Science.gov

Sample records for oxidative stress levels

  1. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans.

    PubMed

    Luo, Zhong-Cheng; Bilodeau, Jean-François; Nuyt, Anne Monique; Fraser, William D; Julien, Pierre; Audibert, Francois; Xiao, Lin; Garofalo, Carole; Levy, Emile

    2015-12-08

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24-28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin concentrations. Strong positive correlations were observed between maternal and cord plasma biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently negatively correlated to oxidative stress biomarkers in maternal (r = -0.32, p < 0.0001 for MDA; r = -0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = -0.13, p = 0.04 for MDA; r = -0.32, p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect fetal ghrelin levels in humans. The implications in developmental "programming" the vulnerability to metabolic syndrome related disorders remain to be elucidated.

  2. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    SciTech Connect

    Mazière, Cécile; Salle, Valéry; Gomila, Cathy; Mazière, Jean-Claude

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  3. The effect of upper gastrointestinal system endoscopy process on serum oxidative stress levels.

    PubMed

    Turan, Mehmet Nuri; Aslan, Mehmet; Bolukbas, Filiz Fusun; Bolukbas, Cengiz; Selek, Sahbettin; Sabuncu, Tevfik

    2016-12-01

    Some authors have investigated the effects of oxidative stress in some process such as undergoing laparoscopic. However, the effect of upper gastrointestinal system endoscopy process on oxidative stress is unclear. We evaluated the short-term effect of upper gastrointestinal system endoscopy process on oxidative stress. Thirty patients who underwent endoscopy process and 20 healthy controls were enrolled in the prospective study. Serum total antioxidant capacity and total oxidant status measurements were measured before and after endoscopy process. The ratio percentage of total oxidant status to total antioxidant capacity was regarded as oxidative stress index. Before endoscopy process, serum total antioxidant capacity levels were higher, while serum total oxidant status levels and oxidative stress index values were lower in patients than controls, but this difference was not statistically significant (all, p > 0.05). After endoscopy process, serum total antioxidant capacity and total oxidant status levels were significantly higher in patients than before endoscopy process (both, p < 0.05). However, oxidative stress index values were slight higher in patients but this difference was not statistically significant (p > 0.05). We observed that serum TAC and TOS levels were increased in patients who underwent endoscopy process after endoscopy process. However, short-time upper gastrointestinal system endoscopy process did not cause an important change in the oxidative stress index. Further studies enrolling a larger number of patients are required to clarify the results obtained here.

  4. Financial strain is associated with increased oxidative stress levels: the Women's Health and Aging Studies.

    PubMed

    Palta, Priya; Szanton, Sarah L; Semba, Richard D; Thorpe, Roland J; Varadhan, Ravi; Fried, Linda P

    2015-01-01

    Elevated oxidative stress levels may be one mechanism contributing to poor health outcomes. Financial strain and oxidative stress are each predictors of morbidity and mortality, but little research has investigated their relationship. Community-dwelling older adults (n = 728) from the Women's Health and Aging Studies I and II were included in this cross-sectional analysis. Financial strain was ascertained as an ordinal response to: "At the end of the month, do you have more than enough money left over, just enough, or not enough?" Oxidative stress was measured using serum protein carbonyl concentrations. Linear regression was used to quantify the relationship between financial strain and oxidative stress. Participants who reported high financial strain exhibited 13.4% higher protein carbonyl concentrations compared to individuals who reported low financial strain (p = 0.002). High financial strain may be associated with increased oxidative stress, suggesting that oxidative stress could mediate associations between financial strain and poor health.

  5. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs

    PubMed Central

    2014-01-01

    Background The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Results Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Conclusions Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory. PMID:25056725

  6. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  7. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    PubMed

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk.

  8. Oxidative stress and anxiety

    PubMed Central

    Rammal, Hassan; Soulimani, Rachid

    2009-01-01

    High O2 consumption, modest antioxidant defenses and a lipid-rich constitution make the brain highly vulnerable to redox imbalances. Oxidative damage in the brain causes nervous system impairment. Recently, oxidative stress has also been implicated in depression, anxiety disorders and high anxiety levels. The findings which establish a link between oxidative stress and pathological anxiety have inspired a number of other recent studies focusing on the link between oxidative status and normal anxiety and also on a possible causal relationship between cellular oxidative stress and emotional stress. This review examines the recent discoveries made on the link between oxidative status and normal anxiety levels and the putative role of oxidative stress in genesis of anxiety. We discuss the different opinions and questions that exist in the field and review the methodological approaches that are being used to determine a causal relationship between oxidative and emotional stress. PMID:20357926

  9. Evaluation of Oxidative Stress Parameters and Urinary Deoxypyridinoline Levels in Geriatric Patients with Osteoporosis

    PubMed Central

    Demir, Mehmet; Ulas, Turgay; Tutoglu, Ahmet; Boyaci, Ahmet; Karakas, Emel Yigit; Sezen, Hatice; Ustunel, Murat; Bilinc, Hasan; Gencer, Mehmet; Buyukhatipoglu, Hakan

    2014-01-01

    [Purpose] To evaluate the oxidative stress parameters and urinary deoxypyridinoline levels in geriatric patients with osteoporosis. [Subjects and Methods] Eighty geriatric patients aged over 65 years were recruited. Patients were divided into two groups: Group 1 (n=40) consisted of patients with osteoporosis, and Group 2 (n=40) consisted of patients without osteoporosis. Bone mineral density measurements were performed for all patients using DEXA. Oxidative stress parameters were analyzed in blood samples, and deoxypyridinoline levels were analyzed in 24-hour urinary samples. [Results] Compared to Group 2, the total antioxidant status and oxidative stress index levels of Group 1 were not significantly different; however, total oxidant status and 24-hour urinary deoxypyridinoline levels were significantly higher. Pearson correlation coefficients indicated that OSI and urinary deoxypyridinoline levels were not correlated with any biochemical parameters. ROC-curve analysis revealed that urinary deoxypyridinoline levels over 30.80 mg/ml predicted osteoporosis with 67% sensitivity and 68% specificity (area under the curve = 0.734; %95 CI: 0.624–0.844). [Conclusion] Our results indicate that oxidative stress would play a role in the pathogenesis of osteoporosis, and that urinary deoxypyridinoline levels may be a useful screening test for osteoporosis. PMID:25276024

  10. Total oxidative stress, paraoxonase and arylesterase levels at patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma

    PubMed Central

    Dursun, Feyza; Vural Ozec, Ayse; Aydin, Huseyin; Topalkara, Aysen; Dursun, Ayhan; Toker, Mustafa Ilker; Erdogan, Haydar; Arici, Mustafa Kemal

    2015-01-01

    AIM To investigate the oxidative stress status of the aqueous humor and serum of patients with pseudoexfoliation (PEX) syndrome and pseudoexfoliative glaucoma (PEG) and to measure paraoxonase (PON) and arylesterase (ARE) levels. METHODS A total of 78 patients were enrolled in the study, with 26 patients in each separate group. The patients were divided into three groups: the first group entailed PEX syndrome patients, while the second group consisted of patients with PEG and the third group involved patients with no additional systemic diseases, other than the diagnosis of cataract as control. Total oxidative stress (TOS), total antioxidant capacity (TAC), PON, and ARE levels in aqueous humor and serum were measured. RESULTS TAC, PON and arylesterase levels in aqueous humor and serum of the PEX syndrome and PEG patients were significantly decreased compared with control group (P<0.05). TOS values were higher in patients with PEX syndrome and PEG than controls (P<0.05). TAC, PON and ARE levels of aqueous humor did not differ significantly between the PEX syndrome and PEG groups CONCLUSION These findings are potentially of significance and add to the growing body of evidence for oxidative stress in PEX syndrome and PEG. Decreased antioxidant defense and increased oxidative stress system may play an important role in the pathogenesis of PEX syndrome and PEG. PMID:26558214

  11. Variations in Oxidative Stress Levels in 3 Days Follow-up in Ultramarathon Mountain Race Athletes.

    PubMed

    Spanidis, Ypatios; Stagos, Dimitrios; Orfanou, Marina; Goutzourelas, Nikolaos; Bar-Or, David; Spandidos, Demetrios; Kouretas, Demetrios

    2017-03-01

    Spanidis, Y, Stagos, D, Orfanou, M, Goutzourelas, N, Bar-or, D, Spandidos, D, and Kouretas, D. Variations in oxidative stress levels in 3 days follow-up in ultramarathon mountain race athletes. J Strength Cond Res 31(3): 582-594, 2017-The aim of the present study was the monitoring of the redox status of runners participating in a mountain ultramarathon race of 103 km. Blood samples from 12 runners were collected prerace and 24, 48, and 72 hours postrace. The samples were analyzed by using conventional oxidative stress markers, such as protein carbonyls (CARB), thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC) in plasma, as well as glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. In addition, 2 novel markers, the static oxidation-reduction potential marker (sORP) and the capacity oxidation-reduction potential (cORP), were measured in plasma. The results showed significant increase in sORP levels and significant decrease in cORP and GSH levels postrace compared with prerace. The other markers did not exhibit significant changes postrace compared with prerace. Furthermore, an interindividual analysis showed that in all athletes but one sORP was increased, whereas cORP was decreased. Moreover, GSH levels were decreased in all athletes at least at 2 time points postrace compared with prerace. The other markers exhibited great variations between different athletes. In conclusion, ORP and GSH markers suggested that oxidative stress has existed even 3 days post ultramarathon race. The practical applications from these results would be that the most effective markers for short-term monitoring of ultramarathon mountain race-induced oxidative stress were sORP, cORP, and GSH. Also, administration of supplements enhancing especially GSH is recommended during ultramarathon mountain races to prevent manifestation of pathological conditions.

  12. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels.

    PubMed

    Kim, Mi Kyung; Cho, Sang Woon; Park, Yoo Kyoung

    2012-04-01

    Excessive oxidative stress and abnormal blood lipids may cause chronic diseases. This risk can be reduced by consuming an antioxidant- and fiber-rich vegetarian diet. We compared biomarkers of oxidative stress, antioxidant capacity, and lipid profiles of sex- and age-matched long-term vegetarians and omnivores in Korea. Forty-five vegetarians (23 men and 22 women; mean age, 49.5 ± 5.3 years), who had maintained a vegetarian diet for a minimum of 15 years, and 30 omnivores (15 men and 15 women; mean age, 48.9 ± 3.6 years) participated in this study. Their 1-day, 24-h recall, and 2-day dietary records were analyzed. Oxidative stress was measured by the levels of diacron reactive oxygen metabolites (d-ROM). Antioxidant status was determined by the biological antioxidant potential (BAP) and levels of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. We observed that vegetarians had a significantly lower body fat percentage (21.6 ± 6.4%) than that of omnivores (25.4 ± 4.6%; P < 0.004). d-ROM levels were significantly lower in vegetarians than those in omnivores (331.82 ± 77.96 and 375.80 ± 67.26 Carratelli units; P < 0.011). Additionally, total cholesterol levels in the vegetarians and omnivores were 173.73 ± 31.42 mg/dL and 193.17 ± 37.89 mg/dL, respectively (P < 0.018). Low-density lipoprotein cholesterol was 101.36 ± 23.57 mg/dL and 120.60 ± 34.62 mg/dL (P < 0.005) in the vegetarians and omnivores, respectively, indicating that vegetarians had significantly lower lipid levels. Thus, oxidative stress, body fat, and cholesterol levels were lower in long-term vegetarians than those in omnivores.

  13. Increased levels of oxidative stress biomarkers in metal oxides nanomaterial-handling workers.

    PubMed

    Liou, Saou-Hsing; Chen, Yu-Cheng; Liao, Hui-Yi; Wang, Chien-Jen; Chen, Jhih-Sheng; Lee, Hui-Ling

    2016-11-01

    This study assessed oxidatively damaged DNA and antioxidant enzyme activity in workers occupational exposure to metal oxides nanomaterials. Exposure to TiO2, SiO2, and ITO resulted in significant lower antioxidant enzymes (glutathione peroxidase and superoxide dismutase) and higher oxidative biomarkers 8-hydroxydeoxyguanosine (8-oxodG) than comparison workers. Statistically significant correlations were noted between plasma and urine 8-oxodG, between white blood cells (WBC) and urine 8-oxodG, and between WBC and plasma 8-oxodG. In addition, there were significant negative correlations between WBC 8-oxodG and SOD and between urinary 8-oxodG and GPx levels. The results showed that urinary 8-oxodG may be considered to be better biomarker.

  14. Low level laser therapy reduces oxidative stress in cortical neurons in vitro

    NASA Astrophysics Data System (ADS)

    Huang, Ying-Ying; Tedford, Clark E.; McCarthy, Thomas; Hamblin, Michael R.

    2012-03-01

    It is accepted that the mechanisms of low level laser therapy (LLLT) involves photons that are absorbed in the mitochondria of cells and lead to increase of mitochondrial metabolism resulting in more electron transport, increase of mitochondrial membrane potential, and more ATP production. Intracellular calcium changes are seen that correlate with mitochondrial stimulation. The situation with two other intermediates is more complex however: reactive oxygen species (ROS) and nitric oxide (NO). Evidence exists that low levels of ROS are produced by LLLT in normal cells that can be beneficial by (for instance) activating NF-kB. However high fluences of light can produce large amounts of ROS that can damage the cells. In oxidatively stressed cells the situation may be different. We exposed primary cultured cortical neurons to hydrogen peroxide (H2O2) or cobalt chloride (CoCl2) oxidative insults in the presence or absence of LLLT (810-nm laser at 0.3 or 3 J/cm2). Cell viability of cortical neurons was determined by lactate dehydrogenase assay. ROS in neurons was detected using an ROS probe, MitoRox with confocal microscopy. Results showed that LLLT dose-dependently reversed ROS production and protected cortical neurons against H2O2 or CoCl2 induced oxidative injury in cultured cortical neurons. Conclusion: LLLT can protect cortical neurons against oxidative stress by reversing the levels of ROS.

  15. Recondensation level of repetitive sequences in the plant protoplast nucleus is limited by oxidative stress

    PubMed Central

    Ondřej, Vladan; Navrátilová, Božena; Protivánková, Iva; Piterková, Jana; Sedlářová, Michaela; Luhová, Lenka; Lebeda, Aleš

    2010-01-01

    Protoplast cultures are remarkable examples of plant cell dedifferentiation. The state of dedifferentiation is evidenced by changes in cell morphology, genome organization, as well as by the capability of protoplasts to differentiate into multiple types of cells (depending on the type of the stimulus applied). The first change in the genome structure is connected with large-scale chromatin decondensation, affecting chromocentres involving various types of these repetitive sequences. This paper describes not only the de- and recondensation of satellite DNA type I and 5S rDNA repetitive sequences, but it also compares the recondensation level of chromatin with the levels of oxidative stress which were decreased by using an antioxidant, as well as the capabilities of the antioxidative systems within protoplasts, during the first 72 h of their culture. It is demonstrated that the treatment of protoplasts with ascorbic acid not only decreased the level of oxidative stress but also positively stimulated the expression of the ascorbate peroxidase and catalase. It also led to a greater recondensation of the chromatin (when compared to the untreated protoplasts); in addition, it supported cell proliferation. It is concluded that large-scale genome relaxation is more directly connected with oxidative stress than with large changes in the expression of genes; and further, that its recondensation is related to the start of (as well as the level of) protection by the antioxidative systems. PMID:20363868

  16. Fermented soy permeate reduces cytokine level and oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Malardé, Ludivine; Groussard, Carole; Lefeuvre-Orfila, Luz; Vincent, Sophie; Efstathiou, Théo; Gratas-Delamarche, Arlette

    2015-01-01

    Oxidative stress and inflammation are involved in the development of type 1 diabetes and its complications. Because two compounds found in soy, that is, isoflavones and alpha-galactooligosaccharides, have been shown to exert antioxidant and anti-inflammatory effects, this study aimed to assess the effects of a dietary supplement containing these two active compounds, the fermented soy permeate (FSP). We hypothesized that FSP would be able to reduce in vivo oxidative stress and inflammation in streptozotocin (STZ)-induced type 1 diabetic rats. Thirty male Wistar rats were divided into the control placebo, diabetic placebo, and diabetic FSP-supplemented groups. They received daily, by oral gavage, water (placebo groups) or diluted FSP (0.1 g/day; FSP-supplemented group). After 3 weeks, glycemic regulation (glycemia and fructosamine level); the plasma level of carboxymethyllysine (CML), a marker of systemic oxidative stress in diabetes; and the plasma levels of inflammatory markers (CRP, IL-1β, IL-6, and uric acid) were evaluated. Markers of oxidative damage (isoprostanes and GSH/GSSG), antioxidant enzymatic activity (SOD and GPX), and Mn-SOD content were determined in skeletal muscle (gastrocnemius). Diabetic placebo rats exhibited higher CML levels, lower SOD and GPX activities, and decreased Mn-SOD contents. FSP supplementation in diabetic animals normalized the CML and antioxidant enzymatic activity levels and tended to increase Mn-SOD expression. The markers of inflammation whose levels were increased in the diabetic placebo group were markedly decreased by FSP (IL-1β: -75%, IL-6: -46%, and uric acid: -17%), except for CRP. Our results demonstrate that FSP exhibited antioxidant and anti-inflammatory properties in vivo in STZ-induced diabetic rats.

  17. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    PubMed

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis.

  18. Effects of exercise induced oxidative stress on glutathione levels in Parkinson's disease on and off medication.

    PubMed

    Elokda, Ahmed; DiFrancisco-Donoghue, Joanne; Lamberg, Eric M; Werner, William G

    2010-10-01

    Resting plasma glutathione (GSH) levels are lower in individuals with Parkinson's disease (PD) than any other neurological condition. Medications used to treat PD have also been shown to further decrease this depletion. Acute exercise has been shown to be an effective tool to produce oxidative stress in other populations as reflected in lowering levels of GSH. The purpose of this study was to determine how PD responds to acute exercise stress and how medication affects these responses. Fourteen men with PD and 14 men without PD underwent an exercise stress test. Subjects with PD performed the test once off PD medication (PD-Off-med) for 12 h then again 1 week later on PD medication (PD-On-med). GSH and glutathione disulfide (GSSG), were collected via blood draws at rest and after peak exercise along with peak VO(2). At rest and at peak exercise GSH levels and the GSH:GSSG ratio were significantly lower in the PD-On-med and PD-Off-med as compared to controls. GSSG levels were significantly higher in both medication conditions at rest and peak exercise compared to controls. When comparing PD-On-med vs. PD-Off-med at rest and peak exercise, the PD-On-med had lower GSH levels, a lower GSH:GSSG ratio and higher GSSG levels. VO(2) correlated positively with GSH levels. Subjects with PD have lower plasma GSH levels than healthy controls at rest and at peak exercise.

  19. Parkin elimination of mitochondria is important for maintenance of lens epithelial cell ROS levels and survival upon oxidative stress exposure.

    PubMed

    Brennan, Lisa; Khoury, Josef; Kantorow, Marc

    2017-01-01

    Age-related cataract is associated with oxidative stress and death of lens epithelial cells (LECs) whose survival is dependent on functional mitochondrial populations. Oxidative stress-induced depolarization/damage of LEC mitochondria results in increased reactive oxygen species (ROS) levels and cell death suggesting the need for a LEC mechanism to remove mitochondria depolarized/damaged upon oxidative stress exposure to prevent ROS release and LEC death. To date, a mechanism(s) for removal of depolarized/damaged LEC mitochondria has yet to be identified and the importance of eliminating oxidative stress-damaged mitochondria to prevent LEC ROS release and death has not been established. Here, we demonstrate that Parkin levels increase in LECs exposed to H2O2-oxidative stress. We establish that Parkin translocates to LEC mitochondria depolarized upon oxidative stress exposure and that Parkin recruits p62/SQSTM1 to depolarized LEC mitochondria. We demonstrate that translocation of Parkin results in the elimination of depolarized/damaged mitochondria and that Parkin clearance of LEC mitochondria is dependent on its ubiquitin ligase activity. Importantly, we demonstrate that Parkin elimination of damaged LEC mitochondria results in reduced ROS levels and increased survival upon oxidative stress exposure. These results establish that Parkin functions to eliminate LEC mitochondria depolarized/damaged upon oxidative stress exposure and that elimination of damaged mitochondria by Parkin is important for LEC homeostasis and survival. The data also suggest that mitochondrial quality control by Parkin could play a role in lens transparency.

  20. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea

    PubMed Central

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Hashem, Abeer; Abd_Allah, Elsayed F.; Gucel, Salih; Tran, Lam-Son P.

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  1. Increase in Levels of BDNF is Associated with Inflammation and Oxidative Stress during Cardiopulmonary Bypass

    PubMed Central

    Amoureux, Sébastien; Sicard, Pierre; Korandji, Claudia; Borey, Angélique; Benkhadra, Salima; Sequeira-Le Grand, Anabelle; Vergely, Catherine; Girard, Claude; Rochette, Luc

    2008-01-01

    Cardiopulmonary Bypass (CPB) is thought to generate reactive oxygen species associated with a systemic inflammation and neurotrophins seem to be involved in cardiovascular inflammatory reactions. The aim of this study was to determine the impact of CPB on plasma neurotrophins levels and to appreciate the links existing between inflammation, oxidative stress and neurotrophins. Blood samples were taken from 27 patients undergoing cardiac surgery: before CPB, during ischemia and at reperfusion under CPB. Oxidative stress was evaluated using an Electron Spin Resonance technique by superoxide detection, and antioxidant defences by measurement of Endogenous Peroxidase Activity (EPA). The evolution of two neurotrophins: Brain Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) was assessed with an ELISA method. An inflammatory index was determined by a multiplex flow cytometry method. The inflammatory index showed that MCP-1, P-selectin, t-PA and interleukins 6, 8 and 10 levels increased during CPB (p<0.05). Superoxide production and EPA were higher during ischemia and reperfusion than before CPB (p<0.05). BDNF plasma levels were higher at reperfusion (p<0.05). NGF levels did not change. Our study shows an increase of BDNF levels, associated with an inflammatory phenomenon and a redox modification, in the plasma of patients undergoing cardiac surgery under CPB. The role played by this neurotrophin in this complex situation still needs to be elucidated, in particular its cellular origin. It is also necessary to understand whether BDNF has a beneficial or deleterious effect during CPB. PMID:23675091

  2. Early life low-level cadmium exposure is positively associated with increased oxidative stress

    SciTech Connect

    Kippler, Maria; Bakhtiar Hossain, Mohammad; Lindh, Christian; Moore, Sophie E.; Kabir, Iqbal; Vahter, Marie; Broberg, Karin

    2012-01-15

    Environmental exposure to cadmium (Cd) is known to induce oxidative stress, a state of imbalance between the production of reactive oxygen species (ROS) and the ability to detoxify them, in adults. However, data are lacking on potential effects in early-life. We evaluated urinary concentrations of 8-oxo-7,8-dihydro-2 Prime -deoxyguanosine (8-oxodG), a recognized marker of oxidative DNA damage, in relation to Cd exposure in 96 predominantly breast-fed infants (11-17 weeks of age) in rural Bangladesh. Urinary 8-oxodG was measured using liquid chromatography tandem mass spectrometry and Cd in urine and breast milk by inductively coupled plasma mass spectrometry. Median concentration of 8-oxodG was 3.9 nmol/L, urinary Cd 0.30 {mu}g/L, and breast-milk Cd 0.13 {mu}g/L. In linear regression analyses, urinary 8-oxodG was positively associated with Cd in both urine (p=0.00067) and breast milk (p=0.0021), and negatively associated with body weight (kg; p=0.0041). Adjustment for age, body weight, socio-economic status, urinary arsenic, as well as magnesium, calcium, and copper in breast milk did not change the association between Cd exposure and urinary 8-oxodG. These findings suggest that early-life low-level exposure to Cd via breast milk induces oxidative stress. Further studies are warranted to elucidate whether this oxidative stress is associated with impaired child health and development.

  3. Does Dietary Iodine Regulate Oxidative Stress and Adiponectin Levels in Human Breast Milk?

    PubMed Central

    Gutiérrez-Repiso, Carolina; Velasco, Inés; Garcia-Escobar, Eva; Garcia-Serrano, Sara; Rodríguez-Pacheco, Francisca; Linares, Francisca; Ruiz de Adana, Maria Soledad; Rubio-Martin, Elehazara; Garrido-Sanchez, Lourdes; Cobos-Bravo, Juan Francisco; Priego-Puga, Tatiana; Rojo-Martinez, Gemma; Soriguer, Federico

    2014-01-01

    Abstract Little is known about the association between iodine and human milk composition. In this study, we investigated the association between iodine and different markers of oxidative stress and obesity-related hormones in human breast milk. This work is composed of two cross-sectional studies (in lactating women and in the general population), one prospective and one in vitro. In the cross-sectional study in lactating women, the breast milk iodine correlated negatively with superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) activities, and with adiponectin levels. An in vitro culture of human adipocytes with 1 μM potassium iodide (KI, dose similar to the human breast milk iodine concentration) produced a significant decrease in adiponectin, GSH-Px, SOD1, and SOD2 mRNA expression. However, after 2 months of treatment with KI in the prospective study, a positive correlation was found between 24-h urinary iodine and serum adiponectin. Our observations lead to the hypothesis that iodine may be a factor directly involved in the regulation of oxidative stress and adiponectin levels in human breast milk. Antioxid. Redox Signal. 20, 847–853. PMID:24001137

  4. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations

    PubMed Central

    Sharma, Vyom; Collins, Leonard B.; Chen, Ting-huei; Herr, Natalie; Takeda, Shunichi; Sun, Wei; Swenberg, James A.; Nakamura, Jun

    2016-01-01

    DNA damage and mutations induced by oxidative stress are associated with various different human pathologies including cancer. The facts that most human tumors are characterized by large genome rearrangements and glutathione depletion in mice results in deletions in DNA suggest that reactive oxygen species (ROS) may cause gene and chromosome mutations through DNA double strand breaks (DSBs). However, the generation of DSBs at low levels of ROS is still controversial. In the present study, we show that H2O2 at biologically-relevant levels causes a marked increase in oxidative clustered DNA lesions (OCDLs) with a significant elevation of replication-independent DSBs. Although it is frequently reported that OCDLs are fingerprint of high-energy IR, our results indicate for the first time that H2O2, even at low levels, can also cause OCDLs leading to DSBs specifically in G1 cells. Furthermore, a reverse genetic approach revealed a significant contribution of the non-homologous end joining (NHEJ) pathway in H2O2-induced DNA repair & mutagenesis. This genomic instability induced by low levels of ROS may be involved in spontaneous mutagenesis and the etiology of a wide variety of human diseases like chronic inflammation-related disorders, carcinogenesis, neuro-degeneration and aging. PMID:27015367

  5. The Levels of Cortisol, Oxidative Stress, and DNA Damage in the Victims of Childhood Sexual Abuse: A Preliminary Study.

    PubMed

    Şimşek, Şeref; Kaplan, İbrahim; Uysal, Cem; Yüksel, Tuğba; Alaca, Rümeysa

    2016-01-01

    In this study we aimed to investigate serum cortisol, oxidative stress, and DNA damage in children who are sexual abuse victims. The study included 38 children who sustained child sexual abuse and 38 age- and gender-matched children who did not have a history of trauma. Cortisol levels reflecting the status of the hypothalamic-pituitary-adrenal axis, anti-oxidant enzymes glutathione peroxidase, superoxide dismutase, natural anti-oxidant coenzyme Q, and 8-hydroxy-2-deoxyguanosine as the indicator of DNA damage were analyzed in serum samples using the enzyme linked immunosorbent assay method. Cortisol levels were significantly higher in the child sexual abuse group compared to the control group. There were no significant differences between the groups in terms of oxidative stress and DNA damage. Cortisol and 8-hydroxy-2-deoxyguanosine levels decreased as the time elapsed since the sexual abuse increased. Coenzyme Q level was lower in victims who sustained multiple assaults than in the victims of a single assault. Cortisol and superoxide dismutase levels were lower in the victims of familial sexual abuse. Decreases in cortisol and 8-hydroxy-2-deoxyguanosine levels as time elapsed may be an adaptation to the toxic effects of high cortisol levels over a prolonged period of time. Child sexual abuse did not result in oxidative stress and DNA damage; however, some features of sexual abuse raised the level of oxidative stress.

  6. Effect of Circadian Rhythm Disruption and Alcohol on the Oxidative Stress Level in Rat Brain.

    PubMed

    Varadinova, Miroslava Georgieva; Valcheva-Traykova, Maria Lozanova; Boyadjieva, Nadka Ivanova

    Alcohol abuse is often associated with disrupted circadian rhythms and sleep, and the link seems to be bidirectional. In addition, it has been shown that exposure to constant illumination may increase lipid peroxidation in tissues. In this study, we investigated the effects of circadian rhythm disruption (CRD) and chronic alcohol intake (A) alone and in combination (CRD+A), on the oxidative stress in total rat brain homogenate. Our results demonstrated that lipid peroxidation was increased in the brain samples of all experimental animals compared with the control ones. The oxidative stress levels increased in the order: C

  7. Serum Fetuin-A levels, insulin resistance and oxidative stress in women with polycystic ovary syndrome.

    PubMed

    Enli, Yasar; Fenkci, Semin Melahat; Fenkci, Veysel; Oztekin, Ozer

    2013-12-01

    This study was designed to determine serum Fetuin-A levels and establish whether serum Fetuin-A level is related with insulin resistance, oxidative stress, ovarian hyperandrogenism and dyslipidemia in women with polycystic ovary syndrome (PCOS). Twenty-two patients with PCOS and twenty-one healthy control women were evaluated in this controlled clinical study. Serum Fetuin-A, lipid fractions, glucose, insulin, malondialdehyde (MDA), myeloperoxidase (MPO), glutathione (GSH), superoxide dismutase (SOD) and other hormone (gonadotropins, androgens) levels were measured. The estimate of insulin resistance was calculated by homeostasis model assessment (HOMA-R). The women with PCOS had significantly higher serum fasting glucose, insulin, luteinizing hormone (LH), MDA, Fetuin-A levels, and LH/follicle-stimulating hormone (FSH) ratio, free androgen index (FAI), HOMA-IR than healthy women. However, sex hormone-binding globulin (SHBG) and GSH levels were significantly lower in patients with PCOS compared with controls. Fetuin-A was positively correlated with insulin, HOMA-IR and FAI. Multiple regression analysis revealed that FAI was strong predictor of serum Fetuin-A level. Serum Fetuin-A level was related with insulin resistance and ovarian hyperandrogenism in women with PCOS. These results suggest that Fetuin-A may have a role in triggering the processes leading to insulin resistance and androgen excess in PCOS.

  8. Plasma oxidative stress and total thiol levels in Crimean-Congo hemorrhagic fever.

    PubMed

    Karadag-Oncel, Eda; Erel, Ozcan; Ozsurekci, Yasemin; Caglayik, Dilek Yagci; Kaya, Ali; Gozel, Mustafa Gokhan; Icagasioglu, Fusun Dilara; Engin, Aynur; Korukluoglu, Gulay; Uyar, Yavuz; Elaldi, Nazif; Ceyhan, Mehmet

    2014-01-01

    In this study, we investigated the pro- and antioxidant status of patients with a pathogenesis of Crimean-Congo hemorrhagic fever (CCHF) in terms of their role in its pathogenesis. During the study period, 34 children and 41 adults were diagnosed with CCHF. The control group consisted of healthy age- and gender-matched children and adults. Serum levels of the total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), and plasma total thiol (TTL) were evaluated and compared between groups. The difference in mean TAC values between CCHF patients and healthy controls was not statistically significant (P > 0.05). Mean TOS, OSI, and TTL values were significantly lower in CCHF patients than in healthy controls (P < 0.001). Comparisons between the 2 groups revealed that mean TOS and OSI values were significantly lower in adults with CCHF than in their healthy counterparts (P < 0.001). Similarly, mean TTL levels were lower in both children and adults with CCHF when compared separately with healthy controls (P < 0.05). There was no significant difference in the mean serum TTL levels between children and adults with CCHF (P > 0.05). Our results suggest that TTL may play a more important role in CCHF pathogenesis than the other parameters investigated. The mean TOS and OSI values were higher in the control group than in CCHF patients.

  9. Effect of high fluoride and high fat on serum lipid levels and oxidative stress in rabbits.

    PubMed

    Sun, Liyan; Gao, Yanhui; Zhang, Wei; Liu, Hui; Sun, Dianjun

    2014-11-01

    The purpose of this study was to explore the effects of high fluoride and high fat on triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total antioxidant capacity (T-AOC), lipid peroxide (LPO) and malondialdehyde (MDA) in rabbits. A factorial experimental design was used, with two factors (fluoride and fat) and three levels. Seventy-two male rabbits were randomly assigned into nine groups according to initial weight and serum lipid levels. The rabbits were fed with basic feed, moderate fat feed or high fat feed and drank tap water, fluoridated water at levels of 50 and 100mgfluorion/L freely. Biological materials were collected after 5 months, and serum lipid, T-AOC, LPO, and MDA levels were then measured. Using these data, the separate and interactive effects of high fluoride and high fat were analyzed. High fluoride and high fat both increased serum levels of TC, HDL-C and LDL-C significantly (P<0.05), and there was also a synergistic effect between high fluoride and high fat (P<0.05). High fluoride and high fat had different effects on TG levels: high fat significantly increased TG levels (P<0.01) whereas high fluoride had nothing to do with TG levels (P>0.05). High fat significantly elevated LPO and MDA levels and lowered T-AOC levels in serum (P<0.05). Similarly, high fluoride significantly increased LPO and MDA levels in serum (P<0.05). However, there was no interactive effect between high fat and high fluoride on these indexes. In summary, high fluoride and high fat increased serum TC and LDL-C levels individually and synergistically, and this would cause and aggravate hypercholesterolemia in rabbits. At the same time, high fluoride and high fat both made the accumulation of product of oxidative stress in experimental animals.

  10. High altitude induced anorexia: effect of changes in leptin and oxidative stress levels.

    PubMed

    Vats, Praveen; Singh, Vijay Kumar; Singh, Som Nath; Singh, Shashi Bala

    2007-01-01

    High altitude (HA) exposure usually leads to a significant weight loss in non-acclimatized humans. Anorexia is believed to be the main cause of this body weight loss. Appetite regulatory peptides, i.e. leptin and neuropeptide Y play a key role in food intake and energy homeostasis. Recent studies suggests increased oxidative stress during HA exposure. In present study effect of HA exposure on levels of leptin and NPY was evaluated along with N-acetyl cysteine (NAC) and vitamin E supplementation in relation to food intake and body weight changes. The study was conducted on 30 healthy male volunteers (age 19-29 years). Subjects were divided randomly into three groups of 10 each. Group 1 (placebo) supplemented with 400 mg of calcium gluconate, group 2 and 3 were supplemented with 400 mg of NAC and 400 mg vitamin E, respectively per day. The study was conducted at low altitude (320 m, Phase I), at HA 3600 m (Phase II) and at an altitude of 4580 m (Phase III). On HA exposure significant reduction in plasma leptin levels was observed in all the groups on day 2 (Phase II) along with decrease in food intake and reduction in body weight. Statistically significant increase in blood malondialdehyde (MDA) levels was seen in all the groups on HA exposure (Phase II, Day 2), but the maximum increase was in case of placebo group (65.1%) on day 2 (Phase II) in comparison to low altitude values. The decrease in energy intake was almost same in all the groups indicating that antioxidant supplementation did not provide any protection against HA anorexia. From the study, it may be concluded that leptin and oxidative stress possibly are not the key players for HA anorexia.

  11. Levels of selected oxidative stress markers in the vitreous and serum of diabetic retinopathy patients

    PubMed Central

    Brzović-Šarić, Vlatka; Landeka, Irena; Šarić, Borna; Barberić, Monika; Andrijašević, Lidija; Cerovski, Branimir; Oršolić, Nada

    2015-01-01

    Purpose In diabetes, an impaired antioxidant defense system contributes to the development of diabetic retinopathy. The main objective of this paper was to find correlations of oxidative stress parameters within and between the vitreous and serum in patients with type 2 diabetes who had developed proliferative diabetic retinopathy. Methods The study included and compared two groups of patients who underwent vitrectomy: 37 patients with type 2 diabetes and proliferative retinopathy (PDR), and 50 patients with non-diabetic eye disorders (NDED). Vascular endothelial growth factor (VEGF), advanced oxidized protein product (AOPP), and oxidative stress markers (direct lipid hydroperoxidation (LPO), malondialdehyde (MDA), total superoxide dismutase (SOD), and glutathione (GSH)) were measured in the vitreous and serum of both groups and correlated with one another, between humoral compartments and with gender, age, and serum glucose levels. Results In the vitreous of PDR patients, VEGF, LPO, and MDA (p<0.05) were increased and SOD values were slightly lowered (p<0.05) than in NDED patients. Vitreous AOPP and GSH showed no differences between the groups. In the serum, AOPP, MDA, and SOD were increased (p<0.05) and VEGF was slightly increased (p<0.05) in the PDR group compared to NDED. With regard to gender, similar changes were recorded for both groups, except for the lower serum MDA in males than females in the NDED group. Advanced age showed no significant effect on changes of measured parameters in the vitreous. In the serum, VEGF was positively correlated (p<0.05) and MDA and SOD negatively correlated (p<0.05) with increasing age. Among measured parameters within and between the vitreous and serum, several correlative links occurred in the PDR group that were not present in the NDED group. The most prominent correlation changes were between serum LPO and vitreal LPO, serum SOD and vitreal LPO, serum LPO and serum SOD, and vitreal VEGF and serum SOD. Conclusions Among

  12. Mercury levels assessment and its relationship with oxidative stress biomarkers in children from three localities in Yucatan, Mexico.

    PubMed

    Rangel-Méndez, Jorge A; Arcega-Cabrera, Flor E; Fargher, Lane F; Moo-Puc, Rosa E

    2016-02-01

    Mercury (Hg) is a global pollutant that is released into the environment from geologic and anthropogenic sources. Once it enters an organism, it generates several toxicity mechanisms and oxidative stress has been proposed as the main one. Metal susceptibility is greater in children, which is a result of their physiology and behavior. In Yucatan, Mexico, burning of unregulated garbage dumps and household trash, ingestion of top marine predators, and pottery manufacturing are among the conditions that could promote Hg exposure. However, for Yucatan, there are no published studies that report Hg levels and associated oxidative stress status in children. Therefore, this study aimed to assess Hg levels in blood and urine and oxidative stress biomarkers levels in a sample of 107 healthy children from three localities in Yucatan, Mexico, as well as investigate the relationship between these parameters. Hg was detected in 11 (10.28%) of blood samples and 38 (35.51%) of urine samples collected from the participating children. Fourteen subjects showed Hg above recommended levels. The oxidative stress biomarkers were slightly elevated in comparison with other studies and were statistically different between the sampling sites. No linear correlation between Hg levels and oxidative stress biomarkers was found. Nevertheless, exploratory univariate and multivariate analysis showed non-linear relations among the measured variables. Globally, the study provides, for the first time, information regarding Hg levels and their relationship with oxidative stress biomarkers in a juvenile population from Mexico's southeast (Yucatan) region. In agreement with worldwide concern about Hg, this study should stimulate studies on metal monitoring in humans (especially children) among scientists working in Mexico, the establishment of polices for its regulation, and the reduction of human health risks.

  13. Effect of temperature on oxidative stress, antioxidant levels and uncoupling protein expression in striped hamsters.

    PubMed

    Zhou, Si-Si; Cao, Li-Li; Xu, Wei-Dong; Cao, Jing; Zhao, Zhi-Jun

    2015-11-01

    According to the rate of living-free radical hypothesis, higher metabolic rates should increase reactive oxygen species (ROS) production. However, the "uncoupling to survive" hypothesis postulates that uncoupling proteins (UCPs) can decrease ROS production by lowering the potential of the inner mitochondrial membrane, in which case the correlation between metabolic rate and ROS levels would be a negative rather than positive. In this study, we examined energy intake, oxidative stress levels, antioxidant activity and the expression of UCPs in brown adipose tissue (BAT), and in the liver, heart, skeletal muscle and brain, of striped hamsters (Cricetulus barabensis) acclimated to either 5 °C or 32.5 °C. The energy intake of hamsters acclimated to 5 °C increased by 70.7%, whereas the energy intake of hamsters acclimated to 32.5 °C decreased by 31.3%, relative to hamsters kept at room temperature (21 °C) (P<0.05). Malonadialdehyde (MDA) levels, total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX) activity in BAT significantly decreased in 5 °C group, but increased in 32.5 °C group, relative to the 21 °C group. Neither ROS levels (i.e. H2O2 levels), nor antioxidants in skeletal muscle, liver, heart or brain tissue, were affected by temperature. UCP1 expression in BAT was significantly up-regulated in 5 °C group, but down-regulated in 32.5 °C group, relative to the 21 °C group. UCP3 expression of skeletal muscle was also up-regulated significantly in hamsters acclimated to 5 °C. These results suggest that the relationship between ROS levels and metabolic rate was negative, rather than positive. UCP1 expression in BAT may have played a role in lowering ROS levels.

  14. Effect of Different Selenium Supplementation Levels on Oxidative Stress, Cytokines, and Immunotoxicity in Chicken Thymus.

    PubMed

    Wang, Yachao; Jiang, Li; Li, Yuanfeng; Luo, Xuegang; He, Jian

    2016-08-01

    This study assessed the effects of different selenium (Se) supplementation levels on oxidative stress, cytokines, and immunotoxicity in chicken thymus. A total of 180 laying hens (1 day old; Mianyang, China) were randomly divided into 4 groups (n = 45). The chickens were maintained either on a basic diet (control group) containing 0.2 mg/kg Se, a low-supplemented diet containing 5 mg/kg Se, a medium-supplemented diet containing 10 mg/kg Se, or a high-supplemented diet containing 15 mg/kg Se for 15, 30, and 45 days, respectively. Over the entire experimental period, serum and thymus samples were collected and used for the detection of the experimental index. The results indicated that the antioxidative enzyme activities and messenger RNA (mRNA) levels of antioxidative enzymes, IFN-γ and IL-2 in the thymus, and the content of IFN-γ and IL-2 in the serum of excessive-Se-treated chickens at all time points (except for the 5 mg/kg Se supplement group at 15 days) were significantly decreased (P < 0.05) compared to the corresponding control groups. Interestingly, a significantly increase (P < 0.05) in the content of IFN-γ was observed in the serum and thymus in the 5 mg/kg Se supplement group at 15 and 30 days compared to the corresponding control groups. In histopathological examination, the thymus tissue from excessive-Se-treated chickens revealed different degrees of cortex drop, incrassation of the medulla, and degeneration of the reticular cells. These results suggested that the excessive Se could result in a decrease in immunity, an increase in oxidative damage, and a series of clinical pathology changes, such as cortex drop, incrassation of the medulla, and degeneration of the reticular cells.

  15. Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels.

    PubMed

    Chen, Changbin; Wanduragala, Srimevan; Becker, Donald F; Dickman, Martin B

    2006-06-01

    Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants.

  16. Oxidative stress and myocarditis.

    PubMed

    Tada, Yuko; Suzuki, Jun-Ichi

    2016-01-01

    Reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide are produced highly in myocarditis. ROS, which not only act as effectors for pathogen killing but also mediate signal transduction in the stress responsive pathways, are closely related with both innate and adaptive immunity. On the other hand, oxidative stress overwhelming the capacity of anti-oxidative system generated in severe inflammation has been suggested to damage tissues and exacerbate inflammation. Oxidative stress worsens the autoimmunological process of myocarditis, and suppression of the anti-oxidative system and long-lasting oxidative stress could be one of the pathological mechanisms of cardiac remodeling leading to inflammatory cardiomyopathy. Oxidative stress is considered to be one of the promising treatment targets of myocarditis. Evidences of anti-oxidative treatments in myocarditis have not been fully established. Basic strategies of anti-oxidative treatments include inhibition of ROS production, activation of anti-oxidative enzymes and elimination of generated free radicals. ROS are produced by mitochondrial respiratory chain reactions and enzymes including NADPH oxidases, cyclooxygenase, and xanthine oxidase. Other systems involved in inflammation and stress response, such as NF-κB, Nrf2/Keap1, and neurohumoral factors also influence oxidative stress in myocarditis. The efficacy of anti-oxidative treatments could also depend on the etiology and the phases of myocarditis. We review in this article the pathological significance of ROS and oxidative stress, and the potential anti-oxidative treatments in myocarditis.

  17. Increased levels of oxidative and carbonyl stress markers in normal ovarian cortex surrounding endometriotic cysts.

    PubMed

    Di Emidio, Giovanna; D'Alfonso, Angela; Leocata, Pietro; Parisse, Valentina; Di Fonso, Adina; Artini, Paolo Giovanni; Patacchiola, Felice; Tatone, Carla; Carta, Gaspare

    2014-11-01

    Many evidence support the view that endometriotic cyst may exert detrimental effect on the surrounding ovarian microenvironment so representing a risk to functionality of adjacent follicles. Patients with benign ovarian cyst (endometriotic, follicular and dermoid cysts) subjected to laparoscopic cystectomy were enrolled in the present retrospective study in order to analyze whether endometriotic tissue could negatively affect the surrounding normal ovarian cortex more severely than other ovarian cysts. To this end we carried out immunohistochemistry analysis and comparative determination of the transcription factor FOXO3A, oxidized DNA adduct 8-OHdG (8-hydroxy-2'-deoxyguanosine) and damaged proteins known as AGEs (Advanced Glycation End products) as markers of ovarian stress response and molecular damage. Our results show that all the markers analyzed were present in normal ovarian tissue surrounding benign cysts. We observed higher levels of FOXO3A (15.90 ± 0.28), 8-OHdG (13.33 ± 2.07) and AGEs (12.58 ± 4.34) staining in normal ovarian cortex surrounding endometriotic cysts in comparison with follicular cysts (9.04 ± 0.29, 2.67 ± 2.67, 11.31 ± 2.95, respectively) and dermoid cysts (2.02 ± 0.18, 4.33 ± 2.58 and 10.56 ± 4.03, respectively). These results provide evidence that ovarian endometrioma is responsible for more severe alterations to cellular biomolecules than follicular and dermoid cysts.

  18. Neuroglobin in Breast Cancer Cells: Effect of Hypoxia and Oxidative Stress on Protein Level, Localization, and Anti-Apoptotic Function

    PubMed Central

    Fiocchetti, Marco; Cipolletti, Manuela; Leone, Stefano; Naldini, Antonella; Carraro, Fabio; Giordano, Daniela; Verde, Cinzia; Ascenzi, Paolo; Marino, Maria

    2016-01-01

    The over-expression of human neuroglobin (NGB), a heme-protein preferentially expressed in the brain, displays anti-apoptotic effects against hypoxic/ischemic and oxidative stresses enhancing neuron survival. As hypoxic and oxidative stress injury frequently occurs in fast proliferating neoplastic tissues, here, the effect of these stressors on the level, localization, and anti-apoptotic function of NGB in wild type and NGB-stable-silenced MCF-7 breast cancer cells has been assessed. The well-known endogenous NGB inducer 17β-estradiol (E2) has been used as positive control. The median pO2 present in tumor microenvironment of breast cancer patients (i.e., 2% O2) does not affect the NGB level in breast cancer cells, whereas hydrogen peroxide and lead(IV) acetate, which increase intracellular reactive oxygen species (ROS) level, enhance the NGB levels outside the mitochondria and still activate apoptosis. However, E2-induced NGB up-regulation in mitochondria completely reverse lead(IV) acetate-induced PARP cleavage. These results indicate that the NGB level could represent a marker of oxidative-stress in MCF-7 breast cancer cells; however, the NGB ability to respond to injuring stimuli by preventing apoptosis requires its re-allocation into the mitochondria. As a whole, present data might lead to a new direction in understanding NGB function in cancer opening new avenues for the therapeutic intervention. PMID:27149623

  19. Basal brain oxidative and nitrative stress levels are finely regulated by the interplay between superoxide dismutase 2 and p53.

    PubMed

    Barone, Eugenio; Cenini, Giovanna; Di Domenico, Fabio; Noel, Teresa; Wang, Chi; Perluigi, Marzia; St Clair, Daret K; Butterfield, D Allan

    2015-11-01

    Superoxide dismutases (SODs) are the primary reactive oxygen species (ROS)-scavenging enzymes of the cell and catalyze the dismutation of superoxide radicals O2- to H2O2 and molecular oxygen (O2). Among the three forms of SOD identified, manganese-containing SOD (MnSOD, SOD2) is a homotetramer located wholly in the mitochondrial matrix. Because of the SOD2 strategic location, it represents the first mechanism of defense against the augmentation of ROS/reactive nitrogen species levels in the mitochondria for preventing further damage. This study seeks to understand the effects that the partial lack (SOD2(-/+) ) or the overexpression (TgSOD2) of MnSOD produces on oxidative/nitrative stress basal levels in different brain isolated cellular fractions (i.e., mitochondrial, nuclear, cytosolic) as well as in the whole-brain homogenate. Furthermore, because of the known interaction between SOD2 and p53 protein, this study seeks to clarify the impact that the double mutation has on oxidative/nitrative stress levels in the brain of mice carrying the double mutation (p53(-/-) × SOD2(-/+) and p53(-/-) × TgSOD2). We show that each mutation affects mitochondrial, nuclear, and cytosolic oxidative/nitrative stress basal levels differently, but, overall, no change or reduction of oxidative/nitrative stress levels was found in the whole-brain homogenate. The analysis of well-known antioxidant systems such as thioredoxin-1 and Nrf2/HO-1/BVR-A suggests their potential role in the maintenance of the cellular redox homeostasis in the presence of changes of SOD2 and/or p53 protein levels.

  20. Oxidative stress levels are correlated with P15 and P16 gene promoter methylation in myelodysplastic syndrome patients.

    PubMed

    Gonçalves, Ana Cristina; Cortesão, Emília; Oliveiros, Barbara; Alves, Vera; Espadana, Ana Isabel; Rito, Luís; Magalhães, Emília; Pereira, Sónia; Pereira, Amélia; Costa, José Manuel Nascimento; Mota-Vieira, Luisa; Sarmento-Ribeiro, Ana Bela

    2016-08-01

    Oxidative stress and abnormal DNA methylation have been implicated in some types of cancer, namely in myelodysplastic syndromes (MDS). Since both mechanisms are observed in MDS patients, we analyzed the correlation of intracellular levels of peroxides, superoxide anion, and glutathione (GSH), as well as ratios of peroxides/GSH and superoxide/GSH, with the methylation status of P15 and P16 gene promoters in bone marrow leukocytes from MDS patients. Compared to controls, these patients had lower GSH content, higher peroxide levels, peroxides/GSH and superoxide/GSH ratios, as well as higher methylation frequency of P15 and P16 gene promoters. Moreover, patients with methylated P15 gene had higher oxidative stress levels than patients without methylation (peroxides: 460 ± 42 MIF vs 229 ± 25 MIF, p = 0.001; superoxide: 383 ± 48 MIF vs 243 ± 17 MIF, p = 0.022; peroxides/GSH: 2.50 ± 0.08 vs 1.04 ± 0.34, p < 0.001; superoxide/GSH: 1.76 ± 0.21 vs 1.31 ± 0.10, p = 0.007). Patients with methylated P16 and at least one methylated gene had higher peroxide levels as well as peroxides/GSH ratio than patients without methylation. Interestingly, oxidative stress levels allow the discrimination of patients without methylation from ones with methylated P15, methylated P16, or at least one methylated (P15 or P16) promoter. Taken together, these findings support the hypothesis that oxidative stress is correlated with P15 and P16 hypermethylation.

  1. Investigations into the organism level effects of the copper-induced oxidative stress response of Lemna gibba

    SciTech Connect

    Wall, V.D.; Klaine, S.J.

    1995-12-31

    The use of biochemical endpoints to indicate exposure to environmental toxicants is becoming an accepted technique to determine chemical bio-availability. However, these biochemical endpoints, or biomarkers, have not fulfilled their potential as indicators of sublethal stress when used in this capacity. Difficulties associated with using biochemical endpoints to assess stress arise in differentiating an ``abnormal`` stress response from a physiologically acceptable one and identifying sublethal stress in a biologically and ecologically significant manner. This research examines organism level effects of the copper-induced oxidative-stress response in Lemna gibba. The growth of Lemna gibba was significantly inhibited by aqueous copper concentrations greater than 0.05 ppm during a 10 day exposure. Although effects were dose dependent, the results indicated a conspicuous decrease in growth rates and increase in malformation and chlorosis at 0.5 ppm copper and higher. There were significantly elevated levels of lipid peroxidation products (expressed as thiobarbituric acid reactive species (TBARS)) at 0.1 ppm copper and higher. A decrease in growth rates without an increase in TBARS suggested a diversion of energy towards defensive mechanisms, primarily, superoxide dismutase, peroxidase, catalase and glutathione. These parameters were investigated and analyzed with respect to the organism-level effects (growth rates) of Lemna gibba. The utility and relevance of these sub-cellular parameters as indicators of chemical induced stress at the organism level will be discussed.

