Science.gov

Sample records for oxidative stress levels

  1. Plasma levels of oxidative stress-responsive apoptosis inducing protein (ORAIP) in rats subjected to physicochemical oxidative stresses

    PubMed Central

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Seko, Yoshinori

    2016-01-01

    Oxidative stress is known to play a pivotal role in the pathogenesis of various disorders including atherosclerosis, aging and especially ischaemia/reperfusion injury. It causes cell damage that leads to apoptosis. However, the precise mechanism has been uncertain. Recently, we identified an apoptosis-inducing humoral factor in a hypoxia/reoxygenated medium of cardiac myocytes. We named this novel post-translationally modified secreted form of eukaryotic translation initiation factor 5A (eIF5A) as oxidative stress-responsive apoptosis inducing protein (ORAIP). We developed a sandwich ELISA and confirmed that myocardial ischaemia/reperfusion markedly increased plasma levels of ORAIP. To investigate whether the role of ORAIP is common to various types of oxidative stress, we measured plasma ORAIP levels in rats subjected to three physicochemical models of oxidative stress including N2/O2 inhalation, cold/warm-stress (heat shock) and blood acidification. In all three models, plasma ORAIP levels significantly increased and reached a peak level at 10–30 min after stimulation, then decreased within 60 min. The (mean±S.E.M.) plasma ORAIP levels before and after (peak) stimulation were (16.4±9.6) and (55.2±34.2) ng/ml in N2/O2 inhalation, (14.1±12.4) and (34.3±14.6) ng/ml in cold/warm-stress, and (18.9±14.3) and (134.0±67.2) ng/ml in blood acidification study. These data strongly suggest that secretion of ORAIP in response to oxidative stress is universal mechanism and plays an essential role. ORAIP will be an important novel biomarker as well as a specific therapeutic target of these oxidative stress-induced cell injuries. PMID:26934977

  2. Systems-level characterization and engineering of oxidative stress tolerance in Escherichia coli under anaerobic conditions.

    PubMed

    Kang, Aram; Tan, Mui Hua; Ling, Hua; Chang, Matthew Wook

    2013-02-01

    Despite many prior studies on microbial response to oxidative stress, our understanding of microbial tolerance against oxidative stress is currently limited to aerobic conditions, and few engineering strategies have been devised to resolve toxicity issues of oxidative stress under anaerobic conditions. Since biological processes, such as anaerobic fermentation, are frequently hampered by toxicity arising from oxidative stress, increased microbial tolerance against oxidative stress improves the overall productivity and yield of biological processes. Here, we show a systems-level analysis of oxidative stress response of Escherichia coli under anaerobic conditions, and present an engineering strategy to improve oxidative stress tolerance. First, we identified essential cellular mechanisms and regulatory factors underlying oxidative stress response under anaerobic conditions using a transcriptome analysis. In particular, we showed that nitrogen metabolisms and respiratory pathways were differentially regulated in response to oxidative stress under anaerobic and aerobic conditions. Further, we demonstrated that among transcription factors with oxidative stress-derived perturbed activity, the deletion of arcA and arcB significantly improved oxidative stress tolerance under aerobic and anaerobic conditions, respectively, whereas fnr was identified as an essential transcription factor for oxidative stress tolerance under anaerobic conditions. Moreover, we showed that oxidative stress increased the intracellular NADH : NAD(+) ratio under aerobic and anaerobic conditions, which indicates a regulatory role of NADH in oxidative stress tolerance. Based on this finding, we demonstrated that increased NADH availability through fdh1 overexpression significantly improved oxidative stress tolerance under aerobic conditions. Our results here provide novel insight into better understanding of cellular mechanisms underlying oxidative stress tolerance under anaerobic conditions, and

  3. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    SciTech Connect

    Mazière, Cécile; Salle, Valéry; Gomila, Cathy; Mazière, Jean-Claude

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  4. Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise.

    PubMed

    de Lucas, Ricardo Dantas; Caputo, Fabrizio; Mendes de Souza, Kristopher; Sigwalt, André Roberto; Ghisoni, Karina; Lock Silveira, Paulo Cesar; Remor, Aline Pertile; da Luz Scheffer, Débora; Guglielmo, Luiz Guilherme Antonacci; Latini, Alexandra

    2014-01-01

    The purpose of the present investigation was to identify muscle damage, inflammatory response and oxidative stress blood markers in athletes undertaking the ultra-endurance MultiSport Brazil race. Eleven well-trained male athletes (34.3 ± 3.1 years, 74.0 ± 7.6 kg; 172.2 ± 5.1 cm) participated in the study and performed the race, which consisted of about 90 km of alternating off-road running, mountain biking and kayaking. Twelve hours before and up to 15 minutes after the race a 10 mL blood sample was drawn in order to measure the following parameters: lactate dehydrogenase and creatine kinase activities, lipid peroxidation, catalase activity, protein carbonylation, respiratory chain complexes I, II and IV activities, oxygen consumption and neopterin concentrations. After the race, plasma lactate dehydrogenase and creatine kinase activities were significantly increased. Erythrocyte TBA-RS levels and plasma protein carbonylation were markedly augmented in post-race samples. Additionally, mitochondrial complex II activity and oxygen consumption in post-race platelet-rich plasma were also increased. These altered biochemical parameters were accompanied by increased plasma neopterin levels. The ultra-endurance event provoked systemic inflammation (increased neopterin) accompanied by marked oxidative stress, likely by increasing oxidative metabolism (increased oxidative mitochondrial function). This might be advantageous during prolonged exercise, mainly for efficient substrate oxidation at the mitochondrial level, even when tissue damage is induced.

  5. Characterization of cardiac oxidative stress levels in patients with atrial fibrillation.

    PubMed

    Okada, Ayako; Kashima, Yuichiro; Tomita, Takeshi; Takeuchi, Takahiro; Aizawa, Kazunori; Takahashi, Masafumi; Ikeda, Uichi

    2016-01-01

    Atrial fibrillation (AF) is associated with oxidative stress and elevated brain natriuretic peptide (BNP) levels. However, the exact cardiac origin of oxidative stress and its association with BNP levels in AF patients remain unclear. Therefore, we investigated the chamber-specific plasma oxidative stress levels in patients with paroxysmal AF (PAF) and persistent AF (PSAF). Diacron-reactive oxygen metabolite (dROM) levels were measured in patients with PAF (n = 50) and PSAF (n = 35) at different cardiac sites before ablation and in peripheral vein 3 months after ablation. For all sites, dROM levels were higher in PSAF patients than in PAF patients; the levels were the highest in the coronary sinus at 429.0 (interquartile range: 392.0-449.0) vs. 374.0 (357.0-397.8) Carratelli units (P < 0.05). dROM levels in the coronary sinus were related to the BNP levels (r = 0.436, P < 0.001). Furthermore, the reduction in the peripheral dROM levels was related to that in the peripheral BNP levels in patients with symptomatic improvement (r = 0.473, P < 0.001). Cardiac oxidative stress may either be a cause or consequence of prolonged AF, and cardiac oxidative stress levels correlated with BNP levels, though a possible source of oxidative stress in AF patients may be systemic circulation.

  6. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs

    PubMed Central

    2014-01-01

    Background The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Results Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Conclusions Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory. PMID:25056725

  7. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  8. Self-stressing structures for wafer-level oxide breakdown to 200 MHz

    SciTech Connect

    Snyder, E.S.; Tanner, D.M.; Bowles, M.R.; Swanson, S.E.; Anderson, C.H.; Perry, J.P.

    1995-02-01

    We have demonstrated for the first time high frequency (210 MHz) oxide breakdown at the wafer-level using on-chip, self-stressing test structures. This is the highest frequency oxide breakdown that has been reported. We used these structures to characterize the variation in oxide breakdown with frequency (from 1 Hz to over 200 MHz) and duty cycle (from 10% to 90%). Since the stress frequency, duty cycle and temperature are controlled by DC signals in these structures, we used conventional DC wafer-level equipment without any special modifications (such as high frequency cabling). This self-stressing structure significantly reduces the cost of performing realistic high frequency oxide breakdown experiments necessary for developing reliability models and building-in-reliability.

  9. Effects of bisphosphonate on oxidative stress levels in patients with different types of cancer.

    PubMed

    Koçer, Murat; Nazıroğlu, Mustafa; Koçer, Gülperi; Sönmez, Tolga Taha

    2014-02-01

    We investigated the effects of bisphosphonate (BP) on oxidative stress levels in blood of patients with cancer. In total, 19 patients with cancer and 21 healthy subjects were included in the study. BP was intravenously administrated to the participants for 6 weeks. The patients had higher lipid peroxidation (LP) levels in the plasma and erythrocyte samples but lower glutathione peroxidase (GSH-Px) and plasma vitamin E values. In patients treated with BP, calcium and LP levels decreased, but GSH-Px and vitamin E values improved. In conclusion, we observed that treatment with BP alleviated oxidative stress induced by cancer.

  10. Oxidative stress induces age-dependent changes in lymphocyte protein synthesis and second messenger levels.

    PubMed

    Lopez-Hellin, J; Garcia-Arumi, E; Schwartz, S

    1998-01-01

    Cumulative damage in cells from aged people could lead to a greater fragility against acute oxidative stress. The effects of acute oxidative stress on cell viability, cAMP and cGMP concentrations, and protein synthesis rates were studied in lymphocytes from 25 young and 26 elderly subjects. Lymphocytes were exposed to stress by hydrogen peroxide 25 micromol/l and incubated for 18 hours. Cell viability after stress was lower (p<0.0001, Student's t test) in cells from the elderly (63.4%) than in cells from the young donors (73.2%). The protein synthesis rate was also lower after stress (p<0.04, Mann-Whitney U test) in cells from the elderly (47.3% vs. non-stressed cells), than in cells from the young (82.19% vs. non-stressed cells). After oxidative stress, cAMP and cGMP concentrations showed no significant changes in cells from young subjects; there were, however, significant decreases in these cyclic nucleotides in cells from the elderly (p<0.008 for both nucleotides, paired Student's t test). There were no differences in basal cAMP or cGMP levels between the two groups. These results show that mortality and metabolic changes due to oxidative stress are greater in lymphocytes proceeding from elderly subjects than in those from young subjects.

  11. Level of oxidative stress markers among physicians in a medical residency program.

    PubMed

    Rostami, Ali; Boojar, Masoud Mashhadi Akbar; Adibi, Peyman; Changiz, Tahereh

    2008-01-01

    The authors investigated the effect of engaging in a medical residency program, as a stressful situation, on blood and urine levels of oxidative stress markers. Newly admitted medical residents participated in the study, along with a control group of (nonmedical) students. The authors assessed superoxide dismutase, glutathione peroxidase, catalase, malondialdehyde, micronuclei test, sister chromatid exchange, and 8-hydroxy-2'-deoxyguanosine level. All the biomarkers declined after entrance to the residency program, and the parameters were strongly higher in residents than in the control group. There was no significant relationship between demographic factors and levels of stress biomarkers. The greater extent of oxidative stress may be due to higher tension before entrance to a supposedly critical new position, and the declined levels of biomarkers seen after several months in the program could be attributed to an appropriate adjustment of the residents to the new situation. PMID:18980879

  12. Level of oxidative stress markers among physicians in a medical residency program.

    PubMed

    Rostami, Ali; Boojar, Masoud Mashhadi Akbar; Adibi, Peyman; Changiz, Tahereh

    2008-01-01

    The authors investigated the effect of engaging in a medical residency program, as a stressful situation, on blood and urine levels of oxidative stress markers. Newly admitted medical residents participated in the study, along with a control group of (nonmedical) students. The authors assessed superoxide dismutase, glutathione peroxidase, catalase, malondialdehyde, micronuclei test, sister chromatid exchange, and 8-hydroxy-2'-deoxyguanosine level. All the biomarkers declined after entrance to the residency program, and the parameters were strongly higher in residents than in the control group. There was no significant relationship between demographic factors and levels of stress biomarkers. The greater extent of oxidative stress may be due to higher tension before entrance to a supposedly critical new position, and the declined levels of biomarkers seen after several months in the program could be attributed to an appropriate adjustment of the residents to the new situation.

  13. Changing blood lead levels and oxidative stress with duration of residence among Taiwan immigrants.

    PubMed

    Wu, Wei-Te; Wu, Chin-Ching; Lin, Yu-Jen; Shen, Chen-Yang; Liu, Tsung-Yun; Yang, Chun-Yuh; Liou, Saou-Hsing; Wu, Trong-Neng

    2013-12-01

    Immigrants lack appropriate health care access and other resources needed to reduce their exposure to preventable environmental health risks. Little is known about the impact of lead exposure and oxidative stress among immigrants. Thus, this study was to examine the differences between the blood lead levels (BLLs) and oxidative stress levels of immigrants and non-immigrants, and to investigate the determinants of increased BLLs or oxidative stress levels among immigrants. We collected demographic data of 239 immigrant women and 189 non-immigrant women who resettled in the central area of Taiwan. Each study participant provided blood samples for genotyping and for measuring blood metal levels and oxidative stress. Recent immigrants were at risk for elevated BLLs. Decreased BLLs, malondialdehyde (MDA), and increased blood selenium levels were significantly associated with duration of residence in Taiwan. Elevated BLLs and MDA in recent immigrants may serve as a warning sign for the health care system. The nation's health will benefit from improved regulation of living environments, thereby improving the health of immigrants.

  14. Total oxidative stress, paraoxonase and arylesterase levels at patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma

    PubMed Central

    Dursun, Feyza; Vural Ozec, Ayse; Aydin, Huseyin; Topalkara, Aysen; Dursun, Ayhan; Toker, Mustafa Ilker; Erdogan, Haydar; Arici, Mustafa Kemal

    2015-01-01

    AIM To investigate the oxidative stress status of the aqueous humor and serum of patients with pseudoexfoliation (PEX) syndrome and pseudoexfoliative glaucoma (PEG) and to measure paraoxonase (PON) and arylesterase (ARE) levels. METHODS A total of 78 patients were enrolled in the study, with 26 patients in each separate group. The patients were divided into three groups: the first group entailed PEX syndrome patients, while the second group consisted of patients with PEG and the third group involved patients with no additional systemic diseases, other than the diagnosis of cataract as control. Total oxidative stress (TOS), total antioxidant capacity (TAC), PON, and ARE levels in aqueous humor and serum were measured. RESULTS TAC, PON and arylesterase levels in aqueous humor and serum of the PEX syndrome and PEG patients were significantly decreased compared with control group (P<0.05). TOS values were higher in patients with PEX syndrome and PEG than controls (P<0.05). TAC, PON and ARE levels of aqueous humor did not differ significantly between the PEX syndrome and PEG groups CONCLUSION These findings are potentially of significance and add to the growing body of evidence for oxidative stress in PEX syndrome and PEG. Decreased antioxidant defense and increased oxidative stress system may play an important role in the pathogenesis of PEX syndrome and PEG. PMID:26558214

  15. Effect of low level microwave radiation exposure on cognitive function and oxidative stress in rats.

    PubMed

    Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Abegaonkar, Mahesh Pandurang; Megha, Kanu; Ahmed, Rafat Sultana; Tripathi, Ashok Kumar; Mediratta, Pramod Kumari

    2013-04-01

    Use of wireless communicating devices is increasing at an exponential rate in present time and is raising serious concerns about possible adverse effects of microwave (MW) radiation emitted from these devices on human health. The present study aimed to evaluate the effects of 900 MHz MW radiation exposure on cognitive function and oxidative stress in blood of Fischer rats. Animals were divided into two groups (6 animals/group): Group I (MW-exposed) and Group II (Sham-exposed). Animals were subjected to MW exposure (Frequency 900 MHz; specific absorption rate 8.4738 x 10(-5) W/kg) in Gigahertz transverse electromagnetic cell (GTEM) for 30 days (2 h/day, 5 days/week). Subsequently, cognitive function and oxidative stress parameters were examined for each group. Results showed significant impairment in cognitive function and increase in oxidative stress, as evidenced by the increase in levels of MDA (a marker of lipid peroxidation) and protein carbonyl (a marker of protein oxidation) and unaltered GSH content in blood. Thus, the study demonstrated that low level MW radiation had significant effect on cognitive function and was also capable of leading to oxidative stress.

  16. Organochlorine pesticide residue levels and oxidative stress in preterm delivery cases.

    PubMed

    Pathak, Rahul; Suke, Sanvidhan G; Ahmed, Tanzeel; Ahmed, Rafat S; Tripathi, A K; Guleria, Kiran; Sharma, C S; Makhijani, S D; Banerjee, B D

    2010-05-01

    A number of studies have focused attention on various biochemical abnormalities evoked due to exposure to organochlorine pesticides (OCPs). The aim of the present study was to analyze the OCP residues in maternal and cord blood of women and assess the levels of different non-enzymatic oxidative stress markers as well as to establish correlation with OCP levels, if any. Thirty women in each group of full-term delivery (FTD; > or =37 weeks of gestation) and preterm delivery (PTD; <37 weeks of gestation) were enrolled in this study. Levels of OCPs like Hexachlorocyclohexane (HCH), endosulfan, p,p(') Dichlorodiphenyldichloroethylene (DDE) and p,p' Dichlorodiphenyltrichloroethane (DDT) were analyzed by gas chromatography. Non-enzymatic oxidative stress was measured by the quantification of malondialhyde (MDA), protein carbonyl, reduced glutathione (GSH) and ferric-reducing ability of plasma (FRAP). MDA and protein carbonyl levels were increased significantly, while the levels of GSH and FRAP were decreased in PTD in comparison to FTD cases. We have observed higher levels of beta-HCH and alpha-endosulfan and increased oxidative stress in PTD than FTD cases. In PTD cases, a significant positive correlation was observed between maternal blood levels of beta-HCH and MDA (r = .78), beta-HCH and GSH (r = -.65), gamma-HCH and MDA (r = .89), gamma-HCH and GSH (r = -.74) and alpha-endosulfan and MDA (r = .54) in PTD cases. We also found significant correlations between cord blood levels of beta-HCH and MDA (r = .59), beta-HCH and GSH (r = -.69), gamma-HCH and MDA (r = .62) and alpha-endosulfan and MDA (r = .54) in PTD cases. In conclusion, our results suggest that higher levels of some of the OCP residues may be associated with PTD and increased oxidative stress.

  17. The Level of Selenium and Oxidative Stress in Workers Chronically Exposed to Lead.

    PubMed

    Pawlas, Natalia; Dobrakowski, Michał; Kasperczyk, Aleksandra; Kozłowska, Agnieszka; Mikołajczyk, Agnieszka; Kasperczyk, Sławomir

    2016-03-01

    The possible beneficial role of selenium (Se) on the oxidative stress induced by lead (Pb) is still unclear in humans. Therefore, the aim of the present study was to explore the associations among the Se levels, chronic Pb exposure, oxidative stress parameters, and parameters characterizing the function of the antioxidant defense system in men who are occupationally exposed to Pb. Based on the median serum Se concentrations, the 324 study subjects were divided into two subgroups: a subgroup with a low Se level (L-Se) and a subgroup with a high Se level (H-Se). The levels of lead (PbB) and zinc protoporphyrin (ZPP) in the blood and the delta-aminolevulinic acid (ALA) level in the urine served as indices of Pb exposure. The PbB level was significantly lower in the H-Se group compared to that in the L-Se group by 6 %. The levels of 8-hydroxyguanosine and lipofuscin (LPS) and the activity of superoxide dismutase were significantly lower in the H-Se group compared to that in the L-Se group by 17, 19, and 11 %, respectively. However, the glutathione level (GSH) and the activities of glutathione peroxidase (GPx) and catalase were significantly higher by 9, 23, and 3 %. Spearman correlations showed positive associations between the Se level and GPx activity and GSH level. A lower serum Se level in chronically Pb-exposed subjects is associated with higher Pb blood levels and an elevated erythrocyte LPS level, which reflects the intensity of oxidative stress. Besides, in a group of Pb-exposed subjects with lower serum Se level, depleted GSH pool and decreased activity of GPx in erythrocytes were reported. However, the present results are inadequate to recommend Se supplementation for chronic lead exposure at higher doses than would be included in a normal diet except for selenium deficiency.

  18. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels.

