days after the SPS procedure. NADPH oxidase seems to be a main source of free radicals in the amygdala.

  6. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    PubMed

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  7. The Neglected Significance of “Antioxidative Stress”

    PubMed Central

    Poljsak, B.; Milisav, I.

    2012-01-01

    Oxidative stress arises when there is a marked imbalance between the production and removal of reactive oxygen species (ROS) in favor of the prooxidant balance, leading to potential oxidative damage. ROSs were considered traditionally to be only a toxic byproduct of aerobic metabolism. However, recently, it has become apparent that ROS might control many different physiological processes such as induction of stress response, pathogen defense, and systemic signaling. Thus, the imbalance of the increased antioxidant potential, the so-called antioxidative stress, should be as dangerous as well. Here, we synthesize increasing evidence on “antioxidative stress-induced” beneficial versus harmful roles on health, disease, and aging processes. Oxidative stress is not necessarily an un-wanted situation, since its consequences may be beneficial for many physiological reactions in cells. On the other hand, there are potentially harmful effects of “antioxidative stress,” especially in the cases of overconsumption of synthetic antioxidants. Antioxidants can neutralize ROS and decrease oxidative stress; however, this is not always beneficial in regard to disease formation or progression (of, e.g., cancer) or for delaying aging. PMID:22655114

  8. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity

    PubMed Central

    Sharbeen, George; Youkhana, Janet; Mawson, Amanda; McCarroll, Joshua; Nunez, Andrea; Biankin, Andrew; Johns, Amber; Goldstein, David; Phillips, Phoebe

    2017-01-01

    Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread. PMID:27999205

  9. Plumbagin, a vitamin K3 analogue, abrogates lipopolysaccharide-induced oxidative stress, inflammation and endotoxic shock via NF-κB suppression.

    PubMed

    Checker, Rahul; Patwardhan, Raghavendra S; Sharma, Deepak; Menon, Jisha; Thoh, Maikho; Sandur, Santosh K; Sainis, Krishna B; Poduval, T B

    2014-04-01

    Plumbagin has been reported to modulate cellular redox status and suppress NF-κB. In the present study, we investigated the effect of plumbagin on lipopolysaccharide (LPS)-induced endotoxic shock, oxidative stress and inflammatory parameters in vitro and in vivo. Plumbagin inhibited LPS-induced nitric oxide, TNF-α, IL-6 and prostaglandin-E2 production in a concentration-dependent manner in RAW 264.7 cells without inducing any cell death. Plumbagin modulated cellular redox status in RAW cells. Plumbagin treatment significantly reduced MAPkinase and NF-κB activation in macrophages. Plumbagin prevented mice from endotoxic shock-associated mortality and decreased serum levels of pro-inflammatory markers. Plumbagin administration ameliorated LPS-induced oxidative stress in peritoneal macrophages and splenocytes. Plumbagin also attenuated endotoxic shock-associated changes in liver and lung histopathology and decreased the activation of ERK and NF-κB in liver. These findings demonstrate the efficacy of plumbagin in preventing LPS-induced endotoxemia and also provide mechanistic insights into the anti-inflammatory effects of plumbagin.

  10. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice.

    PubMed

    Li, Bin; Cui, Wei; Liu, Jia; Li, Ru; Liu, Qian; Xie, Xiao-Hua; Ge, Xiao-Li; Zhang, Jing; Song, Xiu-Juan; Wang, Ying; Guo, Li

    2013-12-01

    Sulforaphane (SFN) is an organosulfur compound present in vegetables and has potent anti-oxidant and anti-inflammatory activities. This study was aimed at investigating the effect of treatment with SFN on inflammation and oxidative stress, and the potential mechanisms underlying the action of SFN in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. Treatment with SFN significantly inhibited the development and severity of EAE in mice, accompanied by mitigating inflammatory infiltration and demyelination in the spinal cord of mice. The protective effect of SFN was associated with significantly improved distribution of claudin-5 and occludin, and decreased levels of MMP-9 expression, preserving the blood-brain barrier. Furthermore, the protection of SFN was also related to decreased levels of oxidative stress in the brains of mice by enhanced activation of the Nrf2/ARE pathway and increased levels of anti-oxidant HO-1 and NQO1 expression. In addition, treatment with SFN inhibited antigen-specific Th17 responses and enhanced IL-10 responses. Our data indicated that treatment with SFN inhibited EAE development and severity in mice by its anti-oxidant activity and antagonizing autoimmune inflammation. Our findings suggest that SFN and its analogues may be promising reagents for intervention of multiple sclerosis and other autoimmune diseases. © 2013.

  11. Modified natural porcine surfactant modulates tobacco smoke-induced stress response in human monocytes.

    PubMed

    Pinot, F; Bachelet, M; François, D; Polla, B S; Walti, H

    1999-01-01

    Tobacco smoke (TS) is a potent source of oxidants and oxidative stress is an important mechanism by which TS exerts its toxicity in the lung. We have shown that TS induces heat shock (HS)/stress protein (HSP) synthesis in human monocytes. Pulmonary surfactant (PS) whose major physiological function is to confer mechanical stability to alveoli, also modulates oxidative metabolism and other pro-inflammatory functions of monocytes-macrophages. In order to determine whether PS alters the stress response induced by TS, we incubated human peripheral blood monocytes overnight with modified natural porcine surfactant (Curosurf) (1 mg/ml) before exposure to TS. Curosurf decreased TS-induced, but not HS-induced, expression of the major cytosolic, inducible 72 kD HSP (Hsp70). Furthermore, TS-generated superoxide anions production was significantly decreased by Curosurf in an acellular system, suggesting a direct scavenging effect of PS. We also examined the effects of TS and PS on monocytes ultrastructure. Monocytes incubated with Curosurf presented smoother cell membranes than control monocytes, while TS-induced monocyte vacuolization was, at least in part, prevented by Curosurf. Taken together, our data suggest that PS plays a protective role against oxygen radical-mediated, TS-induced cellular stress responses.

  12. Preventive effects of zinc against psychological stress-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.

    PubMed

    Li, Yingjie; Zheng, Yuanyuan; Qian, Jianxin; Chen, Xinmin; Shen, Zhilei; Tao, Liping; Li, Hongxia; Qin, Haihong; Li, Min; Shen, Hui

    2012-06-01

    Psychological stress (PS) could cause decreased iron absorption and iron redistribution in body resulting in low iron concentration in the bone marrow and inhibition of erythropoiesis. In the present study, we investigated the effect of zinc supplementation on the iron metabolism, erythropoiesis, and oxidative stress status in PS-induced rats. Thirty-two rats were divided into two groups randomly: control group and zinc supplementation group. Each group was subdivided into two subgroups: control group and PS group. Rats received zinc supplementation before PS exposure established by a communication box. We investigated the serum corticosterone (CORT) level; iron apparent absorption; iron contents in liver, spleen, cortex, hippocampus, striatum, and serum; hematological parameters; malondialdehyde (MDA); reduced glutathione (GSH); and superoxide dismutase (SOD). Compared to PS-treated rats with normal diet, the PS-treated rats with zinc supplementation showed increased iron apparent absorption, serum iron, hemoglobin, red blood cell, GSH, and SOD activities; while the serum CORT; iron contents in liver, spleen, and regional brain; and MDA decreased. These results indicated that dietary zinc supplementation had preventive effects against PS-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.

  13. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    PubMed

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells.

  14. Anti-acetylcholinesterase and Antioxidant Activities of Inhaled Juniper Oil on Amyloid Beta (1-42)-Induced Oxidative Stress in the Rat Hippocampus.

    PubMed

    Cioanca, Oana; Hancianu, Monica; Mihasan, Marius; Hritcu, Lucian

    2015-05-01

    Juniper volatile oil is extracted from Juniperus communis L., of the Cupressaceae family, also known as common juniper. Also, in aromatherapy the juniper volatile oil is used against anxiety, nervous tension and stress-related conditions. In the present study, we identified the effects of the juniper volatile oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus. Rats received a single intracerebroventricular injection of amyloid beta (1-42) (400 pmol/rat) and then were exposed to juniper volatile oil (200 μl, either 1 or 3 %) for controlled 60 min period, daily, for 21 continuous days. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Additionally, the acetylcholinesterase activity in the hippocampus was assessed. The amyloid beta (1-42)-treated rats exhibited the following: increase of the acetylcholinesterase, superoxide dismutase and catalase specific activities, decrease of glutathione peroxidase specific activity and the total content of the reduced glutathione along with an elevation of malondialdehyde and protein carbonyl levels. Inhalation of the juniper volatile oil significantly decreases the acetylcholinesterase activity and exhibited antioxidant potential. These findings suggest that the juniper volatile oil may be a potential candidate for the development of therapeutic agents to manage oxidative stress associated with Alzheimer's disease through decreasing the activity of acetylcholinesterase and anti-oxidative mechanism.

  15. Acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease.

    PubMed

    Böhm, Joseane; Monteiro, Mariane Borba; Andrade, Francini Porcher; Veronese, Francisco Veríssimo; Thomé, Fernando Saldanha

    2017-01-01

    Hemodialysis contributes to increased oxidative stress and induces transitory hypoxemia. Compartmentalization decreases the supply of solutes to the dialyzer during treatment. The aim of this study was to investigate the acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease during a single hemodialysis session. Thirty patients were randomized to perform aerobic exercise with cycle ergometer for lower limbs during 30 minutes with intensity between 60-70% of maximal heart rate, or control group (CG). Blood samples were collected prior to and immediately after exercise or the equivalent time in CG. Analysis of blood and dialysate biochemistry as well as blood gases were performed. Mass removal and solute clearance were calculated. Oxidative stress was determined by lipid peroxidation and by the total antioxidant capacity. Serum concentrations of solutes increased with exercise, but only phosphorus showed a significant elevation (p = 0.035). There were no significant changes in solute removal and in the acid-base balance. Both oxygen partial pressure and saturation increased with exercise (p = 0.035 and p = 0.024, respectivelly), which did not occur in the CG. The total antioxidant capacity decreased significantly (p = 0.027). The acute intradialytic aerobic exercise increased phosphorus serum concentration and decreased total antioxidant capacity, reversing hypoxemia resulting from hemodialysis. The intradialytic exercise did not change the blood acid-base balance and the removal of solutes.

  16. Secoisolariciresinol Diglucoside Abrogates Oxidative Stress-Induced Damage in Cardiac Iron Overload Condition

    PubMed Central

    Puukila, Stephanie; Bryan, Sean; Laakso, Anna; Abdel-Malak, Jessica; Gurney, Carli; Agostino, Adrian; Belló-Klein, Adriane; Prasad, Kailash; Khaper, Neelam

    2015-01-01

    Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload. PMID:25822525

  17. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    PubMed

    Puukila, Stephanie; Bryan, Sean; Laakso, Anna; Abdel-Malak, Jessica; Gurney, Carli; Agostino, Adrian; Belló-Klein, Adriane; Prasad, Kailash; Khaper, Neelam

    2015-01-01

    Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  18. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress.

    PubMed

    Long, Yue; Dong, Xin; Yuan, Yawei; Huang, Jinqiang; Song, Jiangang; Sun, Yumin; Lu, Zhijie; Yang, Liqun; Yu, Weifeng

    2015-07-01

    The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPC(c) (14:0), glycine and succinic acid and decreased levels of l-valine, PC(b) (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.

  19. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress.

    PubMed

    Sautin, Yuri Y; Nakagawa, Takahiko; Zharikov, Sergey; Johnson, Richard J

    2007-08-01

    Uric acid is considered a major antioxidant in human blood that may protect against aging and oxidative stress. Despite its proposed protective properties, elevated levels of uric acid are commonly associated with increased risk for cardiovascular disease and mortality. Furthermore, recent experimental studies suggest that uric acid may have a causal role in hypertension and metabolic syndrome. All these conditions are thought to be mediated by oxidative stress. In this study we demonstrate that differentiation of cultured mouse adipocytes is associated with increased production of reactive oxygen species (ROS) and uptake of uric acid. Soluble uric acid stimulated an increase in NADPH oxidase activity and ROS production in mature adipocytes but not in preadipocytes. The stimulation of NADPH oxidase-dependent ROS by uric acid resulted in activation of MAP kinases p38 and ERK1/2, a decrease in nitric oxide bioavailability, and an increase in protein nitrosylation and lipid oxidation. Collectively, our results suggest that hyperuricemia induces redox-dependent signaling and oxidative stress in adipocytes. Since oxidative stress in the adipose tissue has recently been recognized as a major cause of insulin resistance and cardiovascular disease, hyperuricemia-induced alterations in oxidative homeostasis in the adipose tissue might play an important role in these derangements.

  20. Cystic Fibrosis Transmembrane Conductance Regulator Controls Lung Proteasomal Degradation and Nuclear Factor-κB Activity in Conditions of Oxidative Stress

    PubMed Central

    Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky

    2008-01-01

    Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427

  1. Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: a metabolomics overview.

    PubMed

    Pallotta, Valeria; Gevi, Federica; D'alessandro, Angelo; Zolla, Lello

    2014-07-01

    Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP.

  2. Ameliorative Effects of Allium sativum Extract on iNOS Gene Expression and NO Production in Liver of Streptozotocin + Nicotinamide-Induced Diabetic Rats.

    PubMed

    Ziamajidi, Nasrin; Behrouj, Hamid; Abbasalipourkabir, Roghayeh; Lotfi, Fatemeh

    2018-04-01

    Diabetes mellitus (DM) is one of the most prevalent diseases in the world, which is strongly associated with liver dysfunction. Hyperglycemia, through an oxidative stress pathway, damages various tissues. Herbal medicine is a good candidate to ameliorate hyperglycemia and oxidative stress. In this study, the effects of aqueous Allium sativum (garlic) extract (AGE) on gene expression of inducible nitric oxide synthases (iNOS) and production of nitric oxide (NO) were evaluated in the liver tissue of diabetic rats. Four groups of rats contained normal control rats, garlic control rats (AGE), Streptozotocin (STZ) + nicotinamide-induced diabetic rats (DM), and diabetic rats treated with garlic (DM + AGE). Glucose levels and liver enzymes activities were determined by colorimetric assay in the serum. Gene expression of iNOS by real-time PCR, NO levels by Griess method, oxidative stress parameters by spectrophotometric method and histopathological examination by hematoxylin and eosin staining method were evaluated in the liver tissues. Glucose levels, activities of liver enzymes, oxidative stress markers, iNOS gene expression, and NO production increased significantly in diabetic rats in comparison with control rats, whereas after oral administration of garlic, these parameters decreased significantly, close to the normal levels. Hence, the beneficial effects of garlic on the liver injury of diabetes could be included in the hypoglycaemic and antioxidant properties of garlic via a decrease in gene expression of iNOS and subsequent NO production.

  3. Metabolic Modulation by Medium-Chain Triglycerides Reduces Oxidative Stress and Ameliorates CD36-Mediated Cardiac Remodeling in Spontaneously Hypertensive Rat in the Initial and Established Stages of Hypertrophy.

    PubMed

    Saifudeen, Ismael; Subhadra, Lakshmi; Konnottil, Remani; Nair, R Renuka

    2017-03-01

    Left ventricular hypertrophy (LVH) is characterized by a decrease in oxidation of long-chain fatty acids, possibly mediated by reduced expression of the cell-surface protein cluster of differentiation 36 (CD36). Spontaneously hypertensive rats (SHRs) were therefore supplemented with medium-chain triglycerides (MCT), a substrate that bypasses CD36, based on the assumption that the metabolic modulation will ameliorate ventricular remodeling. The diet of 2-month-old and 6-month-old SHRs was supplemented with 5% MCT (Tricaprylin), for 4 months. Metabolic modulation was assessed by mRNA expression of peroxisome proliferator-activated receptor α and medium-chain acyl-CoA dehydrogenase. Blood pressure was measured noninvasively. LVH was assessed with the use of hypertrophy index, cardiomyocyte cross-sectional area, mRNA expression of B-type natriuretic peptide, cardiac fibrosis, and calcineurin-A levels. Oxidative stress indicators (cardiac malondialdehyde, protein carbonyl, and 3-nitrotyrosine levels), myocardial energy level (ATP, phosphocreatine), and lipid profile were determined. Supplementation of MCT stimulated fatty acid oxidation in animals of both age groups, reduced hypertrophy and oxidative stress along with the maintenance of energy level. Blood pressure, body weight, and lipid profile were unaffected by the treatment. The results indicate that modulation of myocardial fatty acid metabolism by MCT prevents progressive cardiac remodeling in SHRs, possibly by maintenance of energy level and decrease in oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress.

    PubMed

    Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B

    2016-08-01

    Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Protective effect of alpha-lipoic acid in methotrexate-induced ovarian oxidative injury and decreased ovarian reserve in rats.

    PubMed

    Soylu Karapinar, Oya; Pinar, Neslihan; Özcan, Oğuzhan; Özgür, Tümay; Dolapçıoğlu, Kenan

    2017-08-01

    To determine whether the possible oxidative effect of methotrexate (Mtx) on ovary and to evaluate the effectiveness of alpha lipoic acid (ALA), which may be useful in many oxidative stress models. Thirty-two female Wistar-albino rats were randomly divided into four groups; control group, alpha lipoic acid group (ALA 100 mg/kg, 10 days), multiple dose Mtx group (Mtx 1 mg/kg 1, 3, 5, 7 days) and Mtx and ALA group (Mtx 1 mg/kg 1, 3, 5, 7 days and ALA 100 mg/kg, 10 days). Serum total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI), tumor necrosis factor-alpha (TNF-α), tissue malondialdehyde (MDA) and activities of glutathione peroxidase (GSH-Px) and catalase (CAT) and anti-Mullerian hormone (AMH) and total ovarian follicle count were evaluated. Mtx administration caused a significant decrease in TAS, a significant increase in TOS and OSI, a significant increase in MDA levels and a decrease in GSH-Px and CAT activity. Moreover the proinflammatory cytokine (TNF-α) was increased in the Mtx group. And AMH values and total follicle count were significantly decreased in Mtx group. However, ALA treatment reversed biochemical results and AMH levels and total follicle count. Alpha lipoic acid ameliorates methotrexate induced oxidative damage of ovarian in rats.

  6. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins

    PubMed Central

    Yao, Chunxiang; Behring, Jessica B.; Shao, Di; Sverdlov, Aaron L.; Whelan, Stephen A.; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A.; Seta, Francesca; Costello, Catherine E.; Cohen, Richard A.; Matsui, Reiko; Colucci, Wilson S.; McComb, Mark E.; Bachschmid, Markus M.

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation. PMID:26642319

  7. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol inducedmore » systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation. ► Translocation of p47phox and MAPKs phosphorylation are downstream effectors. ► Acute ethanol consumption increases the risk for acute vascular injury.« less

  8. The relationship between oxidative stress, smoking and the clinical severity of psoriasis.

    PubMed

    Emre, S; Metin, A; Demirseren, D D; Kilic, S; Isikoglu, S; Erel, O

    2013-03-01

    Recent studies suggested that increased oxidant products and decreased antioxidant system functions may be involved in the pathogenesis of psoriasis. In this study, we investigated total oxidative status, Paraoxonase (PON)1/arylesterase enzyme activities and severity of the disease in smoker and non-smoker psoriatic patients. Fifty-four patients with plaque type psoriasis (28 smokers and 26 non-smokers) and 62 healthy volunteers (16 smokers and 46 non-smokers) were enrolled in the study. Serum total oxidant status (TOS), total antioxidant capacity (TAC) and arylesterase levels were measured, and oxidative stress index (OSI) was calculated in all participants. Psoriasis Area and Severity Index scores were significantly higher in smoker patients than in non-smoker patients (P = 0.014). Both smoker and non-smoker patients had significantly increased TOS levels and OSI values and decreased TAC levels than healthy subjects (all P values = 0.000). The TAC and TOS levels, OSI values and arylesterase activities were similar between smoker and non-smoker patients. The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) were not significantly different between smoker and non-smoker psoriasis patients. When compared with non-smoking controls, only smoking psoriasis patients had significantly higher TG (P = 0.005), lower HDL (P = 0.022) and lower arylesterase levels (P = 0.015). There were no significant correlations with Psoriasis Area and Severity Index (PASI) scores and TAC, TOS, OSI, TG, TC, HDL and LDL levels in all psoriasis patients. Oxidative stress is increased in psoriasis patients regardless of their smoking status. The decreased arylesterase activity in smoker psoriasis patients suggested that smoking may be a considerable risk factor that increases the severity of psoriasis by increasing oxidative stress in these patients. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  9. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome.

    PubMed

    Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel

    2016-01-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients.

  10. The protective effect of N-acetylcysteine on oxidative stress in the brain caused by the long-term intake of aspartame by rats.

    PubMed

    Finamor, Isabela A; Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Bressan, Caroline A; Scheid, Taína; Baldisserotto, Bernardo; Llesuy, Susana F; Partata, Wânia A; Pavanato, Maria A

    2014-09-01

    Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg(-1), i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg(-1)). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.

  11. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome

    PubMed Central

    Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel

    2016-01-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients. PMID:27413258

  12. Effect of khat, its constituents and restraint stress on free radical metabolism of rats.

    PubMed

    Al-Qirim, Tariq M; Shahwan, Moyad; Zaidi, Kashif R; Uddin, Qamar; Banu, Naheed

    2002-12-01

    The leaves of khat (Catha edulis) are found to have stimulating and pleasurable effect and are chewed habitually by people of East Africa and Arabian Peninsula. Due to various toxic and psychostimulative effect of khat the present study was undertaken to evaluate the effect of intragastric khat alone or its major constituents flavonoids/alkaloids administration and before and after 4 h of immobilization stress in terms of alteration of free radical scavenging/metabolizing enzymes, uric acid and glucose in rats. Oral khat, alkaloid administration or 4 h restraint stress resulted in the decrease of the circulating levels of superoxide dismutase, catalase, glutathione-S-transferase and glucose with enhanced uric acid concentrations as compared with control rats. Oral treatment with flavonoid fraction of khat was found to enhance the activities of GST and catalase but showed no effect on SOD while the level of glucose was decreased and uric acid increased. The levels of these biochemical parameters were more altered in post stress khat/alkaloid treated rats than pre stress khat/alkaloid treated rats. The alteration in the levels of SOD, GST, catalase and uric acid in the pre stress khat treated rats were comparable with that of khat alone, except the level of glucose which was further decreased in pre stress khat treated rats. The flavonoid fraction of khat reduced the stress induced oxidative stress in terms of above mentioned biochemical parameters. The present study suggests that khat alone or khat/alkaloid consumption preceding stress may significantly decrease the levels of free radical metabolizing/scavenging enzymes and glucose leading to enhanced free radical concentration and toxicity of khat, which could be due to its alkaloid fraction as flavonoids were found to show antioxidant properties for oxidative stress generated during restraint stress.

  13. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring.

    PubMed

    Yüksel, Murat; Nazıroğlu, Mustafa; Özkaya, Mehmet Okan

    2016-05-01

    We investigated the effects of mobile phone (900 and 1800 MHz)- and Wi-Fi (2450 MHz)-induced electromagnetic radiation (EMR) exposure on uterine oxidative stress and plasma hormone levels in pregnant rats and their offspring. Thirty-two rats and their forty newborn offspring were divided into the following four groups according to the type of EMR exposure they were subjected to: the control, 900, 1800, and 2450 MHz groups. Each experimental group was exposed to EMR for 60 min/day during the pregnancy and growth periods. The pregnant rats were allowed to stand for four generations (total 52 weeks) before, plasma and uterine samples were obtained. During the 4th, 5th, and 6th weeks of the experiment, plasma and uterine samples were also obtained from the developing rats. Although uterine lipid peroxidation increased in the EMR groups, uterine glutathione peroxidase activity (4th and 5th weeks) and plasma prolactin levels (6th week) in developing rats decreased in these groups. In the maternal rats, the plasma prolactin, estrogen, and progesterone levels decreased in the EMR groups, while the plasma total oxidant status, and body temperatures increased. There were no changes in the levels of reduced glutathione, total antioxidants, or vitamins A, C, and E in the uterine and plasma samples of maternal rats. In conclusion, although EMR exposure decreased the prolactin, estrogen, and progesterone levels in the plasma of maternal rats and their offspring, EMR-induced oxidative stress in the uteri of maternal rats increased during the development of offspring. Mobile phone- and Wi-Fi-induced EMR may be one cause of increased oxidative uterine injury in growing rats and decreased hormone levels in maternal rats. TRPV1 cation channels are the possible molecular pathways responsible for changes in the hormone, oxidative stress, and body temperature levels in the uterus of maternal rats following a year-long exposure to electromagnetic radiation exposure from mobile phones and Wi-Fi devices. It is likely that TRPV1-mediated Ca(2+) entry in the uterus of pregnant rats involves accumulation of oxidative stress and opening of mitochondrial membrane pores that consequently leads to mitochondrial dysfunction, substantial swelling of the mitochondria with rupture of the outer membrane and release of oxidants such as superoxide (O2 (-)) and hydrogen peroxide (H2O2). The superoxide radical is converted to H2O2 by superoxide dismutase (SOD) enzyme. Glutathione peroxidase (GSH-Px) is an important antioxidant enzyme for removing lipid hydroperoxides and hydrogen peroxide and it catalyzes the reduction of H2O2 to water.

  14. Spirulina platensis prevents high glucose-induced oxidative stress mitochondrial damage mediated apoptosis in cardiomyoblasts.

    PubMed

    Jadaun, Pratiksha; Yadav, Dhananjay; Bisen, Prakash Singh

    2018-04-01

    The current study was undertaken to study the effect of Spirulina platensis (Spirulina) extract on enhanced oxidative stress during high glucose induced cell death in H9c2 cells. H9c2 cultured under high glucose (33 mM) conditions resulted in a noteworthy increase in oxidative stress (free radical species) accompanied by loss of mitochondrial membrane potential, release of cytochrome c, increase in caspase activity and pro-apoptotic protein (Bax). Spirulina extract (1 μg/mL), considerably inhibited increased ROS and RNS levels, reduction in cytochrome c release, raise in mitochondrial membrane potential, decreased the over expression of proapoptotic protein Bax and suppressed the Bax/Bcl2 ratio with induced apoptosis without affecting cell viability. Overall results suggest that Spirulina extract plays preventing role against enhanced oxidative stress during high glucose induced apoptosis in cardiomyoblasts as well as related dysfunction in H9c2 cells.