  2. Correlation between the serum and tissue levels of oxidative stress markers and the extent of inflammation in acute appendicitis

    PubMed Central

    Dumlu, Ersin Gürkan; Tokaç, Mehmet; Bozkurt, Birkan; Yildirim, Murat Baki; Ergin, Merve; Yalçin, Abdussamed; Kiliç, Mehmet

    2014-01-01

    OBJECTIVES: To determine the serum and tissue levels of markers of impaired oxidative metabolism and correlate these levels with the histopathology and Alvarado score of acute appendicitis patients. METHOD: Sixty-five acute appendicitis patients (mean age, 31.4±12.06 years; male/female, 30/35) and 30 healthy control subjects were studied. The Alvarado score was recorded. Serum samples were obtained before surgery and 12 hours postoperatively to examine the total antioxidant status, total oxidant status, paraoxonase, stimulated paraoxonase, arylesterase, catalase, myeloperoxidase, ceruloplasmin, oxidative stress markers (advanced oxidized protein products and total thiol level) and ischemia-modified albumin. Surgical specimens were also evaluated. RESULTS: The diagnoses were acute appendicitis (n = 37), perforated appendicitis (n = 8), phlegmonous appendicitis (n = 12), perforated+phlegmonous appendicitis (n = 4), or no appendicitis (n = 4). The Alvarado score of the acute appendicitis group was significantly lower than that of the perforated+phlegmonous appendicitis group (p = 0.004). The serum total antioxidant status, total thiol level, advanced oxidized protein products, total oxidant status, catalase, arylesterase, and ischemia-modified albumin levels were significantly different between the acute appendicitis and control groups. There was no correlation between the pathological extent of acute appendicitis and the tissue levels of the markers; additionally, there was no correlation between the tissue and serum levels of any of the parameters. CONCLUSIONS: The imbalance of oxidant/antioxidant systems plays a role in the pathogenesis acute appendicitis. The Alvarado score can successfully predict the presence and extent of acute appendicitis. PMID:25518019

  3. Effects of ethanol on CYP2E1 levels and related oxidative stress using a standard balanced diet.

    PubMed

    Azzalis, Ligia A; Fonseca, Fernando L A; Simon, Karin A; Schindler, Fernanda; Giavarotti, Leandro; Monteiro, Hugo P; Videla, Luis A; Junqueira, Virgínia B C

    2012-07-01

    Expression of cytochrome P4502E1 (CYP2E1) is very much influenced by nutritional factors, especially carbohydrate consumption, and various results concerning the expression of CYP2E1 were obtained with a low-carbohydrate diet. This study describes the effects of ethanol treatment on CYP2E1 levels and its relationship with oxidative stress using a balanced standard diet to avoid low or high carbohydrate consumption. Rats were fed for 1, 2, 3, or 4 weeks a commercial diet plus an ethanol-sucrose solution. The results have shown that ethanol administration was associated with CYP2E1 induction and stabilization without related oxidative stress. Our findings suggest that experimental models with a low-carbohydrate/high-fat diet produce some undesirable CYP2E1 changes that are not present when a balanced standard diet is given.

  4. Oxidative stress and ageing.

    PubMed

    Birch-Machin, M A; Bowman, A

    2016-10-01

    Oxidative stress is the resultant damage due to redox imbalances (increase in destructive free radicals [reactive oxygen species (ROS)] and reduction in antioxidant protection/pathways) and is linked to ageing in many tissues including skin. In ageing skin there are bioenergetic differences between keratinocytes and fibroblasts which provide a potential ageing biomarker. The differences in skin bioenergy are part of the mitochondrial theory of ageing which remains one of the most widely accepted ageing theories describing subsequent increasing free radical generation. Mitochondria are the major source of cellular oxidative stress and form part of the vicious cycle theory of ageing. External and internal sources of oxidative stress include UVR/IR, pollution (environment), lifestyle (exercise and diet), alcohol and smoking all of which may potentially impact on skin although many exogenous actives and endogenous antioxidant defence systems have been described to help abrogate the increased stress. This also links to differences in skin cell types in terms of the UVR action spectrum for nuclear and mitochondrial DNA damage (the latter a previously described UVR biomarker in skin). Recent work associates bioenergy production and oxidative stress with pigment production thereby providing another additional potential avenue for targeted anti-ageing intervention in skin. This new data supporting the detrimental effects of the numerous wavelengths of UVR may aid in the development of cosmetic/sunscreen design to reduce the effects of photoageing. Recently, complex II of the mitochondrial electron transport chain appears to be more important than previously thought in the generation of free radicals (suggested predominantly by non-human studies). We investigated the relationship between complex II and ageing using human skin as a model tissue. The rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes cultured from skin covering

  5. Myocardial Creatine Levels Do Not Influence Response to Acute Oxidative Stress in Isolated Perfused Heart

    PubMed Central

    Aksentijević, Dunja; Zervou, Sevasti; Faller, Kiterie M. E.; McAndrew, Debra J.; Schneider, Jurgen E.; Neubauer, Stefan; Lygate, Craig A.

    2014-01-01

    Background Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury. Objectives To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS) exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the creatine transporter (CrT-OE) would be relatively protected, while mice with creatine-deficiency (GAMT KO) would fare worse. Methods and Results CrT-OE mice were pre-selected for creatine levels 20–100% above wild-type using in vivo 1H–MRS. Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min equilibration, hearts were perfused with either H2O2 0.5 µM (30 min), or the anti-neoplastic drug doxorubicin 15 µM (100 min). Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKCδ expression were quantified in perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wild-type controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to protect hearts from doxorubicin-induced dysfunction. Conclusions Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart, arguing against creatine exerting (patho-)physiologically relevant anti-oxidant activity. PMID:25272153

  6. Evaluation of Low Blood Lead Levels and Its Association with Oxidative Stress in Pregnant Anemic Women: A Comparative Prospective Study.

    PubMed

    Tiwari, Amit Kumar Mani; Mahdi, Abbas Ali; Zahra, Fatima; Sharma, Sudarshna; Negi, Mahendra Pal Singh

    2012-07-01

    To correlate blood lead levels (BLLs) and oxidative stress parameters in pregnant anemic women. A total of 175 pregnant women were found suitable and included for this study. Following WHO criteria, 50 each were identified as non-anemic, mild anemic and moderate anemic and 25 were severe anemic. The age of all study subjects ranged from 24-41 years. At admission, BLLs and oxidative stress parameters were estimated as per standard protocols and subjected with ANOVA, Pearson correlation analysis and cluster analysis. Results showed significantly (p < 0.01) high BLLs, zinc protoporphyrin (ZPP), oxidized glutathione (GSSG), lipid peroxide (LPO) levels while low delta aminolevulinic acid dehydratase (δ-ALAD), iron (Fe), selenium (Se), zinc (Zn), haemoglobin (Hb), haematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), red blood cell (RBC) count, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (TAC) in all groups of anemic pregnant women as compared with non anemic pregnant women. In all groups of pregnant women, BLLs showed significant (p < 0.01) and direct association with ZPP, GSSG and LPO while inverse relation with δ-ALAD, Fe, Se, Zn, Hb, Hct, MCV, MCH, MCHC, RBC, GSH, SOD, CAT and TAC. Study concluded that low BLLs perturb oxidant-antioxidant balance and negatively affected hematological parameters which may eventually Pb to Fe deficiency anemia during pregnancy.

  7. Oxidative stress in Parkinson's disease.

    PubMed

    Nikam, Shashikant; Nikam, Padmaja; Ahaley, S K; Sontakke, Ajit V

    2009-01-01

    Oxidative stress contributes to the cascade, leading to dopamine cell degeneration in Parkinson's disease. However, oxidative stress is intimately linked to other components of the degenerative process, such as mitochondrial dysfunction, excitotoxicity, nitric oxide toxicity and inflammation. It is therefore difficult to determine whether oxidative stress leads to or is a consequence of, these events. Oxidative stress was assessed by estimating lipid peroxidation product in the form of thiobarbituric acid reactive substances, nitric oxide in the form of nitrite & nitrate. Enzymatic antioxidants in the form of superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin and non enzymatic antioxidant vitamins e.g. vitamin E and C in either serum or plasma or erythrocyte in 40 patients of Parkinson's disease in the age group 40-80 years. Trace elements e.g. copper, zinc and selenium were also estimated. Plasma thiobarbituric acid reactive substances and nitric oxide levels were Significantly high but superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin, vitamin-E, vitamin-C, copper, zinc and selenium levels were significantly low in Parkinson's disease when compared with control subjects. Present study showed that elevated oxidative stress may be playing a role in dopaminergic neuronal loss in substentia nigra pars compacta and involved in pathogenesis of the Parkinson's disease.

  8. Impact of iron overload on interleukin-10 levels, biochemical parameters and oxidative stress in patients with sickle cell anemia

    PubMed Central

    Barbosa, Maritza Cavalcante; dos Santos, Talyta Ellen Jesus; de Souza, Geane Félix; de Assis, Lívia Coêlho; Freitas, Max Victor Carioca; Gonçalves, Romélia Pinheiro

    2013-01-01

    Objective The aim of this study was to evaluate the impact of iron overload on the profile of interleukin-10 levels, biochemical parameters and oxidative stress in sickle cell anemia patients. Methods A cross-sectional study was performed of 30 patients with molecular diagnosis of sickle cell anemia. Patients were stratified into two groups, according to the presence of iron overload: Iron overload (n = 15) and Non-iron overload (n = 15). Biochemical analyses were performed utilizing the Wiener CM 200 automatic analyzer. The interleukin-10 level was measured by capture ELISA using the BD OptEIAT commercial kit. Oxidative stress parameters were determined by spectrophotometry. Statistical analysis was performed using GraphPad Prism software (version 5.0) and statistical significance was established for p-values < 0.05 in all analyses. Results Biochemical analysis revealed significant elevations in the levels of uric acid, triglycerides, very low-density lipoprotein (VLDL), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), urea and creatinine in the Iron overload Group compared to the Non-iron overload Group and significant decreases in the high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Ferritin levels correlated positively with uric acid concentrations (p-value < 0.05). The Iron overload Group showed lower interleukin-10 levels and catalase activity and higher nitrite and malondialdehyde levels compared with the Non-iron overload Group. Conclusion The results of this study are important to develop further consistent studies that evaluate the effect of iron overload on the inflammatory profile and oxidative stress of patients with sickle cell anemia. PMID:23580881

  9. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis

    PubMed Central

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-01-01

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  10. Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Salem, Neveen A; Hussein, Jihan Seid

    2012-04-01

    This study aimed at investigating the effect of the sweetener aspartame on oxidative stress and brain monoamines in normal circumstances and after intraperitoneal (i.p.) administration of lipopolysaccharide (LPS; 100 μg/kg) in mice. Aspartame (0.625-45 mg/kg) was given via subcutaneous route at the time of endotoxin administration. Mice were euthanized 4 h later. Reduced glutathione (GSH), lipid peroxidation (thiobarbituric acid-reactive substances; TBARS), and nitrite concentrations were measured in brain and liver. Tumor necrosis factor-alpha (TNF-α) and glucose were determined in brain. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured in liver. The administration of only aspartame (22.5 and 45 mg/kg) increased brain TBARS by 17.7-32.8%, decreased GSH by 25.6-31.6%, and increased TNF-α by 16.7-44%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline, and dopamine. Aspartame did not alter liver TBARS, nitrite, GSH, AST, ALT, or ALP. The administration of LPS increased nitrite in brain and liver by 26.8 and 37.1%, respectively; decreased GSH in brain and liver by 21.6 and 31.1%, respectively; increased brain TNF-α by 340.4%, and glucose by 39.9%, and caused marked increase in brain monoamines. LPS increased AST, ALT, and ALP in liver tissue by 84.4, 173.7, and 258.9%, respectively. Aspartame given to LPS-treated mice at 11.25 and 22.5 mg/kg increased brain TBARS by 15.5-16.9%, nitrite by 12.6-20.1%, and mitigated the increase in monoamines. Aspartame did not alter liver TBARS, nitrite, GSH, ALT, AST, or ALP. Thus, the administration of aspartame alone or in the presence of mild systemic inflammatory response increases oxidative stress and inflammation in the brain, but not in the liver.

  11. Ozone oxidative postconditioning ameliorates joint damage and decreases pro-inflammatory cytokine levels and oxidative stress in PG/PS-induced arthritis in rats.

    PubMed

    Vaillant, Jaqueline Dranguet; Fraga, Angela; Díaz, María Teresa; Mallok, A; Viebahn-Hänsler, Renate; Fahmy, Ziad; Barberá, Ariana; Delgado, Liván; Menéndez, Silvia; Fernández, Olga Sonia León

    2013-08-15

    Rheumatoid Arthritis (RA) is the most prevalent chronic condition present in ~1% of the adult population. Many pro-inflammatory mediators are increased in RA, including Reactive Oxygen Species such as nitric oxide NO, pro-inflammatory cytokines as tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β) and other molecules. Ozone oxidative postconditioning has regulatory effects on some pathological targets associated with RA. Thus, the aim of this study was to investigate the efficacy of ozone therapy in PG/PS-induced arthritis in rats in point of joints inflammation and morphology. Moreover, cytokines, nitric oxide and oxidative stress levels in spleen homogenates were evaluated. Ozone treatment ameliorated joint damage, reduced TNF-α concentrations as well as TNF-α and IL-1β mRNA levels. Besides, cellular redox balance, nitric oxide and fructolysine levels were reestablished after ozone oxidative postconditioning. It was concluded that pleiotropic ozone's effects clarify its therapeutic efficacy in RA. Decreasing inflammation and joint injury, reduction of pro-inflammatory cytokines, TNF-α and IL-1β transcripts and re-establishment of cellular redox balance after ozone treatment were demonstrated.

  12. p53, Oxidative Stress, and Aging

    PubMed Central

    Liu, Dongping

    2011-01-01

    Abstract Mammalian aging is associated with elevated levels of oxidative damage of DNA, proteins, and lipids as a result of unbalanced prooxidant and antioxidant activities. Accumulating evidence indicates that oxidative stress is a major physiological inducer of aging. p53, the guardian of the genome that is important for cellular responses to oxidative stresses, might be a key coordinator of oxidative stress and aging. In response to low levels of oxidative stresses, p53 exhibits antioxidant activities to eliminate oxidative stress and ensure cell survival; in response to high levels of oxidative stresses, p53 exhibits prooxidative activities that further increase the levels of stresses, leading to cell death. p53 accomplishes these context-dependent roles by regulating the expression of a panel of genes involved in cellular responses to oxidative stresses and by modulating other pathways important for oxidative stress responses. The mechanism that switches p53 function from antioxidant to prooxidant remains unclear, but could account for the findings that increased p53 activities have been linked to both accelerated aging and increased life span in mice. Therefore, a balance of p53 antioxidant and prooxidant activities in response to oxidative stresses could be important for longevity by suppressing the accumulation of oxidative stresses and DNA damage. Antioxid. Redox Signal. 15, 1669–1678. PMID:21050134

  13. Effect of low glycemic index food and postprandial exercise on blood glucose level, oxidative stress and antioxidant capacity.

    PubMed

    Kasuya, Noriaki; Ohta, Shoichiro; Takanami, Yoshikazu; Kawai, Yukari; Inoue, Yutaka; Murata, Isamu; Kanamoto, Ikuo

    2015-04-01

    Low glycemic index (GI) food and postprandial exercise are non-drug therapies for improving postprandial hyperglycemia. The present randomized, crossover study investigated the effect of low GI food combined with postprandial exercise on postprandial blood glucose level, oxidative stress and antioxidant capacity. A total of 13 healthy subjects were each used in four experiments: i) rice only (control), ii) salad prior to rice (LGI), iii) exercise following rice (EX) and iv) salad prior to rice and exercise following rice (MIX). The blood glucose level, oxidative stress and antioxidant capacity were then measured. At 60 min after the meal, the blood glucose level was observed to be increased in the MIX group compared with that in the LGI group. Furthermore, at 180 min, the antioxidant capacity was found to be reduced in the MIX group compared with those of the LGI and EX groups. These findings suggest that low GI food combined with postprandial exercise does not improve postprandial hyperglycemia. It may be necessary to establish optimal timing and intensity when combining low GI food with postprandial exercise to improve postprandial hyperglycemia.

  14. Effect of low glycemic index food and postprandial exercise on blood glucose level, oxidative stress and antioxidant capacity

    PubMed Central

    KASUYA, NORIAKI; OHTA, SHOICHIRO; TAKANAMI, YOSHIKAZU; KAWAI, YUKARI; INOUE, YUTAKA; MURATA, ISAMU; KANAMOTO, IKUO

    2015-01-01

    Low glycemic index (GI) food and postprandial exercise are non-drug therapies for improving postprandial hyperglycemia. The present randomized, crossover study investigated the effect of low GI food combined with postprandial exercise on postprandial blood glucose level, oxidative stress and antioxidant capacity. A total of 13 healthy subjects were each used in four experiments: i) rice only (control), ii) salad prior to rice (LGI), iii) exercise following rice (EX) and iv) salad prior to rice and exercise following rice (MIX). The blood glucose level, oxidative stress and antioxidant capacity were then measured. At 60 min after the meal, the blood glucose level was observed to be increased in the MIX group compared with that in the LGI group. Furthermore, at 180 min, the antioxidant capacity was found to be reduced in the MIX group compared with those of the LGI and EX groups. These findings suggest that low GI food combined with postprandial exercise does not improve postprandial hyperglycemia. It may be necessary to establish optimal timing and intensity when combining low GI food with postprandial exercise to improve postprandial hyperglycemia. PMID:25780409

  15. Staphylococcal response to oxidative stress

    PubMed Central

    Gaupp, Rosmarie; Ledala, Nagender; Somerville, Greg A.

    2012-01-01

    Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host. PMID:22919625

  16. Erythropoietin and oxidative stress.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2008-05-01

    Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.

  17. Assessment at the single-cell level identifies neuronal glutathione depletion as both a cause and effect of ischemia-reperfusion oxidative stress.

    PubMed

    Won, Seok Joon; Kim, Ji-Eun; Cittolin-Santos, Giordano Fabricio; Swanson, Raymond A

    2015-05-06

    Oxidative stress contributes to neuronal death in brain ischemia-reperfusion. Tissue levels of the endogenous antioxidant glutathione (GSH) are depleted during ischemia-reperfusion, but it is unknown whether this depletion is a cause or an effect of oxidative stress, and whether it occurs in neurons or other cell types. We used immunohistochemical methods to evaluate glutathione, superoxide, and oxidative stress in mouse hippocampal neurons after transient forebrain ischemia. GSH levels in CA1 pyramidal neurons were normally high relative to surrounding neuropil, and exhibited a time-dependent decrease during the first few hours of reperfusion. Colabeling for superoxide in the neurons showed a concurrent increase in detectable superoxide over this interval. To identify cause-effect relationships between these changes, we independently manipulated superoxide production and GSH metabolism during reperfusion. Mice in which NADPH oxidase activity was blocked to prevent superoxide production showed preservation of neuronal GSH content, thus demonstrating that neuronal GSH depletion is result of oxidative stress. Conversely, mice in which neuronal GSH levels were maintained by N-acetyl cysteine treatment during reperfusion showed less neuronal superoxide signal, oxidative stress, and neuronal death. At 3 d following ischemia, GSH content in reactive astrocytes and microglia was increased in the hippocampal CA1 relative to surviving neurons. Results of these studies demonstrate that neuronal GSH depletion is both a result and a cause of neuronal oxidative stress after ischemia-reperfusion, and that postischemic restoration of neuronal GSH levels can be neuroprotective.

  18. Transient elevation of serum bilirubin (a heme oxygenase-1 metabolite) level in hemorrhagic stroke: bilirubin is a marker of oxidant stress.

    PubMed

    Dohi, K; Mochizuki, Y; Satoh, K; Jimbo, H; Hayashi, M; Toyoda, I; Ikeda, Y; Abe, T; Aruga, T

    2003-01-01

    Bilirubin (Bil) is the end product of heme catabolism. The production of Bil reflects heme oxygenase-1 expression in response to oxidative stress in various diseases. To assess the role of Bil as a marker of oxidative stress in cases of brain damage, we measured serum Bil concentrations in patients with hemorrhagic stroke. Serum levels of total Bil were measured in 20 subarachnoid hemorrhage patients with symptomatic vasospasms and in 23 patients with intracerebral hemorrhage; concentrations were measured every day for 14 consecutive days. Serum Bil levels were significantly elevated in the early phases in both groups. Moreover, transient elevation was observed on the day prior to the observation of clinical manifestations of symptomatic vasospasm after SAH. Bil, known to be a powerful antioxidant, was induced after hemorrhagic stroke, reflecting the intensity of oxidative stress. Plasma Bil concentrations might serve as a useful marker of oxidative stress in hemorrhagic stroke patients.

  19. Evaluation of Systemic Antioxidant Level and Oxidative Stress in Relation to Lifestyle and Disease Progression in Asthmatic Patients

    PubMed Central

    Saini, Manisha

    2016-01-01

    Summary Background Asthma is a chronic disorder of the airways. Oxidative stress is an important part of asthma pathogenesis. It plays a crucial role in exacerbating the disease, as well as an important consequence of airways inflammation. Aim The present study was undertaken to investigate the lipid peroxidation and catalase activity in serum and antioxidant level in plasma of asthmatic patients and their association with lifestyle and severity of the disease. Methods A total of 210 subjects, 120 asthmatics and 90 healthy controls matched in respect to age, sex, lifestyle and socioeconomic status, were chosen randomly for the present study. The samples were analyzed for MDA concentration and catalase activity in serum and ferric reducing ability of plasma (FRAP). Statistical analysis was done using unpaired Student’s t-test, ANOVA with Duncan post hoc test and Pearson coefficient of correlation. Results The serum MDA was found to be significantly higher in the asthmatics as compared to healthy individuals (p<0.01) while catalase activity in serum and antioxidant level of the plasma were markedly lower in the asthmatics as compared to healthy individuals (p<0.01). A significant difference was observed in serum MDA, catalase activity and plasma antioxidant level among the patients in relation to the severity of disease. There was a marked increase in the serum MDA in the patients with longer duration of the disease (p<0.05). Conclusions The oxidant–antioxidant imbalance occurs in asthma leading to oxidative stress and is an important part of the asthma pathogenesis. PMID:28356865

  20. Peroxisomes, oxidative stress, and inflammation

    PubMed Central

    Terlecky, Stanley R; Terlecky, Laura J; Giordano, Courtney R

    2012-01-01

    Peroxisomes are intracellular organelles mediating a wide variety of biosynthetic and biodegradative reactions. Included among these are the metabolism of hydrogen peroxide and other reactive species, molecules whose levels help define the oxidative state of cells. Loss of oxidative equilibrium in cells of tissues and organs potentiates inflammatory responses which can ultimately trigger human disease. The goal of this article is to review evidence for connections between peroxisome function, oxidative stress, and inflammation in the context of human health and degenerative disease. Dysregulated points in this nexus are identified and potential remedial approaches are presented. PMID:22649571

  1. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit

    SciTech Connect

    Jiménez-Garza, Octavio; Baccarelli, Andrea A.; Byun, Hyang-Min; Márquez-Gamiño, Sergio; Barrón-Vivanco, Briscia Socorro

    2015-08-01

    Background: CYP2E1 is a versatile phase I drug-metabolizing enzyme responsible for the biotransformation of most volatile organic compounds, including toluene. Human toluene exposure increases CYP2E1 mRNA and modifies its activity in leucocytes; however, epigenetic implications of this interaction have not been investigated. Goal: To determine promoter methylation of CYP2E1 and other genes known to be affected by toluene exposure. Methods: We obtained venous blood from 24 tannery workers exposed to toluene (mean levels: 10.86 +/− 7 mg/m{sup 3}) and 24 administrative workers (reference group, mean levels 0.21 +/− 0.02 mg/m{sup 3}) all of them from the city of León, Guanajuato, México. After DNA extraction and bisulfite treatment, we performed PCR-pyrosequencing in order to measure methylation levels at promoter region of 13 genes. Results: In exposed group we found significant correlations between toluene airborne levels and CYP2E1 promoter methylation (r = − .36, p < 0.05), as well as for IL6 promoter methylation levels (r = .44, p < 0.05). Moreover, CYP2E1 promoter methylation levels where higher in toluene-exposed smokers compared to nonsmokers (p = 0.009). We also observed significant correlations for CYP2E1 promoter methylation with GSTP1 and SOD1 promoter methylation levels (r = − .37, p < 0.05 and r = − .34, p < 0.05 respectively). Conclusion: These results highlight the importance of considering CYP2E1 epigenetic modifications, as well as its interactions with other genes, as key factors for unraveling the sub cellular mechanisms of toxicity exerted by oxidative stress, which can initiate disease process in chronic, low-level toluene exposure. People co-exposed to toluene and tobacco smoke are in higher risk due to a possible CYP2E1 repression. - Highlights: • We investigated gene-specific methylation in persons chronically exposed to toluene. • In a previous study, a reduced CYP2E1 activity was observed in these participants. • CYP2E1

  2. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae.

    PubMed

    Drakulic, Tamara; Temple, Mark D; Guido, Ron; Jarolim, Stefanie; Breitenbach, Michael; Attfield, Paul V; Dawes, Ian W

    2005-12-01

    Saccharomyces cerevisiae mutants lacking oxidative stress response genes were used to investigate which genes are required under normal aerobic conditions to maintain cellular redox homeostasis, using intracellular glutathione redox potential (glutathione E(h)) to indicate the redox environment of the cells. Levels of reactive oxygen species (ROS) and mitochondrial membrane potentials (MMP) were also assessed by FACS using dihydroethidium and rhodamine 123 as fluorescent probes. Cells became more oxidised as strains shifted from exponential growth to stationary phase. During both phases the presence of reduced thioredoxin and the activity of glutathione reductase were important for redox homeostasis. Thioredoxin reductase contributed less during exponential phase when there was a strong requirement for active Yap1p transcription factor, but was critical during stationary phase. The absence of ROS detoxification systems, such as catalases or superoxide dismutases, had a lesser effect on glutathione E(h), but a more pronounced effect on ROS levels and MMP. These results reflect the major shift in ROS generation as cells switch from fermentative to respiratory metabolism and also showed that there was not a strong correlation between ROS production, MMP and cellular redox environment. Heterogeneity was detected in populations of strains with compromised anti-oxidant defences, and as cells aged they shifted from one cell type with low ROS content to another with much higher intracellular ROS.

  3. Do the serum oxidative stress biomarkers provide a reasonable index of the general oxidative stress status?

    PubMed

    Argüelles, Sandro; García, Sonia; Maldonado, Mariam; Machado, Alberto; Ayala, Antonio

    2004-11-01

    The oxidant status of an individual is assessed by determining a group of markers in noninvasive samples. One limitation when measuring these biomarkers is that they do not give information about tissue localization of oxidative stress. The present study was undertaken to establish whether the serum oxidative stress biomarkers are indicative of oxidative stress in tissues of an individual. To accomplish this, we determined a few generic markers of oxidation in serum and tissues of six groups of rats treated experimentally, to modulate their oxidative stress status. The correlation between serum and tissue levels was calculated for each marker. Also, for each tissue, the correlation between the values of these oxidative stress biomarkers was analysed. Our results show that only lipid peroxides in serum could be useful to predict the oxidative stress in tissues. No correlation was found between any of the oxidative stress markers in serum.

  4. Using the MitoB method to assess levels of reactive oxygen species in ecological studies of oxidative stress

    PubMed Central

    Salin, Karine; Auer, Sonya K.; Villasevil, Eugenia M.; Anderson, Graeme J.; Cairns, Andrew G.; Mullen, William; Hartley, Richard C.; Metcalfe, Neil B.

    2017-01-01

    In recent years evolutionary ecologists have become increasingly interested in the effects of reactive oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen peroxide, H2O2) content in vivo is now possible using the MitoB probe. Here, we extend and refine the MitoB method to make it suitable for ecological studies of oxidative stress using the brown trout Salmo trutta as model. The MitoB method allows an evaluation of H2O2 levels in living organisms over a timescale from hours to days. The method is flexible with regard to the duration of exposure and initial concentration of the MitoB probe, and there is no transfer of the MitoB probe between fish. H2O2 levels were consistent across subsamples of the same liver but differed between muscle subsamples and between tissues of the same animal. The MitoB method provides a convenient method for measuring ROS levels in living animals over a significant period of time. Given its wide range of possible applications, it opens the opportunity to study the role of ROS in mediating life history trade-offs in ecological settings. PMID:28117373

  5. Expression of FOXO6 is Associated With Oxidative Stress Level and Predicts the Prognosis in Hepatocellular Cancer

    PubMed Central

    Chen, Hai-Yong; Chen, Yao-Min; Wu, Jian; Yang, Fu-Chun; Lv, Zhen; Xu, Xiao-Feng; Zheng, Shu-Sen

    2016-01-01

    Abstract The aim of this study was to explore the association of Forkhead box O6 (FOXO6) expression with oxidative stress level and prognosis of hepatocellular cancer (HCC). The case group included tissues of HCC from 128 patients who were hospitalized in Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery of First Affiliated Hospital, School of Medicine, Zhejiang University. The control group included normal liver tissues from 74 patients. RT-PCR and Western blot were used to test expressions of FOXO6, heme oxygenase (HO)-1, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). Dihydroethidium (DHE) was dyed to observe reactive oxygen species (ROS) level. Immunohistochemistry was used to test FOXO6 expression. FOXO6 was silenced in HepG2 cells to detect cell proliferation and apoptosis. The expressions of ROS, HO-1, GPx, SOD, CAT, p27, and cyclin D1 were also detected to further explore the possible mechanism. The expressions of FOXO6, HO-1, GPx, SOD, and CAT in HCC tissue was significantly higher than those in normal and adjacent HCC tissues (P <0.05). The tumor size, TNM stage, Alpha-fetoprotein (AFP) level, the presence or absence of hepatitis B surface antigen (HbsAg), and differentiation degree were related to FOXO6 expression level (all P <0.05). COX analysis showed that high FOXO6 expression, male, positive HBsAg, advanced TNM staging, high expression of AFP, and low degree of differentiation were all risk factors for prognosis in HCC (P <0.05). Compared with the blank group (C group, without transfection) and the negative control (NC) group, the mRNA expressions of ROS, FOXO6, HO-1, SOD, GPx, and CAT were decreased (P <0.05). si-RNA group had significantly decreased proliferation speed during 24 to 72 hours (P <0.05), whereas si-FOXO6 group had remarkably increased G0/G1 staged cells and decreased S-staged cells (P <0.05). The si-FOXO6 group showed notably increased apoptosis rate (P <0.05) and p

  6. Oxidative stress & male infertility.

    PubMed

    Makker, Kartikeya; Agarwal, Ashok; Sharma, Rakesh

    2009-04-01

    The male factor is considered a major contributory factor to infertility. Apart from the conventional causes for male infertility such as varicocoele, cryptorchidism, infections, obstructive lesions, cystic fibrosis, trauma, and tumours, a new and important cause has been identified: oxidative stress. Oxidative stress is a result of the imbalance between reactive oxygen species (ROS) and antioxidants in the body. It is a powerful mechanism that can lead to sperm damage, deformity and eventually, male infertility. This review discusses the physiological need for ROS and their role in normal sperm function. It also highlights the mechanism of production and the pathophysiology of ROS in relation to the male reproductive system and enumerate the benefits of incorporating antioxidants in clinical and experimental settings.

  7. Oxidative Stress in Malaria

    PubMed Central

    Percário, Sandro; Moreira, Danilo R.; Gomes, Bruno A. Q.; Ferreira, Michelli E. S.; Gonçalves, Ana Carolina M.; Laurindo, Paula S. O. C.; Vilhena, Thyago C.; Dolabela, Maria F.; Green, Michael D.

    2012-01-01

    Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy. PMID:23208374

  8. CVD and Oxidative Stress

    PubMed Central

    Cervantes Gracia, Karla; Llanas-Cornejo, Daniel; Husi, Holger

    2017-01-01

    Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished. PMID:28230726

  9. Anti-fatigue effects of troxerutin on exercise endurance capacity, oxidative stress and MMP-9 levels in trained male rats.

    PubMed

    Zamanian, Mohammad; Hajizadeh, Mohammad R; Nadimi, Ali Esmaeili; Shamsizadeh, Ali; Allahtavakoli, Mohammad

    2017-02-18

    The aim of this study was to investigate effects of troxerutin (TRX) on endurance capacity, oxidative stress and MMP-9 levels in trained male rats. Forty male Wistar rats were divided into five groups. The control (Vehicle) and exercise training (5 days/week) with vehicle treatment (Exercise), exercise training with TRX treatment at 75 (Ex-TRX75), 150 (Ex-TRX150), and 300 mg/kg (Ex-TRX300). The treated groups received TRX by gavage every day while the other groups received water for 30 days. On the 30(th) day, rats were sacrificed immediately after exhaustive swimming test, and some biochemical parameters were measured. Exhaustion swimming time in the Ex-TRX75, Ex-TRX150 and Ex-TRX300 groups significantly increased 1.2, 1.93 and 2.1-fold compared to the Vehicle group, respectively. TRX significantly increased glucose level (P ˂ 0.05) and reduced CK activity (P ˂ 0.001) compared to the Vehicle and exercise groups. TRX300 significantly reduced ALP and LDH activities (P ˂ 0.05) and BUN (P ˂ 0.05) and MMP-9 levels (P ˂ 0.05) compared to the Vehicle and Exercise groups. Additionally, TRX300 and TRX150 significantly increased SOD activity compared to the Vehicle group (P ˂ 0.05). Our results provide experimental evidence in supporting clinical use of TRX as an effective agent against fatigue. This article is protected by copyright. All rights reserved.

  10. Oxidative Stress in Myopia

    PubMed Central

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  11. Oxidative stress in myopia.

    PubMed

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  12. Association Between Seminal Plasma Copper and Magnesium Levels with Oxidative Stress in Iraqi Infertile Men

    PubMed Central

    Abdul-Rasheed, Omar F.

    2010-01-01

    Objectives To study the association between copper, magnesium and malondialdehyde levels in seminal plasma of oligozoospermic, azoospermic in relation to normozoospermic men. Methods The present study was conducted at the Chemistry and Biochemistry department, College of Medicine, Al-Nahrain University, Baghdad-Iraq during September 2007 to February 2008 after obtaining approval from the research and ethics committee and obtaining written consent, 78 infertile men (age range 33.01±4.20 years) were recruited at the institute of embryo research and infertility treatment, Al-Kadhimiya teaching hospital, Iraq and were categorized according to their seminal fluid parameters to oligozoospermia (n=43) and azoospermia (n=35). 41 fertile men (age range 30.29±2.30 years) were selected as controls. Seminal plasma copper and magnesium were measured by atomic absorption spectrophotometry. Malondialdehyde was measured calorimetrically using thiobarbituric acid assay which detects thiobarbituric acid reactive substances. Results Seminal plasma copper level was decreased significantly (p=0.000) in the azoospermic group compared to the control group. Whereas, the level decreased non-significantly in the oligozoospermic group. Seminal plasma magnesium levels were decreased significantly (p=0.000) in all the infertility groups studied. On the other hand, malondialdehyde levels which is an end product of lipid peroxidation were significantly elevated (p=0.000) in all the infertility groups studied. Conclusion Copper and magnesium work in different ways in order to maintain normal environment for spermatozoa for normal fertilization to occur. PMID:22043332

  13. Methylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells.

    PubMed

    Xie, Bingjie; Lin, Fankai; Peng, Lei; Ullah, Kaleem; Wu, Hanyan; Qing, Hong; Deng, Yulin

    2014-11-01

    More and more studies have suggested that methylglyoxal (MGO) induced by type-2 diabetes is related to Parkinson's disease (PD). However, little is known about the molecular mechanism. In this study, we explored the MGO toxicity in neuroblastoma SH-SY5Y cells. Neurotoxicity of MGO was measured by mitochondrial membrane potential, malondialdehyde, and methylthiazoletetrazolium assays. The levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) were detected by liquid chromatography-mass spectrometry/mass spectrometry. The expressions of tyrosine hydroxylase (TH) and dopamine transporter (DAT) were detected by reverse transcriptase polymerase chain reaction and western blot analysis. The results showed that MGO induced an increase in TH and DAT expressions in SH-SY5Y neuroblastoma cells, while the levels of dopamine, DOPAC, and endogenous neurotoxin salsolinol also increased. Aminoguanidine (AG) is an inhibitor of MGO. It was found that AG could decrease the reactive oxygen species (ROS) level induced by MGO, but could not inhibit an increase of TH, DAT and dopamine. The increase of dopamine, DOPAC and salsolinol levels could lead to high ROS and mitochondrial damage. This study suggests that ROS caused by dopamine could contribute to the damage of dopaminergic neurons when MGO is increased during the course of diabetes.

  14. Oxidative stress elevated DNA damage and homocysteine level in normal pregnant women in a segment of Pakistani population.

    PubMed

    Bukhari, Shazia A; Rajoka, Muhammad Ibrahim; Ibrahim, Z; Jalal, Fatima; Rana, Shahid Mahboob; Nagra, Saeed A

    2011-04-01

    Maternal oxidative stress during pregnancy may impair fetal growth and help in the development of diseases in adulthood. The aim of current study was to assess total oxidation status (TOS), related parameters and their relationship to DNA damage (%) and homocysteine level in normal pregnant women in low-income participants. In a cross-sectional study healthy women were grouped as normal, while age matched nulliparous and singleton pregnancies were included for first, second and third trimester groups. TOS (P<0.01), melanodialdehyde (MDA) (P<0.001), aspartate aminotransferase (AST) (P<0.01), triiodothyronine (T3) (P<0.01), thyroxine (T4) (P<0.01), and homocysteine (P<0.001), in pregnant women were significantly higher as compared to normal healthy women. While serum total proteins (P<0.01), albumin (P<0.01) and total antioxidant status (TAS) (P<0.001) decreased significantly as compared to normal healthy women. Women in third trimester showed a significantly high level of body temperature (P<0.01), triglyceride (P<0.01), LDL-cholesterol (P<0.05), AST (P<0.01), T3 (P<0.01), homocysteine (P<0.001), TOS (P<0.01) and MDA (P<0.001) but a lower concentration of serum proteins, albumin and TAS at the end of the pregnancy. Pearson correlation indicated a positive relationship of homocysteine with triglycerides (P<0.027), TOS (P<0.01), MDA (P<0.035) and had a negative relationship with total protein (P<0.026). DNA damage was strongly related with T3 (P<0.008), TOS (P<0.02), MDA (P<0.037) and MBI (P<0.048) profiles of pregnant women. These changes were considered normal for pregnant women having optimum blood pressure and normal child birth. Hormonal influences and hemodilution may contribute towards the observed changes in this study.

  15. Oxidative stress determined through the levels of antioxidant enzymes and the effect of N-acetylcysteine in aluminum phosphide poisoning

    PubMed Central

    Agarwal, Avinash; Robo, Roto; Jain, Nirdesh; Gutch, Manish; Consil, Shuchi; Kumar, Sukriti

    2014-01-01

    Introduction: The primary objective of this study was to determine the serum level of antioxidant enzymes and to correlate them with outcome in patients of aluminum phosphide (ALP) poisoning and, secondly, to evaluate the effect of N-acetylcysteine (NAC) given along with supportive treatment of ALP poisoning. Design: We conducted a cohort study in patients of ALP poisoning hospitalized at a tertiary care center of North India. The treatment group and control group were enrolled during the study period of 1 year from May 2011 to April 2012. Interventions: Oxidative stress was evaluated in each subject by estimating the serum levels of the enzymes, viz. catalase, superoxide dismutase (SOD) and glutathione reductase (GR). The treatment group comprised of patients who were given NAC in addition to supportive treatment (magnesium sulfate and vasopressors, if required), while in the control group, only supportive treatment was instituted. The primary endpoint of the study was the survival of the patients. Measurements and Results: The baseline catalase (P = 0.008) and SOD (P < 0.01) levels were higher among survivors than non-survivors. Of the total patients in the study, 31 (67.4%) expired and 15 (32.6%) survived. Among those who expired, the mean duration of survival was 2.92 ± 0.40 days in the test group and 1.82 ± 0.33 days in the control group (P = 0.043). Conclusions: This study suggests that the baseline level of catalase and SOD have reduced in ALP poisoning, but baseline GR level has not suppressed but is rather increasing with due time, and more so in the treatment group. NAC along with supportive treatment may have improved survival in ALP poisoning. PMID:25316977

  16. Effect of smoking reduction and cessation on the plasma levels of the oxidative stress biomarker glutathione--Post-hoc analysis of data from a smoking cessation trial.

    PubMed

    Mons, Ute; Muscat, Joshua E; Modesto, Jennifer; Richie, John P; Brenner, Hermann

    2016-02-01

    Cigarette smoke contains high concentrations of free radical components that induce oxidative stress. Smoking-induced oxidative stress is thought to contribute to chronic obstructive pulmonary disease, cardiovascular disease and lung cancer through degenerative processes in the lung and other tissues. It is uncertain however whether smoking cessation lowers the burden of oxidative stress. We used data from a randomized controlled cessation trial of 434 current smokers for a post-hoc examination of the effects of smoking cessation on blood plasma levels of total glutathione (tGSH), the most abundant endogenous antioxidant in cells, and total cysteine (tCys), an amino acid and constituent of glutathione. Smoking status was validated based on serum cotinine levels. Multivariate linear mixed models were fitted to examine the association of smoking cessation and change in cigarette consumption with tGSH and tCys. After 12 months follow-up, quitters (n=55) had significantly increased levels of tGSH compared to subjects who continued to smoke (P<0.01). No significant change in tGSH was found for subjects who continued to smoke but reduced their intensity of smoking. No significant effect of smoking cessation or reduction was observed on levels of tCys. These results suggest that smoking cessation but not smoking reduction reduces levels of oxidative stress.

  17. Levodopa increases oxidative stress and repulsive guidance molecule A levels: a pilot study in patients with Parkinson's disease.

    PubMed

    Müller, Thomas; Trommer, Isabel; Muhlack, Siegfried; Mueller, Bernhard K

    2016-04-01

    Exposure to free radicals influences synthesis, degradation and function of proteins, such as repulsive guidance molecule A. Decay of this protein is essential for neuronal maintenance and recovery. Levodopa elevates oxidative stress. Therefore levodopa may impact repulsive guidance molecule A metabolism. Objectives were to investigate plasma concentrations of repulsive guidance molecule A, levodopa, cysteine and cysteinyl-glycine before and 1 h after levodopa application in patients with Parkinson's disease. Cysteine and cysteinyl-glycine as biomarkers for oxidative stress exposure decreased, repulsive guidance molecule A and levodopa rose. Repulsive guidance molecule A remained unchanged in levodopa naïve patients, but particularly went up in patients on a prior chronic levodopa regimen. Decay of cysteine specifically cysteinyl-glycine results from an elevated glutathione generation with rising cysteine consumption respectively from the alternative glutathione transformation to its oxidized form glutathione disulfide after free radical scavenging. Repulsive guidance molecule A rise may inhibit physiologic mechanisms for neuronal survival.

  18. (−)-EPICATECHIN IMPROVES MITOCHONDRIAL RELATED PROTEIN LEVELS AND AMELIORATES OXIDATIVE STRESS IN DYSTROPHIC DELTA SARCOGLYCAN NULL MOUSE STRIATED MUSCLE

    PubMed Central

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-01-01

    Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (−)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration. PMID:25284161

  19. Oxidative Stress, Nitric Oxide, and Diabetes

    PubMed Central

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435

  20. Oxidative stress, nitric oxide, and diabetes.

    PubMed

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the "final common pathway", through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients.

  1. The level of H2O2 type oxidative stress regulates virulence of Theileria-transformed leukocytes

    PubMed Central

    Metheni, Mehdi; Echebli, Nadia; Chaussepied, Marie; Ransy, Céline; Chéreau, Christiane; Jensen, Kirsty; Glass, Elizabeth; Batteux, Frédéric; Bouillaud, Frédéric; Langsley, Gordon

    2014-01-01

    Theileria annulata infects predominantly macrophages, and to a lesser extent B cells, and causes a widespread disease of cattle called tropical theileriosis. Disease-causing infected macrophages are aggressively invasive, but this virulence trait can be attenuated by long-term culture. Attenuated macrophages are used as live vaccines against tropical theileriosis and via their characterization one gains insights into what host cell trait is altered concomitant with loss of virulence. We established that sporozoite infection of monocytes rapidly induces hif1-α transcription and that constitutive induction of HIF-1α in transformed leukocytes is parasite-dependent. In both infectedmacrophages and B cells induction of HIF-1α activates transcription of its target genes that drive host cells to perform Warburg-like glycolysis. We propose that Theileria-infected leukocytes maintain a HIF-1α-driven transcriptional programme typical of Warburg glycolysis in order to reduce as much as possible host cell H2O2 type oxidative stress. However, in attenuated macrophages H2O2 production increases and HIF-1α levels consequently remained high, even though adhesion and aggressive invasiveness diminished. This indicates that Theileria infection generates a host leukocytes hypoxic response that if not properly controlled leads to loss of virulence. PMID:24112286

  2. Effect of Betula pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress

    PubMed Central

    Bljajić, Kristina; Šoštarić, Nina; Petlevski, Roberta; Vujić, Lovorka; Brajković, Andrea; Fumić, Barbara; de Carvalho, Isabel Saraiva

    2016-01-01

    B. pendula leaf is a common ingredient in traditional herbal combinations for treatment of diabetes in southeastern Europe. Present study investigated B. pendula ethanolic and aqueous extract as inhibitors of carbohydrate hydrolyzing enzymes, as well as their ability to restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress. Phytochemical analysis revealed presence of rutin and other quercetin derivatives, as well as chlorogenic acid. In general, ethanolic extract was richer in phenolic substances than the aqueous extract. Furthermore, a comprehensive analysis of antioxidant activity of two extracts (determined by DPPH and ABTS radical scavenging activity, total antioxidant activity, and chelating activity as well as ferric-reducing antioxidant power) has shown that ethanolic extract was better radical scavenger and metal ion reductant. In addition, ethanolic extract effectively increased cellular glutathione levels caused by hyperglycemia and inhibited α-glucosidase with the activity comparable to that of acarbose. Therefore, in vitro research using B. pendula plant extracts has confirmed their antidiabetic properties. PMID:27668005

  3. Lactational hexavalent chromium exposure-induced oxidative stress in rat uterus is associated with delayed puberty and impaired gonadotropin levels.

    PubMed

    Samuel, Jawahar B; Stanley, Jone A; Roopha, Dailiah P; Vengatesh, Ganapathy; Anbalagan, Jaganathan; Banu, Sakhila K; Aruldhas, Michael M

    2011-02-01

    Hexavalent chromium (CrVI) is a transition element utilized in many fields of modern industries. CrVI is a reproductive metal toxicant that can traverse the placental barrier and cause a wide range of fetal effects. Therefore, the present study was carried out to determine the CrVI-induced utero-toxicity. In the present study, lactating rats received drinking water containing CrVI (50 mg/L and 200 mg/L) from postnatal days (PND) 1-21. During PND 1-21, the pups received CrVI via the mother's milk. Pups from both control and treatment groups were continued on regular diet and water from PND-21 onwards and euthanized on PND-45 and -65. Specific activities antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) were estimated. Hydrogen peroxide (H₂O₂), lipid peroxidation (LPO) and serum gonadotropins viz. Luteinizing hormone (LH) and follicle stimulating hormone (FSH) were also assayed. Specific activities of SOD, CAT, GPX, GR and GST and serum testosterone and progesterone were significantly decreased, while H₂O₂, LPO and serum FSH was increased in 50-parts per million (ppm) and 200 ppm-treated rats in an age-dependent manner. These results suggest that lactational CrVI exposure induces oxidative stress in rat uterus by decreasing antioxidant enzymes, which were associated with delayed puberty and altered steroids and gonadotrophin levels.

  4. Increased levels of the oxidative stress biomarker 8-iso-prostaglandin F2α in wastewater associated with tobacco use

    NASA Astrophysics Data System (ADS)

    Ryu, Yeonsuk; Gracia-Lor, Emma; Bade, Richard; Baz-Lomba, J. A.; Bramness, Jørgen G.; Castiglioni, Sara; Castrignanò, Erika; Causanilles, Ana; Covaci, Adrian; de Voogt, Pim; Hernandez, Felix; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; Ort, Christoph; Plósz, Benedek G.; Ramin, Pedram; Rousis, Nikolaos I.; Reid, Malcolm J.; Thomas, Kevin V.

    2016-12-01

    Wastewater analysis has been demonstrated to be a complementary approach for assessing the overall patterns of drug use by a population while the full potential of wastewater-based epidemiology has yet to be explored. F2-isoprostanes are a prototype wastewater biomarker to study the cumulative oxidative stress at a community level. In this work, 8-iso-prostaglandin F2α (8-iso-PGF2α) was analysed in raw 24 h-composite wastewater samples collected from 4 Norwegian and 7 other European cities in 2014 and 2015. Using the same samples, biomarkers of alcohol (ethyl sulfate) and tobacco (trans-3‧-hydroxycotinine) use were also analysed to investigate any possible correlation between 8-iso-PGF2α and the consumption of the two drugs. The estimated per capita daily loads of 8-iso-PGF2α in the 11 cities ranged between 2.5 and 9.9 mg/day/1000 inhabitants with a population-weighted mean of 4.8 mg/day/1000 inhabitants. There were no temporal trends observed in the levels of 8-iso-PGF2α, however, spatial differences were found at the inter-city level correlating to the degree of urbanisation. The 8-iso-PGF2α mass load was found to be strongly associated with that of trans-3‧-hydroxycotinine while it showed no correlation with ethyl sulfate. The present study shows the potential for 8-iso-PGF2α as a wastewater biomarker for the assessment of community public health.

  5. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Huang, Qingguo; Wei, Zhongbo; Wang, Zunyao

    2015-03-01

    Experiments were conducted to investigate the effect of three different carbon nanotubes [single-walled carbon nanotubes (SWCNTs), hydroxylated multi-walled carbon nanotubes (OH-MWCNTs), and carboxylated multi-walled carbon nanotubes (COOH-MWCNTs)] on antioxidant parameters and metals accumulation in the liver of Carassius auratus. A semi-static test system was used to expose C. auratus to either a freshwater control, 0.1, or 0.5mg/L CNTs at three pH levels (5.0, 7.25, and 9.0) for 3 and 12 days. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), together with the level of glutathione (GSH) and malondialdehyde (MDA) were determined in liver on the 3rd and 12th day. The results showed that there was a significant increase in MDA concentration and SOD activity in fish exposed to CNTs, indicating that CNTs exposure induces an oxidative stress response in fish. According to integrated biomarker response (IBR) index, the effect of these three CNTs on liver can be ordered as SWCNTs>OH-MWCNTs>COOH-MWCNTs and they are more toxic to fish in an alkaline environment. Moreover, the concentrations of catalyst metals (Co, Ni, and Mo) and bioelements (Cu, Fe, Zn, and Se) in liver were changed, depending on the CNTs concentration, the pH level, and the exposure duration. Generally, all CNTs groups showed that catalyst metals could be concentrated significantly into the liver of fish, and changes in hepatic Cu, Zn, Fe, and Se contents are consistent with the activity of antioxidant enzymes.

  6. Increased levels of the oxidative stress biomarker 8-iso-prostaglandin F2α in wastewater associated with tobacco use.

    PubMed

    Ryu, Yeonsuk; Gracia-Lor, Emma; Bade, Richard; Baz-Lomba, J A; Bramness, Jørgen G; Castiglioni, Sara; Castrignanò, Erika; Causanilles, Ana; Covaci, Adrian; de Voogt, Pim; Hernandez, Felix; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; Ort, Christoph; Plósz, Benedek G; Ramin, Pedram; Rousis, Nikolaos I; Reid, Malcolm J; Thomas, Kevin V

    2016-12-15

    Wastewater analysis has been demonstrated to be a complementary approach for assessing the overall patterns of drug use by a population while the full potential of wastewater-based epidemiology has yet to be explored. F2-isoprostanes are a prototype wastewater biomarker to study the cumulative oxidative stress at a community level. In this work, 8-iso-prostaglandin F2α (8-iso-PGF2α) was analysed in raw 24 h-composite wastewater samples collected from 4 Norwegian and 7 other European cities in 2014 and 2015. Using the same samples, biomarkers of alcohol (ethyl sulfate) and tobacco (trans-3'-hydroxycotinine) use were also analysed to investigate any possible correlation between 8-iso-PGF2α and the consumption of the two drugs. The estimated per capita daily loads of 8-iso-PGF2α in the 11 cities ranged between 2.5 and 9.9 mg/day/1000 inhabitants with a population-weighted mean of 4.8 mg/day/1000 inhabitants. There were no temporal trends observed in the levels of 8-iso-PGF2α, however, spatial differences were found at the inter-city level correlating to the degree of urbanisation. The 8-iso-PGF2α mass load was found to be strongly associated with that of trans-3'-hydroxycotinine while it showed no correlation with ethyl sulfate. The present study shows the potential for 8-iso-PGF2α as a wastewater biomarker for the assessment of community public health.

  7. Increased levels of the oxidative stress biomarker 8-iso-prostaglandin F2α in wastewater associated with tobacco use

    PubMed Central

    Ryu, Yeonsuk; Gracia-Lor, Emma; Bade, Richard; Baz-Lomba, J. A.; Bramness, Jørgen G.; Castiglioni, Sara; Castrignanò, Erika; Causanilles, Ana; Covaci, Adrian; de Voogt, Pim; Hernandez, Felix; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; Ort, Christoph; Plósz, Benedek G.; Ramin, Pedram; Rousis, Nikolaos I.; Reid, Malcolm J.; Thomas, Kevin V.