    PubMed

    Kim, Mi Kyung; Cho, Sang Woon; Park, Yoo Kyoung

    2012-04-01

    Excessive oxidative stress and abnormal blood lipids may cause chronic diseases. This risk can be reduced by consuming an antioxidant- and fiber-rich vegetarian diet. We compared biomarkers of oxidative stress, antioxidant capacity, and lipid profiles of sex- and age-matched long-term vegetarians and omnivores in Korea. Forty-five vegetarians (23 men and 22 women; mean age, 49.5 ± 5.3 years), who had maintained a vegetarian diet for a minimum of 15 years, and 30 omnivores (15 men and 15 women; mean age, 48.9 ± 3.6 years) participated in this study. Their 1-day, 24-h recall, and 2-day dietary records were analyzed. Oxidative stress was measured by the levels of diacron reactive oxygen metabolites (d-ROM). Antioxidant status was determined by the biological antioxidant potential (BAP) and levels of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. We observed that vegetarians had a significantly lower body fat percentage (21.6 ± 6.4%) than that of omnivores (25.4 ± 4.6%; P < 0.004). d-ROM levels were significantly lower in vegetarians than those in omnivores (331.82 ± 77.96 and 375.80 ± 67.26 Carratelli units; P < 0.011). Additionally, total cholesterol levels in the vegetarians and omnivores were 173.73 ± 31.42 mg/dL and 193.17 ± 37.89 mg/dL, respectively (P < 0.018). Low-density lipoprotein cholesterol was 101.36 ± 23.57 mg/dL and 120.60 ± 34.62 mg/dL (P < 0.005) in the vegetarians and omnivores, respectively, indicating that vegetarians had significantly lower lipid levels. Thus, oxidative stress, body fat, and cholesterol levels were lower in long-term vegetarians than those in omnivores.

  19. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels

    PubMed Central

    Kim, Mi Kyung; Cho, Sang Woon

    2012-01-01

    Excessive oxidative stress and abnormal blood lipids may cause chronic diseases. This risk can be reduced by consuming an antioxidant- and fiber-rich vegetarian diet. We compared biomarkers of oxidative stress, antioxidant capacity, and lipid profiles of sex- and age-matched long-term vegetarians and omnivores in Korea. Forty-five vegetarians (23 men and 22 women; mean age, 49.5 ± 5.3 years), who had maintained a vegetarian diet for a minimum of 15 years, and 30 omnivores (15 men and 15 women; mean age, 48.9 ± 3.6 years) participated in this study. Their 1-day, 24-h recall, and 2-day dietary records were analyzed. Oxidative stress was measured by the levels of diacron reactive oxygen metabolites (d-ROM). Antioxidant status was determined by the biological antioxidant potential (BAP) and levels of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. We observed that vegetarians had a significantly lower body fat percentage (21.6 ± 6.4%) than that of omnivores (25.4 ± 4.6%; P < 0.004). d-ROM levels were significantly lower in vegetarians than those in omnivores (331.82 ± 77.96 and 375.80 ± 67.26 Carratelli units; P < 0.011). Additionally, total cholesterol levels in the vegetarians and omnivores were 173.73 ± 31.42 mg/dL and 193.17 ± 37.89 mg/dL, respectively (P < 0.018). Low-density lipoprotein cholesterol was 101.36 ± 23.57 mg/dL and 120.60 ± 34.62 mg/dL (P < 0.005) in the vegetarians and omnivores, respectively, indicating that vegetarians had significantly lower lipid levels. Thus, oxidative stress, body fat, and cholesterol levels were lower in long-term vegetarians than those in omnivores. PMID:22586505

  20. Increased levels of oxidative stress biomarkers in metal oxides nanomaterial-handling workers.

    PubMed

    Liou, Saou-Hsing; Chen, Yu-Cheng; Liao, Hui-Yi; Wang, Chien-Jen; Chen, Jhih-Sheng; Lee, Hui-Ling

    2016-11-01

    This study assessed oxidatively damaged DNA and antioxidant enzyme activity in workers occupational exposure to metal oxides nanomaterials. Exposure to TiO2, SiO2, and ITO resulted in significant lower antioxidant enzymes (glutathione peroxidase and superoxide dismutase) and higher oxidative biomarkers 8-hydroxydeoxyguanosine (8-oxodG) than comparison workers. Statistically significant correlations were noted between plasma and urine 8-oxodG, between white blood cells (WBC) and urine 8-oxodG, and between WBC and plasma 8-oxodG. In addition, there were significant negative correlations between WBC 8-oxodG and SOD and between urinary 8-oxodG and GPx levels. The results showed that urinary 8-oxodG may be considered to be better biomarker.

  1. Low level laser therapy reduces oxidative stress in cortical neurons in vitro

    NASA Astrophysics Data System (ADS)

    Huang, Ying-Ying; Tedford, Clark E.; McCarthy, Thomas; Hamblin, Michael R.

    2012-03-01

    It is accepted that the mechanisms of low level laser therapy (LLLT) involves photons that are absorbed in the mitochondria of cells and lead to increase of mitochondrial metabolism resulting in more electron transport, increase of mitochondrial membrane potential, and more ATP production. Intracellular calcium changes are seen that correlate with mitochondrial stimulation. The situation with two other intermediates is more complex however: reactive oxygen species (ROS) and nitric oxide (NO). Evidence exists that low levels of ROS are produced by LLLT in normal cells that can be beneficial by (for instance) activating NF-kB. However high fluences of light can produce large amounts of ROS that can damage the cells. In oxidatively stressed cells the situation may be different. We exposed primary cultured cortical neurons to hydrogen peroxide (H2O2) or cobalt chloride (CoCl2) oxidative insults in the presence or absence of LLLT (810-nm laser at 0.3 or 3 J/cm2). Cell viability of cortical neurons was determined by lactate dehydrogenase assay. ROS in neurons was detected using an ROS probe, MitoRox with confocal microscopy. Results showed that LLLT dose-dependently reversed ROS production and protected cortical neurons against H2O2 or CoCl2 induced oxidative injury in cultured cortical neurons. Conclusion: LLLT can protect cortical neurons against oxidative stress by reversing the levels of ROS.

  2. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    PubMed

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis.

  3. Ketosis in buffalo (Bubalus bubalis): clinical findings and the associated oxidative stress level.

    PubMed

    Youssef, Mohamed A; El-Khodery, Sabry Ahmed; El-deeb, Wael M; Abou El-Amaiem, Waleed E E

    2010-12-01

    As little is known about the oxidant/antioxidant status in buffalo with ketosis, the present study was delineated to assess the oxidative stress level associated with clinical ketosis in water buffalo. A total of 91 parturient buffalo at smallholder farms were studied (61 suspected to be ketotic and 30 healthy). Clinical and biochemical investigations were carried out for each buffalo. Based on clinical findings and the level of beta-hydroxybutyrate (BHB), buffalo were allocated into ketotic (42), subclinical cases (19). Clinically, there was an association between clinical ketosis and anorexia (p<0.001), constipation (p<0.001), decreased milk yield (p<0.001), ruminal stasis (p<0.001), and loss of body condition (p<0.01). Biochemically, in clinical ketosis compared with subclinical and control cases, there was a significant increase (p<0.05) of BHB, malondialdehyde (MDA), nitric oxide (NO), aspartate aminotransferase (AST), L-alanine aminotransferase (ALT). However, there was a significant decrease of glucose, phosphorus, magnesium,total cholesterol and HDL-cholesterol. There was a positive correlation between BHB and MDA (r=0.433), BHB and NO (r=0.37), MDA and NO (r=0.515), and Glucose and phosphorus(r=0.521). However, there was a negative correlation between BHB and glucose (r= -0.341) and HDL and NO (r= -0.379). The result of the present study indicates that hyperketonemia in buffalo is associated with an increase of oxidative stress levels. Further studies need to be done on the efficacy of antioxidants as an ancillary treatment to relief the oxidative stress caused by ketosis.

  4. Phobic Anxiety and Plasma Levels of Global Oxidative Stress in Women

    PubMed Central

    Hagan, Kaitlin A.; Wu, Tianying; Rimm, Eric B.; Eliassen, A. Heather; Okereke, Olivia I.

    2015-01-01

    Background and Objectives Psychological distress has been hypothesized to be associated with adverse biologic states such as higher oxidative stress and inflammation. Yet, little is known about associations between a common form of distress – phobic anxiety – and global oxidative stress. Thus, we related phobic anxiety to plasma fluorescent oxidation products (FlOPs), a global oxidative stress marker. Methods We conducted a cross-sectional analysis among 1,325 women (aged 43-70 years) from the Nurses’ Health Study. Phobic anxiety was measured using the Crown-Crisp Index (CCI). Adjusted least-squares mean log-transformed FlOPs were calculated across phobic categories. Logistic regression models were used to calculate odds ratios (OR) comparing the highest CCI category (≥6 points) vs. lower scores, across FlOPs quartiles. Results No association was found between phobic anxiety categories and mean FlOP levels in multivariable adjusted linear models. Similarly, in multivariable logistic regression models there were no associations between FlOPs quartiles and likelihood of being in the highest phobic category. Comparing women in the highest vs. lowest FlOPs quartiles: FlOP_360: OR=0.68 (95% CI: 0.40-1.15); FlOP_320: OR=0.99 (95% CI: 0.61-1.61); FlOP_400: OR=0.92 (95% CI: 0.52, 1.63). Conclusions No cross-sectional association was found between phobic anxiety and a plasma measure of global oxidative stress in this sample of middle-aged and older women. PMID:26635425

  5. Chronic social isolation decreases glutamate and glutamine levels and induces oxidative stress in the rat hippocampus.

    PubMed

    Shao, Yuan; Yan, Gen; Xuan, Yinghua; Peng, Hui; Huang, Qing-Jun; Wu, Renhua; Xu, Haiyun

    2015-04-01

    Social isolation (SI) rearing of rodents is a developmental manipulation, which is commonly compared with the psychological stressors in humans as it produces several behavioral outcomes similar to those observed in humans with early life stress. To explain the SI-induced behavioral outcomes, animal studies have been performed to examine the dopaminergic and glutamatergic systems in the brain. In this study, we measured possible changes in levels of glutamate and glutamine of SI-rats using proton magnetic resonance spectroscopy. We also assessed the oxidative stress parameters in certain brain regions to see if glutamate and/or glutamine changes, if any, are associated with oxidative stress. SI rearing for 8 weeks decreased the activities of antioxidant enzymes catalase, glutathione peroxidase, superoxide dismutase, and the total antioxidant capacity, but increased levels of hydrogen peroxide, in certain brain regions, of which prefrontal cortex and hippocampus were most vulnerable. It also decreased levels of glutamate, glutamine, N-acetyl-l-aspartate (NAA), and phosphocreatine in the dorsal hippocampus, but not in the cerebral cortex. Decreased phosphocreatine and NAA indicate energy metabolism deficit in brain cells; the latter also suggests the neuronal viability was inhibited. Decreased glutamate and glutamine may suggest the neuron-glial integrity was implicated by chronic SI. These neurochemical and biochemical changes may contribute to the SI-induced behavioral abnormalities including a high level of anxiety, social interaction deficit, and impaired spatial working memory shown in this study.

  6. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea

    PubMed Central

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Hashem, Abeer; Abd_Allah, Elsayed F.; Gucel, Salih; Tran, Lam-Son P.

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  7. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea.

    PubMed

    Ahmad, Parvaiz; Abdel Latef, Arafat A; Hashem, Abeer; Abd Allah, Elsayed F; Gucel, Salih; Tran, Lam-Son P

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  8. Early life low-level cadmium exposure is positively associated with increased oxidative stress

    SciTech Connect

    Kippler, Maria; Bakhtiar Hossain, Mohammad; Lindh, Christian; Moore, Sophie E.; Kabir, Iqbal; Vahter, Marie; Broberg, Karin

    2012-01-15

    Environmental exposure to cadmium (Cd) is known to induce oxidative stress, a state of imbalance between the production of reactive oxygen species (ROS) and the ability to detoxify them, in adults. However, data are lacking on potential effects in early-life. We evaluated urinary concentrations of 8-oxo-7,8-dihydro-2 Prime -deoxyguanosine (8-oxodG), a recognized marker of oxidative DNA damage, in relation to Cd exposure in 96 predominantly breast-fed infants (11-17 weeks of age) in rural Bangladesh. Urinary 8-oxodG was measured using liquid chromatography tandem mass spectrometry and Cd in urine and breast milk by inductively coupled plasma mass spectrometry. Median concentration of 8-oxodG was 3.9 nmol/L, urinary Cd 0.30 {mu}g/L, and breast-milk Cd 0.13 {mu}g/L. In linear regression analyses, urinary 8-oxodG was positively associated with Cd in both urine (p=0.00067) and breast milk (p=0.0021), and negatively associated with body weight (kg; p=0.0041). Adjustment for age, body weight, socio-economic status, urinary arsenic, as well as magnesium, calcium, and copper in breast milk did not change the association between Cd exposure and urinary 8-oxodG. These findings suggest that early-life low-level exposure to Cd via breast milk induces oxidative stress. Further studies are warranted to elucidate whether this oxidative stress is associated with impaired child health and development.

  9. Does Dietary Iodine Regulate Oxidative Stress and Adiponectin Levels in Human Breast Milk?

    PubMed Central

    Gutiérrez-Repiso, Carolina; Velasco, Inés; Garcia-Escobar, Eva; Garcia-Serrano, Sara; Rodríguez-Pacheco, Francisca; Linares, Francisca; Ruiz de Adana, Maria Soledad; Rubio-Martin, Elehazara; Garrido-Sanchez, Lourdes; Cobos-Bravo, Juan Francisco; Priego-Puga, Tatiana; Rojo-Martinez, Gemma; Soriguer, Federico

    2014-01-01

    Abstract Little is known about the association between iodine and human milk composition. In this study, we investigated the association between iodine and different markers of oxidative stress and obesity-related hormones in human breast milk. This work is composed of two cross-sectional studies (in lactating women and in the general population), one prospective and one in vitro. In the cross-sectional study in lactating women, the breast milk iodine correlated negatively with superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) activities, and with adiponectin levels. An in vitro culture of human adipocytes with 1 μM potassium iodide (KI, dose similar to the human breast milk iodine concentration) produced a significant decrease in adiponectin, GSH-Px, SOD1, and SOD2 mRNA expression. However, after 2 months of treatment with KI in the prospective study, a positive correlation was found between 24-h urinary iodine and serum adiponectin. Our observations lead to the hypothesis that iodine may be a factor directly involved in the regulation of oxidative stress and adiponectin levels in human breast milk. Antioxid. Redox Signal. 20, 847–853. PMID:24001137

  10. Pentraxin-3 Levels in Beta Thalassemia Major and Minor Patients and Its Relationship With Antioxidant Capacity and Total Oxidant Stress.

    PubMed

    Isık Balcı, Yasemin; Nuray, Esin; Polat, Aziz; Enlı, Yaşar; Ozgurler, Funda; Akın, Mehmet

    2016-01-01

    Thalassemia major (TM) results in hemolytic anemia, an increase in intestinal iron absorption, and occurrence of iron loading due to erythrocyte transfusion; the disease is characterized by oxidative damage in major organs. Oxidative stress leads to vascular endothelial damage and forms the basis for serious cardiovascular diseases. Pentraxin-3 (PTX-3) is one of the markers of vascular endothelial damage that increases in response to the oxidative stress, which can be used as an early diagnostic marker for inflammation. This study's purpose is to define the relation between PTX-3 and the vascular endothelial damage that increases with oxidative stress in thalassemia patients. Our study included 35 TM patients, 30 β-thalassemia minor patients, and 30 healthy children. As a result of our study, in TM patients, a positive relation was detected between the PTX-3 levels and the total oxidative stress, triglyceride, and very low-density lipoprotein values, whereas a negative relation was detected with the total antioxidant capacity and high-density lipoprotein values. This result shows that as oxidant stress increases, PTX-3 levels also increase; very low-density lipoprotein and triglyceride contribute to the endothelial damage occurring with oxidative stress. As a result, it was concluded that vascular endothelial damage in thalassemia patients can be evaluated through the serum PTX-3 level.

  11. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations

    PubMed Central

    Sharma, Vyom; Collins, Leonard B.; Chen, Ting-huei; Herr, Natalie; Takeda, Shunichi; Sun, Wei; Swenberg, James A.; Nakamura, Jun

    2016-01-01

    DNA damage and mutations induced by oxidative stress are associated with various different human pathologies including cancer. The facts that most human tumors are characterized by large genome rearrangements and glutathione depletion in mice results in deletions in DNA suggest that reactive oxygen species (ROS) may cause gene and chromosome mutations through DNA double strand breaks (DSBs). However, the generation of DSBs at low levels of ROS is still controversial. In the present study, we show that H2O2 at biologically-relevant levels causes a marked increase in oxidative clustered DNA lesions (OCDLs) with a significant elevation of replication-independent DSBs. Although it is frequently reported that OCDLs are fingerprint of high-energy IR, our results indicate for the first time that H2O2, even at low levels, can also cause OCDLs leading to DSBs specifically in G1 cells. Furthermore, a reverse genetic approach revealed a significant contribution of the non-homologous end joining (NHEJ) pathway in H2O2-induced DNA repair & mutagenesis. This genomic instability induced by low levels of ROS may be involved in spontaneous mutagenesis and the etiology of a wide variety of human diseases like chronic inflammation-related disorders, carcinogenesis, neuro-degeneration and aging. PMID:27015367

  12. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations.

    PubMed

    Sharma, Vyom; Collins, Leonard B; Chen, Ting-Huei; Herr, Natalie; Takeda, Shunichi; Sun, Wei; Swenberg, James A; Nakamura, Jun

    2016-05-01

    DNA damage and mutations induced by oxidative stress are associated with various different human pathologies including cancer. The facts that most human tumors are characterized by large genome rearrangements and glutathione depletion in mice results in deletions in DNA suggest that reactive oxygen species (ROS) may cause gene and chromosome mutations through DNA double strand breaks (DSBs). However, the generation of DSBs at low levels of ROS is still controversial. In the present study, we show that H2O2 at biologically-relevant levels causes a marked increase in oxidative clustered DNA lesions (OCDLs) with a significant elevation of replication-independent DSBs. Although it is frequently reported that OCDLs are fingerprint of high-energy IR, our results indicate for the first time that H2O2, even at low levels, can also cause OCDLs leading to DSBs specifically in G1 cells. Furthermore, a reverse genetic approach revealed a significant contribution of the non-homologous end joining (NHEJ) pathway in H2O2-induced DNA repair & mutagenesis. This genomic instability induced by low levels of ROS may be involved in spontaneous mutagenesis and the etiology of a wide variety of human diseases like chronic inflammation-related disorders, carcinogenesis, neuro-degeneration and aging. PMID:27015367

  13. Levels of selected oxidative stress markers in the vitreous and serum of diabetic retinopathy patients

    PubMed Central

    Brzović-Šarić, Vlatka; Landeka, Irena; Šarić, Borna; Barberić, Monika; Andrijašević, Lidija; Cerovski, Branimir; Oršolić, Nada

    2015-01-01

    Purpose In diabetes, an impaired antioxidant defense system contributes to the development of diabetic retinopathy. The main objective of this paper was to find correlations of oxidative stress parameters within and between the vitreous and serum in patients with type 2 diabetes who had developed proliferative diabetic retinopathy. Methods The study included and compared two groups of patients who underwent vitrectomy: 37 patients with type 2 diabetes and proliferative retinopathy (PDR), and 50 patients with non-diabetic eye disorders (NDED). Vascular endothelial growth factor (VEGF), advanced oxidized protein product (AOPP), and oxidative stress markers (direct lipid hydroperoxidation (LPO), malondialdehyde (MDA), total superoxide dismutase (SOD), and glutathione (GSH)) were measured in the vitreous and serum of both groups and correlated with one another, between humoral compartments and with gender, age, and serum glucose levels. Results In the vitreous of PDR patients, VEGF, LPO, and MDA (p<0.05) were increased and SOD values were slightly lowered (p<0.05) than in NDED patients. Vitreous AOPP and GSH showed no differences between the groups. In the serum, AOPP, MDA, and SOD were increased (p<0.05) and VEGF was slightly increased (p<0.05) in the PDR group compared to NDED. With regard to gender, similar changes were recorded for both groups, except for the lower serum MDA in males than females in the NDED group. Advanced age showed no significant effect on changes of measured parameters in the vitreous. In the serum, VEGF was positively correlated (p<0.05) and MDA and SOD negatively correlated (p<0.05) with increasing age. Among measured parameters within and between the vitreous and serum, several correlative links occurred in the PDR group that were not present in the NDED group. The most prominent correlation changes were between serum LPO and vitreal LPO, serum SOD and vitreal LPO, serum LPO and serum SOD, and vitreal VEGF and serum SOD. Conclusions Among

  14. Telomere protein RAP1 levels are affected by cellular aging and oxidative stress

    PubMed Central

    Swanson, Mark J.; Baribault, Michelle E.; Israel, Joanna N.; Bae, Nancy S.