  15. PPAR{alpha} agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Xiaoyang; Division of Cardiothoracic Surgery, The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, BCM 390, One Baylor Plaza, Houston, TX 77030; Shen, Ying H.

    2010-04-09

    Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors {alpha} (PPAR{alpha}) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs. Taken together, fenofibrate treatment can protectmore » against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.« less

  16. Attenuated flow‐induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short‐term high salt diet

    PubMed Central

    Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary

    2016-01-01

    Key points Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress.The objective of this study was to assess vascular response to flow‐induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS‐fed rats in vitro.The novelty of this study is in demonstrating impaired flow‐induced dilatation of MCAs and down‐regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID.In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake.Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. Abstract The aim of this study was to determine flow‐induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)‐fed rats. Healthy male Sprague‐Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10–Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N ω‐nitro‐l‐arginine methyl ester (l‐name). mRNA levels of antioxidative enzymes, NAPDH‐oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real‐time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values. PMID:27061200

  17. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet.

    PubMed

    Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary; Drenjancevic, Ines

    2016-09-01

    Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. The Role of Oxidative Stress in Nervous System Aging

    PubMed Central

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  19. Effect of reuse of polysulfone membrane on oxidative stress during hemodialysis

    PubMed Central

    Ramakrishna, P.; Reddy, E. Prabhakar; Suchitra, M. M.; Bitla, A. R.; Rao, P. V. Srinivasa; Sivakumar, V.

    2012-01-01

    Patients with chronic renal failure, especially those on long-term hemodialysis (HD), have a high incidence of premature cardiovascular disease. Oxidative stress, which occurs when there is an excessive free radical production or low antioxidant level, has recently been implicated as a causative factor in atherogenesis. Hourly changes in malondialdehyde (MDA) and antioxidant enzymes, vitamins, lipid profile and ferric reducing ability of plasma (FRAP) were studied with the first use and immediate subsequent reuse of polysulfone dialysis membrane in 27 patients on regular HD treatment. Data were corrected for hemoconcentration and standardized to measure the rate of change. Increase in MDA and erythrocyte catalase along with decrease in plasma vitamin E and FRAP levels and no change in glutathione peroxidase levels were observed as a result of both fresh and reuse dialysis. These findings indicate a net oxidative stress in both fresh as well as dialyzer reuse sessions. There was no significant change in oxidative stress in both fresh and reuse sessions. The oxidative stress with reuse dialysis was less when compared to first use dialysis, but the difference was not statistically significant. PMID:23087556

  20. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis.

    PubMed

    Murakami, Yayoi; Ito, Masafumi; Ohsawa, Ikuroh

    2017-01-01

    Inhalation of molecular hydrogen (H2) gas ameliorates oxidative stress-induced acute injuries in the brain. Consumption of water nearly saturated with H2 also prevents chronic neurodegenerative diseases including Parkinson's disease in animal and clinical studies. However, the molecular mechanisms underlying the remarkable effect of a small amount of H2 remain unclear. Here, we investigated the effect of H2 on mitochondria in cultured human neuroblastoma SH-SY5Y cells. H2 increased the mitochondrial membrane potential and the cellular ATP level, which were accompanied by a decrease in the reduced glutathione level and an increase in the superoxide level. Pretreatment with H2 suppressed H2O2-induced cell death, whereas post-treatment did not. Increases in the expression of anti-oxidative enzymes underlying the Nrf2 pathway in H2-treated cells indicated that mild stress caused by H2 induced increased resistance to exacerbated oxidative stress. We propose that H2 functions both as a radical scavenger and a mitohormetic effector against oxidative stress in cells.

  1. The role of oxidative stress in nervous system aging.

    PubMed

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  2. Green tea diet decreases PCB 126-induced oxidative stress in mice by upregulating antioxidant enzymes

    PubMed Central

    Newsome, Bradley J; Petriello, Michael C; Han, Sung Gu; Murphy, Margaret O; Eske, Katryn E; Sunkara, Manjula; Morris, Andrew J; Hennig, Bernhard

    2013-01-01

    Superfund chemicals such as polychlorinated biphenyls pose a serious human health risk due to their environmental persistence and link to multiple diseases. Selective bioactive food components such as flavonoids have been shown to ameliorate PCB toxicity, but primarily in an in vitro setting. Here, we show that mice fed a green tea-enriched diet and subsequently exposed to environmentally relevant doses of coplanar PCB exhibit decreased overall oxidative stress primarily due to the upregulation of a battery of antioxidant enzymes. C57BL/6 mice were fed a low fat diet supplemented with green tea extract (GTE) for 12 weeks and exposed to 5 μmol PCB 126/kg mouse weight (1.63 mg/kg-day) on weeks 10, 11 and 12 (total body burden: 4.9 mg/kg). F2-Isoprostane and its metabolites, established markers of in vivo oxidative stress, measured in plasma via HPLC-MS/MS exhibited five-fold decreased levels in mice supplemented with GTE and subsequently exposed to PCB compared to animals on a control diet exposed to PCB. Livers were collected and harvested for both mRNA and protein analyses, and it was determined that many genes transcriptionally controlled by AhR and Nrf2 proteins were upregulated in PCB-exposed mice fed the green tea supplemented diet. An increased induction of genes such as SOD1, GSR, NQO1 and GST, key antioxidant enzymes, in these mice (green tea plus PCB) may explain the observed decrease in overall oxidative stress. A diet supplemented with green tea allows for an efficient antioxidant response in the presence of PCB 126 which supports the emerging paradigm that healthful nutrition may be able to bolster and buffer a physiological system against the toxicities of environmental pollutants. PMID:24378064

  3. Cathinone, an active principle of Catha edulis, accelerates oxidative stress in the limbic area of swiss albino mice.

    PubMed

    Safhi, Mohammed M; Alam, Mohammad Firoz; Hussain, Sohail; Hakeem Siddiqui, Mohammed Abdul; Khuwaja, Gulrana; Jubran Khardali, Ibrahim Abdu; Al-Sanosi, Rashad Mohammed; Islam, Fakhrul

    2014-10-28

    Cathinone hydrochloride is an active principle of the khat plant (Catha edulis) that produces pleasurable and stimulating effects in khat chewers. To the best of our knowledge no data of cathinone on oxidative stress in limbic areas of mice is available. This is the first study of cathinone on oxidative stress in limbic areas of the brain in Swiss albino male mice. The animals were divided into four groups. Group-I was the control group and received vehicle, while groups-II to IV received (-)-cathinone hydrochloride (0.125, 0.25 and 0.5 mg/kg body wt., i.p.) once daily for 15 days. The level of lipid peroxidation (LPO) was elevated dose-dependently and was significant (p<0.05, p<0.01) with doses of 0.25 and 0.5mg/kg body wt. of cathinone as compared to control group. In contrast, the content of reduced glutathione (GSH) was decreased significantly (p<0.01, p<0.001) with doses of 0.25 and 0.5mg/kg body wt. of cathinone as compared to control group. The activity of antioxidant enzymes (GPx, GR, GST, CAT, and SOD) was also decreased dose-dependently: the decreased activity of GPx, GR, catalase and SOD was significant with doses of 0.25 and 0.5 mg of cathinone as compared to control group, while the activity of GST was decreased dose-dependently and was significant with 0.5mg of cathinone as compared to control group. The results indicate that the cathinone generated oxidative stress hampered antioxidant enzymes, glutathione and lipid peroxidation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of dietary restriction on sperm characteristic and oxidative status on testicular tissue in young rats exposed to long-term heat stress.

    PubMed

    Aydilek, N; Varisli, O; Kocyigit, A; Taskin, A; Kaya, M S

    2015-11-01

    This study was conducted to evaluate the effects of dietary restriction on oxidative status and sperm parameters in rats exposed to long-term heat stress. Forty healthy Sprague-Dawley rats, aged 2.5 month, were divided into four groups of 10 with respect to feeding and temperature regimen (room temperature (22 °C)-ad libitum, room temperature-dietary restriction (40%), high temperature (38 °C)-ad libitum, high temperature-dietary restriction). At the end of the 9th week, some oxidants (lipid hydroperoxide, total oxidant status, oxidative stress index) and antioxidants (total antioxidant status, sulfhydryl groups, ceruloplasmin, paraoxonase and arylesterase activities) were measured in the testis tissue. The concentration, motility, volume, abnormal sperm count, acrosome and membrane integrity of epididymal spermatozoon and intratesticular testosterone levels were evaluated. High temperature did not change oxidative and antioxidative parameters except for sulfhydryl groups and ceruloplasmin, yet it impaired all sperm values. Neither sperm values nor oxidative status apart from sulfhydryl groups, ceruloplasmin and arylesterase was affected by dietary restriction in the testis tissue. These results suggest that long-term heat stress does not have a significant effect on testicular oxidative status, while the spermatozoa are sensitive to heat stress in young rats. Dietary restriction failed to improve the sperm quality and oxidative status except some individual antioxidant parameters; conversely, it decreased intratesticular testosterone level in the young rats exposed to long-term heat stress. © 2014 Blackwell Verlag GmbH.

  5. Nitro-oxidative stress, VEGF and MMP-9 in patients with cirrhotic and non-cirrhotic portal hypertension.

    PubMed

    Muti, Leon Adrian; Pârvu, Alina Elena; Crăciun, Alexandra M; Miron, Nicolae; Acalovschi, Monica

    2015-01-01

    Nitro-oxidative stress may have pathophysiological consequences. The study aimed to assess the nitro-oxidative stress, the vascular growth factor, and metalloproteinase-9 levels in patients with noncirrohic and cirrhotic portal hypertension. Patients with noncirrhotic portal hypertension (n=50) and cirrhotic portal hypertension (n=50) from the 3rd Medical Clinic in Cluj-Napoca Romania were prospectively enrolled between October 2004 and October 2006. A control group of healthy volunteers (n=50) was also evaluated. Nitro-oxidative stress was assessed by measuring serum concentration of nitrites and nitrate, 3-nitrotyrosine, total oxidative status, total antioxidant reactivity, and oxidative stress index. Serum vascular growth factor and matrix metalloproteinase-9 were also determined. Serum nitrites and nitrate levels significantly increased in both noncirrhotic (p<0.001) and cirrhotic portal hypertension (p=0.057). 3-nitrotyrosine also increased in noncirrhotic (p=0.001) and cirrhotic portal hypertension patients (p=0.014). Total oxidative status showed a significant increase in noncirrhotic (p<0.001) and in cirrhotic portal hypertension (p<0.001), but total antioxidant reactivity did not change significantly. The oxidative stress index increased in both noncirrhotic (p <0.001) and cirrhotic portal hypertension (p<0.001), as well as the serum vascular growth factor (p=0.005 and p=0.01, respectively). In NCPHT patients serum MMP-9 was significantly lower than in the healthy controls (p=0.03) and CPHT patients (p=0.05). In patients with noncirrhotic and cirrhotic portal hypertension a significant systemic nitro-oxidative stress was found, correlated with an increase of VEGF. MMP-9 decreased in noncirrhotic portal hypertension.

  6. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD{sub 10} dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen ledmore » to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-{alpha}, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 {+-} 14.0 nmol/min/g heart in ND versus 400.2 {+-} 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-{alpha}2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3 pathway.« less

  7. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress.

    PubMed

    Chen, Xi; Shen, Wei-Bin; Yang, Penghua; Dong, Daoyin; Sun, Winny; Yang, Peixin

    2018-06-01

    Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1 + and GFAP + cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.

  8. Effect of dietary α-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2009-01-01

    A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary ??-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five levels for a total of fifteen dietary combinations (diets). Oxidative damage in liver and kidney (lipid peroxidation, protein carbonyls) and erythrocytes (erythrocyte resistance to peroxidative lysis, ERPL) was determined after feeding experimental diets for 16 (early December) and 28 (early March) weeks. Only TOCAA influenced oxidative stress in this study, with most measures of oxidative damage decreasing (liver lipid peroxidation in December and March; ERPL in December; liver protein carbonyl in March) with increasing levels of TOCAA. We also observed a TOCAA-stimulated increase in susceptibility of erythrocytes to peroxidative lysis in March at the highest levels of TOCAA. The data suggest that under most circumstances a progressive decrease in oxidative stress occurs as dietary TOCAA increases, but higher TOCAA concentrations can stimulate oxidative damage in some situations. Higher levels of TOCAA in the diet were required in March than in December to achieve comparable levels of protection against oxidative damage, which may have been due to physiological changes associated with the parr-smolt transformation. Erythrocytes appeared to be more sensitive to variation in dietary levels of TOCAA than liver and kidney tissues. Using the March ERPL assay results as a baseline, a TOCAA level of approximately 350-600 mg/kg diet would provide adequate protection against lipid peroxidation under most circumstances in juvenile Chinook salmon. ?? 2008 The Authors.

  9. Oxidative stress and APO E polymorphisms in Alzheimer's disease and in mild cognitive impairment.

    PubMed

    Chico, L; Simoncini, C; Lo Gerfo, A; Rocchi, A; Petrozzi, L; Carlesi, C; Volpi, L; Tognoni, G; Siciliano, G; Bonuccelli, U

    2013-08-01

    A number of evidences indicates oxidative stress as a relevant pathogenic factor in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Considering its recognized major genetic risk factors in AD, apolipoprotein (APO E) has been investigated in several experimental settings regarding its role in the process of reactive oxygen species (ROS) generation. The aim of this work has been to evaluate possible relationships between APO E genotype and plasma levels of selected oxidative stress markers in both AD and MCI patients. APO E genotypes were determined using restriction enzyme analysis. Plasma levels of oxidative markers, advanced oxidation protein products, iron-reducing ability of plasma and, in MCI, activity of superoxide dismutases were evaluated using spectrophotometric analysis. We found, compared to controls, increased levels of oxidized proteins and decreased values of plasma-reducing capacity in both AD patients (p < 0.0001) and MCI patients (p < 0.001); the difference between AD and MCI patients was significant only for plasma-reducing capacity (p < 0.0001), the former showing the lowest values. Superoxide dismutase activity was reduced, although not at statistical level, in MCI compared with that in controls. E4 allele was statistically associated (p < 0.05) with AD patients. When comparing different APO E genotype subgroups, no difference was present, as far as advanced oxidation protein products and iron-reducing ability of plasma levels were concerned, between E4 and non-E4 carriers, in both AD and MCI; on the contrary, E4 carriers MCI patients showed significantly decreased (p < 0.05) superoxide dismutase activity with respect to non-E4 carriers. This study, in confirming the occurrence of oxidative stress in AD and MCI patients, shows how it can be related, at least for superoxide dismutase activity in MCI, to APO E4 allele risk factor.

  10. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis

    PubMed Central

    Benoist d’Azy, Cédric; Pereira, Bruno; Chiambaretta, Frédéric

    2016-01-01

    Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: “oxidative stress” or “oxidant stress” or “nitrative stress” or “oxidative damage” or “nitrative damage” or “antioxidative stress” or “antioxidant stress” or “antinitrative stress” and “glaucoma”. We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20–2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84–1.74) to 2.62 in aqueous humor (95%CI 1.60–3.65). Despite a decrease in antioxidative stress marker in serum (effect size = –0.41; 95%CI –0.72 to –0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20–5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88–9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78–16.6, P < 0.001), and higher in pseudo-exfoliative glaucoma vs primary angle closed glaucoma (effect size = 12.2; 95%CI 8.96–15.5, P < 0.001). In conclusion, oxidative stress increased in glaucoma, both in serum and aqueous humor. Malonyldialdehyde seemed the best biomarkers of oxidative stress in serum. The increase of some antioxidant markers could be a protective response of the eye against oxidative stress. PMID:27907028

  11. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  12. Citric Acid Effects on Brain and Liver Oxidative Stress in Lipopolysaccharide-Treated Mice

    PubMed Central

    Youness, Eman R.; Mohammed, Nadia A.; Morsy, Safaa M. Youssef; Omara, Enayat A.; Sleem, Amany A.

    2014-01-01

    Abstract Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1–2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1–2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1–2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation. PMID:24433072

  13. The Protective Role of Dexpanthenol on the Endometrial Implants in an Experimentally Induced Rat Endometriosis Model.

    PubMed

    Soylu Karapinar, Oya; Pinar, Neslihan; Özgür, Tümay; Özcan, Oğuzhan; Bayraktar, H Suphi; Kurt, Raziye Keskin; Nural, Orhan

    2017-02-01

    Dexpanthenol (Dxp), antioxidant and anti-inflammatory agent, plays an important role in the repair systems against oxidative stress and inflammatory response. The objective of this study is to determine the effect of Dxp on experimental endometriosis model. A prospective experimental study was conducted in Experimental Animal Laboratory of Mustafa Kemal University, Hatay. Twenty nonpregnant female Wistar albino rats, in which experimental model of endometriosis was surgically induced, were randomly divided into 2 groups. Group 1 was administered 500 mg/kg/d Dxp intraperitoneally for 14 days, and group 2 was given the same amount of saline solution. After 2 weeks of medication, the rats were killed and implant volumes, histopathologic scores; and levels of serum total antioxidant status, total oxidant status (TOS), and oxidative stress index (OSI) were evaluated. Plasma and peritoneal fluid levels of tumor necrosis factor α (TNF-α) were analyzed. The endometriotic implant volumes, histopathologic scores, and serum TOS and OSI values were significantly decreased ( P < .05) in the Dxp group compared to the control group. Plasma and peritoneal fluid TNF-α levels were significantly decreased ( P < .05) in the Dxp group compared to the control group. Dexpanthenol has free radical scavenger effects, and antioxidant properties has significantly regressed endometriotic implant volumes, histopathologic scores, and serum TOS and OSI values. Serum and peritoneal fluid TNF-α levels were significantly decreased in the Dxp group. So Dxp decreased oxidative stress.

  14. Effect of 3-keto-1,5-bisphosphonates on obese-liver's rats.

    PubMed

    Lahbib, Karima; Touil, Soufiane

    2016-10-01

    Obesity is associated with an oxidative stress status, which is defined by an excess of reactive oxygen species (ROS) vs. the antioxidant defense system. We report in this present work, the link between fat deposition and oxidative stress markers using a High Fat Diet-(HFD) induced rat obesity and liver-oxidative stress. We further determined the impact of chronic administration of 3-keto-1, 5-BPs 1 (a & b) (40μg/kg/8 weeks/i.p.) on liver's level. In fact, exposure of rats to HFD during 16 weeks induced body and liver weight gain and metabolic disruption with an increase on liver Alanine amino transférase (ALAT) and Aspartate aminotransférase (ASAT) concentration. HFD increased liver calcium level as well as free iron, whereas, it provoked a decrease on liver lipase activity. HFD also induced liver-oxidative stress status vocalized by an increase in reactive oxygen species (ROS) as superoxide radical (O 2 ), hydroxyl radical (OH) and Hydrogen peroxide (H 2 O 2 ). Consequently, different deleterious damages as an increase on Malon Dialdehyde MDA, Carbonyl protein PC levels with a decrease in non-protein sulfhydryls NPSH concentrations, have been detected. Interestingly, our results demonstrate a decrease in antioxidant enzymes activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx) and peroxidases (POD). Importantly, 3-keto-1,5-bisphosphonates treatment corrected the majority of the deleterious effects caused by HFD, but it failed to correct some liver's disruptions as mineral profile, oxidative damages (PC and NPSH levels) as well as SOD and lipase activities. Our investigation point that 3-keto-1,5-bisphosphonates could be considered as safe antioxidant agents on the hepatic level that should also find other potential biological applications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Antioxidant responses to azinphos methyl and carbaryl during the embryonic development of the toad Rhinella (Bufo) arenarum Hensel.

    PubMed

    Ferrari, Ana; Lascano, Cecilia I; Anguiano, Olga L; D'Angelo, Ana M Pechen de; Venturino, Andrés

    2009-06-04

    Amphibian embryos are naturally exposed to prooxidant conditions throughout their development. Environmental exposure to contaminants may affect their capacity to respond to challenging conditions, to progress in a normal ontogenesis, and finally to survive and succeed in completing metamorphosis. We studied the effects of the exposure to two anticholinesterase agents, the carbamate carbaryl and the organophosphate azinphos methyl, on the antioxidant defenses of developing embryos of the toad Rhinella (Bufo) arenarum. Reduced glutathione (GSH) levels were increased early by carbaryl, but were decreased by both pesticides at the end of embryonic development. The GSH-dependent enzymes glutathione reductase and glutathione peroxidases showed oscillating activity patterns that could be attributed to an induction of activity in response to oxidative stress and inactivation by excess of reactive oxygen species. Glutathione-S-transferases, which may participate in the conjugation of lipid peroxide products in addition to pesticide detoxification, showed an increase of activity at the beginning and at the end of development. Catalase also showed variations in the activity suggesting, successively, induction and inactivation in response to pesticide exposure-induced oxidative stress. Superoxide dismutase activity was increased by carbaryl and transiently decreased by azinphos methyl exposure. Judging from the depletion in GSH levels and glutathione reductase inhibition at the end of embryonic development, the oxidative stress caused by azinphos methyl seemed to be greater than that caused by carbaryl, which might be in turn related with a higher number of developmental alterations caused by the organophosphate. GSH content is a good biomarker of oxidative stress in the developing embryos exposed to pesticides. The antioxidant enzymes are in turn revealing the balance between their protective capacity and the oxidative damage to the enzyme molecules, decreasing their activity.

  16. Vitamin E supplementation protects erythrocyte membranes from oxidative stress in healthy Chinese middle-aged and elderly people.

    PubMed

    Sun, Yongye; Ma, Aiguo; Li, Yong; Han, Xiuxia; Wang, Qiuzhen; Liang, Hui

    2012-05-01

    Elderly people are subject to higher levels of oxidative stress than are young people. Vitamin E, as a powerful antioxidant residing mainly in biomembranes, may provide effective protection against oxidative membrane damage and resultant age-related deterioration, especially in the elderly. We hypothesized that appropriate levels of vitamin E supplementation would protect erythrocyte membranes from oxidative stress and thus improve membrane fluidity in healthy middle-aged and elderly people. To test this, we conducted a 4-month double-blind, randomized trial in which 180 healthy subjects (55-70 years old) were randomly divided into 4 groups: group C (control), and 3 treatment groups in which daily doses of 100 mg (VE1), 200 mg (VE2), and 300 mg (VE3) dl-α-tocopheryl acetate were administered. We measured plasma α-tocopherol concentration, malondialdehyde, and superoxide dismutase levels, erythrocyte hemolysis, and erythrocyte membrane fluidity at the beginning and end of the trial. After 4 months supplementation, plasma α-tocopherol concentrations in the 3 treatment groups had increased by 71%, 78%, and 95%, respectively (all P < .01), and significant decreases in plasma malondialdehyde concentrations were observed in these groups (all P < .05). Erythrocyte hemolysis was decreased by 20% to 38% after vitamin E supplementation (all P < .05), and in addition, groups VE2 and VE3 showed dramatic improvements in erythrocyte membrane fluidity (P < .01). Surprisingly, superoxide dismutase activity also decreased significantly in the treatment groups (all P < .05). In summary, vitamin E supplementation apparently alleviates oxidative stress in healthy middle-aged to elderly people, at least in part by improving erythrocyte membrane fluidity and reducing erythrocyte hemolysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qiang; Gao, Bo; Wang, Long

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H{sub 2}O{sub 2}) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPARγ2) expression inmore » hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. - Highlights: • Myricitrin protects MC3T3-E1 cells and hBMSCs from oxidative stress. • It is accompanied by a decrease in oxidative stress and bone-resorbing cytokines. • Myricitrin decreases serum reactive oxygen species to some degree. • Myricitrin partly reverses ovariectomy effects in vivo. • Myricitrin may represent a beneficial anti-osteoporosis treatment method.« less

  18. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    PubMed

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  19. Role of oxidative stress in diabetic retinopathy and the beneficial effects of flavonoids.

    PubMed

    Ola, Mohammad Shamsul; Al-Dosari, Dalia; Alhomida, Abdullah S

    2018-05-15

    Diabetic retinopathy (DR) is one of the leading causes of decreased vision and blindness in developed countries. Diabetes-induced metabolic disorder is believed to increase oxidative stress in the retina. This results in deleterious changes through dysregulation of cellular physiology that damages both neuronal and vascular cells. Here in this review, we first highlight the evidence of potential metabolic sources and pathways which increase oxidative stress that contributes to retinal pathology in diabetes. As oxidative stress is a central factor in the pathophysiology of DR, antioxidants therapy would be beneficial towards preventing the retinal damage. A number of experimental studies by us and others showed that dietary flavonoids cause reduction in increased oxidative stress and other beneficial effects in diabetic retina. We then discuss the potential beneficial effects of the six major flavonoid families, such as flavonones, flavanols, flavonols, isoflavones, flavones and anthocyanins, which have been studied to improve retinal damage. Flanonoids, being known antioxidants, may ameliorate the retinal degenerative factors including apoptosis, inflammation and neurodegeneration in the diabetic retina. Therefore, intake of potential dietary flavonoids would limit oxidative stress and thereby prevent the retinal damage, and subsequently the development of DR. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Effect of total flavonoids of Spatholobus suberectus Dunn on PCV2 induced oxidative stress in RAW264.7 cells.