    2016-01-01

    Wastewater analysis has been demonstrated to be a complementary approach for assessing the overall patterns of drug use by a population while the full potential of wastewater-based epidemiology has yet to be explored. F2-isoprostanes are a prototype wastewater biomarker to study the cumulative oxidative stress at a community level. In this work, 8-iso-prostaglandin F2α (8-iso-PGF2α) was analysed in raw 24 h-composite wastewater samples collected from 4 Norwegian and 7 other European cities in 2014 and 2015. Using the same samples, biomarkers of alcohol (ethyl sulfate) and tobacco (trans-3′-hydroxycotinine) use were also analysed to investigate any possible correlation between 8-iso-PGF2α and the consumption of the two drugs. The estimated per capita daily loads of 8-iso-PGF2α in the 11 cities ranged between 2.5 and 9.9 mg/day/1000 inhabitants with a population-weighted mean of 4.8 mg/day/1000 inhabitants. There were no temporal trends observed in the levels of 8-iso-PGF2α, however, spatial differences were found at the inter-city level correlating to the degree of urbanisation. The 8-iso-PGF2α mass load was found to be strongly associated with that of trans-3′-hydroxycotinine while it showed no correlation with ethyl sulfate. The present study shows the potential for 8-iso-PGF2α as a wastewater biomarker for the assessment of community public health. PMID:27976726

  8. The Levels of Cortisol and Oxidative Stress and DNA Damage in Child and Adolescent Victims of Sexual Abuse with or without Post-Traumatic Stress Disorder

    PubMed Central

    Yüksel, Tuğba; Kaplan, İbrahim; Uysal, Cem; Aktaş, Hüseyin

    2016-01-01

    Objective The aim of this study was to investigate whether cortisol and oxidative stress levels and DNA damage differ between individuals who developed PTSD or not following a sexual trauma. Methods The study included 61 children aged between 5 and 17 years who sustained sexual abuse (M/F: 18/43). The patients were divided into two groups: patients with PTSD and patients without PTSD based, based on the results of a structured psychiatric interview (K-SADS-PL and CAPS-CA). Cortisol, glutathione peroxidase (GPx), superoxide dismutase (SOD), coenzyme Q, 8-Hydroxy-2-Deoxyguanosine (8-OHdG) were all evaluated by the ELISA method. Results Our evaluation revealed a diagnosis of PTSD in 51% (n=31) of victims. There was no significant difference between the groups with or without PTSD in terms of cortisol, GPx, SOD, coenzyme Q, and 8-OHdG levels. There was no correlation between CAPS scores and GPx, SOD, coenzyme Q, and 8-OHdG levels between patients with or without PTSD. In patients with PTSD, both cortisol and 8-OHdG levels decreased with increasing time after trauma, and there was no significant correlation with cortisol and 8-OHdG levels in patients without PTSD. Conclusion Although the present study did not find any difference between the groups in terms of 8-OHdG concentrations, the decreases in both cortisol and 8-OHdG levels with increasing time after trauma is considered to indicate a relationship between cortisol and DNA damage. PMID:27909452

  9. Oxidative Stress Adaptation with Acute, Chronic and Repeated Stress

    PubMed Central

    Pickering, Andrew M.; Vojtovich, Lesya; Tower, John; Davies, Kelvin J. A.

    2013-01-01

    Oxidative stress adaptation or hormesis is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells, and the fruit fly Drosophila melanogaster, are capable of adapting to chronic or repeated stress by up-regulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12 hours or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the level of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila, nevertheless also caused significant reductions in lifespan for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. PMID:23142766

  10. Oxidative stress in androgenetic alopecia

    PubMed Central

    Prie, BE; Iosif, L; Tivig, I; Stoian, I; Giurcaneanu, C

    2016-01-01

    Rationale:Androgenetic alopecia is not considered a life threatening disease but can have serious impacts on the patient’s psychosocial life. Genetic, hormonal, and environmental factors are considered responsible for the presence of androgenetic alopecia. Recent literature reports have proved the presence of inflammation and also of oxidative stress at the level of dermal papilla cells of patients with androgenetic alopecia Objective:We have considered of interest to measure the oxidative stress parameters in the blood of patients with androgenetic alopecia Methods and results:27 patients with androgenetic alopecia and 25 age-matched controls were enrolled in the study. Trolox Equivalent Antioxidant Capacity (TEAC), malondialdehyde (MDA) and total thiols levels were measured on plasma samples. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activities, and also non protein thiols levels together with TEAC activity were determined on erythrocytes samples No statistically significant changes were observed for TEAC erythrocytes, non-protein thiols, GPx and CAT activities. Significantly decreased (p<0.01) SOD activity was found in patients with androgenetic alopecia. For plasma samples decreased TEAC activity (p<0.001), increased MDA levels (p<0.001) and no change in total thiols concentration were found in patients when compared with the controls. Discussions:Decreased total antioxidant activity and increased MDA levels found in plasma samples of patients with androgenetic alopecia are indicators of oxidative stress presence in these patients. Significantly decreased SOD activity but no change in catalase, glutathione peroxidase, non protein thiols level and total antioxidant activity in erythrocytes are elements which suggest the presence of a compensatory mechanism for SOD dysfunction in red blood cells of patients with androgenetic alopecia. Abbreviations: AAG = androgenetic alopecia, MDA = malondialdehyde, SOD = superoxide dismutase

  11. Oxidative stress in androgenetic alopecia.

    PubMed

    Prie, B E; Iosif, L; Tivig, I; Stoian, I; Giurcaneanu, C

    2016-01-01

    Rationale:Androgenetic alopecia is not considered a life threatening disease but can have serious impacts on the patient's psychosocial life. Genetic, hormonal, and environmental factors are considered responsible for the presence of androgenetic alopecia. Recent literature reports have proved the presence of inflammation and also of oxidative stress at the level of dermal papilla cells of patients with androgenetic alopecia Objective:We have considered of interest to measure the oxidative stress parameters in the blood of patients with androgenetic alopecia Methods and results:27 patients with androgenetic alopecia and 25 age-matched controls were enrolled in the study. Trolox Equivalent Antioxidant Capacity (TEAC), malondialdehyde (MDA) and total thiols levels were measured on plasma samples. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activities, and also non protein thiols levels together with TEAC activity were determined on erythrocytes samples No statistically significant changes were observed for TEAC erythrocytes, non-protein thiols, GPx and CAT activities. Significantly decreased (p<0.01) SOD activity was found in patients with androgenetic alopecia. For plasma samples decreased TEAC activity (p<0.001), increased MDA levels (p<0.001) and no change in total thiols concentration were found in patients when compared with the controls. Discussions:Decreased total antioxidant activity and increased MDA levels found in plasma samples of patients with androgenetic alopecia are indicators of oxidative stress presence in these patients. Significantly decreased SOD activity but no change in catalase, glutathione peroxidase, non protein thiols level and total antioxidant activity in erythrocytes are elements which suggest the presence of a compensatory mechanism for SOD dysfunction in red blood cells of patients with androgenetic alopecia.

  12. Krebs Cycle Intermediates Protective against Oxidative Stress by Modulating the Level of Reactive Oxygen Species in Neuronal HT22 Cells.

    PubMed

    Sawa, Kenta; Uematsu, Takumi; Korenaga, Yusuke; Hirasawa, Ryuya; Kikuchi, Masatoshi; Murata, Kyohei; Zhang, Jian; Gai, Xiaoqing; Sakamoto, Kazuichi; Koyama, Tomoyuki; Satoh, Takumi

    2017-03-16

    Krebs cycle intermediates (KCIs) are reported to function as energy substrates in mitochondria and to exert antioxidants effects on the brain. The present study was designed to identify which KCIs are effective neuroprotective compounds against oxidative stress in neuronal cells. Here we found that pyruvate, oxaloacetate, and α-ketoglutarate, but not lactate, citrate, iso-citrate, succinate, fumarate, or malate, protected HT22 cells against hydrogen peroxide-mediated toxicity. These three intermediates reduced the production of hydrogen peroxide-activated reactive oxygen species, measured in terms of 2',7'-dichlorofluorescein diacetate fluorescence. In contrast, none of the KCIs-used at 1 mM-protected against cell death induced by high concentrations of glutamate-another type of oxidative stress-induced neuronal cell death. Because these protective KCIs did not have any toxic effects (at least up to 10 mM), they have potential use for therapeutic intervention against chronic neurodegenerative diseases.

  13. Krebs Cycle Intermediates Protective against Oxidative Stress by Modulating the Level of Reactive Oxygen Species in Neuronal HT22 Cells

    PubMed Central

    Sawa, Kenta; Uematsu, Takumi; Korenaga, Yusuke; Hirasawa, Ryuya; Kikuchi, Masatoshi; Murata, Kyohei; Zhang, Jian; Gai, Xiaoqing; Sakamoto, Kazuichi; Koyama, Tomoyuki; Satoh, Takumi

    2017-01-01

    Krebs cycle intermediates (KCIs) are reported to function as energy substrates in mitochondria and to exert antioxidants effects on the brain. The present study was designed to identify which KCIs are effective neuroprotective compounds against oxidative stress in neuronal cells. Here we found that pyruvate, oxaloacetate, and α-ketoglutarate, but not lactate, citrate, iso-citrate, succinate, fumarate, or malate, protected HT22 cells against hydrogen peroxide-mediated toxicity. These three intermediates reduced the production of hydrogen peroxide-activated reactive oxygen species, measured in terms of 2′,7′-dichlorofluorescein diacetate fluorescence. In contrast, none of the KCIs—used at 1 mM—protected against cell death induced by high concentrations of glutamate—another type of oxidative stress-induced neuronal cell death. Because these protective KCIs did not have any toxic effects (at least up to 10 mM), they have potential use for therapeutic intervention against chronic neurodegenerative diseases. PMID:28300753

  14. Protection of Cells against Oxidative Stress by Nanomolar Levels of Hydroxyflavones Indicates a New Type of Intracellular Antioxidant Mechanism

    PubMed Central

    Hájek, Jan; Staňková, Veronika; Filipský, Tomáš; Balducci, Valentina; De Vito, Paolo; Leone, Stefano; Bavavea, Eugenia I.; Silvestri, Ilaria Proietti; Righi, Giuliana; Luly, Paolo; Saso, Luciano; Bovicelli, Paolo; Pedersen, Jens Z.; Incerpi, Sandra

    2013-01-01

    Natural polyphenol compounds are often good antioxidants, but they also cause damage to cells through more or less specific interactions with proteins. To distinguish antioxidant activity from cytotoxic effects we have tested four structurally related hydroxyflavones (baicalein, mosloflavone, negletein, and 5,6-dihydroxyflavone) at very low and physiologically relevant levels, using two different cell lines, L-6 myoblasts and THP-1 monocytes. Measurements using intracellular fluorescent probes and electron paramagnetic resonance spectroscopy in combination with cytotoxicity assays showed strong antioxidant activities for baicalein and 5,6-dihydroxyflavone at picomolar concentrations, while 10 nM partially protected monocytes against the strong oxidative stress induced by 200 µM cumene hydroperoxide. Wide range dose-dependence curves were introduced to characterize and distinguish the mechanism and targets of different flavone antioxidants, and identify cytotoxic effects which only became detectable at micromolar concentrations. Analysis of these dose-dependence curves made it possible to exclude a protein-mediated antioxidant response, as well as a mechanism based on the simple stoichiometric scavenging of radicals. The results demonstrate that these flavones do not act on the same radicals as the flavonol quercetin. Considering the normal concentrations of all the endogenous antioxidants in cells, the addition of picomolar or nanomolar levels of these flavones should not be expected to produce any detectable increase in the total cellular antioxidant capacity. The significant intracellular antioxidant activity observed with 1 pM baicalein means that it must be scavenging radicals that for some reason are not eliminated by the endogenous antioxidants. The strong antioxidant effects found suggest these flavones, as well as quercetin and similar polyphenolic antioxidants, at physiologically relevant concentrations act as redox mediators to enable endogenous

  15. Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis.

    PubMed

    Ilyas, Sidra; Rehman, Abdul

    2015-01-01

    In this study, we explored the multiple heavy metal-resistant yeast isolated from heavy metal-polluted environment. The isolated yeast showed maximum growth at 30 °C, pH 7.0, and the strain was identified as Candida tropicalis through 18S ribosomal RNA (rRNA) gene sequence analysis. Yeast cells grew well in medium containing different concentrations of heavy metal ions [CdCl₂, Pb(NO₃)₂, NaAsO₂, CuSO₄ and K₂Cr₂O₇]. Minimum inhibitory concentration (MIC) against different metal ions was ranged from 5 to 19 mM, and the metal resistance value against each metal observed by yeast cells was 5 mM (Cr), 10 mM (Cd), 15 mM (As), 14 mM (Cu) and 19 mM (Pb) and increased in the following order: Pb > Cu > As ≥ Cd > Cr. The total cellular glutathione, GSH/GSSG redox couple and metallothioneins like protein (MT) were assayed by growing cultures for 24 h and exposed to 100 mg/L of each heavy metal ion. Remarkable increase in γ-glutamylcysteinylglycine (GSH) level was determined in arsenic and cadmium treatment followed by chromium, lead and copper. Stressed cells had much more oxidized GSH than unstressed cells. GSH/GSSG ratio was significantly increased in cadmium and copper treatment in contrast to chromium, arsenic and lead. Statistical analysis revealed significantly higher cysteine level in all metal-treated samples as compared to control. Antioxidant glutathione transferase activity was not detected in metal-treated and untreated yeast samples. One-dimensional electrophoresis of proteins revealed marked differences in banding pattern of heavy metal-exposed yeast samples. A prominent 20 kDa band was observed in all treated samples suggesting that some differential proteins could be over-expressed during heavy metal treatment and might be involved in cell resistance mechanisms.

  16. Effects of indole-3-carbinol on clonidine-induced neurotoxicity in rats: Impact on oxidative stress, inflammation, apoptosis and monoamine levels.

    PubMed

    El-Naga, Reem N; Ahmed, Hebatalla I; Abd Al Haleem, Ekram N

    2014-09-01

    The relationship between inflammation, oxidative stress and the incidence of depression had been well studied. Indole-3-carbinol (I3C), a natural active compound found in cruciferous vegetables, was shown to have anti-oxidant and anti-inflammatory activities. Therefore, the aim of this study was to investigate the potential protective effects of I3C against clonidine-induced depression-like behaviors in rats. Also, the possible mechanisms underlying this neuroprotection; anti-oxidant, anti-inflammatory as well as the modulatory effect on monoamine levels in brain tissues were investigated. I3C was given orally (50mg/kg) daily over 2 weeks starting 7 days before giving clonidine (0.8mg/kg i.p.). Fluoxetine was used as a standard anti-depressant. Open-field test and forced swimming test were carried out to assess exploratory activity and despair behavior, respectively. I3C showed a significant improvement in the behavioral changes induced by clonidine. As indicators of oxidative stress, clonidine induced a significant reduction in GSH and SOD levels as well as an increase lipid peroxidation level. Tissue levels of pro-inflammatory and apoptotic markers were significantly increased in clonidine group. In addition, monoamine levels; noradrenaline and serotonin, showed a drastic decrease in clonidine group. Also, neuron specific enolase (NSE) was significantly elevated in clonidine group. In contrast, I3C pre-treatment significantly attenuated clonidine-induced oxidative stress, inflammation, apoptosis, decreased NSE expression and increased levels of monoamines. Fluoxetine was used as a standard. In conclusion, the findings of this study suggest that I3C protects against clonidine-induced depression. This neuroprotective effect is partially mediated by its anti-oxidant, anti-inflammatory and anti-apoptotic activities as well as elevating monoamines levels.

  17. Oxidative stress and glycemic regulation.

    PubMed

    Ceriello, A

    2000-02-01

    Oxidative stress is an acknowledged pathogenetic mechanism in diabetic complications. Hyperglycemia is a widely known cause of enhanced free radical concentration, whereas oxidative stress involvement in glycemic regulation is still debated. Glucose transport is a cascade of events starting from the interaction of insulin with its own receptor at the plasma membrane and ending with intracellular glucose metabolism. In this complex series of events, each step plays an important role and can be inhibited by a negative effect of oxidative stress. Several studies show that an acute increase in the blood glucose level may impair the physiological homeostasis of many systems in living organisms. The mechanisms through which acute hyperglycemia exerts these effects may be identified in the production of free radicals. It has been suggested that insulin resistance may be accompanied by intracellular production of free radicals. In adipocytes cultured in vitro, insulin increases the production of hydrogen peroxide, which has been shown to mimic the action of insulin. These data allow us to hypothesize that a vicious circle between hyperinsulinemia and free radicals could be operating: insulin resistance might cause elevated plasma free radical concentrations, which, in turn, might be responsible for a deterioration of insulin action, with hyperglycemia being a contributory factor. Data supporting this hypothesis are available. Vitamin E improves insulin action in healthy, elderly, and non-insulin-dependent diabetic subjects. Similar results can be obtained by vitamin C administration.

  18. Lymphocyte Oxidative Stress/Genotoxic Effects Are Related to Serum IgG and IgA Levels in Coke Oven Workers

    PubMed Central

    Gao, Meili; Li, Yongfei; Zheng, Aqun; Xue, Xiaochang; Chen, Lan; Kong, Yu

    2014-01-01

    We investigated oxidative stress/genotoxic effects levels, immunoglobulin levels, polycyclic aromatic hydrocarbons (PAHs) levels exposed in 126 coke oven workers and in 78 control subjects, and evaluated the association between oxidative stress/genotoxic effects levels and immunoglobulin levels. Significant differences were observed in biomarkers, including 1-hydroxypyrene levels, employment time, percentages of alcohol drinkers, MDA, 8-OHdG levels, CTL levels and CTM, MN, CA frequency, and IgG, IgA levels between the control and exposed groups. Slightly higher 1-OHP levels in smoking users were observed. For the dose-response relationship of IgG, IgA, IgM, and IgE by 1-OHP, each one percentage increase in urinary 1-OHP generates a 0.109%, 0.472%, 0.051%, and 0.067% decrease in control group and generates a 0.312%, 0.538%, 0.062%, and 0.071% decrease in exposed group, respectively. Except for age, alcohol and smoking status, IgM, and IgE, a significant correlation in urinary 1-OHP and other biomarkers in the total population was observed. Additionally, a significant negative correlation in genotoxic/oxidative damage biomarkers of MDA, 8-OH-dG, CTL levels, and immunoglobins of IgG and IgA levels, especially in coke oven workers, was found. These data suggest that oxidative stress/DNA damage induced by PAHs may play a role in toxic responses for PAHs in immunological functions. PMID:25136686

  19. [Vitamins and oxidative stress].

    PubMed

    Kodentsova, V M; Vrzhesinskaia, O A; Mazo, V K

    2013-01-01

    The central and local stress limiting systems, including the antioxidant defense system involved in defending the organism at the cellular and systemic levels from excess activation response to stress influence, leading to damaging effects. The development of stress, regardless of its nature [cold, increased physical activity, aging, the development of many pathologies (cardiovascular, neurodegenerative diseases, diseases of the gastrointestinal tract, ischemia, the effects of burns), immobilization, hypobaric hypoxia, hyperoxia, radiation effects etc.] leads to a deterioration of the vitamin status (vitamins E, A, C). Damaging effect on the antioxidant defense system is more pronounced compared to the stress response in animals with an isolated deficiency of vitamins C, A, E, B1 or B6 and the combined vitamins deficiency in the diet. Addition missing vitamin or vitamins restores the performance of antioxidant system. Thus, the role of vitamins in adaptation to stressors is evident. However, vitamins C, E and beta-carotene in high doses, significantly higher than the physiological needs of the organism, may be not only antioxidants, but may have also prooxidant properties. Perhaps this explains the lack of positive effects of antioxidant vitamins used in extreme doses for a long time described in some publications. There is no doubt that to justify the current optimal doses of antioxidant vitamins and other dietary antioxidants specially-designed studies, including biochemical testing of initial vitamin and antioxidant status of the organism, as well as monitoring their change over time are required.

  20. Copper levels and changes in pH induce oxidative stress in the tissue of curimbata (Prochilodus lineatus).

    PubMed

    Carvalho, Cleoni dos Santos; Bernusso, Vanessa Aline; Fernandes, Marisa Narciso

    2015-10-01

    We analyzed the effect of exposure to 25% 96 h-LC50 of copper at low (24.5 μg L(-1) Cu, pH 4.5), neutral (7.25 μg L(-1) Cu, pH 7.0) and high pH (4.0 μg L(-1) Cu, pH 8.0) at 20 °C on antioxidant defenses and oxidative stress in the liver, gills and white muscle of the fish Prochilodus lineatus. Water at pH 4.5 and 8.0 affected the enzymatic and non-enzymatic antioxidant systems of the liver and gills, but not of the white muscles of P. lineatus, when compared to water at pH 7.0. After Cu exposure, SOD (superoxide dismutase), GPx (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) activities increased and CAT (catalase) activity decreased in the liver at water at pH 4.5 and 8.0. Meanwhile, the activities of SOD, CAT, GPx, GR and GST increased in the gills at these pHs. SOD and CAT activities increased in the white muscle after Cu exposure at pH 8.0 and GPx, GR and GST activities decreased after Cu exposure at pH 4.5 and 8.0. LPO levels decreased in the liver and gills of fish that were exposed to water at pH 4.5 and 8.0 and, after Cu exposure, the LPO level increased in the liver, gills and white muscle of fish that were exposed to water at pH 4.5 and 8.0, when compared to the control group at pH 7.0. The metallothionein (MT) concentration increased in the liver of fish in water at pH 4.5 and 8.0 and the gill of fish in water at pH 8.0. After Cu exposure, MT in the liver and gills was significantly elevated in fish exposed to water at pH 4.5 and 8.0, but remained at levels similar to the control group in the white muscle. These results indicate a differing sensitivity of fish organs and tissues to essential metals, such as copper, and that toxicity may be relevant at environmental concentrations. These results indicate that the effect of Cu on the response of antioxidant defense systems is determined by water pH.

  1. BRCA1 and Oxidative Stress

    PubMed Central

    Yi, Yong Weon; Kang, Hyo Jin; Bae, Insoo

    2014-01-01

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers. PMID:24704793

  2. Interactive effects of elevated temperature and CO(2) levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria).

    PubMed

    Matoo, Omera B; Ivanina, Anna V; Ullstad, Claus; Beniash, Elia; Sokolova, Inna M

    2013-04-01

    Marine bivalves such as the hard shell clams Mercenaria mercenaria and eastern oysters Crassostrea virginica are affected by multiple stressors, including fluctuations in temperature and CO2 levels in estuaries, and these stresses are expected to be exacerbated by ongoing global climate change. Hypercapnia (elevated CO2 levels) and temperature stress can affect survival, growth and development of marine bivalves, but the cellular mechanisms of these effects are not yet fully understood. In this study, we investigated whether oxidative stress is implicated in cellular responses to elevated temperature and CO2 levels in marine bivalves. We measured the whole-organism standard metabolic rate (SMR), total antioxidant capacity (TAOC), and levels of oxidative stress biomarkers in the muscle tissues of clams and oysters exposed to different temperatures (22 and 27°C) and CO2 levels (the present day conditions of ~400ppm CO2 and 800ppm CO2 predicted by a consensus business-as-usual IPCC emission scenario for the year 2100). SMR was significantly higher and the antioxidant capacity was lower in oysters than in clams. Aerobic metabolism was largely temperature-independent in these two species in the studied temperature range (22-27°C). However, the combined exposure to elevated temperature and hypercapnia led to elevated SMR in clams indicating elevated costs of basal maintenance. No persistent oxidative stress signal (measured by the levels of protein carbonyls, and protein conjugates with malondialdehyde and 4-hydroxynonenal) was observed during the long-term exposure to moderate warming (+5°C) and hypercapnia (~800ppm CO2). This indicates that long-term exposure to moderately elevated CO2 and temperature minimally affects the cellular redox status in these bivalve species and that the earlier observed negative physiological effects of elevated CO2 and temperature must be explained by other cellular mechanisms.

  3. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    PubMed

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  4. Oxidative Stress and Antioxidant Levels in Patients with Anorexia Nervosa after Oral Re-alimentation: A Systematic Review and Exploratory Meta-analysis.

    PubMed

    Solmi, Marco; Veronese, Nicola; Luchini, Claudio; Manzato, Enzo; Sergi, Giuseppe; Favaro, Angela; Santonastaso, Paolo; Correll, Christoph U

    2016-03-01

    Oxidative stress markers seem to be higher in patients with anorexia nervosa (AN) than healthy controls, but the potentially beneficial effects of weight gain is not known. We calculated random effects standardised mean differences (SMDs) as effect size measures of oxidative stress marker changes after re-alimentation reported in two or more studies, summarising others descriptively. Seven longitudinal studies (n = 104) were included. After a median follow-up period of 8 weeks, AN patients significantly increased their body mass index (15.1 ± 2.1 to 17.1 ± 2.2, p < 0.0001). This weight gain was followed by a significant increase in serum levels of the antioxidant albumin (studies = 6, SMD = 0.50, 95%CI = 0.18; 0.82, p = 0.002; I(2) = 16%) and a significant decrease in the oxidative stress marker Apolipoprotein B (studies = 2, n = 19, SMD = -0.85, 95%CI = -1.53; -0.17, p = 0.01; I(2) = 0). In one study, catalase and total antioxidant capacity increased, whilst superoxide dismutase significantly decreased. In conclusion, oral re-alimentation, even without full-weight normalisation, seems to improve oxidative stress in people with AN.

  5. Ageing, oxidative stress, and mitochondrial uncoupling.

    PubMed

    Harper, M-E; Bevilacqua, L; Hagopian, K; Weindruch, R; Ramsey, J J

    2004-12-01

    Mitochondria are a cell's single greatest source of reactive oxygen species. Reactive oxygen species are important for many life sustaining processes of cells and tissues, but they can also induce cell damage and death. If their production and levels within cells is not effectively controlled, then the detrimental effects of oxidative stress can accumulate. Oxidative stress is widely thought to underpin many ageing processes, and the oxidative stress theory of ageing is one of the most widely acknowledged theories of ageing. As well as being the major source of reactive oxygen species, mitochondria are also a major site of oxidative damage. The purpose of this review is a concise and current review of the effects of oxidative stress and ageing on mitochondrial function. Emphasis is placed upon the roles of mitochondrial proton leak, the uncoupling proteins, and the anti-ageing effects of caloric restriction.

  6. Imaging of oxidative stress at subcellular level by confocal laser scanning microscopy after fluorescent derivatization of cellular carbonyls.

    PubMed Central

    Pompella, A.; Comporti, M.

    1993-01-01

    Confocal laser scanning fluorescence microscopy plus image videoanalysis was used to visualize the tissue areas and the subcellular sites first involved by oxidative stress and lipid peroxidation, in the well-established experimental model of lipid peroxidation induced by haloalkane intoxication in the liver cell. The fluorescent reagent 3-hydroxy-2-naphthoic acid hydrazide was employed to derivativize the carbonyl functions originating from the lipoperoxidative process in situ, in liver cryostat sections from in vivo intoxicated rats, as well as in isolated hepatocytes exposed in vitro to the pro-oxidant action of haloalkanes. The results obtained indicate that: 1) the detection of fluorescent derivatives of carbonyls indeed offers a gain in sensitivity, 2) haloalkane-induced lipid peroxidation in hepatocytes primarily involves the perinuclear endoplasmic reticulum, whereas the plasma membrane and the nuclear compartment are unaffected, and 3) lipid peroxidation also induces an increase of liver autofluorescence. Images Figure 2 Figure 4 PMID:8494040

  7. Blood thioredoxin reductase activity, oxidative stress and hematological parameters in painters and battery workers: relationship with lead and cadmium levels in blood.

    PubMed

    Conterato, Greicy M M; Bulcão, Rachel P; Sobieski, Rocheli; Moro, Angela M; Charão, Mariele F; de Freitas, Fernando A; de Almeida, Fernanda L; Moreira, Ana P L; Roehrs, Miguel; Tonello, Raquel; Batista, Bruno L; Grotto, Denise; Barbosa, Fernando; Garcia, Solange C; Emanuelli, Tatiana

    2013-02-01

    Oxidative stress has been shown to be involved in lead and cadmium toxicity. We recently showed that the activity of the antioxidant enzyme thioredoxin reductase (TrxR) is increased in the kidneys of lead-exposed rats. The present study evaluated the blood cadmium and blood lead levels (BLLs) and their relationship with hematological and oxidative stress parameters, including blood TrxR activity in 50 painters, 23 battery workers and 36 control subjects. Erythrocyte δ-aminolevulinate dehydratase (δ-ALA-D) activity and its reactivation index were measured as biomarkers of lead effects. BLLs increased in painters, but were even higher in the battery workers group. In turn, blood cadmium levels increased only in the painters group, whose levels were higher than the recommended limit. δ-ALA-D activity was inhibited only in battery workers, whereas the δ-ALA-D reactivation index increased in both exposed groups; both parameters were correlated to BLLs (r = -0.59 and 0.84, P < 0.05), whereas the reactivation index was also correlated to blood cadmium levels (r = 0.27, P < 0.05). The changes in oxidative stress and hematological parameters were distinctively associated with either BLLs or blood cadmium levels, except glutathione-S-transferase activity, which was correlated with both lead (r = 0.34) and cadmium (r = 0.47; P < 0.05). However, TrxR activity did not correlate with any of the metals evaluated. In conclusion, blood TrxR activity does not seem to be a good parameter to evaluate oxidative stress in lead- and cadmium-exposed populations. However, lead-associated changes in biochemical and hematological parameters at low BLLs underlie the necessity of re-evaluating the recommended health-based limits in occupational exposure to this metal.

  8. Increased glyoxalase I levels inhibit accumulation of oxidative stress and an advanced glycation end product in mouse mesangial cells cultured in high glucose.

    PubMed

    Kim, Ki Mo; Kim, Young Sook; Jung, Dong Ho; Lee, Jun; Kim, Jin Sook

    2012-01-15

    Chronic high glucose levels lead to the formation of advanced glycation end-products (AGEs) as well as AGE precursors, such as methylglyoxal (MG) and glyoxal, via non-enzymatic glycation reactions in patients with diabetic mellitus. Glyoxalase 1 (GLO-1) detoxifies reactive dicarbonyls that form AGEs. To investigate the interaction between AGEs and GLO-1 in mesangial cells (MCs) under diabetic conditions, AGE levels and markers of oxidative stress were measured in GLO-1-overexpressing MCs (GLO-1-MCs) cultured in high glucose. Furthermore, we also examined levels of high glucose-induced apoptosis in GLO-1-MCs. In glomerular MCs, high glucose levels increased the formation of both MG and argpyrimidine (an MG-derived adduct) as well as GLO-1 expression. GLO-1-MCs had lower intracellular levels of MG accumulation, 8-hydroxy-deoxyguanosine (an oxidative DNA damage marker), 4-hydroxyl-2-nonenal (a lipid peroxidation product), and nitrosylated protein (a marker of oxidative-nitrosative stress) compared to control cells. Expression of mitochondrial oxidative phosphorylation complexes I, II, and III was also decreased in GLO-1-MCs. Furthermore, fewer GLO-1-MCs showed evidence of apoptosis as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling assay, and activation of both poly (ADP-ribose) polymerase 1 cleavage and caspase-3 was lower in GLO-1-MCs than in control cells cultured in high glucose. These results suggest that GLO-1 plays a role in high glucose-mediated signaling by reducing MG accumulation and oxidative stress in diabetes mellitus.

  9. The intake of high fat diet with different trans fatty acid levels differentially induces oxidative stress and non alcoholic fatty liver disease (NAFLD) in rats

    PubMed Central

    2011-01-01

    Background Trans-fatty acids (TFA) are known as a risk factor for coronary artery diseases, insulin resistance and obesity accompanied by systemic inflammation, the features of metabolic syndrome. Little is known about the effects on the liver induced by lipids and also few studies are focused on the effect of foods rich in TFAs on hepatic functions and oxidative stress. This study investigates whether high-fat diets with different TFA levels induce oxidative stress and liver dysfunction in rats. Methods Male Wistar rats were divided randomly into four groups (n = 12/group): C receiving standard-chow; Experimental groups that were fed high-fat diet included 20% fresh soybean oil diet (FSO), 20% oxidized soybean oil diet (OSO) and 20% margarine diet (MG). Each group was kept on the treatment for 4 weeks. Results A liver damage was observed in rats fed with high-fat diet via increase of liver lipid peroxidation and decreased hepatic antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase). The intake of oxidized oil led to higher levels of lipid peroxidation and a lower concentration of plasma antioxidants in comparison to rats fed with FSO. The higher inflammatory response in the liver was induced by MG diet. Liver histopathology from OSO and MG groups showed respectively moderate to severe cytoplasm vacuolation, hypatocyte hypertrophy, hepatocyte ballooning, and necroinflammation. Conclusion It seems that a strong relationship exists between the consumption of TFA in the oxidized oils and lipid peroxidation and non alcoholic fatty liver disease (NAFLD). The extent of the peroxidative events in liver was also different depending on the fat source suggesting that feeding margarine with higher TFA levels may represent a direct source of oxidative stress for the organism. The present study provides evidence for a direct effect of TFA on NAFLD. PMID:21943357

  10. Oxidative Stress in Complex Regional Pain Syndrome (CRPS): No Systemically Elevated Levels of Malondialdehyde, F2-Isoprostanes and 8OHdG in a Selected Sample of Patients

    PubMed Central

    Fischer, Sigrid G. L.; Perez, Roberto S. G. M.; Nouta, Jan; Zuurmond, Wouter W. A.; Scheffer, Peter G.

    2013-01-01

    Exaggerated inflammation and oxidative stress are involved in the pathogenesis of Complex Regional Pain Syndrome (CRPS). However, studies assessing markers for oxidative stress in CRPS patients are limited. In this study, markers for lipid peroxidation (malondialdehyde and F2-isoprostanes) and DNA damage (8-hydroxy-2-deoxyguanosine) were measured in nine patients (mean age 50.1 ± 17.1 years) with short term CRPS-1 (median 3 months) and nine age and sex matched healthy volunteers (mean age 49.3 ± 16.8 years) to assess and compare the level of oxidative stress. No differences were found in plasma between CRPS patients and healthy volunteers for malondialdehyde (5.2 ± 0.9 μmol/L vs. 5.4 ± 0.5 μmol/L) F2-isoprostanes (83.9 ± 18.7 pg/mL vs. 80.5 ± 12.3 pg/mL) and 8-hydroxy-2-deoxyguanosine (92.6 ± 25.5 pmol/L vs. 86.9 ± 19.0 pmol/L). Likewise, in urine, no differences were observed between CRPS patients and healthy volunteers for F2-isoprostanes (117 ng/mmol, IQR 54.5–124.3 vs. 85 ng/mmol, IQR 55.5–110) and 8-hydroxy-2-deoxyguanosine (1.4 ± 0.7 nmol/mmol vs. 1.4 ± 0.5 nmol/mmol). Our data show no elevation of systemic markers of oxidative stress in CRPS patients compared to matched healthy volunteers. Future research should focus on local sampling methods of oxidative stress with adequate patient selection based on CRPS phenotype and lifestyle. PMID:23574939

  11. Oxidative stress in Complex Regional Pain Syndrome (CRPS): no systemically elevated levels of malondialdehyde, F2-isoprostanes and 8OHdG in a selected sample of patients.

    PubMed

    Fischer, Sigrid G L; Perez, Roberto S G M; Nouta, Jan; Zuurmond, Wouter W A; Scheffer, Peter G

    2013-04-10

    Exaggerated inflammation and oxidative stress are involved in the pathogenesis of Complex Regional Pain Syndrome (CRPS). However, studies assessing markers for oxidative stress in CRPS patients are limited. In this study, markers for lipid peroxidation (malondialdehyde and F2-isoprostanes) and DNA damage (8-hydroxy-2-deoxyguanosine) were measured in nine patients (mean age 50.1 ± 17.1 years) with short term CRPS-1 (median 3 months) and nine age and sex matched healthy volunteers (mean age 49.3 ± 16.8 years) to assess and compare the level of oxidative stress. No differences were found in plasma between CRPS patients and healthy volunteers for malondialdehyde (5.2 ± 0.9 µmol/L vs. 5.4 ± 0.5 µmol/L) F2-isoprostanes (83.9 ± 18.7 pg/mL vs. 80.5 ± 12.3 pg/mL) and 8-hydroxy-2-deoxyguanosine (92.6 ± 25.5 pmol/L vs. 86.9 ± 19.0 pmol/L). Likewise, in urine, no differences were observed between CRPS patients and healthy volunteers for F2-isoprostanes (117 ng/mmol, IQR 54.5-124.3 vs. 85 ng/mmol, IQR 55.5-110) and 8-hydroxy-2-deoxyguanosine (1.4 ± 0.7 nmol/mmol vs. 1.4 ± 0.5 nmol/mmol). Our data show no elevation of systemic markers of oxidative stress in CRPS patients compared to matched healthy volunteers. Future research should focus on local sampling methods of oxidative stress with adequate patient selection based on CRPS phenotype and lifestyle.

  12. What Does Carotenoid-Dependent Coloration Tell? Plasma Carotenoid Level Signals Immunocompetence and Oxidative Stress State in Birds–A Meta-Analysis

    PubMed Central

    Simons, Mirre J. P.; Cohen, Alan A.; Verhulst, Simon

    2012-01-01

    Abstract Mechanisms maintaining honesty of sexual signals are far from resolved, limiting our understanding of sexual selection and potential important parts of physiology. Carotenoid pigmented visual signals are among the most extensively studied sexual displays, but evidence regarding hypotheses on how carotenoids ensure signal honesty is mixed. Using a phylogenetically controlled meta-analysis of 357 effect sizes across 88 different species of birds, we tested two prominent hypotheses in the field: that carotenoid-dependent coloration signals i) immunocompetence and/or ii) oxidative stress state. Separate meta-analyses were performed for the relationships of trait coloration and circulating carotenoid level with different measures of immunocompetence and oxidative stress state. For immunocompetence we find that carotenoid levels (r = 0.20) and trait color intensity (r = 0.17) are significantly positively related to PHA response. Additionally we find that carotenoids are significantly positively related to antioxidant capacity (r = 0.10), but not significantly related to oxidative damage (r = −0.02). Thus our analyses provide support for both hypotheses, in that at least for some aspects of immunity and oxidative stress state the predicted correlations were found. Furthermore, we tested for differences in effect size between experimental and observational studies; a larger effect in observational studies would indicate that co-variation might not be causal. However, we detected no significant difference, suggesting that the relationships we found are causal. The overall effect sizes we report are modest and we discuss potential factors contributing to this, including differences between species. We suggest complementary mechanisms maintaining honesty rather than the involvement of carotenoids in immune function and oxidative stress and suggest experiments on how to test these. PMID:22905205

  13. Relationships between Stress Granules, Oxidative Stress, and Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    Cytoplasmic stress granules (SGs) are critical for facilitating stress responses and for preventing the accumulation of misfolded proteins. SGs, however, have been linked to the pathogenesis of neurodegenerative diseases, in part because SGs share many components with neuronal granules. Oxidative stress is one of the conditions that induce SG formation. SGs regulate redox levels, and SG formation in turn is differently regulated by various types of oxidative stress. These associations and other evidences suggest that SG formation contributes to the development of neurodegenerative diseases. In this paper, we review the regulation of SG formation/assembly and discuss the interactions between oxidative stress and SG formation. We then discuss the links between SGs and neurodegenerative diseases and the current therapeutic approaches for neurodegenerative diseases that target SGs. PMID:28194255

  14. Oxidative stress and hypertension.

    PubMed

    Harrison, David G; Gongora, Maria Carolina

    2009-05-01

    This review has summarized some of the data supporting a role of ROS and oxidant stress in the genesis of hypertension. There is evidence that hypertensive stimuli, such as high salt and angiotensin II, promote the production of ROS in the brain, the kidney, and the vasculature and that each of these sites contributes either to hypertension or to the untoward sequelae of this disease. Although the NADPH oxidase in these various organs is a predominant source, other enzymes likely contribute to ROS production and signaling in these tissues. A major clinical challenge is that the routinely used antioxidants are ineffective in preventing or treating cardiovascular disease and hypertension. This is likely because these drugs are either ineffective or act in a non-targeted fashion, such that they remove not only injurious ROS Fig. 5. Proposed role of T cells in the genesis of hypertension and the role of the NADPH oxidase in multiple cells/organs in modulating this effect. In this scenario, angiotensin II stimulates an NADPH oxidase in the CVOs of the brain, increasing sympathetic outflow. Sympathetic nerve terminals in lymph nodes activate T cells, and angiotensin II also directly activates T cells. These stimuli also activate expression of homing signals in the vessel and likely the kidney, which attract T cells to these organs. T cells release cytokines that stimulate the vessel and kidney NADPH oxidases, promoting vasoconstriction and sodium retention. SFO, subfornical organ. 630 Harrison & Gongora but also those involved in normal cell signaling. A potentially important and relatively new direction is the concept that inflammatory cells such as T cells contribute to hypertension. Future studies are needed to understand the interaction of T cells with the CNS, the kidney, and the vasculature and how this might be interrupted to provide therapeutic benefit.

  15. Ischemia-modified albümin and malondialdehyde levels in patients with overt and subclinical hyperthyroidism: effects of treatment on oxidative stress.

    PubMed

    Erem, Cihangir; Suleyman, Akile Karacin; Civan, Nadim; Mentese, Ahmet; Nuhoglu, İrfan; Uzun, Aysegul; Ersoz, Halil Onder; Deger, Orhan

    2015-01-01

    The main purpose of this study was to evaluate the levels of ischemia-modified albumin (IMA) and malondialdehyde (MDA) in patients with OHyper and SHyper, to assess the effects of antithyroid drug (ATD) therapy on the oxidative stress (OS) parameters. Forty-five untreated patients with overt hyperthyroidism (OHyper), 20 untreated patients with subclinical hyperthyroidism (SHyper) and 30 age-and sex-matched healthy controls were prospectively included in the study. Biochemical and hormonal parameters were evaluated in all patients before and after treatment. Compared with the control subjects, the levels of MDA, glucose and TG were significantly increased in patients with SHyper (p<0.05), whereas LDL-C levels were significantly decreased (p<0.01). Patients with OHyper showed significantly elevated MDA and glucose levels (p<0.001) and significantly decreased LDL-C and HDL-C levels compared with the controls (p<0.01). In patients with Graves' disease, serum TSH levels were inversely correlated with plasma MDA levels (r: -0.42, p<0.05). Plasma MDA levels significantly decreased and levels of TC, LDL-C and HDL-C significantly increased in the groups of OHyper and SHyper after treatment. Serum IMA levels did not significantly change at baseline and with the therapy in all subjects. In conclusion, increased MDA levels in both patient groups represent increased lipid peroxidation which might play an important role in the pathogenesis of the atherosclerosis in these patients. Increased oxidative stress in patients with SHyper and OHyper could be improved by ATD therapy. Also, MDA can be used as a reliable marker of OS and oxidative damage, while IMA is considered to be inappropriate.

  16. Correlations between the Memory-Related Behavior and the Level of Oxidative Stress Biomarkers in the Mice Brain, Provoked by an Acute Administration of CB Receptor Ligands.

    PubMed

    Kruk-Slomka, Marta; Boguszewska-Czubara, Anna; Slomka, Tomasz; Budzynska, Barbara; Biala, Grazyna

    2016-01-01

    The endocannabinoid system, through cannabinoid (CB) receptors, is involved in memory-related responses, as well as in processes that may affect cognition, like oxidative stress processes. The purpose of the experiments was to investigate the impact of CB1 and CB2 receptor ligands on the long-term memory stages in male Swiss mice, using the passive avoidance (PA) test, as well as the influence of these compounds on the level of oxidative stress biomarkers in the mice brain. A single injection of a selective CB1 receptor antagonist, AM 251, improved long-term memory acquisition and consolidation in the PA test in mice, while a mixed CB1/CB2 receptor agonist WIN 55,212-2 impaired both stages of cognition. Additionally, JWH 133, a selective CB2 receptor agonist, and AM 630, a competitive CB2 receptor antagonist, significantly improved memory. Additionally, an acute administration of the highest used doses of JWH 133, WIN 55,212-2, and AM 630, but not AM 251, increased total antioxidant capacity (TAC) in the brain. In turn, the processes of lipids peroxidation, expressed as the concentration of malondialdehyde (MDA), were more advanced in case of AM 251. Thus, some changes in the PA performance may be connected with the level of oxidative stress in the brain.

  17. Correlations between the Memory-Related Behavior and the Level of Oxidative Stress Biomarkers in the Mice Brain, Provoked by an Acute Administration of CB Receptor Ligands

    PubMed Central

    Kruk-Slomka, Marta; Boguszewska-Czubara, Anna; Slomka, Tomasz; Budzynska, Barbara; Biala, Grazyna

    2016-01-01

    The endocannabinoid system, through cannabinoid (CB) receptors, is involved in memory-related responses, as well as in processes that may affect cognition, like oxidative stress processes. The purpose of the experiments was to investigate the impact of CB1 and CB2 receptor ligands on the long-term memory stages in male Swiss mice, using the passive avoidance (PA) test, as well as the influence of these compounds on the level of oxidative stress biomarkers in the mice brain. A single injection of a selective CB1 receptor antagonist, AM 251, improved long-term memory acquisition and consolidation in the PA test in mice, while a mixed CB1/CB2 receptor agonist WIN 55,212-2 impaired both stages of cognition. Additionally, JWH 133, a selective CB2 receptor agonist, and AM 630, a competitive CB2 receptor antagonist, significantly improved memory. Additionally, an acute administration of the highest used doses of JWH 133, WIN 55,212-2, and AM 630, but not AM 251, increased total antioxidant capacity (TAC) in the brain. In turn, the processes of lipids peroxidation, expressed as the concentration of malondialdehyde (MDA), were more advanced in case of AM 251. Thus, some changes in the PA performance may be connected with the level of oxidative stress in the brain. PMID:26839719

  18. An overview on therapeutics attenuating amyloid β level in Alzheimer’s disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels

    PubMed Central

    Zhou, Xiaoling; Li, Yifei; Shi, Xiaozhe; Ma, Chun

    2016-01-01

    Alzheimer’s disease (AD) is the most common underlying cause of dementia, and novel drugs for its treatment are needed. Of the different theories explaining the development and progression of AD, “amyloid hypothesis” is the most supported by experimental data. This hypothesis states that the cleavage of amyloid precursor protein (APP) leads to the formation of amyloid beta (Aβ) peptides that congregate with formation and deposition of Aβ plaques in the frontal cortex and hippocampus. Risk factors including neurotransmitter modulation, chronic inflammation, metal-induced oxidative stress and elevated cholesterol levels are key contributors to the disease progress. Current therapeutic strategies abating AD progression are primarily based on anti-acetylcholinesterase (AChE) inhibitors as cognitive enhancers. The AChE inhibitor, donepezil, is proven to strengthen cognitive functions and appears effective in treating moderate to severe AD patients. N-Methyl-D-aspartate receptor antagonist, memantine, is also useful, and its combination with donepezil demonstrated a strong stabilizing effect in clinical studies on AD. Nonsteroidal anti-inflammatory drugs delayed the onset and progression of AD and attenuated cognitive dysfunction. Based upon epidemiological evidence and animal studies, antioxidants emerged as potential AD preventive agents; however, clinical trials revealed inconsistencies. Pharmacokinetic and pharmacodynamic profiling demonstrated pleiotropic functions of the hypolipidemic class of drugs, statins, potentially contributing towards the prevention of AD. In addition, targeting the APP processing pathways, stimulating neuroprotective signaling mechanisms, using the amyloid anti-aggregants and Aβ immunotherapy surfaced as well-tested strategies in reducing the AD-like pathology. Overall, this review covers mechanism of inducing the Aβ formation, key risk factors and major therapeutics prevalent in the AD treatment nowadays. It also delineates the

  19. Etiologies of sperm oxidative stress

    PubMed Central

    Sabeti, Parvin; Pourmasumi, Soheila; Rahiminia, Tahereh; Akyash, Fatemeh; Talebi, Ali Reza

    2016-01-01

    Sperm is particularly susceptible to reactive oxygen species (ROS) during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN) leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions. PMID:27351024

  20. Oxidative stress in IgA nephropathy.

    PubMed

    Coppo, R; Camilla, R; Amore, A; Peruzzi, L

    2010-01-01

    IgA nephropathy (IgAN) is characterized by mesangial deposits of IgA1, likely due to accumulation of IgA immune complexes. The activation of intracellular signaling mostly results in oxidative stress, as detected in mesangial cells cultured with aberrantly glycosylated IgA or IgA aggregates and in renal biopsies of patients with IgAN. Signs of altered oxidation/antioxidation balance have been detected in sera and/or in erythrocytes of patients with IgAN, including increased levels of lipoperoxide or malondialdehyde and reduced activity of superoxide dismutase, catalase and glutathione peroxidase. Moreover, increased levels of a marker of oxidative stress, advanced oxidation protein products (AOPPs), have been reported to be significantly associated with proteinuria and disease progression in patients with IgAN. AOPPs are often carried by albumin and can in turn enhance the oxidative stress in the circulation. Recent research suggests that the nephrotoxicity of aberrantly glycosylated IgA1 in IgAN is enhanced in the presence of systemic signs of oxidative stress, and it is tempting to hypothesize that the level of the oxidative milieu conditions the different expression and progression of IgAN.

  1. The metabolomics of oxidative stress.

    PubMed

    Noctor, Graham; Lelarge-Trouverie, Caroline; Mhamdi, Amna

    2015-04-01

    Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways.

  2. Vitamin D Levels Decline with Rising Number of Cardiometabolic Risk Factors in Healthy Adults: Association with Adipokines, Inflammation, Oxidative Stress and Advanced Glycation Markers

    PubMed Central

    Krivošíková, Zora; Gajdoš, Martin; Šebeková, Katarína

    2015-01-01

    Introduction Hypovitaminosis D associates with obesity, insulin resistance, hypertension, and dyslipoproteinemia. We asked whether the presence of multiple cardiometabolic risk factors, and which particular combination, exerts additive negative effects on 25(OH)D3 levels; and whether 25(OH)D3 levels associate with markers of inflammation and oxidative stress. Subjects and Methods In non-diabetic medication-free adults central obesity (waist-to-height ratio > 0.5); elevated blood pressure (systolic BP≥130 mm Hg and/or diastolic BP ≥85 mm Hg); increased atherogenic risk (log(TAG/HDL) ≥ 0.11); and insulin resistance (QUICKI < 0.322) were considered as cardiometabolic risk factors. 25(OH)D3 status was classified as deficiency (25(OH)D3 ≤20 ng/ml); insufficiency (levels between 20-to-30 ng/ml), or as satisfactory (>30 ng/ml). Plasma adipokines, inflammatory and oxidative stress markers, advanced glycation end-products, and their soluble receptor were determined. Results 162 subjects were cardiometabolic risk factors-free, 162 presented increased (i.e. 1 or 2), and 87 high number (i.e. 3 or 4) of cardiometabolic risk factors. Mean 25(OH)D3 decreased with rising number of manifested risk factors (36 ± 14 ng/ml, 33 ± 14 ng/ml, and 31 ± 15 ng/ml, respectively; pANOVA: 0.010), while prevalence of hypovitaminosis D did not differ significantly. Elevated blood pressure and insulin resistance appeared as significant determinants of hypovitaminosis D. Subjects presenting these risk factors concurrently displayed the lowest 25(OH)D3 levels (29 ± 15 ng/ml). Plasma adipokines, inflammatory and oxidative stress markers, advanced glycation end-products, and their soluble receptor generally differed significantly between the groups, but only advanced oxidation protein products and advanced glycation end-products associated fluorescence of plasma showed significant independent association with 25(OH)D3 levels. Conclusion In apparently healthy adults increasing number of

  3. Effect of Vitamin C Supplementation on Blood Lead Level, Oxidative Stress and Antioxidant Status of Battery Manufacturing Workers of Western Maharashtra, India

    PubMed Central

    Ghanwat, Ganesh; Patil, Jyotsna; Kshirsagar, Mandakini; Sontakke, Ajit; Ayachit, R.K.