    2016-01-01

    Telomeres are important for maintaining the integrity of the genome through the action of the shelterin complex. Previous studies indicted that the length of the telomere did not have an effect on the amount of the shelterin subunits; however, those experiments were performed using immortalized cells with stable telomere lengths. The interest of the present study was to observe how decreasing telomere lengths over successive generations would affect the shelterin subunits. As neonatal human dermal fibroblasts aged and their telomeres became shorter, the levels of the telomere-binding protein telomeric repeat factor 2 (TRF2) decreased significantly. By contrast, the levels of one of its binding partners, repressor/activator protein 1 (RAP1), decreased to a lesser extent than would be expected from the decrease in TRF2. Other subunits, TERF1-interacting nuclear factor 2 and protection of telomeres protein 1, remained stable. The decrease in RAP1 in the older cells occurred in the nuclear and cytoplasmic fractions. Hydrogen peroxide (H2O2) stress was used as an artificial means of aging in the cells, and this resulted in RAP1 levels decreasing, but the effect was only observed in the nuclear portion. Similar results were obtained using U251 glioblastoma cells treated with H2O2 or grown in serum-depleted medium. The present findings indicate that TRF2 and RAP1 levels decrease as fibroblasts naturally age. RAP1 remains more stable compared to TRF2. RAP1 also responds to oxidative stress, but the response is different to that observed in aging. PMID:27446538

  15. Mercury levels assessment and its relationship with oxidative stress biomarkers in children from three localities in Yucatan, Mexico.

    PubMed

    Rangel-Méndez, Jorge A; Arcega-Cabrera, Flor E; Fargher, Lane F; Moo-Puc, Rosa E

    2016-02-01

    Mercury (Hg) is a global pollutant that is released into the environment from geologic and anthropogenic sources. Once it enters an organism, it generates several toxicity mechanisms and oxidative stress has been proposed as the main one. Metal susceptibility is greater in children, which is a result of their physiology and behavior. In Yucatan, Mexico, burning of unregulated garbage dumps and household trash, ingestion of top marine predators, and pottery manufacturing are among the conditions that could promote Hg exposure. However, for Yucatan, there are no published studies that report Hg levels and associated oxidative stress status in children. Therefore, this study aimed to assess Hg levels in blood and urine and oxidative stress biomarkers levels in a sample of 107 healthy children from three localities in Yucatan, Mexico, as well as investigate the relationship between these parameters. Hg was detected in 11 (10.28%) of blood samples and 38 (35.51%) of urine samples collected from the participating children. Fourteen subjects showed Hg above recommended levels. The oxidative stress biomarkers were slightly elevated in comparison with other studies and were statistically different between the sampling sites. No linear correlation between Hg levels and oxidative stress biomarkers was found. Nevertheless, exploratory univariate and multivariate analysis showed non-linear relations among the measured variables. Globally, the study provides, for the first time, information regarding Hg levels and their relationship with oxidative stress biomarkers in a juvenile population from Mexico's southeast (Yucatan) region. In agreement with worldwide concern about Hg, this study should stimulate studies on metal monitoring in humans (especially children) among scientists working in Mexico, the establishment of polices for its regulation, and the reduction of human health risks.

  16. Mercury levels assessment and its relationship with oxidative stress biomarkers in children from three localities in Yucatan, Mexico.

    PubMed

    Rangel-Méndez, Jorge A; Arcega-Cabrera, Flor E; Fargher, Lane F; Moo-Puc, Rosa E

    2016-02-01

    Mercury (Hg) is a global pollutant that is released into the environment from geologic and anthropogenic sources. Once it enters an organism, it generates several toxicity mechanisms and oxidative stress has been proposed as the main one. Metal susceptibility is greater in children, which is a result of their physiology and behavior. In Yucatan, Mexico, burning of unregulated garbage dumps and household trash, ingestion of top marine predators, and pottery manufacturing are among the conditions that could promote Hg exposure. However, for Yucatan, there are no published studies that report Hg levels and associated oxidative stress status in children. Therefore, this study aimed to assess Hg levels in blood and urine and oxidative stress biomarkers levels in a sample of 107 healthy children from three localities in Yucatan, Mexico, as well as investigate the relationship between these parameters. Hg was detected in 11 (10.28%) of blood samples and 38 (35.51%) of urine samples collected from the participating children. Fourteen subjects showed Hg above recommended levels. The oxidative stress biomarkers were slightly elevated in comparison with other studies and were statistically different between the sampling sites. No linear correlation between Hg levels and oxidative stress biomarkers was found. Nevertheless, exploratory univariate and multivariate analysis showed non-linear relations among the measured variables. Globally, the study provides, for the first time, information regarding Hg levels and their relationship with oxidative stress biomarkers in a juvenile population from Mexico's southeast (Yucatan) region. In agreement with worldwide concern about Hg, this study should stimulate studies on metal monitoring in humans (especially children) among scientists working in Mexico, the establishment of polices for its regulation, and the reduction of human health risks. PMID:26580741

  17. Effect of temperature on oxidative stress, antioxidant levels and uncoupling protein expression in striped hamsters.

    PubMed

    Zhou, Si-Si; Cao, Li-Li; Xu, Wei-Dong; Cao, Jing; Zhao, Zhi-Jun

    2015-11-01

    According to the rate of living-free radical hypothesis, higher metabolic rates should increase reactive oxygen species (ROS) production. However, the "uncoupling to survive" hypothesis postulates that uncoupling proteins (UCPs) can decrease ROS production by lowering the potential of the inner mitochondrial membrane, in which case the correlation between metabolic rate and ROS levels would be a negative rather than positive. In this study, we examined energy intake, oxidative stress levels, antioxidant activity and the expression of UCPs in brown adipose tissue (BAT), and in the liver, heart, skeletal muscle and brain, of striped hamsters (Cricetulus barabensis) acclimated to either 5 °C or 32.5 °C. The energy intake of hamsters acclimated to 5 °C increased by 70.7%, whereas the energy intake of hamsters acclimated to 32.5 °C decreased by 31.3%, relative to hamsters kept at room temperature (21 °C) (P<0.05). Malonadialdehyde (MDA) levels, total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX) activity in BAT significantly decreased in 5 °C group, but increased in 32.5 °C group, relative to the 21 °C group. Neither ROS levels (i.e. H2O2 levels), nor antioxidants in skeletal muscle, liver, heart or brain tissue, were affected by temperature. UCP1 expression in BAT was significantly up-regulated in 5 °C group, but down-regulated in 32.5 °C group, relative to the 21 °C group. UCP3 expression of skeletal muscle was also up-regulated significantly in hamsters acclimated to 5 °C. These results suggest that the relationship between ROS levels and metabolic rate was negative, rather than positive. UCP1 expression in BAT may have played a role in lowering ROS levels. PMID:26244518

  18. Effect of temperature on oxidative stress, antioxidant levels and uncoupling protein expression in striped hamsters.

    PubMed

    Zhou, Si-Si; Cao, Li-Li; Xu, Wei-Dong; Cao, Jing; Zhao, Zhi-Jun

    2015-11-01

    According to the rate of living-free radical hypothesis, higher metabolic rates should increase reactive oxygen species (ROS) production. However, the "uncoupling to survive" hypothesis postulates that uncoupling proteins (UCPs) can decrease ROS production by lowering the potential of the inner mitochondrial membrane, in which case the correlation between metabolic rate and ROS levels would be a negative rather than positive. In this study, we examined energy intake, oxidative stress levels, antioxidant activity and the expression of UCPs in brown adipose tissue (BAT), and in the liver, heart, skeletal muscle and brain, of striped hamsters (Cricetulus barabensis) acclimated to either 5 °C or 32.5 °C. The energy intake of hamsters acclimated to 5 °C increased by 70.7%, whereas the energy intake of hamsters acclimated to 32.5 °C decreased by 31.3%, relative to hamsters kept at room temperature (21 °C) (P<0.05). Malonadialdehyde (MDA) levels, total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX) activity in BAT significantly decreased in 5 °C group, but increased in 32.5 °C group, relative to the 21 °C group. Neither ROS levels (i.e. H2O2 levels), nor antioxidants in skeletal muscle, liver, heart or brain tissue, were affected by temperature. UCP1 expression in BAT was significantly up-regulated in 5 °C group, but down-regulated in 32.5 °C group, relative to the 21 °C group. UCP3 expression of skeletal muscle was also up-regulated significantly in hamsters acclimated to 5 °C. These results suggest that the relationship between ROS levels and metabolic rate was negative, rather than positive. UCP1 expression in BAT may have played a role in lowering ROS levels.

  19. Oxidative stress by inorganic nanoparticles.

    PubMed

    Tee, Jie Kai; Ong, Choon Nam; Bay, Boon Huat; Ho, Han Kiat; Leong, David Tai

    2016-05-01

    Metallic and metallic oxide nanoparticles (NPs) have been increasingly used for various bio-applications owing to their unique physiochemical properties in terms of conductivity, optical sensitivity, and reactivity. With the extensive usage of NPs, increased human exposure may cause oxidative stress and lead to undesirable health consequences. To date, various endogenous and exogenous sources of oxidants contributing to oxidative stress have been widely reported. Oxidative stress is generally defined as an imbalance between the production of oxidants and the activity of antioxidants, but it is often misrepresented as a single type of cellular stress. At the biological level, NPs can initiate oxidative stress directly or indirectly through various mechanisms, leading to profound effects ranging from the molecular to the disease level. Such effects of oxidative stress have been implicated owing to their small size and high biopersistence. On the other hand, cellular antioxidants help to counteract oxidative stress and protect the cells from further damage. While oxidative stress is commonly known to exert negative biological effects, measured and intentional use of NPs to induce oxidative stress may provide desirable effects to either stimulate cell growth or promote cell death. Hence, NP-induced oxidative stress can be viewed from a wide paradigm. Because oxidative stress is comprised of a wide array of factors, it is also important to use appropriate assays and methods to detect different pro-oxidant and antioxidant species at molecular and disease levels. WIREs Nanomed Nanobiotechnol 2016, 8:414-438. doi: 10.1002/wnan.1374 For further resources related to this article, please visit the WIREs website.

  20. Oxidative stress by inorganic nanoparticles.

    PubMed

    Tee, Jie Kai; Ong, Choon Nam; Bay, Boon Huat; Ho, Han Kiat; Leong, David Tai

    2016-05-01

    Metallic and metallic oxide nanoparticles (NPs) have been increasingly used for various bio-applications owing to their unique physiochemical properties in terms of conductivity, optical sensitivity, and reactivity. With the extensive usage of NPs, increased human exposure may cause oxidative stress and lead to undesirable health consequences. To date, various endogenous and exogenous sources of oxidants contributing to oxidative stress have been widely reported. Oxidative stress is generally defined as an imbalance between the production of oxidants and the activity of antioxidants, but it is often misrepresented as a single type of cellular stress. At the biological level, NPs can initiate oxidative stress directly or indirectly through various mechanisms, leading to profound effects ranging from the molecular to the disease level. Such effects of oxidative stress have been implicated owing to their small size and high biopersistence. On the other hand, cellular antioxidants help to counteract oxidative stress and protect the cells from further damage. While oxidative stress is commonly known to exert negative biological effects, measured and intentional use of NPs to induce oxidative stress may provide desirable effects to either stimulate cell growth or promote cell death. Hence, NP-induced oxidative stress can be viewed from a wide paradigm. Because oxidative stress is comprised of a wide array of factors, it is also important to use appropriate assays and methods to detect different pro-oxidant and antioxidant species at molecular and disease levels. WIREs Nanomed Nanobiotechnol 2016, 8:414-438. doi: 10.1002/wnan.1374 For further resources related to this article, please visit the WIREs website. PMID:26359790

  1. A role for oxidative stress in suppressing serum immunoglobulin levels in lead-exposed Fisher 344 rats.

    PubMed

    Ercal, N; Neal, R; Treeratphan, P; Lutz, P M; Hammond, T C; Dennery, P A; Spitz, D R

    2000-08-01

    Evidence implicating oxidative stress in toxicity during lead intoxication in vivo has opened new avenues for investigation of the mechanisms of lead-induced immunosuppression. The current study explores the possibility that lead-induced oxidative stress contributes to the immunosuppression observed during lead poisoning. Fisher 344 rats were exposed to 2,000 ppm lead acetate in their drinking water for 5 weeks. One week following removal of lead from the drinking water, significant reductions in serum levels of IgA, IgM, and IgG were detected. Significant increases in oxidative damage, based on malondialdehyde (MDA) content, were observed in peripheral blood mononuclear cells (PMCs) collected during the same experiments. In addition, MDA content increased in livers from lead-exposed rats. Following 5 weeks of lead exposure, administration of either 5.5 mmol/kg N-acetylcysteine (NAC) or 1 mmol/kg meso-2,3-dimercaptosuccinic acid (DMSA) in the drinking water for 1 week significantly reversed the inhibitory effects of lead on serum immunoglobulin (Ig) levels. Also, all parameters indicative of oxidative stress returned to control levels. These results suggest that oxidative stress contributes to suppressed serum Ig levels during lead intoxication in vivo, and that intervention with either a thiol antioxidant (NAC) or a metal chelator (DMSA) will alleviate this lead-induced suppression by correcting the prooxidant/antioxidant imbalance caused by lead exposure.

  2. Tomato QM-Like Protein Protects Saccharomyces cerevisiae Cells against Oxidative Stress by Regulating Intracellular Proline Levels

    PubMed Central

    Chen, Changbin; Wanduragala, Srimevan; Becker, Donald F.; Dickman, Martin B.

    2006-01-01

    Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants. PMID:16751508

  3. Evaluation of the Serum Levels of Nitric Oxide among Diabetic Patients and its Correlation with Lipid Profile as well as Oxidative Stress in North Indian Setting

    PubMed Central

    Trivedi, Arvind; Verma, Neetu; Panwar, Ajay; Kumar, Pradeep

    2016-01-01

    Introduction Diabetes mellitus is a disease with a rapidly increasing prevalence, needs continue research for novel methods to both prevent and treat this disorder. Obesity and decreased physical activity are the major risk factor for the development of diabetes. Recently the emphasis is focused on oxidative stress in pathogenesis of this disease. Aim To assess the serum levels of Nitric Oxide (NO) among diabetic patients and its correlation with lipid profile as well as oxidative stress in north Indian setting. Materials and Methods This was a cross-sectional study. Subjects suffering from type 2 diabetes for more than 1 year and age between 30 to 50 years with hyperuricaemia were included in the study. The patients were divided into three groups: Group I- Type 2 diabetics with dyslipidemia and hyperuricaemia, Group II- Type 2 diabetics with dyslipidemia and normouricaemia and Group III- Type 2 diabetics with normolipidemia and normouricaemia. Results The nitric oxide level was significantly lower in Group I and Group II than Group III. The oxidative stress parameters had poor correlation with NO level in all the groups. Conclusion Our data suggests that there is definite role of Nitric Oxide (NO) in pathogenesis of type -2 diabetes mellitus with dyslipidemia and hyperuricaemia. PMID:27437271

  4. Neuroglobin in Breast Cancer Cells: Effect of Hypoxia and Oxidative Stress on Protein Level, Localization, and Anti-Apoptotic Function.

    PubMed

    Fiocchetti, Marco; Cipolletti, Manuela; Leone, Stefano; Naldini, Antonella; Carraro, Fabio; Giordano, Daniela; Verde, Cinzia; Ascenzi, Paolo; Marino, Maria

    2016-01-01

    The over-expression of human neuroglobin (NGB), a heme-protein preferentially expressed in the brain, displays anti-apoptotic effects against hypoxic/ischemic and oxidative stresses enhancing neuron survival. As hypoxic and oxidative stress injury frequently occurs in fast proliferating neoplastic tissues, here, the effect of these stressors on the level, localization, and anti-apoptotic function of NGB in wild type and NGB-stable-silenced MCF-7 breast cancer cells has been assessed. The well-known endogenous NGB inducer 17β-estradiol (E2) has been used as positive control. The median pO2 present in tumor microenvironment of breast cancer patients (i.e., 2% O2) does not affect the NGB level in breast cancer cells, whereas hydrogen peroxide and lead(IV) acetate, which increase intracellular reactive oxygen species (ROS) level, enhance the NGB levels outside the mitochondria and still activate apoptosis. However, E2-induced NGB up-regulation in mitochondria completely reverse lead(IV) acetate-induced PARP cleavage. These results indicate that the NGB level could represent a marker of oxidative-stress in MCF-7 breast cancer cells; however, the NGB ability to respond to injuring stimuli by preventing apoptosis requires its re-allocation into the mitochondria. As a whole, present data might lead to a new direction in understanding NGB function in cancer opening new avenues for the therapeutic intervention. PMID:27149623

  5. Neuroglobin in Breast Cancer Cells: Effect of Hypoxia and Oxidative Stress on Protein Level, Localization, and Anti-Apoptotic Function

    PubMed Central

    Fiocchetti, Marco; Cipolletti, Manuela; Leone, Stefano; Naldini, Antonella; Carraro, Fabio; Giordano, Daniela; Verde, Cinzia; Ascenzi, Paolo; Marino, Maria

    2016-01-01

    The over-expression of human neuroglobin (NGB), a heme-protein preferentially expressed in the brain, displays anti-apoptotic effects against hypoxic/ischemic and oxidative stresses enhancing neuron survival. As hypoxic and oxidative stress injury frequently occurs in fast proliferating neoplastic tissues, here, the effect of these stressors on the level, localization, and anti-apoptotic function of NGB in wild type and NGB-stable-silenced MCF-7 breast cancer cells has been assessed. The well-known endogenous NGB inducer 17β-estradiol (E2) has been used as positive control. The median pO2 present in tumor microenvironment of breast cancer patients (i.e., 2% O2) does not affect the NGB level in breast cancer cells, whereas hydrogen peroxide and lead(IV) acetate, which increase intracellular reactive oxygen species (ROS) level, enhance the NGB levels outside the mitochondria and still activate apoptosis. However, E2-induced NGB up-regulation in mitochondria completely reverse lead(IV) acetate-induced PARP cleavage. These results indicate that the NGB level could represent a marker of oxidative-stress in MCF-7 breast cancer cells; however, the NGB ability to respond to injuring stimuli by preventing apoptosis requires its re-allocation into the mitochondria. As a whole, present data might lead to a new direction in understanding NGB function in cancer opening new avenues for the therapeutic intervention. PMID:27149623

  6. Basal brain oxidative and nitrative stress levels are finely regulated by the interplay between superoxide dismutase 2 and p53.

    PubMed

    Barone, Eugenio; Cenini, Giovanna; Di Domenico, Fabio; Noel, Teresa; Wang, Chi; Perluigi, Marzia; St Clair, Daret K; Butterfield, D Allan

    2015-11-01

    Superoxide dismutases (SODs) are the primary reactive oxygen species (ROS)-scavenging enzymes of the cell and catalyze the dismutation of superoxide radicals O2- to H2O2 and molecular oxygen (O2). Among the three forms of SOD identified, manganese-containing SOD (MnSOD, SOD2) is a homotetramer located wholly in the mitochondrial matrix. Because of the SOD2 strategic location, it represents the first mechanism of defense against the augmentation of ROS/reactive nitrogen species levels in the mitochondria for preventing further damage. This study seeks to understand the effects that the partial lack (SOD2(-/+) ) or the overexpression (TgSOD2) of MnSOD produces on oxidative/nitrative stress basal levels in different brain isolated cellular fractions (i.e., mitochondrial, nuclear, cytosolic) as well as in the whole-brain homogenate. Furthermore, because of the known interaction between SOD2 and p53 protein, this study seeks to clarify the impact that the double mutation has on oxidative/nitrative stress levels in the brain of mice carrying the double mutation (p53(-/-) × SOD2(-/+) and p53(-/-) × TgSOD2). We show that each mutation affects mitochondrial, nuclear, and cytosolic oxidative/nitrative stress basal levels differently, but, overall, no change or reduction of oxidative/nitrative stress levels was found in the whole-brain homogenate. The analysis of well-known antioxidant systems such as thioredoxin-1 and Nrf2/HO-1/BVR-A suggests their potential role in the maintenance of the cellular redox homeostasis in the presence of changes of SOD2 and/or p53 protein levels.

  7. An overview on therapeutics attenuating amyloid β level in Alzheimer's disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels.