    PubMed

    Chen, Hai-Lan; Yang, Jian; Fu, Yuan-Fang; Meng, Xi-Nan; Zhao, Wei-Dan; Hu, Ting-Jun

    2017-05-02

    This study was carried out to investigate the effect of total flavonoids of Spatholobus suberectus Dunn (TFSD) on PCV2 induced oxidative stress in RAW264.7 cells. Oxidative stress model was established in RAW264.7 cells by infecting with PCV2. Virus infected cells were then treated with various concentrations (25 mg/ml, 50 mg/ml and 100 mg/ml) of TFSD. The levels of oxidative stress related molecules (NO, ROS, GSH and GSSG) and activities of associated enzymes (SOD, MPO and XOD were analyzed using ultraviolet spectrophotometry, fluorescence method and commercialized detection kits. PCV2 infection induced significant increase of NO secretion, ROS generation, GSSG content, activities of both XOD and MPO, and dramatically decrease of GSH content and SOD activity in RAW264.7 cells (P < 0.05). After treating with TFSD, PCV2 induced alteration of oxidative stress related molecule levels and enzyme activities were recovered to a level similar to control. Our findings indicated that TFSD was able to regulate oxidative stress induced by PCV2 infection in RAW264.7 cells, which supports the ethnomedicinal use of this herb as an alternative or complementary therapeutic drug for reactive oxygen-associated pathologies.

  1. Oxidative Stress, Motor Abilities, and Behavioral Adjustment in Children Treated for Acute Lymphoblastic Leukemia.

    PubMed

    Hockenberry, Marilyn J; Krull, Kevin R; Insel, Kathleen C; Harris, Lynnette L; Gundy, Patricia M; Adkins, Kristin B; Pasvogel, Alice E; Taylor, Olga A; Koerner, Kari M; Montgomery, David W; Ross, Adam K; Hill, Adam; Moore, Ida M

    2015-09-01

    To examine associations among oxidative stress, fine and visual-motor abilities, and behavioral adjustment in children receiving chemotherapy for acute lymphoblastic leukemia (ALL)
. A prospective, repeated-measures design
. Two pediatric oncology settings in the southwestern United States. 89 children with ALL were followed from diagnosis to the end of chemotherapy. Serial cerebrospinal fluid samples were collected during scheduled lumbar punctures and analyzed for oxidative stress biomarkers. Children completed fine motor dexterity, visual processing speed, and visual-motor integration measures at three time points. Parents completed child behavior ratings at the same times. Oxidative stress, fine motor dexterity, visual processing, visual-motor integration, and behavioral adjustment
. Children with ALL had below-average fine motor dexterity, visual processing speed, and visual-motor integration following the induction phase of ALL therapy. By end of therapy, visual processing speed normalized, and fine motor dexterity and visual-motor integration remained below average. Oxidative stress measures correlated with fine motor dexterity and visual-motor integration. Decreased motor functioning was associated with increased hyperactivity and anxiety
. Oxidative stress occurs following chemo-therapy for childhood ALL and is related to impaired fine motor skills and visual symptoms
. Early intervention should be considered to prevent fine motor and visual-spatial deficits, as well as behavioral problems.

  2. Beneficial effects of fermented sardinelle protein hydrolysates on hypercaloric diet induced hyperglycemia, oxidative stress and deterioration of kidney function in wistar rats.

    PubMed

    Jemil, Ines; Nasri, Rim; Abdelhedi, Ola; Aristoy, Maria-Concepción; Salem, Rabeb Ben Slama-Ben; Kallel, Choumous; Marrekchi, Rim; Jamoussi, Kamel; ElFeki, Abdelfattah; Hajji, Mohamed; Toldrá, Fidel; Nasri, Moncef

    2017-02-01

    This study investigated the potential effects of fermented sardinelle protein hydrolysates (FSPHs) obtained by two proteolytic bacteria, Bacillus subtilis A26 (FSPH-A26) and Bacillus amyloliquefaciens An6 (FSPH-An6), on hypercaloric diet (HCD) induced hyperglycemia and oxidative stress in rats. Effects of FSPHs on blood glucose level, glucose tolerance, α-amylase activity and hepatic glycogen content were investigated, as well as their effect on the oxidative stress state. Biochemical findings revealed that, while undigested sardinelle proteins did not exhibit hypoglycemic activity, oral administration of FSPHs to HCD-fed rats reduced significantly α-amylase activity as well as glycemia and hepatic glycogen levels. Further, the treatment with FSPHs improved the redox status by decreasing the levels of lipid peroxidation products and increasing the activities of the antioxidant enzymes (superoxide dismutase, glutathione peroxidase and catalase) and the level of glutathione in the liver and kidneys, as compared to those of HCD-fed rats. FSPHs were also found to exert significant protective effects on liver and kidney functions, evidenced by a marked decrease in alkaline phosphatase activity and a modulation of creatinine and uric acid contents. These results indicated the beneficial effect of FSPHs on the prevention from hyperglycemia and oxidative stress.

  3. Type 2 diabetic patients and their offspring show altered parameters of iron status, oxidative stress and genes related to mitochondrial activity.

    PubMed

    Le Blanc, Solange; Villarroel, Pia; Candia, Valeria; Gavilán, Natalia; Soto, Néstor; Pérez-Bravo, Francisco; Arredondo, Miguel

    2012-08-01

    Type 2 diabetes (T2D) is directly related to alterations in iron status, oxidative stress and decreased mitochondrial activity, but the possible interaction of these parameters among T2D patients and their offspring is unclear. The whole study included 301 subjects: 77 T2D patients and one of their offspring and 51 control subjects with one of their offspring. The offspring were older than 20 years old. We measured parameters of iron status (serum iron, ferritin and transferrin receptor), diabetes (pre and post-prandial glucose, insulin, lipids), oxidative stress (Heme oxygenase activity, TBARS, SOD, GSH, Vitamin E), as well as the expression of genes in blood leukocytes related to mitochondrial apopotosis (mitofusin and Bcl/Bax ratios). The offspring of T2D patients had increased levels of serum ferritin (P < 0.01) and lower transferrin receptor (P < 0.008); higher insulin (P < 0.03) and total and LDL cholesterol; higher heme oxygenase and SOD activities increased TBARS and lower GSH; decreased mitofusin and Bcl/Bax expression ratios compared to offspring of normal subjects. These results suggest that the offspring of T2D patients could have an increased metabolic risk of develop a cardiovascular disease mediated by oxidative stress and iron status.

  4. Exercise intensity, redox homeostasis and inflammation in type 2 diabetes mellitus.

    PubMed

    Mallard, Alistair R; Hollekim-Strand, Siri Marte; Coombes, Jeff S; Ingul, Charlotte B

    2017-10-01

    To compare 12 weeks of exercise training at two intensities on oxidative stress, antioxidants and inflammatory biomarkers in patients with type 2 diabetes (T2D). Randomized trial. Thirty-six participants with T2D were randomized to complete either 12 weeks of treadmill based high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT), followed by 40 weeks of home-based training at the same intensities. Plasma inflammation, oxidative stress and antioxidant biomarkers (total F2-isoprostanes, protein carbonyls, total antioxidant capacity, glutathione peroxidase activity, interleukin-10, interleukin-6, interleukin-8 and TNF-α) were measured at baseline, 12-weeks and 1-year. There were no significant changes (p>0.05) in oxidative stress and inflammation biomarkers from baseline to 12-weeks in either intervention. A decrease in total antioxidant capacity in the MICT group from baseline to 1-year by 0.05mmol/L (p=0.05) was observed. There was a significant difference (p<0.05) when groups were separated by sex with females in the MICT group having a 22.1% (p<0.05) decrease in protein carbonyls from baseline to 1-year. HIIT and MICT had no acute effect on oxidative stress and inflammatory biomarkers in patients with T2D. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. The additive effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 function in diabetic rats.

    PubMed

    Thongnak, Laongdao; Pongchaidecha, Anchalee; Jaikumkao, Krit; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn

    2017-10-19

    Hyperglycemia-induced oxidative stress is usually found in diabetic condition. 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, statins, are widely used as cholesterol-lowering medication with several "pleiotropic" effects in diabetic patients. This study aims to evaluate whether the protective effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 (Oat3) function involve the modulation of oxidative stress and pancreatic function in type 1 diabetic rats. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg BW). Atorvastatin and insulin as single or combined treatment were given for 4 weeks after diabetic condition had been confirmed. Diabetic rats demonstrated renal function and renal Oat3 function impairment with an increased MDA level and decreased SOD protein expression concomitant with stimulation of renal Nrf2 and HO-1 protein expression. Insulin plus atorvastatin (combined) treatment effectively restored renal function as well as renal Oat3 function which correlated with the decrease in hyperglycemia and oxidative stress. Moreover, pancreatic inflammation and apoptosis in diabetic rats were ameliorated by the combined drugs treatment. Therefore, atorvastatin plus insulin seems to exert the additive effect in improving renal functionby alleviating hyperglycemiaand the modulation of oxidative stress, inflammation and apoptosis.

  6. Expression of cytosolic NADP(+)-dependent isocitrate dehydrogenase in melanocytes and its role as an antioxidant.

    PubMed

    Kim, Ji Young; Shin, Jae Yong; Kim, Miri; Hann, Seung-Kyung; Oh, Sang Ho

    2012-02-01

    Cytosolic NADP(+)-dependent ICDH (IDPc) has an antioxidant effect as a supplier of NADPH to the cytosol, which is needed for the production of glutathione. To evaluate the expression of IDPc in melanocytes and to elucidate its role as an antioxidant. The knock-down of IDPc expression in immortalized mouse melanocyte cell lines (melan-a) was performed using the short interfering RNA (siRNA)-targeted gene silencing method. After confirming the silencing of IDPc expression with mRNA and protein levels, viability, apoptosis and necrosis, as well as ROS production in IDPc-silenced melanocytes were monitored under conditions of oxidative stress and non-stress. Also, the ratio of oxidized glutathione to total glutathione was examined, and whether the addition of glutathione recovered cell viability, decreased by oxidant stress, was checked. The expression of IDPc in both primary human melanocytes and melan-a cells was confirmed by Western blot and RT-PCR. The silencing of IDPc expression by transfecting IDPc siRNA in melan-a cells was observed by Western blotting and real-time RT-PCR. IDPc knock-down cells showed significantly decreased cell viability and an increased number of cells under apoptosis and necrosis. IDPc siRNA-treated melanocytes demonstrated a higher intensity of DCFDA after the addition of H(2)O(2) compared with scrambled siRNA-treated melanocytes, and a lower ratio of reduced glutathione to oxidized glutathione were observed in IDPc siRNA transfected melanocytes. In addition, the addition of glutathione recovered cell viability, which was previously decreased after incubation with H(2)O(2). This study suggests that decreased IDPc expression renders melanocytes more vulnerable to oxidative stress, and IDPc plays an important antioxidant function in melanocytes. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis.

    PubMed

    Zhai, Mengen; Li, Buying; Duan, Weixun; Jing, Lin; Zhang, Bin; Zhang, Meng; Yu, Liming; Liu, Zhenhua; Yu, Bo; Ren, Kai; Gao, Erhe; Yang, Yang; Liang, Hongliang; Jin, Zhenxiao; Yu, Shiqiang

    2017-09-01

    Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide-dependent histone deacetylases. Sirtuin-3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress-related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl-2 expression and decreased Bax, Caspase-3, and cleaved Caspase-3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3-targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Impact of placental Plasmodium falciparum malaria on the profile of some oxidative stress biomarkers in women living in Yaoundé, Cameroon.

    PubMed

    Megnekou, Rosette; Djontu, Jean Claude; Bigoga, Jude Daiga; Medou, Fabrice Mbah; Tenou, Sandrine; Lissom, Abel

    2015-01-01

    Impact of the pathophysiology of Plasmodium falciparum placental malaria (PM) on the profile of some oxidative stress biomarkers and their relationship with poor pregnancy outcomes in women remain unknown. Between 2013 and 2014, peripheral blood and placenta tissue from 120 Cameroonian women at delivery were assessed for maternal haemoglobin and, parasitaemia respectively. Parasite accumulation in the placenta was investigated histologically. The levels of oxidative stress biomarkers Malondialdehyde (MDA), Nitric Oxide (NO), Superoxide dismutase (SOD), Catalase (CAT) and Gluthatione (GSH) in the supernatant of teased placenta tissues were determined by Colorimetric enzymatic assays. Parasitaemia was inversely related to haemoglobin levels and birth weight (P <0.001 and 0.012, respectively). The level of lipid peroxide product (MDA) was significantly higher in the malaria infected (P = 0.0047) and anaemic (P = 0.024) women compared to their non-infected and non-anaemic counterparts, respectively. A similar trend was observed with SOD levels, though not significant. The levels of MDA also correlated positively with parasitaemia (P = 0.0024) but negatively with haemoglobin levels (P = 0.002). There was no association between parasitaemia, haemoglobin level and the other oxidative stress biomarkers. From histological studies, levels of MDA associated positively and significantly with placenta malaria infection and the presence of malaria pigments. The levels of SOD, NO and CAT increased with decreasing leukocyte accumulation in the intervillous space. Baby birth weight increased significantly with SOD and CAT levels, but decreased with levels of GSH. Placental P. falciparum infection may cause oxidative stress of the placenta tissue with MDA as a potential biomarker of PM, which alongside GSH could lead to poor pregnancy outcomes (anaemia and low birth weight). This finding contributes to the understanding of the pathophysiology of P. falciparum placental malaria in women.

  9. Healthy effect of different proportions of marine ω-3 PUFAs EPA and DHA supplementation in Wistar rats: Lipidomic biomarkers of oxidative stress and inflammation.

    PubMed

    Dasilva, Gabriel; Pazos, Manuel; García-Egido, Eduardo; Gallardo, Jose Manuel; Rodríguez, Isaac; Cela, Rafael; Medina, Isabel

    2015-11-01

    Dietary intervention with ω-3 marine fatty acids may potentially modulate inflammation and oxidative stress markers related with CVD, metabolic syndrome and cancer. The aim of this study was to evaluate whether different proportions of ω-3 EPA and DHA intake provoke a modulation of the production of lipid mediators and then, an influence on different indexes of inflammation and oxidative stress in a controlled dietary animal experiment using Wistar rats. For such scope, a lipidomic SPE-LC-ESI-MS/MS approach previously developed was applied to determine lipid mediators profile in plasma samples. The effect of ω-3 fatty acids associated to different ratios EPA:DHA was compared with the effect exerted by ω-3 ALA supplementation from linseed oil and ω-6 LA from soybean oil. CRP showed a tendency to greater inflammatory status in all ω-3-fed animals. Interestingly, ratios 1:1 and 2:1 EPA:DHA evidenced a noteworthy healthy effect generating a less oxidative environment and modulating LOX and COX activities toward a decrease in the production of proinflammatory ARA eicosanoids and oxidative stress biomarkers from EPA and DHA. In addition, the ability of 1:1 and 2:1 fish oil diets to reduce lipid mediator levels was in concurrence with the protective effect exerted by decreasing inflammatory markers as ω-6/ω-3 ratio in plasma and membranes. It was also highlighted the effect of a higher DHA amount in the diet reducing the healthy benefits described in terms of inflammation and oxidative stress. Results support the antiinflammatory and antioxidative role of fish oils and, particularly, the effect of adequate proportions EPA:DHA. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Corticotropin-releasing factor receptor-1 modulates biomarkers of DNA oxidation in Alzheimer’s disease mice

    PubMed Central

    Zhang, Cheng

    2017-01-01

    Increased production of hydroxyl radical is the main source of oxidative damage in mammalian DNA that accumulates in Alzheimer’s disease (AD). Reactive oxygen species (ROS) react with both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) to generate 8-hydroxy-2’-deoxyguanosine (8-OHdG), both of which can be measured in the urine. Knowledge of this pathway has positioned measurement of urine 8-OHdG as a reliable index of DNA oxidation and a potential biomarker target for tracking early cellular dysfunction in AD. Furthermore, epigenetic studies demonstrate decreased global DNA methylation levels (e.g. 5-methyl-2’-deoxycytidine, 5-mdC) in AD tissues. Moreover, stress hormones can activate neuronal oxidative stress which will stimulate the release of additional stress hormones and result in damages to hippocampal neurons in the AD brain. Our previous work suggests that treating AD transgenic mice the type-1 corticotropin-releasing factor receptor (CRFR1) antagonist, R121919, to reduce stress signaling, prevented onset of cognitive impairment, synaptic/dendritic loss and Aβ plaque accumulation. Therefore, to investigate whether levels of DNA oxidation can be impacted by the same therapeutic approach, urine levels of hydrogen peroxide, 8-OHdG, 5-mdC and total antioxidant capacity (TAC) were analyzed using an AD Tg mouse model. We found that Tg animals had an 80% increase in hydrogen peroxide levels compared to wild type (Wt) counterparts, an effect that could be dramatically reversed by the chronic administration with R121919. A significant decrease of 8-OHdG levels was observed in Tg mice treated with CRFR1 antagonist. Collectively our data suggest that the beneficial effects of CRFR1 antagonism seen in Tg mice may be mechanistically linked to the modulation of oxidative stress pathways. PMID:28750017

  11. Moderate endurance exercise in patients with sickle cell anaemia: effects on oxidative stress and endothelial activation.

    PubMed

    Faes, Camille; Balayssac-Siransy, Edwige; Connes, Philippe; Hivert, Ludovic; Danho, Clotaire; Bogui, Pascal; Martin, Cyril; Pialoux, Vincent

    2014-01-01

    Very few studies have investigated the effects of exercise on the biological parameters involved in vaso-occlusive events in sickle cell anaemia (SCA). The aim of this study was to test how a mild-moderate endurance exercise modulates oxidative stress, nitric oxide bioavailability and endothelial activation in SCA patients and healthy individuals. Eleven patients with SCA and 15 healthy subjects completed a 20-min duration submaximal cycling exercise at ≈45 Watts. Plasma markers of oxidative stress, antioxidant activity, endothelial activation and nitric oxide bioavailability were investigated before and after the exercise. Nitric oxide levels, anti-oxidant capacity, soluble (s)E-selectin and sP-selectin did not change in response to this exercise. Except for the malondialdehyde levels, which increased in the two groups, the other markers of oxidative stress remained unchanged in both groups in response to exercise. Soluble vascular cell adhesion molecule 1 levels were increased at the end of exercise in both groups. sL-selectin decreased and soluble intercellular adhesion molecule 1 increased with exercise in SCA patients only. The present data suggest that patients with SCA may undertake mild-moderate physical activities without any acute clinical complications, but care should be taken because oxidative stress and endothelial activation significantly increased in some patients. © 2013 John Wiley & Sons Ltd.

  12. Significance of Serum Total Oxidant/Antioxidant Status in Patients with Colorectal Cancer

    PubMed Central

    Yang, Yuwei; Dai, Chunmei; Lu, Anyang; Li, Jie; Liao, Yao; Xiang, Miao; Huang, Qingmei; Wang, Dong

    2017-01-01

    Oxidative stress is involved in a variety of diseases. Prospective studies investigating the relationship between oxidative stress biomarkers and the status and development of colorectal cancer (CRC) are scarce; previous studies have failed to establish a relationship between the serum total oxidant/antioxidant status and CRC. Therefore, we compared the total serum oxidant/antioxidant levels of CRC patients and healthy subjects, and analyzed their clinical significance in the CRC. Fasting blood samples from 132 CRC patients and 64 healthy subjects were collected. Oxidative stress parameters, including total oxidant status (TOS) and total antioxidant status (TAS), were measured, and the oxidative stress index (OSI) was calculated. The TOS and OSI levels increased significantly (P<0.001) and the TAS level significantly decreased (P<0.001) in the CRC group compared to those in the healthy control group. Oxidative stress parameters differed significantly depending on the patient’s smoking and drinking status (P<0.05). The preoperative and postoperative levels of TOS, TAS, and OSI did not differ significantly between primary sites (colon/rectum) and clinical stages (P>0.05).However, the levels of TOS, TAS, and OSI were significantly different between patients with no metastasis and those with metastases to two organs (P<0.05) Finally, the parameters are affected by smoking and drinking, and subsequent research should be conducted excluding the relevant influencing factors. PMID:28103261

  13. Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders.

    PubMed

    Pradhan, Arunava; Silva, Carla O; Silva, Carlos; Pascoal, Cláudia; Cássio, Fernanda

    2016-11-01

    Commercial applications of nanometal oxides have increased concern about their release into natural waters and consequent risks to aquatic biota and the processes they drive. In forest streams, the invertebrate shredder Allogamus ligonifer plays a key role in detritus food webs by transferring carbon and energy from plant litter to higher trophic levels. We assessed the response profiles of oxidative and neuronal stress enzymatic biomarkers in A. ligonifer after 96h exposure to nanoCuO at concentration ranges

  14. Attenuation of Oxidative Stress-Induced Cell Apoptosis in Schwann RSC96 Cells by Ocimum Gratissimum Aqueous Extract

    PubMed Central

    Chao, Pei-Yu; Lin, James A.; Ye, Je-Chiuan; Hwang, Jin-Ming; Ting, Wei-Jen; Huang, Chih-Yang; Liu, Jer-Yuh

    2017-01-01

    Objectives:Cell transplantation therapy of Schwann cells (SCs) is a promising therapeutic strategy after spinal cord injury. However, challenges such as oxidative stress hinder satisfactory cell viability and intervention for enhancing SCs survival is critical throughout the transplantation procedures. Ocimum gratissimum, widely used as a folk medicine in many countries, has therapeutic and anti-oxidative properties and may protect SCs survival. Methods:We examined the protective effects of aqueous O. gratissimum extract (OGE) against cell damage caused by H2O2-induced oxidative stress in RSC96 Schwann cells. Results:Our results showed that the RSC96 cells, damaged by H2O2 oxidative stress, decreased their viability up to 32% after treatment with different concentrations of up to 300 μM H2O2, but OGE pretreatment (150 or 200 μg/mL) increased cell viability by approximately 62% or 66%, respectively. Cell cycle analysis indicated a high (43%) sub-G1 cell population in the H2O2-treated RSC96 cells compared with untreated cells (1%); whereas OGE pretreatment (150 and 200 μg/mL) of RSC96 cells significantly reduced the sub-G1 cells (7% and 8%, respectively). Furthermore, Western blot analysis revealed that OGE pretreatment inhibited H2O2-induced apoptotic protein caspase-3 activation and PARP cleavage, as well as it reversed Bax up-regulation and Bcl-2 down-regulation. The amelioration of OGE of cell stress and stress-induced apoptosis was proved by the HSP70 and HSP72 decrease. Conclusion: Our data suggest that OGE may minimize the cytotoxic effects of H2O2-induced SCs apoptosis by modulating the apoptotic pathway and could potentially supplement cell transplantation therapy. PMID:28824312

  15. Lipid peroxidation in mice fed a choline-deficient diet as evaluated by total hydroxyoctadecadienoic acid.

    PubMed

    Yoshida, Yasukazu; Itoh, Nanako; Hayakawa, Mieko; Habuchi, Yoko; Inoue, Ruriko; Chen, Zhi-Hua; Cao, Jiaofei; Cynshi, Osamu; Niki, Etsuo

    2006-03-01

    The relevance of oxidative stress in mice fed a choline-deficient diet (CDD) was investigated in relation to the oxidative stress marker, hydroxyoctadecadienoic acid (HODE) in comparison with F2-isoprostanes. Further, the protective effects of antioxidants against oxidative damage were assessed by using HODE. We recently proposed total HODE as a biomarker for oxidative stress in vivo. Biological samples such as plasma, urine, and tissues were first reduced and then saponified to convert various oxidation products of linoleates to HODE. In the present study, this method was applied to measure oxidative damage in mice induced by CDD for 1 mo. CDD, when compared with choline-controlled diet (CCD), increased liver weight and fatty acid accumulation but the increase in body weight was less significant. Remarkable increases in HODE and 8-iso-prostaglandin F(2alpha) in liver and plasma were observed when mice were fed with the CDD for 1 mo compared with the CCD. The HODE level was about two to three orders higher than the F2-isoprostane level. This increase was decreased to the level of the CCD when alpha-tocopherol or 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran, a potent synthetic antioxidant, was mixed with the CDD. The stereoisomer ratio of HODE (9-and-13 (Z,E)-HODE/9-and-13 (E,E)-HODE) was decreased by CDD compared with CCD, which was spared by the addition of alpha-tocopherol and 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran. However, the increase in plasma glutamic-pyruvic transaminase and fatty acids in liver induced by the CDD was not recovered by any antioxidant. This study clearly demonstrated that oxidative stress was involved in fatty liver formation induced by the CDD and that HODE was a good biomarker for an oxidative stress in vivo.

  16. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats.

    PubMed

    Ide, Takashi

    2018-06-01

    We studied the combined effect of fish oil and α-lipoic acid on hepatic lipogenesis and fatty acid oxidation and parameters of oxidative stress in rats fed lipogenic diets high in sucrose. A control diet contained a saturated fat (palm oil) that gives high rate of hepatic lipogenesis. Male Sprague-Dawley rats were fed diets supplemented with 0 or 2.5 g/kg α-lipoic acid and containing 0, 20, or 100 g/kg fish oil, for 21 days. α-Lipoic acid significantly reduced food intake during 0-8 days but not the later period of the experiment. Fish oil and α-lipoic acid decreased serum lipid concentrations and their combination further decreased the parameters in an additive fashion. The combination of fish oil and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Fish oil increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid appeared to antagonize the stimulating effects of fish oil of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes. α-Lipoic acid attenuated fish oil-dependent increases in serum and liver malondialdehyde levels, and this compound also reduced the serum 8-hydroxy-2'-deoxyguanosine level. α-Lipoic acid affected various parameters related to the antioxidant system; fish oil also affected some of the parameters. The combination of fish oil and α-lipoic acid effectively reduced serum lipid levels through the additive down-regulation of hepatic lipogenesis. α-Lipoic acid was effective in attenuating fish oil-mediated oxidative stress.