    2016-01-01

    Introduction The high blood lead level induces oxidative stress and alters the antioxidant status of battery manufacturing workers. Supplementation of vitamin C is beneficial to reduce the oxidative stress and to improve the antioxidant status of these workers. Aim The main aim of this study was to observe the changes in blood lead levels, oxidative stress i.e. serum lipid peroxide and antioxidant status parameters such as erythrocyte superoxide dismutase and catalase and serum nitrite after the vitamin C supplementation in battery manufacturing workers. Materials and Methods This study included 36 battery manufacturing workers from Western Maharashtra, India, having age between 20-60 years. All study group subjects were provided vitamin C tablets (500 mg/day for one month) and a blood sample of 10 ml each was drawn by puncturing the anterior cubital vein before and after vitamin C supplementation. The biochemical parameters were estimated by using the standard methods. Results Blood lead levels were not significantly altered, however, serum lipid peroxide (p<0.001, -15.56%) and serum nitrite (p<0.001, -21.37%) levels showed significant decrease and antioxidant status parameters such as erythrocyte superoxide dismutase (p<0.001, 38.02%) and catalase (p<0.001, 32.36%) revealed significant increase in battery manufacturing workers after the supplementation of vitamin C. Conclusion One month vitamin C supplementation in battery manufacturing workers is not beneficial to decrease the blood lead levels. However, it is helpful to reduce the lipid peroxidation and nitrite formation and enhances the erythrocytes superoxide dismutase and catalase activity. PMID:27190789

  4. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    PubMed Central

    Rahal, Anu; Kumar, Amit; Singh, Vivek; Yadav, Brijesh

    2014-01-01

    Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. PMID:24587990

  5. Leptin Administration Downregulates the Increased Expression Levels of Genes Related to Oxidative Stress and Inflammation in the Skeletal Muscle of ob/ob Mice

    PubMed Central

    Sáinz, Neira; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Ramírez, Beatriz; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2010-01-01

    Obese leptin-deficient ob/ob mice exhibit a low-grade chronic inflammation together with a low muscle mass. Our aim was to analyze the changes in muscle expression levels of genes related to oxidative stress and inflammatory responses in leptin deficiency and to identify the effect of in vivo leptin administration. Ob/ob mice were divided in three groups as follows: control ob/ob, leptin-treated ob/ob (1 mg/kg/d) and leptin pair-fed ob/ob mice. Gastrocnemius weight was lower in control ob/ob than in wild type mice (P < .01) exhibiting an increase after leptin treatment compared to control and pair-fed (P < .01) ob/ob animals. Thiobarbituric acid reactive substances, markers of oxidative stress, were higher in serum (P < .01) and gastrocnemius (P = .05) of control ob/ob than in wild type mice and were significantly decreased (P < .01) by leptin treatment. Leptin deficiency altered the expression of 1,546 genes, while leptin treatment modified the regulation of 1,127 genes with 86 of them being involved in oxidative stress, immune defense and inflammatory response. Leptin administration decreased the high expression of Crybb1, Hspb3, Hspb7, Mt4, Cat, Rbm9, Serpinc1 and Serpinb1a observed in control ob/ob mice, indicating that it improves inflammation and muscle loss. PMID:20671928

  6. Oxidative stress in the neonate.

    PubMed

    Robles, R; Palomino, N; Robles, A

    2001-11-01

    The aim of this study is to determine the oxidative state of term and preterm neonates at the moment of birth and during the first days of life, and the influence of exposure to oxygen on the premature neonates.A total of 20 neonates were selected. Group A: 10 healthy full-term neonates, and Group B: 10 preterm neonates with no other pathology associated, requiring oxygen therapy. Venous samples were taken in cord at 3 and 72 h in Group A, and in cord at 3, 24 and 72 h and 7 days in Group B.Hydroperoxides, Q10 coenzyme (Co Q10) and alpha-tocopherol were measured within the erythrocyte membrane. Levels of hydroperoxides present in erythrocyte membrane were higher than normal both in Group A and in Group B at birth. This increase was greater in the group of premature neonates. Levels of alpha-tocopherol at birth increase significantly at 72 h in term neonates. Among the premature newborns, alpha-tocopherol levels are two to three times lower at birth and do not rise to higher levels as in the term neonate group. Fall in levels of Co Q10 in erythrocyte membranes is observed, and perhaps is due to the role of Co Q10 in maintaining the pool of reduced tocopherol. At birth, the neonate presents an increase of markers of oxidative stress and a decrease of their antioxidant defenses. This difference is greater as gestational age decreases. The application of oxygen therapy resulted in these levels which remain low throughout the study period.

  7. Oxidative stress in severe acute illness

    PubMed Central

    Bar-Or, David; Bar-Or, Raphael; Rael, Leonard T.; Brody, Edward N.

    2015-01-01

    The overall redox potential of a cell is primarily determined by oxidizable/reducible chemical pairs, including glutathione–glutathione disulfide, reduced thioredoxin–oxidized thioredoxin, and NAD+–NADH (and NADP–NADPH). Current methods for evaluating oxidative stress rely on detecting levels of individual byproducts of oxidative damage or by determining the total levels or activity of individual antioxidant enzymes. Oxidation–reduction potential (ORP), on the other hand, is an integrated, comprehensive measure of the balance between total (known and unknown) pro-oxidant and antioxidant components in a biological system. Much emphasis has been placed on the role of oxidative stress in chronic diseases, such as Alzheimer's disease and atherosclerosis. The role of oxidative stress in acute diseases often seen in the emergency room and intensive care unit is considerable. New tools for the rapid, inexpensive measurement of both redox potential and total redox capacity should aid in introducing a new body of literature on the role of oxidative stress in acute illness and how to screen and monitor for potentially beneficial pharmacologic agents. PMID:25644686

  8. Good Stress, Bad Stress and Oxidative Stress: Insights from Anticipatory Cortisol Reactivity

    PubMed Central

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M.; Dhabhar, Firdaus S.; Su, Yali; Epel, Elissa

    2014-01-01

    8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01.) Intriguingly, among those with low chronic stress exposure, moderate (compared to low) levels of perceived stress were associated with reduced levels of oxidative damage. Hence, this study supports the emerging model that chronic stress exposure promotes oxidative damage through frequent and sustained activation of the Hypothalamic-Pituitary-Adrenal axis. It also supports the less studied model of ‘eustress’ - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage. PMID:23490070

  9. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    PubMed

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    G) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01) Intriguingly, among those with low chronic stress exposure, moderate (compared to low) levels of perceived stress were associated with reduced levels of oxidative damage. Hence, this study supports the emerging model that chronic stress exposure promotes oxidative damage through frequent and sustained activation of the hypothalamic-pituitary-adrenal axis. It also supports the less studied model of 'eustress' - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage.

  10. Oxidative Stress Marker and Pregnancy Induced Hypertension

    PubMed Central

    Draganovic, Dragica; Lucic, Nenad; Jojic, Dragica

    2016-01-01

    Background: Pregnancy induced hypertension (PIH) is a state of extremely increased oxidative stress. Hence, research and test of role and significance of oxidative stress in hypertensive disturbance in pregnancy is very important. Aim: Aims of this research were to determine a level of thiobarbituric acid reactive substance (TBARS) as oxidative stress marker in blood of pregnant woman with pregnancy induced hypertension and to analyze correlation of TBARS values with blood pressure values in pregnancy induced hypertensive pregnant women. Patients and methods: Research has been performed at the Clinic of Gynecology and Obstetrics, University Clinical Centre in the Republic of Srpska. It covered 100 pregnant women with hypertension and 100 healthy pregnant women of gestation period from 28 to 40 weeks. Level of TBARS is determined as an equivalent of malondialdehyde standard, in accordance with recommendations by producer (Oxi Select TBARS Analisa Kit). Results: Pregnancy induced hypertension is a state of extremely increased oxidative stress. All pregnant women experiencing hypertension had increased TBARS values in medium value interval over 20 µmol, 66%, whereas in group of healthy pregnant women, only 1% experienced increased TBARS value. Pregnant women with difficult preeclampsia (32%) had high TBARS values, over 40 µmol, and with mild PIH, only 4.9% pregnant women. Conclusion: Pregnant women with pregnancy induced hypertension have extremely increased degree of oxidative stress and lipid peroxidation. TBARS values are in positive correlation with blood pressure values, respectively the highest TBARS value were present in pregnant women with the highest blood pressure values. PMID:28210016

  11. Nitric oxide and oxidative stress in placental explant cultures.

    PubMed

    Goncalves, Juvic M; Casart, Ysabel C; Camejo, María I

    2016-01-01

    Placental explant culture, and cellular cytolysis and cellular differentiation have been previously studied. However, oxidative stress and nitric oxide profiles have not been evaluated in these systems. The aim of this study was to determine the release of lipid peroxidation and nitric oxide from placental explants cultured over a seven day period. Placental explants were maintained for seven days in culture and the medium was changed every 24 hours. The response was assessed in terms of syncytiotrophoblast differentiation (human chorionic gonadotropin, hCG), cellular cytolysis (lactate dehydrogenase, LDH), oxidative stress (thiobarbituric acid reactive substances, TBARS), and nitric oxide (NO). Levels of hCG increased progressively from day two to attain its highest level on days four and five after which it decreased gradually. In contrast, the levels of LDH, TBARS, and NO were elevated in the early days of placental culture when new syncytiotrophoblast from cytotrophoblast were forming and also in the last days of culture when tissue was declining. In conclusion, the levels of NO and lipid peroxidation follow a pattern similar to LDH and contrary to hCG. Future placental explant studies to evaluate oxidative stress and NO should consider the physiological changes inherent during the time of culture.

  12. Proteomics, oxidative stress and male infertility.

    PubMed

    Agarwal, Ashok; Durairajanayagam, Damayanthi; Halabi, Jacques; Peng, Jason; Vazquez-Levin, Monica

    2014-07-01

    Oxidative stress has been established as one of the main causes of male infertility and has been implicated in many diseases associated with infertile men. It results from high concentrations of free radicals and suppressed antioxidant potential, which may alter protein expression in seminal plasma and/or spermatozoa. In recent years, proteomic analyses have been performed to characterize the protein profiles of seminal ejaculate from men with different clinical conditions, such as high oxidative stress. The aim of the present review is to summarize current findings on proteomic studies performed in men with high oxidative stress compared with those with physiological concentrations of free radicals, to better understand the aetiology of oxidative stress-induced male infertility. Each of these studies has suggested candidate biomarkers of oxidative stress, among them are DJ-1, PIP, lactotransferrin and peroxiredoxin. Changes in protein concentrations in seminal plasma samples with oxidative stress conditions were related to stress responses and to regulatory pathways, while alterations in sperm proteins were mostly associated to metabolic responses (carbohydrate metabolism) and stress responses. Future studies should include assessment of post-translational modifications in the spermatozoa as well as in seminal plasma proteomes of men diagnosed with idiopathic infertility. Oxidative stress, which occurs due to a state of imbalance between free radicals and antioxidants, has been implicated in most cases of male infertility. Cells that are in a state of oxidative stress are more likely to have altered protein expression. The aim of this review is to better understand the causes of oxidative stress-induced male infertility. To achieve this, we assessed proteomic studies performed on the seminal plasma and spermatozoa of men with high levels of oxidative stress due to various clinical conditions and compared them with men who had physiological concentrations of free

  13. Moderate swimming exercise and caffeine supplementation reduce the levels of inflammatory cytokines without causing oxidative stress in tissues of middle-aged rats.

    PubMed

    Cechella, José L; Leite, Marlon R; Dobrachinski, Fernando; da Rocha, Juliana T; Carvalho, Nelson R; Duarte, Marta M M F; Soares, Félix A A; Bresciani, Guilherme; Royes, Luiz F F; Zeni, Gilson

    2014-05-01

    The levels of circulatory inflammatory markers, including interleukin (IL) IL-1β, IL-6, tumor necrosis factor-α (TNF-α) and interferon (INF-γ), are known to increase associated to aging. Caffeine has been reported to produce many beneficial effects for health. Exercise is considered to be a safe medicine to attenuate inflammation and cellular senescence. The purpose of the present study was to investigate the effects of a moderate-intensity swimming exercise (3 % of body weight, 20 min per day, 4 weeks) and sub-chronic supplementation with caffeine (30 mg/kg, 4 weeks) on the serum cytokine levels in middle-aged (18 months) Wistar rats. The effects of swimming exercise and caffeine on oxidative stress in muscle and liver of middle-aged rats were also investigated. The two-way ANOVA of pro-inflammatory cytokine levels demonstrated a significant exercise x caffeine interaction for IL-1β (F (1, 16) = 9.5772; p = 0.0069), IL-6 (F (1, 16) = 8.0463; p = 0.0119) and INF-γ (F (1, 16) = 15.078; p = 0.0013). The two-way ANOVA of TNF-α levels revealed a significant exercise × caffeine interaction (F (1, 16) = 9.6881; p = 0.00670). Swimming exercise and caffeine supplementation increased the ratio of reduced glutathione/oxidized glutathione in the rat liver and gastrocnemius muscle. Hepatic and renal markers of damage were not modified. In conclusion, a moderate-intensity swimming exercise protocol and caffeine supplementation induced positive adaptations in modulating cytokine levels without causing oxidative stress in muscle and liver of middle-aged rats.

  14. Correlates of oxidative stress in wild kestrel nestlings (Falco tinnunculus).

    PubMed

    Costantini, David; Casagrande, Stefania; De Filippis, Stefania; Brambilla, Gianfranco; Fanfani, Alberto; Tagliavini, James; Dell'Omo, Giacomo

    2006-05-01

    The fitness of an organism can be affected by conditions experienced during early development. In light of the impact that oxidative stress can have on the health and ageing of a bird species, this study evaluated factors accounting for the variation in oxidative stress levels in nestlings of the Eurasian kestrel (Falco tinnunculus) by measuring the serum concentration of reactive oxygen metabolites and the serum antioxidant barrier against hypochlorite-induced oxidation. The ratio between these two variables was considered as an index of oxidative stress, with higher values meaning higher oxidative damage. Six-chick broods showed the highest level of oxidative stress, while no effect of sex was found. Age showed an inverse relationship with the oxidants and the levels of oxidative stress, with younger birds having higher levels. Hatching date, body condition, body mass and carotenoid concentration did not show any relationship with oxidants, antioxidants or degree of oxidative stress. These findings suggest that intrabrood sibling competition could play a role in determining oxidative stress, and that in carnivorous birds other antioxidant molecules could be more important than carotenoids to reduce oxidative stress.

  15. Oxidative Stress in Atopic Dermatitis

    PubMed Central

    Ji, Hongxiu; Li, Xiao-Kang

    2016-01-01

    Atopic dermatitis (AD) is a chronic pruritic skin disorder affecting many people especially young children. It is a disease caused by the combination of genetic predisposition, immune dysregulation, and skin barrier defect. In recent years, emerging evidence suggests oxidative stress may play an important role in many skin diseases and skin aging, possibly including AD. In this review, we give an update on scientific progress linking oxidative stress to AD and discuss future treatment strategies for better disease control and improved quality of life for AD patients. PMID:27006746

  16. [Oxidative stress in Crohn's disease].

    PubMed

    Moret, Inés; Cerrillo, Elena; Navarro-Puche, Ana; Iborra, Marisa; Rausell, Francisco; Tortosa, Luis; Beltrán, Belén

    2014-01-01

    Crohn's disease (CD) is characterized by transmural inflammation that is most frequently located in the region of the terminal ileum. Although the physiopathological mechanisms of the disease are not yet well defined, the unregulated immune response is associated with high production of reactive oxygen species (ROS). These elements are associated with complex systems known as antioxidant defenses, whose function is ROS regulation, thereby preventing the harmful effects of these elements. However, the presence of an imbalance between ROS production and ROS elimination by antioxidants has been widely described and leads to oxidative stress. In this article, we describe the most significant findings on oxidative stress in the intestinal mucosa and peripheral blood.

  17. Polycyclic aromatic hydrocarbon levels and measures of oxidative stress in the Mediterranean endemic bivalve Pinna nobilis exposed to the Don Pedro oil spill.

    PubMed

    Sureda, Antoni; Tejada, Silvia; Box, Antonio; Deudero, Salud

    2013-06-15

    The fan mussel (Pinna nobilis Linné, 1758) is the largest endemic Mediterranean bivalve subject to strict protection as an endangered species. Antioxidant biomarkers in P. nobilis gills for biomonitoring marine pollution were researched after the Don Pedro oil spill. Two sampling locations on the east and southeast of the island of Ibiza (Western Mediterranean, Spain) were selected, one extensively affected by the oil spill and the other unaffected (control area). Mussels were sampled 1 month, 6 months and 1 year after the accident. Polycyclic aromatic hydrocarbon levels and antioxidant enzymes significantly increased as result of the oil spill in all sampling periods (p<0.05). Oxidative damage in lipids significantly increased in the mussels collected in the affected area (p<0.05), though such damage was back to normal after 1 year. In conclusion, the Don Pedro oil spill induced a situation of oxidative stress on P. nobilis that continued a year later.

  18. Potential Modulation of Sirtuins by Oxidative Stress

    PubMed Central

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  19. Oxidative Stress Resistance in Deinococcus radiodurans†

    PubMed Central

    Slade, Dea; Radman, Miroslav

    2011-01-01

    Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health. PMID:21372322

  20. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  1. Oxidative stress in cyanobacteria.

    PubMed

    Latifi, Amel; Ruiz, Marion; Zhang, Cheng-Cai

    2009-03-01

    Reactive oxygen species (ROS) are byproducts of aerobic metabolism and potent agents that cause oxidative damage. In oxygenic photosynthetic organisms such as cyanobacteria, ROS are inevitably generated by photosynthetic electron transport, especially when the intensity of light-driven electron transport outpaces the rate of electron consumption during CO(2) fixation. Because cyanobacteria in their natural habitat are often exposed to changing external conditions, such as drastic fluctuations of light intensities, their ability to perceive ROS and to rapidly initiate antioxidant defences is crucial for their survival. This review summarizes recent findings and outlines important perspectives in this field.

  2. Oxidative stress in obstructive nephropathy.

    PubMed

    Dendooven, Amélie; Ishola, David A; Nguyen, Tri Q; Van der Giezen, Dionne M; Kok, Robbert Jan; Goldschmeding, Roel; Joles, Jaap A

    2011-06-01

    Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress.

  3. Oxidative stress in obstructive nephropathy

    PubMed Central

    Dendooven, Amélie; Ishola, David A; Nguyen, Tri Q; Van der Giezen, Dionne M; Kok, Robbert Jan; Goldschmeding, Roel; Joles, Jaap A

    2011-01-01

    Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress. PMID:20804541

  4. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  5. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  6. Haemophilus influenzae and oxidative stress

    PubMed Central

    Harrison, Alistair; Bakaletz, Lauren O.; Munson, Robert S.

    2012-01-01

    Haemophilus influenzae is a commensal of the human upper respiratory tract. H. influenzae can, however, move out of its commensal niche and cause multiple respiratory tract diseases. Such diseases include otitis media in young children, as well as exacerbations of chronic obstructive pulmonary disease (COPD), sinusitis, conjunctivitis, and bronchitis. During the course of colonization and infection, H. influenzae must withstand oxidative stress generated by multiple reactive oxygen species produced endogenously, by other co-pathogens and by host cells. H. influenzae has, therefore, evolved multiple mechanisms that protect the cell against oxygen-generated stresses. In this review, we will describe these systems relative to the well-described systems in Escherichia coli. Moreover, we will compare how H. influenzae combats the effect of oxidative stress as a necessary phenotype for its roles as both a successful commensal and pathogen. PMID:22919631

  7. Estradiol and neurodegenerative oxidative stress.

    PubMed

    Nilsen, Jon

    2008-10-01

    Estradiol is a potent preventative against neurodegenerative disease, in part, by activating antioxidant defense systems scavenging reactive oxygen species, limiting mitochondrial protein damage, improving electron transport chain activity and reducing mitochondrial DNA damage. Estradiol also increases the activity of complex IV of the electron transport chain, improving mitochondrial respiration and ATP production under normal and stressful conditions. However, the high oxidative cellular environment present during neurodegeneration makes estradiol a poor agent for treatment of existing disease. Oxidative stress stimulates the production of the hydroperoxide-dependent hydroxylation of estradiol to the catecholestrogen metabolites, which can undergo reactive oxygen species producing redox cycling, setting up a self-generating toxic cascade offsetting any antioxidant/antiapoptotic effects generated by the parent estradiol. Additional disease-induced factors can further perpetuate this cycle. For example dysregulation of the catecholamine system could alter catechol-O-methyltransferase-catalyzed methylation, preventing removal of redox cycling catecholestrogens from the system enhancing pro-oxidant effects of estradiol.

  8. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC

    PubMed Central

    2013-01-01

    Background Endothelial dysfunction precedes pathogenesis of vascular complications in diabetes. In recent years, the mechanisms of endothelial dysfunction were investigated to outline strategies for its treatment. However, the therapies for dysfunctional endothelium resulted in multiple clinical trial failures and remain elusive. There is a need for defining hyperglycemia-induced endothelial dysfunction with both generic and specific dysfunctional changes in endothelial cells (EC) using a systems approach. In this study, we investigated hyperglycemia-induced endothelial dysfunction in HUVEC and HMVEC. We investigated hyperglycemia-induced functional changes (superoxide (O2‾), and hydrogen peroxide (H2O2) production and mitochondrial membrane polarization) and gene expression fingerprints of related enzymes (nitric oxide synthase, NAD(P)H oxidase, and reactive oxygen species (ROS) neutralizing enzymes) in both ECs. Method Gene expression of NOS2, NOS3, NOX4, CYBA, UCP1, CAT, TXNRD1, TXNRD2, GPX1, NOX1, SOD1, SOD2, PRDX1, 18s, and RPLP0 were measured using real-time PCR. O2‾ production was measured with dihydroethidium (DHE) fluorescence measurement. H2O2 production was measured using Amplex Red assay. Mitochondrial membrane polarization was measured using JC-10 based fluorescence measurement. Results We showed that the O2‾ levels increased similarly in both ECs with hyperglycemia. However, these endothelial cells showed significantly different underlying gene expression profile, H2O2 production and mitochondrial membrane polarization. In HUVEC, hyperglycemia increased H2O2 production, and hyperpolarized mitochondrial membrane. ROS neutralizing enzymes SOD2 and CAT gene expression were downregulated. In contrast, there was an upregulation of nitric oxide synthase and NAD(P)H oxidase and a depolarization of mitochondrial membrane in HMVEC. In addition, ROS neutralizing enzymes SOD1, GPX1, TXNRD1 and TXNRD2 gene expression were significantly upregulated in high

  9. Oxidative stress in benign prostate hyperplasia.

    PubMed

    Zabaiou, N; Mabed, D; Lobaccaro, J M; Lahouel, M

    2016-02-01

    To assess the status of oxidative stress in benign prostate hyperplasia, a very common disease in older men which constitutes a public health problem in Jijel, prostate tissues were obtained by transvesical adenomectomy from 10 men with benign prostate hyperplasia. We measured the cytosolic levels of malondialdehyde (MDA) and glutathione (GSH) and cytosolic enzyme activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase. The development of benign prostate hyperplasia is accompanied by impaired oxidative status by increasing levels of MDA, depletion of GSH concentrations and a decrease in the activity of all the antioxidant enzymes studied. These results have allowed us to understand a part of the aetiology of benign prostate hyperplasia related to oxidative stress.

  10. Hemoglobin oxidative stress in cancer.

    PubMed

    Della Rovere, F; Granata, A; Broccio, M; Zirilli, A; Broccio, G

    1995-01-01

    The role played by free radicals in carcinogenesis and their relationships with antioxidant pool and cancer have already been shown. Free radicals induce increased membrane permeability through membrane lipid peroxidation, protein oxidation and histamine release from mast cells. Free radicals also cause oxyhemoglobin oxidative stress which increases methemoglobin and hemichromes. For this reason, we studied the in vitro formation of methemoglobin at 0' and 90', dosed following the HPLC method, after oxidative stress of blood by means of acetylphenylhydrazine in 40 subjects with cancer and 40 healthy donors. The results showed that methemoglobin formation was highly significant in tumors as compared to controls (P < 0.0001). The statistical analyses we carried out showed that metHb formation is not affected by age, sex, smoking habit, red blood cell number, Hb, Ht or tumor staging. This makes us believe that free radicals alter erythrocyte membrane permeability and predenaturate oxyhemoglobin so that erythrocyte membrane becomes more susceptible to new oxidative stress. This caused the abnormal response we found. Our results clearly underline the role played by free radicals in tumorous disease and provide a successful and easy method to detect early, even in a pre-clinical stage, the presence of tumorous alterations in the human body.

  11. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    PubMed

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  12. Benzo[a]pyrene-induced elevation of GSH level protects against oxidative stress and enhances xenobiotic detoxification in human HepG2 cells.

    PubMed

    Lin, T; Yang, M S

    2007-06-03

    Glutathione (GSH) is one of the most important antioxidants in mammalian cells. It also plays an important role in chemical detoxification. Some evidence showed that polycyclic aromatic hydrocarbons, such as benzo[a]pyrene (B[a]P [50-32-8]), could increase GSH content as a defense mechanism against oxidative stress as well as to promote its detoxification. However, there has been very little study on clarifying the role GSH plays in antioxidation and detoxification actions. Therefore, the present study aims to analyze intracellular glutathione metabolism in the human hepatoma cells (HepG2) upon exposure to B[a]P. Exposure of the cells to B[a]P (1-100 microM) for 24 h did not cause significant cell death in this cell line. By selecting the sublethal concentration of 10 microM, B[a]P caused a significant increase in GSH and a small (13%) but significant decrease in glutathione reductase activity. However, there was no change in the activity of glutathione peroxidase, and no detectable increase in reactive oxygen species (ROS) production. Treatment with B[a]P caused up to 1.5 folds increase in gamma-glutamylcysteine synthatase (gamma-GCS) activity over control. Buthioneine sulfoximine (BSO), an inhibitor of gamma-GCS, could suppress GSH increase in a dose-dependent manner. Assessment of the oxidative state of the cells indicated that the increase in GSH caused the cells to become more reduced. Thus, the results concluded that cells were not suffering from oxidative stress at 24 h after treatment with 10 microM B[a]P. Upon analyzing the activities of detoxification enzymes, there was an increase in the activity of CYP1A subfamily monooxygenases and glutathione S-transferase. Both changes occurred prior to the changes in gamma-GCS activity and the increase in GSH. In summary, results of the present study demonstrate that B[a]P caused an activation of detoxification enzymes. The increase in intracellular GSH level was due to activation of gamma-GCS activities. Oxidative

  13. [Influence of abscisic acid and fluridone on the content of phytohormones and polyamines and the level of oxidative stress in plants of Mesembryanthemum crystallinum L. under salinity].

    PubMed

    Stetsenko, L A; Vedenicheva, N P; Likhnevsky, R V; Kuznetsov, V V

    2015-01-01

    The effect of abscisic acid (ABA) and fluridone on the content of endogenous phytohormones and free polyamines and the intensity of oxidative stress was studied in plants of Mesembryanthemum crystallinum L. under salinity. It was shown that the pretreatment of plant roots with 1 μM ABA, followed by the action of 300 mM NaCl, caused a protective effect and improved the physiological state of the plants, which was manifested in increased biomass and content of available cytokinins and reduced values of the indicators of oxidative stress. It was noted that the inhibitor fluridone reduced the effect of ABA and acted as a pro-oxidant.

  14. Neurodegenerative diseases and oxidative stress.

    PubMed

    Emerit, J; Edeas, M; Bricaire, F

    2004-01-01

    Oxidative stress is now recognized as accountable for redox regulation involving reactive oxygen species (ROS) and reactive nitrogen species (RNS). Its role is pivotal for the modulation of critical cellular functions, notably for neurons astrocytes and microglia, such as apoptosis program activation, and ion transport, calcium mobilization, involved in excitotoxicity. Excitotoxicity and apoptosis are the two main causes of neuronal death. The role of mitochondria in apoptosis is crucial. Multiple apoptotic pathways emanate from the mitochondria. The respiratory chain of mitochondria that by oxidative phosphorylation, is the fount of cellular energy, i.e. ATP synthesis, is responsible for most of ROS and notably the first produced, superoxide anion (O(2)(;-)). Mitochondrial dysfunction, i.e. cell energy impairment, apoptosis and overproduction of ROS, is a final common pathogenic mechanism in aging and in neurodegenerative disease such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Nitric oxide (NO(;)), an RNS, which can be produced by three isoforms of NO-synthase in brain, plays a prominent role. The research on the genetics of inherited forms notably ALS, AD, PD, has improved our understanding of the pathobiology of the sporadic forms of neurodegenerative diseases or of aging of the brain. ROS and RNS, i.e. oxidative stress, are not the origin of neuronal death. The cascade of events that leads to neurons, death is complex. In addition to mitochondrial dysfunction (apoptosis), excitotoxicity, oxidative stress (inflammation), the mechanisms from gene to disease involve also protein misfolding leading to aggregates and proteasome dysfunction on ubiquinited material.

  15. [Oxidative stress and endothelial dysfunction].

    PubMed

    Jarasūniene, Dalia; Simaitis, Audrius

    2003-01-01

    Growing numbers of morbidity and mortality due to the Coronary Heart Disease (CHD) is recognized as the more increasing challenge in the world. The initial stage of atherosclerosis, early diagnosis and treatment of CHD are the main objectives of current research. Endothelium dysfunction, the earliest expression of the atherosclerotic process is associated with subtle biochemical changes that gradually are transformed into the structural changes of the arterial wall. The theory of free radicals is the most common among the atherosclerosis explanations. Overproduction or impaired neutralization of the free radicals accounts for oxidative stress that is causing substantial damage to the low density lipoproteins, nitric oxyde (NO), endothelium cells, tissue cells and finally leads to the endothelium dysfuction. Pathophysiology of oxidative stress and its role in the endothelium dysfunction are discussed in this paper. Positive role of various medications (statins, angiotensin converting enzym inhibitors, aldosteron antagonists, estrogens, antioxidants, b-blockers with vasodilatative properties) to the oxidative stress and consequently to the endothelium dysfuction are discussed as well.

  16. The effect of N-acetylcysteine supplementation on serum homocysteine levels and hepatic and renal oxidative stress in homocysteine thiolactone-treated rats.

    PubMed

    Kondakçı, Gamze; Aydın, A Fatih; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2017-05-01

    The effect of N-acetylcysteine (NAC) (1 g/kg body weight/day) on serum homocysteine (Hcy) levels, insulin resistance (IR), and hepatic and renal prooxidant-antioxidant balance was evaluated in rats treated with homocysteine thiolactone (HcyT) (500 mg/kg body weight/day for 6 weeks). Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione, ferric reducing antioxidant power, and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined in the liver and kidney. HcyT elevated serum Hcy levels and caused IR, but liver and kidney function tests remained unchanged. HcyT increased ROS and MDA without any change in hepatic antioxidants, but it elevated renal SOD and GSH-Px activities. NAC decreased serum Hcy, hepatic and renal ROS and MDA levels, and renal SOD and GSH-Px activities in rats with high Hcy levels. However, it did not ameliorate IR. Our results indicate that NAC supplementation may be effective in decreasing Hcy levels and Hcy-induced hepatic and renal oxidative stress.

  17. Higher glucose level and systemic oxidative stress decrease the mean velocity index of the retinal artery during flickering light stimulation in type 1 diabetes

    PubMed Central

    Debelić, Vladimir; Drnovšek Olup, Brigita; Žižek, Bogomir; Skitek, Milan; Jerin, Aleš

    2016-01-01

    Aim To determine whether higher glucose level and systemic oxidative stress decrease mean velocity (MV) index of the central retinal artery (CRA) during flickering light stimulation in type 1 diabetes (T1D). Methods The study was performed in the period from 2008 to 2015 at the University Eye Clinic in Ljubljana. 41 patients with T1D and 37 participants without diabetes were included. MV in the CRA was measured using Doppler ultrasound diagnostics in basal conditions and during 8 Hz flickering light irritation. The plasma levels of glucose, fructosamine, 8-hydroxy-2'-deoxyguanosine (8-OHdG), triglycerides, cholesterol, and low-density lipoprotein (LDL) were measured. Results Patients with T1D had significantly higher levels of blood glucose (P < 0.001), fructosamine (P < 0.001), and 8-OHdG (P < 0.001), but there were no significant differences in triglycerides (P = 0.108), cholesterol (P = 0.531), and LDL (P = 0.645) between the groups. Patients with T1D also had a significantly lower MV index in the CRA (1.11 ± 0.15 vs 1.24 ± 0.23; P = 0.010). In the T1D group, a significant negative correlation was found between the level of glucose (r = −0.58; P < 0.001), fructosamine (r = −0.46; P = 0.003), 8-OHdG (r = −0.48; P = 0.002) and the MV index in the CRA. At the same time, in this group fructosamine and 8-OHdG levels had a separate effect on the MV index (adjusted R2 = 0.38, P < 0.001). Conclusion Higher glucose levels, the medium-term glucose level, and systemic oxidative stress could importantly reduce retinal vasodilatation during flickering light irritation in patients with T1D. PMID:27815934

  18. Oxidative stress markers in affective disorders.

    PubMed

    Siwek, Marcin; Sowa-Kućma, Magdalena; Dudek, Dominika; Styczeń, Krzysztof; Szewczyk, Bernadeta; Kotarska, Katarzyna; Misztakk, Paulina; Pilc, Agnieszka; Wolak, Małgorzata; Nowak, Gabriel

    2013-01-01

    Affective disorders are a medical condition with a complex biological pattern of etiology, involving genetic and epigenetic factors, along with different environmental stressors. Increasing numbers of studies indicate that induction of oxidative and nitrosative stress (O&NS) pathways, which is accompanied by immune-inflammatory response, might play an important role in the pathogenic mechanisms underlying many major psychiatric disorders, including depression and bipolar disorder. Reactive oxygen and nitrogen species have been shown to impair the brain function by modulating activity of principal neurotransmitter (e.g., glutamatergic) systems involved in the neurobiology of depression. Both preclinical and clinical studies revealed that depression is associated with altered levels of oxidative stress markers and typically reduced concentrations of several endogenous antioxidant compounds, such as glutathione, vitamin E, zinc and coenzyme Q10, or enzymes, including glutathione peroxidase, and with an impairment of the total antioxidant status. These oxidative stress parameters can be normalized by successful antidepressant therapy. On the other hand, some antioxidants (zinc, N-acetylcysteine, omega-3 free fatty acids) may exhibit antidepressant properties or enhance standard antidepressant therapy. These observations introduce new potential targets for the development of therapeutic interventions based on antioxidant compounds. The present paper reviews selected animal and human studies providing evidence that oxidative stress is implicated in the pathophysiology and treatment of depression and bipolar disorder.

  19. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women

    PubMed Central

    Rink, Stephanie M.; Mendola, Pauline; Mumford, Sunni L.; Poudrier, Jill K.; Browne, Richard W.; Wactawski-Wende, Jean; Perkins, Neil J.; Schisterman, Enrique F.

    2013-01-01

    Background Oxidative stress has been associated with a variety of chronic diseases and reproductive disorders. Fruits and vegetables may contribute to antioxidant vitamin and micronutrient levels and reduce oxidative stress. Objective To investigate the effect of meeting the 5 A Day recommendation for fruit and vegetable consumption on biomarkers of oxidative damage and antioxidant defense. Design In this longitudinal study, healthy premenopausal women (n=258) were followed for ≤2 menstrual cycles with ≤16 oxidative stress measures timed to cycle phase. Main outcome measures Plasma concentrations of F2-isoprostane, 9-hydroxyoctadecadieneoic acid (9-HODE), and 13-hydroxyoctadecadieneoic acid (13-HODE), erythrocyte activity of superoxide dismutase (SOD), glutathione reductase (GSHR), and glutathione peroxidase (GPx), as well as blood micronutrient concentrations were measured. Dietary intake was assessed by Food Frequency Questionnaires (FFQ, 1/cycle) and 24-hour recalls (≤4/cycle). Statistical analyses performed Fruit and vegetable servings were dichotomized based on the 5 A Day recommendation. Linear mixed models with repeated measures were used to analyze lipid peroxidation markers, antioxidant vitamins, and antioxidant enzymes by cycle phase and in association with usual fruit and vegetable intake. Results For both 24-hour recall (timed to cycle phase) and cycle-specific FFQ, meeting the 5 A Day recommendation was associated with decreased F2-isoprostanes (24-hour recall β= −0.10 (95% CI: −0.12, −0.07); FFQ β= −0.14 (95% CI: −0.18, −0.11)). GSHR was lower in association with typical 5A Day consumption by FFQ but not in the phase-specific analysis. Higher levels of ascorbic acid, lutein, β-carotene and β-cryptoxanthin were observed with both 5 A Day measures. Conclusions Meeting the 5 A Day recommendation was associated with lower oxidative stress and improved antioxidant status in analyses of typical diet (FFQ) and in menstrual cycle phase

  20. Oxidative Stress in Patients With Acne Vulgaris

    PubMed Central

    Arican, Ozer; Belge Kurutas, Ergul; Sasmaz, Sezai

    2005-01-01

    Acne vulgaris is one of the common dermatological diseases and its pathogenesis is multifactorial. In this study, we aim to determine the effects of oxidative stress in acne vulgaris. Forty-three consecutive acne patients and 46 controls were enrolled. The parameters of oxidative stress such as catalase (CAT), glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), and malondialdehyde (MDA) in the venous blood of cases were measured spectrophotometrically. The values compared with control group, the relation between the severity and distribution of acne, and the correlation of each enzyme level were researched. CAT and G6PD levels in patients were found to be statistically decreased, and SOD and MDA levels were found to be statistically increased (P < .001). However, any statistical difference and correlation could not be found between the severity and distribution of lesions and the mean levels of enzymes. In addition, we found that each enzyme is correlated with one another. Our findings show that oxidative stress exists in the acne patients. It will be useful to apply at least one antioxidant featured drug along with the combined acne treatment. PMID:16489259

  1. Oxidative Stress and Periodontal Disease in Obesity.

    PubMed

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  2. Oxidative Stress and Periodontal Disease in Obesity

    PubMed Central

    Dursun, Erhan; Akalın, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-01-01

    Abstract Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women. Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated. Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status

  3. Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients.

    PubMed

    Sertan Copoglu, U; Virit, Osman; Hanifi Kokacya, M; Orkmez, Mustafa; Bulbul, Feridun; Binnur Erbagci, A; Semiz, Murat; Alpak, Gokay; Unal, Ahmet; Ari, Mustafa; Savas, Haluk A

    2015-09-30

    Increasing evidence shows that oxidative stress plays a role in the pathophysiology of schizophrenia. But there is not any study which examines the effects of oxidative stress on DNA in schizophrenia patients. Therefore we aimed to assess the oxidative stress levels and oxidative DNA damage in schizophrenia patients with and without symptomatic remission. A total of 64 schizophrenia patients (38 with symptomatic remission and 26 without symptomatic remission) and 80 healthy volunteers were included in the study. 8-hydroxydeoxyguanosine (8-OHdG), total oxidant status (TOS) and total antioxidant status (TAS) were measured in plasma. TOS, oxidative stress index (OSI) and 8-OHdG levels were significantly higher in non-remission schizophrenic (Non-R-Sch) patients than in the controls. TOS and OSI levels were significantly higher in remission schizophrenic (R-Sch) patients than in the controls. TAS level were significantly lower and TOS and OSI levels were significantly higher in R-Sch patients than in Non-R-Sch patients. Despite the ongoing oxidative stress in patients with both R-Sch and Non-R-Sch, oxidative DNA damage was higher in only Non-R-Sch patients compared to controls. It is suggested that oxidative stress can cause the disease via DNA damage, and oxidative stress plays a role in schizophrenia through oxidative DNA damage.

  4. The levels of inflammatory markers and oxidative stress in individuals occupationally exposed to municipal solid waste in Ogun State, South West Nigeria.

    PubMed

    Odewabi, Adesina O; Ogundahunsi, Omobola A; Ebesunu, Maria O; Ekor, Martins

    2013-10-01

    Airway inflammation and related respiratory complaints are common symptoms among waste management workers (WMWs). This study investigated the relationship between exposure to municipal solid waste (MSW) and the levels of inflammatory markers and oxidative stress among WMW of Ogun State, South West Nigeria. A total of 280 subjects consisting of 180 WMW and 100 controls were recruited. Ten millilitres of blood were collected from antecubital vein of the subjects for analysis. Results reveal that exposure to MSW is associated with systemic inflammation and oxidative stress. Significant (p < 0.001) elevation of ceruloplasmin (Cp) and C-reactive protein was associated with marked decreases in superoxide dismutase (p < 0.01), catalase (p < 0.001), and glutathione (p < 0.05) and significant (p < 0.001) increases in malondialdehyde (MDA) and uric acid when compared with control. Haematological disorders include significant (p < 0.05) decreases in haemoglobin, packed cell volume, and mean corpuscular volume and significant (p < 0.01) increase in total leucocyte count. Apart from decreased albumin (p < 0.05) and elevated aspartate aminotransferase (p < 0.05) activity observed in WMW, other markers of hepatic (alanine aminotransferase, alkaline phosphatase, total cholesterol and triglycerides) and renal (urea and creatinine) functions did not change significantly (p > 0.05) when compared with the control. A positive correlation between leucocytes (r = 0.195, p < 0.01), Cp (r = 0.210, p < 0.01) and job duration and between Cp and MDA (r = 0.200, p < 0.01) and Cp and leucocytes (r = 0.260, p < 0.001) were observed in WMW. Overall, exposure to MSW predisposes to systemic inflammation and oxidative stress and Cp may be a useful biomarker for monitoring health status of Nigerian WMWs.

  5. Piracetam improves mitochondrial dysfunction following oxidative stress.

    PubMed

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2006-01-01

    1.--Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. 2.--Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. 3.--Piracetam treatment at concentrations between 100 and 1000 microM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 microM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. 4.--Piracetam treatment (100-500 mg kg(-1) daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. 5.--In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients.

  6. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise.

    PubMed

    Guaraldo, Simone A; Serra, Andrey Jorge; Amadio, Eliane Martins; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2016-07-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p <0.01) and the LLLT and exercise group (p <0.05). The results indicate that the activities of CAT, SOD, and GPx were higher and statistically significant (p <0.05) in the LLLT/exercise group than those in the LLLT and exercise groups. Young animals presented lesser and statistically significant activities of antioxidant enzymes compared to the aged group. The LLLT/exercise group and the LLLT and exercise group could also mitigate the concentration of TBARS (p > 0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT.

  7. Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2014-05-01

    Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor which has anticancer effects. We evaluated the growth inhibitory effects of SAHA on HeLa cervical cancer cells in relation to reactive oxygen species (ROS) levels. SAHA inhibited the growth of HeLa cells with an IC(50) of approximately 10 µM at 24 h, and induced apoptosis which was accompanied by the cleavage of PARP, caspase-3 activation and loss of mitochondrial membrane potential (MMP; ∆ψ(m)). All the tested caspase inhibitors prevented HeLa cell death induced by SAHA whereas TNF-α intensified apoptotic cell death in SAHA-treated HeLa cells. With respect to ROS and glutathione (GSH) levels, SAHA increased ROS levels, especially mitochondrial O(2)•- in HeLa cells and also induced GSH depletion. Caspase inhibitors reduced the levels of ROS and GSH depletion in SAHA-treated HeLa cells whereas TNF-α enhanced the levels in these cells. The well-known antioxidant N-acetyl cysteine (NAC) attenuated cell death and an increase in ROS levels was caused by SAHA. Moreover, SAHA decreased the levels of thioredoxin 1 (Trx1) in HeLa cells. While the downregulation of Trx1 enhanced cell death and ROS levels in SAHA-treated HeLa cells, the overexpression of Trx1 attenuated the levels in these cells. In conclusion, SAHA inhibited the growth of HeLa cell via caspase-dependent apoptosis, which was influenced by the mitochondrial O(2)•- and Trx1 levels.

  8. Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study.

    PubMed

    Hierso, Régine; Lemonne, Nathalie; Villaescusa, Rinaldo; Lalanne-Mistrih, Marie-Laure; Charlot, Keyne; Etienne-Julan, Maryse; Tressières, Benoit; Lamarre, Yann; Tarer, Vanessa; Garnier, Yohann; Hernandez, Ada Arce; Ferracci, Serge; Connes, Philippe; Romana, Marc; Hardy-Dessources, Marie-Dominique

    2017-03-01

    Painful vaso-occlusive crisis, a hallmark of sickle cell anaemia, results from complex, incompletely understood mechanisms. Red blood cell (RBC) damage caused by continuous endogenous and exogenous oxidative stress may precipitate the occurrence of vaso-occlusive crises. In order to gain insight into the relevance of oxidative stress in vaso-occlusive crisis occurrence, we prospectively compared the expression levels of various oxidative markers in 32 adults with sickle cell anaemia during vaso-occlusive crisis and steady-state conditions. Compared to steady-state condition, plasma levels of free haem, advanced oxidation protein products and myeloperoxidase, RBC caspase-3 activity, as well as the concentrations of total, neutrophil- and RBC-derived microparticles were increased during vaso-occlusive crises, whereas the reduced glutathione content was decreased in RBCs. In addition, natural anti-band 3 autoantibodies levels decreased during crisis and were negatively correlated with the rise in plasma advanced oxidation protein products and RBC caspase-3 activity. These data showed an exacerbation of the oxidative stress during vaso-occlusive crises in sickle cell anaemia patients and strongly suggest that the higher concentration of harmful circulating RBC-derived microparticles and the reduced anti-band 3 autoantibodies levels may be both related to the recruitment of oxidized band 3 into membrane aggregates.

  9. The influence of low-level laser therapy on parameters of oxidative stress and DNA damage on muscle and plasma in rats with heart failure.

    PubMed

    Biasibetti, Micheli; Rojas, Denise B; Hentschke, Vítor S; Moura, Dinara Jaqueline; Karsten, Marlus; Wannmacher, Clóvis M D; Saffi, Jenifer; Dal Lago, Pedro

    2014-11-01

    In heart failure (HF), there is an imbalance between the production of reactive oxygen species and the synthesis of antioxidant enzymes, causing damage to the cardiovascular function and increased susceptibility to DNA damage. The aim of this study was to evaluate the influence of low-level laser therapy (LLLT) on parameters of oxidative stress and DNA damage in skeletal muscle and plasma of rats with HF. Wistar rats were allocated into six groups: "placebo" HF rats (P-HF, n = 9), "placebo" Sham rats (P-sham, n = 8), HF rats at a dose 3 J/cm(2) of LLLT (3 J/cm(2)-HF, n = 8), sham rats at a dose 3 J/cm(2) of LLLT (3 J/cm(2)-sham, n = 8), HF rats at a dose 21 J/cm(2) of LLLT (21 J/cm(2)-HF, n = 8) and sham rats at a dose 21 J/cm(2) of LLLT (21 J/cm(2)-sham, n = 8). Animals were submitted to a LLLT protocol for 10 days at the right gastrocnemius muscle. Comparison between groups showed a significant reduction in superoxide dismutase (SOD) activity in the 3 J/cm(2)-HF group (p = 0.03) and the 21 J/cm(2)-HF group (p = 0.01) compared to the P-HF group. 2',7'-Dihydrodichlorofluorescein (DCFH) oxidation levels showed a decrease when comparing 3 J/cm(2)-sham to P-sham (p = 0.02). The DNA damage index had a significant increase either in 21 J/cm(2)-HF or 21 J/cm(2)-sham in comparison to P-HF (p = 0.004) and P-sham (p = 0.001) and to 3 J/cm(2)-HF (p = 0.007) and 3 J/cm(2)-sham (p = 0.037), respectively. Based on this, laser therapy appears to reduce SOD activity and DCFH oxidation levels, changing the oxidative balance in the skeletal muscle of HF rats. Otherwise, high doses of LLLT seem to increase DNA damage.

  10. Effects of time-of-day on oxidative stress, cardiovascular parameters, biochemical markers, and hormonal response following level-1 Yo-Yo intermittent recovery test.

    PubMed

    Aloui, K; Abedelmalek, S; Chtourou, H; Wong, D P; Boussetta, N; Souissi, N

    2017-03-01

    The aim of this study was to investigate the effect of time-of-day on oxidative stress, cardiovascular parameters, muscle damage parameters, and hormonal responses following the level-1 Yo-Yo intermittent recovery test (YYIRT). A total of 11 healthy subjects performed an intermittent test (YYIRT) at two times-of-day (i.e., 07:00 h and 17:00 h), with a recovery period of ≥36 h in-between, in a randomized order. Blood samples were taken at the rest (baseline) and immediately (post-YYIRT) after the YYIRT for measuring oxidative stress, biochemical markers, and hormonal response. Data were statistically analyzed using one-way and two-way repeated measures ANOVA and Bonferroni test at p < 0.05. Observed power (α = 0.05) and partial eta-squared were used. Our results showed that oxygen uptake (VO2max), maximal aerobic speed, and the total distance covered tended to be higher in the evening (17:00 h). There was also a main effect of time-of-day for cortisol and testosterone concentration, which were higher after the YYIRT in the morning (p < 0.05). The heart rate peak and the rating of perceived exertion scales were lower in the morning (p < 0.05). However, the plasma glucose (p < 0.01), malondialdehyde, creatine kinase (p < 0.01), lactate dehydrogenase (p < 0.05), high-density lipoprotein (p < 0.01), total cholesterol (p < 0.01), and triglycerides (p < 0.05) were higher after the YYIRT in the evening. Low-density lipoprotein, systolic blood pressure, diastolic blood pressure, and lactate levels (p > 0.05) were similar for the morning and evening test. In conclusion, our findings suggest that aerobic performance presents diurnal variation with great result observed in the evening accompanied by an improvement of hormonal, metabolic, and oxidative responses. These data may help to guide athletes and coaches and contribute to public health recommendations on exercise and muscle damage particularly in the competitive periods.

  11. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress.

    PubMed

    Macedo, Aline Barbosa; Moraes, Luis Henrique Rapucci; Mizobuti, Daniela Sayuri; Fogaça, Aline Reis; Moraes, Fernanda Dos Santos Rapucci; Hermes, Tulio de Almeida; Pertille, Adriana; Minatel, Elaine

    2015-01-01

    The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.

  12. Strategies for Reducing or Preventing the Generation of Oxidative Stress

    PubMed Central

    Poljsak, B.

    2011-01-01

    The reduction of oxidative stress could be achieved in three levels: by lowering exposure to environmental pollutants with oxidizing properties, by increasing levels of endogenous and exogenous antioxidants, or by lowering the generation of oxidative stress by stabilizing mitochondrial energy production and efficiency. Endogenous oxidative stress could be influenced in two ways: by prevention of ROS formation or by quenching of ROS with antioxidants. However, the results of epidemiological studies where people were treated with synthetic antioxidants are inconclusive and contradictory. Recent evidence suggests that antioxidant supplements (although highly recommended by the pharmaceutical industry and taken by many individuals) do not offer sufficient protection against oxidative stress, oxidative damage or increase the lifespan. The key to the future success of decreasing oxidative-stress-induced damage should thus be the suppression of oxidative damage without disrupting the wellintegrated antioxidant defense network. Approach to neutralize free radicals with antioxidants should be changed into prevention of free radical formation. Thus, this paper addresses oxidative stress and strategies to reduce it with the focus on nutritional and psychosocial interventions of oxidative stress prevention, that is, methods to stabilize mitochondria structure and energy efficiency, or approaches which would increase endogenous antioxidative protection and repair systems. PMID:22191011

  13. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River

    PubMed Central

    Farombi, E. O.; Adelowo, O. A.; Ajimoko, Y. R.

    2007-01-01

    Clarias gariepinus were significantly (P<0.001) elevated in the liver, kidney, gills and heart by 177%, 102%, 168% and 71% respectively compared to that from Agodi fish farm. Overall, the results demonstrate that alteration in the antioxidant enzymes, glutathione system and induction of lipid peroxidation reflects the presence of heavy metals which may cause oxidative stress in the Clarias gariepinus from Ogun River. The study therefore provides a rational use of biomarkers of oxidative stress in biomonitoring of aquatic pollution. PMID:17617680

  14. Postpartum levels of 8-iso-prostaglandin F2α in plasma and milk phospholipid fractions as biomarker of oxidative stress in first-lactating dairy cows.

    PubMed

    Vernunft, A; Viergutz, T; Plinski, C; Weitzel, J M

    2014-08-01

    F2-isoprostanes such as 8-iso-prostaglandin F2 (8-iso-PGF2α) are formed by free radical-catalyzed mechanisms from membrane phospholipids and from low density lipoproteins through peroxidation of arachidonic acid. Esterified 8-iso-PGF2α is cleaved by phospholipases, circulates in blood and is excreted as putatively harmful oxidatively modified lipid via the kidney into urine. In this study we demonstrate that 8-iso-PGF2α concentrations in plasma samples from heifers are higher (p<0.005) compared to those from first-lactating dairy cows at 71 days postpartum. Furthermore, plasma 8-iso-PGF2α concentrations vary with ovarian activity and differ in response to luteolytic initiation as well as activation of the hypothalamic-pituitary-gonadal axis between heifers and first-lactating cows. Sustainable concentrations of 8-iso-PGF2α (50-150 pg/ml) are detectable in the phospholipid fraction of milk, suggesting milk as an additional excretion route for 8-isoprostanes. Plasma levels largely paralleled levels in milk (p<0.001). Plasma phospholipid 8-iso-PGF2α concentrations in cyclic cows decreased (p<0.05) from day 38 to day 71 postpartum, whereas milk phospholipid 8-iso-PGF2α rather increased (p<0.05). Cyclic cows tend to have higher 8-isoprostane levels compared to acyclic animals. In contrast to lipohydroperoxides, concentration of 8-iso-PGF2α were not correlated with milk yield (p>0.05). Our data indicate 8-iso-PGF2α may be a novel biomarker of oxidative stress in dairy cow, which is detectable in blood as well as in milk.

  15. Oxidative Stress and ADHD: A Meta-Analysis

    PubMed Central

    Joseph, Nidhin; Zhang-James, Yanli; Perl, Andras; Faraone, Stephen V.