    PubMed

    Zhou, Xiaoling; Li, Yifei; Shi, Xiaozhe; Ma, Chun

    2016-01-01

    Alzheimer's disease (AD) is the most common underlying cause of dementia, and novel drugs for its treatment are needed. Of the different theories explaining the development and progression of AD, "amyloid hypothesis" is the most supported by experimental data. This hypothesis states that the cleavage of amyloid precursor protein (APP) leads to the formation of amyloid beta (Aβ) peptides that congregate with formation and deposition of Aβ plaques in the frontal cortex and hippocampus. Risk factors including neurotransmitter modulation, chronic inflammation, metal-induced oxidative stress and elevated cholesterol levels are key contributors to the disease progress. Current therapeutic strategies abating AD progression are primarily based on anti-acetylcholinesterase (AChE) inhibitors as cognitive enhancers. The AChE inhibitor, donepezil, is proven to strengthen cognitive functions and appears effective in treating moderate to severe AD patients. N-Methyl-D-aspartate receptor antagonist, memantine, is also useful, and its combination with donepezil demonstrated a strong stabilizing effect in clinical studies on AD. Nonsteroidal anti-inflammatory drugs delayed the onset and progression of AD and attenuated cognitive dysfunction. Based upon epidemiological evidence and animal studies, antioxidants emerged as potential AD preventive agents; however, clinical trials revealed inconsistencies. Pharmacokinetic and pharmacodynamic profiling demonstrated pleiotropic functions of the hypolipidemic class of drugs, statins, potentially contributing towards the prevention of AD. In addition, targeting the APP processing pathways, stimulating neuroprotective signaling mechanisms, using the amyloid anti-aggregants and Aβ immunotherapy surfaced as well-tested strategies in reducing the AD-like pathology. Overall, this review covers mechanism of inducing the Aβ formation, key risk factors and major therapeutics prevalent in the AD treatment nowadays. It also delineates the need

  8. Investigations into the organism level effects of the copper-induced oxidative stress response of Lemna gibba

    SciTech Connect

    Wall, V.D.; Klaine, S.J.

    1995-12-31

    The use of biochemical endpoints to indicate exposure to environmental toxicants is becoming an accepted technique to determine chemical bio-availability. However, these biochemical endpoints, or biomarkers, have not fulfilled their potential as indicators of sublethal stress when used in this capacity. Difficulties associated with using biochemical endpoints to assess stress arise in differentiating an ``abnormal`` stress response from a physiologically acceptable one and identifying sublethal stress in a biologically and ecologically significant manner. This research examines organism level effects of the copper-induced oxidative-stress response in Lemna gibba. The growth of Lemna gibba was significantly inhibited by aqueous copper concentrations greater than 0.05 ppm during a 10 day exposure. Although effects were dose dependent, the results indicated a conspicuous decrease in growth rates and increase in malformation and chlorosis at 0.5 ppm copper and higher. There were significantly elevated levels of lipid peroxidation products (expressed as thiobarbituric acid reactive species (TBARS)) at 0.1 ppm copper and higher. A decrease in growth rates without an increase in TBARS suggested a diversion of energy towards defensive mechanisms, primarily, superoxide dismutase, peroxidase, catalase and glutathione. These parameters were investigated and analyzed with respect to the organism-level effects (growth rates) of Lemna gibba. The utility and relevance of these sub-cellular parameters as indicators of chemical induced stress at the organism level will be discussed.

  9. Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells

    PubMed Central

    Forkink, Marleen; Basit, Farhan; Teixeira, José; Swarts, Herman G.; Koopman, Werner J.H.; Willems, Peter H.G.M.

    2015-01-01

    Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we studied ROS generation and oxidative stress induction during chronic (24 h) inhibition of CI and CIII using rotenone (ROT) and antimycin A (AA), respectively, in intact HEK293 cells. Both inhibitors stimulated oxidation of the ROS sensor hydroethidine (HEt) and increased mitochondrial NAD(P)H levels without major effects on cell viability. Integrated analysis of cells stably expressing cytosolic- or mitochondria-targeted variants of the reporter molecules HyPer (H2O2-sensitive and pH-sensitive) and SypHer (H2O2-insensitive and pH-sensitive), revealed that CI- and CIII inhibition increased cytosolic but not mitochondrial H2O2 levels. Total and mitochondria-specific lipid peroxidation was not increased in the inhibited cells as reported by the C11-BODIPY581/591 and MitoPerOx biosensors. Also expression of the superoxide-detoxifying enzymes CuZnSOD (cytosolic) and MnSOD (mitochondrial) was not affected. Oxyblot analysis revealed that protein carbonylation was not stimulated by CI and CIII inhibition. Our findings suggest that chronic inhibition of CI and CIII: (i) increases the levels of HEt-oxidizing ROS and (ii) specifically elevates cytosolic but not mitochondrial H2O2 levels, (iii) does not induce oxidative stress or substantial cell death. We conclude that the increased ROS levels are below the stress-inducing level and might play a role in redox signaling. PMID:26516986

  10. Effects of shock waves on oxidative stress and some trace element levels of rat liver and diaphragm muscles.

    PubMed

    Gecit, İlhan; Kavak, Servet; Meral, Ismail; Güneş, Mustafa; Pirinççi, Necip; Sayir, Fuat; Demir, Halit; Ceylan, Kadir

    2012-06-01

    This study was designed to investigate whether the short-term extracorporeal shockwave lithotripsy (ESWL) exposure to kidney produces an oxidative stress and a change in some trace element levels in liver and diaphragm muscles of rats. Twelve male Wistar albino rats were divided randomly into two groups, each consisting of six rats. The animals in the first group did not receive any treatment and served as control group. The right-side kidneys of animals in group 2 were treated with two-thousand 18 kV shock waves while anesthetized with 50 mg kg(-1) ketamine. The localization of the right kidney was achieved after contrast medium injection through a tail vein under fluoroscopy control. The animals were killed 72 h after the ESWL treatment, and liver and diaphragm muscles were harvested for the determination of tissue oxidative stress and trace element levels. Although the malondialdehyde level increased, superoxide dismutase and glutathione peroxidase enzyme activities decreased in the livers and diaphragm muscles of ESWL-treated rats. Although glutathione level increased in liver, it decreased in diaphragm muscles of ESWL-treated animals. Fe, Mg and Mn levels decreased, and Cu and Pb levels increased in the livers of ESWL-treated animals. Fe and Cu levels increased, and Mg, Pb, Mn and Zn levels decreased in the diaphragm muscles of ESWL-treated animals. It also causes a decrease or increase in many mineral levels in liver and diaphragm muscles, which is an undesirable condition for the normal physiological function of tissues.

  11. Blood lead level modifies the association between dietary antioxidants and oxidative stress in an urban adult population.

    PubMed

    Hong, Yun-Chul; Oh, Se-Young; Kwon, Sung-Ok; Park, Min-Seon; Kim, Ho; Leem, Jong-Han; Ha, Eun-Hee

    2013-01-14

    Oxidative stress may be affected by lead exposure as well as antioxidants, yet little is known about the interaction between dietary antioxidants and blood lead levels (BLL) on oxidative stress level. We investigated the interaction between dietary antioxidants and BLL on oxidative stress level. As part of the Biomarker Monitoring for Environmental Health conducted in Seoul and Incheon, Korea, between April and December 2005, we analysed data from 683 adults (female = 47·4 %, mean age 51·4 (sd 8·4) years) who had complete measures on BLL, dietary intakes and oxidative stress marker (urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG)). Dietary intakes were assessed by a validated semi-quantitative FFQ, BLL was measured using atomic absorption spectrophotometry, and 8-OHdG by ELISA. Multivariate linear regression analyses were used to evaluate the influence of BLL on the association between dietary antioxidants and 8-OHdG. Geometric means of BLL and 8-OHdG concentrations were 4·1 (sd 1·5) μg/dl and 5·4 (sd 1·9) μg/g creatinine, respectively. Increases of vitamins C and E were significantly associated with the decrease of log10 8-OHdG in the adults from the lowest quartile of the BLL group (≤ 3·18 μg/dl, geometric mean = 2·36 μg/dl) than those of the highest quartile BLL group (>5·36 μg/dl, geometric mean = 6·78 μg/dl). Regarding antioxidant-related foods, vegetables excluding kimchi showed a higher inverse relationship with 8-OHdG in the lowest quartile BLL group than the highest group. These findings suggest a rationale for lowering the BLL and increasing the intake of dietary antioxidants in the urban population in Korea.

  12. Does short-term exposure to elevated levels of natural gamma radiation in Ramsar cause oxidative stress?

    PubMed Central

    Mortazavi, SMJ; Niroomand-Rad, A; Roshan-Shomal, P; Razavi-Toosi, SMT; Mossayeb-Zadeh, M; Moghadam, M

    2014-01-01

    Background: Ramsar, a city in northern Iran, has areas with some of the highest recorded levels of natural radiation among inhabited areas measured on the earth. Aims: To determine whether short-term exposure to extremely high levels of natural radiation induce oxidative stress. Materials and Methods: In this study, 53 Wistar rats were randomly divided into five groups of 10-12 animals. Animals in the 1st group were kept for 7 days in an outdoor area with normal background radiation while the 2nd , 3rd , 4th and 5th groups were kept in four different outdoor areas with naturally elevated levels of gamma radiation in Ramsar. A calibrated RDS-110 survey meter, mounted on a tripod approximately 1 m above the ground, was used to measure exposure rate at each location. On days 7 and 9 blood sampling was performed to assess the serum levels of catalase (CAT) and malondialdehyde (MDA). On day 8, all animals were exposed to a lethal dose of 8 Gy gamma radiations emitted by a Theratron Phoenix (Theratronics, Canada) Cobalt-60 (55 cGy/min) at Radiotherapy Department of Razi Hospital in Rasht, Iran. Results: Findings obtained in this study indicate that high levels of natural radiation cannot induce oxidative stress. CAT and MDA levels in almost all groups were not significantly different (P = 0.69 and P = 0.05, respectively). After exposure to the lethal dose, CAT and MDA levels in all groups were not significantly different (P = 0.054 and P = 0.163, respectively). Conclusions: These findings indicate that short-term exposure to extremely high levels of natural radiation (up to 196 times higher than the normal background) does not induce oxidative stress. PMID:25143879

  13. Trehalose accumulation induced during the oxidative stress response is independent of TPS1 mRNA levels in Candida albicans.

    PubMed

    Zaragoza, Oscar; González-Párraga, Pilar; Pedreño, Yolanda; Alvarez-Peral, Francisco J; Argüelles, Juan-Carlos

    2003-06-01

    Growing cells of the Candida albicans trehalose-deficient mutant tps1/tps1 were extremely sensitive to severe oxidative stress exposure (H2O2). However, their viability was not affected after saline stress or heat-shock treatments, being roughly equivalent to that of the parental strain. In wild-type cells, these adverse conditions induced the intracellular accumulation of trehalose together with activation of trehalose-6P synthase, whereas the endogenous trehalose content and the corresponding biosynthetic activity were barely detectable in the tps1/tps1 mutant. The addition of cycloheximide did not prevent the marked induction of trehalose-6P synthase activity. Furthermore, the presence of H2O2 decreased the level of TPS1 mRNA expression. Hence, the conspicuous trehalose accumulation in response to oxidative stress is not induced by increased transcription of TPS1. Our results are consistent with a specific requirement of trehalose in order to withstand a severe oxidative stress in C. albicans, and suggest that trehalose accumulation observed under these conditions is a complex process that most probably involves post-translational modifications of the trehalose synthase complex.

  14. Triggers and Effectors of Oxidative Stress at Blood-Brain Barrier Level: Relevance for Brain Ageing and Neurodegeneration

    PubMed Central

    2013-01-01

    As fundamental research advances, it is becoming increasingly clear that a clinically expressed disease implies a mixture of intertwining molecular disturbances. Oxidative stress is one of such pathogenic pathways involved in virtually all central nervous system pathologies, infectious, inflammatory, or degenerative in nature. Since brain homeostasis largely depends on integrity of blood-brain barrier (BBB), many studies focused lately on BBB alteration in a wide spectrum of brain diseases. The proper two-way molecular transfer through BBB depends on several factors, including the functional status of its tight junction (TJ) complexes of proteins sealing neighbour endothelial cells. Although there is abundant experimental work showing that oxidative stress associates BBB permeability alteration, less is known about its implications, at molecular level, in TJ protein expression or TJ-related cell signalling. In this paper, oxidative stress is presented as a common pathway for different brain pathogenic mechanisms which lead to BBB dysregulation. We revise here oxidative-induced molecular mechanisms of BBB disruption and TJ protein expression alteration, in relation to ageing and neurodegeneration. PMID:23533687

  15. Preconditioning with Physiological Levels of Ethanol Protect Kidney against Ischemia/Reperfusion Injury by Modulating Oxidative Stress

    PubMed Central

    Zeng, Li; Liu, Fang; Ding, Guoshan; Kang, Yindong; Mao, Jingyan; Cai, Ming; Zhu, Youhua; Wang, Quan-xing

    2011-01-01

    Background Oxidative stress due to excessive production of reactive oxygen species (ROS) and subsequent lipid peroxidation plays a critical role in renal ischemia/reperfusion (IR) injury. The purpose of current study is to demonstrate the effect of antecedent ethanol exposure on IR-induced renal injury by modulation of oxidative stress. Materials and Methods Bilateral renal warm IR was induced in male C57BL/6 mice after ethanol or saline administration. Blood ethanol concentration, kidney function, histological damage, inflammatory infiltration, cytokine production, oxidative stress, antioxidant capacity and Aldehyde dehydrogenase (ALDH) enzymatic activity were assessed to evaluate the impact of antecedent ethanol exposure on IR-induced renal injury. Results After bilateral kidney ischemia, mice preconditioned with physiological levels of ethanol displayed significantly preserved renal function along with less histological tubular damage as manifested by the reduced inflammatory infiltration and cytokine production. Mechanistic studies revealed that precondition of mice with physiological levels of ethanol 3 h before IR induction enhanced antioxidant capacity characterized by significantly higher superoxidase dismutase (SOD) activities. Our studies further demonstrated that ethanol pretreatment specifically increased ALDH2 activity, which then suppressed lipid peroxidation by promoting the detoxification of Malondialdehyde (MDA) and 4-hydroxynonenal (HNE). Conclusions Our results provide first line of evidence indicating that antecedent ethanol exposure can provide protection for kidneys against IR-induced injury by enhancing antioxidant capacity and preventing lipid peroxidation. Therefore, ethanol precondition and ectopic ALDH2 activation could be potential therapeutic approaches to prevent renal IR injury relevant to various clinical conditions. PMID:22022451

  16. Effects of ethanol on CYP2E1 levels and related oxidative stress using a standard balanced diet.

    PubMed

    Azzalis, Ligia A; Fonseca, Fernando L A; Simon, Karin A; Schindler, Fernanda; Giavarotti, Leandro; Monteiro, Hugo P; Videla, Luis A; Junqueira, Virgínia B C

    2012-07-01

    Expression of cytochrome P4502E1 (CYP2E1) is very much influenced by nutritional factors, especially carbohydrate consumption, and various results concerning the expression of CYP2E1 were obtained with a low-carbohydrate diet. This study describes the effects of ethanol treatment on CYP2E1 levels and its relationship with oxidative stress using a balanced standard diet to avoid low or high carbohydrate consumption. Rats were fed for 1, 2, 3, or 4 weeks a commercial diet plus an ethanol-sucrose solution. The results have shown that ethanol administration was associated with CYP2E1 induction and stabilization without related oxidative stress. Our findings suggest that experimental models with a low-carbohydrate/high-fat diet produce some undesirable CYP2E1 changes that are not present when a balanced standard diet is given.

  17. Today's oxidative stress markers.

    PubMed

    Czerska, Marta; Mikołajewska, Karolina; Zieliński, Marek; Gromadzińska, Jolanta; Wąsowicz, Wojciech

    2015-01-01

    Oxidative stress represents a situation where there is an imbalance between the reactive oxygen species (ROS) and the availability and the activity of antioxidants. This balance is disturbed by increased generation of free radicals or decreased antioxidant activity. It is very important to develop methods and find appropriate biomarkers that may be used to assess oxidative stress in vivo. It is significant because appropriate measurement of such stress is necessary in identifying its role in lifestyle-related diseases. Previously used markers of oxidative stress, such as thiobarbituric acid reactive substances (TBARS) or malondialdehyde (MDA), are progressively being supplemented by new ones, such as isoprostanes (IsoPs) and their metabolites or allantoin. This paper is focusing on the presentation of new ones, promising markers of oxidative stress (IsoPs, their metabolites and allantoin), taking into account the advantage of those markers over markers used previously. PMID:26325052

  18. Impact of iron overload on interleukin-10 levels, biochemical parameters and oxidative stress in patients with sickle cell anemia

    PubMed Central

    Barbosa, Maritza Cavalcante; dos Santos, Talyta Ellen Jesus; de Souza, Geane Félix; de Assis, Lívia Coêlho; Freitas, Max Victor Carioca; Gonçalves, Romélia Pinheiro

    2013-01-01

    Objective The aim of this study was to evaluate the impact of iron overload on the profile of interleukin-10 levels, biochemical parameters and oxidative stress in sickle cell anemia patients. Methods A cross-sectional study was performed of 30 patients with molecular diagnosis of sickle cell anemia. Patients were stratified into two groups, according to the presence of iron overload: Iron overload (n = 15) and Non-iron overload (n = 15). Biochemical analyses were performed utilizing the Wiener CM 200 automatic analyzer. The interleukin-10 level was measured by capture ELISA using the BD OptEIAT commercial kit. Oxidative stress parameters were determined by spectrophotometry. Statistical analysis was performed using GraphPad Prism software (version 5.0) and statistical significance was established for p-values < 0.05 in all analyses. Results Biochemical analysis revealed significant elevations in the levels of uric acid, triglycerides, very low-density lipoprotein (VLDL), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), urea and creatinine in the Iron overload Group compared to the Non-iron overload Group and significant decreases in the high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Ferritin levels correlated positively with uric acid concentrations (p-value < 0.05). The Iron overload Group showed lower interleukin-10 levels and catalase activity and higher nitrite and malondialdehyde levels compared with the Non-iron overload Group. Conclusion The results of this study are important to develop further consistent studies that evaluate the effect of iron overload on the inflammatory profile and oxidative stress of patients with sickle cell anemia. PMID:23580881

  19. Oxidative stress and metabolic perturbations in Escherichia coli exposed to sublethal levels of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Bhat, Supriya V; Booth, Sean C; Vantomme, Erik A N; Afroj, Shirin; Yost, Christopher K; Dahms, Tanya E S

    2015-09-01

    The chlorophenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used extensively worldwide despite its known toxicity and our limited understanding of how it affects non-target organisms. Escherichia coli is a suitable model organism to investigate toxicity and adaptation mechanisms in bacteria exposed to xenobiotic chemicals. We developed a methodical platform that uses atomic force microscopy, metabolomics and biochemical assays to quantify the response of E. coli exposed to sublethal levels of 2,4-D. This herbicide induced a filamentous phenotype in E. coli BL21 and a similar phenotype was observed in a selection of genotypically diverse E. coli strains (A0, A1, B1, and D) isolated from the environment. The filamentous phenotype was observed at concentrations 1000 times below field levels and was reversible upon supplementation with polyamines. Cells treated with 2,4-D had more compliant envelopes, significantly remodeled surfaces that were rougher and altered vital metabolic pathways including oxidative phosphorylation, the ABC transport system, peptidoglycan biosynthesis, amino acid, nucleotide and sugar metabolism. Most of the observed effects could be attributed to oxidative stress, consistent with increases in reactive oxygen species as a function of 2,4-D exposure. This study provides direct evidence that 2,4-D at sublethal levels induces oxidative stress and identifies the associated metabolic changes in E. coli.

  20. Low-Level Laser Therapy (808 nm) Reduces Inflammatory Response and Oxidative Stress in Rat Tibialis Anterior Muscle After Cryolesion

    PubMed Central

    Assis, Lívia; Moretti, Ana I.S.; Abrahão, Thalita B.; Cury, Vivian; Souza, Heraldo P.; Hamblin, Michael R.; Parizotto, Nivaldo A.

    2012-01-01

    Background and Objective Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. Material and Methods Sixty Wistar rats were randomly divided into three groups (n = 20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808 nm, tip area of 0.00785 cm2, power 30 mW, application time 47 seconds, fluence 180 J/cm2; 3.8 mW/cm2; and total energy 1.4 J). The animals were sacrificed on the fourth day after injury. Results LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-kβ and COX-2 and by TNF-α and IL-1β concentration. Conclusion These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle. PMID:23001637

  1. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.