  17. Housing in Pyramid Counteracts Neuroendocrine and Oxidative Stress Caused by Chronic Restraint in Rats

    PubMed Central

    Rao, Guruprasad; Murthy, K. Dilip; Bhat, P. Gopalakrishna

    2007-01-01

    The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC) housed in home cage and left in the laboratory; restrained rats (with three subgroups) subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC) having their restrainers kept in the laboratory; restrained pyramid rats (RP) being kept in the pyramid; and restrained square box rats (RS) in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA) and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH) levels, erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats. PMID:17342239

  18. GPER mediates the effects of 17β-estradiol in cardiac mitochondrial biogenesis and function.

    PubMed

    Sbert-Roig, Miquel; Bauzá-Thorbrügge, Marco; Galmés-Pascual, Bel M; Capllonch-Amer, Gabriela; García-Palmer, Francisco J; Lladó, Isabel; Proenza, Ana M; Gianotti, Magdalena

    2016-01-15

    Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17β-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with E2. Ovariectomy decreased markers of cardiac mitochondrial biogenesis and function and also increased oxidative stress, whereas E2 counteracted these effects. In H9c2 cardiomyocytes we observed that G-protein coupled estrogen receptor (GPER) agonist mimicked the effects of E2 in enhancing mitochondrial function and biogenesis, whereas GPER inhibitor neutralized them. These data suggest that E2 enhances mitochondrial function and decreases oxidative stress in cardiac muscle, thus it could be responsible for the sexual dimorphism observed in mitochondrial biogenesis and function in this tissue. These effects seem to be mediated through GPER stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Subcellular localization of proflavine derivative and induction of oxidative stress--in vitro studies.

    PubMed

    Ipóthová, Z; Paulíková, H; Cižeková, L; Hunáková, L; Labudová, M; Grolmusová, A; Janovec, L; Imrich, J

    2013-11-01

    Acridines have been studied for several decades because of their numerous biological effects, especially anticancer activity. Recently, cytotoxicity of novel acridine derivatives, 3,6-bis((1-alkyl-5-oxo-imidazolidin-2-yliden)imino)acridine hydrochlorides (AcrDIMs), was confirmed for leukemic cell lines [Bioorg. Med. Chem.2011, 19, 1790]. The mechanism of action of the most cytotoxic hexyl-AcrDIM was studied in this paper focusing attention on a subcellular distribution of the drug. Accumulation of hexyl-AcrDIM in mitochondria was confirmed after labeling mitochondria with MitoRED using ImageStream Imaging Flow Cytometer. The derivative significantly decreased intracellular ATP level (reduction of ATP level was decreased by vitamin E), and induced oxidative stress (ROS production detected by DHE assay) as well as cell cycle arrest in the S-phase (flow cytometry analysis) already after short-time incubation and induction of apoptosis. Cytotoxicity of hexyl-AcrDIM is closely connected with induction of oxidative stress in cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. [Free-radical reactions in diabetes mellitus].

    PubMed

    Mrowicka, Małgorzata

    2005-10-01

    Type 2 diabetes mellitus (DM), characterized by decreased insulin secretion, hypoinsulinemia and/or insulin resistance, accounts for 90% of all cases of DM. Oxidative stress is considered as an essential prerequisite for the pathogenesis of this disease. On one hand, current theory of oxidative stress is associated with autooxidation of glucose, which leads to the reactive ketoaldehydes formation, on the other hand it intensifies non-enzymatic glycation of proteins. The increase in reactive oxygen species (ROS) production and a decline in the activity of antioxidants is not only a result of hyperglycemia, but also of hyperinsulinemia and decreased tissue sensitivity to insulin. Because of a significant role of (ROS) in the pathogenesis of chronic diabetic complications, efforts should be made to diminish their toxic effects. Scientific research revealed that the best method for the prevention and treatment of diabetic complications was a long-term compensation of diabetes. To obtain optimal glycemia is crucial, since hyperglycemia is the main source of oxidative stress in patients with diabetes mellitus.

  1. MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism.

    PubMed

    Liao, Weitang; Fu, Zongjie; Zou, Yanfang; Wen, Dan; Ma, Hongkun; Zhou, Fangfang; Chen, Yongxi; Zhang, Mingjun; Zhang, Wen

    2017-11-15

    Oxidative stress was predominantly involved in the pathogenesis of acute kidney injury (AKI). Recent studies had reported the protective role of specific microRNAs (miRNAs) against oxidative stress. Hence, we investigated the levels of miR140-5p and its functional role in the pathogenesis of Cisplatin induced AKI. A mice Cisplatin induced-AKI model was established. We found that miR-140-5p expression was markedly increased in mice kidney. Bioinformatics analysis revealed nuclear factor erythroid 2-related factor (Nrf2) was a potential target of miR-140-5p, We demonstrated that miR-140-5p did not affect Kelch-like ECH-associated protein 1 (Keap1) level but directly targeted the 3'-UTR of Nrf2 mRNA and played a positive role in the regulation of Nrf2 expression which was confirmed by luciferase activity assay and western blot. What was more, consistent with miR140-5p expression, the mRNA and protein levels of Nrf2, as well as antioxidant response element (ARE)-driven genes Heme Oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase l (NQO1) were significantly increased in mice kidney tissues. In vitro study, Enforced expression of miR-140-5p in HK2 cells significantly attenuated oxidative stress by decreasing ROS level and increasing the expression of manganese superoxide dismutase (MnSOD). Simultaneously, miR-140-5p decreased lactate dehydrogenase (LDH) leakage and improved cell vitality in HK2 cells under Cisplatin-induced oxidative stress. However, HK2 cells transfected with a siRNA targeting Nrf2 abrogated the protective effects of miR-140-5p against oxidative stress. These results indicated that miR-140-5p might exert its anti-oxidative stress function via targeting Nrf2. Our findings showed the novel transcriptional role of miR140-5p in the expression of Nrf2 and miR-140-5p protected against Cisplatin induced oxidative stress by activating Nrf2-dependent antioxidant pathway, providing a potentially therapeutic target in acute kidney injury. Copyright © 2017. Published by Elsevier Inc.

  2. Assessment of hepatoprotective and nephroprotective potential of withaferin A on bromobenzene-induced injury in Swiss albino mice: possible involvement of mitochondrial dysfunction and inflammation.

    PubMed

    Vedi, Mahima; Sabina, Evan Prince

    2016-10-01

    Bromobenzene is a well-known environmental toxin which causes liver and kidney damage through CYP450-mediated bio-activation to generate reactive metabolites and, consequently, oxidative stress. The present study aimed to evaluate the possible protective role of withaferin A against bromobenzene-induced liver and kidney damage in mice. Withaferin A (10 mg/kg) was administered orally to the mice for 8 days before intragastric intubation of bromobenzene (10 mmol/kg). As results of this experiment, the levels of liver and kidney functional markers, lipid peroxidation, and cytokines (TNF-α and IL-1β) presented an increase and there was a decrease in anti-oxidant activity in the bromobenzene-treated group of mice. Pre-treatment with withaferin A not only significantly decreased the levels of liver and kidney functional markers and cytokines but also reduced oxidative stress, as evidenced by improved anti-oxidant status. In addition, the mitochondrial dysfunction shown through the decrease in the activities of mitochondrial enzymes and imbalance in the Bax/Bcl-2 expression in the livers and kidneys of bromobenzene-treated mice was effectively prevented by pre-administration of withaferin A. These results validated our conviction that bromobenzene caused liver and kidney damage via mitochondrial pathway and withaferin A provided significant protection against it. Thus, withaferin A may have possible usage in clinical liver and kidney diseases in which oxidative stress and mitochondrial dysfunction may be existent.

  3. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes.

    PubMed

    Buccigrossi, Vittoria; Laudiero, Gabriella; Russo, Carla; Miele, Erasmo; Sofia, Morena; Monini, Marina; Ruggeri, Franco Maria; Guarino, Alfredo

    2014-01-01

    Rotavirus (RV) infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4) enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS) in Caco-2 cells. The ratio between reduced (GSH) and oxidized (GSSG) glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC), a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb) has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.

  4. Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection.

    PubMed

    Bolukbas, Cengiz; Bolukbas, Fusun Filiz; Horoz, Mehmet; Aslan, Mehmet; Celik, Hakim; Erel, Ozcan

    2005-10-31

    Oxidative stress can be defined as an increase in oxidants and/or a decrease in antioxidant capacity. There is limited information about the oxidative status in subjects with hepatitis B virus infection. We aimed to evaluate the oxidative status in patients with various clinical forms of chronic hepatitis B infection. Seventy-six patients with hepatitis B virus infection, in whom 33 with chronic hepatitis, 31 inactive carriers and 12 with cirrhosis, and 16 healthy subjects were enrolled. Total antioxidant response and total peroxide level measurement, and calculation of oxidative stress index were performed in all participants. Total antioxidant response was significantly lower in cirrhotics than inactive HbsAg carriers and controls (p = 0.008 and p = 0.008, respectively). Total peroxide level and oxidative stress index was significantly higher in cirrhotic (p < 0.001, both) and chronic hepatitis B subjects (p < 0.001, both) than inactive HbsAg carriers and controls. Total antioxidant response was comparable in chronic hepatitis B subjects, inactive HbsAg carriers and controls (both, p > 0.05/6). Total peroxide level and oxidative stress index were also comparable in inactive HBsAg carriers and controls (both, p > 0.05/6). Serum alanine amino transferase level was positively correlated with total peroxide level and oxidative stress index only in chronic hepatitis B subjects (p = 0.002, r = 0.519 and p = 0.008, r = 0.453, respectively). Oxidative stress occurs secondarily to increased total lipid peroxidation and inadequate total antioxidant response and is related to severity of the disease and replication status of virus in hepatitis B infection.

  5. Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection

    PubMed Central

    Bolukbas, Cengiz; Bolukbas, Fusun Filiz; Horoz, Mehmet; Aslan, Mehmet; Celik, Hakim; Erel, Ozcan

    2005-01-01

    Background Oxidative stress can be defined as an increase in oxidants and/or a decrease in antioxidant capacity. There is limited information about the oxidative status in subjects with hepatitis B virus infection. We aimed to evaluate the oxidative status in patients with various clinical forms of chronic hepatitis B infection. Methods Seventy-six patients with hepatitis B virus infection, in whom 33 with chronic hepatitis, 31 inactive carriers and 12 with cirrhosis, and 16 healthy subjects were enrolled. Total antioxidant response and total peroxide level measurement, and calculation of oxidative stress index were performed in all participants. Results Total antioxidant response was significantly lower in cirrhotics than inactive HbsAg carriers and controls (p = 0.008 and p = 0.008, respectively). Total peroxide level and oxidative stress index was significantly higher in cirrhotic (p < 0.001, both) and chronic hepatitis B subjects (p < 0.001, both) than inactive HbsAg carriers and controls. Total antioxidant response was comparable in chronic hepatitis B subjects, inactive HbsAg carriers and controls (both, p > 0.05/6). Total peroxide level and oxidative stress index were also comparable in inactive HBsAg carriers and controls (both, p > 0.05/6). Serum alanine amino transferase level was positively correlated with total peroxide level and oxidative stress index only in chronic hepatitis B subjects (p = 0.002, r = 0.519 and p = 0.008, r = 0.453, respectively). Conclusion Oxidative stress occurs secondarily to increased total lipid peroxidation and inadequate total antioxidant response and is related to severity of the disease and replication status of virus in hepatitis B infection. PMID:16262897

  6. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis.

    PubMed

    Sun, Xin-Zhi; Liao, Ying; Li, Wei; Guo, Li-Mei

    2017-06-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H 2 O 2 ) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H 2 O 2 -induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.

  7. Unravelling the cross-talk between iron starvation and oxidative stress responses highlights the key role of PerR (alr0957) in peroxide signalling in the cyanobacterium Nostoc PCC 7120.

    PubMed

    Yingping, Fan; Lemeille, Sylvain; Talla, Emmanuel; Janicki, Annick; Denis, Yann; Zhang, Cheng-Cai; Latifi, Amel

    2014-10-01

    The cyanobacterial phylum includes oxygenic photosynthetic prokaryotes of a wide variety of morphologies, metabolisms and ecologies. Their adaptation to their various ecological niches is mainly achieved by sophisticated regulatory mechanisms and depends on a fine cross-talk between them. We assessed the global transcriptomic response of the filamentous cyanobacterium Nostoc PCC 7120 to iron starvation and oxidative stress. More than 20% of the differentially expressed genes in response to iron stress were also responsive to oxidative stress. These transcripts include antioxidant proteins-encoding genes that confirms that iron depletion leads to reactive oxygen accumulation. The activity of the Fe-superoxide dismutase was not significantly decreased under iron starvation, indicating that the oxidative stress generated under iron deficiency is not a consequence of (SOD) deficiency. The transcriptional data indicate that the adaptation of Nostoc to iron-depleted conditions displays important differences with what has been shown in unicellular cyanobacteria. While the FurA protein that regulates the response to iron deprivation has been well characterized in Nostoc, the regulators in charge of the oxidative stress response are unknown. Our study indicates that the alr0957 (perR) gene encodes the master regulator of the peroxide stress. PerR is a peroxide-sensor repressor that senses peroxide by metal-catalysed oxidation.

  8. Organs of BALB/c mice can be injured in course of tularemia.

    PubMed

    Pavlis, Oto; Kusakova, Eva; Novotny, Ladislav; Pohanka, Miroslav

    2014-12-01

    Francisella tularensis is a biological agent exploitable for bioterrorism and biological warfare purposes due to serious pathogenic progression and easy dissemination. Despite intensive research in the past, some adverse consequences remain unclear. One consequence of this pathogen is oxidative stress. The aim of this study was to undertake ex vivo assays for monitoring the disease in mice and increase our knowledge of the oxidative stress induced by tularemia. The mouse BALB/c model was chosen and the animals were infected by a dose 10(4) CFU of F. tularensis. After five days, the animals were euthanized. Blood immediately processed in plasma, spleen and liver were sampled from the cadavers. Oxidative stress markers, cytokines and histopathological were undertaken. There was a significant link between oxidative stress and tularemia. Particularly elevated levels of malondialdehyde and decreased levels of low molecular weight antioxidants were found in the liver and spleen of tularemia-infected animals. The histopathological findings correlated well with the oxidative stress markers. The liver and spleen were proven to be significantly at risk from the disease and an association between stress and neutrophils in the affected organs was found. The histopathology excluded risk to other organs such as the kidney and or heart. Oxidative stress plays a significant role in tularemia infection in mice and this was confirmed by the histology.

  9. Antioxidant potential properties of mushroom extract (Agaricus bisporus) against aluminum-induced neurotoxicity in rat brain.

    PubMed

    Waly, Mostafa I; Guizani, Nejib

    2014-09-01

    Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.

  10. Effects of a fruit-vegetable dietary pattern on oxidative stress and genetic damage in coke oven workers: a cross-sectional study.

    PubMed

    Xie, Zheng; Lin, Haijiang; Fang, Renfei; Shen, Weiwei; Li, Shuguang; Chen, Bo

    2015-05-06

    Coke oven workers (COWs) are exposed to high level of genotoxic chemicals that induce oxidative stress and genetic damage. The dietary intake of certain types of foods may reverse these effects. We conducted a cross-sectional study with 51 topside COWs, 79 other COWs, and 67 controls, to assess the effects of dietary patterns on oxidative stress and genetic damage. Compared to the controls, both topside and other COWs had significantly higher urinary 1-hydroxypyrene levels, serum oxidant levels [malondialdehyde, (MDA)], and genetic damage [micronucleus (MN) frequency & 8-oxo-2'-deoxyguanosine (8-OH-dG)], but lower antioxidant levels [superoxide dismutase (SOD) and glutathione peroxidase, (GPx)]. The fruit-vegetable (FV) dietary pattern was positively correlated with serum SOD levels and negative correlated with serum MDA, MN frequency, and urinary 8-OH-dG. COWs with an FV patter in the highest quartile (Q4) had significantly increased antioxidant levels (SOD and GPx) and decreased oxidant levels (MDA) and genetic damage (MN frequency and 8-OH-dG) than those with an FV pattern in the lowest quartile (Q1). Compared to control subjects, COWs had increased oxidative stress and genetic damage. A FV dietary pattern may reverse oxidative stress and genetic damage in COWs.

  11. Effects and Responses to Spaceflight in the Mouse Retina

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Theriot, Corey; Westby, Christian; Boyle, Richard

    2011-01-01

    Several stress environmental factors are combined in a unique fashion during spaceflight, affecting living beings widely across their physiological systems. Recently, attention has been placed on vision changes in astronauts returning from long duration missions. Alterations include hyperoptic shift, globe flattening, choroidal folds and optic disc edema, which are probably associated with increased intracranial pressure. These observations justify a better characterization of the ocular health risks associated with spaceflight. This study investigates the impact of spaceflight on the biology of the mouse retina. Within a successful tissue sharing effort, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (Animal Enclosure Module) mice were used as ground controls. Oxidative stress-induced DNA damage was higher in the flight samples compared to controls on R+1, and decreased on R+7. A trend toward higher oxidative and cellular stress response gene expression was also observed on R+1 compared to AEM controls, and these levels decreased on R+7. Several genes coding for key antioxidant enzymes, namely, heme-oxygenase-1, peroxiredoxin, and catalase, were among those upregulated after flight. Likewise, NF B and TGFbeta1, were upregulated in one flight specimen that overall showed the most elevated oxidative stress markers on R+1. In addition, retinas from vivarium control mice evidenced higher oxidative stress markers, NF B and TGFbeta1, likely due to the more intense illumination in vivarium cages versus the AEM. These preliminary data suggest that spaceflight represents a source of environmental stress that translates into oxidative and cellular stress in the retina, which is partially reversible upon return to Earth. Further work is needed to dissect the contribution of the various spaceflight factors (microgravity, radiation) and to evaluate the impact of the stress response on retinal health.

  12. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats.

    PubMed

    López-López, Ana Laura; Jaime, Herlinda Bonilla; Escobar Villanueva, María Del Carmen; Padilla, Malinalli Brianza; Palacios, Gonzalo Vázquez; Aguilar, Francisco Javier Alarcón

    2016-07-01

    Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the first work to report that the pancreas redox state is subject to chronic stress conditions. The TAC was constant in the liver and reduced in the pancreas. An increase in the TNF-α, IL-1β, and IL-6 inflammatory markers and a decrease in the IL-10 level due to CUMS was shown, thereby resulting in the generation of a systemic inflammation state after 60days of treatment. Together, the CUMS consequences on day 60 suggest that both processes can contribute to the development of chronic degenerative diseases, such as cardiovascular disease and diabetes mellitus. CUMS is an animal model that in addition to avoiding habituation activates damage mechanisms such as oxidative stress and low-grade chronic inflammation, which allows the study of physio-pathological stress aspects over prolonged time periods of at least 60days. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Resveratrol Prevents the Development of Hypertension Programmed by Maternal Plus Post-Weaning High-Fructose Consumption Through Modulation of Oxidative Stress, Nutrient-Sensing Signals, and Gut Microbiota.

    PubMed

    Tain, You-Lin; Lee, Wei-Chia; Wu, Kay L H; Leu, Steve; Chan, Julie Y H

    2018-04-30

    High-fructose (HF) intake, oxidative stress, nutrient-sensing signals, and gut microbiota dysbiosis are closely related to the development of hypertension. We investigated whether resveratrol can prevent hypertension induced by maternal plus post-weaning HF diets in adult offspring via the above-mentioned mechanisms. Female Sprague-Dawley rats received either a normal (ND) or 60% high-fructose (HF) diet during gestation and lactation. Male offspring were assigned to five groups (maternal diet/post-weaning diet; n = 8/group): ND/ND, ND/HF, HF/ND, HF/HF, and HF/HF+ Resveratrol. Resveratrol (50 mg/L) was administered in drinking water from weaning to three months of age. We found that HF/HF induced hypertension in adult offspring. Maternal HF diet altered gut microbiota composition in adult offspring, including decreasing the abundance of genera Bacteroides, Dysgonomonas, and Turicibacter, while increasing phylum Verrucomicrobia and Akkermansia muciniphila. Additionally, HF/HF diets increased oxidative stress and decreased renal mRNA expression of Prkaa2, Prkag2, Ppara, Pparb, Ppargc1a, and Sirt4. Resveratrol reduced renal oxidative stress, activated nutrient-sensing signals, modulated gut microbiota, and prevented associated HF/HF-induced programmed hypertension. Targeting oxidative stress, nutrient-sensing signals, and gut microbiota by resveratrol might be a useful therapeutic strategy for treatment of hypertension induced by excessive consumption of fructose in the adult rat offspring. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Mechanism of the anticataract effect of liposomal magnesium taurate in galactose-fed rats

    PubMed Central

    Iezhitsa, Igor; Saad, Sarah Diyana Bt; Zakaria, Fatin Kamilah Bt; Agarwal, Puneet; Krasilnikova, Anna; Rahman, Thuhairah Hasrah Abdul; Rozali, Khairul Nizam Bin; Spasov, Alexander; Ozerov, Alexander; Alyautdin, Renad; Ismail, Nafeeza Mohd

    2016-01-01

    Purpose Increased lenticular oxidative stress and altered calcium/magnesium (Ca/Mg) homeostasis underlie cataractogenesis. We developed a liposomal formulation of magnesium taurate (MgT) and studied its effects on Ca/Mg homeostasis and lenticular oxidative and nitrosative stress in galactose-fed rats. Methods The galactose-fed rats were topically treated with liposomal MgT (LMgT), liposomal taurine (LTau), or corresponding vehicles twice daily for 28 days with weekly anterior segment imaging. At the end of the experimental period, the lenses were removed and subjected to analysis for oxidative and nitrosative stress, Ca and Mg levels, ATP content, Ca2+-ATPase, Na+,K+-ATPase, and calpain II activities. Results The LTau and LMgT groups showed significantly lower opacity index values at all time points compared to the corresponding vehicle groups (p<0.001). However, the opacity index in the LMgT group was lower than that in the LTau group (p<0.05). Significantly reduced oxidative and nitrosative stress was observed in the LTau and LMgT groups. The lens Ca/Mg ratio in LMgT group was decreased by 1.15 times compared to that in the LVh group. Calpain II activity in the LMgT group was decreased by 13% compared to the LVh group. The ATP level and Na+,K+-ATPase and Ca2+-ATPase activities were significantly increased in the LMgT group compared to the LVh group (p<0.05). Conclusions Topical liposomal MgT delays cataractogenesis in galactose-fed rats by maintaining the lens mineral homeostasis and reducing lenticular oxidative and nitrosative stress. PMID:27440992

  15. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features.

    PubMed

    Ghezzo, Alessandro; Visconti, Paola; Abruzzo, Provvidenza M; Bolotta, Alessandra; Ferreri, Carla; Gobbi, Giuseppe; Malisardi, Gemma; Manfredini, Stefano; Marini, Marina; Nanetti, Laura; Pipitone, Emanuela; Raffaelli, Francesca; Resca, Federica; Vignini, Arianna; Mazzanti, Laura

    2013-01-01

    It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na(+)/K(+)-ATPase activity (-66%, p<0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD.

  16. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasperczyk, Sławomir, E-mail: kaslav@mp.pl; Dobrakowski, Michał; Kasperczyk, Janusz

    2014-10-01

    The aim of this study was to determine whether beta-carotene administration reduces oxidative stress and influences antioxidant, mainly glutathione-related, defense systems in workers chronically exposed to lead. The population consisted of two randomly divided groups of healthy male volunteers exposed to lead. Workers in the first group (reference group) were not administered any antioxidants, while workers in the second group (CAR group) were treated orally with 10 mg of beta-carotene once a day for 12 weeks. Biochemical analysis included measuring markers of lead-exposure and oxidative stress in addition to the levels and activities of selected antioxidants. After treatment, levels ofmore » malondialdehyde, lipid hydroperoxides and lipofuscin significantly decreased compared with the reference group. However, the level of glutathione significantly increased compared with the baseline. Treatment with beta-carotene also resulted in significantly decreased glutathione peroxidase activity compared with the reference group, while the activities of other glutathione-related enzymes and of superoxide dismutase were not significantly changed. However, the activities of glucose-6-phosphate dehydrogenase and catalase, as well as the level of alpha-tocopherol, were significantly higher after treatment compared with the baseline. Despite controversy over the antioxidant properties of beta-carotene in vivo, our findings showed reduced oxidative stress after beta-carotene supplementation in chronic lead poisoning. - Highlights: • Beta-carotene reduces oxidative stress in lead-exposed workers. • Beta-carotene elevates glutathione level in lead-exposed workers. • Beta-carotene administration could be beneficial in lead poisoning.« less

  17. Effects of Chronic Ghrelin Treatment on Hypoxia-Induced Brain Oxidative Stress and Inflammation in a Rat Normobaric Chronic Hypoxia Model.

    PubMed

    Omrani, Hasan; Alipour, Mohammad Reza; Farajdokht, Fereshteh; Ebrahimi, Hadi; Mesgari Abbasi, Mehran; Mohaddes, Gisou

    2017-06-01

    Omrani, Hasan, Mohammad Reza Alipour, Fereshteh Farajdokht, Hadi Ebrahimi, Mehran Mesgari Abbasi, and Gisou Mohaddes. Effects of chronic ghrelin treatment on hypoxia-induced brain oxidative stress and inflammation in a rat normobaric chronic hypoxia model. High Alt Med Biol. 18:145-151, 2017. This study aimed to evaluate the probable antioxidant effects of ghrelin in the brain and serum and its effect on tumor necrosis factor-alpha (TNF-α) levels in the brain in a model of chronic systemic hypoxia in rats. Systemic hypoxia was induced by a normobaric hypoxic chamber (O 2 11%) for ten days. Adult male Wistar rats were divided into control (C), chronic ghrelin (80 μg/kg/10 days) (Ghr), chronic hypoxia (CH), and CH and ghrelin (80 μg/kg/ip/10 days) (CH + Gh) groups. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and malondialdehyde (MDA), total antioxidant capacity, and TNF-α levels were assessed in the serum and brain tissue. Our results showed that chronic ghrelin administration attenuated the CH-increased oxidative stress by decreasing MDA levels in the serum and brain tissue. Moreover, ghrelin enhanced the antioxidant defense against hypoxia-induced oxidative stress in the serum and brain tissue. Brain TNF-α levels in CH did not change significantly; however, ghrelin significantly (p < 0.001) decreased it. These results indicated that ghrelin promoted antioxidative and anti-inflammatory defense under chronic exposure to hypoxia. Therefore, ghrelin might be used as a potential therapy in normobaric hypoxia and oxidative stress induced by CH.