    2017-01-01

    Objective To clarify the role of oxidative stress and antioxidant activity in ADHD. Method We examined the association of ADHD and oxidative stress by applying random effects meta-analysis to studies of oxidative stress and antioxidant status in medication naive patients with ADHD and controls. Results Six studies of a total of 231 ADHD patients and 207 controls met our selection criteria. The association between ADHD and antioxidant status was not significant. We found a significant association between ADHD and oxidative stress that could not be accounted for by publication bias. The significant association lost significance after correcting for intrastudy clustering. No one observation accounted for the positive result. Conclusion These results are preliminary given the small number of studies. They suggest that patients with ADHD have normal levels of antioxidant production, but that their response to oxidative stress is insufficient, leading to oxidative damage. PMID:24232168

  16. Oxidative Stress and Genotoxicity of Long-Term Occupational Exposure to Low Levels of BTEX in Gas Station Workers

    PubMed Central

    Xiong, Feng; Li, Qin; Zhou, Bo; Huang, Jiongli; Liang, Guiqiang; Zhang, Li’e; Ma, Shuyan; Qing, Li; Liang, Linhan; Su, Jing; Peng, Xiaowu; Li, Qin; Zou, Yunfeng

    2016-01-01

    Atmospheric benzene, toluene, ethylbenzene, and xylenes (BTEX) can lead to multiple health injuries. However, what remains uncertain is the effect of long-term exposure to low levels of BTEX. Thus, we determined the BTEX levels in the air from the refueling and office areas in gas stations. Then we collected workers’ (200 refueling vs. 52 office workers) peripheral blood samples to analyze the serum total-superoxide dismutase (T-SOD), glutathione (GSH), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) levels. DNA damage was analyzed by the comet assay and micronucleus test in buccal epithelial cells. We found that the levels of BTEX in refueling areas were significantly higher than those in office areas (p < 0.001). The serum T-SOD and GSH of refueling workers were significantly lower than those in office workers (p < 0.001). By contrast, the serum MDA and 8-OHdG of refueling workers were significantly higher than those of office workers (p < 0.001, MDA; p = 0.025, 8-OHdG). Furthermore, tail and Olive tail moments in refueling workers were longer (p = 0.004, tail moment; p = 0.001, Olive tail moment), and the micronucleus rate was higher (p < 0.001) than those in office workers. Taken together, long-term exposure to low levels of BTEX may reduce the antioxidant ability and increase the risk of DNA damage in refueling workers of gas stations. PMID:27929445

  17. Baseline levels of oxidative stress biomarkers in species from a subtropical estuarine system (Paranaguá Bay, southern Brazil).

    PubMed

    Sardi, Adriana E; Renaud, Paul E; da Cunha Lana, Paulo; Camus, Lionel

    2016-12-15

    Offshore petroleum exploration has increased the risks of oil spills in coastal tropical and subtropical habitats. Monitoring tools are needed to assess and protect environmental health. We determined baseline values of antioxidant biomarkers (CAT, SOD, GPx, GST, MDA) for five ecologically relevant species in a subtropical system in southern Brazil. Regional baseline levels are compared with literature data as a basis to eventually test their efficacy as post-spill monitoring tools. Differences in the antioxidant response among species, contamination, and seasons were tested using univariate and multivariate analyses. The bivalves Anomalocardia flexuosa and Crassostrea rhizophorae and the catfish Genidens genidens emerge as suitable sentinel species. Seasonality is the main factor accounting for biomarkers variability, and not background contamination level. However, interactions between season and contamination level are also significant, indicating that biomarkers respond to complex environmental settings, a fact that needs to be fully understood for designing proper monitoring programs.

  18. Oxidative Stress in Inherited Mitochondrial Diseases

    PubMed Central

    Hayashi, Genki; Cortopassi, Gino

    2015-01-01

    Mitochondria are a source of reactive oxygen species (ROS). Mitochondrial diseases are the result of inherited defects in mitochondrially-expressed genes. One potential pathomechanism for mitochondrial disease is oxidative stress. Oxidative stress can occur as the result of increased ROS production, or decreased ROS protection. The role of oxidative stresses in the five most common inherited mitochondrial diseases; Friedreich's ataxia (FA), LHON, MELAS, MERRF and Leigh Syndrome (LS) is discussed. Published reports for oxidative stress involvement in pathomechanism in these five mitochondrial diseases are reviewed. The strongest for oxidative stress pathomechanism among the five diseases was in Friedreich's ataxia. In addition, a meta-analysis was carried out to provide an unbiased evaluation of the role of oxidative stress in the five diseases, by searching for oxidative stress citation count frequency within each disease. Of the five most common mitochondrial diseases, the strongest support for oxidative stress is in Friedreich's ataxia (6.42%), followed by LHON (2.45%), MELAS (2.18%), MERRF (1.71%), and LS (1.03%). The increased frequency of oxidative stress citations was significant relative to the mean of the total pool of five diseases (p<0.01) and the mean of the four non-Friedreich's diseases (p<0.0001). Thus there is support for oxidative stress in all five most common mitochondrial diseases, but the strongest, significant support is for Friedreich's ataxia. PMID:26073122

  19. Oxidative Stress in Oral Diseases

    PubMed Central

    Kesarwala, Aparna H.; Krishna, Murali C.; Mitchell, James B.

    2014-01-01

    Oxidative species, including reactive oxygen species (ROS), are components of normal cellular metabolism and are required for intracellular processes as varied as proliferation, signal transduction, and apoptosis. In the situation of chronic oxidative stress, however, ROS contribute to various pathophysiologies and are involved in multiple stages of carcinogenesis. In head and neck cancers specifically, many common risk factors contribute to carcinogenesis via ROS-based mechanisms, including tobacco, areca quid, alcohol, and viruses. Given their widespread influence on the process of carcinogenesis, ROS and their related pathways are attractive targets for intervention. The effects of radiation therapy, a central component of treatment for nearly all head and neck cancers, can also be altered via interfering with oxidative pathways. These pathways are also relevant to the development of many benign oral diseases. In this review, we outline how ROS contribute to pathophysiology with a focus toward head and neck cancers and benign oral diseases, describing potential targets and pathways for intervention that exploit the role of oxidative species in these pathologic processes. PMID:25417961

  20. Oxidative Stress and HPV Carcinogenesis

    PubMed Central

    De Marco, Federico

    2013-01-01

    Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV), represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare) neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS) is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I) The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II) OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide) and iNOS (inducible nitric oxide synthase) will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis will be

  1. Oxidative Stress in Diabetic Nephropathy

    PubMed Central

    Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S.

    2013-01-01

    Diabetic nephropathy is a leading cause of end-stage renal failure worldwide. Its morphologic characteristics include glomerular hypertrophy, basement membrane thickening, mesangial expansion, tubular atrophy, interstitial fibrosis and arteriolar thickening. All of these are part and parcel of microvascular complications of diabetes. A large body of evidence indicates that oxidative stress is the common denominator link for the major pathways involved in the development and progression of diabetic micro- as well as macrovascular complications of diabetes. There are a number of macromolecules that have been implicated for increased generation of reactive oxygen species (ROS), such as, NAD(P)H oxidase, advanced glycation end products (AGE), defects in polyol pathway, uncoupled nitric oxide synthase (NOS) and mitochondrial respiratory chain via oxidative phosphorylation. Excess amounts of ROS modulate activation of protein kinase C, mitogen-activated protein kinases, and various cytokines and transcription factors which eventually cause increased expression of extracellular matrix (ECM) genes with progression to fibrosis and end stage renal disease. Activation of renin-angiotensin system (RAS) further worsens the renal injury induced by ROS in diabetic nephropathy. Buffering the generation of ROS may sound a promising therapeutic to ameliorate renal damage from diabetic nephropathy, however, various studies have demonstrated minimal reno-protection by these agents. Interruption in the RAS has yielded much better results in terms of reno-protection and progression of diabetic nephropathy. In this review various aspects of oxidative stress coupled with the damage induced by RAS are discussed with the anticipation to yield an impetus for designing new generation of specific antioxidants that are potentially more effective to reduce reno-vascular complications of diabetes. PMID:20939814

  2. Oxidative Stress, Cytotoxicity and Genotoxicity in Earthworm Eisenia fetida at Different Di-n-Butyl Phthalate Exposure Levels

    PubMed Central

    Ma, Tingting; Chen, Li’ke; Wu, Longhua; Zhang, Haibo; Luo, Yongming

    2016-01-01

    Recognized as ubiquitous contaminants in soil, the environmental risk of phthalic acid esters (PAEs) is of great concern recently. Effects of di-n-butyl phthalate (DnBP), an extensively used PAE compound to Eisenia fetida have been investigated in spiked natural brown yellow soil (Alfisol) for soil contact test. The toxicity of DnBP to E. fetida on the activity of superoxide dismutase (SOD) activity, peroxidase (POD), reactive oxygen species (ROS) content, and the apoptosis of coelomocytes and DNA damage at the 7th, 14th, 21st and 28th day of the incubation have been paid close attention to. In general, SOD activity and ROS content were significantly induced, opposite to total protein content and POD activity, during the toxicity test of 28 days especially under concentrations higher than 2.5 mg kg-1. The reduction in neutral red retention (NRR) time along with the increase of dead coelomocytes as the increasing of DnBP concentrations, indicating severe damage to cell viability under varying pollutant stress during cultivation, which could also be proved by comet assay results for exerting evident DNA damage in coelomocytes. DnBP in spiked natural soil could indeed cause damage to tissues, coelomocytes and the nucleus of E. fetida. The key point of the apparent change in different indices presented around 2.5 mg DnBP kg-1 soil, which could be recommended as the threshold of DnBP soil contamination, so that further investigation on threshold values to other soil animals or microorganisms could be discussed. PMID:26982081

  3. Lamins as mediators of oxidative stress

    SciTech Connect

    Sieprath, Tom; Darwiche, Rabih; De Vos, Winnok H.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer The nuclear lamina defines structural and functional properties of the cell nucleus. Black-Right-Pointing-Pointer Lamina dysfunction leads to a broad spectrum of laminopathies. Black-Right-Pointing-Pointer Recent data is reviewed connecting laminopathies to oxidative stress. Black-Right-Pointing-Pointer A framework is proposed to explain interactions between lamins and oxidative stress. -- Abstract: The nuclear lamina defines both structural and functional properties of the eukaryotic cell nucleus. Mutations in the LMNA gene, encoding A-type lamins, lead to a broad spectrum of diseases termed laminopathies. While different hypotheses have been postulated to explain disease development, there is still no unified view on the mechanistic basis of laminopathies. Recent observations indicate that laminopathies are often accompanied by altered levels of reactive oxygen species and a higher susceptibility to oxidative stress at the cellular level. In this review, we highlight the role of reactive oxygen species for cell function and disease development in the context of laminopathies and present a framework of non-exclusive mechanisms to explain the reciprocal interactions between a dysfunctional lamina and altered redox homeostasis.

  4. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity

    PubMed Central

    Debevec, Tadej; Millet, Grégoire P.; Pialoux, Vincent

    2017-01-01

    Increased oxidative stress, defined as an imbalance between prooxidants and antioxidants, resulting in molecular damage and disruption of redox signaling, is associated with numerous pathophysiological processes and known to exacerbate chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial altitude or a reduction in ambient O2 availability is known to elicit oxidative stress and thereby alter redox balance in healthy humans. The redox balance modulation is also highly dependent on the level of physical activity. For example, both high-intensity exercise and inactivity, representing the two ends of the physical activity spectrum, are known to promote oxidative stress. Numerous to-date studies indicate that hypoxia and exercise can exert additive influence upon redox balance alterations. However, recent evidence suggests that moderate physical activity can attenuate altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The purpose of this review is to summarize recent findings on hypoxia-related oxidative stress modulation by different activity levels during prolonged hypoxic exposures and examine the potential mechanisms underlying the observed redox balance changes. The paper also explores the applicability of moderate activity as a strategy for attenuating hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity activities used to counteract inactivity-related oxidative stress, often encountered in pathological, elderly and obese populations is also discussed. Finally, future research directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative stress are proposed. PMID:28243207

  5. Changes in Levels of Seminal Nitric Oxide Synthase, Macrophage Migration Inhibitory Factor, Sperm DNA Integrity and Caspase-3 in Fertile Men after Scrotal Heat Stress

    PubMed Central

    Shi, Zhi-Da; Wang, Lei-Guang; Qiu, Yi

    2015-01-01

    Background This study observes changes in levels of seminal nitric oxide (NO), nitric oxide synthase (NOS), macrophage migration inhibitory factor (MIF), sperm DNA integrity, chromatin condensation and Caspase-3in adult healthy men after scrotal heat stress (SHS). Methods Exposure of the scrotum of 25 healthy male volunteers locally at 40–43°C SHS belt warming 40 min each day for successive 2 d per week. The course of SHS was continuously 3 months. Routine semen analysis, hypo-osmotic swelling (HOS) test, Aniline blue (AB) staining, HOS/AB and terminal deoxynucleotidyl transferase-mediated d UDP nick-end labeling (TUNEL) were carried out before, during and after SHS. Seminal NO and NOS contents were determined by nitrate reduction method. The activated Caspase-3 levels of spermatozoa and MIF in seminal plasma were measured by the enzyme-linked immunosorbent assay (ELISA) method. Statistical significance between mean values was determined using statistical ANOVA tests. Results The mean parameters of sperm concentration, motile and progressive motile sperm and normal morphological sperm were significantly decreased in groups during SHS 1, 2 and 3 months compared with those in groups of pre-SHS (P<0.001). Statistically significant differences of sperm DNA fragmentation, normal sperm membrane, and Caspase-3 activity as well as the level of NO, NOS and MIF in semen were observed between the groups before SHS and after SHS 3 months and the groups during SHS 1, 2 and 3 months (P<0.001). After three months of the SHS, various parameters recovered to the level before SHS. WBC in semen showed a positively significant correlation with the levels of NO, NOS, MIF and Caspase-3 activity. The percentage of abnormal sperm by using the test of HOS showed a positively significant correlation with that of HOS/AB. Conclusions The continuously constant SHS can impact the semen quality and sperm DNA and chromatin, which may be contributed to the high level of NO, NOS, MIF and Caspase

  6. Oxidative stress and psychological functioning among medical students

    PubMed Central

    Srivastava, Rani; Batra, Jyoti

    2014-01-01

    Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA) levels) and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression) among medical/paramedical students of 1st and 3rd year). Materials and Methods: A total of 150 students; 75 from 1st year (2010–2011) and75 from 3rd year (2009–2010); of medical and paramedical background were assessed on level of MDA (oxidative stress) and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given. PMID:25788802

  7. Oxidative stress parameters in silver catfish (Rhamdia quelen) juveniles infected with Ichthyophthirius multifiliis and maintained at different levels of water pH.

    PubMed

    Garcia, L O; Becker, A G; Bertuzzi, T; Cunha, M A; Kochhann, D; Finamor, I A; Riffel, A P K; Llesuy, S; Pavanato, M A; Baldisserotto, B

    2011-05-31

    The aim of this study was to determine oxidative stress parameters in the liver, gill and muscle of silver catfish juveniles infected with Ichthyophthirius multifiliis and maintained at pH 5.0 or 7.0 for three days. Juveniles were infected by adding one I. multifiliis-infected juvenile and water containing theronts to tanks. After the appearance of white spots on the skin, infected juveniles exposed to pH 5.0 and 7.0 showed significantly higher thiobarbituric acid reactive substances (TBARS) levels in the liver and gills compared to uninfected juveniles. Liver of infected juveniles exposed to pH 7.0 showed higher catalase (CAT) and lower glutathione-S-transferase (GST) activities, but those maintained at pH 5.0 showed significantly higher GST activity than uninfected juveniles. The gills of infected juveniles showed significantly higher CAT (day two) and GST activity at both pH 5.0 and 7.0 compared to uninfected juveniles. Muscle of infected juveniles showed significantly lower CAT and GST activity and TBARS levels (at day three) when maintained at both pH 5.0 and 7.0 compared to uninfected juveniles. In conclusion, I. multifiliis infection induces liver and gill damage via lipid peroxidation products in silver catfish, but higher antioxidant enzyme activity could indicate a greater degree of protection against this parasite.

  8. Inflammation, oxidative stress, and obesity.

    PubMed

    Fernández-Sánchez, Alba; Madrigal-Santillán, Eduardo; Bautista, Mirandeli; Esquivel-Soto, Jaime; Morales-González, Angel; Esquivel-Chirino, Cesar; Durante-Montiel, Irene; Sánchez-Rivera, Graciela; Valadez-Vega, Carmen; Morales-González, José A

    2011-01-01

    Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6); other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS), generating a process known as oxidative stress (OS). Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO), and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease.

  9. Inflammation, Oxidative Stress, and Obesity

    PubMed Central

    Fernández-Sánchez, Alba; Madrigal-Santillán, Eduardo; Bautista, Mirandeli; Esquivel-Soto, Jaime; Morales-González, Ángel; Esquivel-Chirino, Cesar; Durante-Montiel, Irene; Sánchez-Rivera, Graciela; Valadez-Vega, Carmen; Morales-González, José A.

    2011-01-01

    Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6); other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS), generating a process known as oxidative stress (OS). Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO), and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease. PMID:21686173

  10. Oxidative stress in neonatology: a review.

    PubMed

    Mutinati, M; Pantaleo, M; Roncetti, M; Piccinno, M; Rizzo, A; Sciorsci, R L

    2014-02-01

    Free radicals are highly reactive oxidizing agents containing one or more unpaired electrons. Both in human and veterinary neonathology, it is generally accepted that oxidative stress functions as an important catalysator of neonatal disease. Soon after birth, many sudden physiological and environmental conditions make the newborn vulnerable for the negative effects of oxidative stress, which potentially can impair neonatal vitality. As a clinician, it is important to have in depth knowledge about factors affecting maternal/neonatal oxidative status and the cascades of events that enrol when the neonate is subjected to oxidative stress. This report aims at providing clinicians with an up-to-date review about oxidative stress in neonates across animal species. It will be emphasized which handlings and treatments that are applied during neonatal care or resuscitation can actually impose oxidative stress upon the neonate. Views and opinions about maternal and/or neonatal antioxydative therapy will be shared.

  11. Classification of oxidative stress based on its intensity

    PubMed Central

    Lushchak, Volodymyr I.

    2014-01-01

    In living organisms production of reactive oxygen species (ROS) is counterbalanced by their elimination and/or prevention of formation which in concert can typically maintain a steady-state (stationary) ROS level. However, this balance may be disturbed and lead to elevated ROS levels called oxidative stress. To our best knowledge, there is no broadly acceptable system of classification of oxidative stress based on its intensity due to which proposed here system may be helpful for interpretation of experimental data. Oxidative stress field is the hot topic in biology and, to date, many details related to ROS-induced damage to cellular components, ROS-based signaling, cellular responses and adaptation have been disclosed. However, it is common situation when researchers experience substantial difficulties in the correct interpretation of oxidative stress development especially when there is a need to characterize its intensity. Careful selection of specific biomarkers (ROS-modified targets) and some system may be helpful here. A classification of oxidative stress based on its intensity is proposed here. According to this classification there are four zones of function in the relationship between “Dose/concentration of inducer” and the measured “Endpoint”: I – basal oxidative stress (BOS); II – low intensity oxidative stress (LOS); III – intermediate intensity oxidative stress (IOS); IV – high intensity oxidative stress (HOS). The proposed classification will be helpful to describe experimental data where oxidative stress is induced and systematize it based on its intensity, but further studies will be in need to clear discriminate between stress of different intensity. PMID:26417312

  12. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung.

    PubMed

    Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P; Ward, William O; Peltier, Richard E; Zelikoff, Judith; Chen, Lung-chi

    2015-01-01

    to WTC dusts could potentially have adversely affected the respiratory system - in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/biochemical changes in situ.

  13. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung

    PubMed Central

    Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P.; Ward, William O.; Peltier, Richard E.; Zelikoff, Judith; Chen, Lung-chi

    2015-01-01

    potentially have adversely affected the respiratory system – in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/ biochemical changes in situ. PMID:24911330

  14. Impact of oxidative stress in fetal programming.

    PubMed

    Thompson, Loren P; Al-Hasan, Yazan

    2012-01-01

    Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  15. The level and distribution of heavy metals and changes in oxidative stress indices in humans from Lahore district, Pakistan.

    PubMed

    Bibi, M; Hashmi, M Z; Malik, R N

    2016-01-01

    Human biomonitoring is a well-recognized tool for estimating the exposure of humans to environmental pollutants. However, heavy metals' pollution from anthropogenic origin is a cause for concern because of its potential accumulation in the environment and living organisms, leading to long-term toxic effects. This study was aimed to assess the concentrations of cadmium (Cd), chromium (Cr), lead (Pb), copper (Cu), nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), and zinc (Zn) in human biological samples (urine, whole blood, hair, and nails) and antioxidant response in blood samples from 48 individuals exposed to heavy metals and to compare them with different age classes and sites. The results indicated that there were metal-specific differences in concentration in exposure groups among the studied sites. The concentration of heavy metals in blood samples showed the following order : Pb > Cd > Ni > Co > Cr. In urine samples, the order was Cu > Pb > Cr > Ni > Co > Cd; in nails samples, the order was Pb > Ni > Cr > Co > Cd > Mn; and in hair samples, the trend was Pb > Ni > Cr > Mn > Cd > Co. A significant (p > 0.05) decrease in antioxidants enzymes activity was observed with increase in heavy metals concentrations. This is the first study reporting biological evidence of altered toxic metals' concentration in humans in Lahore, Pakistan, due to environmental exposure. Further research, including risk analysis studies, food chain contamination, and epidemiological and clinical investigations, are needed to assess optimal levels for dietary exposure in the study area and associated adverse health outcomes.

  16. Sunscreen protection against ultraviolet-induced oxidative stress: evaluation of reduced glutathione levels, metalloproteinase secretion, and myeloperoxidase activity.

    PubMed

    Vilela, F M P; Fonseca, Y M; Vicentini, F T M C; Fonseca, M J V

    2013-11-01

    Several studies have demonstrated the skin protection by sunscreens considering the aspects skin penetration, photostability, and protection against erythema and sunburn. However, little is known about the effect of topically applied sunscreen formulations on the antioxidant defense, metalloproteinases, and inflammatory processes of skin in response to UVR exposure. Therefore, this study aimed to investigate the use of a cream gel formulation containing the UV filters benzophenone-3, octyl methoxycinnamate, and octyl salicylate to prevent skin damage from a single dose of UVR (2.87 J/cm2). This protective effect was evaluated in vivo by measuring the following biochemical parameters: reduced glutathione levels, secretion of matrix metalloproteinases, and myeloperoxidase activity. The results showed that the sunscreen formulation, despite having sun protection factor (SPF) 15, was not completely effective to protect the skin against GSH depletion, MMP-9 secretion and the inflammatory process induced by UVR. These results demonstrate the importance of analyzing UV-altered biochemical parameters of skin in order to propose new sunscreen formulations that can completely protect skin against UVR-induced damage.

  17. Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic and fluoride levels in male mice.

    PubMed

    Mittal, Megha; Flora, S J S

    2006-08-25

    Arsenic and fluoride are potent toxicants, widely distributed through drinking water and food and often result in adverse health effects. The present study examined the effects of sodium meta-arsenite (100 mg/l in drinking water) and sodium fluoride (5 mg/kg, oral, once daily), administered either alone or in combination for 8 weeks, on various biochemical variables indicative of tissue oxidative stress and cell injury in Swiss albino male mice. A separate group was first exposed to arsenic for 4 weeks followed by 4 weeks of fluoride exposure. Exposure to arsenic or fluoride led to a significant depletion of blood delta-aminolevulinic acid dehydratase (ALAD) activity and glutathione (GSH) level. These changes were accompanied by increased level of blood and tissues reactive oxygen species (ROS) level. An increase in the level of liver and kidney thiobarbituric acid reactive substance (TBARS) along with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) and reduced GSH content were observed in both arsenic and fluoride administered mice. The changes were significantly more pronounced in arsenic exposed animals than in fluoride. It was interesting to observe that during combined exposure the toxic effects were less pronounced compared to the effects of arsenic or fluoride alone. In some cases antagonistic effects were noted following co-exposure to arsenic and fluoride. Arsenic and fluoride concentration increased significantly on exposure. Interestingly, their concentration decreased significantly on concomitant exposure for 8 weeks. However, the group which was administered arsenic for 4 weeks followed by 4 weeks of fluoride administration showed no such protection suggesting that the antagonistic effect of fluoride on arsenic or vice versa is possible only during interaction at the gastro intestinal sites. These results are new and interesting and require further exploration.

  18. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain.

    PubMed

    Souza, Leandro Cattelan; Antunes, Michelle Silva; Filho, Carlos Borges; Del Fabbro, Lucian; de Gomes, Marcelo Gomes; Goes, André Tiago Rossito; Donato, Franciele; Prigol, Marina; Boeira, Silvana Peterini; Jesse, Cristiano R

    2015-07-01

    In this study, the effect of Chrysin (5,7-dihydroxyflavone), an important member of the flavonoid family, on memory impairment, oxidative stress and BDNF reduction generated by aging in mice were investigated. Young and aged mice were treated daily per 60days with Chrysin (1 and 10mg/kg; per oral, p.o.) or veichle (10ml/kg; p.o.). Mice were trained and tested in Morris Water Maze task. After the behavioural test, the levels of reactive species (RS), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the activity of Na(+), K(+)-ATPase and the levels of brain-derived neurotrophic factor (BDNF) were determined in the prefrontal cortex (PFC) and hippocampus (HC) of mice. Results demonstrated that the age-related memory decline was partially protected by Chrysin at a dose of 1mg/kg, and normalized at the dose of 10mg/kg (p<0.001). Treatment with Chrysin significantly attenuated the increase of RS levels and the inhibition of SOD, CAT and GPx activities of aged mice. Inhibition of Na(+), K(+)-ATPase activity in PFC and HP of aged mice was also attenuated by Chrysin treatment. Moreover, Chrysin marked mitigated the decrease of BDNF levels in the PFC and HC of aged mice. These results demonstrated that flavonoid Chrysin, an antioxidant compound, was able to prevent age-associated memory probably by their free radical scavenger action and modulation of BDNF production. Thus, this study indicates that Chrysin may represent a new pharmacological approach to alleviate the age-related declines during normal age, acting as an anti-aging agent.

  19. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy.

    PubMed

    Terrill, Jessica R; Duong, Marisa N; Turner, Rufus; Le Guiner, Caroline; Boyatzis, Amber; Kettle, Anthony J; Grounds, Miranda D; Arthur, Peter G

    2016-10-01

    Duchenne Muscular Dystrophy (DMD) is a fatal skeletal muscle wasting disease presenting with excessive myofibre necrosis and increased inflammation and oxidative stress. In the mdx mouse model of DMD, homeostasis of the amino acid taurine is altered, and taurine administration drastically decreases muscle necrosis, dystropathology, inflammation and protein thiol oxidation. Since the severe pathology of the Golden Retriever Muscular Dystrophy (GRMD) dog model more closely resembles the human DMD condition, we aimed to assess the generation of oxidants by inflammatory cells and taurine metabolism in this species. In muscles of 8 month GRMD dogs there was an increase in the content of neutrophils and macrophages, and an associated increase in elevated myeloperoxidase, a protein secreted by neutrophils that catalyses production of the highly reactive hypochlorous acid (HOCl). There was also increased chlorination of tyrosines, a marker of HOCl generation, increased thiol oxidation of many proteins and irreversible oxidative protein damage. Taurine, which functions as an antioxidant by trapping HOCl, was reduced in GRMD plasma; however taurine was increased in GRMD muscle tissue, potentially due to increased muscle taurine transport and synthesis. These data indicate a role for HOCl generated by neutrophils in the severe dystropathology of GRMD dogs, which may be exacerbated by decreased availability of taurine in the blood. These novel data support continued research into the precise roles of oxidative stress and taurine in DMD and emphasise the value of the GRMD dogs as a suitable pre-clinical model for testing taurine as a therapeutic intervention for DMD boys.

  20. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index

    PubMed Central

    CİNGİ YİRÜN, Merve; ÜNAL, Kübranur; ALTUNSOY ŞEN, Neslihan; YİRÜN, Onur; AYDEMİR, Çiğdem; GÖKA, Erol

    2016-01-01

    Introduction Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). Methods The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Results Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. Conclusion To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed. PMID:28373794

  1. Molecular mechanisms of ROS production and oxidative stress in diabetes.

    PubMed

    Newsholme, Philip; Cruzat, Vinicius Fernandes; Keane, Kevin Noel; Carlessi, Rodrigo; de Bittencourt, Paulo Ivo Homem

    2016-12-15

    Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.

  2. Oxidative Stress: A Master Regulator of Plant Trade-Offs?

    PubMed

    Morales, Melanie; Munné-Bosch, Sergi

    2016-12-01

    Trade-offs between growth, reproduction, and defence have been documented. Oxidative stress is one of the physiological mechanisms that underlie trade-offs at the cellular and organ levels. The diversity of plant life forms and the complexity of scaling up limit our knowledge of oxidative stress as a universal mediator of life-history trade-offs at the organism level. Joint efforts by plant physiologists and ecologists will undoubtedly provide novel insights into this topic in the near future.

  3. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  4. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    PubMed Central

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  5. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy.

    PubMed

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen; Chen, Gang

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.

  6. Comparison of Effect of Two-Hour Exposure to Forest and Urban Environments on Cytokine, Anti-Oxidant, and Stress Levels in Young Adults

    PubMed Central

    Im, Su Geun; Choi, Han; Jeon, Yo-Han; Song, Min-Kyu; Kim, Won; Woo, Jong-Min

    2016-01-01

    The purpose of this study was to investigate the effect of two-hour exposure to a forest environment on cytokine, anti-oxidant and stress levels among university students and to compare the results to those measured in urban environments. Forty-one subjects were recruited. For our crossover design, subjects were divided into two groups based on similar demographic characteristics. Group A remained in the urban environment and was asked to perform regular breathing for 2 h. Blood samples were collected and the serum levels of cytokines including interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), and glutathione peroxidase (GPx) were examined. Subjects were moved to a small town in a rural area for an equal amount of time to exclude carryover effects, and then remained for another 2 h in a forest environment. The second set of blood samples was collected to assess the effect of exposure to the forest environment. Using the same method, Group B was first exposed to the forest environment, followed by exposure to the urban environment. Blood samples collected after the subjects were exposed to the forest environment showed significantly lower levels of IL-8 and TNF-α compared to those in samples collected after urban environment exposure (10.76 vs. 9.21, t = 4.559, p < 0.001, and 0.97 vs. 0.87, t = 4.130, p < 0.001). The GPx concentration increased significantly after exposure to the forest environment (LnGPx = 5.09 vs. LnGPx = 5.21, t = −2.039, p < 0.05). PMID:27347982

  7. Oxidative stress and male reproductive health

    PubMed Central

    Aitken, Robert J; Smith, Tegan B; Jobling, Matthew S; Baker, Mark A; De Iuliis, Geoffry N

    2014-01-01

    One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high levels of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER) pathway, 8-oxoguanine glycosylase 1 (OGG1). The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1) needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceived in vitro and serves as a driver for current research into the origins of free radical generation in the germ line. PMID:24369131

  8. Oxidative Stress and Pulmonary Fibrosis

    PubMed Central

    Cheresh, Paul; Kim, Seok-Jo; Tulasiram, Sandhya; Kamp, David W.

    2012-01-01

    Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory / interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis are not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria / NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways are examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. PMID:23219955

  9. L-carnitine Mediated Reduction in Oxidative Stress and Alteration in Transcript Level of Antioxidant Enzymes in Sheep Embryos Produced In Vitro.

    PubMed

    Mishra, A; Reddy, I J; Gupta, P S P; Mondal, S

    2016-04-01

    The objective of this study was to find out the effect of L-carnitine on oocyte maturation and subsequent embryo development, with L-carnitine-mediated alteration if any in transcript level of antioxidant enzymes (GPx, Cu/Zn-SOD (SOD1) and Mn-SOD (SOD2) in oocytes and developing sheep embryos produced in vitro. Different concentrations of L-carnitine (0 mm, 2.5 mm, 5 mm, 7.5 mm and 10 mm) were used in maturation medium. Oocytes matured with 10 mm L-carnitine showed significantly (p < 0.05) higher cleavage (66.80% vs 39.66, 41.76, 44.64, 64.31%), morula (48.50% vs 20.88, 26.01, 26.99, 44.72%) and blastocyst (33.22% vs 7.66, 9.19, 10.71, 28.57%) percentage as compared to lower concentrations (0 mm, 2.5 mm, 5 mm and 7.5 mm). Cleavage percentage between 10 mm and 7.5 mm L-carnitine were not significantly different. Maturation rate was not influenced by supplementation of any experimental concentration of L-carnitine. There was a significant (p < 0.05) decrease in intracellular ROS and increase in intracellular GSH in 10 mm L-carnitine-treated oocytes and embryos than control group. Antioxidant effect of L-carnitine was proved by culturing oocytes and embryos with H2O2 in the presence of L-carnitine which could be able to protect oocytes and embryos from H2O2-induced oxidative damage. L-carnitine supplementation significantly (p < 0.05) upregulated the expression of GPx and downregulated the expression of SOD2 genes, whereas the expression pattern of SOD1 and GAPDH (housekeeping gene) genes was unaffected in oocytes and embryos. It was concluded from the study that L-carnitine supplementation during in vitro maturation reduces oxidative stress-induced embryo toxicity by decreasing intracellular ROS and increasing intracellular GSH that in turn improved developmental potential of oocytes and embryos and alters transcript level of antioxidant enzymes.

  10. Clinical Perspective of Oxidative Stress in Sporadic ALS

    PubMed Central

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  11. Spearmint induced hypothalamic oxidative stress and testicular anti-androgenicity in male rats - altered levels of gene expression, enzymes and hormones.

    PubMed

    Kumar, Vikas; Kural, Mool Raj; Pereira, B M J; Roy, Partha

    2008-12-01

    Mentha spicata Labiatae, commonly known as spearmint, can be used for various kinds of illnesses in herbal medicines and food industries. One of the prominent functions of this plant extract is its anti-androgenic activity. The present study investigated the probable correlation between oxidative stress in hypothalamic region and anti-androgenic action of this plant's aqueous extract on rats. Decreased activities of enzymes like superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in hypothalamus of treated rats indicated spearmint induced oxidative stress. Further RT-PCR and immunoblot analysis demonstrated the decreased expression of some of the steroidogenic enzymes, cytochrome P450scc, cytochrome P450C17, 3beta-Hydroxysteroid dehydrogenase (3beta-HSD), 17beta-Hydroxysteroid dehydrogenase (17beta-HSD) and other related proteins like, steroidogenic acute regulatory protein, androgen receptor and scavenger receptor class B-1. Further, in vitro enzyme assays demonstrated depressed activities of testicular 3beta-HSD and 17beta-HSD enzymes. Histopathology indicated a decreased sperm density in cauda epididymis and degeneration of ductus deference. Our study suggested that spearmint probably induced oxidative stress in hypothalamus resulting in decreased synthesis of LH and FSH which in turn down-regulated the production of testicular testosterone through the disruption of a number of intermediate cascades.

  12. Induction of Oxidative Stress in Kidney

    PubMed Central

    Ozbek, Emin

    2012-01-01

    Oxidative stress has a critical role in the pathophysiology of several kidney diseases, and many complications of these diseases are mediated by oxidative stress, oxidative stress-related mediators, and inflammation. Several systemic diseases such as hypertension, diabetes mellitus, and hypercholesterolemia; infection; antibiotics, chemotherapeutics, and radiocontrast agents; and environmental toxins, occupational chemicals, radiation, smoking, as well as alcohol consumption induce oxidative stress in kidney. We searched the literature using PubMed, MEDLINE, and Google scholar with “oxidative stress, reactive oxygen species, oxygen free radicals, kidney, renal injury, nephropathy, nephrotoxicity, and induction”. The literature search included only articles written in English language. Letters or case reports were excluded. Scientific relevance, for clinical studies target populations, and study design, for basic science studies full coverage of main topics, are eligibility criteria for articles used in this paper. PMID:22577546

  13. Oxidative stress in aspic vipers facing pregnancy and water constraints.

    PubMed

    Stier, Antoine; Dupoué, Andréaz; Picard, Damien; Angelier, Frédéric; Brischoux, François; Lourdais, Olivier

    2017-03-14

    The physiological mechanisms underlying the 'cost of reproduction' remain under debate, though oxidative stress has emerged as a potential candidate. The 'oxidative cost of reproduction' has received considerable attention with regards to food and antioxidant availability, however the limitation of water availability has thus far been neglected. In this study we experimentally examined the combined effect of pregnancy and water-deprivation on oxidative status in a viviparous snake (Vipera aspis), a species naturally exposed to periods of water and food deprivation. We predicted a cumulative effect of pregnancy and dehydration on oxidative stress levels. Our results support the occurrence of an oxidative cost of reproduction since we found higher oxidative damage levels in pregnant females than in non-reproductive individuals, despite an up-regulation of antioxidant defences. Surprisingly, water-deprivation was associated with an up-regulation of antioxidant defences, and did not increase oxidative damage, either alone or in combination with reproduction.

  14. MerR and ChrR mediate blue light induced photo-oxidative stress response at the transcriptional level in Vibrio cholerae

    PubMed Central

    Tardu, Mehmet; Bulut, Selma; Kavakli, Ibrahim Halil

    2017-01-01

    Blue light (BL) is a major environmental factor that affects the physiology, behavior, and infectivity of bacteria as it contributes to the generation of reactive oxygen species (ROS) while increasing photo-oxidative stress in cells. However, precise photo-oxidative response mechanism in non-phototrophic bacteria is yet to be elucidated. In this study, we investigated the effect of BL in Vibrio cholerae by using genetics and transcriptome profiling. Genome-wide analysis revealed that transcription of 6.3% of V. cholerae genes were regulated by BL. We further showed that BL enhances ROS production, which is generated through the oxidative phosphorylation. To understand signaling mechanisms, we generated several knockouts and analyzed their transcriptome under BL exposure. Studies with a double-knockout confirm an anti-sigma factor (ChrR) and putative metalloregulatory-like protein (MerR) are responsible for the genome-wide regulation to BL response in V. cholerae. Collectively, these results demonstrate that MerR-like proteins, in addition to ChrR, are required for V. cholerae to mount an appropriate response against photo-oxidative stress induced by BL. Outside its natural host, V. cholerae can survive for extended periods in natural aquatic environments. Therefore, the regulation of light response for V. cholerae may be a critical cellular process for its survival in these environments. PMID:28098242

  15. [Selenium and oxidative stress in cancer patients].

    PubMed

    Gorozhanskaia, É G; Sviridova, S P; Dobrovol'skaia, M M; Zybrikhina, G N; Kashnia, Sh R

    2013-01-01

    In order to identify the features of violations of free-radical processes in blood serum of 94 untreated cancer patients with different localization of the tumor (cancer of the stomach, colon, breast, ovarian, hemoblastoses) were determined selenium levels and indicators of oxidative stress (sum of metabolites of nitrogen--NOx, the level of superoxide dismutase--Cu/ZnSOD and malondiialdehyde-MDA, and the activity of catalase). In addition, 40 patients with malignant liver disease and clinical signs of liver failure in the early postoperative period was carried out a comparative evaluation of the efficacy of selenium-containing drug "Selenaze" (sodium selenite pentahydrate). It was found that selenium levels in cancer patients by 25-30% below the norm of 110-120 mg/l at a rate of 73.0 +/- 2.6 mg/l. Low levels of NOx was detected in patients with all tumor localizations (22.1 +/- 1.1 microM, with normal range 28.4 +/- 0.9 microM). The exceptions were patients with extensive malignant process in the liver, in which the NOx levels were significantly higher than normal (p < 0.001). The high level of NOx has a toxic effect on the hepatocyte, causing metabolic disorders and inflammatory-necrotic changes in the liver. Elevated levels of SOD and MDA in normal values of catalase activity was detected in all patients. The use of "Selenaze" in postoperative patients with tumors of the liver increased selenium levels by 10-12%, which was accompanied by a decrease in the content of SOD and NOx, and contributed to earlier recovery of detoxic and synthetic liver function. These findings point to an intensification of oxidative stress and metabolic disorders in the malignant process, which is the basis for metabolic correction.

  16. Clinical Relevance of Biomarkers of Oxidative Stress

    PubMed Central

    Frijhoff, Jeroen; Winyard, Paul G.; Zarkovic, Neven; Davies, Sean S.; Stocker, Roland; Cheng, David; Knight, Annie R.; Taylor, Emma Louise; Oettrich, Jeannette; Ruskovska, Tatjana; Gasparovic, Ana Cipak; Cuadrado, Antonio; Weber, Daniela; Poulsen, Henrik Enghusen; Grune, Tilman; Schmidt, Harald H.H.W.

    2015-01-01

    Abstract Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. Future Directions: Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 23, 1144–1170. PMID:26415143

  17. Biochemical assessment of red blood cells during storage by 1H nuclear magnetic resonance spectroscopy. Identification of a biomarker of their level of protection against oxidative stress

    PubMed Central

    Pertinhez, Thelma A.; Casali, Emanuela; Lindner, Luisa; Spisni, Alberto; Baricchi, Roberto; Berni, Pamela

    2014-01-01

    Background Blood transfusion is an established therapeutic practice. The characteristics of blood components at different storage times are expected to affect the efficacy of transfusion therapy. Metabolic profiling by nuclear magnetic resonance (NMR) spectroscopy requires little or no sample treatment and allows identification of more than 50 soluble metabolites in a single experiment. The aim of this study was to assess the metabolic behaviour of red blood cells during 42 days of storage in blood bank conditions. Materials and methods Red blood cells (RBC), collected from eight healthy male donors, aged 25–50 years, were prepared as prestorage leukoreduced erythrocyte concentrates and stored under standard blood bank conditions. Samples taken at various storage times were separated in two fractions: the supernatant, recovered after centrifugation, and the red blood cell lysate obtained after protein depletion by ultrafiltration. The metabolic profile of the red blood cells was determined from analysis of 1H-NMR spectra. Results The red blood cell supernatant was studied to track the consumption of the preservative additives and to detect and quantify up to 30 metabolites excreted by the erythrocytes. The NMR spectra of the RBC lysate provided complementary information on some biochemical pathways and set the basis for building a time-dependent red blood cell metabolic profile. Discussion We proved the analytical power of 1H-NMR spectroscopy to study red blood cell metabolism under blood bank conditions. A potential biomarker able to provide information on the level of cellular oxidative stress protection was identified. Our data support the hypothesis that a more detailed knowledge of metabolic modifications during storage opens the way to the development of new and more effective protocols for red blood cell conservation and patient-oriented transfusion therapy. PMID:24960643

  18. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  19. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

    PubMed

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood

    2015-09-08

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  20. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  1. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  2. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  3. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    PubMed

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy.

  4. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  5. PARTICULATE MATTER, OXIDATIVE STRESS AND ...

    EPA Pesticide Factsheets

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary disorders. Clinical and experimental studies have historically focused on the cardiopulmonary effects of PM. However, since PM particles carry numerous biocontaminants that are capable of triggering free radical production and cytokine release, the possibility that PM may affect organs systems sensitive to oxidative stress must be considered. Four independent studies that summarize the neurochemical and neuropathological changes found in the brains of PM exposed animals are described here. These were recently presented at two 2007 symposia sponsored by the Society of Toxicology (Charlotte, NC) and the International Neurotoxicology Association (Monterey, CA). Particulates are covered with biocontaminants (e.g., endotoxins, mold, pollen) which convey free radical activity that can damage the lipids, nucleic acids, and proteins of target cells on contact and stimulate inflammatory cytokine release. Although, the historical focus of PM toxicity has been cardiopulmonary targets, it is now appreciated that inhaled nano-size (<100 nm) particles quickly exit the lungs and enter the circulation where they distribute to various organ systems (l.e., liver, kidneys, testes, lymph nodes) (Takenaka et aI

  6. Oxidative Stress Related Diseases in Newborns

    PubMed Central

    Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  7. Correlation of Zinc with Oxidative Stress Biomarkers

    PubMed Central

    Morales-Suárez-Varela, María; Llopis-González, Agustín; González-Albert, Verónica; López-Izquierdo, Raúl; González-Manzano, Isabel; Cháves, Javier; Huerta-Biosca, Vicente; Martin-Escudero, Juan C.

    2015-01-01

    Hypertension and smoking are related with oxidative stress (OS), which in turn reports on cellular aging. Zinc is an essential element involved in an individual’s physiology. The aim of this study was to evaluate the relation of zinc levels in serum and urine with OS and cellular aging and its effect on the development of hypertension. In a Spanish sample with 1500 individuals, subjects aged 20–59 years were selected, whose zinc intake levels fell within the recommended limits. These individuals were classified according to their smoking habits and hypertensive condition. A positive correlation was found (Pearson’s C = 0.639; p = 0.01) between Zn serum/urine quotient and oxidized glutathione levels (GSSG). Finally, risk of hypertension significantly increased when the GSSG levels exceeded the 75 percentile; OR = 2.80 (95%CI = 1.09–7.18) and AOR = 3.06 (95%CI = 0.96–9.71). Low zinc levels in serum were related with OS and cellular aging and were, in turn, to be a risk factor for hypertension.  PMID:25774936

  8. Oxidative stress and oxidative damage in chemical carcinogenesis

    SciTech Connect

    Klaunig, James E. Wang Zemin; Pu Xinzhu; Zhou Shaoyu

    2011-07-15

    Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

  9. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context.

  10. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  11. Fipronil insecticide toxicology: oxidative stress and metabolism.

    PubMed

    Wang, Xu; Martínez, María Aránzazu; Wu, Qinghua; Ares, Irma; Martínez-Larrañaga, María Rosa; Anadón, Arturo; Yuan, Zonghui

    2016-11-01

    Fipronil (FIP) is widely used across the world as a broad-spectrum phenylpyrazole insecticide and veterinary drug. FIP was the insecticide to act by targeting the γ-aminobutyric acid (GABA) receptor and has favorable selective toxicity towards insects rather than mammals. However, because of accidental exposure, incorrect use of FIP or widespread FIP use leading to the contamination of water and soil, there is increasing evidence that FIP could cause a variety of toxic effects on animals and humans, such as neurotoxic, hepatotoxic, nephrotoxic, reproductive, and cytotoxic effects on vertebrate and invertebrates. In the last decade, oxidative stress has been suggested to be involved in the various toxicities induced by FIP. To date, few reviews have addressed the toxicity of FIP in relation to oxidative stress. The focus of this article is primarily intended to summarize the progress in research associated with oxidative stress as a possible mechanism for FIP-induced toxicity as well as metabolism. The present review reports that studies have been conducted to reveal the generation of reactive oxygen species (ROS) and oxidative stress as a result of FIP treatment and have correlated them with various types of toxicity. Furthermore, the metabolism of FIP was also reviewed, and during this process, various CYP450 enzymes were involved and oxidative stress might occur. The roles of various compounds in protecting against FIP-induced toxicity based on their anti-oxidative effects were also summarized to further understand the role of oxidative stress in FIP-induced toxicity.

  12. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  13. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    PubMed Central

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  14. Oxidative stress causes plasma protein modification.

    PubMed

    Tetik, Sermin; Kiliç, Arzu; Aksoy, Halil; Rizaner, Nahit; Ahmad, Sarfraz; Yardimci, Turay

    2015-01-01

    We investigated the effect of oxidative systems on plasma proteins using Chloramine-T, a source of free radicals. Plasma specimens from 10 healthy volunteers were treated with 40 mmol/L Chloramine-T (1:1 v/v). Total protein and plasma carbonyl levels were evaluated spectrophotometrically. Identification of plasma proteins modifications was performed by SDS-PAGE, protein and lipid electrophoresis. Protein fragmentation was evaluated by HPLC. Total protein levels of oxidised plasmas were significantly lower (4.08 ± 0.12 g/dL) than control (7.86 ± 0.03 g/dL) (P < 0.01). Plasma carbonyl levels were higher (1.94 ± 0.38 nmol/mg protein) in oxidised plasma than that of control (0.03 ± 0.01 nmol/mg protein) (P < 0.01). Plasma oxidation had no significant effect on the levels of proteins and lipids. Protein fragmentations were detected in oxidised groups compared to those of the control. We conclude that protein modifications have direct effect on the protein functions, which are related to stress agent, its treatment period(s), and the methodology used for evaluating such experimental results.

  15. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio).

    PubMed

    Brun, Nadja Rebecca; Christen, Verena; Furrer, Gerhard; Fent, Karl

    2014-10-07

    Indium and indium tin oxide (ITO) are extensively used in electronic technologies. They may be introduced into the environment during production, use, and leaching from electronic devices at the end of their life. At present, surprisingly little is known about potential ecotoxicological implications of indium contamination. Here, molecular effects of indium nitrate (In(NO3)3) and ITO nanoparticles were investigated in vitro in zebrafish liver cells (ZFL) cells and in zebrafish embryos and novel insights into their molecular effects are provided. In(NO3)3 led to induction of endoplasmic reticulum (ER) stress response, induction of reactive oxygen species (ROS) and induction of transcripts of pro-apoptotic genes and TNF-α in vitro at a concentration of 247 μg/L. In(NO3)3 induced the ER stress key gene BiP at mRNA and protein level, as well as atf6, which ultimately led to induction of the important pro-apoptotic marker gene chop. The activity of In(NO3)3 on ER stress induction was much stronger than that of ITO, which is explained by differences in soluble free indium ion concentrations. The effect was also stronger in ZFL cells than in zebrafish embryos. Our study provides first evidence of ER stress and oxidative stress induction by In(NO3)3 and ITO indicating a critical toxicological profile that needs further investigation.

  16. Prohibitin as an oxidative stress biomarker in the eye.

    PubMed

    Lee, Hyunju; Arnouk, Hilal; Sripathi, Srinivas; Chen, Ping; Zhang, Ruonan; Bartoli, Manuela; Hunt, Richard C; Hrushesky, William J M; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2010-12-01

    Identification of biomarker proteins in the retina and retinal pigment epithelium (RPE) under oxidative stress may imply new insights into signaling mechanisms of retinal degeneration at the molecular level. Proteomic data from an in vivo mice model in constant light and an in vitro oxidative stress model are compared to controls under normal conditions. Our proteomic study shows that prohibitin is involved in oxidative stress signaling in the retina and RPE. The identity of prohibitin in the retina and RPE was studied using 2D electrophoresis, immunohistochemistry, western blot, and mass spectrometry analysis. Comparison of expression levels with apoptotic markers as well as translocation between mitochondria and the nucleus imply that the regulation of prohibitin is an early signaling event in the RPE and retina under oxidative stress. Immunohistochemical analysis of murine aged and diabetic eyes further suggests that the regulation of prohibitin in the RPE/retina is related to aging- and diabetes-induced oxidative stress. Our proteomic approach implies that prohibitin in the RPE and the retina could be a new biomarker protein of oxidative stress in aging and diabetes.

  17. Emerging importance of oxidative stress in regulating striated muscle elasticity.

    PubMed

    Beckendorf, Lisa; Linke, Wolfgang A

    2015-02-01

    The contractile function of striated muscle cells is altered by oxidative/nitrosative stress, which can be observed under physiological conditions but also in diseases like heart failure or muscular dystrophy. Oxidative stress causes oxidative modifications of myofilament proteins and can impair myocyte contractility. Recent evidence also suggests an important effect of oxidative stress on muscle elasticity and passive stiffness via modifications of the giant protein titin. In this review we provide a short overview of known oxidative modifications in thin and thick filament proteins and then discuss in more detail those oxidative stress-related modifications altering titin stiffness directly or indirectly. Direct modifications of titin include reversible disulfide bonding within the cardiac-specific N2-Bus domain, which increases titin stiffness, and reversible S-glutathionylation of cryptic cysteines in immunoglobulin-like domains, which only takes place after the domains have unfolded and which reduces titin stiffness in cardiac and skeletal muscle. Indirect effects of oxidative stress on titin can occur via reversible modifications of protein kinase signalling pathways (especially the NO-cGMP-PKG axis), which alter the phosphorylation level of certain disordered titin domains and thereby modulate titin stiffness. Oxidative stress also activates proteases such as matrix-metalloproteinase-2 and (indirectly via increasing the intracellular calcium level) calpain-1, both of which cleave titin to irreversibly reduce titin-based stiffness. Although some of these mechanisms require confirmation in the in vivo setting, there is evidence that oxidative stress-related modifications of titin are relevant in the context of biomarker design and represent potential targets for therapeutic intervention in some forms of muscle and heart disease.

  18. Myelophil ameliorates brain oxidative stress in mice subjected to restraint stress.

    PubMed

    Lee, Jin-Seok; Kim, Hyung-Geug; Han, Jong-Min; Lee, Jong-Suk; Son, Seung-Wan; Ahn, Yo-Chan; Son, Chang-Gue

    2012-12-03

    We evaluated the pharmacological effects of Myelophil, a 30% ethanol extract of a mix of Astragali Radix and Salviae Radix, on oxidative stress-induced brain damage in mice caused by restraint stress. C57BL/6 male mice (eight weeks old) underwent daily oral administration of distilled water, Myelophil (25, 50, or 100mg/kg), or ascorbic acid (100mg/kg) 1h before induction of restraint stress, which involved 3h of immobilization per day for 21days. Nitric oxide levels, lipid peroxidation, activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione redox system enzymes), and concentrations of adrenaline, corticosterone, and interferon-γ, were measured in brain tissues and/or sera. Restraint stress-induced increases in nitric oxide levels (serum and brain tissues) and lipid peroxidation (brain tissues) were significantly attenuated by Myelophil treatment. Restraint stress moderately lowered total antioxidant capacity, catalase activity, glutathione content, and the activities of glutathione reductase, glutathione peroxidase, and glutathione S-transferase; all these responses were reversed by Myelophil. Myelophil significantly attenuated the elevated serum concentrations of adrenaline and corticosterone and restored serum and brain interferon-γ levels. Moreover, Myelophil normalized expression of the genes encoding monoamine oxidase A, catechol-O-methyltransferase, and phenylethanolamine N-methyltransferase, which was up-regulated by restraint stress in brain tissues. These results suggest that Myelophil has pharmacological properties protects brain tissues against stress-associated oxidative stress damage, perhaps in part through regulation of stress hormones.