    PubMed

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-06-30

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  2. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis

    PubMed Central

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-01-01

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  3. Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Salem, Neveen A; Hussein, Jihan Seid

    2012-04-01

    This study aimed at investigating the effect of the sweetener aspartame on oxidative stress and brain monoamines in normal circumstances and after intraperitoneal (i.p.) administration of lipopolysaccharide (LPS; 100 μg/kg) in mice. Aspartame (0.625-45 mg/kg) was given via subcutaneous route at the time of endotoxin administration. Mice were euthanized 4 h later. Reduced glutathione (GSH), lipid peroxidation (thiobarbituric acid-reactive substances; TBARS), and nitrite concentrations were measured in brain and liver. Tumor necrosis factor-alpha (TNF-α) and glucose were determined in brain. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured in liver. The administration of only aspartame (22.5 and 45 mg/kg) increased brain TBARS by 17.7-32.8%, decreased GSH by 25.6-31.6%, and increased TNF-α by 16.7-44%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline, and dopamine. Aspartame did not alter liver TBARS, nitrite, GSH, AST, ALT, or ALP. The administration of LPS increased nitrite in brain and liver by 26.8 and 37.1%, respectively; decreased GSH in brain and liver by 21.6 and 31.1%, respectively; increased brain TNF-α by 340.4%, and glucose by 39.9%, and caused marked increase in brain monoamines. LPS increased AST, ALT, and ALP in liver tissue by 84.4, 173.7, and 258.9%, respectively. Aspartame given to LPS-treated mice at 11.25 and 22.5 mg/kg increased brain TBARS by 15.5-16.9%, nitrite by 12.6-20.1%, and mitigated the increase in monoamines. Aspartame did not alter liver TBARS, nitrite, GSH, ALT, AST, or ALP. Thus, the administration of aspartame alone or in the presence of mild systemic inflammatory response increases oxidative stress and inflammation in the brain, but not in the liver.

  4. Changes in oxidative stress in response to different levels of energy restriction in obese ponies.

    PubMed

    Bruynsteen, Lien; Janssens, Geert P J; Harris, Patricia A; Duchateau, Luc; Valle, Emanuela; Odetti, Patrizio; Vandevelde, Kimberley; Buyse, Johan; Hesta, Myriam

    2014-10-28

    The present study evaluated the effect of different levels of energy restriction on metabolic parameters in obese ponies. Relative weight changes, markers of lipid metabolism and oxidant/antioxidant balance were monitored. A total of eighteen obese (body condition score ≥ 7/9) Shetland ponies were studied over a 23·5-week trial, which was divided into three periods. The first period involved a 4-week adaptation period in which each animal was fed 100% of their maintenance energy requirements needed to maintain a stable obese body weight (MERob). This was followed by a 16·5-week weight-loss period in which ponies were assigned to receive either 100% (control group, CONTROL), 80% (slow weight-loss (SLOW) group) or 60% (rapid weight-loss (RAPID) group) of their MERob. During the 3-week end-phase period, all ponies were again fed 100% of their MERob. Relative weight loss was higher in the RAPID group (P< 0·001) compared with the SLOW group. No linear relationship was found as a doubling of the percentage of energy restriction was accompanied by a tripling of the percentage of weight loss. Relative weight gain afterwards in the end-phase period was higher in the RAPID group (P< 0·001) compared with the SLOW and CONTROL groups. During the weight-loss period, TAG and NEFA concentrations were highest in the RAPID group, as were α-tocopherol and ferric-reducing ability of plasma concentrations. After 8 weeks of weight loss, the concentrations of advanced oxidation protein products were higher in the RAPID group compared with the SLOW and CONTROL groups (P< 0·001). In conclusion, the level of energy restriction influences the extent of changes in oxidant/antioxidant balance. Practically, more severe energy restriction regimens may be associated with a greater regain of weight after the restriction period. PMID:25181634

  5. Prenatal vitamin C deficiency results in differential levels of oxidative stress during late gestation in foetal guinea pig brains

    PubMed Central

    Paidi, Maya D.; Schjoldager, Janne G.; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-01-01

    Antioxidant defences are comparatively low during foetal development making the brain particularly susceptible to oxidative stress during antioxidant deficiencies. The brain is one of the organs containing the highest concentration of vitamin C (VitC) and VitC deficiency during foetal development may place the brain at risk of redox status imbalance. In the present study, we investigated the developmental pattern and effect of VitC deficiency on antioxidants, vitamin E and superoxide dismutase (SOD), assessed oxidative damage by measuring malondialdehyde (MDA), hydroxynonenal (HNE) and nitrotyrosine (NT) and analysed gene and protein expression of apoptosis marker caspase-3 in the guinea pig foetal brain at two gestational (GD) time points, GD 45/pre-term and GD 56/near term following either a VitC sufficient (CTRL) or deficient (DEF) maternal dietary regime. We show that except for SOD, antioxidants and oxidative damage markers are differentially expressed between the two GDs, with high VitC (p<0.0001), NT modified proteins (p<0.0001) and active caspase-3 levels (p<0.05) at pre-term and high vitamin E levels (p<0.0001), HNE (p<0.0001) and MDA (p<0.0001) at near term. VitC deficiency significantly increased SOD activity (p<0.0001) compared to CTRLs at both GDs indicating a compensatory response, however, low levels of VitC significantly elevated MDA levels (p<0.05) in DEF at near term. Our results show a differential regulation of the investigated markers during late gestation and suggest that immature brains are susceptible to oxidative stress due to prenatal vitC deficiency in spite of an induction of protective adaptation mechanisms. PMID:24563854

  6. Cerebrospinal fluid levels of inflammation, oxidative stress and NAD+ are linked to differences in plasma carotenoid concentrations

    PubMed Central

    2014-01-01

    Background The consumption of foods rich in carotenoids that possess significant antioxidant and inflammatory modulating properties has been linked to reduced risk of neuropathology. The objective of this study was to evaluate the relationship between plasma carotenoid concentrations and plasma and cerebrospinal fluid (CSF) markers of inflammation, oxidative stress and nicotinamide adenine dinucleotide (NAD+) in an essentially healthy human cohort. Methods Thirty-eight matched CSF and plasma samples were collected from consenting participants who required a spinal tap for the administration of anaesthetic. Plasma concentrations of carotenoids and both plasma and cerebrospinal fluid (CSF) levels of NAD(H) and markers of inflammation (IL-6, TNF-α) and oxidative stress (F2-isoprostanes, 8-OHdG and total antioxidant capacity) were quantified. Results The average age of participants was 53 years (SD = 20, interquartile range = 38). Both α-carotene (P = 0.01) and β-carotene (P < 0.001) correlated positively with plasma total antioxidant capacity. A positive correlation was observed between α-carotene and CSF TNF-α levels (P = 0.02). β-cryptoxanthin (P = 0.04) and lycopene (P = 0.02) inversely correlated with CSF and plasma IL-6 respectively. A positive correlation was also observed between lycopene and both plasma (P < 0.001) and CSF (P < 0.01) [NAD(H)]. Surprisingly no statistically significant associations were found between the most abundant carotenoids, lutein and zeaxanthin and either plasma or CSF markers of oxidative stress. Conclusion Together these findings suggest that consumption of carotenoids may modulate inflammation and enhance antioxidant defences within both the central nervous system (CNS) and systemic circulation. Increased levels of lycopene also appear to moderate decline in the essential pyridine nucleotide [NAD(H)] in both the plasma and the CSF. PMID:24985027

  7. The effects of prenatal oxidative stress levels on infant adiposity development during the first year of life.

    PubMed

    Loy, S L; Sirajudeen, K N S; Hamid Jan, J M

    2014-04-01

    Although numerous studies have been conducted to examine the causal factors of childhood obesity, the implications of intrauterine oxidative stress on early postnatal adiposity development remain to be elucidated. The Universiti Sains Malaysia Birth Cohort Study aimed to investigate the effects of prenatal oxidative stress levels on the development of infant adiposity during the first year of life. This study was conducted on the healthy pregnant women aged 19-40 years, from April 2010 to December 2012 in Kelantan, Malaysia. Maternal blood samples were drawn in the second trimester to analyse for oxidative stress markers. Infant anthropometric measurements were taken at birth, 2, 6 and 12 months of age. A total of 153 pregnant women and full-term infants were included in the analysis. Statistical test was conducted by using multiple linear regression. Through the infant first year of life, as maternal DNA damage level in the second trimester increased, infant weights at birth (β=-0.122, P<0.001), 2 months (β=-0.120, P=0013), 6 months (β=-0.209, P=0.003) and 12 months of age (β=-0.241, P=0.006) decreased after adjusting for confounders. Similar results were noted when infant body mass index-for-age Z-scores and triceps skinfold-for-age Z-scores were used as the adiposity indicators. In conclusion, the present study shows a consistent inverse association between maternal DNA damage and infant adiposity during the first year of life. These infants with reduced growth and adiposity in early postnatal life may have a high tendency to experience catch-up growth during childhood, which could be strongly associated with later obesity. PMID:24847700

  8. Staphylococcal response to oxidative stress

    PubMed Central

    Gaupp, Rosmarie; Ledala, Nagender; Somerville, Greg A.

    2012-01-01

    Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host. PMID:22919625

  9. Effect of vitamin E and selenium supplementation on oxidative stress indices and cortisol level in blood in water buffaloes during pregnancy and early postpartum period.

    PubMed

    Dimri, Umesh; Ranjan, Rakesh; Sharma, Mahesh C; Varshney, V P

    2010-03-01

    Pregnancy is a physiology state accompanied by high energy and oxygen demand that may lead to increased level of oxidative stress and development of metabolic and reproductive disorders in pregnant water buffaloes. In the present study, the alterations in serum cortisol and erythrocyte lipid peroxides and superoxide dismutase activities were examined in 28 pregnant water buffaloes supplemented with antioxidant nutrients, Vitamin E and selenium. Another 14 buffaloes did not receive any treatment during pregnancy to serve as negative control. Results of the present study suggested that pregnancy is associated with oxidative stress and supplementation of vitamin E and selenium may be beneficial by alleviating oxidative stress in water buffaloes.

  10. Assessment at the single-cell level identifies neuronal glutathione depletion as both a cause and effect of ischemia-reperfusion oxidative stress.

    PubMed

    Won, Seok Joon; Kim, Ji-Eun; Cittolin-Santos, Giordano Fabricio; Swanson, Raymond A

    2015-05-01

    Oxidative stress contributes to neuronal death in brain ischemia-reperfusion. Tissue levels of the endogenous antioxidant glutathione (GSH) are depleted during ischemia-reperfusion, but it is unknown whether this depletion is a cause or an effect of oxidative stress, and whether it occurs in neurons or other cell types. We used immunohistochemical methods to evaluate glutathione, superoxide, and oxidative stress in mouse hippocampal neurons after transient forebrain ischemia. GSH levels in CA1 pyramidal neurons were normally high relative to surrounding neuropil, and exhibited a time-dependent decrease during the first few hours of reperfusion. Colabeling for superoxide in the neurons showed a concurrent increase in detectable superoxide over this interval. To identify cause-effect relationships between these changes, we independently manipulated superoxide production and GSH metabolism during reperfusion. Mice in which NADPH oxidase activity was blocked to prevent superoxide production showed preservation of neuronal GSH content, thus demonstrating that neuronal GSH depletion is result of oxidative stress. Conversely, mice in which neuronal GSH levels were maintained by N-acetyl cysteine treatment during reperfusion showed less neuronal superoxide signal, oxidative stress, and neuronal death. At 3 d following ischemia, GSH content in reactive astrocytes and microglia was increased in the hippocampal CA1 relative to surviving neurons. Results of these studies demonstrate that neuronal GSH depletion is both a result and a cause of neuronal oxidative stress after ischemia-reperfusion, and that postischemic restoration of neuronal GSH levels can be neuroprotective.

  11. Clinical evaluation of circulating microRNA-25 level change in sepsis and its potential relationship with oxidative stress

    PubMed Central

    Yao, Liqiong; Liu, Zhiwu; Zhu, Jinhong; Li, Bin; Chai, Chen; Tian, Yunlin

    2015-01-01

    Objective: to investigated the circulating microRNA expression profile in sepsis and its clinical evaluation. Methods: 70 patients with sepsis and 30 patients with SIRS were selected and their blood samples were collected. Using liquid bead array with 3 statistical analysis approaches analyzed the circulating microRNA expression profiles, for confirming the data of liquid bead array, qRT-PCR was performed. The prognostic value of the changed microRNA in sepsis was determined and compared with CRP and PCT by analyzing the receiver operating characteristic (ROC) curves. To reveal whether the selected microRNAs could predict the outcome of patients, 28 d survival rate were calculated using Kaplan-Meier curves. Furthermore, the level of malondialdehyde (MDA), activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in plasma were detected and the relationship with the changed microRNA was determined. Results: By integrating data from liquid bead array, we ultimately identified 6 microRNAs that were consistently changed in both of 3 statistical analysis approaches, however, only the change of microRNA-25 was significant according to the qPCR’s result. The area under ROC curve showed that the clinical accuracy of microRNA-25 for sepsis diagnosis was better than CRP and PCT (AUG=0.806, 0.676 and 0.726, P<0.05).The decrease in level of microRNA-25 was correlated with the severity of sepsis, SOFA score, CRP and PCT level, meanwhile, microRNA-25 level can be used for predicting the prognosis of patients, the patients with microRNA-25 level ≤0.492 had a lower 28 d survival rate. Moreover, Decreased microRNA-25 level was related to the level of oxidative stress indicators in sepsis patients. Conclusions: microRNA-25 can be used as a biomarker for the diagnosis and assessment of sepsis. Meanwhile, microRNA-25 level may be associated with oxidative stress in patients with sepsis, and it is expected to become a target for anti-oxidation therapy. PMID

  12. Pre-exercise low-level laser therapy improves performance and levels of oxidative stress markers in mdx mice subjected to muscle fatigue by high-intensity exercise.

    PubMed

    Silva, Andreia Aparecida de Oliveira; Leal-Junior, Ernesto Cesar Pinto; D'Avila, Katia de Angelis Lobo; Serra, Andrey Jorge; Albertini, Regiane; França, Cristiane Miranda; Nishida, Joen Akemi; de Carvalho, Paulo de Tarso Camillo

    2015-08-01

    This study was designed to determine if the levels of oxidative stress markers are influenced by low-level laser therapy (LLLT) in mdx mice subjected to high-intensity exercise training on an electric treadmill. We used 21 C57BL/10ScSn-Dmdmdx/J mice and 7 C57BL/10ScSn mice, all aged 4 weeks. The mice were divided into four groups: a positive control group of normal, wild-type mice (WT); a negative control group of untreated mdx mice; a group of mdx mice that underwent forced high-intensity exercise on a treadmill (mdx fatigue); and another group of mdx mice with the same characteristics that were treated with LLLT at a single point on the gastrocnemius muscle of the hind paw and underwent forced high-intensity exercise on a treadmill. The mdx mice treated with LLLT showed significantly lower levels of creatine kinase (CK) and oxidative stress than mdx mice that underwent forced high-intensity exercise on a treadmill. The activities of the antioxidant enzyme superoxide dismutase (SOD) were higher in control mdx mice than in WT mice. LLLT also significantly reduced the level of this marker. LLLT had a beneficial effect also on the skeletal muscle performance of mdx mice. However, the single application of LLLT and the dose parameters used in this study were not able to change the morphology of a dystrophic muscle.

  13. Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level.

    PubMed

    Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny

    2015-12-01

    The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 μGy h(-1) up to 1.5 Gy h(-1). Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h(-1). A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR10) was estimated at 95 ± 7 mGy h(-1), followed by 153 ± 13 mGy h(-1) and 169 ± 12 mGy h(-1) on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h(-1), antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h(-1) which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic stress conditions

  14. Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level.

    PubMed

    Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny

    2015-12-01

    The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 μGy h(-1) up to 1.5 Gy h(-1). Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h(-1). A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR10) was estimated at 95 ± 7 mGy h(-1), followed by 153 ± 13 mGy h(-1) and 169 ± 12 mGy h(-1) on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h(-1), antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h(-1) which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic stress conditions

  15. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit

    SciTech Connect

    Jiménez-Garza, Octavio; Baccarelli, Andrea A.; Byun, Hyang-Min; Márquez-Gamiño, Sergio; Barrón-Vivanco, Briscia Socorro

    2015-08-01

    Background: CYP2E1 is a versatile phase I drug-metabolizing enzyme responsible for the biotransformation of most volatile organic compounds, including toluene. Human toluene exposure increases CYP2E1 mRNA and modifies its activity in leucocytes; however, epigenetic implications of this interaction have not been investigated. Goal: To determine promoter methylation of CYP2E1 and other genes known to be affected by toluene exposure. Methods: We obtained venous blood from 24 tannery workers exposed to toluene (mean levels: 10.86 +/− 7 mg/m{sup 3}) and 24 administrative workers (reference group, mean levels 0.21 +/− 0.02 mg/m{sup 3}) all of them from the city of León, Guanajuato, México. After DNA extraction and bisulfite treatment, we performed PCR-pyrosequencing in order to measure methylation levels at promoter region of 13 genes. Results: In exposed group we found significant correlations between toluene airborne levels and CYP2E1 promoter methylation (r = − .36, p < 0.05), as well as for IL6 promoter methylation levels (r = .44, p < 0.05). Moreover, CYP2E1 promoter methylation levels where higher in toluene-exposed smokers compared to nonsmokers (p = 0.009). We also observed significant correlations for CYP2E1 promoter methylation with GSTP1 and SOD1 promoter methylation levels (r = − .37, p < 0.05 and r = − .34, p < 0.05 respectively). Conclusion: These results highlight the importance of considering CYP2E1 epigenetic modifications, as well as its interactions with other genes, as key factors for unraveling the sub cellular mechanisms of toxicity exerted by oxidative stress, which can initiate disease process in chronic, low-level toluene exposure. People co-exposed to toluene and tobacco smoke are in higher risk due to a possible CYP2E1 repression. - Highlights: • We investigated gene-specific methylation in persons chronically exposed to toluene. • In a previous study, a reduced CYP2E1 activity was observed in these participants. • CYP2E1

  16. Management of oxidative stress by microalgae.

    PubMed

    Cirulis, Judith T; Scott, J Ashley; Ross, Gregory M

    2013-01-01

    The aim of this review is to provide an overview of the current research on oxidative stress in eukaryotic microalgae and the antioxidant compounds microalgae utilize to control oxidative stress. With the potential to exploit microalgae for the large-scale production of antioxidants, interest in how microalgae manage oxidative stress is growing. Microalgae can experience increased levels of oxidative stress and toxicity as a result of environmental conditions, metals, and chemicals. The defence mechanisms for microalgae include antioxidant enzymes such as superoxide dismutase, catalase, peroxidases, and glutathione reductase, as well as non-enzymatic antioxidant molecules such as phytochelatins, pigments, polysaccharides, and polyphenols. Discussed herein are the 3 areas the literature has focused on, including how conditions stress microalgae and how microalgae respond to oxidative stress by managing reactive oxygen species. The third area is how beneficial microalgae antioxidants are when administered to cancerous mammalian cells or to rodents experiencing oxidative stress.

  17. Hydrochlorothiazide and high-fat diets reduce plasma magnesium levels and increase hepatic oxidative stress in rats.

    PubMed

    Ribeiro, Marinei Cristina Pereira; Avila, Daiana Silva de; Barbosa, Nilda Berenice de Vargas; Meinerz, Daiane Francine; Waczuk, Emily Pansera; Hassan, Waseem; Rocha, João Batista Teixeira

    2013-01-01

    This study was designed to develop a rodent model of hydrochlorothiazide (HCTZ) toxicity by associating its intake with a high-fat (HF) diet. Rats were fed for 16 weeks with a control diet or with an HF diet supplemented or not with different doses of HCTZ. HCTZ, in a similar way to the HF diet, caused a significant increase in fructosamine levels. HCTZ and HF diet intake caused a significant reduction in magnesium and potassium levels, as well as an increase in lipid peroxidation and vitamin C in liver. Importantly, negative correlations were found between magnesium and glucose levels as well as between magnesium and fructosamine levels. The association between HCTZ and the HF diet caused additional worsening of biochemical parameters related to glucose homeostasis, and further increased hepatic oxidative stress. Our results suggest that chronic intake of HCTZ or an HF diet causes metabolic changes that are consistent with the development of insulin resistance. In addition, the association of an HF diet and HCTZ treatment can exacerbate some of these biochemical alterations, suggesting that this model might be useful for studying HCTZ metabolic toxicity.

  18. Expression of FOXO6 is Associated With Oxidative Stress Level and Predicts the Prognosis in Hepatocellular Cancer: A Comparative Study.