  18. Effects of an Exercise Intervention on Cancer-Related Fatigue and Its Relationship to Markers of Oxidative Stress.

    PubMed

    Repka, Chris P; Hayward, Reid

    2018-06-01

    Although the underlying mechanisms of cancer-related fatigue (CRF) are not fully characterized, treatment-associated oxidative stress may play a role. The purpose of this study was to determine the effect of an exercise intervention on the relationship between CRF and oxidative stress. Upon cessation of radiation or chemotherapy, 8 cancer patients participated in a 10-week exercise intervention (EX), while 7 continued standard care (CON). Blood draws and fatigue questionnaires were administered to cancer patients before and after the intervention as well as to 7 age-matched individuals with no cancer history. Changes in plasma 8-hydroxy-deoxyguanosine (8-OHdG), protein carbonyls, antioxidant capacity, and fatigue were compared between groups. Correlations between CRF and oxidative stress were evaluated. Mean total fatigue scores decreased significantly (5.0 ± 2.2 to 2.6 ± 1.5, P < .05) in EX, but not in CON. Antioxidant capacity significantly increased (+41%; P < .05) and protein carbonyls significantly decreased (-36%; P < .05) in EX, but not in CON. Increases in antioxidant capacity were significantly correlated with reductions in affective ( r = -.49), sensory ( r = -.47), and cognitive fatigue ( r = -.58). Changes in total ( r = .46) and affective ( r = .47) fatigue exhibited significant correlations with changes in 8-OHdG over time, while behavioral ( r = .46) and sensory ( r = .47) fatigue changes were significantly correlated with protein carbonyls. Oxidative stress may be implicated in CRF, while improved antioxidant capacity following an exercise intervention may play a role in mitigating CRF in cancer survivors.

  19. Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor beta/delta and protects against fatty acid-induced oxidative stress.

    PubMed

    Georgiadi, Anastasia; Lichtenstein, Laeticia; Degenhardt, Tatjana; Boekschoten, Mark V; van Bilsen, Marc; Desvergne, Beatrice; Müller, Michael; Kersten, Sander

    2010-06-11

    Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.

  20. Plasma lipid peroxidation and erythrocyte antioxidant enzymes status in workers exposed to cadmium.

    PubMed

    Babu, Kalahasthi Ravi; Rajmohan, Hirehal Raghavendra Rao; Rajan, Bagalur Krishna Murthy; Kumar, Karuna M

    2006-09-01

    Cadmium (Cd) is a corrosion-resistant metal, used extensively for electroplating in the automobile, electronic and aerospace industry. Only a few studies are available regarding Cd-induced oxidative stress in animals, but no reports are available regarding the effects of Cd on oxidative stress during occupational exposure. The present study was carried out to determine the plasma lipid peroxidation and erythrocyte antioxidant enzymes status in workers exposed to Cd during electroplating. 50 subjects exposed to Cd during electroplating formed the study group. An equal number of age-sex matched subjects, working in the administrative section, formed the control group. Urinary Cd levels were determined using the flameless atomic absorption spectrophotometer. Plasma lipid peroxidation and erythrocyte antioxidant enzymes were determined using spectrophotometric methods. A significant increase of plasma lipid peroxidation and a significant decrease of superoxide dismutase and glutathione peroxidase levels were noted in the study group compared with the control group. The level of plasma lipid peroxidation was positively and erythrocyte antioxidant enzymes were negatively and significantly associated with Cd levels in urine. Multiple regression analysis assessed the oxidative stress associated with Cd and other lifestyle confounding factors, such as age, body mass index, the consumption of vegetables, coffee, tea, smoking and alcohol. Analysis showed that the lifestyle confounding factors viz; smoking, body mass index and urinary Cd levels > 5 microg/g of creatinine, were significantly associated with oxidative stress. The results of the present study suggest that increased plasma lipid peroxidation and decreased superoxide dismutase levels could be used as biomarkers of oxidative stress in cadmium-exposed workers.

  1. Increased Oxidative Stress Markers in Cerebrospinal Fluid from Healthy Subjects with Parkinson's Disease-Associated LRRK2 Gene Mutations.

    PubMed

    Loeffler, David A; Klaver, Andrea C; Coffey, Mary P; Aasly, Jan O; LeWitt, Peter A

    2017-01-01

    Mutations in the leucine-rich repeat kinase 2 ( LRRK2 ) gene are the most frequent cause of inherited Parkinson's disease (PD). The most common PD-associated LRRK2 mutation, G2019S, induces increased production of reactive oxygen species in vitro . We therefore hypothesized that individuals with PD-associated LRRK2 mutations might have increased concentrations of oxidative stress markers and/or decreased total antioxidant capacity (TAC) in their cerebrospinal fluid (CSF). We measured two oxidative stress markers, namely 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane (8-ISO), and TAC in CSF from LRRK2 mutation-bearing PD patients ( LRRK2 PD = 19), sporadic PD patients (sPD = 31), and healthy control subjects with or without these mutations ( LRRK2 CTL = 30, CTL = 27). 8-OHdG and 8-ISO levels were increased in LRRK2 CTL subjects, while TAC was similar between groups. 8-ISO was negatively correlated, and TAC was positively correlated, with Montreal Cognitive Assessment scores in LRRK2 PD, LRRK2 CTL, and CTL subjects. Correlations in both groups of PD patients between the two oxidative stress markers and Unified Parkinson Disease Rating Scale Total scores were weak, while TAC was negatively correlated with these scores. These findings suggest that oxidative stress may be increased in the CNS in healthy individuals with PD-associated LRRK2 mutations. Further, TAC may decrease in the CNS with the progression of PD, and when cognitive impairment is present regardless of the presence or absence of PD.

  2. Increased Oxidative Stress Markers in Cerebrospinal Fluid from Healthy Subjects with Parkinson’s Disease-Associated LRRK2 Gene Mutations

    PubMed Central

    Loeffler, David A.; Klaver, Andrea C.; Coffey, Mary P.; Aasly, Jan O.; LeWitt, Peter A.

    2017-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of inherited Parkinson’s disease (PD). The most common PD-associated LRRK2 mutation, G2019S, induces increased production of reactive oxygen species in vitro. We therefore hypothesized that individuals with PD-associated LRRK2 mutations might have increased concentrations of oxidative stress markers and/or decreased total antioxidant capacity (TAC) in their cerebrospinal fluid (CSF). We measured two oxidative stress markers, namely 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-isoprostane (8-ISO), and TAC in CSF from LRRK2 mutation-bearing PD patients (LRRK2 PD = 19), sporadic PD patients (sPD = 31), and healthy control subjects with or without these mutations (LRRK2 CTL = 30, CTL = 27). 8-OHdG and 8-ISO levels were increased in LRRK2 CTL subjects, while TAC was similar between groups. 8-ISO was negatively correlated, and TAC was positively correlated, with Montreal Cognitive Assessment scores in LRRK2 PD, LRRK2 CTL, and CTL subjects. Correlations in both groups of PD patients between the two oxidative stress markers and Unified Parkinson Disease Rating Scale Total scores were weak, while TAC was negatively correlated with these scores. These findings suggest that oxidative stress may be increased in the CNS in healthy individuals with PD-associated LRRK2 mutations. Further, TAC may decrease in the CNS with the progression of PD, and when cognitive impairment is present regardless of the presence or absence of PD. PMID:28420983

  3. Short-term very low calorie diet reduces oxidative stress in obese type 2 diabetic patients.

    PubMed

    Skrha, J; Kunesová, M; Hilgertová, J; Weiserová, H; Krízová, J; Kotrlíková, E

    2005-01-01

    Oxidative stress is higher in obese diabetic than in non-diabetic subjects. This pilot study evaluates oxidative stress during short-term administration of a very low calorie diet in obese persons. Nine obese Type 2 diabetic patients (age 55+/-5 years, BMI 35.9+/-1.9 kg/m2) and nine obese non-diabetic control subjects (age 52+/-6 years, BMI 37.3+/-2.1 kg/m2) were treated by a very low calorie diet (600 kcal daily) during 8 days stay in the hospital. Serum cholesterol, triglycerides, non-esterified fatty acids (NEFA), beta-hydroxybutyrate (B-HB), ascorbic acid (AA), alpha-tocopherol (AT), plasma malondialdehyde (MDA) and superoxide dismutase (SOD) activity in erythrocytes were measured before and on day 3 and 8 of very low calorie diet administration. A decrease of serum cholesterol and triglyceride concentrations on day 8 was associated with a significant increase of NEFA (0.30+/-0.13 vs. 0.47+/-0.11 micromol/l, p<0.001) and B-HB (0.36+/-.13 vs. 2.23+/-1.00 mmol/l, p<0.001) in controls but only of B-HB (1.11+/-0.72 vs. 3.02+/-1.95 mmol/l, p<0.001) in diabetic patients. A significant decrease of plasma MDA and serum AT together with an increase of SOD activity and AA concentration (p<0.01) was observed in control persons, whereas an increase of SOD activity (p<0.01) was only found in diabetic patients after one week of the very low calorie diet. There was a significant correlation between NEFA or B-HB and SOD activity (p<0.01). We conclude that one week of a very low calorie diet administration decreases oxidative stress in obese non-diabetic but only partly in diabetic persons. Diabetes mellitus causes a greater resistance to the effects of a low calorie diet on oxidative stress.

  4. Oxidative stress response of Forster's terns (Sterna forsteri) and Caspian terns (Hydroprogne caspia) to mercury and selenium bioaccumulation in liver, kidney, and brain

    USGS Publications Warehouse

    Hoffman, David J.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Adelsbach, Terrence L.; Stebbins, Katherine R.

    2011-01-01

    Bioindicators of oxidative stress were examined in prebreeding and breeding adult and chick Forster's terns (Sterna forsteri) and in prebreeding adult Caspian terns (Hydroprogne caspia) in San Francisco Bay, California. Highest total mercury (THg) concentrations (mean±standard error;μg/g dry wt) in liver (17.7±1.7), kidney (20.5±1.9), and brain (3.0±0.3) occurred in breeding adult Forster's terns. The THg concentrations in liver were significantly correlated with hepatic depletion of reduced glutathione (GSH), increased oxidized glutathione (GSSG):GSH ratio, and decreased hepatic gamma-glutamyl transferase (GGT) activity in adults of both tern species. Prefledging Forster's tern chicks with one-fourth the hepatic THg concentration of breeding adults exhibited effects similar to adults. Total mercury-related renal GSSG increased in adults and chicks. In brains of prebreeding adults, THg was correlated with a small increase in glucose-6-phosphate dehydrogenase (G-6-PDH) activity, suggestive of a compensatory response. Brain THg concentrations were highest in breeding adult Forster's terns and brain tissue exhibited increased lipid peroxidation as thiobarbituric acid-reactive substances, loss of protein bound thiols (PBSH), and decreased activity of antioxidant enzymes, GSSG reductase (GSSGrd), and G-6-PDH. In brains of Forster's tern chicks there was a decrease in total reduced thiols and PBSH. Multiple indicator responses also pointed to greater oxidative stress in breeding Forster's terns relative to prebreeding terns, attributable to the physiological stress of reproduction. Some biondicators also were related to age and species, including thiol concentrations. Enzymes GGT, G-6-PDH, and GSSGred activities were related to species. Our results indicate that THg concentrations induced oxidative stress in terns, and suggest that histopathological, immunological, and behavioral effects may occur in terns as reported in other species.

  5. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development.

    PubMed

    Tang, Qian; Zheng, Gang; Feng, Zhenhua; Chen, Yu; Lou, Yiting; Wang, Chenggui; Zhang, Xiaolei; Zhang, Yu; Xu, Huazi; Shang, Ping; Liu, Haixiao

    2017-10-05

    Oxidative stress-related apoptosis and autophagy play crucial roles in the development of osteoarthritis (OA), a progressive cartilage degenerative disease with multifactorial etiologies. Here, we determined autophagic flux changes and apoptosis in human OA and tert-Butyl hydroperoxide (TBHP)-treated chondrocytes. In addition, we explored the potential protective effects of trehalose, a novel Mammalian Target of Rapamycin (mTOR)-independent autophagic inducer, in TBHP-treated mouse chondrocytes and a destabilized medial meniscus (DMM) mouse OA model. We found aberrant p62 accumulation and increased apoptosis in human OA cartilage and chondrocytes. Consistently, p62 and cleaved caspase-3 levels increased in mouse chondrocytes under oxidative stress. Furthermore, trehalose restored oxidative stress-induced autophagic flux disruption and targeted autophagy selectively by activating BCL2 interacting protein 3 (BNIP3) and Phosphoglycerate mutase family member 5 (PGAM5). Trehalose could ameliorate oxidative stress-mediated mitochondrial membrane potential collapse, ATP level decrease, dynamin-related protein 1 (drp-1) translocation into the mitochondria, and the upregulation of proteins involved in mitochondria and endoplasmic reticulum (ER) stress-related apoptosis pathway. In addition, trehalose suppressed the cleavage of caspase 3 and poly(ADP-ribose) polymerase (PARP) and prevented DNA damage under oxidative stress. However, the anti-apoptotic effects of trehalose in TBHP-treated chondrocytes were partially abolished by autophagic flux inhibitor chloroquine and BNIP3- siRNA. The protective effect of trehalose was also found in mouse OA model. Taken together, these results indicate that trehalose has anti-apoptotic effects through the suppression of oxidative stress-induced mitochondrial injury and ER stress which is dependent on the promotion of autophagic flux and the induction of selective autophagy. Thus, trehalose is a promising therapeutic agent for OA.

  6. Photoelastic response of permanently densified oxide glasses

    NASA Astrophysics Data System (ADS)

    Bechgaard, Tobias K.; Mauro, John C.; Thirion, Lynn M.; Rzoska, Sylwester J.; Bockowski, Michal; Smedskjaer, Morten M.

    2017-05-01

    The stress-induced birefringence (photoelastic response) in oxide glasses has important consequences for several applications, including glass for flat panel displays, chemically strengthened cover glass, and advanced optical glasses. While the effect of composition on the photoelastic response is relatively well documented, the effect of pressure has not been systematically studied. In this work, we evaluate the effect of hot isostatic compression on the photoelastic response of ten oxide glasses within two commonly used industrial glass families: aluminosilicates and boroaluminosilicates. Hot isostatic compression generally results in decreasing modifier-oxygen bond lengths and increasing network-former coordination numbers. These structural changes should lead to an increase in the stress optic coefficient (C) according to the model of Zwanziger et al., which can successfully predict the composition and structure dependence of C. However, in compressed glasses, we observe the opposite trend, viz., a decrease in the stress optic coefficient as a result of pressurization. We discuss this result based on measured changes in refractive index and elastic moduli within the context of atomic and lattice effects, building on the pioneering work of Mueller. We propose that the pressure-induced decrease in C is a result of changes in the shear modulus due to underlying topological changes in the glass network.

  7. Metabolomic and oxidative effects of quantum dots-indolicidin on three generations of Daphnia magna.

    PubMed

    Falanga, Annarita; Mercurio, Flavia A; Siciliano, Antonietta; Lombardi, Lucia; Galdiero, Stefania; Guida, Marco; Libralato, Giovanni; Leone, Marilisa; Galdiero, Emilia

    2018-05-01

    This study evaluated the effect of QDs functionalized with the antimicrobial peptide indolicidin on oxidative stress and metabolomics profiles of Daphnia magna across three generations (F0, F1, and F2). Exposing D. magna to sub-lethal concentrations of the complex QDs-indolicidin, a normal survival of daphnids was observed from F0 to F2, but a delay of first brood, fewer broods per female, a decrease of length of about 50% compared to control. In addition, QDs-indolicidin induced a significantly higher production of reactive oxygen species (ROS) gradually in each generation and an impairment of enzymes response to oxidative stress such as superoxide dismutase (SOD), catalase (CAT) and glutathione transferase (GST). Effects were confirmed by metabolomics profiles that pointed out a gradual decrease of metabolomics content over the three generations and a toxic effect of QDs-indolicidin likely related to the higher accumulation of ROS and decreased antioxidant capacity in F1 and F2 generations. Results highlighted the capability of metabolomics to reveal an early metabolic response to stress induced by environmental QDs-indolicidin complex. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes

    PubMed Central

    Gordon, Lorenzo A; Morrison, Errol Y; McGrowder, Donovan A; Young, Ronald; Fraser, Yeiny Terry Pena; Zamora, Eslaen Martorell; Alexander-Lindo, Ruby L; Irving, Rachael R

    2008-01-01

    Background Yoga has been shown to be a simple and economical therapeutic modality that may be considered as a beneficial adjuvant for type 2 diabetes mellitus. This study investigated the impact of Hatha yoga and conventional physical training (PT) exercise regimens on biochemical, oxidative stress indicators and oxidant status in patients with type 2 diabetes. Methods This prospective randomized study consisted of 77 type 2 diabetic patients in the Hatha yoga exercise group that were matched with a similar number of type 2 diabetic patients in the conventional PT exercise and control groups. Biochemical parameters such as fasting blood glucose (FBG), serum total cholesterol (TC), triglycerides, low-density lipoprotein (LDL), very low-density lipoproteins (VLDL) and high-density lipoprotein (HDL) were determined at baseline and at two consecutive three monthly intervals. The oxidative stress indicators (malondialdehyde – MDA, protein oxidation – POX, phospholipase A2 – PLA2 activity) and oxidative status [superoxide dismutase (SOD) and catalase activities] were measured. Results The concentrations of FBG in the Hatha yoga and conventional PT exercise groups after six months decreased by 29.48% and 27.43% respectively (P < 0.0001) and there was a significant reduction in serum TC in both groups (P < 0.0001). The concentrations of VLDL in the managed groups after six months differed significantly from baseline values (P = 0.036). Lipid peroxidation as indicated by MDA significantly decreased by 19.9% and 18.1% in the Hatha yoga and conventional PT exercise groups respectively (P < 0.0001); whilst the activity of SOD significantly increased by 24.08% and 20.18% respectively (P = 0.031). There was no significant difference in the baseline and 6 months activities of PLA2 and catalase after six months although the latter increased by 13.68% and 13.19% in the Hatha yoga and conventional PT exercise groups respectively (P = 0.144). Conclusion The study demonstrate the efficacy of Hatha yoga exercise on fasting blood glucose, lipid profile, oxidative stress markers and antioxidant status in patients with type 2 diabetes and suggest that Hatha yoga exercise and conventional PT exercise may have therapeutic preventative and protective effects on diabetes mellitus by decreasing oxidative stress and improving antioxidant status. Trial Registration Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12608000217303 PMID:18477407

  9. Effects of negative gate-bias stress on the performance of solution-processed zinc-oxide transistors

    NASA Astrophysics Data System (ADS)

    Kim, Dongwook; Lee, Woo-Sub; Shin, Hyunji; Choi, Jong Sun; Zhang, Xue; Park, Jaehoon; Hwang, Jaeeun; Kim, Hongdoo; Bae, Jin-Hyuk

    2014-08-01

    We studied the effects of negative gate-bias stress on the electrical characteristics of top-contact zinc-oxide (ZnO) thin-film transistors (TFTs), which were fabricated by spin coating a ZnO solution onto a silicon-nitride gate dielectric layer. The negative gate-bias stress caused characteristic degradations in the on-state currents and the field-effect mobility of the fabricated ZnO TFTs. Additionally, a decrease in the off-state currents and a positive shift in the threshold voltage occurred with increasing stress time. These results indicate that the negative gate-bias stress caused an injection of electrons into the gate dielectric, thereby deteriorating the TFT's performance.

  10. Commonly consumed and naturally occurring dietary substances affect biomarkers of oxidative stress and DNA damage in healthy rats.

    PubMed

    Farombi, E O; Hansen, M; Ravn-Haren, G; Møller, P; Dragsted, L O

    2004-08-01

    The influence of black currant juice, Bowman-Birk protease inhibitor (BBI), kolaviron (a biflavonoid fraction of Garcinia kola seed), sugars, vitamin C and tert-butyl hydroperoxide on a wide range of biomarkers for oxidative stress, DNA damage and sugar or lipid metabolism has been investigated in male F 344 rats. The selected pro-oxidant control, tert-butyl hydroperoxide, significantly increased plasma and liver 2-amino-adipic semialdehyde (AAS), a marker of protein oxidation (p <0.05) whereas lipid oxidation assessed as malon dialdehyde (MDA) and DNA oxidation were not significantly increased. Feeding BBI also increased the level of oxidized protein in plasma and liver at the higher dose level (0.5%). No effect was observed at the lower dose level (0.25%), which even decreased lipid oxidation in plasma. BBI did not affect background levels of DNA strand breaks or oxidation (comets). In rats exposed to black currant juice, a statistically significant decrease in liver AAS and MDA was observed. This effect could not be explained by its content of sugars or of the known redox active constituent, vitamin C. The lowering effect of black currant juice on protein and lipid oxidation was similar in magnitude to that of the known liver protectant, kolaviron. In rats treated with kolaviron (200 mg/kg body weight), background AAS levels were significantly reduced in both plasma and liver whereas the effect on MDA only reached statistical significance in plasma. Kolaviron was the only extract tested which decreased oxidative damage to DNA in the liver. The erythrocyte antioxidant enzyme activities, catalase and glutathione peroxidase were decreased in rats treated with tert-butyl hydroperoxide (p <0.05) but were not affected by the other treatments. Black currant juice and sugars increased plasma triglyceride levels and black currant juice increased plasma cholesterol but neither of them nor any other treatment affected blood glucose, erythrocyte HbA1c or fructosamine. We conclude that markers of oxidative stress may be modified by several mechanisms after feeding rats with complex dietary factors and that both pro- and antioxidant effects may consequently be observed simultaneously after short-term feeding of antioxidant-rich foods, herb medicines, or known pro- and antioxidants.

  11. Extremely Low Frequency Magnetic Field (50 Hz, 0.5 mT) Reduces Oxidative Stress in the Brain of Gerbils Submitted to Global Cerebral Ischemia

    PubMed Central

    Rauš Balind, Snežana; Selaković, Vesna; Radenović, Lidija; Prolić, Zlatko; Janać, Branka

    2014-01-01

    Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7 days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were examined in the forebrain cortex, striatum and hippocampus on the 7th (immediate effect of ELF-MF) and 14th day after reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7th and 14th day after reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7th day after reperfusion, but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14th day after reperfusion, oxidative stress parameters in the brain of these gerbils were mostly at the control levels. Applied ELF-MF decreases oxidative stress induced by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in the brain. The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral ischemia. PMID:24586442

  12. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster

    PubMed Central

    Ng, Cheng Teng; Yong, Liang Qing; Hande, Manoor Prakash; Ong, Choon Nam; Yu, Liya E; Bay, Boon Huat; Baeg, Gyeong Hun

    2017-01-01

    Background Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. Methods In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster. A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. Results For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript (DDIT3) and endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. Conclusion The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would be needed to verify the safety issues related to increased usage of ZnO NPs by consumers. PMID:28280330

  13. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster.

    PubMed

    Ng, Cheng Teng; Yong, Liang Qing; Hande, Manoor Prakash; Ong, Choon Nam; Yu, Liya E; Bay, Boon Huat; Baeg, Gyeong Hun

    2017-01-01

    Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster . A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript ( DDIT3 ) and endoplasmic reticulum (ER) to nucleus signaling 1 ( ERN1 ) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would be needed to verify the safety issues related to increased usage of ZnO NPs by consumers.

  14. Cold-stress response during the stationary-growth phase of Antarctic and temperate-climate Penicillium strains.

    PubMed

    Miteva-Staleva, Jeni G; Krumova, Ekaterina T; Vassilev, Spassen V; Angelova, Maria B

    2017-07-01

    Cold-induced oxidative stress during the aging of three Penicillium strains (two Antarctic and one from a temperate region) in stationary culture was documented and demonstrated a significant increase in the protein carbonyl content, the accumulation of glycogen and trehalose, and an increase in the activities of antioxidant enzymes (superoxide dismutase and catalase). The cell response to a temperature downshift depends on the degree of stress and the temperature characteristics of the strains. Our data give further support for the role of oxidative stress in the aging of fungi in stationary cultures. Comparing the present results for the stationary growth phase with our previous results for the exponential growth phase was informative concerning the relationship between the cold-stress response and age-related changes in the tested strains. Unlike the young cells, stationary-phase cultures demonstrated a more pronounced level of oxidative damage, as well as decreased antioxidant defence.

  15. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging.