  19. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.

    PubMed

    Wang, Tao; Ge, Haiyan; Liu, Tingting; Tian, Xiwei; Wang, Zejian; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-06-20

    Salt stress as an effective stress factor that could improve the lipid content and lipid yield of glucose in the heterotrophic culture cells of Chlorella protothecoides was demonstrated in this study. The highest lipid content of 41.2% and lipid yield of 185.8mg/g were obtained when C. protothecoides was stressed under 30g/L NaCl condition at its late logarithmic growth phase. Moreover, the effects of salt and osmotic stress on lipid accumulation were comparatively analyzed, and it was found that the effects of NaCl and KCl stress had no significant differences at the same osmolarity level of 1150mOsm/kg with lipid contents of 41.7 and 40.8% as well as lipid yields of 192.9 and 186.8mg/g, respectively, whereas these results were obviously higher than those obtained under the iso-osmotic glycerol and sorbitol stresses. Furthermore, basing on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration, the superior performance of salt stress driving lipid over-synthesis was probably ascribed to the more ROS production as a result of additional ion effect besides the osmotic effect, subsequently mediating the alteration from carbohydrate storage to lipid accumulation in signal transduction process of C. protothecoides.

  20. Relationship between the Increased Haemostatic Properties of Blood Platelets and Oxidative Stress Level in Multiple Sclerosis Patients with the Secondary Progressive Stage.

    PubMed

    Morel, Agnieszka; Bijak, Michał; Miller, Elżbieta; Rywaniak, Joanna; Miller, Sergiusz; Saluk, Joanna

    2015-01-01

    Multiple sclerosis (MS) is the autoimmune disease of the central nervous system with complex pathogenesis, different clinical courses and recurrent neurological relapses and/or progression. Despite various scientific papers that focused on early stage of MS, our study targets selective group of late stage secondary progressive MS patients. The presented work is concerned with the reactivity of blood platelets in primary hemostasis in SP MS patients. 50 SP MS patients and 50 healthy volunteers (never diagnosed with MS or other chronic diseases) were examined to evaluate the biological activity of blood platelets (adhesion, aggregation), especially their response to the most important physiological agonists (thrombin, ADP, and collagen) and the effect of oxidative stress on platelet activity. We found that the blood platelets from SP MS patients were significantly more sensitive to all used agonists in comparison with control group. Moreover, the platelet hemostatic function was advanced in patients suffering from SP MS and positively correlated with increased production of O2 (-∙) in these cells, as well as with Expanded Disability Status Scale. We postulate that the increased oxidative stress in blood platelets in SP MS may be primarily responsible for the altered haemostatic properties of blood platelets.

  1. OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants

    PubMed Central

    2013-01-01

    Background Reactive oxygen species (ROS) are involved in the regulation of diverse physiological processes in plants, including various biotic and abiotic stress responses. Thus, oxidative stress tolerance mechanisms in plants are complex, and diverse responses at multiple levels need to be characterized in order to understand them. Here we present system responses to oxidative stress in Populus by integrating data from analyses of the cambial region of wild-type controls and plants expressing high-isoelectric-point superoxide dismutase (hipI-SOD) transcripts in antisense orientation showing a higher production of superoxide. The cambium, a thin cell layer, generates cells that differentiate to form either phloem or xylem and is hypothesized to be a major reason for phenotypic perturbations in the transgenic plants. Data from multiple platforms including transcriptomics (microarray analysis), proteomics (UPLC/QTOF-MS), and metabolomics (GC-TOF/MS, UPLC/MS, and UHPLC-LTQ/MS) were integrated using the most recent development of orthogonal projections to latent structures called OnPLS. OnPLS is a symmetrical multi-block method that does not depend on the order of analysis when more than two blocks are analysed. Significantly affected genes, proteins and metabolites were then visualized in painted pathway diagrams. Results The main categories that appear to be significantly influenced in the transgenic plants were pathways related to redox regulation, carbon metabolism and protein degradation, e.g. the glycolysis and pentose phosphate pathways (PPP). The results provide system-level information on ROS metabolism and responses to oxidative stress, and indicate that some initial responses to oxidative stress may share common pathways. Conclusion The proposed data evaluation strategy shows an efficient way of compiling complex, multi-platform datasets to obtain significant biological information. PMID:24341908

  2. Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana1

    PubMed Central

    Richards, Keith D.; Schott, Eric J.; Sharma, Yogesh K.; Davis, Keith R.; Gardner, Richard C.

    1998-01-01

    Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al. PMID:9449849

  3. PHEOCHROMOCYTOMA: A CATECHOLAMINE AND OXIDATIVE STRESS DISORDER

    PubMed Central

    Pacak, Karel

    2012-01-01

    The WHO classification of endocrine tumors defines pheochromocytoma as a tumor arising from chromaffin cells in the adrenal medulla — an intra-adrenal paraganglioma. Closely related tumors of extra-adrenal sympathetic and parasympathetic paraganglia are classified as extra-adrenal paragangliomas. Almost all pheochromocytomas and paragangliomas produce catecholamines. The concentrations of catecholamines in pheochromocytoma tissues are enormous, potentially creating a volcano that can erupt at any time. Significant eruptions result in catecholamine storms called “attacks” or “spells”. Acute catecholamine crisis can strike unexpectedly, leaving traumatic memories of acute medical disaster that champions any intensive care unit. A very well-defined genotype-biochemical phenotype relationship exists, guiding proper and cost-effective genetic testing of patients with these tumors. Currently, the production of norepinephrine and epinephrine is optimally assessed by the measurement of their O-methylated metabolites, normetanephrine or metanephrine, respectively. Dopamine is a minor component, but some paragangliomas produce only this catecholamine or this together with norepinephrine. Methoxytyramine, the O-methylated metabolite of dopamine, is the best biochemical marker of these tumors. In those patients with equivocal biochemical results, a modified clonidine suppression test coupled with the measurement of plasma normetanephrine has recently been introduced. In addition to differences in catecholamine enzyme expression, the presence of either constitutive or regulated secretory pathways contributes further to the very unique mutation-dependent catecholamine production and release, resulting in various clinical presentations. Oxidative stress results from a significant imbalance between levels of prooxidants, generated during oxidative phosphorylation, and antioxidants. The gradual accumulation of prooxidants due to metabolic oxidative stress results in proto

  4. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats.

    PubMed

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases.

  5. Nitrative and Oxidative Stress in Toxicology and Disease

    PubMed Central

    Roberts, Ruth A.; Laskin, Debra L.; Smith, Charles V.; Robertson, Fredika M.; Allen, Erin M. G.; Doorn, Jonathan A.; Slikker, William

    2009-01-01

    Persistent inflammation and the generation of reactive oxygen and nitrogen species play pivotal roles in tissue injury during disease pathogenesis and as a reaction to toxicant exposures. The associated oxidative and nitrative stress promote diverse pathologic reactions including neurodegenerative disorders, atherosclerosis, chronic inflammation, cancer, and premature labor and stillbirth. These effects occur via sustained inflammation, cellular proliferation and cytotoxicity and via induction of a proangiogenic environment. For example, exposure to the ubiquitous air pollutant ozone leads to generation of reactive oxygen and nitrogen species in lung macrophages that play a key role in subsequent tissue damage. Similarly, studies indicate that genes involved in regulating oxidative stress are altered by anesthetic treatment resulting in brain injury, most notable during development. In addition to a role in tissue injury in the brain, inflammation, and oxidative stress are implicated in Parkinson's disease, a neurodegenerative disease characterized by the loss of dopamine neurons. Recent data suggest a mechanistic link between oxidative stress and elevated levels of 3,4-dihydroxyphenylacetaldehyde, a neurotoxin endogenous to dopamine neurons. These findings have significant implications for development of therapeutics and identification of novel biomarkers for Parkinson's disease pathogenesis. Oxidative and nitrative stress is also thought to play a role in creating the proinflammatory microenvironment associated with the aggressive phenotype of inflammatory breast cancer. An understanding of fundamental concepts of oxidative and nitrative stress can underpin a rational plan of treatment for diseases and toxicities associated with excessive production of reactive oxygen and nitrogen species. PMID:19656995

  6. The effects of dietary restriction on oxidative stress in rodents

    PubMed Central

    Walsh, Michael E.; Shi, Yun; Van Remmen, Holly

    2013-01-01

    Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends lifespan in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging. PMID:23743291

  7. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  8. Chlorophytum borivilianum Root Extract Maintains near Normal Blood Glucose, Insulin and Lipid Profile Levels and Prevents Oxidative Stress in the Pancreas of Streptozotocin-Induced Adult Male Diabetic Rats

    PubMed Central

    Giribabu, Nelli; Kumar, Kilari Eswar; Rekha, Somesula Swapna; Muniandy, Sekaran; Salleh, Naguib

    2014-01-01

    The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes. Methods: C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated. Results: C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-β cell functioning index, number of Islets/pancreas, number of β-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats. Conclusions: C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes. PMID:25249786

  9. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.

  10. Oxidative Stress in Placenta: Health and Diseases

    PubMed Central

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  11. Mammalian Metallothionein-2A and Oxidative Stress

    PubMed Central

    Ling, Xue-Bin; Wei, Hong-Wei; Wang, Jun; Kong, Yue-Qiong; Wu, Yu-You; Guo, Jun-Li; Li, Tian-Fa; Li, Ji-Ke

    2016-01-01

    Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy. PMID:27608012

  12. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.

  13. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  14. Air pollution, oxidative stress, and Alzheimer's disease.

    PubMed

    Moulton, Paula Valencia; Yang, Wei

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide and will continue to affect millions more with population aging on the rise. AD causality is multifactorial. Known causal factors include genetic predisposition, age, and sex. Environmental toxins such as air pollution (AP) have also been implicated in AD causation. Exposure to AP can lead to chronic oxidative stress (OS), which is involved in the pathogenesis of AD. Whereas AP plays a role in AD pathology, the epidemiological evidence for this association is limited. Given the significant prevalence of AP exposure combined with increased population aging, epidemiological evidence for this link is important to consider. In this paper, we examine the existing evidence supporting the relationship between AP, OS, and AD and provide recommendations for future research on the population level, which will provide evidence in support of public health interventions.

  15. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  16. Relationship of oxidative stress and endothelial dysfunction in sleep apnoea.

    PubMed

    Jurado-Gámez, B; Fernandez-Marin, M C; Gómez-Chaparro, J L; Muñoz-Cabrera, L; Lopez-Barea, J; Perez-Jimenez, F; Lopez-Miranda, J

    2011-04-01

    The aim of the present study was to evaluate ischaemic reactive hyperaemia (IRH) in obstructive sleep apnoea (OSA) and its relationship with oxidative stress. We studied 69 consecutive patients referred to our Sleep Unit (Reina Sofia University Hospital, Cordoba, Spain). Patients with chronic diseases or those taking medication were excluded. IRH was assessed before and after polysomnography. Morning IRH and oxidative stress markers were compared between patients with (apnoea-hypopnoea index (AHI) ≥ 5) and without (AHI < 5) OSA. Measurements were repeated in 25 severe OSA patients after continuous positive airway pressure (CPAP) therapy. We included 46 OSA patients (mean ± sd AHI 49 ± 32.1) and 23 non-OSA subjects (AHI 3 ± 0.9). The OSA patients showed a significant worsening of morning IRH, and a significant increase in malondialdehyde and 8-hydroxydeoxyguanosine levels. Only the oxygen desaturation index independently explained morning IRH, while malondialdehyde levels showed a weak effect on IRH. In severe OSA patients, IRH improved significantly after CPAP treatment, as did malondialdehyde, 8-hydroxydeoxyguanosine and protein carbonyl levels. In OSA patients, endothelial dysfunction and oxidative stress were observed, and IRH worsened after sleep. The increase in oxidative stress was not associated with IRH, while intermittent hypoxia was strongly associated with IRH. In severe OSA patients, CPAP treatment improved oxidative stress and endothelial function.

  17. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  18. Role of oxidative stress on platelet hyperreactivity during aging.

    PubMed

    Fuentes, Eduardo; Palomo, Iván

    2016-03-01

    Thrombotic events are common causes of morbidity and mortality in the elderly. Age-accelerated vascular injury is commonly considered to result from increased oxidative stress. There is abundant evidence that oxidative stress regulate several components of thrombotic processes, including platelet activation. Thus oxidative stress can trigger platelet hyperreactivity by decreasing nitric oxide bioavailability. Therefore oxidative stress measurement may help in the early identification of asymptomatic subjects at risk of thrombosis. In addition, oxidative stress inhibitors and platelet-derived nitric oxide may represent a novel anti-aggregation/-activation approach. In this article the relative contribution of oxidative stress and platelet activation in aging is explored.

  19. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders.

    PubMed

    Islam, Md Torequl

    2017-01-01

    Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.

  20. Markers of Oxidative Stress and Neuroprogression in Depression Disorder.

    PubMed

    Vaváková, Magdaléna; Ďuračková, Zdeňka; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed.

  1. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  2. Markers of Oxidative Stress and Neuroprogression in Depression Disorder

    PubMed Central

    Vaváková, Magdaléna; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed. PMID:26078821

  3. Effects of oxidative stress on erythrocyte deformability

    NASA Astrophysics Data System (ADS)

    Bayer, Rainer; Wasser, Gerd

    1996-05-01

    Hemolysis as a consequence of open heart surgery is well investigated and explained by the oxidative and/or mechanical stress produced, e.g. by the heart lung machine. In Europe O3 is widely used by physicians, dedicated to alternative medicine. They apply O3 mostly by means of the Major Autohematotherapy (MAH, a process of removing 50 - 100 ml of blood, adding O3 gas to it and returning it to the patient's body). No controlled studies on the efficacy of O3 are available so far, but several anecdotal cases appear to confirm that MAH improves microcirculation, possibly due to increased RBC flexibility. Most methods established to estimate RBC deformability are hard to standardize and include high error of measurement. For our present investigation we used the method of laser diffraction in combination with image analysis. The variation coefficient of the measurement is less than 1%. Previous investigations of our group have shown, that mechanical stress decreases deformability, already at rather low levels of mechanical stress which do not include hemolysis. On the other hand exposure to O2, H2O2 or O3 does not alter the deformability of RBC and--except O3--does not induce considerably hemolysis. However this only holds true if deformability (shear rates 36/s - 2620/s) is determined in isotonic solutions. In hypertonic solutions O3 decreases RBC deformability, but improves it in hypotonic solutions. The results indicate that peroxidative stress dehydrates RBC and reduces their size. To explain the positive effect of O3 on the mechanical fragility of RBC we tentatively assume, that the reduction of RBC size facilitates the feed through small pore filters. In consequence, the size reduction in combination with undisturbed deformability at iso-osmolarity may have a beneficial effect on microcirculation.

  4. Effect of paraquat-induced oxidative stress

    PubMed Central

    Wiemer, Matthias; Osiewacz, Heinz D.

    2014-01-01

    Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ). This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control. PMID:28357247

  5. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets.

    PubMed

    Wei, H-K; Xue, H-X; Zhou, Z X; Peng, J

    2017-02-01

    Recent studies indicate that intestinal oxidative stress and microbiota imbalance is involved in weaning-induced intestinal dysfunction in piglets. We have investigated the effect of feeding a carvacrol-thymol blend supplemented diet on intestinal redox status, selected microbial populations and the intestinal barrier in weaning piglets. The piglets (weaned at 21 days of age) were randomly allocated to two groups with six pens per treatment and 10 piglets per pen. At weaning day (21 days of age), six piglets were sacrificed before weaning to serve as the preweaning group. The weaned group was fed with a basal diet, while the weaned-CB group was fed with the basal diet supplemented with 100 mg/kg carvacrol-thymol (1 : 1) blend for 14 days. On day 7 post-weaning, six piglets from each group were sacrificed to determine intestinal redox status, selected microbial populations, messenger RNA (mRNA) transcript levels of proinflammatory cytokines and biomarkers of intestinal barrier function. Weaning resulted in intestinal oxidative stress, indicated by the increased concentration of reactive oxygen species and thiobarbituric acid-reactive substances present in the intestine. Weaning also reduced the population of Lactobacillus genus and increased the populations of Enterococcus genus and Escherichia coli in the jejunum, and increased mRNA levels of tumor necrosis factor α (TNF-α), interleukin 1β and interleukin 6 (IL-6). In addition, decreased mRNA levels of zonula occludens and occludin in the jejunal mucosa and increased plasma diamine oxidase concentrations indicated that weaning induced dysfunction of the intestinal barrier. On day 7 post-weaning, supplementation with the carvacrol-thymol blend restored weaning-induced intestinal oxidative stress. Compared with the weaned group, the weaned-CB group had an increased population of Lactobacillus genus but reduced populations of Enterococcus genus and E. coli in the jejunum and decreased mRNA levels of TNF-α. The

  6. The effect of oxidative stress during exercise in the horse.

    PubMed

    Williams, C A

    2016-10-01

    Oxidative stress is an imbalance of the oxidant-to-antioxidant ratio in the body. Increases in oxidative stress and changes in antioxidant status have been shown during endurance and intense exercise and eventing competition in horses. Antioxidants include vitamins, minerals, enzymes, and proteins that must be synthesized in the body or obtained from the diet. Therefore, exercise level and diet are both factors that play a role in influencing the oxidative stress and antioxidant status of the equine athlete. Along with exercise intensity and duration, diet, age, and training program can also affect oxidative stress in the horse. Several studies using exogenous supplementation of vitamin E, vitamin C, and alpha-lipoic acid have shown positive results in decreasing the effects of exercise (endurance and intense exercise)-induced oxidative stress and increasing the antioxidant status based on the markers and antioxidants measured, whereas other studies using superoxide dismutase showed little effects on the exercise horse. The "free radical theory of aging" states that long-term effects of the degenerative changes associated with aging may induce oxidative stress. However, in old horses (22 ± 2 yr), lipid peroxidation levels and blood antioxidant concentrations were similar to those found in younger but mature (12 ± 2 yr) horses both at rest and during exercise. Other studies found that yearlings (18 ± 2.4 mo) that are novel to forced exercise had less lipid peroxidation and greater antioxidant status than mature mares (13 ± 2.1 yr) prior to exercise training. Exercise training reduced oxidative stress markers and improved antioxidant status in mares, whereas few effects were seen in yearlings. This indicates that youth provided more defense against oxidative stress due to exercise than the exercise training program. Other studies during competition (endurance, jumping, eventing, and racing) have investigated the influence on oxidative stress with varying results

  7. Mild oxidative stress is beneficial for sperm telomere length maintenance

    PubMed Central

    Mishra, Swetasmita; Kumar, Rajeev; Malhotra, Neena; Singh, Neeta; Dada, Rima

    2016-01-01

    AIM: To evaluate telomere length in sperm DNA and its correlation with oxidative stress (normal, mild, severe). METHODS: The study included infertile men (n = 112) and age matched fertile controls (n = 102). The average telomere length from the sperm DNA was measured using a quantitative real time PCR based assay. Seminal reactive oxygen species (ROS) and 8-Isoprostane (8-IP) levels were measured by chemiluminescence assay and ELISA respectively. RESULTS: Average sperm telomere length in infertile men and controls was 0.609 ± 0.15 and 0.789 ± 0.060, respectively (P < 0.0001). Seminal ROS levels in infertile was higher [66.61 ± 28.32 relative light units (RLU)/s/million sperm] than in controls (14.04 ± 10.67 RLU/s/million sperm) (P < 0.0001). The 8-IP level in infertile men was significantly higher (421.55 ± 131.29 pg/mL) than in controls (275.94 ± 48.13 pg/mL) (P < 0.001). When correlated to oxidative stress, in normal range of oxidative stress (ROS, 0-21.3 RLU/s/million sperm) the average telomere length in cases was 0.663 ± 0.14, in mild oxidative stress (ROS, 21.3-35 RLU/s/million sperm) it was elevated (0.684 ± 0.12) and in severe oxidative stress (ROS > 35 RLU/s/million sperm) average telomere length was decreased to 0.595 ± 0.15. CONCLUSION: Mild oxidative stress results in lengthening of telomere length, but severe oxidative stress results in shorter telomeres. Although telomere maintenance is a complex trait, the study shows that mild oxidative stress is beneficial in telomere length maintenance and thus a delicate balance needs to be established to maximize the beneficial effects of free radicals and prevent harmful effects of supra physiological levels. Detailed molecular evaluation of telomere structure, its correlation with oxidative stress would aid in elucidating the cause of accelerated telomere length attrition. PMID:27376021

  8. Radical-free biology of oxidative stress

    PubMed Central

    Jones, Dean P.

    2008-01-01

    Free radical-induced macromolecular damage has been studied extensively as a mechanism of oxidative stress, but large-scale intervention trials with free radical scavenging antioxidant supplements show little benefit in humans. The present review summarizes data supporting a complementary hypothesis for oxidative stress in disease that can occur without free radicals. This hypothesis, which is termed the “redox hypothesis,” is that oxidative stress occurs as a consequence of disruption of thiol redox circuits, which normally function in cell signaling and physiological regulation. The redox states of thiol systems are sensitive to two-electron oxidants and controlled by the thioredoxins (Trx), glutathione (GSH), and cysteine (Cys). Trx and GSH systems are maintained under stable, but nonequilibrium conditions, due to a continuous oxidation of cell thiols at a rate of about 0.5% of the total thiol pool per minute. Redox-sensitive thiols are critical for signal transduction (e.g., H-Ras, PTP-1B), transcription factor binding to DNA (e.g., Nrf-2, nuclear factor-κB), receptor activation (e.g., αIIbβ3 integrin in platelet activation), and other processes. Nonradical oxidants, including peroxides, aldehydes, quinones, and epoxides, are generated enzymatically from both endogenous and exogenous precursors and do not require free radicals as intermediates to oxidize or modify these thiols. Because of the nonequilibrium conditions in the thiol pathways, aberrant generation of nonradical oxidants at rates comparable to normal oxidation may be sufficient to disrupt function. Considerable opportunity exists to elucidate specific thiol control pathways and develop interventional strategies to restore normal redox control and protect against oxidative stress in aging and age-related disease. PMID:18684987

  9. Oxidative stress alters global histone modification and DNA methylation.

    PubMed

    Niu, Yingmei; DesMarais, Thomas L; Tong, Zhaohui; Yao, Yixin; Costa, Max

    2015-05-01

    The JmjC domain-containing histone demethylases can remove histone lysine methylation and thereby regulate gene expression. The JmjC domain uses iron Fe(II) and α-ketoglutarate (αKG) as cofactors in an oxidative demethylation reaction via hydroxymethyl lysine. We hypothesize that reactive oxygen species will oxidize Fe(II) to Fe(III), thereby attenuating the activity of JmjC domain-containing histone demethylases. To minimize secondary responses from cells, extremely short periods of oxidative stress (3h) were used to investigate this question. Cells that were exposed to hydrogen peroxide (H2O2) for 3h exhibited increases in several histone methylation marks including H3K4me3 and decreases of histone acetylation marks including H3K9ac and H4K8ac; preincubation with ascorbate attenuated these changes. The oxidative stress level was measured by generation of 2',7'-dichlorofluorescein, GSH/GSSG ratio, and protein carbonyl content. A cell-free system indicated that H2O2 inhibited histone demethylase activity where increased Fe(II) rescued this inhibition. TET protein showed a decreased activity under oxidative stress. Cells exposed to a low-dose and long-term (3 weeks) oxidative stress also showed increased global levels of H3K4me3 and H3K27me3. However, these global methylation changes did not persist after washout. The cells exposed to short-term oxidative stress also appeared to have higher activity of class I/II histone deacetylase (HDAC) but not class III HDAC. In conclusion, we have found that oxidative stress transiently alters the epigenetic program process through modulating the activity of enzymes responsible for demethylation and deacetylation of histones.

  10. In vitro model suggests oxidative stress involved in keratoconus disease

    NASA Astrophysics Data System (ADS)

    Karamichos, D.; Hutcheon, A. E. K.; Rich, C. B.; Trinkaus-Randall, V.; Asara, J. M.; Zieske, J. D.

    2014-04-01

    Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype.

  11. In vitro model suggests oxidative stress involved in keratoconus disease

    PubMed Central

    Karamichos, D.; Hutcheon, A. E. K.; Rich, C. B.; Trinkaus-Randall, V.; Asara, J. M.; Zieske, J. D.

    2014-01-01

    Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype. PMID:24714342

  12. Contribution of mitochondrial oxidative stress to hypertension

    PubMed Central

    Dikalov, Sergey I.; Dikalova, Anna E.

    2016-01-01

    Purpose of review In 1954 Harman proposed the free radical theory of aging, and in 1972 he suggested that mitochondria are both the source and the victim of toxic free radicals. Interestingly, hypertension is age-associated disease and clinical data show that by age 70, 70% of the population has hypertension and this is accompanied by oxidative stress. Antioxidant therapy however is not currently available and common antioxidants like ascorbate and vitamin E are ineffective in preventing hypertension. The present review focuses on molecular mechanisms of mitochondrial oxidative stress and therapeutic potential of targeting mitochondria in hypertension. Recent findings In the past several years, we have shown that the mitochondria become dysfunctional in hypertension and have defined novel role of mitochondrial superoxide radicals in this disease. We have shown that genetic manipulation of mitochondrial antioxidant enzyme superoxide dismutase (SOD2) affects blood pressure and have developed mitochondria-targeted therapies such as SOD2 mimetics that effectively lower blood pressure. The specific mechanism of mitochondrial oxidative stress in hypertension, however, remains unclear. Recent animal and clinical studies have demonstrated several hormonal, metabolic, inflammatory, and environmental pathways contributing to mitochondrial dysfunction and oxidative stress. Summary Nutritional supplements, calorie restriction, and life style change are the most effective preventive strategies to improve mitochondrial function and reduce mitochondrial oxidative stress. Aging associated mitochondrial dysfunction, however, reduces efficacy of these strategies. Therefore, we propose that new classes of mitochondria-targeted antioxidants can provide high therapeutic potential to improve endothelial function and reduce hypertension. PMID:26717313

  13. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  14. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    PubMed Central

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N.; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M.; Tsao, Philip S.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease. PMID:26512646

  15. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias.

    PubMed

    Karagueuzian, Hrayr S; Nguyen, Thao P; Qu, Zhilin; Weiss, James N

    2013-01-01

    Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death.

  16. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias

    PubMed Central

    Karagueuzian, Hrayr S.; Nguyen, Thao P.; Qu, Zhilin; Weiss, James N.

    2013-01-01

    Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death. PMID:23423152

  17. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues.

  18. The impact of oxidative stress on hair.

    PubMed

    Trüeb, R M

    2015-12-01

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health.

  19. Potential markers of oxidative stress in stroke.

    PubMed

    Cherubini, Antonio; Ruggiero, Carmelinda; Polidori, M Cristina; Mecocci, Patrizia

    2005-10-01

    Free radical production is increased in ischemic and hemorrhagic stroke, leading to oxidative stress that contributes to brain damage. The measurement of oxidative stress in stroke would be extremely important for a better understanding of its pathophysiology and for identifying subgroups of patients that might receive targeted therapeutic intervention. Since direct measurement of free radicals and oxidized molecules in the brain is difficult in humans, several biological substances have been investigated as potential peripheral markers. Among lipid peroxidation products, malondialdehyde, despite its relevant methodological limitations, is correlated with the size of ischemic stroke and clinical outcome, while F2-isoprostanes appear to be promising, but they have not been adequately evaluated. 8-Hydroxy-2-deoxyguanosine has been extensively investigated as markers of oxidative DNA damage but no study has been done in stroke patients. Also enzymatic and nonenzymatic antioxidants have been proposed as indirect markers. Among them ascorbic acid, alpha-tocopherol, uric acid, and superoxide dismutase are related to brain damage and clinical outcome. After a critical evaluation of the literature, we conclude that, while an ideal biomarker is not yet available, the balance between antioxidants and by-products of oxidative stress in the organism might be the best approach for the evaluation of oxidative stress in stroke patients.

  20. Oxidative stress in patients with obstructive sleep apnoea syndrome.

    PubMed

    Passali, D; Corallo, G; Yaremchuk, S; Longini, M; Proietti, F; Passali, G C; Bellussi, L

    2015-12-01

    Obstructive sleep apnoea syndrome (OSAS) is a disorder that leads to metabolic abnormalities and increased cardiovascular risk. The aim of this study was to identify early laboratory markers of cardiovascular disease through analysis of oxidative stress in normal subjects and patients with OSAS. A prospective study was designed to compare outcomes of oxidative stress laboratory tests in 20 adult patients with OSAS and a control group of 20 normal subjects. Laboratory techniques for detecting and quantifying free radical damage must be targeted to assess the pro-oxidant component and the antioxidant in order to obtain an overall picture of oxidative balance. No statistical differences in age, sex distribution, or BMI were found between the two groups (p>0.05). There were significant differences in the apnoea/hypopnoea index (AHI) between OSAS patients and the control group (p<0.05). Statistically significant differences in isoprostane, advanced oxidation protein products (AOPP) and non-protein bound iron (NPBI) levels were found between the study and control groups. No significant difference in the levels of thiol biomarkers was found between the two groups. The main finding of the present study was increased production of oxidative stress biomarkers in OSAS patients. The major difference between thiols and other oxidative stress biomarkers is that thiols are antioxidants, while the others are expressions of oxidative damage. The findings of the present study indicate that biomarkers of oxidative stress in OSAS may be used as a marker of upper airway obstructive episodes due to mechanical trauma, as well as a marker of hypoxaemia causing local oropharyngeal inflammation.

  1. Salivary markers of oxidative stress in oral diseases

    PubMed Central

    Tóthová, L'ubomíra; Kamodyová, Natália; Červenka, Tomáš; Celec, Peter

    2015-01-01

    Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis, and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status, and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis. PMID:26539412

  2. Linking phosphorus availability with photo-oxidative stress in plants.

    PubMed

    Hernández, Iker; Munné-Bosch, Sergi

    2015-05-01

    Plants have evolved a plethora of mechanisms to circumvent the potential damaging effects of living under low phosphorus availability in the soil. These mechanisms include different levels of organization, from root-shoot signalling at the whole-plant level to specific biochemical responses at the subcellular level, such as reductions in photosynthesis and the consequent activation of photo- and antioxidant mechanisms in chloroplasts. Some recent studies clearly indicate that severe phosphorus deficiency can lead to alterations in the photosynthetic apparatus, including reductions in CO2 assimilation rates, a down-regulation of photosynthesis-related genes and photoinhibition at the photosystem II level, thus causing potential photo-oxidative stress. Photo-oxidative stress is characterized by an increased production of reactive oxygen species in chloroplasts, which at low concentrations can serve a signalling, protective role, but when present at high concentrations can cause damage to lipids, proteins and nucleic acids, thus leading to irreversible injuries. We discuss here the mechanisms that phosphate-starved plants have evolved to withstand photo-oxidative stress, including changes at the subcellular level (e.g. activation of photo- and antioxidant protection mechanisms in chloroplasts), cellular and tissular levels (e.g. activation of photorespiration and anthocyanin accumulation) and whole-plant level (alterations in source-sink relationships modulated by hormones). Of particular importance is the current evidence demonstrating that phosphate-starved plants activate simultaneous responses at multiple levels, from transcriptional changes to root-shoot signalling, to prevent oxidative damage. In this review, we summarize current knowledge about the occurrence of photo-oxidative stress in phosphate-starved plants and highlight the mechanisms these plants have evolved to prevent oxidative damage under phosphorus limitation at the subcellular, cellular and whole

  3. Acrylonitrile-Induced Oxidative Stress and Oxidative DNA Damage in Male Sprague-Dawley Rats

    PubMed Central

    Kamendulis, Lisa M.; Klaunig, James E.

    2009-01-01

    Studies have demonstrated that the induction of oxidative stress may be involved in brain tumor induction in rats by acrylonitrile. The present study examined whether acrylonitrile induces oxidative stress and DNA damage in rats and whether blood can serve as a valid surrogate for the biomonitoring of oxidative stress induced by acrylonitrile in the exposed population. Male Sprague-Dawley rats were treated with 0, 3, 30, 100, and 200 ppm acrylonitrile in drinking water for 28 days. One group of rats were also coadministered N-acetyl cysteine (NAC) (0.3% in diet) with acrylonitrile (200 ppm in drinking water) to examine whether antioxidant supplementation was protective against acrylonitrile-induced oxidative stress. Direct DNA strand breakage in white blood cells (WBC) and brain was measured using the alkaline comet assay. Oxidative DNA damage in WBC and brain was evaluated using formamidopyrimidine DNA glycosylase (fpg)-modified comet assay and with high-performance liquid chromatography-electrochemical detection. No significant increase in direct DNA strand breaks was observed in brain and WBC from acrylonitrile-treated rats. However, oxidative DNA damage (fpg comet and 8′hydroxyl-2-deoxyguanosine) in brain and WBC was increased in a dose-dependent manner. In addition, plasma levels of reactive oxygen species (ROS) increased in rats administered acrylonitrile. Dietary supplementation with NAC prevented acrylonitrile-induced oxidative DNA damage in brain and WBC. A slight, but significant, decrease in the GSH:GSSG ratio was seen in brain at acrylonitrile doses > 30 ppm. These results provide additional support that the mode of action for acrylonitrile-induced astrocytomas involves the induction of oxidative stress and damage. Significant associations were seen between oxidative DNA damage in WBC and brain, ROS formation in plasma, and the reported tumor incidences. Since oxidative DNA damage in brain correlated with oxidative damage in WBC, these results suggest

  4. Oxidative and Nitrative Stress in Neurodegeneration

    PubMed Central

    Cobb, Catherine A.; Cole, Marsha P.

    2015-01-01

    Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage. PMID:26024962

  5. Oxidative stress as a mechanism of teratogenesis.

    PubMed

    Hansen, Jason M

    2006-12-01

    Emerging evidence shows that redox-sensitive signal transduction pathways are critical for developmental processes, including proliferation, differentiation, and apoptosis. As a consequence, teratogens that induce oxidative stress (OS) may induce teratogenesis via the misregulation of these same pathways. Many of these pathways are regulated by cellular thiol redox couples, namely glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine. This review outlines oxidative stress as a mechanism of teratogenesis through the disruption of thiol-mediated redox signaling. Due to the ability of many known and suspected teratogens to induce oxidative stress and the many signaling pathways that have redox-sensitive components, further research is warranted to fully understand these mechanisms.

  6. Oxidative stress and mitochondrial dysfunction in sepsis.

    PubMed

    Galley, H F

    2011-07-01

    Sepsis-related organ dysfunction remains the most common cause of death in the intensive care unit (ICU), despite advances in healthcare and science. Marked oxidative stress as a result of the inflammatory responses inherent with sepsis initiates changes in mitochondrial function which may result in organ damage. Normally, a complex system of interacting antioxidant defences is able to combat oxidative stress and prevents damage to mitochondria. Despite the accepted role that oxidative stress-mediated injury plays in the development of organ failure, there is still little conclusive evidence of any beneficial effect of systemic antioxidant supplementation in patients with sepsis and organ dysfunction. It has been suggested, however, that antioxidant therapy delivered specifically to mitochondria may be useful.

  7. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees.

  8. Contaminant-induced oxidative stress in fish: a mechanistic approach.

    PubMed

    Lushchak, Volodymyr I

    2016-04-01

    The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described.

  9. Oxidative stress in development: nature or nurture?

    PubMed

    Dennery, Phyllis A

    2010-10-15

    An unavoidable consequence of aerobic respiration is the generation of reactive oxygen species (ROS). These may negatively impact development. Nevertheless, a certain amount of oxidative stress is required to allow for the normal progression of embryonic and fetal growth. Alterations in placental oxidative stress results in altered placental function and ultimately altered fetal growth and/or developmental programming leading to long-term consequences into adulthood. This article reviews the role of redox in fetal development and will focus on how developmental programming is influenced by the fetal and placental redox state as well as discuss potential therapeutic interventions.

  10. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  11. Exercise-Induced Oxidative Stress Responses in the Pediatric Population.

    PubMed

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z; Mastorakos, George; Fatouros, Ioannis G

    2017-01-17

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  12. Involvement of oxidative stress in Alzheimer disease.

    PubMed

    Nunomura, Akihiko; Castellani, Rudy J; Zhu, Xiongwei; Moreira, Paula I; Perry, George; Smith, Mark A

    2006-07-01

    Genetic and lifestyle-related risk factors for Alzheimer disease (AD) are associated with an increase in oxidative stress, suggesting that oxidative stress is involved at an early stage of the pathologic cascade. Moreover, oxidative stress is mechanistically and chronologically associated with other key features of AD, namely, metabolic, mitochondrial, metal, and cell-cycle abnormalities. Contrary to the commonly held notion that pathologic hallmarks of AD signify etiology, several lines of evidence now indicate that aggregation of amyloid-beta and tau is a compensatory response to underlying oxidative stress. Therefore, removal of proteinaceous accumulations may treat the epiphenomenon rather than the disease and may actually enhance oxidative damage. Although some antioxidants have been shown to reduce the incidence of AD, the magnitude of the effect may be modified by individual factors such as genetic predisposition (e.g. apolipoprotein E genotype) and habitual behaviors. Because caloric restriction, exercise, and intellectual activity have been experimentally shown to promote neuronal survival through enhancement of endogenous antioxidant defenses, a combination of dietary regimen of low total calorie and rich antioxidant nutrients and maintaining physical and intellectual activities may ultimately prove to be one of the most efficacious strategies for AD prevention.

  13. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  14. Oxidative stress in brain ischemia.

    PubMed

    Love, S

    1999-01-01

    Brain ischemia initiates a complex cascade of metabolic events, several of which involve the generation of nitrogen and oxygen free radicals. These free radicals and related reactive chemical species mediate much of damage that occurs after transient brain ischemia, and in the penumbral region of infarcts caused by permanent ischemia. Nitric oxide, a water- and lipid-soluble free radical, is generated by the action of nitric oxide synthases. Ischemia causes a surge in nitric oxide synthase 1 (NOS 1) activity in neurons and, possibly, glia, increased NOS 3 activity in vascular endothelium, and later an increase in NOS 2 activity in a range of cells including infiltrating neutrophils and macrophages, activated microglia and astrocytes. The effects of ischemia on the activity of NOS 1, a Ca2+-dependent enzyme, are thought to be secondary to reversal of glutamate reuptake at synapses, activation of NMDA receptors, and resulting elevation of intracellular Ca2+. The up-regulation of NOS 2 activity is mediated by transcriptional inducers. In the context of brain ischemia, the activity of NOS 1 and NOS 2 is broadly deleterious, and their inhibition or inactivation is neuroprotective. However, the production of nitric oxide in blood vessels by NOS 3, which, like NOS 1, is Ca2+-dependent, causes vasodilatation and improves blood flow in the penumbral region of brain infarcts. In addition to causing the synthesis of nitric oxide, brain ischemia leads to the generation of superoxide, through the action of nitric oxide synthases, xanthine oxidase, leakage from the mitochondrial electron transport chain, and other mechanisms. Nitric oxide and superoxide are themselves highly reactive but can also combine to form a highly toxic anion, peroxynitrite. The toxicity of the free radicals and peroxynitrite results from their modification of macromolecules, especially DNA, and from the resulting induction of apoptotic and necrotic pathways. The mode of cell death that prevails probably

  15. Oxidative Stress, DNA Repair and Prostate Cancer Risk

    DTIC Science & Technology

    2010-08-01

    progressed smoothly for all three specific aims. 15. SUBJECT TERMS microRNA ovarian cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... factors for prostate cancer are associated with elevated levels of ROS (advancing age, inflammation, androgen, high-fat diet), or decreased...TITLE: Oxidative Stress, DNA Repair and Prostate Cancer Risk PRINCIPAL INVESTIGATOR: Hua Zhao, Ph.D

  16. Oxidative stress modulation in hepatitis C virus infected cells

    PubMed Central

    Lozano-Sepulveda, Sonia A; Bryan-Marrugo, Owen L; Cordova-Fletes, Carlos; Gutierrez-Ruiz, Maria C; Rivas-Estilla, Ana M

    2015-01-01

    Hepatitis C virus (HCV) replication is associated with the endoplasmic reticulum, where the virus can induce cellular stress. Oxidative cell damage plays an important role in HCV physiopathology. Oxidative stress is triggered when the concentration of oxygen species in the extracellular or intracellular environment exceeds antioxidant defenses. Cells are protected and modulate oxidative stress through the interplay of intracellular antioxidant agents, mainly glutathione system (GSH) and thioredoxin; and antioxidant enzyme systems such as superoxide dismutase, catalase, GSH peroxidase, and heme oxygenase-1. Also, the use of natural and synthetic antioxidants (vitamin C and E, N-acetylcysteine, glycyrrhizin, polyenylphosphatidyl choline, mitoquinone, quercetin, S-adenosylmethionine and silymarin) has already shown promising results as co-adjuvants in HCV therapy. Despite all the available information, it is not known how different agents with antiviral activity can interfere with the modulation of the cell redox state induced by HCV and decrease viral replication. This review describes an evidence-based consensus on molecular mechanisms involved in HCV replication and their relationship with cell damage induced by oxidative stress generated by the virus itself and cell antiviral machinery. It also describes some molecules that modify the levels of oxidative stress in HCV-infected cells. PMID:26692473

  17. Arterial Stiffness, Oxidative Stress, and Smoke Exposure in Wildland Firefighters

    PubMed Central

    Gaughan, Denise M.; Siegel, Paul D.; Hughes, Michael D.; Chang, Chiung-Yu; Law, Brandon F.; Campbell, Corey R.; Richards, Jennifer C.; Kales, Stefanos F.; Chertok, Marcia; Kobzik, Lester; Nguyen, Phuongson; O’Donnell, Carl R.; Kiefer, Max; Wagner, Gregory R.; Christiani, David C.

    2015-01-01

    Objectives To assess the association between exposure, oxidative stress, symptoms, and cardiorespiratory function in wildland firefighters. Methods We studied two Interagency Hotshot Crews with questionnaires, pulse wave analysis for arterial stiffness, spirometry, urinary 8-iso-prostaglandin F2α (8-isoprostane) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), and the smoke exposure marker (urinary levoglucosan). Arterial stiffness was assessed by examining levels of the aortic augmentation index, expressed as a percentage. An oxidative stress score comprising the average of z-scores created for 8-OHdG and 8-isoprostane was calculated. Results Mean augmentation index % was higher for participants with higher oxidative stress scores after adjusting for smoking status. Specifically for every one unit increase in oxidative stress score the augmentation index % increased 10.5% (95% CI: 2.5, 18.5%). Higher mean lower respiratory symptom score was associated with lower percent predicted forced expiratory volume in one second/forced vital capacity. Conclusions Biomarkers of oxidative stress may serve as indicators of arterial stiffness in wildland firefighters. PMID:24909863

  18. Elevated urinary levels of 8-oxo-2'-deoxyguanosine, (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines, and 8-iso-prostaglandin F2α as potential biomarkers of oxidative stress in patients with prediabetes.

    PubMed

    Kant, Melis; Akış, Merve; Çalan, Mehmet; Arkan, Tuğba; Bayraktar, Fırat; Dizdaroglu, Miral; İşlekel, Hüray

    2016-12-01

    Prediabetes is the preclinical stage of type 2 diabetes mellitus (T2DM) with intermediate state of hyperglycemia. Hyperglycemia results in a state of oxidative stress, which may contribute to the production of insulin resistance, β-cell dysfunction and long-term complications of diabetes. Novel approaches are required for prevention and treatment of diabetes. New biomarkers that can be used in risk stratification and therapy control as supplementary to current parameters are needed. These biomarkers may facilitate a more individualized and sufficient treatment of diabetes. Therefore, the aim of this study was to investigate the levels of oxidatively induced DNA damage products, 8-oxo-2'-deoxyguanosine (8-oxo-dG) (also known as 8-OH-dG), (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines (R-cdA and S-cdA), and the lipid peroxidation product 8-iso-prostaglandin F2α (8-iso-PGF2α) as reliable oxidative stress markers in patients with prediabetes or T2DM in comparison with healthy volunteers. Urine samples were collected from these subjects. Absolute quantification of 8-oxo-dG, R-cdA, S-cdA and 8-iso-PGF2α was achieved by liquid chromatography-isotope dilution tandem mass spectrometry. The levels of 8-oxo-dG, S-cdA and 8-iso-PGF2α were significantly greater in prediabetes patients than those in healthy volunteers. T2DM patients also had higher levels of 8-oxo-dG than healthy volunteers. No statistically significant difference was observed for R-cdA levels. 8-Oxo-dG levels positively correlated with R-cdA and S-cdA levels for prediabetes and newly diagnosed T2DM. S-cdA levels and HbA1c were found negatively correlated in prediabetes patients. Also 8-iso-PGF2α levels and HbA1c were found negatively correlated in prediabetes patients. These results indicate that oxidatively induced macromolecular damage appears before the establishment of T2DM. Thus, our data suggest that oxidatively induced DNA damage and lipid peroxidation products that were found to be elevated in

  19. Does aspirin-induced oxidative stress cause asthma exacerbation?

    PubMed Central

    Kacprzak, Dorota

    2015-01-01

    Aspirin-induced asthma (AIA) is a distinct clinical syndrome characterized by severe asthma exacerbations after ingestion of aspirin or other non-steroidal anti-inflammatory drugs. The exact pathomechanism of AIA remains unknown, though ongoing research has shed some light. Recently, more and more attention has been focused on the role of aspirin in the induction of oxidative stress, especially in cancer cell systems. However, it has not excluded the similar action of aspirin in other inflammatory disorders such as asthma. Moreover, increased levels of 8-isoprostanes, reliable biomarkers of oxidative stress in expired breath condensate in steroid-naïve patients with AIA compared to AIA patients treated with steroids and healthy volunteers, has been observed. This review is an attempt to cover aspirin-induced oxidative stress action in AIA and to suggest a possible related pathomechanism. PMID:26170841

  20. Mitochondrial dysfunction and oxidative stress in aging and cancer

    PubMed Central

    Kudryavtseva, Anna V.; Krasnov, George S.; Dmitriev, Alexey A.; Alekseev, Boris Y.; Kardymon, Olga L.; Sadritdinova, Asiya F.; Fedorova, Maria S.; Pokrovsky, Anatoly V.; Melnikova, Nataliya V.; Kaprin, Andrey D.; Moskalev, Alexey A.; Snezhkina, Anastasiya V.

    2016-01-01

    Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype. PMID:27270647

  1. Investigating First Year Education Students' Stress Level

    ERIC Educational Resources Information Center

    Geng, Gretchen; Midford, Richard

    2015-01-01

    This paper investigated the stress levels of first-year education students who undertake teaching practicum and theory units during their first year of teacher education program. First, 139 first-year and 143 other years' education students completed the PSS-10 scale, which measures perceived level of stress. Then, 147 first-year education…

  2. Reproductive Benefit of Oxidative Damage: An Oxidative Stress “Malevolence”?

    PubMed Central

    Poljsak, B.; Milisav, I.; Lampe, T.; Ostan, I.

    2011-01-01

    High levels of reactive oxygen species (ROS) compared to antioxidant defenses are considered to play a major role in diverse chronic age-related diseases and aging. Here we present an attempt to synthesize information about proximate oxidative processes in aging (relevant to free radical or oxidative damage hypotheses of aging) with an evolutionary scenario (credited here to Dawkins hypotheses) involving tradeoffs between the costs and benefits of oxidative stress to reproducing organisms. Oxidative stress may be considered a biological imperfection; therefore, the Dawkins' theory of imperfect adaptation of beings to environment was applied to the role of oxidative stress in processes like famine and infectious diseases and their consequences at the molecular level such as mutations and cell signaling. Arguments are presented that oxidative damage is not necessarily an evolutionary mistake but may be beneficial for reproduction; this may prevail over its harmfulness to health and longevity in evolution. Thus, Dawkins' principle of biological “malevolence” may be an additional biological paradigm for explaining the consequences of oxidative stress. PMID:21969876

  3. Cold defence responses: the role of oxidative stress.

    PubMed

    Blagojevic, Dusko P; Grubor-Lajsic, Gordana N; Spasic, Mihajlo B

    2011-01-01

    Low temperatures provoke increased production of heat accompanied by increased respiration, oxygen consumption and the production of partially reduced oxygen species called ROS. ROS induce different forms of cellular oxidative damage, disturb the redox state and can change the activity of several metabolic enzymes. Organisms have developed a functionally connected set of anti-oxidant enzymes and low molecular mass compounds (together termed the ADS) that metabolise primary ROS. If ROS production within cells overwhelms the ADS, oxidative damage arises and oxidative stress can occur. Short-term cold exposure in endotherms leads to oxidative stress. As cold exposure persists organisms develop adaptive changes toward reducing ROS production and increasing the ADS. In contrast, heterotherms and ectotherms as a normal part of their over-wintering strategy slow down metabolism, oxygen consumption and subsequently cause ROS production. Increased baseline activity of key anti-oxidant enzymes as well as 'secondary' enzymatic defence and/or glutathione levels in preparation for a putative oxidative stressful situation arising from tissue re-oxygenation seems to be the preferred evolutionary adaptation of such animals exposed to low environmental temperatures.

  4. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  5. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response.

    PubMed

    Busch, Andrea W U; Montgomery, Beronda L

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.

  6. Oxidative stress responses and NRF2 in human leukaemia.

    PubMed

    Abdul-Aziz, Amina; MacEwan, David J; Bowles, Kristian M; Rushworth, Stuart A

    2015-01-01

    Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently been identified to have dysregulated metabolism in human leukaemia. This suggests that critical balance of intracellular ROS levels is required for cancer cell function, growth, and survival. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor plays a dual role in cancer. Primarily, NRF2 is a transcription factor functioning to protect nonmalignant cells from malignant transformation and oxidative stress through transcriptional activation of detoxifying and antioxidant enzymes. However, once malignant transformation has occurred within a cell, NRF2 functions to protect the tumour from oxidative stress and chemotherapy-induced cytotoxicity. Moreover, inhibition of the NRF2 oxidative stress pathway in leukaemia cells renders them more sensitive to cytotoxic chemotherapy. Our improved understanding of NRF2 biology in human leukaemia may permit mechanisms by which we could potentially improve future cancer therapies. This review highlights the mechanisms by which leukaemic cells exploit the NRF2/ROS response to promote their growth and survival.

  7. Nonezymatic formation of succinate in mitochondria under oxidative stress.

    PubMed

    Fedotcheva, Nadezhda I; Sokolov, Alexander P; Kondrashova, Mariya N

    2006-07-01

    The products of the reactions of mitochondrial 2-oxo acids with hydrogen peroxide and tert-butyl hydroperoxide (tert-BuOOH) were studied in a chemical system and in rat liver mitochondria. It was found by HPLC that the decarboxylation of alpha-ketoglutarate (KGL), pyruvate (PYR), and oxaloacetate (OA) by both oxidants results in the formation of succinate, acetate, and malonate, respectively. The two latter products do not metabolize in rat liver mitochondria, whereas succinate is actively oxidized, and its nonenzymatic formation from KGL may shunt the tricarboxylic acid (TCA) cycle upon inactivation of alpha-ketoglutarate dehydrogenase (KGDH) under oxidative stress, which is inherent in many diseases and aging. The occurrence of nonenzymatic oxidation of KGL in mitochondria was established by an increase in the CO(2) and succinate levels in the presence of the oxidants and inhibitors of enzymatic oxidation. H(2)O(2) and menadione as an inductor of reactive oxygen species (ROS) caused the formation of CO(2) in the presence of sodium azide and the production of succinate, fumarate, and malate in the presence of rotenone. These substrates were also formed from KGL when mitochondria were incubated with tert-BuOOH at concentrations that completely inhibit KGDH. The nonenzymatic oxidation of KGL can support the TCA cycle under oxidative stress, provided that KGL is supplied via transamination. This is supported by the finding that the strong oxidant such as tert-BuOOH did not impair respiration and its sensitivity to the transaminase inhibitor aminooxyacetate when glutamate and malate were used as substrates. The appearance of two products, KGL and fumarate, also favors the involvement of transamination. Thus, upon oxidative stress, nonenzymatic decarboxylation of KGL and transamination switch the TCA cycle to the formation and oxidation of succinate.

  8. Oxidative stress, phototherapy and the neonate.

    PubMed

    Gathwala, G; Sharma, S

    2000-11-01

    Phototherapy is the most widely used form of therapy for unconjugated hyperbilirubinaemia. Its non-invasive nature and few side effects reported earlier have led to the assumption that it is innocuous. Recent research has revealed that phototherapy is a photodynamic stress and can induce lipid peroxidation. There is increasing evidence that many severe diseases of the neonate are caused by oxidative injury and lipid peroxidation. In the present communique, we review the oxidative susceptibility of the neonate and the evidence now available that phototherapy induces oxidative stress. Although intensive phototherapy (up to 40 mwatt/cm2/nm) has been reported to be increasingly effective, a little caution, we believe is warranted, till more definite data in the human neonate, help resolve the issue.