    PubMed

    Chen, Hai-Yong; Chen, Yao-Min; Wu, Jian; Yang, Fu-Chun; Lv, Zhen; Xu, Xiao-Feng; Zheng, Shu-Sen

    2016-05-01

    The aim of this study was to explore the association of Forkhead box O6 (FOXO6) expression with oxidative stress level and prognosis of hepatocellular cancer (HCC).The case group included tissues of HCC from 128 patients who were hospitalized in Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery of First Affiliated Hospital, School of Medicine, Zhejiang University. The control group included normal liver tissues from 74 patients. RT-PCR and Western blot were used to test expressions of FOXO6, heme oxygenase (HO)-1, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). Dihydroethidium (DHE) was dyed to observe reactive oxygen species (ROS) level. Immunohistochemistry was used to test FOXO6 expression. FOXO6 was silenced in HepG2 cells to detect cell proliferation and apoptosis. The expressions of ROS, HO-1, GPx, SOD, CAT, p27, and cyclin D1 were also detected to further explore the possible mechanism.The expressions of FOXO6, HO-1, GPx, SOD, and CAT in HCC tissue was significantly higher than those in normal and adjacent HCC tissues (P <0.05). The tumor size, TNM stage, Alpha-fetoprotein (AFP) level, the presence or absence of hepatitis B surface antigen (HbsAg), and differentiation degree were related to FOXO6 expression level (all P <0.05). COX analysis showed that high FOXO6 expression, male, positive HBsAg, advanced TNM staging, high expression of AFP, and low degree of differentiation were all risk factors for prognosis in HCC (P <0.05). Compared with the blank group (C group, without transfection) and the negative control (NC) group, the mRNA expressions of ROS, FOXO6, HO-1, SOD, GPx, and CAT were decreased (P <0.05). si-RNA group had significantly decreased proliferation speed during 24 to 72 hours (P <0.05), whereas si-FOXO6 group had remarkably increased G0/G1 staged cells and decreased S-staged cells (P <0.05). The si-FOXO6 group showed notably increased apoptosis rate (P <0.05) and p27

  19. Expression of FOXO6 is Associated With Oxidative Stress Level and Predicts the Prognosis in Hepatocellular Cancer

    PubMed Central

    Chen, Hai-Yong; Chen, Yao-Min; Wu, Jian; Yang, Fu-Chun; Lv, Zhen; Xu, Xiao-Feng; Zheng, Shu-Sen

    2016-01-01

    Abstract The aim of this study was to explore the association of Forkhead box O6 (FOXO6) expression with oxidative stress level and prognosis of hepatocellular cancer (HCC). The case group included tissues of HCC from 128 patients who were hospitalized in Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery of First Affiliated Hospital, School of Medicine, Zhejiang University. The control group included normal liver tissues from 74 patients. RT-PCR and Western blot were used to test expressions of FOXO6, heme oxygenase (HO)-1, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). Dihydroethidium (DHE) was dyed to observe reactive oxygen species (ROS) level. Immunohistochemistry was used to test FOXO6 expression. FOXO6 was silenced in HepG2 cells to detect cell proliferation and apoptosis. The expressions of ROS, HO-1, GPx, SOD, CAT, p27, and cyclin D1 were also detected to further explore the possible mechanism. The expressions of FOXO6, HO-1, GPx, SOD, and CAT in HCC tissue was significantly higher than those in normal and adjacent HCC tissues (P <0.05). The tumor size, TNM stage, Alpha-fetoprotein (AFP) level, the presence or absence of hepatitis B surface antigen (HbsAg), and differentiation degree were related to FOXO6 expression level (all P <0.05). COX analysis showed that high FOXO6 expression, male, positive HBsAg, advanced TNM staging, high expression of AFP, and low degree of differentiation were all risk factors for prognosis in HCC (P <0.05). Compared with the blank group (C group, without transfection) and the negative control (NC) group, the mRNA expressions of ROS, FOXO6, HO-1, SOD, GPx, and CAT were decreased (P <0.05). si-RNA group had significantly decreased proliferation speed during 24 to 72 hours (P <0.05), whereas si-FOXO6 group had remarkably increased G0/G1 staged cells and decreased S-staged cells (P <0.05). The si-FOXO6 group showed notably increased apoptosis rate (P <0.05) and p

  20. Cutaneous oxidative stress.

    PubMed

    Polefka, Thomas G; Meyer, Thomas A; Agin, Patricia P; Bianchini, Robert J

    2012-03-01

    The earliest known microfossil records suggest that microorganisms existed on the earth approximately 3.8 billion years ago. Not only did sunlight drive this evolutionary process, but it also allowed photosynthetic organisms to elaborate oxygen and fundamentally change the earth's atmosphere and subsequent evolution. Paradoxically, however, an atmosphere of 20% oxygen offers aerobic organisms both benefits and some key challenges, particularly, to the external integument. This mini-review summarizes almost 40 years of research and provides a "60 000-foot" perspective on cutaneous oxidative stress. Topics reviewed include the following: What are free radicals and reactive oxygen species? Where do they come from? What is their chemistry? What are their roles and/or impact on the skin? What antioxidant defenses are available to mitigate oxidative stress. PMID:22360336

  1. Oxidative Stress in Malaria

    PubMed Central

    Percário, Sandro; Moreira, Danilo R.; Gomes, Bruno A. Q.; Ferreira, Michelli E. S.; Gonçalves, Ana Carolina M.; Laurindo, Paula S. O. C.; Vilhena, Thyago C.; Dolabela, Maria F.; Green, Michael D.

    2012-01-01

    Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy. PMID:23208374

  2. Repression of ergosterol level during oxidative stress by fission yeast F-box protein Pof14 independently of SCF

    PubMed Central

    Tafforeau, Lionel; Le Blastier, Sophie; Bamps, Sophie; Dewez, Monique; Vandenhaute, Jean; Hermand, Damien

    2006-01-01

    We describe a new member of the F-box family, Pof14, which forms a canonical, F-box dependent SCF (Skp1, Cullin, F-box protein) ubiquitin ligase complex. The Pof14 protein has intrinsic instability that is abolished by inactivation of its Skp1 interaction motif (the F-box), Skp1 or the proteasome, indicating that Pof14 stability is controlled by an autocatalytic mechanism. Pof14 interacts with the squalene synthase Erg9, a key enzyme in ergosterol metabolism, in a membrane-bound complex that does not contain the core SCF components. pof14 transcription is induced by hydrogen peroxide and requires the Pap1 transcription factor and the Sty1 MAP kinase. Pof14 binds to and decreases Erg9 activity in vitro and a pof14 deletion strain quickly loses viability in the presence of hydrogen peroxide due to its inability to repress ergosterol synthesis. A pof14 mutant lacking the F-box and an skp1-3 ts mutant behave as wild type in the presence of oxidant showing that Pof14 function is independent of SCF. This indicates that modulation of ergosterol level plays a key role in adaptation to oxidative stress. PMID:17016471

  3. Raloxifene and Tamoxifen Reduce PARP Activity, Cytokine and Oxidative Stress Levels in the Brain and Blood of Ovariectomized Rats.

    PubMed

    Yazğan, Betül; Yazğan, Yener; Övey, İshak Suat; Nazıroğlu, Mustafa

    2016-10-01

    It is well known that 17β-estradiol (E2) has an antioxidant role on neurological systems in the brain. Raloxifene (RLX) and tamoxifen (TMX) are selective estrogen receptor modulators. An E2 deficiency stimulates mitochondrial functions for promoting apoptosis and increasing reactive oxygen species (ROS) production. However, RLX and TMX may reduce the mitochondrial ROS production via their antioxidant properties in the brain and erythrocytes of ovariectomized (OVX) rats. We aimed to investigate the effects of E2, RLX, and TMX on oxidative stress, apoptosis, and cytokine production in the brain and erythrocytes of OVX rats.Forty female rats were divided into five groups. The first group was used as a control group. The second group was the OVX group. The third, fourth, and fifth groups were OVX + E2, OVX + TMX, and OVX + RLX groups, respectively. E2, TMX, and RLX were given subcutaneously to the OVX + E2 and OVX + TMX, OVX + RLX groups for 14 days after the ovariectomy respectively.While brain and erythrocyte lipid peroxidation levels were high in the OVX group, they were low in the OVX + E2, OVX + RLX, and OVX + TMX groups. OVX + E2, OVX + RLX, and OVX + TMX treatments increased the lowered glutathione peroxidase activity in erythrocytes and the brain and reduced glutathione and vitamin E concentrations in the brain. β-carotene and vitamin A concentrations in the brain and TNF-α and interleukin (IL)-1β levels in the plasma of the five groups were not significantly changed by the treatments. However, increased plasma IL-4 levels and Western blot results for brain poly (ADP-ribose) polymerase (PARP) in the OVX groups were decreased by E2, TMX, and RLX treatments, although proapoptotic procaspase 3 and 9 activities were increased by the treatments.In conclusion, we observed that E2, RLX, and TMX administrations were beneficial on oxidative stress, inflammation, and PARP levels in the serum and brain of OVX rats by

  4. Oxidative Stress in Myopia

    PubMed Central

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  5. Evaluation of antioxidant status, oxidative stress and serum trace mineral levels associated with Babesia ovis parasitemia in sheep.

    PubMed

    Esmaeilnejad, Bijan; Tavassoli, Mousa; Asri-Rezaei, Siamak; Dalir-Naghadeh, Bahram; Malekinejad, Hassan; Jalilzadeh-Amin, Ghader; Arjmand, Jafar; Golabi, Mostafa; Hajipour, Naser

    2014-09-15

    Ovine babesiosis is a fatal disease characterized by severe progressive hemolytic anemia. In order to clarify the causal mechanisms implicated in anemia, this study was aimed to assess the antioxidant status and erythrocyte oxidative stress in sheep suffering from ovine babesiosis. Babesia infection was confirmed both with Giemsa's staining blood smears and semi-nested PCR amplified region of 18S rRNA gene. Thirty-eight Iranian sheep, naturally infected with Babesia spp., were considered as the infected group and divided into four subgroups according to parasitemia rates (<1%, 1-2%, 2-3% and >3%), and the same number non-infected animals were selected as the control group. Blood samples were taken and hematological parameters, activities of antioxidant enzymes including erythrocyte glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), glucose-6-phosphate dehydrogenase (G6PD), total antioxidant capacity (TAC), median corpuscular fragility (MCF), and serum concentrations of some trace minerals (copper, iron, zinc, manganese, and selenium) were measured. In addition, as an index of lipid peroxidation, the level of malondialdehyde (MDA) was measured. The results revealed a significant decrease (P<0.01) in RBC count, packed cell volume (PCV) and Hb concentration as well as the activities of erythrocyte GSH-Px, SOD, CAT, G6PD, TAC, MCF and serum concentrations of Cu, Zn, Mn and Se in the infected sheep. In contrast, significantly increased (P<0.01) levels of MDA and erythrocyte osmotic fragility as well as serum concentration of iron were recorded in the infected animals. Overall, the observed remarkable decrease in the antioxidant enzyme activities, median corpuscular fragility and substantial elevated levels of lipid peroxidation associated with the notable increase in parasitemia indicate high exposure of RBCs to oxidative damage in Babesia infected sheep. These results indicate that the disturbed antioxidant defense mechanisms in ovine

  6. Absence of aryl hydrocarbon receptors increases endogenous kynurenic acid levels and protects mouse brain against excitotoxic insult and oxidative stress.

    PubMed

    García-Lara, Lucia; Pérez-Severiano, Francisca; González-Esquivel, Dinora; Elizondo, Guillermo; Segovia, José

    2015-09-01

    L-kynurenine (Kyn) is a key element of tryptophan metabolism; it is enzymatically converted by kynurenine aminotransferase II (KAT II) to kynurenic acid (KYNA), which acts as an antagonist to the NMDA receptor-glycine site. Kyn is also an endogenous ligand of the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of a diverse set of genes. KYNA levels are reduced in several regions of the brain of Huntington's disease (HD) patients. The present work uses an AhR-null mouse and age-matched wild-type mice to determine the effect of the absence of AhR on KYNA availability. We found that, in AhR-null mice, there is an increase of KYNA levels in specific brain areas associated with higher expression of KAT II. Moreover, we induced an excitotoxic insult by intrastriatal administration of quinolinic acid, a biochemical model of HD, in both AhR-null and wild-type mice to evaluate the neurological damage as well as the oxidative stress caused by the lesion. The present work demonstrates that, in specific brain regions of AhR-null mice, the levels of KYNA are increased and that this induces a neuroprotective effect against neurotoxic insults. Moreover, AhR-null mice also show improved motor performance in the rotarod test, indicating a constitutive protection of striatal tissue.

  7. Atorvastatin enhanced nitric oxide release and reduced blood pressure, nitroxidative stress and rantes levels in hypertensive rats with diabetes.

    PubMed

    Mason, R P; Corbalan, J J; Jacob, R F; Dawoud, H; Malinski, T

    2015-02-01

    Clinical trials have shown that atorvastatin benefits patients with diabetes even with normal baseline LDL levels. We hypothesized that atorvastatin improves endothelial cell (EC) function and reduces inflammation in hypertensive rats with diabetes. Non-diabetic and streptozotocin-induced type 2 diabetic male spontaneously hypertensive rats (SHR) were treated with atorvastatin at 20 mg/kg/day. After five weeks, nitric oxide (NO) and peroxynitrite (ONOO(-)) were measured in aortic and glomerular endothelial cells. A tandem of nanosensors was used to simultaneously measure NO and ONOO(-) concentration and their ratio [NO]/[ONOO(-)] was monitored with a time resolution better than 10 μs and detection limit 1 nM. [NO]/[ONOO(-)] was applied as a marker of endothelial NO synthase (eNOS) uncoupling, endothelial dysfunction and nitroxidative stress. Glucose, cholesterol, blood pressure (BP), and the cytokine RANTES were also measured. Diabetic SHR rats had elevated glucose (355 ± 38 mg/dL), mean BP (172 ± 15 mmHg), and plasma RANTES (38.4 ± 2.7 ng/mL), low endothelial NO bioavailability and high ONOO(-). Maximal NO release measured 267 ± 29 nM in aortic endothelium of SHR rats and 214 ± 20 nM for diabetic SHR rats; [NO]/[ONOO(-)] was 0.88 ± 12 and 0.61 ± 0.08, respectively. [NO]/[ONOO(-)] ratios below one indicate a high uncoupling of eNOS, endothelial dysfunction and high nitroxidative stress. Atorvastatin treatment partially restored endothelial function by increasing NO level by 98%, reducing ONOO(-) by 40% and favorably elevating [NO]/[ONOO(-)] to 1.1 ± 0.2 for diabetic SHR rats and 1.6 ± 0.3 for SHR rats. The effects of atorvastatin were similar in glomerular endothelial cells and were partially reproduced by modulators of eNOS or NADPH oxidase. Atorvastatin had no significant effect on fasting glucose or total cholesterol levels but reduced mean BP by 21% and 11% in diabetic and non-diabetic animals, respectively. Atorvastatin also reduced RANTES levels by

  8. Effect of smoking reduction and cessation on the plasma levels of the oxidative stress biomarker glutathione--Post-hoc analysis of data from a smoking cessation trial.

    PubMed

    Mons, Ute; Muscat, Joshua E; Modesto, Jennifer; Richie, John P; Brenner, Hermann

    2016-02-01

    Cigarette smoke contains high concentrations of free radical components that induce oxidative stress. Smoking-induced oxidative stress is thought to contribute to chronic obstructive pulmonary disease, cardiovascular disease and lung cancer through degenerative processes in the lung and other tissues. It is uncertain however whether smoking cessation lowers the burden of oxidative stress. We used data from a randomized controlled cessation trial of 434 current smokers for a post-hoc examination of the effects of smoking cessation on blood plasma levels of total glutathione (tGSH), the most abundant endogenous antioxidant in cells, and total cysteine (tCys), an amino acid and constituent of glutathione. Smoking status was validated based on serum cotinine levels. Multivariate linear mixed models were fitted to examine the association of smoking cessation and change in cigarette consumption with tGSH and tCys. After 12 months follow-up, quitters (n=55) had significantly increased levels of tGSH compared to subjects who continued to smoke (P<0.01). No significant change in tGSH was found for subjects who continued to smoke but reduced their intensity of smoking. No significant effect of smoking cessation or reduction was observed on levels of tCys. These results suggest that smoking cessation but not smoking reduction reduces levels of oxidative stress. PMID:26708755

  9. The impact of acute lung injury, ECMO and transfusion on oxidative stress and plasma selenium levels in an ovine model.

    PubMed

    McDonald, Charles I; Fung, Yoke Lin; Shekar, Kiran; Diab, Sara D; Dunster, Kimble R; Passmore, Margaret R; Foley, Samuel R; Simonova, Gabriela; Platts, David; Fraser, John F

    2015-04-01

    The purpose of this study was to determine the effects of smoke induced acute lung injury (S-ALI), extracorporeal membrane oxygenation (ECMO) and transfusion on oxidative stress and plasma selenium levels. Forty ewes were divided into (i) healthy control (n=4), (ii) S-ALI control (n=7), (iii) ECMO control (n=7), (iv) S-ALI+ECMO (n=8) and (v) S-ALI+ECMO+packed red blood cell (PRBC) transfusion (n=14). Plasma thiobarbituric acid reactive substances (TBARS), selenium and glutathione peroxidase (GPx) activity were analysed at baseline, after smoke injury (or sham) and 0.25, 1, 2, 6, 7, 12 and 24h after initiation of ECMO. Peak TBARS levels were similar across all groups. Plasma selenium decreased by 54% in S-ALI sheep (1.36±0.20 to 0.63±0.27μmol/L, p<0.0001), and 72% in sheep with S-ALI+ECMO at 24h (1.36±0.20 to 0.38±0.19, p<0.0001). PRBC transfusion had no effect on TBARS, selenium levels or glutathione peroxidase activity in plasma. While ECMO independently increased TBARS in healthy sheep to levels which were similar to the S-ALI control, the addition of ECMO after S-ALI caused a negligible increase in TBARS. This suggests that the initial lung injury was the predominant feature in the TBARS response. In contrast, the addition of ECMO in S-ALI sheep exacerbated reductions in plasma selenium beyond that of S-ALI or ECMO alone. Clinical studies are needed to confirm the extent and duration of selenium loss associated with ECMO.

  10. (−)-EPICATECHIN IMPROVES MITOCHONDRIAL RELATED PROTEIN LEVELS AND AMELIORATES OXIDATIVE STRESS IN DYSTROPHIC DELTA SARCOGLYCAN NULL MOUSE STRIATED MUSCLE

    PubMed Central

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-01-01

    Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (−)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration. PMID:25284161

  11. (-)-Epicatechin improves mitochondrial-related protein levels and ameliorates oxidative stress in dystrophic δ-sarcoglycan null mouse striated muscle.

    PubMed

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-12-01

    Muscular dystrophies (MDs) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism of disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD, and probably represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (-)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild-type or δ-SG null 2.5-month-old male mice were treated via oral gavage with either water (controls) or Epi (1 mg·kg(-1) , twice daily) for 2 weeks. The results showed significant normalization of total protein carbonylation, recovery of the glutathione/oxidized glutathione ratio and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in the protein levels of thioredoxin, glutathione peroxidase, superoxide dismutase 2, catalase, and mitochondrial endpoints. Furthermore, we found decreases in heart and skeletal muscle fibrosis, accompanied by an improvement in skeletal muscle function, with treatment. These results warrant further investigation of Epi as a potential therapeutic agent to mitigate MD-associated muscle degeneration. PMID:25284161

  12. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Huang, Qingguo; Wei, Zhongbo; Wang, Zunyao

    2015-03-01

    Experiments were conducted to investigate the effect of three different carbon nanotubes [single-walled carbon nanotubes (SWCNTs), hydroxylated multi-walled carbon nanotubes (OH-MWCNTs), and carboxylated multi-walled carbon nanotubes (COOH-MWCNTs)] on antioxidant parameters and metals accumulation in the liver of Carassius auratus. A semi-static test system was used to expose C. auratus to either a freshwater control, 0.1, or 0.5mg/L CNTs at three pH levels (5.0, 7.25, and 9.0) for 3 and 12 days. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), together with the level of glutathione (GSH) and malondialdehyde (MDA) were determined in liver on the 3rd and 12th day. The results showed that there was a significant increase in MDA concentration and SOD activity in fish exposed to CNTs, indicating that CNTs exposure induces an oxidative stress response in fish. According to integrated biomarker response (IBR) index, the effect of these three CNTs on liver can be ordered as SWCNTs>OH-MWCNTs>COOH-MWCNTs and they are more toxic to fish in an alkaline environment. Moreover, the concentrations of catalyst metals (Co, Ni, and Mo) and bioelements (Cu, Fe, Zn, and Se) in liver were changed, depending on the CNTs concentration, the pH level, and the exposure duration. Generally, all CNTs groups showed that catalyst metals could be concentrated significantly into the liver of fish, and changes in hepatic Cu, Zn, Fe, and Se contents are consistent with the activity of antioxidant enzymes.