    PubMed

    Lustgarten, Michael S; Jang, Youngmok C; Liu, Yuhong; Qi, Wenbo; Qin, Yuejuan; Dahia, Patricia L; Shi, Yun; Bhattacharya, Arunabh; Muller, Florian L; Shimizu, Takahiko; Shirasawa, Takuji; Richardson, Arlan; Van Remmen, Holly

    2011-06-01

    In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice (TnIFastCreSod2(fl/fl) mice). In this study, we used TnIFastCreSod2(fl/fl) mice to examine the effect of elevated oxidative stress on mitochondrial function and to test the hypothesis that elevated oxidative stress and decreased mitochondrial function over the lifespan of the TnIFastCreSod2(fl/fl) mice would be sufficient to accelerate muscle atrophy associated with aging. We found that mitochondrial function is reduced in both young and old TnIFastCreSod2(fl/fl) mice, when compared with control mice. Complex II activity is reduced by 47% in young and by approximately 90% in old TnIFastCreSod2(fl/fl) mice, and was found to be associated with reduced levels of the catalytic subunits for complex II, SDHA and SDHB. Complex II-linked mitochondrial respiration is reduced by approximately 70% in young TnIFastCreSod2(fl/fl) mice. Complex II-linked mitochondrial Adenosine-Tri-Phosphate (ATP) production is reduced by 39% in young and was found to be almost completely absent in old TnIFastCreSod2(fl/fl) mice. Furthermore, in old TnIFastCreSod2(fl/fl) mice, aconitase activity is almost completely abolished; mitochondrial superoxide release remains > 2-fold elevated; and oxidative damage (measured as F(2) - isoprostanes) is increased by 30% relative to age-matched controls. These data show that despite elevated skeletal muscle-specific mitochondrial oxidative stress, oxidative damage, and complex II-linked mitochondrial dysfunction, age-related muscle atrophy was not accelerated in old TnIFastCreSod2(fl/fl) mice, suggesting mitochondrial oxidative stress may not be causal for age-related muscle atrophy. No claim to original US government works. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  16. Serum Oxidative Stress-Induced Repression of Nrf2 and GSH Depletion: A Mechanism Potentially Involved in Endothelial Dysfunction of Young Smokers

    PubMed Central

    Fratta Pasini, Anna; Albiero, Anna; Stranieri, Chiara; Cominacini, Mattia; Pasini, Andrea; Mozzini, Chiara; Vallerio, Paola; Cominacini, Luciano; Garbin, Ulisse

    2012-01-01

    Background Although oxidative stress plays a major role in endothelial dysfunction (ED), the role of glutathione (GSH), of nuclear erythroid-related factor 2 (Nrf2) and of related antioxidant genes (ARE) are yet unknown. In this study we combined an in vivo with an in vitro model to assess whether cigarette smoking affects flow-mediated vasodilation (FMD), GSH concentrations and the Nrf2/ARE pathway in human umbilical vein endothelial cells (HUVECs). Methods and Results 52 healthy subjects (26 non-smokers and 26 heavy smokers) were enrolled in this study. In smokers we demonstrated increased oxidative stress, i.e., reduced concentrations of GSH and increased concentrations of oxidation products of the phospholipid 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC) in serum and in peripheral blood mononuclear cells (PBMC), used as in vivo surrogates of endothelial cells. Moreover we showed impairment of FMD in smokers and a positive correlation with the concentration of GSH in PBMC of all subjects. In HUVECs exposed to smokers' serum but not to non-smokers' serum we found that oxidative stress increased, whereas nitric oxide and GSH concentrations decreased; interestingly the expression of Nrf2, of heme oxygenase-1 (HO-1) and of glutamate-cysteine ligase catalytic (GCLC) subunit, the rate-limiting step of synthesis of GSH, was decreased. To test the hypothesis that the increased oxidative stress in smokers may have a causal role in the repression of Nrf2/ARE pathway, we exposed HUVECs to increasing concentrations of oxPAPC and found that at the highest concentration (similar to that found in smokers' serum) the expression of Nrf2/ARE pathway was reduced. The knockdown of Nrf2 was associated to a significant reduction of HO-1 and GCLC expression induced by oxPAPC in ECs. Conclusions In young smokers with ED a novel further consequence of increased oxidative stress is a repression of Nrf2/ARE pathway leading to GSH depletion. PMID:22272327

  17. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Lawler, John M.; Song, Wook; Demaree, Scott R.; Bloomfield, S. A. (Principal Investigator)

    2003-01-01

    Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.

  18. Modification in oxidative processes in muscle tissues exposed to laser- and light-emitting diode radiation.

    PubMed

    Monich, Victor A; Bavrina, Anna P; Malinovskaya, Svetlana L

    2018-01-01

    Exposure of living tissues to high-intensity red or near-infrared light can produce the oxidative stress effects both in the target zone and adjacent ones. The protein oxidative modification (POM) products can be used as reliable and early markers of oxidative stress. The contents of modified proteins in the investigated specimens can be evaluated by the 2,4-dinitrophenylhydrazine assay (the DNPH assay). Low-intensity red light is able to decrease the activity of oxidative processes and the DNPH assay data about the POM products in the biological tissues could show both an oxidative stress level and an efficiency of physical agent protection against the oxidative processes. Two control groups of white rats were irradiated by laser light, the first control group by red light and the second one by near-infrared radiation (NIR).Two experimental groups were consequently treated with laser and red low-level light-emitting diode radiation (LED). One of them was exposed to red laser light + LED and the other to NIR + LED. The fifth group was intact. Each group included ten animals. The effect of laser light was studied by methods of protein oxidative modifications. We measured levels of both induced and spontaneous POM products by the DNPH assay. The dramatic increase in levels of POM products in the control group samples when compared with the intact group data as well as the sharp decrease in the POM products in the experimental groups treated with LED low-level light were statistically significant (p ≤ 0.05). Exposure of skeletal muscles to high-intensity red and near-infrared laser light causes oxidative stress that continues not less than 3 days. The method of measurement of POM product contents by the DNPH assay is a reliable test of an oxidative process rate. Red low-intensity LED radiation can provide rehabilitation of skeletal muscle tissues treated with high-intensity laser light.

  19. Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis.

    PubMed

    Chen, Songfeng; Lv, Xiao; Hu, Binwu; Zhao, Lei; Li, Shuai; Li, Zhiliang; Qing, Xiangcheng; Liu, Hongjian; Xu, Jianzhong; Shao, Zengwu

    2018-04-28

    The aim of this study was to investigate whether RIPK1 mediated mitochondrial dysfunction and oxidative stress contributed to compression-induced nucleus pulposus (NP) cells necroptosis and apoptosis, together with the interplay relationship between necroptosis and apoptosis in vitro. Rat NP cells underwent various periods of 1.0 MPa compression. To determine whether compression affected mitochondrial function, we evaluated the mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP), mitochondrial ultrastructure and ATP content. Oxidative stress-related indicators reactive oxygen species, superoxide dismutase and malondialdehyde were also assessed. To verify the relevance between oxidative stress and necroptosis together with apoptosis, RIPK1 inhibitor necrostatin-1(Nec-1), mPTP inhibitor cyclosporine A (CsA), antioxidants and small interfering RNA technology were utilized. The results established that compression elicited a time-dependent mitochondrial dysfunction and elevated oxidative stress. Nec-1 and CsA restored mitochondrial function and reduced oxidative stress, which corresponded to decreased necroptosis and apoptosis. CsA down-regulated mitochondrial cyclophilin D expression, but had little effects on RIPK1 expression and pRIPK1 activation. Additionally, we found that Nec-1 largely blocked apoptosis; whereas, the apoptosis inhibitor Z-VAD-FMK increased RIPK1 expression and pRIPK1 activation, and coordinated regulation of necroptosis and apoptosis enabled NP cells survival more efficiently. In contrast to Nec-1, SiRIPK1 exacerbated mitochondrial dysfunction and oxidative stress. In summary, RIPK1-mediated mitochondrial dysfunction and oxidative stress play a crucial role in NP cells necroptosis and apoptosis during compression injury. The synergistic regulation of necroptosis and apoptosis may exert more beneficial effects on NP cells survival, and ultimately delaying or even retarding intervertebral disc degeneration.

  20. Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts

    PubMed Central

    Tuuli, Methodius G.; Longtine, Mark S.; Shin, Joong Sik; Lawrence, Russell; Inder, Terrie; Michael Nelson, D.

    2012-01-01

    The human placenta is key to pregnancy outcome, and the elevated oxidative stress present in many complicated pregnancies contributes to placental dysfunction and suboptimal pregnancy outcomes. We tested the hypothesis that pomegranate juice, which is rich in polyphenolic antioxidants, limits placental trophoblast injury in vivo and in vitro. Pregnant women with singleton pregnancies were randomized at 35∼38 wk gestation to 8 oz/day of pomegranate juice or apple juice (placebo) until the time of delivery. Placental tissues from 12 patients (4 in the pomegranate group and 8 in the control group) were collected for analysis of oxidative stress. The preliminary in vivo results were extended to oxidative stress and cell death assays in vitro. Placental explants and cultured primary human trophoblasts were exposed to pomegranate juice or glucose (control) under defined oxygen tensions and chemical stimuli. We found decreased oxidative stress in term human placentas from women who labored after prenatal ingestion of pomegranate juice compared with apple juice as control. Moreover, pomegranate juice reduced in vitro oxidative stress, apoptosis, and global cell death in term villous explants and primary trophoblast cultures exposed to hypoxia, the hypoxia mimetic cobalt chloride, and the kinase inhibitor staurosporine. Punicalagin, but not ellagic acid, both prominent polyphenols in pomegranate juice, reduced oxidative stress and stimulus-induced apoptosis in cultured syncytiotrophoblasts. We conclude that pomegranate juice reduces placental oxidative stress in vivo and in vitro while limiting stimulus-induced death of human trophoblasts in culture. The polyphenol punicalagin mimics this protective effect. We speculate that antenatal intake of pomegranate may limit placental injury and thereby may confer protection to the exposed fetus. PMID:22374759

  1. A Review of the Health Benefits of Cherries

    PubMed Central

    Kelley, Darshan S.; Adkins, Yuriko; Laugero, Kevin D.

    2018-01-01

    Increased oxidative stress contributes to development and progression of several human chronic inflammatory diseases. Cherries are a rich source of polyphenols and vitamin C which have anti-oxidant and anti-inflammatory properties. Our aim is to summarize results from human studies regarding health benefits of both sweet and tart cherries, including products made from them (juice, powder, concentrate, capsules); all referred to as cherries here. We found 29 (tart 20, sweet 7, unspecified 2) published human studies which examined health benefits of consuming cherries. Most of these studies were less than 2 weeks of duration (range 5 h to 3 months) and served the equivalent of 45 to 270 cherries/day (anthocyanins 55–720 mg/day) in single or split doses. Two-thirds of these studies were randomized and placebo controlled. Consumption of cherries decreased markers for oxidative stress in 8/10 studies; inflammation in 11/16; exercise-induced muscle soreness and loss of strength in 8/9; blood pressure in 5/7; arthritis in 5/5, and improved sleep in 4/4. Cherries also decreased hemoglobin A1C (HbA1C), Very-low-density lipoprotein (VLDL) and triglycerides/high-density lipoprotein (TG/HDL) in diabetic women, and VLDL and TG/HDL in obese participants. These results suggest that consumption of sweet or tart cherries can promote health by preventing or decreasing oxidative stress and inflammation. PMID:29562604

  2. The in vitro effect of nonylphenol, propranolol, and diethylstilbestrol on quality parameters and oxidative stress in sterlet (Acipenser ruthenus) spermatozoa.

    PubMed

    Shaliutina, Olena; Shaliutina-Kolešová, Anna; Lebeda, Ievgen; Rodina, Marek; Gazo, Ievgeniia

    2017-09-01

    The sturgeon is a highly endangered fish mostly due to over-fishing, habitat destruction, and water pollution. Nonylphenol (NP), propranolol (PN), and diethylstilbestrol (DES) are multifunctional xenobiotic compounds used in a variety of commercial and industrial products. The mechanism by which these xenobiotic compounds interfere with fish reproduction is not fully elucidated. This study assessed the effect of NP, PN, and DES on motility parameters, membrane integrity, and oxidative/antioxidant status in sterlet Acispenser ruthenus spermatozoa. Spermatozoa were incubated with several concentrations of target substances for 1h. Motility rate and velocity of spermatozoa decreased in the presence of xenobiotics in a dose-dependent manner compared with controls. A significant decrease in membrane integrity was recorded with exposure to 5μM of NP, 25μM of PN, and 50μM of DES. After 1h exposure at higher tested concentrations NP (5-25μM), PN (25-100μM), and DES (50-200μM), oxidative stress was apparent, as reflected by significantly higher levels of protein and lipid oxidation and significantly greater superoxide dismutase activity. The results demonstrated that NP, PN, and DES can induce reactive oxygen species stress in fish spermatozoa, which could impair sperm quality and the antioxidant defence system and decrease the percentage of intact sperm cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat.

    PubMed

    Aydin, Mehmet Salih; Caliskan, Ahmet; Kocarslan, Aydemir; Kocarslan, Sezen; Yildiz, Ali; Günay, Samil; Savik, Emin; Hazar, Abdussemet; Yalcin, Funda

    2014-01-01

    Previous studies have demonstrated that curcumin (CUR) has protective effects against ischemia reperfusion injury to various organs. We aimed to determine whether CUR has favorable effects on tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Thirty rats were divided into three groups as sham, control and treatment (CUR) group. Control and CUR groups underwent abdominal aorta ischemia for 60 min followed by a 120 min period of reperfusion. In the CUR group, CUR was given 5 min before reperfusion at a dose of 200 mg/kg via an intraperitoneal route. Total antioxidant capacity (TAC), total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured, and lung, renal and heart tissue histopathology were evaluated with light microscopy. TOS and OSI activity in blood samples were statistically decreased in sham and CUR groups compared to the control group (p < 0.001 for TOS and OSI). Renal, lung, heart injury scores of sham and CUR groups were statistically decreased compared to control group (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in CUR group than in the control group. CUR administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta I/R rat model. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Peroxiredoxin 1 protects the pea aphid Acyrthosiphon pisum from oxidative stress induced by Micrococcus luteus infection.

    PubMed

    Zhang, Yongdong; Lu, Zhiqiang

    2015-05-01

    Reactive oxygen species (ROSs) are generated in organisms in response to infections caused by invading microbes. However, excessive ROSs will inflict oxidative damage on the host. Peroxiredoxins (Prxs) are antioxidative enzymes that may eliminate ROSs efficiently. In this study, ApPrx1 from the pea aphid Acyrthosiphon pisum was cloned, and its function was investigated in vitro and in vivo. In the presence of DTT, recombinant ApPrx1 protein from Escherichia coli showed antioxidative activity by eliminating H2O2 effectively. The H2O2 levels were significantly higher in Micrococcus luteus-infected aphids than in uninfected aphids, and ApPrx1 expression was remarkably up-regulated when the aphids were infected with M. luteus or injected with H2O2. When ApPrx1 expression was reduced by dsRNA injection, the survival of the aphids decreased significantly after M. luteus infection. Knockdown of ApPrx1 decreased M. luteus loads inside the aphids 48h post-infection. While under infection conditions, the H2O2 levels were much higher in ApPrx1 knockdown aphids than in dsGFP-injected aphids, indicating that the decreased survival of the aphids was caused by increased oxidative stress. Taken together, our results reveal that ApPrx1 plays a protective role in oxidative stress caused by bacterial infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing1[C][W][OA

    PubMed Central

    Wu, Lijun; Zhang, Zhijin; Zhang, Haiwen; Wang, Xue-Chen; Huang, Rongfeng

    2008-01-01

    Abiotic stresses such as drought, cold, and salinity affect normal growth and development in plants. The production and accumulation of reactive oxygen species (ROS) cause oxidative stress under these abiotic conditions. Recent research has elucidated the significant role of ethylene response factor (ERF) proteins in plant adaptation to abiotic stresses. Our earlier functional analysis of an ERF protein, JERF3, indicated that JERF3-expressing tobacco (Nicotiana tabacum) adapts better to salinity in vitro. This article extends that study by showing that transcriptional regulation of JERF3 in the oxidative stress response modulates the increased tolerance to abiotic stresses. First, we confirm that JERF3-expressing tobacco enhances adaptation to drought, freezing, and osmotic stress during germination and seedling development. Then we demonstrate that JERF3-expressing tobacco imparts not only higher expression of osmotic stress genes compared to wild-type tobacco, but also the activation of photosynthetic carbon assimilation/metabolism and oxidative genes. More importantly, this regulation of the expression of oxidative genes subsequently enhances the activities of superoxide dismutase but reduces the content of ROS in tobacco under drought, cold, salt, and abscisic acid treatments. This indicates that JERF3 also modulates the abiotic stress response via the regulation of the oxidative stress response. Further assays indicate that JERF3 activates the expression of reporter genes driven by the osmotic-responsive GCC box, DRE, and CE1 and by oxidative-responsive as-1 in transient assays, suggesting the transcriptional activation of JERF3 in the expression of genes involved in response to oxidative and osmotic stress. Our results therefore establish that JERF3 activates the expression of such genes through transcription, resulting in decreased accumulation of ROS and, in turn, enhanced adaptation to drought, freezing, and salt in tobacco. PMID:18945933

  6. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress.

    PubMed

    Cattani, Daiane; Cesconetto, Patrícia Acordi; Tavares, Mauren Kruger; Parisotto, Eduardo Benedetti; De Oliveira, Paulo Alexandre; Rieg, Carla Elise Heinz; Leite, Marina Concli; Prediger, Rui Daniel Schröder; Wendt, Nestor Cubas; Razzera, Guilherme; Filho, Danilo Wilhelm; Zamoner, Ariane

    2017-07-15

    We have previously demonstrated that maternal exposure to glyphosate-based herbicide (GBH) leads to glutamate excitotoxicity in 15-day-old rat hippocampus. The present study was conducted in order to investigate the effects of subchronic exposure to GBH on some neurochemical and behavioral parameters in immature and adult offspring. Rats were exposed to 1% GBH in drinking water (corresponding to 0.36% of glyphosate) from gestational day 5 until postnatal day (PND)-15 or PND60. Results showed that GBH exposure during both prenatal and postnatal periods causes oxidative stress, affects cholinergic and glutamatergic neurotransmission in offspring hippocampus from immature and adult rats. The subchronic exposure to the pesticide decreased L-[ 14 C]-glutamate uptake and increased 45 Ca 2+ influx in 60-day-old rat hippocampus, suggesting a persistent glutamate excitotoxicity from developmental period (PND15) to adulthood (PND60). Moreover, GBH exposure alters the serum levels of the astrocytic protein S100B. The effects of GBH exposure were associated with oxidative stress and depressive-like behavior in offspring on PND60, as demonstrated by the prolonged immobility time and decreased time of climbing observed in forced swimming test. The mechanisms underlying the GBH-induced neurotoxicity involve the NMDA receptor activation, impairment of cholinergic transmission, astrocyte dysfunction, ERK1/2 overactivation, decreased p65 NF-κB phosphorylation, which are associated with oxidative stress and glutamate excitotoxicity. These neurochemical events may contribute, at least in part, to the depressive-like behavior observed in adult offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice.

    PubMed

    Rehman, Hasibur; Liu, Qinlong; Krishnasamy, Yasodha; Shi, Zengdun; Ramshesh, Venkat K; Haque, Khujista; Schnellmann, Rick G; Murphy, Michael P; Lemasters, John J; Rockey, Don C; Zhong, Zhi

    2016-01-01

    Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis.

  8. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice

    PubMed Central

    Rehman, Hasibur; Liu, Qinlong; Krishnasamy, Yasodha; Shi, Zengdun; Ramshesh, Venkat K; Haque, Khujista; Schnellmann, Rick G; Murphy, Michael P; Lemasters, John J; Rockey, Don C; Zhong, Zhi

    2016-01-01

    Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis. PMID:27186319

  9. Pharmacological activities of an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts in UVB-induced oxidative stress and inflammation of human corneal cells.

    PubMed

    Bigagli, Elisabetta; Cinci, Lorenzo; D'Ambrosio, Mario; Luceri, Cristina

    2017-08-01

    Ultraviolet B (UVB) exposure is a risk factor for corneal damage resulting in oxidative stress, inflammation and cell death. The aim of this study was to investigate the potential protective effects of a commercial eye drop (Dacriovis™) containing Matricaria chamomilla and Euphrasia officinalis extracts on human corneal epithelial cells (HCEC-12) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the eye drops was evaluated by measuring the ferric reducing antioxidant power and the total phenolic content by Folin-Ciocalteu reagent. HCEC-12 cells were exposed to UVB radiation and treated with the eye drops at various concentrations. Cell viability, wound healing assay, reactive oxygen species (ROS) levels, protein and lipid oxidative damage and COX-2, IL-1β, iNOS, SOD-2, HO-1 and GSS gene expression, were assessed. Eye drops were able to protect corneal epithelial cells from UVB-induced cell death and ameliorated the wound healing; the eye drops exhibited a strong antioxidant activity, decreasing ROS levels and protein and lipid oxidative damage. Eye drops also exerted anti-inflammatory activities by decreasing COX-2, IL-1β, iNOS expression, counteracted UVB-induced GSS and SOD-2 expression and restored HO-1 expression to control levels. These findings suggest that an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts exerts positive effects against UVB induced oxidative stress and inflammation and may be useful in protecting corneal epithelial cells from UVB exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ketosis in buffalo (Bubalus bubalis): clinical findings and the associated oxidative stress level.

    PubMed

    Youssef, Mohamed A; El-Khodery, Sabry Ahmed; El-deeb, Wael M; Abou El-Amaiem, Waleed E E

    2010-12-01

    As little is known about the oxidant/antioxidant status in buffalo with ketosis, the present study was delineated to assess the oxidative stress level associated with clinical ketosis in water buffalo. A total of 91 parturient buffalo at smallholder farms were studied (61 suspected to be ketotic and 30 healthy). Clinical and biochemical investigations were carried out for each buffalo. Based on clinical findings and the level of beta-hydroxybutyrate (BHB), buffalo were allocated into ketotic (42), subclinical cases (19). Clinically, there was an association between clinical ketosis and anorexia (p<0.001), constipation (p<0.001), decreased milk yield (p<0.001), ruminal stasis (p<0.001), and loss of body condition (p<0.01). Biochemically, in clinical ketosis compared with subclinical and control cases, there was a significant increase (p<0.05) of BHB, malondialdehyde (MDA), nitric oxide (NO), aspartate aminotransferase (AST), L-alanine aminotransferase (ALT). However, there was a significant decrease of glucose, phosphorus, magnesium,total cholesterol and HDL-cholesterol. There was a positive correlation between BHB and MDA (r=0.433), BHB and NO (r=0.37), MDA and NO (r=0.515), and Glucose and phosphorus(r=0.521). However, there was a negative correlation between BHB and glucose (r= -0.341) and HDL and NO (r= -0.379). The result of the present study indicates that hyperketonemia in buffalo is associated with an increase of oxidative stress levels. Further studies need to be done on the efficacy of antioxidants as an ancillary treatment to relief the oxidative stress caused by ketosis.

  11. Evaluation of the oxidative stress of psoriatic fibroblasts based on spectral two-photon fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Kapsokalyvas, Dimitrios; Barygina, Victoria; Cicchi, Riccardo; Fiorillo, Claudia; Pavone, Francesco S.

    2013-02-01

    Psoriasis is an autoimmune disease of the skin characterized by hyperkeratosis, hyperproliferation of the epidermis, inflammatory cell accumulation and increased dilatation of dermal papillary blood vessels. Metabolic activity is increased in the epidermis and the dermis. Oxidative stress is high mainly due to reactive oxygen species (ROS) originating from the skin environment and cellular metabolism. We employed a custom multiphoton microscope coupled with a FLIM setup to image primary culture fibroblast cells from perilesional and lesional psoriatic skin in-vitro. Twophoton excited fluorescence images revealed the morphological differences between healthy and psoriatic fibroblasts. Based on the spectral analysis of the NADH and FAD components the oxidative stress was assessed and found to be higher in psoriatic cells. Furthermore the fluorescence lifetime properties were investigated with a TCSPC FLIM module. Mean fluorescence lifetime was found to be longer in psoriatic lesional cells. Analysis of the fast (τ1) and slow (τ2) decay lifetimes revealed a decrease of the ratio of the contribution of the fast (α1) parameter to the contribution of the slow (α2) parameter. The fluorescence in the examined part of the spectrum is attributed mainly to NADH. The decrease of the ratio (α1)/ (α2) is believed to correlate strongly with the anti-oxidant properties of NADH which can lead to the variation of its population in high ROS environment. This methodology could serve as an index of the oxidative status in cells and furthermore could be used to probe the oxidative stress of tissues in-vivo.

  12. Naringin ameliorates cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in a type 2 diabetic rat model.

    PubMed

    Qi, Zhonghua; Xu, Yinghui; Liang, Zhanhua; Li, Sheng; Wang, Jie; Wei, Yi; Dong, Bin

    2015-11-01

    Naringenin is a flavonoid polyphenolic compound, which facilitates the removal of free radicals, oxidative stress and inflammation. The present study aimed to obtain a better understanding of the effects of curcumin on the regulation of diabetes‑associated cognitive decline, and its underlying mechanisms. An experimental diabetes mellitus (DM) rat model was induced by streptozoticin (50 mg/kg). Following treatment with naringin (100 and 200 mg/kg) for 16 weeks, the body weight and blood glucose levels of the DM rats were measured. A morris water maze test was used to analyze the effects of naringin on the cognitive deficit of the DM rats. The levels of oxidative stress, proinflammatory factors, caspase‑3 and caspase‑9, and the protein expression of peroxisome proliferator‑activated receptor γ (PPARγ) were quantified in the DM rats using a commercially‑available kit and western blot assay, respectively. In addition, a GW9662 PPARγ inhibitor (0.3 mg/kg) was administered to the DM rats to determine whether PPARγ affected the effects of naringin on the cognitive deficit of the DM rats. The results demonstrated that naringin increased the body weight, blood glucose levels, and cognitive deficits of the DM rats. The levels of oxidative stress and proinflammatory factors in the naringin‑treated rats were significantly lower, compared with those of the DM rats. In addition, naringin activated the protein expression of PPARγ, and administration of the PPARγ inhibitor decreased the protein expression of PPARγ, and attenuated the effects of naringin on cognitive deficit. The results also demonstrated that naringin decreased the expression levels of caspase‑3 and caspase‑9 in the DM rats. These results suggested that naringin ameliorated cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in the type 2 diabetic rat model. Furthermore, oxidative stress, proinflammatory factors and PPARγ signaling may be involved in mediating these effects.