  9. Methylglyoxal promotes oxidative stress and endothelial dysfunction.

    PubMed

    Sena, Cristina M; Matafome, Paulo; Crisóstomo, Joana; Rodrigues, Lisa; Fernandes, Rosa; Pereira, Paulo; Seiça, Raquel M

    2012-05-01

    Modern diets can cause modern diseases. Research has linked a metabolite of sugar, methylglyoxal (MG), to the development of diabetic complications, but the exact mechanism has not been fully elucidated. The present study was designed to investigate whether MG could directly influence endothelial function, oxidative stress and inflammation in Wistar and Goto-Kakizaki (GK) rats, an animal model of type 2 diabetes. Wistar and GK rats treated with MG in the drinking water for 3 months were compared with the respective control rats. The effects of MG were investigated on NO-dependent vasorelaxation in isolated rat aortic arteries from the different groups. Insulin resistance, NO bioavailability, glycation, a pro-inflammatory biomarker monocyte chemoattractant protein-1 (MCP-1) and vascular oxidative stress were also evaluated. Methylglyoxal treated Wistar rats significantly reduced the efficacy of NO-dependent vasorelaxation (p<0.001). This impairment was accompanied by a three fold increase in the oxidative stress marker nitrotyrosine. Advanced glycation endproducts (AGEs) formation was significantly increased as well as MCP-1 and the expression of the receptor for AGEs (RAGE). NO bioavailability was significantly attenuated and accompanied by an increase in superoxide anion immunofluorescence. Methylglyoxal treated GK rats significantly aggravated endothelial dysfunction, oxidative stress, AGEs accumulation and diminished NO bioavailability when compared with control GK rats. These results indicate that methylglyoxal induced endothelial dysfunction in normal Wistar rats and aggravated the endothelial dysfunction present in GK rats. The mechanism is at least in part by increasing oxidative stress and/or AGEs formation with a concomitant increment of inflammation and a decrement in NO bioavailability. The present study provides further evidence for methylglyoxal as one of the causative factors in the pathogenesis of atherosclerosis and development of macrovascular

  10. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo; Aschner, Michael; Rocha, Joao B.T.

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  11. Measuring Science Teachers' Stress Level Triggered by Multiple Stressful Conditions

    ERIC Educational Resources Information Center

    Halim, Lilia; Samsudin, Mohd Ali; Meerah, T. Subahan M.; Osman, Kamisah

    2006-01-01

    The complexity of science teaching requires science teachers to encounter a range of tasks. Some tasks are perceived as stressful while others are not. This study aims to investigate the extent to which different teaching situations lead to different stress levels. It also aims to identify the easiest and most difficult conditions to be regarded…

  12. Behavior of Oxidative Stress Markers in Alcoholic Liver Cirrhosis Patients

    PubMed Central

    Galicia-Moreno, Marina; Rosique-Oramas, Dorothy; Medina-Avila, Zaira; Álvarez-Torres, Tania; Falcón, Dalia; Higuera-de la tijera, Fátima; Béjar, Yadira L.; Cordero-Pérez, Paula; Muñoz-Espinosa, Linda; Pérez-Hernández, José Luis; Kershenobich, David

    2016-01-01

    Alcohol is the most socially accepted addictive substance worldwide, and its metabolism is related with oxidative stress generation. The aim of this work was to evaluate the role of oxidative stress in alcoholic liver cirrhosis (ALC). This study included 187 patients divided into two groups: ALC, classified according to Child-Pugh score, and a control group. We determined the levels of reduced and oxidized glutathione (GSH and GSSG) and the GSH/GSSG ratio by an enzymatic method in blood. Also, protein carbonyl and malondialdehyde (MDA) content were estimated in serum. MDA levels increased in proportion to the severity of damage, whereas the GSH and GSSG levels decreased and increased, respectively, at different stages of cirrhosis. There were no differences in the GSH/GSSG ratio and carbonylated protein content between groups. We also evaluated whether the active consumption of or abstinence from alcoholic beverages affected the behavior of these oxidative markers and only found differences in the MDA, GSH, and GSSG determination and the GSH/GSSG ratio. Our results suggest that alcoholic cirrhotic subjects have an increase in oxidative stress in the early stages of disease severity and that abstinence from alcohol consumption favors the major antioxidant endogen: GSH in patients with advanced disease severity. PMID:28074118

  13. Behavior of Oxidative Stress Markers in Alcoholic Liver Cirrhosis Patients.

    PubMed

    Galicia-Moreno, Marina; Rosique-Oramas, Dorothy; Medina-Avila, Zaira; Álvarez-Torres, Tania; Falcón, Dalia; Higuera-de la Tijera, Fátima; Béjar, Yadira L; Cordero-Pérez, Paula; Muñoz-Espinosa, Linda; Pérez-Hernández, José Luis; Kershenobich, David; Gutierrez-Reyes, Gabriela

    2016-01-01

    Alcohol is the most socially accepted addictive substance worldwide, and its metabolism is related with oxidative stress generation. The aim of this work was to evaluate the role of oxidative stress in alcoholic liver cirrhosis (ALC). This study included 187 patients divided into two groups: ALC, classified according to Child-Pugh score, and a control group. We determined the levels of reduced and oxidized glutathione (GSH and GSSG) and the GSH/GSSG ratio by an enzymatic method in blood. Also, protein carbonyl and malondialdehyde (MDA) content were estimated in serum. MDA levels increased in proportion to the severity of damage, whereas the GSH and GSSG levels decreased and increased, respectively, at different stages of cirrhosis. There were no differences in the GSH/GSSG ratio and carbonylated protein content between groups. We also evaluated whether the active consumption of or abstinence from alcoholic beverages affected the behavior of these oxidative markers and only found differences in the MDA, GSH, and GSSG determination and the GSH/GSSG ratio. Our results suggest that alcoholic cirrhotic subjects have an increase in oxidative stress in the early stages of disease severity and that abstinence from alcohol consumption favors the major antioxidant endogen: GSH in patients with advanced disease severity.

  14. Oxidative stress in songbirds exposed to dietary methylmercury.

    PubMed

    Henry, Katie A; Cristol, Daniel A; Varian-Ramos, Claire W; Bradley, Eric L

    2015-04-01

    Long-term, sublethal methylmercury exposure can cause reproductive depression, immune suppression, endocrine disruption and other problems in birds. We used two biomarkers to detect oxidative stress in livers of zebra finches (Taeniopygia guttata) developmentally exposed to sublethal levels of dietary methylmercury (0.0, 0.3, 0.6, 1.2, or 2.4 μg/g wet weight in diet). Our findings indicate that young adult finches exposed to environmentally relevant concentrations of mercury in ovo and through their diets, exhibited oxidative stress in their livers. We measured the ratio of the antioxidant glutathione in its reduced form (GSH) versus its oxidized form (GSSG) and the activity of the superoxide dismutase (SOD) enzyme suite. Blood total mercury served as a proxy for liver mercury concentration, and was on average 8.4 times the dietary dose (e.g., birds consuming 0.6 μg/g had blood mercury levels of ~5 μg/g on a wet weight basis). Consistent with what is known from large, aquatic bird species, there was a significant, negative relationship between GSH/GSSG ratios and tissue mercury concentrations, which is indicative of oxidative stress. This relationship was driven by a significant increase in the oxidized glutathione in the livers of birds with higher blood mercury levels. SOD activity was also found to have a significant, negative relationship with blood mercury.

  15. Brain oxidative stress induced by obstructive jaundice in rats.

    PubMed

    Chroni, Elisabeth; Patsoukis, Nikolaos; Karageorgos, Nikolaos; Konstantinou, Dimitris; Georgiou, Christos

    2006-02-01

    The effect of experimental obstructive jaundice on the oxidative status of brain tissues in rats was examined. Twenty-four male Wistar rats were divided into 4 groups: Group I was the control, group II was the sham operated, and groups III and IV were bile duct ligated and killed on the 5th and the 10th day, respectively. Oxidative stress was assessed by measuring the thiol redox state (protein and nonprotein components) and lipid peroxidation level variations in samples from the cerebral cortex, midbrain, and cerebellar tissue in all animals. Results indicated the presence of oxidative stress in the jaundiced animals that was more pronounced on the 10th day as indicated by a decrease in reduced glutathione and protein thiol and an increase in protein disulphide and lipid peroxidation. A dramatic elevation of the level of total nonprotein mixed disulphide level was found specifically in the midbrain in the 10th day group. This suggests an accumulation of nonprotein disulfides other than oxidized glutathione, which remained unchanged, in this particular brain area. This study showed a correlation between experimental obstructive jaundice and the oxidative stress in the rats' brain, implying that a similar pathogenetic mechanism may play a key role in cholestatic liver disease, resulting in hepatic encephalopathy in humans.

  16. Inflammatory and oxidative stress in rotavirus infection

    PubMed Central

    Guerrero, Carlos A; Acosta, Orlando

    2016-01-01

    Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines. PMID:27175349

  17. [Effect of mexicor on oxidative stress in acute myocardial infarction].

    PubMed

    Golikov, A P; Davydov, B V; Rudnev, D V; Klychnikova, E V; Bykova, N S; Riabinin, V A; Polumiskov, V Iu; Nikolaeva, N Iu; Golikov, P P

    2005-01-01

    Mexicor (5% solution and capsules) was used in 40 of 80 conventionally treated patients with acute myocardial infarction. The drug was given intravenously for 5 days, than intramuscularly (6-9 mg/kg) for 9 days and orally (0.1 mg t.i.d.) thereafter until discharge. Severity of oxidative stress was evaluated by K coefficient. Calculation of this coefficient required data on degree of oxidation of lipids in blood serum, serum levels of diene conjugates, malonic dialdehyde, alpha-tocopherol and ceruloplasmin. These parameters as well as activity of superoxide dismutase, glutathione peroxidase and catalase in erythrocytes were measured at admission, on days 2, 3, 7, 14 and at discharge. Mexicor treated compared with untreated (n=40) patients were characterized by diminished severity of oxidative stress at the account of lower levels of lipid peroxidation products and augmented compensatory potential of the endogenous antioxidant system.

  18. Multimarker Screening of Oxidative Stress in Aging

    PubMed Central

    Syslová, Kamila; Böhmová, Adéla; Kuzma, Marek; Pelclová, Daniela; Kačer, Petr

    2014-01-01

    Aging is a complex process of organism decline in physiological functions. There is no clear theory explaining this phenomenon, but the most accepted one is the oxidative stress theory of aging. Biomarkers of oxidative stress, substances, which are formed during oxidative damage of phospholipids, proteins, and nucleic acids, are present in body fluids of diseased people as well as the healthy ones (in a physiological concentration). 8-iso prostaglandin F2α is the most prominent biomarker of phospholipid oxidative damage, o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine are biomarkers of protein oxidative damage, and 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanosine are biomarkers of oxidative damage of nucleic acids. It is thought that the concentration of biomarkers increases as the age of people increases. However, the concentration of biomarkers in body fluids is very low and, therefore, it is necessary to use a sensitive analytical method. A combination of HPLC and MS was chosen to determine biomarker concentration in three groups of healthy people of a different age (twenty, forty, and sixty years) in order to find a difference among the groups. PMID:25147595

  19. Maternal plasma prolidase, matrix metalloproteinases 1 and 13, and oxidative stress levels in pregnancies complicated by preterm premature rupture of the membranes and chorioamnionitis

    PubMed Central

    Soydinç, Hatice Ender; Sak, Muhammet Erdal; Evliyaoğlu, Osman; Evsen, Mehmet Sıddık; Turgut, Abdulkadir; Özler, Ali; Tay, Hayrettin; Gül, Talip

    2012-01-01

    Objective This study aimed to investigate the role of various biochemical markers in preterm premature rupture of membranes (PPROM) and in prediction of chorioamnionitis in patients with PPROM. Material and Methods This case-control study included a total of 100 pregnant women at 26–34 gestational weeks. Of these women, 50 were healthy and 50 had PPROM. The biochemical markers in the maternal plasma including prolidase, matrix metalloproteinase (MMP) 1 and 13, total oxidative status (TOS), total antioxidant capacity (TAC), glutathione peroxidase (GPx), catalase (CAT), paraoxonase-1 (PON-1), tumor necrosis factor alpha (TNF-α), and high sensitive C-reactive protein (hs-CRP) were assayed. These levels were compared between the PPROM and control groups and between women with or without chorioamnionitis in the PPROM group. Results Compared to the control group, the levels of prolidase, MMP-13, and TOS were significantly higher (p values <0.001, 0.020, and 0.035, respectively) and those of TAC and PON-1 were significantly lower in the maternal plasma of the PPROM group (p values=0.012 and <0.001, respectively). The plasma prolidase and TOS levels were significantly higher (p values=0.033 and 0.005, respectively) and the plasma TAC and PON-1 levels were significantly lower in women with chorioamnionitis as compared with the corresponding values in women without chorioamnionitis in the PPROM group (p values =0.041 and 0.048, respectively). The multivariate logistic regression analysis observed that prolidase, TAC, and PON-1 were important markers for the presence of PPROM and prolidase and TOS were important markers for predicting chorioamnionitis. Conclusion This study suggested that maternal plasma prolidase, TAC, and PON-1 may be useful for the diagnosis of PPROM, and prolidase and TOS may be used to predict chorioamnionitis in patients with PPROM. PMID:24592033

  20. [Mitochondria, oxidative stress and aging].

    PubMed

    Szarka, András; Bánhegyi, Gábor; Sümegi, Balázs

    2014-03-23

    The free radical theory of aging was defined in the 1950s. On the base of this theory, the reactive oxygen species formed in the metabolic pathways can play pivotal role in ageing. The theory was modified by defining the mitochondrial respiration as the major cellular source of reactive oxygen species and got the new name mitochondrial theory of aging. Later on the existence of a "vicious cycle" was proposed, in which the reactive oxygen species formed in the mitochondrial respiration impair the mitochondrial DNA and its functions. The formation of reactive oxygen species are elevated due to mitochondrial dysfunction. The formation of mitochondrial DNA mutations can be accelerated by this "vicious cycle", which can lead to accelerated aging. The exonuclease activity of DNA polymerase γ, the polymerase responsible for the replication of mitochondrial DNA was impaired in mtDNA mutator mouse recently. The rate of somatic mutations in mitochondrial DNA was elevated and an aging phenotype could have been observed in these mice. Surprisingly, no oxidative impairment neither elevated reactive oxygen species formation could have been observed in the mtDNA mutator mice, which may question the existence of the "vicious cycle".

  1. The calcium channel blocker verapamil inhibits oxidative stress response in Candida albicans.

    PubMed

    Yu, Qilin; Xiao, Chenpeng; Zhang, Kailun; Jia, Chang; Ding, Xiaohui; Zhang, Bing; Wang, Yu; Li, Mingchun

    2014-04-01

    Candida albicans is a common opportunistic fungal pathogen, causing both superficial candidiasis and life-threatening systemic infections in immune-compromised individuals. Calcium signaling is responsible for this pathogen in responding to several stresses, such as antifungal drugs, alkaline pH and membrane-perturbing agents. Our recent study revealed that it is also involved in oxidative stress response. In this study, we investigated the effect of verapamil, an L-type voltage-gated calcium channel blocker, on oxidative stress response in this fungus. The addition of verapamil resulted in increased sensitivity to the oxidative agent H2O2, which is associated with a decrease of calcium fluctuation under the stress. Moreover, this agent caused enhanced oxidative stress, with increased levels of ROS and enhanced dysfunction of the mitochondria under the oxidative stress. Further investigations in SOD activity, GSH contents and expression of oxidative stress response-related genes indicated that the effect of verapamil is related to the repression of oxidative stress response. Our findings demonstrated that verapamil has an inhibitory effect on oxidative stress response, confirming the relationship between calcium signaling and oxidative stress in C. albicans. Therefore, calcium channels may be potential targets for therapy to enhance the efficacy of oxidative stress against C. albicans-related infections.

  2. Protective Effects of Carvacrol against Oxidative Stress Induced by Chronic Stress in Rat's Brain, Liver, and Kidney

    PubMed Central

    Samarghandian, Saeed; Farkhondeh, Tahereh; Samini, Fariborz; Borji, Abasalt

    2016-01-01

    Restraint stress may be associated with elevated free radicals, and thus, chronic exposure to oxidative stress may cause tissue damage. Several studies have reported that carvacrol (CAR) has a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CAR on restraint stress induced oxidative stress damage in the brain, liver, and kidney. For chronic restraint stress, rats were kept in the restrainers for 6 h every day, for 21 consecutive days. The animals received systemic administrations of CAR daily for 21 days. To evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) activities were measured in the brain, liver, and kidney. In the stressed animals that received vehicle, the MDA level was significantly higher (P < 0.001) and the levels of GSH and antioxidant enzymes were significantly lower than the nonstressed animals (P < 0.001). CAR ameliorated the changes in the stressed animals as compared with the control group (P < 0.001). This study indicates that CAR can prevent restraint stress induced oxidative damage. PMID:26904286

  3. Fluorescence lifetime imaging of endogenous biomarker of oxidative stress

    PubMed Central

    Datta, Rupsa; Alfonso-García, Alba; Cinco, Rachel; Gratton, Enrico

    2015-01-01

    Presence of reactive oxygen species (ROS) in excess of normal physiological level results in oxidative stress. This can lead to a range of pathological conditions including inflammation, diabetes mellitus, cancer, cardiovascular and neurodegenerative disease. Biomarkers of oxidative stress play an important role in understanding the pathogenesis and treatment of these diseases. A number of fluorescent biomarkers exist. However, a non-invasive and label-free identification technique would be advantageous for in vivo measurements. In this work we establish a spectroscopic method to identify oxidative stress in cells and tissues by fluorescence lifetime imaging (FLIM). We identified an autofluorescent, endogenous species with a characteristic fluorescent lifetime distribution as a probe for oxidative stress. To corroborate our hypothesis that these species are products of lipid oxidation by ROS, we correlate the spectroscopic signals arising from lipid droplets by combining FLIM with THG and CARS microscopy which are established techniques for selective lipid body imaging. Further, we performed spontaneous Raman spectral analysis at single points of the sample which provided molecular vibration information characteristics of lipid droplets. PMID:25993434

  4. The oxidative stress of Phanerochaete chrysosporium against lead toxicity.

    PubMed

    Wan, Jia; Zeng, Guangming; Huang, Danlian; Huang, Chao; Lai, Cui; Li, Ningjie; Wei, Zhen; Xu, Piao; He, Xiaoxiao; Lai, Mingyong; He, Yibin

    2015-02-01

    Among the technologies for heavy metal remediation, bioremediation technology has gained extensive attention because of its low processing costs and high efficiency. The white-rot fungus Phanerochaete chrysosporium (P. chrysosporium) which has a good tolerance to heavy metals has been widely used in the heavy metal bioremediation. In order to figure out the molecular mechanisms involved in the oxidative stress of P. chrysosporium against metal toxicity, we examined the effect of Pb(2+) on the levels of reactive oxygen species and the production of malondialdehyde. Results showed that P. chrysosporium could adjust Pb-stressed condition by regulating the unique oxidation-antioxidation process in cells and kept a balance between oxidation and antioxidation when it was threatened by a different dose of Pb(2+). Investigations into the oxidative stress of P. chrysosporium to lead could not only provide a better understanding of the relationship between lead and oxidative stress in P. chrysosporium, but also offer important informations on the development of fungal-based remediation technologies to reduce the toxic effects of lead.

  5. Muscle Aging and Oxidative Stress in Wild-Caught Shrews

    PubMed Central

    Hindle, Allyson G.; Lawler, John M.; Campbell, Kevin L.; Horning, Markus

    2010-01-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free radical theory of aging in wild mammals, given their short (<18 month) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2× higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  6. Muscle aging and oxidative stress in wild-caught shrews.

    PubMed

    Hindle, Allyson G; Lawler, John M; Campbell, Kevin L; Horning, Markus

    2010-04-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free-radical theory of aging in wild mammals, given their short (<18months) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2x higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews.

  7. Oxidative Stress: A Promising Target for Chemoprevention

    PubMed Central

    John, AM Sashi Papu; Ankem, Murali K; Damodaran, Chendil

    2016-01-01

    Cancer is a leading cause of death worldwide, and treating advanced stages of cancer remains clinically challenging. Epidemiological studies have shown that oxidants and free radicals induced DNA damage is one of the predominant causative factors for cancer pathogenesis. Hence, oxidants are attractive targets for chemoprevention as well as therapy. Dietary agents are known to exert an anti-oxidant property which is one of the most efficient preventive strategy in cancer progression. In this article, we highlight dietary agents can potentially target oxidative stress, in turn delaying, preventing, or treating cancer development. Some of these agents are currently in use in basic research, while some have been launched successfully into clinical trials. PMID:27088073

  8. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  9. Oxidative stress response in Paracoccidioides brasiliensis.

    PubMed

    Campos, Elida G; Jesuino, Rosália Santos Amorim; Dantas, Alessandra da Silva; Brígido, Marcelo de Macedo; Felipe, Maria Sueli S

    2005-06-30

    Survival of pathogenic fungi inside human hosts depends on evasion from the host immune system and adaptation to the host environment. Among different insults that Paracoccidioides brasiliensis has to handle are reactive oxygen and nitrogen species produced by the human host cells, and by its own metabolism. Knowing how the parasite deals with reactive species is important to understand how it establishes infection and survives within humans. The initiative to describe the P. brasiliensis transcriptome fostered new approaches to study oxidative stress response in this organism. By examining genes related to oxidative stress response, one can evaluate the parasite's ability to face this condition and infer about possible ways to overcome this ability. We report the results of a search of the P. brasiliensis assembled expressed sequence tag database for homologous sequences involved in oxidative stress response. We described several genes coding proteins involved in antioxidant defense, for example, catalase and superoxide dismutase isoenzymes, peroxiredoxin, cytochrome c peroxidase, glutathione synthesis enzymes, thioredoxin, and the transcription factors Yap1 and Skn7. The transcriptome analysis of P. brasiliensis reveals a pathogen that has many resources to combat reactive species. Besides characterizing the antioxidant defense system in P. brasiliensis, we also compared the ways in which different fungi respond to oxidative damage, and we identified the basic features of this response.

  10. Evaluation of the Effects of Vaccinium arctostaphylos L. Fruit Extract on Serum Lipids and hs-CRP Levels and Oxidative Stress in Adult Patients with Hyperlipidemia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial.

    PubMed

    Soltani, Rasool; Hakimi, Mustafa; Asgary, Sedigheh; Ghanadian, Syed Mustafa; Keshvari, Mahtab; Sarrafzadegan, Nizal

    2014-01-01

    Background. Dyslipidemia produces atherosclerosis, which in turn results in coronary artery disease (CAD). Atherosclerosis is being considered as an inflammatory disease. Vaccinium arctostaphylos L. is a plant with fruits rich in anthocyanins. The aim of this study was to evaluate the effects of fruit extract of this plant on serum levels of lipids, hs-CRP, and malondialdehyde (MDA) as a marker of oxidative stress, in hyperlipidemic adult patients. Methods. In this randomized, double-blind, placebo-controlled clinical trial, 50 hyperlipidemic adult patients were randomly and equally assigned to receive either medicinal (V. arctostaphylos fruit extract) or placebo capsules twice daily for 4 weeks. Each medicinal capsule contained 45 ± 2 mg of anthocyanins. Fasting serum levels of total cholesterol, TG, LDL-C, HDL-C, hs-CRP, and MDA were obtained before and after the intervention and compared. Results. V. arctostaphylos fruit extract significantly reduced total cholesterol (P < 0.001), LDL-C (P = 0.004), TG (P < 0.001), and MDA (P = 0.013) compared to placebo but did not have any significant effect on HDL-C (P = 0.631) and hs-CRP (P = 0.190). Conclusion. Fruit extract of Vaccinium arctostaphylos has beneficial effects on serum lipid profile and oxidative stress in hyperlipidemic adult patients. Therefore, it could be considered as a supplement for treatment of dyslipidemia and prevention of atherosclerosis development.

  11. Association of Lipids with Oxidative Stress Biomarkers in Subclinical Hypothyroidism

    PubMed Central

    Santi, Adriana; Duarte, Marta M. M. F.; de Menezes, Charlene C.; Loro, Vania Lucia

    2012-01-01

    Objective. The aim of the present study was to evaluate the oxidative stress biomarkers in patients with subclinical hypothyroidism (n = 20) and health controls (n = 20). Subjects and Methods. Total cholesterol (TC), triglycerides (TGs), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), thiobarbituric acid reactive substances (TBARSs), catalase (CAT), superoxide dismutase (SOD), and arylesterase (ARE) were analyzed. Results. TC, LDL-C, TBARS, and CAT were higher in subclinical hypothyroidism patients, whereas SOD did not change. Arylesterase activity was significantly lower in the SH group, compared with the control group. Correlation analyses revealed the association of lipids (TC and LDL-C) with both oxidative stress biomarkers and thyrotropin (TSH). Thyroid hormones were correlated only with triglyceride levels. In addition, TSH was significantly correlated with TBARS, CAT, and SOD. However, no significant correlations were observed after controlling TC levels. Conclusions. We found that SH patients are under increased oxidative stress manifested by reduced ARE activity and elevated lipoperoxidation and CAT activity. Secondary hypercholesterolemia to thyroid dysfunction and not hypothyroidism per se appears to be associated with oxidative stress in subclinical hypothyroidism. PMID:23251155

  12. Oxidative stress response pathways: Fission yeast as archetype.

    PubMed

    Papadakis, Manos A; Workman, Christopher T

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.

  13. Cocoa phenolic extract protects pancreatic beta cells against oxidative stress.

    PubMed

    Martín, María Angeles; Ramos, Sonia; Cordero-Herrero, Isabel; Bravo, Laura; Goya, Luis

    2013-07-31

    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE) containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5-20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  14. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  15. Age-related oxidative stress compromises endosomal proteostasis.

    PubMed

    Cannizzo, Elvira S; Clement, Cristina C; Morozova, Kateryna; Valdor, Rut; Kaushik, Susmita; Almeida, Larissa N; Follo, Carlo; Sahu, Ranjit; Cuervo, Ana Maria; Macian, Fernando; Santambrogio, Laura

    2012-07-26

    A hallmark of aging is an imbalance between production and clearance of reactive oxygen species and increased levels of oxidatively damaged biomolecules. Herein, we demonstrate that splenic and nodal antigen-presenting cells purified from aging mice accumulate oxidatively modified proteins with side-chain carbonylation, advanced glycation end products, and lipid peroxidation. Furthermore, we show that the endosomal accumulation of oxidatively modified proteins interferes with the efficient processing of exogenous antigens and degradation of macroautophagy-delivered proteins. In support of a causative role for oxidized products in the inefficient immune response, a decrease in oxidative stress improved the adaptive immune response to immunizing antigens. These findings underscore a previously unrecognized negative effect of age-dependent changes in cellular proteostasis on the immune response.

  16. Age-related Oxidative Stress Compromises Endosomal Proteostasis

    PubMed Central

    Cannizzo, Elvira S.; Clement, Cristina C.; Morozova, Kateryna; Valdor, Rut; Kaushik, Susmita; Almeida, Larissa N.; Follo, Carlo; Sahu, Ranjit; Cuervo, Ana Maria; Macian, Fernando; Santambrogio, Laura

    2012-01-01

    A hallmark of aging is an imbalance between production and clearance of reactive oxygen species and increased levels of oxidatively damaged biomolecules. Herein we demonstrate that splenic and nodal antigen presenting cells purified from old mice accumulate oxidatively modified proteins with side chain carbonylation, advanced glycation end products and lipid peroxidation. We show further that the endosomal accumulation of oxidatively modified proteins interferes with the efficient processing of exogenous antigens and degradation of macroautophagy-delivered proteins. In support of a causative role for oxidized products in the inefficient immune response, a decrease in oxidative stress improved the adaptive immune response to immunizing antigens. These findings underscore a previously unrecognized negative effect of age-dependent changes in cellular proteostasis on the immune response. PMID:22840404

  17. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    PubMed

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione.

  18. Increased oxidative stress in pemphigus vulgaris is related to disease activity and HLA-association.

    PubMed

    Shah, Amit Aakash; Dey-Rao, Rama; Seiffert-Sinha, Kristina; Sinha, Animesh A

    2016-06-01

    Pemphigus vulgaris (PV) is a rare blistering skin disorder characterized by the disadhesion of keratinocytes due to autoantibody attack against epidermal targets including desmoglein (Dsg) 3, Dsg 1 and possibly other adhesion and non-adhesion molecules. The mechanisms leading to immune-mediated pathology in PV are multifactorial and not fully understood. Recently, oxidative stress (antioxidant/oxidant disequilibrium) has been proposed as a contributory mechanism of autoimmune skin diseases, including PV. In this study, we directly assessed oxidative stress via measurement of total antioxidant capacity (TAC) using ELISA in 47 PV patients, 25 healthy controls and 18 bullous pemphigoid (BP) patients. We also performed microarray gene expression analysis on a separate set of 21 PV patients and 10 healthy controls to evaluate transcriptional dysregulation in oxidative stress-related pathways. Our data indicate that there is a significant reduction in TAC levels in PV patients compared with healthy controls, as well as BP patients. Furthermore, PV patients with active disease have significantly lower TAC levels than PV patients in remission. We also find that HLA allele status has a significant influence on oxidative stress. These findings are corroborated by microarray analysis showing differentially expressed genes involved in oxidative stress between the aforementioned groups. Collectively, our findings provide support for a role of oxidative stress in PV. Whether increased oxidative stress leads to disease manifestation and/or activity, or if disease activity leads to increased oxidative stress remains unknown. Future longitudinal studies may help to further elucidate the relationship between PV and oxidative stress.

  19. Oxidative stress and inflammatory bowel disease.

    PubMed

    Almenier, Hazem A; Al Menshawy, Hazem H; Maher, Maha M; Al Gamal, Salah

    2012-01-01

    Inflammatory Bowel Disease (IBD) is a chronic relapsing and remitting inflammatory condition of the gastrointestinal tract. The exact cause of IBD remains undetermined, the condition appears to be related to a combination of genetic and environmental factors. While many gaps in our knowledge still exist, the last two decades have witnessed an unprecedented progress not only in the etiology ; but mainly in the mechanisms underlying the chronic inflammatory response, immunologic and genetic aspects. We review some recent points of research in pathogenesis with special stress on oxidative stress and its correlations with disease activity.

  20. Physical Exercise Combined with Whole-Body Cryotherapy in Evaluating the Level of Lipid Peroxidation Products and Other Oxidant Stress Indicators in Kayakers

    PubMed Central

    Sutkowy, Paweł; Augustyńska, Beata; Woźniak, Alina; Rakowski, Andrzej

    2014-01-01

    The influence of exercise combined with whole-body cryotherapy (WBC) on the oxidant/antioxidant balance in healthy men was assessed. The study included 16 kayakers of the Polish National Team, aged 22.7 ± 2.6, subjected to WBC (−120°C–−145°C; 3 min) twice a day for the first 10 days of a 19-day physical training cycle: pre exercise morning stimulation and post exercise afternoon recovery. Blood samples were taken on Day 0 (baseline) and on Days 5, 11 and 19. The serum concentration of malondialdehyde (MDA), conjugated dienes (CD), thiobarbituric acid reactive substances (TBARS), protein carbonyls, vitamin E, urea, cortisol, and testosterone were determined, along with the glutathione peroxidase (GPx) activity, the total antioxidant capacity (TAC), and morphological blood parameters. On 5th day of exercise/WBC, the baseline GPx activity decreased by 15.1% (P < 0.05), while on 19th day, it increased by 19.7% (P < 0.05) versus Day 5. On Day 19 TBARS concentration decreased versus baseline and Day 5 (by 15.9% and 17.4%, resp.; P < 0.01). On 19 Day urea concentration also decreased versus 11 Day; however, on 5th and 11th days the level was higher versus baseline. Combining exercise during longer training cycles with WBC may be advantageous. PMID:24864189

  1. ALS and Oxidative Stress: The Neurovascular Scenario

    PubMed Central

    Thakur, Keshav; Gupta, Pawan Kumar

    2013-01-01

    Oxidative stress and angiogenic factors have been placed as the prime focus of scientific investigations after an establishment of link between vascular endothelial growth factor promoter (VEGF), hypoxia, and amyotrophic lateral sclerosis (ALS) pathogenesis. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter and mutant superoxide dismutase 1 (SOD1) which are characterised by atrophy and muscle weakness resulted in phenotype resembling human ALS in mice. This results in lower motor neurodegeneration thus establishing an important link between motor neuron degeneration, vasculature, and angiogenic molecules. In this review, we have presented human, animal, and in vitro studies which suggest that molecules like VEGF have a therapeutic, diagnostic, and prognostic potential in ALS. Involvement of vascular growth factors and hypoxia response elements also highlights the converging role of oxidative stress and neurovascular network for understanding and treatment of various neurodegenerative disorders like ALS. PMID:24367722

  2. [Atherosclerosis, oxidative stress and physical activity. Review].

    PubMed

    Calderón, Juan Camilo; Fernández, Ana Zita; María de Jesús, Alina Isabel

    2008-09-01

    Atherosclerosis and related diseases have emerged as the leading cause of morbidity and mortality in the western world and, therefore, as a problem of public health. Free radicals and reactive oxygen species have been suggested to be part of the pathophysiology of these diseases. It is well known that physical activity plays an important role as a public health measure by reducing the risk of developing atherosclerosis-related cardiovascular events in the general population. It is also known that physical activity increases in some tissues, the reactive oxygen species production. In this review the atherosclerosis-oxidative stress-physical activity relationship is focused on the apparent paradox by which physical activity reduces atherosclerosis and cardiovascular risk in parallel with the activation of an apparently damaging mechanism which is an increased oxidative stress. A hypothesis including the experimental and clinical evidence is presented to explain the aforementioned paradox.

  3. [Oxidative stress and preeclampsia: A review].

    PubMed

    Guerby, P; Vidal, F; Garoby-Salom, S; Vayssiere, C; Salvayre, R; Parant, O; Negre-Salvayre, A

    2015-11-01

    Preeclampsia is a leading cause of pregnancy complications and affects 3-7% of pregnant women. Pathophysiology of preeclampsia is still unclear. According to the two-stage model of preeclampsia, the abnormal and hypoperfused placenta (stage 1) releases factors to the bloodstream, which are responsible for the maternal symptoms (stage 2), characterised by a systemic inflammation and endothelial dysfunction. Oxidative stress plays an important role in the pathophysiology of the preeclampsia and could be the common denominator between the two. This review summarizes the current knowledge of a new potential etiology of the disease, with a special focus on oxidative stress. We also review the different factors that have been proposed to cause endothelial cell dysfunction in preeclampsia, and trials investigating the role of antioxidant supplementation in preeclampsia.

  4. Oxidative stress and Parkinson’s disease

    PubMed Central

    Blesa, Javier; Trigo-Damas, Ines; Quiroga-Varela, Anna; Jackson-Lewis, Vernice R.

    2015-01-01

    Parkinson disease (PD) is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in PD. Environmental factors, such as neurotoxins, pesticides, insecticides, dopamine (DA) itself, and genetic mutations in PD-associated proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process. PMID:26217195

  5. Polyphenols action against oxidative stress formation in endothelial cells.

    PubMed

    Łuczaj, Wojciech; Zapora, Ewa; Szczepański, Marek; Wnuczko, Krzysztof; Skrzydlewska, Elzbieta

    2009-01-01

    The aim of this study was to investigate the influence of epigallocatechin-3-gallate (EGCG), theaflavins (TFs) and black tea extract (BTE) on oxidative stress formation as well as on antioxidant system of human vein endothelial cells (HUVEC). HUVEC were incubated for 0,5 h with 100 mM tert-butyl hydroperoxide (t-BHP) for oxidative stress formation. The influence of EGCG, TFs, and BTE on oxidative stress and antioxidant system parameters was investigated by the pre-incubation for 2 h with 50 mg/mL of each compound. Half hour exposure to t-BHP caused statistically significant decrease in GSH-Px activity and in the content of GSH, vitamin A, vitamin E as well as tryptophan. Moreover, pretreatment of cells with t-BHP caused statistically significant increase in activities of Cu,Zn-SOD, GSSG-R and in the level of MDA and dityrosine. Pretreated with t-BHP endothelial cells, subjected to EGCG, TFs and black tea extract, are partially protected against oxidative activity of t-BHP causing statistically significant increase in GSH-Px activity, GSH and tryptophan level and decrease in MDA and dityrosine level in comparison with HUVEC pretreated with t-BHP group. These results indicate the beneficial effect of tea polyphenolic compounds on HUVEC antioxidant abilities and, in consequence, their protective effect in cell components.

  6. Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants.

    PubMed

    Martin, Mariana; Colman, María José Rodríguez; Gómez-Casati, Diego F; Lamattina, Lorenzo; Zabaleta, Eduardo Julián

    2009-02-04

    Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals, frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants, frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Arabidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnormally high NO production might be part of the defence mechanism against Fe-mediated oxidative stress.

  7. Oxidative stress in alcohol-induced rat parotid sialadenosis.

    PubMed

    Campos, Sara Cristina Gonçalves; Moreira, Denise Aparecida Corrêa; Nunes, Terezinha D'Avila e Silva; Colepicolo, Pio; Brigagão, Maísa Ribeiro Pereira Lima

    2005-07-01

    This study evaluated the effect of chronic ethanol consumption on the oxidative status of rat parotid and submandibular glands. To identify the endogenous response to ethanol ingestion, the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined. In addition, the antioxidant alpha-tocopherol was supplied to the animals in order to estimate its action in ethanol-associated glandular damage. The thiobarbituric acid reactive substances (TBARS), and the protein carbonyl (PC) content, both markers of cellular oxidative stress on lipid and protein structures, respectively, were recorded. Animals subjected to alcohol ingestion showed a low body growth rate with concomitant enlargement of absolute and relative parotid wet weight, compared with pair-fed calorie-controlled rats. Parotid glands of ethanol-treated animals showed increased SOD and GPx activity, and alpha-tocopherol was able to reduce their activities to the control levels. TBARS and PC were enhanced after chronic ethanol treatment in rat parotids. Supplemental alpha-tocopherol suppressed the oxidative ethanol-induced damage in lipid without affecting induced protein oxidation. Submandibular glands revealed no alterations in the weight, enzymatic and oxidative parameters tested due to ethanol and/or alpha-tocopherol ingestion. These findings indicate the involvement of oxidative stress in parotid gland sialadenosis due to ethanol consumption and the capability of alpha-tocopherol to halt lipid damage, although this low-molecular antioxidant compound leads to neither increased glandular weight nor protein oxidation in ethanol-induced parotid alterations.

  8. Oxidative stress response and Nrf2 signaling in aging

    PubMed Central

    Zhang, Hongqiao; Davies, Kelvin J. A.; Forman, Henry Jay

    2015-01-01

    Increasing oxidative stress, a major characteristic of aging, has been implicated in variety of age-related pathologies. In aging, oxidant production from several sources is increased while antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins also declines. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels including transcription, post-translation, and interaction with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the change of Nrf2 regulatory mechanisms with aging. PMID:26066302

  9. Chrononutrition against Oxidative Stress in Aging

    PubMed Central

    Garrido, M.; Terrón, M. P.; Rodríguez, A. B.

    2013-01-01

    Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases. PMID:23861994

  10. N-acetylcysteine attenuates dimethylnitrosamine induced oxidative stress in rats.

    PubMed

    Sathish, Priya; Paramasivan, Vijayalakshmi; Palani, Vivekanandan; Sivanesan, Karthikeyan

    2011-03-05

    Oxidative stress has been implicated in the pathogenesis and progression of various hepatic disorders and hence screening for a good hepatoprotective and antioxidant agent is the need of the hour. The present study was aimed to investigate the hepatoprotective and antioxidant property of N-acetylcysteine (NAC) against dimethylnitrosamine (DMN) induced oxidative stress and hepatocellular damage in male Wistar albino rats. Administration of single dose of DMN (5mg/kg b.w.; i.p.) resulted in significant elevation in the levels of serum aspartate transaminase and alanine transaminase, indicating hepatocellular damage. Oxidative stress induced by DMN treatment was confirmed by an elevation in the status of lipid peroxidation (LPO) and reduction in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase and in the levels of non-enzymic antioxidants, reduced glutathione, vitamin-C and vitamin-E in the liver tissue. DMN induced oxidative stress and hepatocellular membrane instability was further substantiated by a decline in the status of the membrane bound ATPases in the liver tissue. Post-treatment with NAC (50mg/kg b.w.; p.o.) for 7days effectively protected against the DMN induced insult to liver by preventing the elevation in the status of the serum marker enzymes and LPO, and restoring the activities of both the enzymic and non-enzymic antioxidants and membrane bound ATPases towards normalcy. These results demonstrate that NAC acts as a good hepatoprotective and antioxidant agent in attenuating DMN induced oxidative stress and hepatocellular damage.

  11. Nitric oxide during ischemia attenuates oxidant stress and cell death during ischemia and reperfusion in cardiomyocytes.

    PubMed

    Iwase, Hirotaro; Robin, Emmanuel; Guzy, Robert D; Mungai, Paul T; Vanden Hoek, Terry L; Chandel, Navdeep S; Levraut, Jacques; Schumacker, Paul T

    2007-08-15

    Nitric oxide (NO) has been implicated as a cardioprotective agent during ischemia/reperfusion (I/R), but the mechanism of protection is unknown. Oxidant stress contributes to cell death in I/R, so we tested whether NO protects by attenuating oxidant stress. Cardiomyocytes and murine embryonic fibroblasts were administered NO (10-1200 nM) during simulated ischemia, and cell death was assessed during reperfusion without NO. In each case, NO abrogated cell death during reperfusion. Cells overexpressing endothelial NO synthase (NOS) exhibited a similar protection, which was abolished by the NOS inhibitor N(omega)-nitro-l-arginine methyl ester. Protection was not mediated by guanylate cyclase or the mitochondrial K(ATP) channel, as inhibitors of these systems failed to abolish protection. NO did not prevent decreases in mitochondrial potential, but cells protected with NO demonstrated recovery of potential at reperfusion. Measurements using C11-BODIPY reveal that NO attenuates lipid peroxidation during ischemia and reperfusion. Measurements of oxidant stress using the ratiometric redox sensor HSP-FRET demonstrate that NO attenuates protein oxidation during ischemia. These findings reveal that physiological levels of NO during ischemia can attenuate oxidant stress both during ischemia and during reperfusion. This response is associated with a remarkable attenuation of cell death, suggesting that ischemic cell death may be a regulated event.

  12. Neuro-oxidative-nitrosative stress in sepsis.

    PubMed

    Berg, Ronan M G; Møller, Kirsten; Bailey, Damian M

    2011-07-01

    Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding brain parenchyma, due to failure of the local antioxidant systems. ROS/RNS cause structural membrane damage, induce inflammation, and scavenge nitric oxide (NO) to yield peroxynitrite (ONOO(-)). This activates the inducible NO synthase, which further compounds ONOO(-) formation. ROS/RNS cause mitochondrial dysfunction by inhibiting the mitochondrial electron transport chain and uncoupling oxidative phosphorylation, which ultimately leads to neuronal bioenergetic failure. Furthermore, in certain 'at risk' areas of the brain, free radicals may induce neuronal apoptosis. In the present review, we define a role for ROS/RNS-mediated neuronal bioenergetic failure and apoptosis as a primary mechanism underlying sepsis-associated encephalopathy and, in sepsis survivors, permanent cognitive deficits.

  13. Good genes, oxidative stress and condition-dependent sexual signals.

    PubMed Central

    von Schantz, T; Bensch, S; Grahn, M; Hasselquist, D; Wittzell, H

    1999-01-01

    The immune and the detoxication systems of animals are characterized by allelic polymorphisms, which underlie individual differences in ability to combat assaults from pathogens and toxic compounds. Previous studies have shown that females may improve offspring survival by selecting mates on the basis of sexual ornaments and signals that honestly reveal health. In many cases the expression of these ornaments appears to be particularly sensitive to oxidative stress. Activated immune and detoxication systems often generate oxidative stress by an extensive production of reactive metabolites and free radicals. Given that tolerance or resistance to toxic compounds and pathogens can be inherited, female choice should promote the evolution of male ornaments that reliably reveal the status of the bearers' level of oxidative stress. Hence, oxidative stress may be one important agent linking the expression of sexual ornaments to genetic variation in fitness-related traits, thus promoting the evolution of female mate choice and male sexual ornamentation, a controversial issue in evolutionary biology ever since Darwin. PMID:10081154

  14. Apoptosis modulated by oxidative stress and inflammation during obstructive nephropathy.

    PubMed

    Manucha, Walter; Vallés, Patricia G

    2012-08-01

    Kidney apoptosis and fibrosis are an inevitable outcome of progressive chronic kidney diseases where congenital obstructive nephropathy is the primary cause of the end-stage renal disease in children, and is also a major cause of renal failure in adults. The injured tubular cells linked to interstitial macrophages, and myofibroblasts produce cytokines and growth factors that promote an inflammatory state in the kidney, induce tubular cell apoptosis, and facilitate the accumulation of extracellular matrix. Angiotensin II plays a central role in the renal fibrogenesis at a very early stage leading to a rapid progression in chronic kidney disease. The increasing levels of angiotensin II induce pro-inflammatory cytokines, NF-κB activation, adhesion molecules, chemokines, growth factors, and oxidative stress. Furthermore, growing evidence reports that angiotensin II (a pro-inflammatory hormone) increases the mitochondrial oxidative stress regulating apoptosis induction. This review summarizes our understanding about possible mechanisms that contribute to apoptosis modulated by inflammation and/or oxidative stress during obstructive nephropathy. The new concept of antiinflammatory tools regulating mitochondrial oxidative stress will directly affect the inflammatory process and apoptosis. This idea could have attractive consequences in the treatment of renal and other inflammatory pathologies.

  15. PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co₃O₄ p-type semiconductor in cells and the lung.

    PubMed

    Zhang, Haiyuan; Pokhrel, Suman; Ji, Zhaoxia; Meng, Huan; Wang, Xiang; Lin, Sijie; Chang, Chong Hyun; Li, Linjiang; Li, Ruibin; Sun, Bingbing; Wang, Meiying; Liao, Yu-Pei; Liu, Rong; Xia, Tian; Mädler, Lutz; Nel, André E

    2014-04-30

    We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0-8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E(c) levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from -4.12 to -4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E(v), E(c), and E(f) levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4.

  16. PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co3O4p-Type Semiconductor in Cells and the Lung

    PubMed Central

    2014-01-01

    We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0–8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the Ec levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from −4.12 to −4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of Ev, Ec, and Ef levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4. PMID:24673286

  17. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis.

    PubMed

    Benoist d'Azy, Cédric; Pereira, Bruno; Chiambaretta, Frédéric; Dutheil, Frédéric

    2016-01-01

    Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: "oxidative stress" or "oxidant stress" or "nitrative stress" or "oxidative damage" or "nitrative damage" or "antioxidative stress" or "antioxidant stress" or "antinitrative stress" and "glaucoma". We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20-2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84-1.74) to 2.62 in aqueous humor (95%CI 1.60-3.65). Despite a decrease in antioxidative stress marker in serum (effect size = -0.41; 95%CI -0.72 to -0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20-5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88-9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78-16.6, P < 0.001), and higher in pseudo-exfoliative glaucoma vs primary angle closed glaucoma (effect size = 12.2; 95%CI 8.96-15.5, P < 0.001). In conclusion, oxidative stress increased in glaucoma, both in serum and aqueous

  18. A novel approach in psoriasis: first usage of known protein oxidation markers to prove oxidative stress.

    PubMed

    Yazici, Cevat; Köse, Kader; Utaş, Serap; Tanrikulu, Esen; Taşlidere, Nazan

    2016-04-01

    Oxidative stress may play a pivotal role in the pathogenesis of psoriasis, an inflammatory/hyperproliferative skin disease characterized by the cutaneous accumulation of neutrophils releasing reactive oxygen species, as revealed in a number of studies. This study was performed to demonstrate the presence of oxidative stress in psoriasis, as measured by protein oxidation markers. Twenty-nine psoriasis patients were selected based on disease severity assessment using body surface area as well as the psoriasis area severity index (PASI), and were grouped as mild (PASI ≤ 10) and moderate-to-severe (PASI > 10). The measured parameters in psoriatic patients and fourteen healthy volunteers were as follows: erythrocyte sedimentation rate (ESR), high sensitive C-reactive protein (CRP), myeloperoxidase (MPO) activity, neopterin, total lipid hydroperoxides (LHP), pyrrolized protein (PP), protein carbonyl compounds (PCC), advanced oxidation protein products (AOPP), thiol levels, along with complete blood count. Except lower thiols, all parameters were found to be higher in total patients as well as in subgroups, compared to controls. There was no significant difference among the subgroups. In conclusion, protein oxidation in psoriatics, not only in moderate-to-severe, but also in mild patients, may be explained by the findings of inflammation, phagocytic cell oxidation, and MPO-hypochlorous acid-oxidation reactions; as reflected by increased total/differential leucocytes counts, CRP, ESR as well as MPO, neopterin, AOPP, PCC, PP, LHP, and decreased thiol levels. Demonstrating the AOPP and PP formation for the first time, oxidants from active neutrophils/monocytes may play an important role in the pathogenesis of psoriasis, leading to oxidative stress, especially by protein oxidation.

  19. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms

    PubMed Central

    Ramu, Vemanna S.; Paramanantham, Anjugam; Ramegowda, Venkategowda; Mohan-Raju, Basavaiah; Udayakumar, Makarla

    2016-01-01

    In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses. PMID:27314499

  20. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    PubMed

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials.

  1. Concepts of oxidative stress and antioxidant defense in Crohn's disease.

    PubMed

    Alzoghaibi, Mohammed A

    2013-10-21

    Oxygen free radical and lipid peroxides (oxidative stress) are highly reactive and represent very damaging compounds. Oxidative stress could be a major contributing factor to the tissue injury and fibrosis that characterize Crohn's disease. An imbalance between increased reactive oxygen species levels and decreased antioxidant defenses occurs in Crohn's patients. Decreased blood levels of vitamins C and E and decreased intestinal mucosal levels of CuZn superoxide dismutase, glutathione, vitamin A, C, E, and β-carotene have been reported for Crohn's patients. Increased levels of proinflammatory cytokines, such as interleukin-1 and -8 and tumor necrosis factor, have been detected in inflammatory bowel disease. Oxidative stress significantly increased the production of neutrophils, chemokines, and interleukin-8. These effects were inhibited by antioxidant vitamins and arachidonic acid metabolite inhibitors in human intestinal smooth muscle cells isolated from the bowels of Crohn's disease patients. The main pathological feature of Crohn's disease is an infiltration of polymorphonuclear neutrophils and mononuclear cells into the affected part of the intestine. Activated neutrophils produce noxious substances that cause inflammation and tissue injury. Due to the physiological and biochemical actions of reactive oxygen species and lipid peroxides, many of the clinical and pathophysiological features of Crohn's disease might be explained by an imbalance of increased reactive oxygen species and a net decrease of antioxidant molecules. This review describes the general concepts of free radical, lipid peroxide and antioxidant activities and eventually illustrates their interferences in the development of Crohn's strictures.

  2. Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length

    PubMed Central

    Haussmann, Mark F.; Longenecker, Andrew S.; Marchetto, Nicole M.; Juliano, Steven A.; Bowden, Rachel M.

    2012-01-01

    Early embryonic exposure to maternal glucocorticoids can broadly impact physiology and behaviour across phylogenetically diverse taxa. The transfer of maternal glucocorticoids to offspring may be an inevitable cost associated with poor environmental conditions, or serve as a maternal effect that alters offspring phenotype in preparation for a stressful environment. Regardless, maternal glucocorticoids are likely to have both costs and benefits that are paid and collected over different developmental time periods. We manipulated yolk corticosterone (cort) in domestic chickens (Gallus domesticus) to examine the potential impacts of embryonic exposure to maternal stress on the juvenile stress response and cellular ageing. Here, we report that juveniles exposed to experimentally increased cort in ovo had a protracted decline in cort during the recovery phase of the stress response. All birds, regardless of treatment group, shifted to oxidative stress during an acute stress response. In addition, embryonic exposure to cort resulted in higher levels of reactive oxygen metabolites and an over-representation of short telomeres compared with the control birds. In many species, individuals with higher levels of oxidative stress and shorter telomeres have the poorest survival prospects. Given this, long-term costs of glucocorticoid-induced phenotypes may include accelerated ageing and increased mortality. PMID:22072607

  3. Toxicological and pharmacological concerns on oxidative stress and related diseases

    SciTech Connect

    Saeidnia, Soodabeh; Abdollahi, Mohammad

    2013-12-15

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.