  13. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Huang, Qingguo; Wei, Zhongbo; Wang, Zunyao

    2015-03-01

    Experiments were conducted to investigate the effect of three different carbon nanotubes [single-walled carbon nanotubes (SWCNTs), hydroxylated multi-walled carbon nanotubes (OH-MWCNTs), and carboxylated multi-walled carbon nanotubes (COOH-MWCNTs)] on antioxidant parameters and metals accumulation in the liver of Carassius auratus. A semi-static test system was used to expose C. auratus to either a freshwater control, 0.1, or 0.5mg/L CNTs at three pH levels (5.0, 7.25, and 9.0) for 3 and 12 days. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), together with the level of glutathione (GSH) and malondialdehyde (MDA) were determined in liver on the 3rd and 12th day. The results showed that there was a significant increase in MDA concentration and SOD activity in fish exposed to CNTs, indicating that CNTs exposure induces an oxidative stress response in fish. According to integrated biomarker response (IBR) index, the effect of these three CNTs on liver can be ordered as SWCNTs>OH-MWCNTs>COOH-MWCNTs and they are more toxic to fish in an alkaline environment. Moreover, the concentrations of catalyst metals (Co, Ni, and Mo) and bioelements (Cu, Fe, Zn, and Se) in liver were changed, depending on the CNTs concentration, the pH level, and the exposure duration. Generally, all CNTs groups showed that catalyst metals could be concentrated significantly into the liver of fish, and changes in hepatic Cu, Zn, Fe, and Se contents are consistent with the activity of antioxidant enzymes. PMID:25625523

  14. Effect of Betula pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress

    PubMed Central

    Bljajić, Kristina; Šoštarić, Nina; Petlevski, Roberta; Vujić, Lovorka; Brajković, Andrea; Fumić, Barbara; de Carvalho, Isabel Saraiva

    2016-01-01

    B. pendula leaf is a common ingredient in traditional herbal combinations for treatment of diabetes in southeastern Europe. Present study investigated B. pendula ethanolic and aqueous extract as inhibitors of carbohydrate hydrolyzing enzymes, as well as their ability to restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress. Phytochemical analysis revealed presence of rutin and other quercetin derivatives, as well as chlorogenic acid. In general, ethanolic extract was richer in phenolic substances than the aqueous extract. Furthermore, a comprehensive analysis of antioxidant activity of two extracts (determined by DPPH and ABTS radical scavenging activity, total antioxidant activity, and chelating activity as well as ferric-reducing antioxidant power) has shown that ethanolic extract was better radical scavenger and metal ion reductant. In addition, ethanolic extract effectively increased cellular glutathione levels caused by hyperglycemia and inhibited α-glucosidase with the activity comparable to that of acarbose. Therefore, in vitro research using B. pendula plant extracts has confirmed their antidiabetic properties.

  15. Effect of Betula pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress

    PubMed Central

    Bljajić, Kristina; Šoštarić, Nina; Petlevski, Roberta; Vujić, Lovorka; Brajković, Andrea; Fumić, Barbara; de Carvalho, Isabel Saraiva

    2016-01-01

    B. pendula leaf is a common ingredient in traditional herbal combinations for treatment of diabetes in southeastern Europe. Present study investigated B. pendula ethanolic and aqueous extract as inhibitors of carbohydrate hydrolyzing enzymes, as well as their ability to restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress. Phytochemical analysis revealed presence of rutin and other quercetin derivatives, as well as chlorogenic acid. In general, ethanolic extract was richer in phenolic substances than the aqueous extract. Furthermore, a comprehensive analysis of antioxidant activity of two extracts (determined by DPPH and ABTS radical scavenging activity, total antioxidant activity, and chelating activity as well as ferric-reducing antioxidant power) has shown that ethanolic extract was better radical scavenger and metal ion reductant. In addition, ethanolic extract effectively increased cellular glutathione levels caused by hyperglycemia and inhibited α-glucosidase with the activity comparable to that of acarbose. Therefore, in vitro research using B. pendula plant extracts has confirmed their antidiabetic properties. PMID:27668005

  16. Effect of Betula pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress.

    PubMed

    Bljajić, Kristina; Šoštarić, Nina; Petlevski, Roberta; Vujić, Lovorka; Brajković, Andrea; Fumić, Barbara; de Carvalho, Isabel Saraiva; Končić, Marijana Zovko

    2016-01-01

    B. pendula leaf is a common ingredient in traditional herbal combinations for treatment of diabetes in southeastern Europe. Present study investigated B. pendula ethanolic and aqueous extract as inhibitors of carbohydrate hydrolyzing enzymes, as well as their ability to restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress. Phytochemical analysis revealed presence of rutin and other quercetin derivatives, as well as chlorogenic acid. In general, ethanolic extract was richer in phenolic substances than the aqueous extract. Furthermore, a comprehensive analysis of antioxidant activity of two extracts (determined by DPPH and ABTS radical scavenging activity, total antioxidant activity, and chelating activity as well as ferric-reducing antioxidant power) has shown that ethanolic extract was better radical scavenger and metal ion reductant. In addition, ethanolic extract effectively increased cellular glutathione levels caused by hyperglycemia and inhibited α-glucosidase with the activity comparable to that of acarbose. Therefore, in vitro research using B. pendula plant extracts has confirmed their antidiabetic properties. PMID:27668005

  17. Effect of Betula pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress.

    PubMed

    Bljajić, Kristina; Šoštarić, Nina; Petlevski, Roberta; Vujić, Lovorka; Brajković, Andrea; Fumić, Barbara; de Carvalho, Isabel Saraiva; Končić, Marijana Zovko

    2016-01-01

    B. pendula leaf is a common ingredient in traditional herbal combinations for treatment of diabetes in southeastern Europe. Present study investigated B. pendula ethanolic and aqueous extract as inhibitors of carbohydrate hydrolyzing enzymes, as well as their ability to restore glutathione concentration in Hep G2 cells subjected to glucose-induced oxidative stress. Phytochemical analysis revealed presence of rutin and other quercetin derivatives, as well as chlorogenic acid. In general, ethanolic extract was richer in phenolic substances than the aqueous extract. Furthermore, a comprehensive analysis of antioxidant activity of two extracts (determined by DPPH and ABTS radical scavenging activity, total antioxidant activity, and chelating activity as well as ferric-reducing antioxidant power) has shown that ethanolic extract was better radical scavenger and metal ion reductant. In addition, ethanolic extract effectively increased cellular glutathione levels caused by hyperglycemia and inhibited α-glucosidase with the activity comparable to that of acarbose. Therefore, in vitro research using B. pendula plant extracts has confirmed their antidiabetic properties.

  18. Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells.

    PubMed

    De Bleser, P J; Xu, G; Rombouts, K; Rogiers, V; Geerts, A

    1999-11-26

    Reactive oxygen species are implicated in the pathogenesis of several diseases, including Alzheimer's disease, multiple sclerosis, human immunodeficiency virus, and liver fibrosis. With respect to liver fibrosis, we have investigated differences in antioxidant enzymes expression in stellate cells (SCs) and parenchymal cells from normal and CCl(4)-treated rat livers. We observed an increase in the expression of catalase in activated SCs. Treatment with transforming growth factor-beta (TGF-beta) increased the production of H(2)O(2). Treatment with catalase decreased TGF-beta expression. Addition of H(2)O(2) resulted in increased TGF-beta production. 3-Amino-1,2,4-triazole abolished the capacity of SCs to remove H(2)O(2). A paradoxical increase in capacity was observed when the cells were pretreated with diethyl maleate. Treatment with 3-amino-1, 2,4-triazole increased TGF-beta production. A paradoxical decrease of TGF-beta production was observed with diethyl maleate. Treatment of the cells with N-acetylcysteine resulted in increased TGF-beta production. TGF-beta decreased the capacity of the SCs to remove H(2)O(2.) An increase in the capacity to remove H(2)O(2) was observed when TGF-beta was removed by neutralizing antibodies. In conclusion, our results suggest: 1) a link between cellular GSH levels and TGF-beta production and 2) that cellular GSH levels discriminate whether H(2)O(2) is the result of oxidative stress or acts as second messenger in the TGF-beta signal transduction pathway.

  19. Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis.

    PubMed

    Ilyas, Sidra; Rehman, Abdul

    2015-01-01

    In this study, we explored the multiple heavy metal-resistant yeast isolated from heavy metal-polluted environment. The isolated yeast showed maximum growth at 30 °C, pH 7.0, and the strain was identified as Candida tropicalis through 18S ribosomal RNA (rRNA) gene sequence analysis. Yeast cells grew well in medium containing different concentrations of heavy metal ions [CdCl₂, Pb(NO₃)₂, NaAsO₂, CuSO₄ and K₂Cr₂O₇]. Minimum inhibitory concentration (MIC) against different metal ions was ranged from 5 to 19 mM, and the metal resistance value against each metal observed by yeast cells was 5 mM (Cr), 10 mM (Cd), 15 mM (As), 14 mM (Cu) and 19 mM (Pb) and increased in the following order: Pb > Cu > As ≥ Cd > Cr. The total cellular glutathione, GSH/GSSG redox couple and metallothioneins like protein (MT) were assayed by growing cultures for 24 h and exposed to 100 mg/L of each heavy metal ion. Remarkable increase in γ-glutamylcysteinylglycine (GSH) level was determined in arsenic and cadmium treatment followed by chromium, lead and copper. Stressed cells had much more oxidized GSH than unstressed cells. GSH/GSSG ratio was significantly increased in cadmium and copper treatment in contrast to chromium, arsenic and lead. Statistical analysis revealed significantly higher cysteine level in all metal-treated samples as compared to control. Antioxidant glutathione transferase activity was not detected in metal-treated and untreated yeast samples. One-dimensional electrophoresis of proteins revealed marked differences in banding pattern of heavy metal-exposed yeast samples. A prominent 20 kDa band was observed in all treated samples suggesting that some differential proteins could be over-expressed during heavy metal treatment and might be involved in cell resistance mechanisms.

  20. Lymphocyte Oxidative Stress/Genotoxic Effects Are Related to Serum IgG and IgA Levels in Coke Oven Workers

    PubMed Central

    Gao, Meili; Li, Yongfei; Zheng, Aqun; Xue, Xiaochang; Chen, Lan; Kong, Yu

    2014-01-01

    We investigated oxidative stress/genotoxic effects levels, immunoglobulin levels, polycyclic aromatic hydrocarbons (PAHs) levels exposed in 126 coke oven workers and in 78 control subjects, and evaluated the association between oxidative stress/genotoxic effects levels and immunoglobulin levels. Significant differences were observed in biomarkers, including 1-hydroxypyrene levels, employment time, percentages of alcohol drinkers, MDA, 8-OHdG levels, CTL levels and CTM, MN, CA frequency, and IgG, IgA levels between the control and exposed groups. Slightly higher 1-OHP levels in smoking users were observed. For the dose-response relationship of IgG, IgA, IgM, and IgE by 1-OHP, each one percentage increase in urinary 1-OHP generates a 0.109%, 0.472%, 0.051%, and 0.067% decrease in control group and generates a 0.312%, 0.538%, 0.062%, and 0.071% decrease in exposed group, respectively. Except for age, alcohol and smoking status, IgM, and IgE, a significant correlation in urinary 1-OHP and other biomarkers in the total population was observed. Additionally, a significant negative correlation in genotoxic/oxidative damage biomarkers of MDA, 8-OH-dG, CTL levels, and immunoglobins of IgG and IgA levels, especially in coke oven workers, was found. These data suggest that oxidative stress/DNA damage induced by PAHs may play a role in toxic responses for PAHs in immunological functions. PMID:25136686

  1. [Vitamins and oxidative stress].

    PubMed

    Kodentsova, V M; Vrzhesinskaia, O A; Mazo, V K

    2013-01-01

    The central and local stress limiting systems, including the antioxidant defense system involved in defending the organism at the cellular and systemic levels from excess activation response to stress influence, leading to damaging effects. The development of stress, regardless of its nature [cold, increased physical activity, aging, the development of many pathologies (cardiovascular, neurodegenerative diseases, diseases of the gastrointestinal tract, ischemia, the effects of burns), immobilization, hypobaric hypoxia, hyperoxia, radiation effects etc.] leads to a deterioration of the vitamin status (vitamins E, A, C). Damaging effect on the antioxidant defense system is more pronounced compared to the stress response in animals with an isolated deficiency of vitamins C, A, E, B1 or B6 and the combined vitamins deficiency in the diet. Addition missing vitamin or vitamins restores the performance of antioxidant system. Thus, the role of vitamins in adaptation to stressors is evident. However, vitamins C, E and beta-carotene in high doses, significantly higher than the physiological needs of the organism, may be not only antioxidants, but may have also prooxidant properties. Perhaps this explains the lack of positive effects of antioxidant vitamins used in extreme doses for a long time described in some publications. There is no doubt that to justify the current optimal doses of antioxidant vitamins and other dietary antioxidants specially-designed studies, including biochemical testing of initial vitamin and antioxidant status of the organism, as well as monitoring their change over time are required.

  2. Oxidative Stress as Estimated by Gamma-Glutamyl Transferase Levels Amplifies the Alkaline Phosphatase-Dependent Risk for Mortality in ESKD Patients on Dialysis

    PubMed Central

    Mattace-Raso, Francesco; van Saase, Jan L. C. M.; Postorino, Maurizio; Tripepi, Giovanni Luigi; Mallamaci, Francesca; PROGREDIRE Study Group

    2016-01-01

    Alkaline phosphatase (Alk-Phos) is a powerful predictor of death in patients with end-stage kidney disease (ESKD) and oxidative stress is a strong inducer of Alk-Phos in various tissues. We tested the hypothesis that oxidative stress, as estimated by a robust marker of systemic oxidative stress like γ-Glutamyl-Transpeptidase (GGT) levels, may interact with Alk-Phos in the high risk of death in a cohort of 993 ESKD patients maintained on chronic dialysis. In fully adjusted analyses the HR for mortality associated with Alk-Phos (50 IU/L increase) was progressively higher across GGT quintiles, being minimal in patients in the first quintile (HR: 0.89, 95% CI: 0.77–1.03) and highest in the GGT fifth quintile (HR: 1.13, 95% CI: 1.03–1.2) (P for the effect modification = 0.02). These findings were fully confirmed in sensitivity analyses excluding patients with preexisting liver disease, excessive alcohol intake, or altered liver disease biomarkers. GGT amplifies the risk of death associated with high Alk-Phos levels in ESKD patients. This observation is compatible with the hypothesis that oxidative stress is a strong modifier of the adverse biological effects of high Alk-Phos in this population. PMID:27525053

  3. Copper levels and changes in pH induce oxidative stress in the tissue of curimbata (Prochilodus lineatus).

    PubMed

    Carvalho, Cleoni dos Santos; Bernusso, Vanessa Aline; Fernandes, Marisa Narciso

    2015-10-01

    We analyzed the effect of exposure to 25% 96 h-LC50 of copper at low (24.5 μg L(-1) Cu, pH 4.5), neutral (7.25 μg L(-1) Cu, pH 7.0) and high pH (4.0 μg L(-1) Cu, pH 8.0) at 20 °C on antioxidant defenses and oxidative stress in the liver, gills and white muscle of the fish Prochilodus lineatus. Water at pH 4.5 and 8.0 affected the enzymatic and non-enzymatic antioxidant systems of the liver and gills, but not of the white muscles of P. lineatus, when compared to water at pH 7.0. After Cu exposure, SOD (superoxide dismutase), GPx (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) activities increased and CAT (catalase) activity decreased in the liver at water at pH 4.5 and 8.0. Meanwhile, the activities of SOD, CAT, GPx, GR and GST increased in the gills at these pHs. SOD and CAT activities increased in the white muscle after Cu exposure at pH 8.0 and GPx, GR and GST activities decreased after Cu exposure at pH 4.5 and 8.0. LPO levels decreased in the liver and gills of fish that were exposed to water at pH 4.5 and 8.0 and, after Cu exposure, the LPO level increased in the liver, gills and white muscle of fish that were exposed to water at pH 4.5 and 8.0, when compared to the control group at pH 7.0. The metallothionein (MT) concentration increased in the liver of fish in water at pH 4.5 and 8.0 and the gill of fish in water at pH 8.0. After Cu exposure, MT in the liver and gills was significantly elevated in fish exposed to water at pH 4.5 and 8.0, but remained at levels similar to the control group in the white muscle. These results indicate a differing sensitivity of fish organs and tissues to essential metals, such as copper, and that toxicity may be relevant at environmental concentrations. These results indicate that the effect of Cu on the response of antioxidant defense systems is determined by water pH.

  4. Interactive effects of elevated temperature and CO(2) levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria).

    PubMed

    Matoo, Omera B; Ivanina, Anna V; Ullstad, Claus; Beniash, Elia; Sokolova, Inna M

    2013-04-01

    Marine bivalves such as the hard shell clams Mercenaria mercenaria and eastern oysters Crassostrea virginica are affected by multiple stressors, including fluctuations in temperature and CO2 levels in estuaries, and these stresses are expected to be exacerbated by ongoing global climate change. Hypercapnia (elevated CO2 levels) and temperature stress can affect survival, growth and development of marine bivalves, but the cellular mechanisms of these effects are not yet fully understood. In this study, we investigated whether oxidative stress is implicated in cellular responses to elevated temperature and CO2 levels in marine bivalves. We measured the whole-organism standard metabolic rate (SMR), total antioxidant capacity (TAOC), and levels of oxidative stress biomarkers in the muscle tissues of clams and oysters exposed to different temperatures (22 and 27°C) and CO2 levels (the present day conditions of ~400ppm CO2 and 800ppm CO2 predicted by a consensus business-as-usual IPCC emission scenario for the year 2100). SMR was significantly higher and the antioxidant capacity was lower in oysters than in clams. Aerobic metabolism was largely temperature-independent in these two species in the studied temperature range (22-27°C). However, the combined exposure to elevated temperature and hypercapnia led to elevated SMR in clams indicating elevated costs of basal maintenance. No persistent oxidative stress signal (measured by the levels of protein carbonyls, and protein conjugates with malondialdehyde and 4-hydroxynonenal) was observed during the long-term exposure to moderate warming (+5°C) and hypercapnia (~800ppm CO2). This indicates that long-term exposure to moderately elevated CO2 and temperature minimally affects the cellular redox status in these bivalve species and that the earlier observed negative physiological effects of elevated CO2 and temperature must be explained by other cellular mechanisms.

  5. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    PubMed

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  6. Effect of Escitalopram on GABA level and anti-oxidant markers in prefrontal cortex and nucleus accumbens of chronic mild stress-exposed albino rats

    PubMed Central

    Shalaby, Amany; Kamal, Sahar

    2009-01-01

    Oxidative stress is a critical route of damage in various psychological stress-induced disorders, such as depression. Antidepressants are widely prescribed to treat these conditions; however, few animal studies have investigated the effect of these drugs on endogenous antioxidant status in the brain. The present study employed a 3 weeks chronic regimen of random exposure to chronic mild stress (CMS) to induce oxidative stress in brain, and behavioural aberrations (anhedonia), in rats. The sucrose preference test was used to identify depression-like phenotypes, and reversal in these indices indicated the effectiveness of treatment with escitalopram 2.5mg/kg daily orally following CMS. The level of superoxide dismutase enzyme(SOD) as an antioxidant markers in erythrocyte lysates was reduced in CMS control group while it was elevated in CMS group treated with escitalopram. Also escitalopram significantly reduce the thiobarbituric acid reactive substance(TBARS) levels in selected brain areas homogenates to a level comparable to control group. Catalase activity and GABA levels in these brain areas were also increase in escitlopram treated group. In conclusion, escitalopram is suggested to have antioxidant effect associated with an increase in GABA level in frontal cortices and nucleus accumbens homogenates from rats exposed to CMS. PMID:21383885

  7. Oxidative Stress and Antioxidant Levels in Patients with Anorexia Nervosa after Oral Re-alimentation: A Systematic Review and Exploratory Meta-analysis.