  13. Açaí (Euterpe oleracea Mart.) Modulates Oxidative Stress Resistance in Caenorhabditis elegans by Direct and Indirect Mechanisms

    PubMed Central

    Bonomo, Larissa de Freitas; Silva, David Nunes; Boasquivis, Patrícia Ferreira; Paiva, Franciny Aparecida; Guerra, Joyce Ferreira da Costa; Martins, Talita Alves Faria; de Jesus Torres, Álvaro Gustavo; de Paula, Igor Thadeu Borges Raposo; Caneschi, Washington Luiz; Jacolot, Philippe; Grossin, Nicolas; Tessier, Frederic J.; Boulanger, Eric; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; de Paula Oliveira, Riva

    2014-01-01

    Açaí (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Despite its claimed pharmacological and nutraceutical value, studies regarding the effects of açaí in vivo are limited. In this study, we use the Caenorhabditis elegans model to evaluate the in vivo antioxidant properties of açaí on an organismal level and to examine its mechanism of action. Supplementation with açaí aqueous extract (AAE) increased both oxidative and osmotic stress resistance independently of any effect on reproduction and development. AAE suppressed bacterial growth, but this antimicrobial property did not influence stress resistance. AAE-increased stress resistance was correlated with reduced ROS production, the prevention of sulfhydryl (SH) level reduction and gcs-1 activation under oxidative stress conditions. Our mechanistic studies indicated that AAE promotes oxidative stress resistance by acting through DAF-16 and the osmotic stress response pathway OSR-1/UNC-43/SEK-1. Finally, AAE increased polyglutamine protein aggregation and decreased proteasome activity. Our findings suggest that natural compounds available in AAE can improve the antioxidant status of a whole organism under certain conditions by direct and indirect mechanisms. PMID:24594796

  14. Açaí (Euterpe oleracea Mart.) modulates oxidative stress resistance in Caenorhabditis elegans by direct and indirect mechanisms.

    PubMed

    Bonomo, Larissa de Freitas; Silva, David Nunes; Boasquivis, Patrícia Ferreira; Paiva, Franciny Aparecida; Guerra, Joyce Ferreira da Costa; Martins, Talita Alves Faria; de Jesus Torres, Álvaro Gustavo; de Paula, Igor Thadeu Borges Raposo; Caneschi, Washington Luiz; Jacolot, Philippe; Grossin, Nicolas; Tessier, Frederic J; Boulanger, Eric; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; Oliveira, Riva de Paula

    2014-01-01

    Açaí (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Despite its claimed pharmacological and nutraceutical value, studies regarding the effects of açaí in vivo are limited. In this study, we use the Caenorhabditis elegans model to evaluate the in vivo antioxidant properties of açaí on an organismal level and to examine its mechanism of action. Supplementation with açaí aqueous extract (AAE) increased both oxidative and osmotic stress resistance independently of any effect on reproduction and development. AAE suppressed bacterial growth, but this antimicrobial property did not influence stress resistance. AAE-increased stress resistance was correlated with reduced ROS production, the prevention of sulfhydryl (SH) level reduction and gcs-1 activation under oxidative stress conditions. Our mechanistic studies indicated that AAE promotes oxidative stress resistance by acting through DAF-16 and the osmotic stress response pathway OSR-1/UNC-43/SEK-1. Finally, AAE increased polyglutamine protein aggregation and decreased proteasome activity. Our findings suggest that natural compounds available in AAE can improve the antioxidant status of a whole organism under certain conditions by direct and indirect mechanisms.

  15. In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile.

    PubMed

    Bagdas, Deniz; Etoz, Betul Cam; Gul, Zulfiye; Ziyanok, Sedef; Inan, Sevda; Turacozen, Ozge; Gul, Nihal Yasar; Topal, Ayse; Cinkilic, Nilufer; Tas, Sibel; Ozyigit, Musa Ozgur; Gurun, Mine Sibel

    2015-07-01

    Oxidative stress occurs following the impairment of pro-oxidant/antioxidant balance in chronic wounds and leads to harmful delays in healing progress. A fine balance between oxidative stress and endogenous antioxidant defense system may be beneficial for wound healing under redox control. This study tested the hypothesis that oxidative stress in wound area can be controlled with systemic antioxidant therapy and therefore wound healing can be accelerated. We used chlorogenic acid (CGA), a dietary antioxidant, in experimental diabetic wounds that are characterized by delayed healing. Additionally, we aimed to understand possible side effects of CGA on pivotal organs and bone marrow during therapy. Wounds were created on backs of streptozotocin-induced diabetic rats. CGA (50 mg/kg/day) was injected intraperitoneally. Animals were sacrificed on different days. Biochemical and histopathological examinations were performed. Side effects of chronic antioxidant treatment were tested. CGA accelerated wound healing, enhanced hydroxyproline content, decreased malondialdehyde/nitric oxide levels, elevated reduced-glutathione, and did not affect superoxide dismutase/catalase levels in wound bed. While CGA induced side effects such as cyto/genotoxicity, 15 days of treatment attenuated blood glucose levels. CGA decreased lipid peroxidation levels of main organs. This study provides a better understanding for antioxidant intake on diabetic wound repair and possible pro-oxidative effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. α-Lipoic acid ameliorated oxidative stress induced by perilla oil, but the combination of these dietary factors was ineffective to cause marked deceases in serum lipid levels in rats.

    PubMed

    Ide, Takashi; Tanaka, Ai

    2017-12-01

    Dietary perilla oil rich in α-linolenic acid and α-lipoic acid lowers the serum lipid level through changes in hepatic fatty acid metabolism. We therefore hypothesized that the combination of these dietary factors may ameliorate lipid metabolism more than the factors individually. Moreover, α-lipoic acid exerts strong anti-oxidative activity. Hence, we also hypothesized that α-lipoic acid may attenuate perilla oil-mediated oxidative stress. We therefore studied the combined effects of perilla oil and α-lipoic acid on lipid metabolism and parameters of oxidative stress. Male rats were fed diets supplemented with 0 or 2.0 g/kg R-α-lipoic acid and containing 120 g/kg of palm (saturated fat), corn (linoleic acid), or perilla oil (α-linolenic acid) for 23 days. Perilla oil compared with other fats decreased serum lipid concentrations in rats fed α-lipoic acid-free diets; however, the combination of perilla oil with α-lipoic acid was ineffective for observing more marked decreases in serum lipid levels. Alterations in hepatic fatty acid synthesis and oxidation may account for the observed changes. Perilla oil, compared with palm and corn oils, strongly increased the malondialdehyde level in the serum and liver. α-Lipoic acid counteracted the increases in these parameters even though the effects were attenuated in the liver. α-Lipoic acid increased the parameters of the anti-oxidant system. The results suggested that α-lipoic acid can ameliorate oxidative stress induced by perilla oil, but the combination of these dietary factors was ineffective for additionally reducing serum lipid levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism.

    PubMed

    Kashyap, Des R; Kuzma, Marcin; Kowalczyk, Dominik A; Gupta, Dipika; Dziarski, Roman

    2017-09-01

    Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn 2+ through influx of extracellular Zn 2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy. © 2017 John Wiley & Sons Ltd.

  18. Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats.

    PubMed

    Hassan, H A; Abdel-Aziz, A F

    2010-01-01

    Oxidative damage to cellular components such as lipids and cell membranes by free radicals and other reactive oxygen species is believed to be associated with the development of degenerative diseases. Fluoride intoxication is associated with oxidative stress and altered anti-oxidant defense mechanism. So the present study was extended to investigate black berry anti-oxidant capacity towards superoxide anion radicals, hydroxyl radicals and nitrite in different organs of fluoride-intoxicated rats. The data indicated that sodium fluoride (10.3mg/kg bw) administration induced oxidative stress as evidenced by elevated levels of lipid peroxidation and nitric oxide in red blood cells, kidney, testis and brain tissues. Moreover, significantly decreased glutathione level, total anti-oxidant capacity and superoxide dismutase activity were observed in the examined tissues. On the other hand, the induced oxidative stress and the alterations in anti-oxidant system were normalized by the oral administration of black berry juice (1.6g/kg bw). Therefore it can be concluded that black berry administration could minimize the toxic effects of fluoride indicating its free radical-scavenging and potent anti-oxidant activities. Published by Elsevier Ltd.

  19. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: a potential mechanism involved in cannabis-related stroke.

    PubMed

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities V max (complexes I, III, and IV activities), V succ (complexes II, III, and IV activities), V tmpd (complex IV activity), together with mitochondrial coupling (V max/V 0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased V max (-71%; P < 0.0001), V succ (-65%; P < 0.0001), and V tmpd (-3.5%; P < 0.001). Mitochondrial coupling (V max/V 0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke.

  20. Interactions of atenolol with alprazolam/escitalopram on anxiety, depression and oxidative stress.

    PubMed

    Shahzad, Naiyer; Ahmad, Javed; Khan, Wajahatullah; Al-Ghamdi, Saeed S; Ain, M Ruhal; Ibrahim, Ibrahim Abdel Aziz; Akhtar, Mohd; Khanam, Razia

    2014-02-01

    Anxiety and depression are highly comorbid disorders possibly sharing a common neurobiological mechanism. The dysfunction of serotoninergic, noradrenergic and dopaminergic neurotransmission, abnormal regulation in the hypothalamic-pituitary-adrenal axis (HPA), disturbance of cellular plasticity including reduced neurogenesis, or chronic inflammation connected with high oxidative damage play a crucial role in the development of anxiety and depression. The present study was aimed to investigate the effects of atenolol alone and in combination with alprazolam/escitalopram on anxiety, depression and oxidative stress. Wistar albino rats were subjected to 21 day treatment of drugs then exposed to elevated-plus maze (EPM) and modified forced swim test (MFST), and oxidative stress markers were estimated in isolated brain tissue of all groups. The results indicated that atenolol in combination with alprazolam/escitalopram exhibited antidepressant effects by significantly decreasing the immobility and increasing the swimming behavior in the MFST and anti-anxiety effects by increasing the percentage preference and number of open arm entries as well as time spent in open arm in EPM. Pretreatment with atenolol alone and combination with alprazolam/escitalopram also ameliorated tissue glutathione (GSH) and decreased malondialdehyde (MDA) level significantly which explore antioxidant properties of drugs, and combination augments the therapeutic response of monotherapy in depression. In conclusion behavioral and biological findings indicate that the combination of atenolol with alprazolam/escitalopram has the potential of being highly efficacious in treating anxiety and depressive disorders as well as oxidative stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats.

    PubMed

    Coban, Funda Karabag; Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Hazman, Omer

    2015-10-01

    Organophosphorus compounds cause oxidative stress and lead to alterations in antioxidant status in organisms. In this study, the effects of subchronic exposure to malathion and the protective effects of boron (B) were evaluated in 48 Wistar rats, which were divided equally into six groups. For 28 d, the control group received a normal diet and tap water, the corn oil group received a normal diet and 0.5 mL of corn oil by gastric gavage and the malathion group received a normal diet and malathion (100 mg/kg/d) by gastric gavage. During the same period, each of the three other groups received a different dosage of B (5, 10 and 20 mg/kg/d, respectively) and malathion (100 mg/kg/d) by gastric gavage. Malathion administration during the period increased malondialdehyde, nitric oxide and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, as well as markers of liver function, yet decreased acetylcholinesterase, reduced glutathione, superoxide dismutase, and catalase activities in blood, liver, kidney and brain tissues. Administration of B in a dose-dependent manner also reversed malathion-induced oxidative stress, lipid peroxidation (LPO) and antioxidant enzyme activity. Moreover, B exhibited protective action against malathion-induced histopathological changes in liver, kidney and brain tissues. These results demonstrate that, if used in a dose-dependent manner, B decreases malathion-induced oxidative stress, enhances the antioxidant defense mechanism and regenerates tissues in rats.

  2. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I.

    PubMed

    Rodrigues, Marília Danyelle Nunes; Seminotti, Bianca; Zanatta, Ângela; de Mello Gonçalves, Aline; Bellaver, Bruna; Amaral, Alexandre Umpierrez; Quincozes-Santos, André; Goodman, Stephen Irwin; Woontner, Michael; Souza, Diogo Onofre; Wajner, Moacir

    2017-08-01

    Patients affected by glutaric aciduria type I (GA-I) show progressive cortical leukoencephalopathy whose pathogenesis is poorly known. In the present work, we exposed cortical astrocytes of wild-type (Gcdh +/+ ) and glutaryl-CoA dehydrogenase knockout (Gcdh -/- ) mice to the oxidative stress inducer menadione and measured mitochondrial bioenergetics, redox homeostasis, and cell viability. Mitochondrial function (MTT and JC1-mitochondrial membrane potential assays), redox homeostasis (DCFH oxidation, nitrate and nitrite production, GSH concentrations and activities of the antioxidant enzymes SOD and GPx), and cell death (propidium iodide incorporation) were evaluated in primary cortical astrocyte cultures of Gcdh +/+ and Gcdh -/- mice unstimulated and stimulated by menadione. We also measured the pro-inflammatory response (TNFα levels, IL1-β and NF-ƙB) in unstimulated astrocytes obtained from these mice. Gcdh -/- mice astrocytes were more vulnerable to menadione-induced oxidative stress (decreased GSH concentrations and altered activities of the antioxidant enzymes), mitochondrial dysfunction (decrease of MTT reduction and JC1 values), and cell death as compared with Gcdh +/+ astrocytes. A higher inflammatory response (TNFα, IL1-β and NF-ƙB) was also observed in Gcdh -/- mice astrocytes. These data indicate a higher susceptibility of Gcdh -/- cortical astrocytes to oxidative stress and mitochondrial dysfunction, probably leading to cell death. It is presumed that these pathomechanisms may contribute to the cortical leukodystrophy observed in GA-I patients.

  3. Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws

    2016-07-01

    We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1-10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV-3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells.

  4. MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys.

    PubMed

    Parajuli, Nirmala; Campbell, Lia H; Marine, Akira; Brockbank, Kelvin G M; Macmillan-Crow, Lee Ann

    2012-01-01

    Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation.

  5. MitoQ Blunts Mitochondrial and Renal Damage during Cold Preservation of Porcine Kidneys

    PubMed Central

    Parajuli, Nirmala; Campbell, Lia H.; Marine, Akira; Brockbank, Kelvin G. M.; MacMillan-Crow, Lee Ann

    2012-01-01

    Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation. PMID:23139796

  6. Mangifera indica L. (Vimang) protection against serum oxidative stress in elderly humans.

    PubMed

    Pardo-Andreu, Gilberto L; Philip, Sarah J; Riaño, Annia; Sánchez, Carlos; Viada, Carmen; Núñez-Sellés, Alberto J; Delgado, René

    2006-01-01

    We searched for the protective effect of a natural extract from stem bark of Mangifera indica L. extract (Vimang) on age-related oxidative stress. Healthy subjects were classified in two groups, elderly (>65 years) and young group (<26 years). The elderly group received a daily dose of 900 mg of extract (three coated Vimang tablets, 300 mg each, before meals) for 60 days. Serum concentration of lipid peroxides, serum peroxidation potential, extracellular superoxide dismutase activity (EC-SOD), glutathione status (GSH, GSSG, GSSG/GSH ratio)) and total antioxidant status (TAS) were determined before (both experimental groups) and 15, 30, and 60 days after treatment (only elderly group). We confirmed the existence of an age-associated oxidative stress in human serum as documented by an age-related increase in serum lipoperoxides and GSSG and a decrease in serum antioxidant capacity and EC-SOD activity. Vimang tablet supplementation increased EC-SOD activity (p <0.01) and serum TAS (p <0.01). It also decreased serum thiobarbituric reactive substances (p <0.01) and GSSG levels (p <0.05). We suggested that the antioxidant components of the extract could have been utilized by the cells (especially blood and endothelial cells), sparing the intra- and extracellular antioxidant system and increasing serum peroxil scavenging capacity, thus preventing age-associated increase in GSH oxidation and lipoperoxidation. Vimang tablets prevent age-associated oxidative stress in elderly humans, which could retard the onset of age-associated disease, improving the quality of life for elderly persons.

  7. Glutathione, glutathione-related enzymes, and oxidative stress in individuals with subacute occupational exposure to lead.

    PubMed

    Dobrakowski, Michał; Pawlas, Natalia; Hudziec, Edyta; Kozłowska, Agnieszka; Mikołajczyk, Agnieszka; Birkner, Ewa; Kasperczyk, Sławomir

    2016-07-01

    The aim of the study was to investigate the influence of subacute exposure to lead on the glutathione-related antioxidant defense and oxidative stress parameters in 36 males occupationally exposed to lead for 40±3.2days. Blood lead level in the examined population increased significantly by 359% due to lead exposure. Simultaneously, erythrocyte glutathione level decreased by 16%, whereas the activity of glutathione-6-phosphate dehydrogenase in erythrocytes and leukocytes decreased by 28% and 10%, respectively. Similarly, the activity of glutathione-S-transferase in erythrocytes decreased by 45%. However, the activity of glutathione reductase in erythrocytes and leukocytes increased by 26% and 6%, respectively, whereas the total oxidant status value in leukocytes increased by 37%. Subacute exposure to lead results in glutathione pool depletion and accumulation of lipid peroxidation products; however, it does not cause DNA damage. Besides, subacute exposure to lead modifies the activity of glutathione-related enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots

    PubMed Central

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy R.; Mahajan, Priyanka; Kohli, Ravinder Kumar; Rishi, Valbha

    2015-01-01

    Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0–8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure. PMID:26402793

  9. Beyond the redox imbalance: oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease

    PubMed Central

    Covarrubias-Pinto, Adriana; Moll, Pablo; Solís-Maldonado, Macarena; Acuña, Aníbal I.; Riveros, Andrea; Miró, María Paz; Papic, Eduardo; Beltrán, Felipe A.; Cepeda, Carlos; Concha, Ilona I.; Brauchi, Sebastián; Castro, Maite A.

    2016-01-01

    Failure in energy metabolism and oxidative damage are associated with Huntington’s disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity. PMID:26456058

  10. Protective mechanisms of Moringa oleifera against CCl(4)-induced oxidative stress in precision-cut liver slices.

    PubMed

    Sreelatha, S; Padma, P R

    2010-01-01

    The present study was designed to evaluate the efficacy of Moringa oleifera leaves against carbon tetrachloride (CCl(4))-treated liver slices in vitro. The study evaluated the antioxidant properties of Moringa oleifera leaves against CCl(4)-induced oxidative damage in liver slices. CCl(4) treatment significantly decreased the activities of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase and caused decreased glutathione content and increased the thiobarbituric acid-reacting substances (TBARS). Treatment with Moringa oleifera extract increased the activities of antioxidant enzymes and glutathione content and reduced the levels of TBARS significantly. Observed reduction in the level of lipid peroxides showed a decreased tendency of peroxidative damage. We conclude that, under these experimental conditions, the leaf extracts effectively suppress CCl(4)-induced oxidative stress. Our findings provide evidence to demonstrate that the possible mechanism of this activity may be due to the strong antioxidant property of the leaves. Copyright 2010 S. Karger AG, Basel.

  11. Baicalin Protects the Cardiomyocytes from ER Stress-Induced Apoptosis: Inhibition of CHOP through Induction of Endothelial Nitric Oxide Synthase

    PubMed Central

    Wang, Bo; Guo, Xiaowang; Zeng, Chao; Xu, Yong; Shen, Liangliang; Cheng, Ke; Xia, Yuesheng; Li, Xiumin; Wang, Haichang; Fan, Li; Wang, Xiaoming

    2014-01-01

    Baicalin, the main active ingredient of the Scutellaria root, exerts anti-oxidant and anti-apoptotic effects in cardiovascular diseases. However, the therapeutic mechanism of baicalin remains unknown. Cultured neonatal rat cardiomyocytes were pre-treated with baicalin (0–50 µM) for 24 h, and subsequently treated with tunicamycin (100 ng/ml). Cell viability was detected by MTT assay, and cell damage was determined by LDH release and TUNEL assay. The expression of CHOP, JNK, caspase-3, eNOS was analyzed by western blot. NO was measured by DAF-FM staining. As a result, treatment with baicalin significantly reduced apoptosis induced by ER stress inducer tunicamycin in cardiomyocytes. Molecularly, baicalin ameliorated tunicamycin-induced ER stress by downregulation of CHOP. In addition, baicalin inverted tunicamycin-induced decreases of eNOS mRNA and protein levels, phospho eNOS and NO production through CHOP pathway. However, the protective effects of baicalin were significantly decreased in cardiomyocytes treated with L-NAME, which suppressed activation of nitric oxide synthase. In conclusion, our results implicate that baicalin could protect cardiomyocytes from ER stress-induced apoptosis via CHOP/eNOS/NO pathway, and suggest the therapeutic values of baicalin against ER stress-associated cardiomyocyte apoptosis. PMID:24520378

  12. Migratory behavior, metabolism, oxidative stress and mercury concentrations in marine and estuarine European glass eels (Anguilla anguilla).

    PubMed

    Bolliet, Valérie; Claveau, Julie; Jarry, Marc; Gonzalez, Patrice; Baudrimont, Magalie; Monperrus, Mathilde

    2017-02-01

    The relationships between the migratory behavior, methylmercury (MeHg) concentrations, oxidative stress response and detoxification processes were investigated in glass eels collected in marine (Molliets) and estuarine (Urt) waters (Adour estuary, South West France) at the end of the fishing season (April). Glass eel migratory behavior was investigated in an experimental flume according to their response to dusk. Fish responding to the decrease in light intensity by ascending in the water column and moving with or against the flow were considered as having a high propensity to migrate (migrant). Glass eels still sheltering at the end of the 24h catching period were considered as having a low propensity to migrate and were called non-migrant. Our results provide some evidence that estuarine glass eels were bigger, presented a higher propensity to migrate and a lower oxidative stress response than marine glass eels. This might reflect a selection process, some marine glass eels progressively settling or dying before reaching Urt and/or a change in feeding behavior. In April, glass eels restart feeding in the Adour estuary which might decrease the oxidative stress possibly related to starvation, and enhance migration. MeHg concentrations was significantly higher in non-migrant than in migrant glass eels and it is suggested that non-migrant glass eels might present a higher vulnerability to stress (at least contamination and/or starvation), although the underlying mechanisms remain to be elucidated. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats.

    PubMed

    Nagareddy, Prabhakara Reddy; Xia, Zhengyuan; MacLeod, Kathleen M; McNeill, John H

    2006-04-01

    Previous studies have indicated that cardiovascular abnormalities such as depressed blood pressure and heart rate occur in streptozotocin (STZ) diabetic rats. Chronic diabetes, which is associated with increased expression of inducible nitric oxide synthase (iNOS) and oxidative stress, may produce peroxynitrite/nitrotyrosine and cause nitrosative stress. We hypothesized that nitrosative stress causes cardiovascular depression in STZ diabetic rats and therefore can be corrected by reducing its formation. Control and STZ diabetic rats were treated orally for 9 weeks with N-acetylcysteine (NAC), an antioxidant and inhibitor of iNOS. At termination, the mean arterial blood pressure (MABP) and heart rate (HR) were measured in conscious rats. Nitrotyrosine and endothelial nitric oxide synthase (eNOS) and iNOS expression were assessed in the heart and mesenteric arteries by immunohistochemistry and Western blot experiments. Untreated diabetic rats showed depressed MABP and HR that was prevented by treatment with NAC. In untreated diabetic rats, levels of 15-F(2t)-isoprostane, an indicator of lipid peroxidation increased, whereas plasma nitric oxide and antioxidant concentrations decreased. Furthermore, decreased eNOS and increased iNOS expression were associated with elevated nitrosative stress in blood vessel and heart tissue of untreated diabetic rats. N-acetylcysteine treatment of diabetic rats not only restored the antioxidant capacity but also reduced the expression of iNOS and nitrotyrosine and normalized the expression of eNOS to that of control rats in heart and superior mesenteric arteries. The results suggest that nitrosative stress depress MABP and HR following diabetes. Further studies are required to elucidate the mechanisms involved in nitrosative stress mediated depression of blood pressure and heart rate.

  14. A study to investigate the chemical stability of gallium phosphate oxide/gallium arsenide phosphide

    NASA Technical Reports Server (NTRS)

    Kuhlman, G. J.

    1979-01-01

    The elemental composition with depth into the oxide films was examined using secondary ion mass spectrometry. Results indicate that the layers are arsenic-deficient through the bulk of the oxide and arsenic-rich near both the oxide surface and the oxide-semiconductor interface region. Phosphorus is incorporated into the oxide in an approximately uniform manner. The MIS capacitor structures exhibited deep-depletion characteristics and hysteresis indicative of electron trapping at the oxide-semiconductor interface. Post-oxidation annealing of the films in argon or nitrogen generally results in slightly increased dielectric leakage currents and decreased C-V hysteresis effects, and is associated with arsenic loss at the oxide surface. The results of bias-temperature stress experiments indicate that the major instability effects are due to changes in the electron trapping behavior. No changes were observed in the elemental profiles following electrical stressing, indicating that the grown films are chemically stable under device operating conditions.

  15. Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: a metabolomics overview

    PubMed Central

    Pallotta, Valeria; Gevi, Federica; D’Alessandro, Angelo; Zolla, Lello

    2014-01-01

    Background Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. Materials and methods In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. Results We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). Discussion Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP. PMID:25074788

  16. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    PubMed Central

    Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle

    2015-01-01

    CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192

  17. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    PubMed

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.

  18. The NAD+-dependent deacetylase, Bifidobacterium longum Sir2 in response to oxidative stress by deacetylating SigH (σH) and FOXO3a in Bifidobacterium longum and HEK293T cell respectively.