  4. The influence of homocysteine and oxidative stress on pregnancy outcome.

    PubMed

    Micle, O; Muresan, M; Antal, L; Bodog, F; Bodog, A

    2012-02-22

    Oxidative stress in utero-placental tissues plays an important role in the development of placental-related diseases. Maternal hiperhomocysteinemia is associated with placental mediated diseases, such as preeclampsia, spontaneous abortion and placental abruption. The aim of our study is to appreciate the clinical usefulness of the dosage serum homocysteine and malondialdehyde, as an oxidative stress marker, in the pregnancies complicated with risk of abortion or preterm birth. The study was performed at the Obstetric Gynecology Clinical Hospital Oradea from December 2009 until April 2010. It included 18 patients with risk of abortion (group 1), 22 with preterm birth (group 2). The results were compared with a control group composed by 14 healthy pregnant women. Serum homocysteine level was measured by an enzymatic method, on the instrument Hitachi 912, Roche, reagent: Axis-Shield Enzymatic. For proving the oxidative stress we established the level of malondialdehyde using a method with thiobarbituric acid TBA (Kei Satoh 1978) and the level of ceruloplasmin with the Ravin method .Also AST, ALT,CRP, iron, uric acid, urea were assessed.High level of homocysteine in both groups of study in comparison with the control group was found. The concentration of MDA was significantly higher in pregnancies complicated with risk of abortion and preterm birth compared to the control group (p=0.040, p=0.031). Considerable differences of ceruloplasmin concentration between group 1 and group 2 (p=0.045), and between group 2 and control group (p=0.034), was noticed but not any important differences between group 1 and control group (p=0.683). In women with risk of abortion or with preterm birth an oxidative stress and a hyperhomocysteinemia are present.

  5. Oxidative stress and plasma lipoproteins in cancer patients

    PubMed Central

    Maia, Fernanda Maria Machado; Santos, Emanuelly Barbosa; Reis, Germana Elias

    2014-01-01

    Objective To evaluate the relation between oxidative stress and lipid profile in patients with different types of cancer. Methods This was an observational cross-sectional. A total of 58 subjects were evaluated, 33 males, divided into two groups of 29 patients each: Group 1, patients with cancer of the digestive tract and accessory organs; Group 2 patients with other types of cancers, all admitted to a public hospital. The plasma levels (lipoproteins and total cholesterol, HDL, and triglycerides, for example) were analyzed by enzymatic kits, and oxidative stress based on thiobarbituric acid-reactive substances, by assessing the formation of malondialdehyde. Results In general the levels of malondialdehyde of patients were high (5.00μM) as compared to 3.31μM for healthy individuals. The median values of lipids exhibited normal triacylglycerol (138.78±89.88mg/dL), desirable total cholesterol values (163.04±172.38mg/dL), borderline high LDL (151.30±178.25mg/dL) and low HDL (31.70±22.74mg/dL). Median HDL levels in Group 1 were lower (31.32mg/dL) than the cancer patients in Group 2 (43.67mg/dL) (p=0.038). Group 1 also showed higher levels of oxidative stress (p=0.027). Conclusion The lipid profile of patients with cancer was not favorable, which seems to have contributed to higher lipid peroxidation rate, generating a significant oxidative stress. PMID:25628201

  6. The effect of leptin, ghrelin, and neuropeptide-Y on serum Tnf-Α, Il-1β, Il-6, Fgf-2, galanin levels and oxidative stress in an experimental generalized convulsive seizure model.

    PubMed

    Oztas, Berrin; Sahin, Deniz; Kir, Hale; Eraldemir, Fatma Ceyla; Musul, Mert; Kuskay, Sevinç; Ates, Nurbay

    2017-02-01

    The objective of this study is to examine the effects of the endogenous ligands leptin, ghrelin, and neuropeptide Y (NPY) on seizure generation, the oxidant/antioxidant balance, and cytokine levels, which are a result of immune response in a convulsive seizure model. With this goal, Wistar rats were divided into 5 groups-Group 1: Saline, Group 2: Saline+PTZ (65mg/kg), Group 3: leptin (4mg/kg)+PTZ, Group 4: ghrelin (80μg/kg)+PTZ, and Group 5: NPY (60μg/kg)+PTZ. All injections were delivered intraperitoneally, and simultaneous electroencephalography (EEG) records were obtained. Seizure activity was scored by observing seizure behavior, and the onset time, latency, and seizure duration were determined according to the EEG records. At the end of the experiments, blood samples were obtained in all groups to assess the serum TNF-α, IL-1β, IL-6, FGF-2, galanin, nitric oxide (NOֹ), malondialdehyde (MDA), and glutathione (GSH) levels. The electrophysiological and biochemical findings (p<0.05) of this study show that all three peptides have anticonvulsant effects in the pentylenetetrazol (PTZ)-induced generalized tonic-clonic convulsive seizure model. The reduction of the levels of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 caused by leptin, ghrelin, and NPY shows that these peptides may have anti-inflammatory effects in epileptic seizures. Also, leptin significantly increases the serum levels of the endogenous anticonvulsive agent galanin. The fact that each one of these endogenous peptides reduces the levels of MDA and increases the serum levels of GSH leads to the belief that they may have protective effects against oxidative damage that is thought to play a role in the pathogenesis of epilepsy. Our study contributes to the clarification of the role of these peptides in the brain in seizure-induced oxidative stress and immune system physiology and also presents new approaches to the etiology and treatment of tendency to epileptic seizures.

  7. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    PubMed Central

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio

    2014-01-01

    Abstract Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. Critical Issues: Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. Future Directions: The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability. Antioxid. Redox Signal. 20, 507–518. PMID:23641894

  8. Oxidative stress, thyroid dysfunction & Down syndrome

    PubMed Central

    Campos, Carlos; Casado, Ángela

    2015-01-01

    Down syndrome (DS) is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1) is coded on chromosome 21 and it is overexpressed (~50%) resulting in an increase of reactive oxygen species (ROS) due to overproduction of hydrogen peroxide (H2O2). ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS. PMID:26354208

  9. Oxidative stress and an altered methionine metabolism in alcoholism.

    PubMed

    Bleich, S; Spilker, K; Kurth, C; Degner, D; Quintela-Schneider, M; Javaheripour, K; Rüther, E; Kornhuber, J; Wiltfang, J

    2000-11-03

    The exact mechanism of brain atrophy in patients with chronic alcoholism remains unknown. There is growing evidence that chronic alcoholism is associated with oxidative stress and with a derangement in sulphur amino acid metabolism (e.g. ethanol-induced hyperhomocysteinemia). Furthermore, it has been reported that homocysteine induces neuronal cell death by stimulating N-methyl-D-aspartate receptors as well as by producing free radicals. To further evaluate this latter hypothesis we analysed serum levels of both homocysteine and markers of oxidative stress (malondialdehyde) in alcoholic patients who underwent withdrawal from alcohol. Homocysteine and malondialdehyde were quantified by high performance liquid chromatography (HPLC) in serum samples of 35 patients (active drinkers). There was a significant correlation (P<0. 01) between blood alcohol concentration and elevated homocysteine (Spearman's r=0.71) and malondialdehyde (r=0.90) levels on admission. In addition, homocysteine and malondialdehyde levels were found to be significant decreased after 3 days of withdrawal treatment (Wilcoxon test: homocysteine, Z=-5.127; malondialdehyde, Z=-3.120; P<0.01). We postulate that excitatory neurotransmitters and mechanisms of oxidative stress in patients with chronic alcoholism may partly mediate excitotoxic neuronal damage and hereby cause brain shrinkage.

  10. Markers of Oxidative Stress in Pregnant Women with Sleep Disturbances

    PubMed Central

    Rajendiran, Soundravally; Nimesh, Archana; Ananthanarayanan, P. H.; Dhiman, Pooja

    2015-01-01

    Objective The quality and duration of sleep is impaired during pregnancy. Our study aimed to determine whether maternal sleep deprivation occurring during the second and third trimester of pregnancy could alter fetal well-being with respect to birth weight and APGAR score by altering the inflammatory status and oxidative stress in the mothers.  Methods Sleep adequacy was assessed using the Pittsburgh Sleep Quality Index (PSQI). We investigated the inflammatory status and oxidative stress at term in the blood of pregnant subjects with and without sleep deprivation by measuring the levels of protein-bound sialic acid (PBSA), high-sensitivity C-reactive protein (hsCRP), malondialdehyde (MDA) and protein carbonyl (PCO). Homocysteine (Hcy) and its vitamin determinants were also measured. Fetal outcome with respect to birth weight and APGAR score were compared between study subjects.  Results A significant increase was observed in the levels of hsCRP, PBSA, Hcy, MDA, and PCO, in the sleep-deprived group when compared to the control group. Fetal outcome at birth showed a significant difference between the cases with high sleep deprivation and those with low sleep deprivation.  Conclusion Sleep deprivation in pregnancy leads to an increase in the inflammatory parameters, oxidative stress, and Hcy levels. Fetal outcome at birth was affected more in mothers with high sleep deprivation than those with low sleep deprivation. Follow-up in these babies are needed to reveal any differences in their growth and development. PMID:26366260

  11. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    PubMed Central

    Hacioglu, Gulay; Senturk, Ayse; Ince, Imran; Alver, Ahmet

    2016-01-01

    Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain. PMID:27279982

  12. Psychological stress during exercise: immunoendocrine and oxidative responses.

    PubMed

    Huang, Chun-Jung; Webb, Heather E; Evans, Ronald K; McCleod, Kelly A; Tangsilsat, Supatchara E; Kamimori, Gary H; Acevedo, Edmund O

    2010-12-01

    The purpose of this study was to examine the changes in catecholamines (epinephrine [EPI] and norepinephrine [NE]), interleukin-2 (IL-2) and a biomarker of oxidative stress (8-isoprostane) in healthy individuals who were exposed to a dual challenge (physical and psychological stress). Furthermore, this study also examined the possible relationships between catecholamines (NE and EPI) and 8-isoprostane and between IL-2 and 8-isoprostane following a combined physical and psychological challenge. Seven healthy male subjects completed two experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% VO(2max) for 37 min, while the dual-stress condition (DSC) included 20 min of a mental challenge while cycling. DSC showed greater EPI and 8-isoprostane levels (significant condition by time interaction). NE and IL-2 revealed significant change across time in both conditions. In addition, following dual stress, EPI area-under-the-curve (AUC) demonstrated a positive correlation with NE AUC and IL-2 AUC. NE AUC was positively correlated with IL-2 AUC and peak 8-isoprostane, and peak IL-2 was positively correlated with peak 8-isoprostane in response to a dual stress. The potential explanation for elevated oxidative stress during dual stress may be through the effects of the release of catecholamines and IL-2. These findings may further provide the potential explanation that dual stress alters physiological homeostasis in many occupations including firefighting, military operations and law enforcement. A greater understanding of these responses to stress can assist in finding strategies (e.g. exercise training) to overcome the inherent psychobiological challenges associated with physically and mentally demanding professions.

  13. Hepatitis B and its Relationship With Oxidative Stress

    PubMed Central

    Alavian, Seyed Moayed; Showraki, Alireza

    2016-01-01

    Context Despite the great breakthroughs we have witnessed in the last 50 years in the prevention, diagnosis, and treatment of hepatitis B, we are still far from eradicating or even curing the disease. Achieving further progress in controlling this disease will not be possible without discovering the exact pathogenesis behind it. One prime suspect in the pathogenesis of various diseases is oxidative stress. This review will exclusively explore hepatitis B in the context of oxidative stress to obtain a more comprehensive clinical perspective on its pathogenesis and eventual medical therapy. Evidence Acquisition We systematically searched PubMed, Google Scholar, Web of Science, EMBASE, and Scopus using an extensive list of keywords in the following three categories: 1) Hepatitis B and oxidation 2) Hepatitis B and antioxidant system 3) Effects of approved anti-hepatitis B drugs on redox status. All relevant articles were obtained and reviewed carefully after the exclusion criteria were deployed. Results There is great evidence indicating extensive oxidative stress occurs in hepatitis B. This oxidative stress takes place on multiple levels, including lipid peroxidation, DNA oxidation, protein oxidation, and reactive oxygen and nitrogen species production. However, there are also conflicting results with regard to antioxidant therapy and antioxidant status in hepatitis B, some of which may be explained by the concept of “compensatory gaps.” Nevertheless, further studies are indicated to reach a more thorough judgment. Conclusions Despite the presence of vast oxidative stress in hepatitis B, antioxidant therapy is not always effective as a treatment strategy, especially considering that antioxidants can act as “double-edged swords” or antioxidants; if not used at the right time or place or in the right combination, these substances can easily become pro-oxidants. Therefore, several studies will be needed to determine suitable antioxidant therapies. We propose the

  14. Assessment of eccentric exercise-induced oxidative stress using oxidation-reduction potential markers.

    PubMed

    Stagos, Dimitrios; Goutzourelas, Nikolaos; Ntontou, Amalia-Maria; Kafantaris, Ioannis; Deli, Chariklia K; Poulios, Athanasios; Jamurtas, Athanasios Z; Bar-Or, David; Kouretas, Dimitrios

    2015-01-01

    The aim of the present study was to investigate the use of static (sORP) and capacity ORP (cORP) oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress.

  15. Induction of oxidative stress and oxidative damage in rat glial cells by acrylonitrile.

    PubMed

    Kamendulis, L M; Jiang, J; Xu, Y; Klaunig, J E

    1999-08-01

    Chronic treatment of rats with acrylonitrile (ACN) resulted in a dose-related increase in glial cell tumors (astrocytomas). While the exact mechanism(s) for ACN-induced carcinogenicity remains unresolved, non-genotoxic and possibly tumor promotion modes of action appear to be involved in the induction of glial tumors. Recent studies have shown that ACN induced oxidative stress selectively in rat brain in a dose-responsive manner. The present study examined the ability of ACN to induce oxidative stress in a rat glial cell line, a target tissue, and in cultured rat hepatocytes, a non-target tissue of ACN carcinogenicity. Glial cells and hepatocytes were treated for 1, 4 and 24 h with sublethal concentrations of ACN. ACN induced an increase in oxidative DNA damage, as evidenced by increased production of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in glial cells but not in rat hepatocytes. Hydroxyl radical formation following ACN treatment was also selectively increased in glial cells. Following 1 and 4 h of ACN exposure, the levels of the non-enzymatic antioxidant glutathione, as well as the activities of the enzymatic antioxidants catalase and superoxide dismutase were significantly decreased in the rat glial cells. Lipid peroxidation and the activity of glutathione peroxidase were not affected by ACN treatment in rat glial cells. No changes in any of these biomarkers of oxidative stress were observed in hepatocytes treated with ACN. These data indicate that ACN selectively induced oxidative stress in rat glial cells.

  16. Oxidative Stress and IgG Antibody Modify Periodontitis-CRP Association.

    PubMed

    Singer, R E; Moss, K; Kim, S J; Beck, J D; Offenbacher, S

    2015-12-01

    In a previous report, we demonstrated the inverse association of high serum 8-isoprostane levels, a marker for oxidative stress, with decreased serum IgG antibodies to oral bacteria. The association between increased serum IgG with increased plaque and periodontitis (increased probing depths) was attenuated by high systemic oxidative stress. Other investigations have reported a role for systemic oxidative stress as a stimulus of hepatic C-reactive protein (CRP) response. These observations led us to hypothesize that the reported relationship of periodontitis to elevated serum CRP, a systemic inflammatory marker, may be modified by oxidative stress and that the levels of serum antibodies to oral bacteria might be an intermediary explanatory variable linking the association of systemic oxidative stress, periodontal disease, and levels of CRP. This hypothesis was explored as a secondary analysis of the Dental ARIC (Atherosclerosis Risk in Communities) study using serum levels of CRP, serum IgG levels to 16 oral organisms, serum levels of 8-isoprostane, and periodontal status. The findings indicate periodontitis is associated with high CRP in the presence of elevated oxidative stress that serves to suppress the IgG response. Only within the highest 8-isoprostane quartile was periodontitis (pocket depth) associated with increased serum CRP levels (P = 0.0003). Increased serum IgG antibody levels to oral bacteria were associated with lowered serum CRP levels. Thus, systemic oxidative stress, which has been demonstrated to be associated with increased levels of CRP in other studies, appears to be associated with the suppression of bacterial-specific IgG levels, which in the presence of periodontal disease can result in an enhanced systemic CRP response. Conversely, individuals with increased serum IgG antibodies to plaque bacteria exhibit lowered serum CRP levels. These 2 factors, oxidative stress and the serum IgG response, appear to function in opposing directions to

  17. Oxidative stress in toxicology: established mammalian and emerging piscine model systems.

    PubMed Central

    Kelly, K A; Havrilla, C M; Brady, T C; Abramo, K H; Levin, E D

    1998-01-01

    Interest in the toxicological aspects of oxidative stress has grown in recent years, and research has become increasingly focused on the mechanistic aspects of oxidative damage and cellular responses in biological systems. Toxic consequences of oxidative stress at the subcellular level include lipid peroxidation and oxidative damage to DNA and proteins. These effects are often used as end points in the study of oxidative stress. Typically, mammalian species have been used as models to study oxidative stress and to elucidate the mechanisms underlying cellular damage and response, largely because of the interest in human health issues surrounding oxidative stress. However, it is becoming apparent that oxidative stress also affects aquatic organisms exposed to environmental pollutants. Research in fish has demonstrated that mammalian and piscine systems exhibit similar toxicological and adaptive responses to oxidative stress. This suggests that piscine models, in addition to traditional mammalian models, may be useful for further understanding the mechanisms underlying the oxidative stress response. Images Figure 1 Figure 2 Figure 3 PMID:9637794

  18. Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration.

    PubMed

    Husain, Maroof; Bourret, Travis J; McCollister, Bruce D; Jones-Carson, Jessica; Laughlin, James; Vázquez-Torres, Andrés

    2008-03-21

    Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNgamma-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO(-)) and hydrogen peroxide (H(2)O(2)). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H(2)O(2). NADH antagonizes the hydroxyl radical (OH(.)) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.

  19. Acetaminophen protects brain endothelial cells against oxidative stress.

    PubMed

    Tripathy, Debjani; Grammas, Paula

    2009-05-01

    Increasing evidence suggests that acetaminophen has unappreciated anti-oxidant and anti-inflammatory properties. Drugs that affect oxidant and inflammatory stress in the brain are of interest because both processes are thought to contribute to the pathogenesis of neurodegenerative disease. The objective of this study is to determine whether acetaminophen affects the response of brain endothelial cells to oxidative stress. Cultured brain endothelial cells are pre-treated with acetaminophen and then exposed to the superoxide-generating compound menadione (25 microM). Cell survival, inflammatory protein expression, and anti-oxidant enzyme activity are measured. Menadione causes a significant (p<0.001) increase in endothelial cell death as well as an increase in RNA and protein levels of tumor necrosis factor alpha, interleukin-1, macrophage inflammatory protein alpha, and RANTES. Menadione also evokes a significant (p<0.001) increase in the activity of the anti-oxidant enzyme superoxide dismutase (SOD). Pre-treatment of endothelial cell cultures with acetaminophen (25-100 microM) increases endothelial cell survival and inhibits menadione-induced expression of inflammatory proteins and SOD activity. In addition, we document, for the first time, that acetaminophen increases expression of the anti-apoptotic protein Bcl2. Suppressing Bcl2 with siRNA blocks the pro-survival effect of acetaminophen. These data show that acetaminophen has anti-oxidant and anti-inflammatory effects on the cerebrovasculature and suggest a heretofore unappreciated therapeutic potential for this drug in neurodegenerative diseases such as Alzheimer's disease that are characterized by oxidant and inflammatory stress.

  20. Oxidative stress--a key emerging impact factor in health, ageing, lifestyle and aesthetics.

    PubMed

    Kandola, K; Bowman, A; Birch-Machin, M A

    2015-12-01

    Oxidative stress is the resultant damage that arises due to redox imbalances, more specifically an increase in destructive free radicals and reduction in protection from antioxidants and the antioxidant defence pathways. Oxidation of lipids by reactive oxygen species (ROS) can damage cellular structures and result in premature cell death. At low levels, ROS-induced oxidative stress can be prevented through the action of antioxidants, however, when ROS are present in excess, inflammation and cytotoxicity eventually results leading to cellular oxidative stress damage. Increasing evidence for the role of oxidative stress in various diseases including neurological, dermatological, and cardiovascular diseases is now emerging. Mitochondria are the principal source (90%) of ROS in the cell, with superoxide radicals being generated when molecular oxygen is combined with free electrons. Given the key role of mitochondria in the generation of cellular oxidative stress it is worth considering this organelle and the process in more detail and to provide methods of intervention.

  1. The effect of sunblock against oxidative stress in farmers: a pilot study.

    PubMed

    Yong-Dae, Kim; Dong-Hyuk, Yim; Sang-Yong, Eom; Ji, Yeoun Lee; Heon, Kim

    2017-01-19

    Farmers are frequently exposed to ultraviolet (UV) radiation which causes various diseases by inducing oxidative stress. This study aimed to assess the effects of sunblock on oxidative stress in the body. Eighty-seven farmers were divided into two groups: those who wore sunblock for five days and those who did not. The total antioxidant capacity (TAC) in urine, which is an antioxidant indicator, and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels in urine, an oxidative stress indicator, were measured. The urinary TAC of sunblock users was significantly higher than that of non-users, but urinary 8-OHdG levels were not significantly different. Even after adjustment for potential confounders, urinary TAC was found to be markedly increased with sunblock usage. These results suggest that sunblock is effective in preventing oxidative stress among farmers. In addition, they show that urinary TAC can be used as a good effect marker of oxidative stress caused by UV exposure.

  2. Oxidative Stress: A Potential Recipe For Anxiety, Hypertension and Insulin Resistance

    PubMed Central

    Salim, Samina; Asghar, Mohammad; Chugh, Gaurav; Taneja, Manish; Xia, Zhilian; Saha, Kaustav

    2010-01-01

    We recently reported involvement of oxidative stress in anxiety-like behavior of rats. Others in separate studies have demonstrated a link between oxidative stress and hypertension as well as with type 2 diabetes/insulin resistance. In the present study, we have tested a putative role of oxidative stress in anxiety-like behavior, hypertension and insulin resistance using a rat model of oxidative stress. Oxidative stress in rats was produced by xanthine (0.1%; drinking water) and xanthine oxidase (5U/kg; i.p.). X+XO-treated rats had increased plasma and urinary 8-isoprostane levels (a marker of oxidative stress) and increased malondialdehyde (MDA) levels in the hippocampus and amygdala as compared to control rats. Serum corticosterone (a systemic marker of stress and anxiety) levels also increased with X+XO treatment. Moreover, anxiety-like behavior measured via open-field and light-dark exploration behavior tests significantly increased in X+XO-treated rats. Mean arterial blood pressure measured in anesthetized rats increased in X+XO-treated compared to control rats. Furthermore, plasma insulin but not glucose levels together with homeostasis model assessment (HOMA), an index of insulin resistance, were higher in X+XO-treated rats. Our studies suggest that oxidative stress is a common factor that link anxiety-like behavior, hypertension and insulin resistance in rats. PMID:20816762

  3. Increased brain nitric oxide levels following ethanol administration.

    PubMed

    Finnerty, Niall; O'Riordan, Saidhbhe L; Klamer, Daniel; Lowry, John; Pålsson, Erik

    2015-05-01

    Nitric oxide is a ubiquitous messenger molecule, which at elevated concentrations has been implicated in the pathogenesis of several neurological disorders. Its role in oxidative stress, attributed in particular to the formation of peroxynitrite, proceeds through its high affinity for the superoxide radical. Alcoholism has recently been associated with the induction of oxidative stress, which is generally defined as a shift in equilibrium between pro-oxidant and anti-oxidant species in the direction of the former. Furthermore, its primary metabolite acetaldehyde, has been extensively associated with oxidative damage related toxic effects following alcohol ingestion. The principal objective of this study was the application of long term in vivo electrochemistry (LIVE) to investigate the effect of ethanol (0.125, 0.5 and 2.0 g kg(-1)) and acetaldehyde (12.5, 50 and 200 mg kg(-1)) on NO levels in the nucleus accumbens of freely moving rats. Systemic administrations of ethanol and acetaldehyde resulted in a dose-dependent increases in NO levels, albeit with very differing time courses. Subsequent to this the effect on accumbal NO levels, of subjecting the animal to different drug combinations, was also elucidated. The nitric oxide synthase inhibitor L-NAME (20 mg kg(-1)) and acetaldehyde sequestering agent D-penicillamine (50 mg kg(-1)) both attenuated the increase in NO levels following ethanol (1 g kg(-1)) administration. Conversely, the alcohol dehydrogenase inhibitor 4-methylpyrazole (25 mg kg(-1)) and catalase inhibitor sodium azide (10 mg kg(-1)) potentiated the increase in NO levels following ethanol administration. Finally, dual inhibition of aldehyde dehydrogenase and catalase by cyanamide (25 mg kg(-1)) caused an attenuation of ethanol effects on NO levels. Taken together these data highlight a robust increase in brain NO levels following systemic alcohol administration which is dependent on NO synthase activity and may involve both alcohol- and acetaldehyde

  4. Oxidative Stress in Children with Chronic Spontaneous Urticaria

    PubMed Central

    Dilek, Fatih; Ozceker, Deniz; Ozkaya, Emin; Guler, Nermin; Tamay, Zeynep; Kesgin, Siddika; Yazici, Mebrure; Kocyigit, Abdurrahim

    2016-01-01

    The pathogenesis of chronic spontaneous urticaria (CSU) has not been fully understood; nevertheless, significant progress has been achieved in recent years. The aim of this study was to investigate the possible role of reactive oxygen species (ROS) in the pathogenesis of CSU. Sixty-two children with CSU and 41 healthy control subjects were enrolled in the study. An extensive evaluation of demographic and clinical features was done, and serum oxidative stress was evaluated by plasma total oxidant status (TOS) and total antioxidant status (TAS) measurements. The median value of plasma TOS was found to be 10.49 μmol H2O2 equiv./L (interquartile range, 7.29–17.65) in CSU patients and 7.68 μmol H2O2 equiv./L (5.95–10.39) in the control group. The difference between the groups was statistically significant (p = 0.003). Likewise, the median plasma TAS level in the CSU group was decreased significantly compared to that of the control group (2.64 [2.30–2.74] versus 2.76 [2.65–2.86] mmol Trolox equiv./L, resp., p = 0,001). Our results indicated that plasma oxidative stress is increased in children with CSU when compared to healthy subjects, and plasma oxidative stress markers are positively correlated with disease activity. PMID:27127547

  5. Kinins— The Kallikrein-Kinin System and Oxidative Stress

    PubMed Central

    Kayashima, Yukako; Smithies, Oliver; Kakoki, Masao

    2012-01-01

    Purpose of review The Kallikrein-kinin system (KKS) constitutes a complex multi-enzyme cascade that produces several bioactive kinin peptides and their derivatives including bradykinin. In addition to the classical notion of the KKS as a potent vasodilator and a mediator of inflammatory responses, recent studies suggest a link between the KKS and oxidative stress. A number of established mouse model with altered levels of KKS components opened the way to evaluate precise functions of the KKS. Here we review recent findings on the role of the KKS in cardiovascular diseases and chronic kidney diseases, and discuss potential benefits of KKS activation in these diseases. Recent findings Deletion of both B1R and B2R in a diabetic mouse model exacerbates its renal phenotypes, suggesting that the KKS exerts protective effects on diabetic nephropathy by suppressing oxidative stress, presumably via nitric oxide (NO) and prostaglandins (PGs). Summary Accumulating evidence has highlighted the importance of the KKS as a protective system against oxidative stress and organ damage in the heart and kidney. The activation of the KKS by ACE inhibitors and vasopeptidase inhibitors is likely to be beneficial in senescence-associated cardiovascular diseases and chronic kidney diseases. PMID:22048723

  6. Effect of surface roughness on oxidation : changes in scale thickness, composition, and residual stress.

    SciTech Connect

    Uran, S.; Veal, B.; Grimsditch, M.; Pearson, J.; Berger, A.; Materials Science Division

    2000-08-01

    The effect of surface roughness on the properties of the oxide scale formed on Fe-Cr-Al alloys during oxidation in air at high temperatures has been investigated. Large and systematic differences in scale thickness, in the composition of the oxides forming the scale, and in the residual stress levels are found.

  7. Flavonoids and oxidative stress in Drosophila melanogaster.

    PubMed

    Sotibrán, América Nitxin Castañeda; Ordaz-Téllez, María Guadalupe; Rodríguez-Arnaiz, Rosario

    2011-11-27

    Flavonoids are a family of antioxidants that are widely represented in fruits, vegetables, dry legumes, and chocolate, as well as in popular beverages, such as red wine, coffee, and tea. The flavonoids chlorogenic acid, kaempferol, quercetin and quercetin 3β-d-glycoside were investigated for genotoxicity using the wing somatic mutation and recombination test (SMART). This test makes use of two recessive wing cell markers: multiple wing hairs (mwh) and flare (flr(3)), which are mutations located on the left arm of chromosome 3 of Drosophila melanogaster and are indicative of both mitotic recombination and various types of mutational events. In order to test the antioxidant capacities of the flavonoids, experiments were conducted with various combinations of oxidants and polyphenols. Oxidative stress was induced using hydrogen peroxide, the Fenton reaction and paraquat. Third-instar transheterozygous larvae were chronically treated for all experiments. The data obtained in this study showed that, at the concentrations tested, the flavonoids did not induce somatic mutations or recombination in D. melanogaster with the exception of quercetin, which proved to be genotoxic at only one concentration. The oxidants hydrogen peroxide and the Fenton reaction did not induce mutations in the wing somatic assay of D. melanogaster, while paraquat and combinations of flavonoids produced significant numbers of small single spots. Quercetin 3β-d-glycoside mixed with paraquat was shown to be desmutagenic. Combinations of the oxidants with the other flavonoids did not show any antioxidant activity.

  8. Oxidative stress and antioxidants: Distress or eustress?

    PubMed

    Niki, Etsuo

    2016-04-01

    There is a growing consensus that reactive oxygen species (ROS) are not just associated with various pathologies, but that they act as physiological redox signaling messenger with important regulatory functions. It is sometimes stated that "if ROS is a physiological signaling messenger, then removal of ROS by antioxidants such as vitamins E and C may not be good for human health." However, it should be noted that ROS acting as physiological signaling messenger and ROS removed by antioxidants are not the same. The lipid peroxidation products of polyunsaturated fatty acids and cholesterol induce adaptive response and enhance defense capacity against subsequent oxidative insults, but it is unlikely that these lipid peroxidation products are physiological signaling messenger produced on purpose. The removal of ROS and inhibition of lipid peroxidation by antioxidants should be beneficial for human health, although it has to be noted also that they may not be an effective inhibitor of oxidative damage mediated by non-radical oxidants. The term ROS is vague and, as there are many ROS and antioxidants which are different in chemistry, it is imperative to explicitly specify ROS and antioxidant to understand the effects and role of oxidative stress and antioxidants properly.

  9. Biocompatibility of implantable materials: An oxidative stress viewpoint.

    PubMed

    Mouthuy, Pierre-Alexis; Snelling, Sarah J B; Dakin, Stephanie G; Milković, Lidija; Gašparović, Ana Čipak; Carr, Andrew J; Žarković, Neven

    2016-12-01

    Oxidative stress occurs when the production of oxidants surpasses the antioxidant capacity in living cells. Oxidative stress is implicated in a number of pathological conditions such as cardiovascular and neurodegenerative diseases but it also has crucial roles in the regulation of cellular activities. Over the last few decades, many studies have identified significant connections between oxidative stress, inflammation and healing. In particular, increasing evidence indicates that the production of oxidants and the cellular response to oxidative stress are intricately connected to the fate of implanted biomaterials. This review article provides an overview of the major mechanisms underlying the link between oxidative stress and the biocompatibility of biomaterials. ROS, RNS and lipid peroxidation products act as chemo-attractants, signalling molecules and agents of degradation during the inflammation and healing phases. As chemo-attractants and signalling molecules, they contribute to the recruitment and activation of inflammatory and healing cells, which in turn produce more oxidants. As agents of degradation, they contribute to the maturation of the extracellular matrix at the healing site and to the degradation of the implanted material. Oxidative stress is itself influenced by the material properties, such as by their composition, their surface properties and their degradation products. Because both cells and materials produce and react with oxidants, oxidative stress may be the most direct route mediating the communication between cells and materials. Improved understanding of the oxidative stress mechanisms following biomaterial implantation may therefore help the development of new biomaterials with enhanced biocompatibility.

  10. Air pollution and circulating biomarkers of oxidative stress

    PubMed Central

    Staimer, Norbert; Vaziri, Nosratola D.

    2013-01-01

    Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations. PMID:23626660

  11. Targets of oxidative stress in cardiovascular system.

    PubMed

    Chakraborti, T; Ghosh, S K; Michael, J R; Batabyal, S K; Chakraborti, S

    1998-10-01

    Although oxidants such as superoxide (O2.) and hydrogen peroxide (H2O2) play a role in host-mediated destruction of foreign pathogens yet excessive generation of oxidants may lead to a variety of pathological complications in the cardiovascular system. An important mechanism by which oxidants cause dysfunction of the cardiovascular system appears to be due to the increase in intracellular free Ca2+ concentration. Oxidants cause cellular Ca2+ mobilization by modulating activities of a variety of regulators such as Na+/H+ and Na+/Ca2+ exchangers, Na+/K+ ATPase and Ca2+ ATPase and Ca2+ channels that are associated with Ca2+ transport in the plasma membrane and the sarco(endo)plasmic reticular membrane of myocardial cells. Recent research have suggested that the increase in Ca2+ level by oxidants plays a pivotal role in inducing several protein kinases such as protein kinase C, tyrosine kinase and mitogen activated protein kinases. Oxidant-mediated alteration of different signal transduction systems and their interations eventually regulate a variety of pathological conditions such as atherosclerosis, apoptosis and necrosis in the myocardium.

  12. Oxidative stress and proteasome inhibitors in multiple myeloma.

    PubMed

    Lipchick, Brittany C; Fink, Emily E; Nikiforov, Mikhail A

    2016-03-01

    Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents.

  13. Reproduction is not costly in terms of oxidative stress.

    PubMed

    Ołdakowski, Łukasz; Wasiluk, Aleksandra; Sadowska, Edyta T; Koteja, Paweł; Taylor, Jan R E

    2015-12-01

    One of the core assumptions of life-history theory is the negative trade-off between current and future reproduction. Investment in current reproduction is expected to decrease future reproductive success or survival, but the physiological mechanisms underlying these costs are still obscure. To test for a role of oxidative stress, we measured oxidative damage to lipids and proteins in liver, heart, kidneys and muscles, as well as the level of antioxidants (total glutathione and catalase), in breeding and non-breeding bank voles. We used females from lines selected for high aerobic metabolism and non-selected control lines and manipulated their reproductive investment by decreasing or increasing litter size. Unlike in most previous studies, the females reared four consecutive litters (the maximum possible during a breeding season). Contrary to predictions, oxidative damage in reproducing females was decreased or not changed, and did not differ between the selected and control lines. Oxidative damage to lipids and proteins in the liver was lower in females that weaned enlarged litters than in non-breeding ones, and was intermediate in those with reduced litters. Oxidative damage to proteins in the heart also tended to be lower in breeding females than in non-breeding ones. A negative relationship between the level of oxidative damage and activity of catalase in kidneys indicated a protective action of antioxidants. In conclusion, our study falsified the hypothesis that oxidative stress is a part of the proximate physiological mechanism underlying the fundamental life-history trade-off between current and future reproduction.

  14. [Research of antioxidant defence system under alimentary induced oxidative stress].

    PubMed

    Kravchenko, Iu V; Mal'tsev, G Iu; Vasil'ev, A V

    2004-01-01

    Alimentary induced oxidative stress and its corrections in children and adults with homocysteine metabolism disorder are urgent problems for arteriosclerosis and cardiovascular disease prophylactics. For determination antioxidant status GSH-Px, SOD, GSH-reductase, catalase activities were detected. Effectiveness of Se-contained antioxidant complex "Selenec" was determined in experimental model with pubertal male Wistar rats. Including high value of methionine to semipurified diet with pyridoxine and folate deficiency induced oxidative stress. Lipid peroxidation substances were increased in blood, liver, intestine mucous tunic, aortal endothelium and myocardium. GSH-Px, SOD, GSH-reductase, catalase activities decreased significant compared to control. "Selenec" supplementation caused a decrease of thiobarbituric-reactive substances level, increasing SOD and catalase activity and decreasing GSH-Px and GSH-reductase activity in blood, liver, intestine mucous tunic, aorta and myocardium.

  15. A mitochondrial superoxide theory for oxidative stress diseases and aging.

    PubMed

    Indo, Hiroko P; Yen, Hsiu-Chuan; Nakanishi, Ikuo; Matsumoto, Ken-Ichiro; Tamura, Masato; Nagano, Yumiko; Matsui, Hirofumi; Gusev, Oleg; Cornette, Richard; Okuda, Takashi; Minamiyama, Yukiko; Ichikawa, Hiroshi; Suenaga, Shigeaki; Oki, Misato; Sato, Tsuyoshi; Ozawa, Toshihiko; Clair, Daret K St; Majima, Hideyuki J

    2015-01-01

    Fridovich identified CuZnSOD in 1969 and manganese superoxide dismutase (MnSOD) in 1973, and proposed "the Superoxide Theory," which postulates that superoxide (O2 (•-)) is the origin of most reactive oxygen species (ROS) and that it undergoes a chain reaction in a cell, playing a central role in the ROS producing system. Increased oxidative stress on an organism causes damage to cells, the smallest constituent unit of an organism, which can lead to the onset of a variety of chronic diseases, such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis and other neurological diseases caused by abnormalities in biological defenses or increased intracellular reactive oxygen levels. Oxidative stress also plays a role in aging. Antioxidant systems, including non-enzyme low-molecular-weight antioxidants (such as, vitamins A, C and E, polyphenols, glutathione, and coenzyme Q10) and antioxidant enzymes, fight against oxidants in cells. Superoxide is considered to be a major factor in oxidant toxicity, and mitochondrial MnSOD enzymes constitute an essential defense against superoxide. Mitochondria are the major source of superoxide. The reaction of superoxide generated from mitochondria with nitric oxide is faster than SOD catalyzed reaction, and produces peroxynitrite. Thus, based on research conducted after Fridovich's seminal studies, we now propose a modified superoxide theory; i.e., superoxide is the origin of reactive oxygen and nitrogen species (RONS) and, as such, causes various redox related diseases and aging.

  16. Oxidative stress and antibacterial properties of a graphene oxide-cystamine nanohybrid

    PubMed Central

    Nanda, Sitansu Sekhar; An, Seong Soo A; Yi, Dong Kee

    2015-01-01

    Oxidative stress can damage proteins, DNA, and lipids, and is involved in the progression of many diseases. Damage to infected cells caused by oxidative stress is related to increased levels of reactive oxygen species, including hydrogen peroxide. During oxidative stress, hydrogen peroxide levels are often increased and catalase level decreased inside cells. This can lead to the death of skin and other cells. Hydrophobic low molecular weight compounds are useful in treating hemorrhagic conditions of the skin. To this end, cystamine has been successfully conjugated with graphene oxide (GO) as a drug carrier. The current study used the microdilution method to determine the minimum inhibitory concentrations of cystamine-conjugated GO against four types of pathogenic bacteria. Minimum inhibitory concentrations values were 1 μg/mL against Escherichia coli and Salmonella typhimurium, 6 μg/mL against Enterococcus faecalis, and 4 μg/mL against Bacillus subtilis. Toxicity of the conjugate against squamous cell carcinoma 7 cells was minimal at low concentrations, but increased in a dose-dependent manner. These results demonstrated that our protocol produced a cystamine-conjugated GO with low cytotoxicity, but strong reactive oxygen species effects and high antibacterial activity. This nanohybrid may be useful in the treatment of dermatological disorders. Moreover, this class of nanohybrid may have other biomedical applications due to their low cytotoxicity and high antibacterial activity. PMID:25609960

  17. Oxidative Stress Status in Childhood Obesity: A Potential Risk Predictor

    PubMed Central

    Kilic, Elif; Özer, Ömer Faruk; Erek, Aybala Toprak; Erman, Hayriye; Torun, Emel; Ayhan, Sıddıka Kesgin; Caglar, Hifa Gülru; Selek, Sahbettin; Kocyigit, Abdurrahim

    2016-01-01

    Background Childhood obesity characterized by excessive fat in the body is one of the most serious health problems worldwide due to the social, medical, and physiological complications. Obesity and associated diseases are triggering factors for oxidative stress and inflammation. The aim of this study was to explore the possible association between childhood obesity and inflammatory and oxidative status. Material/Methods Thirty-seven obese children and 37 healthy controls selected from among children admitted to BLIND University Paediatrics Department were included in the study. Anthropometric measurements were performed using standard methods. Glucose, lipid parameters, CRP, insulin, total oxidant status (TOS), total anti-oxidant status (TAS) levels, and total thiol levels (TTL) were measured in serum. HOMA index (HOMA-IR) were calculated. The differences between the groups were evaluated statistically using the Mann-Whitney U test. Results Body mass index was significantly higher in the obese group (median: 28.31(p<0.001). Glucose metabolism, insulin, and HOMA-IR levels were significantly higher in the obese group (both p<0.001). Total cholesterol, HDL cholesterol, LDL cholesterol, and triglyceride levels were significantly higher in the obese group (p<0.001). TAS (med: 2.5 μmol Trolox eq/L (1.7–3.3)) and TOS (med: 49.1 μmol H2O2 eq/L (34.5–78.8)) levels and TTL (med: 0.22 mmol/L (0.16–0.26)) were significantly higher in the obese group (p=0.001). CRP levels showed positive correlation with TOS and negative correlation with TTL levels (p=0.005, r=0.473; p=0.01, r=−0.417; respectively). TTL levels exhibited negative correlation with TOS levels (p=0.03, r=−0.347). Conclusions In conclusion, obese children were exposed to more oxidative burden than children with normal weight. Increased systemic oxidative stress induced by childhood obesity can cause development of obesity-related complications and diseases. Widely focussed studies are required on the use

  18. Epicardial fat thickness and oxidative stress parameters in patients with subclinical hypothyroidism

    PubMed Central

    Aydogdu, Ali; Erkus, Emre; Altıparmak, İbrahim Halil; Savık, Emin; Ulas, Turgay; Sabuncu, Tevfik

    2017-01-01

    Introduction Thyroid disorders are known to be a risk factor for cardiovascular diseases. Epicardial fat thickness (EFT) and oxidative stress are also believed to be major risk factors for cardiovascular events. The aim of this study was to evaluate the possible relationship between oxidative stress parameters and EFT in patients with subclinical hypothyroidism (SCH). Material and methods A total of 60 individuals (30 patients with SCH and 30 healthy controls) were recruited for the study. The EFT and oxidative stress parameters of all participants were analyzed at baseline; the same were analyzed in SCH patients after achievement of a euthyroid state. Results Compared to healthy subjects, SCH patients had significantly higher EFT and oxidative stress parameters (p < 0.05 for all). EFT and oxidative stress parameters both decreased after treatment, but only the decrease of EFT levels was statistically significant after thyroid hormone replacement (p < 0.05). Serum EFT levels were not significantly correlated with oxidative stress index (r = 0.141, p = 0.458). Conclusions Previous studies have demonstrated that visceral adipose tissue and oxidative stress are major risk factors for cardiovascular events; our study demonstrated that EFT, a visceral adipose tissue, and oxidative stress parameters were higher, and could be used as an indicator for cardiovascular diseases in patients with SCH. PMID:28261292

  19. Levels of meaning in family stress theory.

    PubMed

    Patterson, J M; Garwick, A W

    1994-09-01

    Major stressful life events, particularly those that have chronic hardships, create a crisis for families that often leads to reorganization in the family's style of functioning. A major factor in this reorganization is the meaning the family gives to the stressful event. Often the meaning extends beyond the event itself and leads to a changed view of the family system and even to a changed view of the world. Building on other family stress models, we elaborate the family's definition of the stressor into three levels of family meanings: (1) situational meanings, (2) family identity, and (3) family world view. Examples from clinical work and studies of families adapting to chronic illness are used to illustrate the relationship between these three levels of meaning, particularly as they change in response to crisis. Implications for clinical and empirical work are discussed.

  20. Cysteamine modulates oxidative stress and blocks myofibroblast activity in CKD.

    PubMed

    Okamura, Daryl M; Bahrami, Nadia M; Ren, Shuyu; Pasichnyk, Katie; Williams, Juliana M; Gangoiti, Jon A; Lopez-Guisa, Jesus M; Yamaguchi, Ikuyo; Barshop, Bruce A; Duffield, Jeremy S; Eddy, Allison A

    2014-01-01

    Therapy to slow the relentless expansion of interstitial extracellular matrix that leads to renal functional decline in patients with CKD is currently lacking. Because chronic kidney injury increases tissue oxidative stress, we evaluated the antifibrotic efficacy of cysteamine bitartrate, an antioxidant therapy for patients with nephropathic cystinosis, in a mouse model of unilateral ureteral obstruction. Fresh cysteamine (600 mg/kg) was added to drinking water daily beginning on the day of surgery, and outcomes were assessed on days 7, 14, and 21 after surgery. Plasma cysteamine levels showed diurnal variation, with peak levels similar to those observed in patients with cystinosis. In cysteamine-treated mice, fibrosis severity decreased significantly at 14 and 21 days after unilateral ureteral obstruction, and renal oxidized protein levels decreased at each time point, suggesting reduced oxidative stress. Consistent with these results, treatment of cultured macrophages with cysteamine reduced cellular generation of reactive oxygen species. Furthermore, treatment with cysteamine reduced α-smooth muscle actin-positive interstitial myofibroblast proliferation and mRNA levels of extracellular matrix proteins in mice and attenuated myofibroblast differentiation and proliferation in vitro, but did not augment TGF-β signaling. In a study of renal ischemia reperfusion, cysteamine therapy initiated 10 days after injury and continued for 14 days decreased renal fibrosis by 40%. Taken together, these data suggest previously unrecognized antifibrotic actions of cysteamine via TGF-β-independent mechanisms that include oxidative stress reduction and attenuation of the myofibroblast response to kidney injury and support further investigation into the potential benefit of cysteamine therapy in the treatment of CKD.

  1. Oxidative stress: Biomarkers and novel therapeutic pathways.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-03-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.

  2. OXIDATIVE STRESS: BIOMARKERS AND NOVEL THERAPEUTIC PATHWAYS

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-01-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:20064603

  3. Neuroprotective effects of sildenafil against oxidative stress and memory dysfunction in mice exposed to noise stress.

    PubMed

    Sikandaner, Hu Erxidan; Park, So Young; Kim, Min Jung; Park, Shi Nae; Yang, Dong Won

    2017-02-15

    Noise exposure has been well characterized as an environmental stressor, and is known to have auditory and non-auditory effects. Phosphodiesterase 5 (PDE5) inhibitors affect memory and hippocampus plasticity through various signaling cascades which are regulated by cGMP. In this study, we investigated the effects of sildenafil on memory deficiency, neuroprotection and oxidative stress in mice caused by chronic noise exposure. Mice were exposed to noise for 4h every day up to 14days at 110dB SPL of noise level. Sildenafil (15mg/kg) was orally administered 30min before noise exposure for 14days. Behavioral assessments were performed using novel object recognition (NOR) test and radial arm maze (RAM) test. Higher levels of memory dysfunction and oxidative stress were observed in noise alone-induced mice compared to control group. Interestingly, sildenafil administration increased memory performance, decreased oxidative stress, and increased neuroprotection in the hippocampus region of noise alone-induced mice likely through affecting memory related pathways such as cGMP/PKG/CREB and p25/CDK5, and induction of free radical scavengers such as SOD1, SOD2, SOD3, Prdx5, and catalase in the brain of stressed mice.

  4. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  5. Chasing great paths of Helmut Sies "Oxidative Stress".

    PubMed

    Majima, Hideyuki J; Indo, Hiroko P; Nakanishi, Ikuo; Suenaga, Shigeaki; Matsumoto, Ken-Ichiro; Matsui, Hirofumi; Minamiyama, Yukiko; Ichikawa, Hiroshi; Yen, Hsiu-Chuan; Hawkins, Clare L; Davies, Michael J; Ozawa, Toshihiko; St Clair, Daret K

    2016-04-01

    Prof. Dr. Helmut Sies is a pioneer of "Oxidative Stress", and has published over 18 papers with the name of "Oxidative Stress" in the title. He has been Editor-in-Chief of the journal "Archives of Biochemistry and Biophysics" for many years, and is a former Editor-in-Chief of the journal "Free Radical Research". He has clarified our understanding of the causes of chronic developing diseases, and has studied antioxidant factors. In this article, importance of "Oxidative Stress" and our mitochondrial oxidative stress studies; roles of mitochondrial ROS, effects of vitamin E and its homologues in oxidative stress-related diseases, effects of antioxidants in vivo and in vitro, and a mitochondrial superoxide theory for oxidative stress diseases and aging are introduced, and some of our interactions with Helmut are described, congratulating and appreciating his great path.

  6. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    SciTech Connect

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  7. Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule?

    PubMed

    Foucaud, L; Goulaouic, S; Bennasroune, A; Laval-Gilly, P; Brown, D; Stone, V; Falla, J

    2010-09-01

    The aim of this study was to investigate whether carbon black (CB) nanoparticles might induce toxicity to monocytic cells in vitro via an oxidative stress mechanism involving formation of the lipid peroxidation product 4-hydroxynonenal (4-HNE) and the subsequent role of 4-HNE in inducing further cytotoxic effects. ROS production in cells by CB nanoparticles was shown by the oxidation of DCFH after a short time exposure. These particles induced the formation of 4-HNE-protein adducts and significant modification of glutathione content corresponding to an increase of oxidized glutathione form (GSSG) and a decrease of total glutathione (GSX) content. These results attest to an oxidative stress induced by the carbon black nanoparticles, although no induction of HO-1 protein expression was detected. Concerning the effects of a direct exposure to 4-HNE, our results showed that 4-HNE is not cytotoxic for concentrations lower than 12.5 microM. By contrast, it provokes a very high cytotoxicity for concentrations above 25 microM. An induction of HO-1 expression was observed from concentrations above 5 microM of 4-HNE. Finally, glutathione content decreased significantly from 5 microM of 4-HNE but no modification was observed under this concentration. The discrepancy between effects of carbon black nanoparticles and 4-HNE on the intracellular markers of oxidative stress suggests that 4-HNE is not directly implied in the signalling of oxidative toxicity of nanoparticles but is an effective biomarker of oxidative effects of nanoparticles.

  8. Oxidative stress in marine environments: biochemistry and physiological ecology.

    PubMed

    Lesser, Michael P

    2006-01-01

    Oxidative stress-the production and accumulation of reduced oxygen intermediates such as superoxide radicals, singlet oxygen, hydrogen peroxide, and hydroxyl radicals-can damage lipids, proteins, and DNA. Many disease processes of clinical interest and the aging process involve oxidative stress in their underlying etiology. The production of reactive oxygen species is also prevalent in the world's oceans, and oxidative stress is an important component of the stress response in marine organisms exposed to a variety of insults as a result of changes in environmental conditions such as thermal stress, exposure to ultraviolet radiation, or exposure to pollution. As in the clinical setting, reactive oxygen species are also important signal transduction molecules and mediators of damage in cellular processes, such as apoptosis and cell necrosis, for marine organisms. This review brings together the voluminous literature on the biochemistry and physiology of oxidative stress from the clinical and plant physiology disciplines with the fast-increasing interest in oxidative stress in marine environments.

  9. Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy

    PubMed Central

    Muriach, María; Flores-Bellver, Miguel; Romero, Francisco J.; Barcia, Jorge M.

    2014-01-01

    Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation. PMID:25215171

  10. Diabetes and the brain: oxidative stress, inflammation, and autophagy.

    PubMed

    Muriach, María; Flores-Bellver, Miguel; Romero, Francisco J; Barcia, Jorge M

    2014-01-01

    Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.

  11. Transcriptional profiling of Giardia intestinalis in response to oxidative stress.

    PubMed

    Ma'ayeh, Showgy Y; Knörr, Livia; Svärd, Staffan G

    2015-12-01

    Giardia intestinalis is a microaerophilic parasite that infects the human upper small intestine, an environment that is fairly aerobic with reactive oxygen species being produced to fight off the parasite. It is quite perplexing how Giardia, lacking conventional eukaryotic antioxidant machinery (e.g. catalase, superoxide dismutase and glutathione peroxidase), can cope with the oxidative stress in this environment. We used transcriptomics (RNA sequencing and quantitative PCR) to study giardial gene expression changes in response to oxygen (O2; 1h) and hydrogen peroxide (H2O2; 150 μM, 500 μM and 1mM for 1h). The results showed phenotypic and transcriptional differences between Giardia isolates of different genotypes (WB, assemblage A and GS, assemblage B), with GS being more tolerant to H2O2 and exhibiting higher basic transcript levels of antioxidant genes (e.g. NADH oxidase lateral transfer candidate, peroxiredoxin 1 (Prx1) and thioredoxin (Trx)-like proteins). Cysteine is a major antioxidant in Giardia and its role in oxidative defense could be highlighted here by the up-regulation of gene transcripts encoding the cysteine-rich variable surface proteins (VSPs) and high cysteine membrane proteins (HCMPs). Genes in the thioredoxin system (Prx1, Trx and Trx reductase) occupied a central role in the gene expression response to oxidative stress, together with genes encoding metabolic (NADPH-producing enzymes, glutathione and glycerol biosynthetic enzymes) and O2-consuming nitric oxide detoxification enzymes (e.g. nitroreductase, flavohemoprotein and a flavodiiron protein). This study reveals the intricate network of genes associated with the oxidative stress response in Giardia, and provides a stepping-stone towards future studies at the protein level.

  12. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    PubMed

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress.

  13. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats.

    PubMed

    López-López, Ana Laura; Jaime, Herlinda Bonilla; Escobar Villanueva, María Del Carmen; Padilla, Malinalli Brianza; Palacios, Gonzalo Vázquez; Aguilar, Francisco Javier Alarcón

    2016-07-01

    Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the