    PubMed

    Guo, Qing; Li, Shiyu; Xie, Yajie; Zhang, Qian; Liu, Mengge; Xu, Zhenrui; Sun, Hanxiao; Yang, Yan

    2017-07-01

    Silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. The mammalian sirtuin family SIRT1, SIRT2, SIRT3 and SIRT6 can regulate oxidative stress. The probiotics (Bifidobacterium longum(B.longum) and Lactobacillus acidophilus(L. acidophilus)) have Sir2 gene family and have antioxidant activity in human body. it remains unknown whether probiotics Sir2 has a direct role in regulating oxidative stress. To this end, we knockout BL-sir2(sir2 B. longum) and LA-sir2(sir2 L.acidophilus) in low oxygen level. The antioxidant activities of two sir2 deficient strains was decreased, while when reintroduction of BL-sir2 and LA-sir2, the antioxidant activities were recoveried. In order to understand the regulation mechanism of probiotics Sir2 oxidation response. Then, we screened 65 acetylated protein, and found that SigH (σ H ) was a substrate of BL-Sir2. In addition, the acetylation level of σ H decreased with the increase of BL-Sir2 level in B. longum. Thus, BL-Sir2 deacetylated σ H in response to oxidative stress. Next, we transfected BL-Sir2 into H 2 O 2 -induced oxidative damage of 293T cells, BL-Sir2 increased the activity of manganese superoxide dismutase (MnSOD/SOD2) and catalase (CAT) and reduced reactive oxygen species(ROS). Then, we analyzed the differential gene by RNA sequencing and Gene ontology (GO) and found that BL-Sir2 regulated forkhead transcription factor (FOXO3a) mediated antioxidant genes in overexpressed BL-Sir2 HEK293T cells. Our study is the first to link probiotics Sir2 with oxidative stress and uncover the antioxidant mechanism of BL-Sir2 in B. longum itself and human body. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of Military activity and habitat quality on DNA damage and oxidative stress in the largest population of the Federally threatened gopher tortoise.

    PubMed

    Theodorakis, Christopher W; Adams, S Marshall; Smith, Chandra; Rotter, Jamie; Hay, Ashley; Eslick, Joy

    2017-12-01

    Department of Defense lands are essential for providing important habitat for threatened, endangered, and at-risk species (TER-S). However, there is little information on the effects of military-related contaminants on TER-S on these lands in field situations. Thus, this study examined genotoxicity and oxidative stress in gopher tortoises (Gopherus polyphemus) on Camp Shelby, MS-the largest known population of this species, which is listed as an "endangered species" in Mississippi and a "threatened species" by the U.S. government. Blood was collected from tortoises at 19 different sites on the base with different levels of habitat quality (high-quality and low-quality habitat) and military activity (high, low, and no military activity). Oxidative stress was quantified as lipid peroxidation and GSSG/GSH ratios, while DNA damage was determined using flow cytometry. Our results suggest that: (1) for tortoises residing in low-quality habitats, oxidative stress and DNA damage increased with increasing military activity, while in high-quality habitats, oxidative stress and DNA damage decreased with increasing military activity; (2) in the absence of military activity, tortoises in high-quality habitat had higher levels of oxidative stress and DNA damage than those in low-quality habitat, and (3) there were interactions between military activity, habitat quality, and landuse in terms of the amount of observable DNA damage and oxidative stress. In particular, on high-quality habitat, tortoises from areas with high levels of military activity had lower levels of oxidative stress and DNA damage biomarkers than on reference sites. This may represent a compensatory or hormetic response. Conversely, on low-quality habitats, the level of oxidative stress and DNA damage was lower on the reference sites. Thus, tortoises on higher-quality habitats may have a greater capacity for compensatory responses. In terms of management implications, it is suggested that low quality habitats should be a higher priority for remediation, and lower priority for conducting military activities.

  20. Development of an in vitro cell culture model to investigate the induction and quantification of oxidative stress and its inhibition by alpha-tocopherol.

    PubMed

    Lawlor, S M; O'Brien, N M

    1994-02-01

    The ability of the natural antioxidant alpha-tocopherol to protect against oxidative stress in vitro was assessed. Primary cultures of chicken embryo fibroblasts (CEF) were oxidatively stressed by exposure to paraquat (PQ). Activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were measured as indices of oxidative stress. CEF incubated with 0.125-1.0 mm PQ for 18 hr exhibited increased SOD activity (P < 0.05). CAT activity increased with 0.25 mm PQ (P < 0.05). GSH-Px activity decreased significantly in the presence of PQ. No cytotoxicity, as indicated by lactate dehydrogenase release, was observed at PQ concentrations below 2 mm. Incorporation of added alpha-tocopherol (100 nm) into 0.25 mm PQ-treated CEF resulted in SOD activity not significantly different from that observed in control cells not treated with PQ. Lower levels of added alpha-tocopherol (16 nm) returned CAT to its control value. However, even at 1000 nm alpha-tocopherol, GSH-Px activity was not protected in PQ-treated cells. CEF represent a useful model to study both inducers and inhibitors of oxidative stress.

  1. Oxidative stress in response to aerobic and anaerobic power testing: influence of exercise training and carnitine supplementation.

    PubMed

    Bloomer, Richard J; Smith, Webb A

    2009-01-01

    The purpose of this study is to compare the oxidative stress response to aerobic and anaerobic power testing, and to determine the impact of exercise training with or without glycine propionyl-L-carnitine (GPLC) in attenuating the oxidative stress response. Thirty-two subjects were assigned (double blind) to placebo, GPLC-1 (1g PLC/d), GPLC-3 (3g PLC/d) for 8 weeks, plus aerobic exercise. Aerobic (graded exercise test: GXT) and anaerobic (Wingate cycle) power tests were performed before and following the intervention. Blood was taken before and immediately following exercise tests and analyzed for malondialdehyde (MDA), hydrogen peroxide (H2O2), and xanthine oxidase activity (XO). No interaction effects were noted. MDA was minimally effected by exercise but lower at rest for both GPLC groups following the intervention (p = 0.044). A time main effect was noted for H2O2 (p = 0.05) and XO (p = 0.003), with values increasing from pre- to postexercise. Both aerobic and anaerobic power testing increase oxidative stress to a similar extent. Exercise training plus GPLC can decrease resting MDA, but it has little impact on exercise-induced oxidative stress biomarkers.

  2. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  3. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.

    PubMed

    Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S

    2012-11-01

    Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.

  4. Lithospermum erythrorhizon extract protects keratinocytes and fibroblasts against oxidative stress.

    PubMed

    Yoo, Hee Geun; Lee, Bong Han; Kim, Wooki; Lee, Jong Suk; Kim, Gun Hee; Chun, Ock K; Koo, Sung I; Kim, Dae-Ok

    2014-11-01

    Oxidative stress damages dermal and epidermal cells and degrades extracellular matrix proteins, such as collagen, ultimately leading to skin aging. The present study evaluated the potential protective effect of the aqueous methanolic extract obtained from Lithospermum erythrorhizon (LE) against oxidative stress, induced by H2O2 and ultraviolet (UV) irradiation, on human keratinocyte (HaCaT) and human dermal fibroblast-neonatal (HDF-n) cells. Exposure of cells to H2O2 or UVB irradiation markedly increased oxidative stress and reduced cell viability. However, pretreatment of cells with the LE extract not only increased cell viability (up to 84.5%), but also significantly decreased oxidative stress. Further, the LE extract downregulated the expression of matrix metalloproteinase-1, an endopeptidase that degrades extracellular matrix collagen. In contrast, treatment with the LE extract did not affect the expression of procollagen type 1 in HDF-n cells exposed to UVA irradiation. Thirteen phenolic compounds, including derivatives of shikonin and caffeic acid, were identified by ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. These results suggest that LE-derived extracts may protect oxidative-stress-induced skin aging by inhibiting degradation of skin collagen, and that this protection may derive at least in part from the antioxidant phenolics present in these extracts. Further studies are warranted to determine the potential utility of LE-derived extracts in both therapeutic and cosmetic applications.

  5. Enhancing hepatic fibrosis in spontaneously hypertensive rats fed a choline-deficient diet: a follow-up report on long-term effects of oxidative stress in non-alcoholic fatty liver disease.

    PubMed

    Yamamoto, Hiroya; Kanno, Keishi; Ikuta, Takuya; Arihiro, Koji; Sugiyama, Akiko; Kishikawa, Nobusuke; Tazuma, Susumu

    2016-05-01

    We previously reported a model of non-alcoholic fatty liver disease (NAFLD) using spontaneously hypertensive rats (SHRs), fed a choline-deficient (CD) diet for 5 weeks, that hepatic steatosis but not fibrosis is developed through oxidative stress. To determine the relationship between hypertension and hepatic fibrosis in NAFLD, we examined whether long-term CD diet leads to hepatic fibrosis through oxidative stress. Eight-week-old male SHR and normotensive Wistar Kyoto rats (WKYs) were fed a CD diet for 5 or 20 weeks, then liver histology and hepatic expression of genes related to lipid metabolism, fibrosis, and oxidative stress were assessed. Oxidative stress was assessed by hepatic thiobarbituric acid reactive substance (TBARS) levels. After 5 weeks on CD diet, prominent hepatic steatosis and decrease in expression of genes for lipid metabolism were observed in SHRs as compared with WKYs. SHRs on a CD diet demonstrated a downregulated expression of genes for antioxidants, along with significant increases in hepatic TBARS. After 20 weeks on CD diet, SHRs demonstrated severe liver fibrosis and upregulated expressions of genes for fibrosis when compared with WKY. Hypertension precipitated hepatic steatosis, and further, acts as an enhancer in NAFLD progression to liver fibrosis through oxidative stress. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  6. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    PubMed Central

    Assies, J; Mocking, R J T; Lok, A; Ruhé, H G; Pouwer, F; Schene, A H

    2014-01-01

    Objective Cardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive responses, might underlie comorbidity between CVD and psychiatric disorders. Method We conducted a literature search and integrated data in a narrative review. Results Oxidative stress, mainly generated in mitochondria, is implicated in both psychiatric and cardiovascular pathophysiology. Oxidative stress affects the intrinsically linked FA and 1-C cycle metabolism: FAs decrease in chain length and unsaturation (particularly omega-3 polyunsaturated FAs), and lipid peroxidation products increase; the 1-C cycle shifts from the methylation to transsulfuration pathway (lower folate and higher homocysteine and antioxidant glutathione). Interestingly, corresponding alterations were reported in psychiatric disorders and CVD. Potential mechanisms through which FA and 1-C cycle metabolism may be involved in brain (neurocognition, mood regulation) and cardiovascular system functioning (inflammation, thrombosis) include membrane peroxidizability and fluidity, eicosanoid synthesis, neuroprotection and epigenetics. Conclusion While oxidative-stress-induced alterations in FA and 1-C metabolism may initially enhance oxidative stress resistance, persisting chronically, they may cause damage possibly underlying (co-occurrence of) psychiatric disorders and CVD. This might have implications for research into diagnosis and (preventive) treatment of (CVD in) psychiatric patients. PMID:24649967

  7. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension.

    PubMed

    Afolayan, Adeleye J; Eis, Annie; Alexander, Maxwell; Michalkiewicz, Teresa; Teng, Ru-Jeng; Lakshminrusimha, Satyan; Konduri, Girija G

    2016-01-01

    Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and PPHN lambs with detaNONOate, an NO donor. We observed decreased mitochondrial (mt) DNA copy number, electron transport chain (ETC) complex subunit levels, and ATP levels in PAECs and lung tissue of PPHN fetal lambs at baseline compared with gestation matched controls. Phosphorylation of AMP-activated kinase (AMPK) and levels of peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) and sirtuin-1, which facilitate mitochondrial biogenesis, were decreased in PPHN. Ventilation with 100% O2 was associated with larger decreases in ETC subunits in the lungs of PPHN lambs compared with unventilated PPHN lambs. iNO administration, which facilitated weaning of FiO2 , partly restored mtDNA copy number, ETC subunit levels, and ATP levels. DetaNONOate increased eNOS phosphorylation and its interaction with heat shock protein 90 (HSP90); increased levels of superoxide dismutase 2 (SOD2) mRNA, protein, and activity; and decreased the mitochondrial superoxide levels in PPHN-PAECs. Knockdown of eNOS decreased ETC protein levels in control PAECs. We conclude that ventilation with 100% O2 amplifies oxidative stress and mitochondrial dysfunction in PPHN, which are partly improved by iNO and weaning of oxygen. Copyright © 2016 the American Physiological Society.

  8. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma

    PubMed Central

    Choi, Jinah; Corder, Nicole L. B.; Koduru, Bhargav; Wang, Yiyan

    2014-01-01

    Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase 2 (Nox2) of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include: genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV was mediated by transforming growth factor beta. This review summarizes mechanisms of oncogenesis by HCV, highlighting the role of oxidative stress and hepatic Nox enzymes in HCC. PMID:24816297

  9. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake

    PubMed Central

    Dhanya, R.; Arun, K. B.; Nisha, V. M.; Syama, H. P.; Nisha, P.; Santhosh Kumar, T. R.; Jayamurthy, P.

    2015-01-01

    Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH) & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM) showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2 - NBDG) on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS) production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control. PMID:26147673

  10. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A.

    PubMed

    Miyata, Rie; Tanuma, Naoyuki; Sakuma, Hiroshi; Hayashi, Masaharu

    2016-01-01

    Xeroderma pigmentosum group A (XPA) is a genetic disorder in DNA nucleotide excision repair (NER) with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA). The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2'-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm.

  11. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A

    PubMed Central

    Sakuma, Hiroshi

    2016-01-01

    Xeroderma pigmentosum group A (XPA) is a genetic disorder in DNA nucleotide excision repair (NER) with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA). The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2′-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm. PMID:27213030

  12. Nebivolol ameliorated kidney damage in Zucker diabetic fatty rats by regulation of oxidative stress/NO pathway: comparison with captopril.

    PubMed

    Wang, Yan; An, Wenjing; Zhang, Fei; Niu, Mengzhen; Liu, Yu; Shi, Ruizan

    2018-06-23

    The aim was to evaluate the effects and mechanisms of nebivolol on renal damage in Zucker diabetic fatty (ZDF) rats, in comparison with those of atenolol and captopril. Animals were divided into: control lean Zucker rats, ZDF rats, ZDF rats orally treated with nebivolol (10 mg/kg), atenolol (100 mg/kg) or captopril (40 mg/kg) for 6 months. Systolic blood pressure (SBP), blood glucose, kidney structure and function, plasma and kidney levels of nitric oxide (NO) and asymmetric dimethylarginine (ADMA), and oxidant status were evaluated. Kidney expressions of AMP-activated protein kinase (AMPK), NADPH oxidase (NOX) isoforms 2 and 4 and subunit p22 phox , nitric oxide synthase (NOS) isoforms, eNOS uncoupling, protein arginine N-methyltransferase (PRMT) 1, and dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2 were tested. All drugs induced a similar control of SBP. Nebivolol did not affect the increased plasma glucose. Unlike atenolol, nebivolol prevented the decrease in plasma insulin, and, like captopril, it reduced plasma lipid contents. Nebivolol ameliorated, to a greater extent than captopril, damages to renal structure and function, which were associated with an improvement in interlobular artery dysfunction. Nebivolol elevated kidney phosphorylation of AMPK, attenuated NOX4 and p22 phox expression and oxidative stress marker levels. Nebivolol increased plasma and renal NO, enhanced expressions of eNOS, p-eNOS and nNOS, and suppressed eNOS uncoupling and iNOS expression. High ADMA in plasma and kidney were decreased by nebivolol through increasing DDAH2 and decreasing PRMT1. Long-term treatment of nebivolol ameliorated diabetic nephropathy, at least in part, via regulation of renal oxidative stress/NO pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain.

    PubMed

    Wani, Willayat Yousuf; Gudup, Satish; Sunkaria, Aditya; Bal, Amanjit; Singh, Parvinder Pal; Kandimalla, Ramesh J L; Sharma, Deep Raj; Gill, Kiran Dip

    2011-12-01

    Dichlorvos is a synthetic insecticide that belongs to the family of chemically related organophosphate (OP) pesticides. It can be released into the environment as a major degradation product of other OPs, such as trichlorfon, naled, and metrifonate. Dichlorvos exerts its toxic effects in humans and animals by inhibiting neural acetylcholinesterase. Chronic low-level exposure to dichlorvos has been shown to result in inhibition of the mitochondrial complex I and cytochrome oxidase in rat brain, resulting in generation of reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt c) from mitochondria to cytosol resulting in apoptotic cell death. MitoQ is an antioxidant, selectively targeted to mitochondria and protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in dichlorvos induced neurodegeneration, then MitoQ should ameliorate neuronal apoptosis. Administration of MitoQ (100 μmol/kg body wt/day) reduced dichlorvos (6 mg/kg body wt/day) induced oxidative stress (decreased ROS production, increased MnSOD activity and glutathione levels) with decreased lipid peroxidation, protein and DNA oxidation. In addition, MitoQ also suppressed DNA fragmentation, cyt c release and caspase-3 activity in dichlorvos treated rats compared to the control group. Further electron microscopic studies revealed that MitoQ attenuates dichlorvos induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that MitoQ may be beneficial against OP (dichlorvos) induced neurodegeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Pre-treatment with the synthetic antioxidant T-butyl bisphenol protects cerebral tissues from experimental ischemia reperfusion injury.

    PubMed

    Duong, Thi Thuy Hong; Chami, Belal; McMahon, Aisling C; Fong, Genevieve M; Dennis, Joanne M; Freedman, Saul B; Witting, Paul K

    2014-09-01

    Treatments to inhibit or repair neuronal cell damage sustained during focal ischemia/reperfusion injury in stroke are largely unavailable. We demonstrate that dietary supplementation with the antioxidant di-tert-butyl-bisphenol (BP) before injury decreases infarction and vascular complications in experimental stroke in an animal model. We confirm that BP, a synthetic polyphenol with superior radical-scavenging activity than vitamin E, crosses the blood-brain barrier and accumulates in rat brain. Supplementation with BP did not affect blood pressure or endogenous vitamin E levels in plasma or cerebral tissue. Pre-treatment with BP significantly lowered lipid, protein and thiol oxidation and decreased infarct size in animals subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. This neuroprotective action was accompanied by down-regulation of hypoxia inducible factor-1α and glucose transporter-1 mRNA levels, maintenance of neuronal tissue ATP concentration and inhibition of pro-apoptotic factors that together enhanced cerebral tissue viability after injury. That pre-treatment with BP ameliorates oxidative damage and preserves cerebral tissue during focal ischemic insult indicates that oxidative stress plays at least some causal role in promoting tissue damage in experimental stroke. The data strongly suggest that inhibition of oxidative stress through BP scavenging free radicals in vivo contributes significantly to neuroprotection. We demonstrate that pre-treatment with ditert-butyl bisphenol(Di-t-Bu-BP) inhibits lipid, protein, and total thiol oxidation and decreases caspase activation and infarct size in rats subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. These data suggest that inhibition of oxidative stress contributes significantly to neuroprotection. © 2014 International Society for Neurochemistry.

  15. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice.

    PubMed

    Rajasekar, N; Dwivedi, Subhash; Tota, Santosh Kumar; Kamat, Pradeep Kumar; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2013-09-05

    Okadaic acid (OKA) has been observed to cause memory impairment in human subjects having seafood contaminated with dinoflagellate (Helicondria okadai). OKA induces tau hyperphosphorylation and oxidative stress leading to memory impairment as our previous study has shown. Curcumin a natural antioxidant has demonstrated neuroprotection in various models of neurodegeneration. However, the effect of curcumin has not been explored in OKA induced memory impairment. Therefore, present study evaluated the effect of curcumin on OKA (100ng, intracerebrally) induced memory impairment in male Swiss albino mice as evaluated in Morris water maze (MWM) and passive avoidance tests (PAT). OKA administration resulted in memory impairment with a decreased cerebral blood flow (CBF) (measured by laser doppler flowmetry), ATP level and increased mitochondrial (Ca(2+))i, neuroinflammation (increased TNF-α, IL-1β, COX-2 and GFAP), oxidative-nitrosative stress, increased Caspase-9 and cholinergic dysfunction (decreased AChE activity/expression and α7 nicotinic acetylcholine receptor expression) in cerebral cortex and hippocampus of mice brain. Oral administration of curcumin (50mg/kg) for 13 days significantly improved memory function in both MWM and PAT along with brain energy metabolism, CBF and cholinergic function. It decreased mitochondrial (Ca(2+))i, and ameliorated neuroinflammation and oxidative-nitrostative stress in different brain regions of OKA treated mice. Curcumin also inhibited astrocyte activation as evidenced by decreased GFAP expression. This neuroprotective effect of curcumin is due to its potent anti-oxidant action thus confirming previous studies. Therefore, use of curcumin should be encouraged in people consuming sea food (contaminated with dinoflagellates) to prevent cognitive impairment. © 2013 Elsevier B.V. All rights reserved.

  16. Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster.

    PubMed

    Niveditha, S; Deepashree, S; Ramesh, S R; Shivanandappa, T

    2017-10-01

    Gender differences in lifespan and aging are known across species. Sex differences in longevity within a species can be useful to understand sex-specific aging. Drosophila melanogaster is a good model to study the problem of sex differences in longevity since females are longer lived than males. There is evidence that stress resistance influences longevity. The objective of this study was to investigate if there is a relationship between sex differences in longevity and oxidative stress resistance in D. melanogaster. We observed a progressive age-dependent decrease in the activity of SOD and catalase, major antioxidant enzymes involved in defense mechanisms against oxidative stress in parallel to the increased ROS levels over time. Longer-lived females showed lower ROS levels and higher antioxidant enzymes than males as a function of age. Using ethanol as a stressor, we have shown differential susceptibility of the sexes to ethanol wherein females exhibited higher resistance to ethanol-induced mortality and locomotor behavior compared to males. Our results show strong correlation between sex differences in oxidative stress resistance, antioxidant defenses and longevity. The study suggests that higher antioxidant defenses in females may confer resistance to oxidative stress, which could be a factor that influences sex-specific aging in D. melanogaster.

  17. Dyslipdemia induced by chronic low dose co-exposure to lead, cadmium and manganese in rats: the role of oxidative stress.

    PubMed

    Oladipo, Olusola Olalekan; Ayo, Joseph Olusegun; Ambali, Suleiman Folorunsho; Mohammed, Bisalla; Aluwong, Tanang

    2017-07-01

    Lead (Pb), cadmium (Cd) and manganese (Mn) have many potential adverse health effects in vitro and in animal models of clinical toxicity. The current study investigated the dyslipidaemic and oxidative stress effects of chronic low-dose oral exposure to Pb, Cd and Mn and the combination (Pb+Cd+Mn) in rats for 15 weeks. Chronic exposure to the metals did not significantly (P>0.05) alter serum lipid profiles. However, the atherogenic index decreased by 32.2% in the Pb+Cd+Mn group, relative to the control. The triglyceride/high-density lipoprotein cholesterol ratio decreased by 39.4% in the Pb+Cd+Mn group, relative to the control, and elevated by 81.8, 94.8 and 20.8%, relative to the Pb, Cd and Mn groups, respectively. While the serum concentrations of malondialdehyde significantly increased in the Mn and Pb+Cd+Mn groups, that of glutathione peroxidase-1 decreased in the Pb+Cd+Mn group, and metallothionein-1 and zinc concentrations markedly decreased in all the metal treatment groups. The results suggest that long-term exposure of rats to Pb+Cd+Mn may result in hypolipidaemia, mediated via oxidative stress and metal interactions. Individuals who are constantly exposed to environmentally relevant levels of the metals may be at risk of hypolipidaemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Edaravone protects rats against oxidative stress and apoptosis in experimentally induced myocardial infarction: Biochemical and ultrastructural evidence.

    PubMed

    Hassan, Md Quamrul; Akhtar, Md Sayeed; Akhtar, M; Ali, Javed; Haque, Syed Ehtaishamul; Najmi, Abul Kalam

    2015-01-01

    The present study was designed to evaluate the cardioprotective potential of edaravone on oxidative stress, anti-apoptotic, anti-inflammatory and ultrastructure findings in isoproterenol (ISO) induced myocardial infarction (MI) in rats. Rats were pretreated with edaravone (1, 3, 10 mg/kg body weight-1 day-1) intraperitoneally. MI was induced by subcutaneous administration of ISO (85 mg/kg body weight-1) at two doses with 24h interval. ISO treated rats showed significant increase in the levels of thiobarbituric acid reactive substances (TBARS) and decreased levels of reduced glutathione, glutathione perdoxidase, glutathione reductase and glutathione-S- transferase in the cardiac tissues. Moreover, significant increase in the levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), C--reactive protein and caspase-3 activity was observed in ISO treated group. Pretreatment of ISO intoxicated rats with edaravone showed significant decrease in the level of TBARS, increased activities of antioxidant enzymes and significantly decreased levels of LDH and CK-MB. Moreover, results also showed decreased C-reactive protein level, caspase-3 activity and maintained ultrastructure of the myocardial cells. Our study suggests that edaravone possess strong cardioprotective potential. Edaravone may have exhibited cardioprotective effects by restoring antioxidant defense mechanism, maintaining integrity of myocardial cell membrane, reducing apoptosis and inflammation against ISO induced MI and associated oxidative stress.

  19. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    PubMed Central

    Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  20. Damaging Effects of Bisphenol A on the Kidney and the Protection by Melatonin: Emerging Evidences from In Vivo and In Vitro Studies

    PubMed Central

    Peerapanyasut, Wachirasek

    2018-01-01

    This study investigates the effects of bisphenol A (BPA) contamination on the kidney and the possible protection by melatonin in experimental rats and isolated mitochondrial models. Rats exposed to BPA (50, 100, and 150 mg/kg, i.p.) for 5 weeks demonstrated renal damages as evident by increased serum urea and creatinine and decreased creatinine clearance, together with the presence of proteinuria and glomerular injuries in a dose-dependent manner. These changes were associated with increased lipid peroxidation and decreased antioxidant glutathione and superoxide dismutase. Mitochondrial dysfunction was also evident as indicated by increased reactive oxygen species production, decreased membrane potential change, and mitochondrial swelling. Coadministration of melatonin resulted in the reversal of all the changes caused by BPA. Studies using isolated mitochondria showed that BPA incubation produced dose-dependent impairment in mitochondrial function. Preincubation with melatonin was able to sustain mitochondrial function and architecture and decreases oxidative stress upon exposure to BPA. The findings indicated that BPA is capable of acting directly on the kidney mitochondria, causing mitochondrial oxidative stress, dysfunction, and subsequently, leading to whole organ damage. Emerging evidence further suggests the protective benefits of melatonin against BPA nephrotoxicity, which may be mediated, in part, by its ability to diminish oxidative stress and maintain redox equilibrium within the mitochondria. PMID:29670679

Top