    PubMed

    Solmi, Marco; Veronese, Nicola; Luchini, Claudio; Manzato, Enzo; Sergi, Giuseppe; Favaro, Angela; Santonastaso, Paolo; Correll, Christoph U

    2016-03-01

    Oxidative stress markers seem to be higher in patients with anorexia nervosa (AN) than healthy controls, but the potentially beneficial effects of weight gain is not known. We calculated random effects standardised mean differences (SMDs) as effect size measures of oxidative stress marker changes after re-alimentation reported in two or more studies, summarising others descriptively. Seven longitudinal studies (n = 104) were included. After a median follow-up period of 8 weeks, AN patients significantly increased their body mass index (15.1 ± 2.1 to 17.1 ± 2.2, p < 0.0001). This weight gain was followed by a significant increase in serum levels of the antioxidant albumin (studies = 6, SMD = 0.50, 95%CI = 0.18; 0.82, p = 0.002; I(2) = 16%) and a significant decrease in the oxidative stress marker Apolipoprotein B (studies = 2, n = 19, SMD = -0.85, 95%CI = -1.53; -0.17, p = 0.01; I(2) = 0). In one study, catalase and total antioxidant capacity increased, whilst superoxide dismutase significantly decreased. In conclusion, oral re-alimentation, even without full-weight normalisation, seems to improve oxidative stress in people with AN.

  8. Hierarchical and cybernetic nature of biologic systems and their relevance to homeostatic adaptation to low-level exposures to oxidative stress-inducing agents.

    PubMed Central

    Trosko, J E

    1998-01-01

    During evolution in an aerobic environment, multicellular organisms survived by adaptive responses to both the endogenous oxidative metabolism in the cells of the organism and the chemicals and low-level radiation to which they had been exposed. The defense repertoire exists at all levels of the biological hierarchy--from the molecular and biochemical level to the cellular and tissue level to the organ and organ system level. Cells contain preventive antioxidants to suppress oxidative damage to membranes. Cells also contain proteins and DNA; built-in redundancies for damaged molecules and organelles; tightly coupled redox systems; pools of reductants; antioxidants; DNA repair mechanisms and sensitive sensor molecules such as nuclear factor kappa beta; and signal transduction mechanisms affecting both transcription and post-translational modification of proteins needed to cope with oxidative stress. The biologic consequences of the low-level radiation that exceeds the background level of oxidative damage could be necrosis or apoptosis, cell proliferation, or cell differentiation. These effects are triggered by oxidative stress-induced signal transduction mechanisms--an epigenetic, not genotoxic, process. If the end points of cell proliferation, differentiation, or cell death are not seen at frequencies above background levels in an organism, it is unlikely that low-level radiation would play a role in the multistep processes of chronic diseases such as cancer. The mechanism linked to homeostatic regulation of proliferation and adaptive functions in a multicellular organism could provide protection of any one cell receiving deposited energy by the radiation tract through the sharing of reductants and by triggering apoptosis of target stem cells. Examples of the role of gap junctional intercellular communication in the adaptive response of cells and the bystander effect illustrate how the interaction of cells can modulate the effect of radiation on the single cell

  9. Imaging of oxidative stress at subcellular level by confocal laser scanning microscopy after fluorescent derivatization of cellular carbonyls.

    PubMed Central

    Pompella, A.; Comporti, M.

    1993-01-01

    Confocal laser scanning fluorescence microscopy plus image videoanalysis was used to visualize the tissue areas and the subcellular sites first involved by oxidative stress and lipid peroxidation, in the well-established experimental model of lipid peroxidation induced by haloalkane intoxication in the liver cell. The fluorescent reagent 3-hydroxy-2-naphthoic acid hydrazide was employed to derivativize the carbonyl functions originating from the lipoperoxidative process in situ, in liver cryostat sections from in vivo intoxicated rats, as well as in isolated hepatocytes exposed in vitro to the pro-oxidant action of haloalkanes. The results obtained indicate that: 1) the detection of fluorescent derivatives of carbonyls indeed offers a gain in sensitivity, 2) haloalkane-induced lipid peroxidation in hepatocytes primarily involves the perinuclear endoplasmic reticulum, whereas the plasma membrane and the nuclear compartment are unaffected, and 3) lipid peroxidation also induces an increase of liver autofluorescence. Images Figure 2 Figure 4 PMID:8494040

  10. The intake of high fat diet with different trans fatty acid levels differentially induces oxidative stress and non alcoholic fatty liver disease (NAFLD) in rats

    PubMed Central

    2011-01-01

    Background Trans-fatty acids (TFA) are known as a risk factor for coronary artery diseases, insulin resistance and obesity accompanied by systemic inflammation, the features of metabolic syndrome. Little is known about the effects on the liver induced by lipids and also few studies are focused on the effect of foods rich in TFAs on hepatic functions and oxidative stress. This study investigates whether high-fat diets with different TFA levels induce oxidative stress and liver dysfunction in rats. Methods Male Wistar rats were divided randomly into four groups (n = 12/group): C receiving standard-chow; Experimental groups that were fed high-fat diet included 20% fresh soybean oil diet (FSO), 20% oxidized soybean oil diet (OSO) and 20% margarine diet (MG). Each group was kept on the treatment for 4 weeks. Results A liver damage was observed in rats fed with high-fat diet via increase of liver lipid peroxidation and decreased hepatic antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase). The intake of oxidized oil led to higher levels of lipid peroxidation and a lower concentration of plasma antioxidants in comparison to rats fed with FSO. The higher inflammatory response in the liver was induced by MG diet. Liver histopathology from OSO and MG groups showed respectively moderate to severe cytoplasm vacuolation, hypatocyte hypertrophy, hepatocyte ballooning, and necroinflammation. Conclusion It seems that a strong relationship exists between the consumption of TFA in the oxidized oils and lipid peroxidation and non alcoholic fatty liver disease (NAFLD). The extent of the peroxidative events in liver was also different depending on the fat source suggesting that feeding margarine with higher TFA levels may represent a direct source of oxidative stress for the organism. The present study provides evidence for a direct effect of TFA on NAFLD. PMID:21943357

  11. Transcriptional expression levels and biochemical markers of oxidative stress in the earthworm Eisenia andrei after exposure to 2,4-dichlorophenoxyacetic acid (2,4-D).

    PubMed

    Hattab, Sabrine; Boughattas, Iteb; Boussetta, Hamadi; Viarengo, Aldo; Banni, Mohamed; Sforzini, Susanna

    2015-12-01

    This study investigated the stress response of earthworms (Eisenia andrei) to exposure to a commonly used herbicide, 2,4 dichloro-phenoxy-acetic acid (2,4-D). We evaluated both stress biomarkers and the transcriptional expression levels and activity of three enzymes involved in oxidative stress responses. Earthworms were exposed to three sublethal concentration of 2,4-D (3.5, 7, and 14 mg kg(-1)) for 7 and 14 days. Exposure to 7 and 14 mg kg(-1) 2,4-D significantly reduced both worm body weight and lysosomal membrane stability (LMS); the latter is a sensitive stress biomarker in coelomocytes. Exposure to 2,4-D caused a pronounced increase in the accumulation of malonedialdehyde (MDA), a marker of oxidative stress, and significantly increased the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD),and glutathione-S-transferase (GST). Compared to expression in controls, the expression levels of the sod, cat, and gst genes increased in worms exposed to all three 2,4-D doses for 7 days. However, after 14 days of exposure, only the expression of the gst gene remained higher than controls. These data provide new insights into the cytotoxicity of 2,4-D in the earthworm E. andrei and should be carefully considered in view of the biological effects of herbicides in soils organisms.

  12. Biological half-life and oxidative stress effects in mice with low-level, oral exposure to tritium.

    PubMed

    Kelsey-Wall, Angel; Seaman, John C; Jagoe, Charles H; Dallas, Cham E

    2006-02-01

    Tritium ((3)H) may enter the environment from human activities, particularly at production, processing, or waste storage sites such as the Department of Energy's Savannah River Site, a former nuclear production facility in South Carolina. Understanding the dynamics and potential adverse effects of tritium in exposed organisms is critical to evaluating risks of tritium releases at such sites. Previous studies estimated the biological half-life of tritium in mice to be approximately 1.13 d; however, these laboratory studies were not conducted under environmentally realistic conditions. In this study, designed to be more representative of environmental exposure, mice were allowed to drink water containing tritium (activity about 300 Bq/ml) for a period of 2 wk. The induction of oxidative stress from tritium exposure was evaluated by comparing the activities of antioxidant enzymes (catalase, glutathione peroxidase, and superoxide dismutase) in exposed and control mice. From this experiment, the biological half-life of tritium was determined to be 2.26 +/- 0.04 d, almost double previous estimates. While positive controls (x-ray irradiated mice) showed responses in antioxidant enzyme activity, there was no indication of oxidative stress induction in mice exposed to tritium at this concentration. PMID:16263691

  13. What Does Carotenoid-Dependent Coloration Tell? Plasma Carotenoid Level Signals Immunocompetence and Oxidative Stress State in Birds–A Meta-Analysis

    PubMed Central

    Simons, Mirre J. P.; Cohen, Alan A.; Verhulst, Simon

    2012-01-01

    Abstract Mechanisms maintaining honesty of sexual signals are far from resolved, limiting our understanding of sexual selection and potential important parts of physiology. Carotenoid pigmented visual signals are among the most extensively studied sexual displays, but evidence regarding hypotheses on how carotenoids ensure signal honesty is mixed. Using a phylogenetically controlled meta-analysis of 357 effect sizes across 88 different species of birds, we tested two prominent hypotheses in the field: that carotenoid-dependent coloration signals i) immunocompetence and/or ii) oxidative stress state. Separate meta-analyses were performed for the relationships of trait coloration and circulating carotenoid level with different measures of immunocompetence and oxidative stress state. For immunocompetence we find that carotenoid levels (r = 0.20) and trait color intensity (r = 0.17) are significantly positively related to PHA response. Additionally we find that carotenoids are significantly positively related to antioxidant capacity (r = 0.10), but not significantly related to oxidative damage (r = −0.02). Thus our analyses provide support for both hypotheses, in that at least for some aspects of immunity and oxidative stress state the predicted correlations were found. Furthermore, we tested for differences in effect size between experimental and observational studies; a larger effect in observational studies would indicate that co-variation might not be causal. However, we detected no significant difference, suggesting that the relationships we found are causal. The overall effect sizes we report are modest and we discuss potential factors contributing to this, including differences between species. We suggest complementary mechanisms maintaining honesty rather than the involvement of carotenoids in immune function and oxidative stress and suggest experiments on how to test these. PMID:22905205

  14. Critical role of the transient activation of p38 MAPK in the etiology of skeletal muscle insulin resistance induced by low-level in vitro oxidant stress

    PubMed Central

    Diamond-Stanic, Maggie K.; Marchionne, Elizabeth M.; Teachey, Mary K.; Durazo, David E.; Kim, John S.; Henriksen, Erik J.

    2011-01-01

    Increased cellular exposure to oxidants may contribute to the development of insulin resistance and type 2 diabetes. Skeletal muscle is the primary site of insulin-dependent glucose disposal in the body; however, the effects of oxidative stress on insulin signaling and glucose transport activity in mammalian skeletal muscle are not well understood. We therefore studied the effects of a low-level in vitro oxidant stress (30–40 μM H2O2) on basal and insulin-stimulated (5 mU/ml) glucose transport activity and insulin signaling at 2, 4, and 6 hr in isolated rat soleus muscle. H2O2 increased basal glucose transport activity at 2 and 4 hr, but not at 6 hr. This lowlevel oxidant stress significantly impaired insulin-stimulated glucose transport activity at all time points, and was associated with inhibition of insulin-stimulated phosphorylation of Akt Ser473 and GSK-3β Ser9. In the presence of insulin, H2O2 decreased total protein expression of IRS-1 at 6 hr and IRS-2 at 4 and 6 hr. Phosphorylation of p38 MAPK Thr180/Tyr182 was transiently increased by H2O2 in the presence and absence of insulin at 2 and 4 hr, but not at 6 hr. Selective inhibition of p38 MAPK with A304000 partially rescued the H2O2-induced reduction in insulin-stimulated glucose transport activity. These results indicate that direct in vitro exposure of isolated mammalian skeletal muscle to a low-level oxidant stress impairs distal insulin signaling and insulin-stimulated glucose transport activity, at least in part, due to a p38 MAPK-dependent mechanism. PMID:21241662

  15. Association of mid-pregnancy antioxidative vitamin and oxidative stress levels with infant growth during the first 3 years of life

    PubMed Central

    Hong, Juhee; Lee, Hye Ah; Park, Eun Ae; Kim, Young-Ju; Lee, Hwayoung; Park, Bo-Hyun; Ha, Eun-Hee; Kong, Kyoung Ae; Chang, Namsoo; Park, Hyesook

    2014-01-01

    Objective Numerous studies have revealed the impacts of maternal nutritional status on subsequent birth outcome, but much less is known about the long-term impacts on infant growth after birth. We investigated the association between maternal micronutrient levels/oxidative stress status in pregnancy and infant growth during the first 3 years of life. Design Prospective cohort study. Setting The Ewha Birth & Growth Cohort study was constructed for women who had been recruited between 24 and 28 weeks’ gestation and their offspring at Ewha Womans University Hospital. Subjects Maternal serum vitamin and urinary oxidative stress levels were measured, and infant weight, height, and head circumference were measured repeatedly at birth and at 6, 12, 18, 24, and 36 months of age. Results Maternal vitamins A and C were positively associated with infant head circumference and infant weight, respectively, during the first 3 years of life, even after controlling for potential confounding factors. But, maternal oxidative stress was not related to infant growth. Conclusions The effects of maternal vitamin levels on subsequent infant growth during the first 3 years of life necessitate interventions to supplement antioxidative vitamins during pregnancy. PMID:25278823

  16. Vascular oxidative stress, nitric oxide and atherosclerosis.

    PubMed

    Li, Huige; Horke, Sven; Förstermann, Ulrich

    2014-11-01

    In the vascular wall, reactive oxygen species (ROS) are produced by several enzyme systems including NADPH oxidase, xanthine oxidase, uncoupled endothelial nitric oxide synthase (eNOS) and the mitochondrial electron transport chain. On the other hand, the vasculature is protected by antioxidant enzyme systems, including superoxide dismutases, catalase, glutathione peroxidases and paraoxonases, which detoxify ROS. Cardiovascular risk factors such as hypercholesterolemia, hypertension, and diabetes mellitus enhance ROS generation, resulting in oxidative stress. This leads to oxidative modification of lipoproteins and phospholipids, mechanisms that contribute to atherogenesis. In addition, oxidation of tetrahydrobiopterin may cause eNOS uncoupling and thus potentiation of oxidative stress and reduction of eNOS-derived NO, which is a protective principle in the vasculature. This review summarizes the latest advances in the role of ROS-producing enzymes, antioxidative enzymes as well as NO synthases in the initiation and development of atherosclerosis.

  17. Ischemia-modified albümin and malondialdehyde levels in patients with overt and subclinical hyperthyroidism: effects of treatment on oxidative stress.

    PubMed

    Erem, Cihangir; Suleyman, Akile Karacin; Civan, Nadim; Mentese, Ahmet; Nuhoglu, İrfan; Uzun, Aysegul; Ersoz, Halil Onder; Deger, Orhan

    2015-01-01

    The main purpose of this study was to evaluate the levels of ischemia-modified albumin (IMA) and malondialdehyde (MDA) in patients with OHyper and SHyper, to assess the effects of antithyroid drug (ATD) therapy on the oxidative stress (OS) parameters. Forty-five untreated patients with overt hyperthyroidism (OHyper), 20 untreated patients with subclinical hyperthyroidism (SHyper) and 30 age-and sex-matched healthy controls were prospectively included in the study. Biochemical and hormonal parameters were evaluated in all patients before and after treatment. Compared with the control subjects, the levels of MDA, glucose and TG were significantly increased in patients with SHyper (p<0.05), whereas LDL-C levels were significantly decreased (p<0.01). Patients with OHyper showed significantly elevated MDA and glucose levels (p<0.001) and significantly decreased LDL-C and HDL-C levels compared with the controls (p<0.01). In patients with Graves' disease, serum TSH levels were inversely correlated with plasma MDA levels (r: -0.42, p<0.05). Plasma MDA levels significantly decreased and levels of TC, LDL-C and HDL-C significantly increased in the groups of OHyper and SHyper after treatment. Serum IMA levels did not significantly change at baseline and with the therapy in all subjects. In conclusion, increased MDA levels in both patient groups represent increased lipid peroxidation which might play an important role in the pathogenesis of the atherosclerosis in these patients. Increased oxidative stress in patients with SHyper and OHyper could be improved by ATD therapy. Also, MDA can be used as a reliable marker of OS and oxidative damage, while IMA is considered to be inappropriate. PMID:25843331

  18. Correlations between the Memory-Related Behavior and the Level of Oxidative Stress Biomarkers in the Mice Brain, Provoked by an Acute Administration of CB Receptor Ligands

    PubMed Central

    Kruk-Slomka, Marta; Boguszewska-Czubara, Anna; Slomka, Tomasz; Budzynska, Barbara; Biala, Grazyna

    2016-01-01

    The endocannabinoid system, through cannabinoid (CB) receptors, is involved in memory-related responses, as well as in processes that may affect cognition, like oxidative stress processes. The purpose of the experiments was to investigate the impact of CB1 and CB2 receptor ligands on the long-term memory stages in male Swiss mice, using the passive avoidance (PA) test, as well as the influence of these compounds on the level of oxidative stress biomarkers in the mice brain. A single injection of a selective CB1 receptor antagonist, AM 251, improved long-term memory acquisition and consolidation in the PA test in mice, while a mixed CB1/CB2 receptor agonist WIN 55,212-2 impaired both stages of cognition. Additionally, JWH 133, a selective CB2 receptor agonist, and AM 630, a competitive CB2 receptor antagonist, significantly improved memory. Additionally, an acute administration of the highest used doses of JWH 133, WIN 55,212-2, and AM 630, but not AM 251, increased total antioxidant capacity (TAC) in the brain. In turn, the processes of lipids peroxidation, expressed as the concentration of malondialdehyde (MDA), were more advanced in case of AM 251. Thus, some changes in the PA performance may be connected with the level of oxidative stress in the brain. PMID:26839719

  19. An overview on therapeutics attenuating amyloid β level in Alzheimer’s disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels

    PubMed Central

    Zhou, Xiaoling; Li, Yifei; Shi, Xiaozhe; Ma, Chun

    2016-01-01

    Alzheimer’s disease (AD) is the most common underlying cause of dementia, and novel drugs for its treatment are needed. Of the different theories explaining the development and progression of AD, “amyloid hypothesis” is the most supported by experimental data. This hypothesis states that the cleavage of amyloid precursor protein (APP) leads to the formation of amyloid beta (Aβ) peptides that congregate with formation and deposition of Aβ plaques in the frontal cortex and hippocampus. Risk factors including neurotransmitter modulation, chronic inflammation, metal-induced oxidative stress and elevated cholesterol levels are key contributors to the disease progress. Current therapeutic strategies abating AD progression are primarily based on anti-acetylcholinesterase (AChE) inhibitors as cognitive enhancers. The AChE inhibitor, donepezil, is proven to strengthen cognitive functions and appears effective in treating moderate to severe AD patients. N-Methyl-D-aspartate receptor antagonist, memantine, is also useful, and its combination with donepezil demonstrated a strong stabilizing effect in clinical studies on AD. Nonsteroidal anti-inflammatory drugs delayed the onset and progression of AD and attenuated cognitive dysfunction. Based upon epidemiological evidence and animal studies, antioxidants emerged as potential AD preventive agents; however, clinical trials revealed inconsistencies. Pharmacokinetic and pharmacodynamic profiling demonstrated pleiotropic functions of the hypolipidemic class of drugs, statins, potentially contributing towards the prevention of AD. In addition, targeting the APP processing pathways, stimulating neuroprotective signaling mechanisms, using the amyloid anti-aggregants and Aβ immunotherapy surfaced as well-tested strategies in reducing the AD-like pathology. Overall, this review covers mechanism of inducing the Aβ formation, key risk factors and major therapeutics prevalent in the AD treatment nowadays. It also delineates the

  20. Etiologies of sperm oxidative stress

    PubMed Central

    Sabeti, Parvin; Pourmasumi, Soheila; Rahiminia, Tahereh; Akyash, Fatemeh; Talebi, Ali Reza

    2016-01-01

    Sperm is particularly susceptible to reactive oxygen species (ROS) during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN) leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions. PMID:27351024

  1. Etiologies of sperm oxidative stress.

    PubMed

    Sabeti, Parvin; Pourmasumi, Soheila; Rahiminia, Tahereh; Akyash, Fatemeh; Talebi, Ali Reza

    2016-04-01

    Sperm is particularly susceptible to reactive oxygen species (ROS) during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN) leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions. PMID:27351024

  2. Increased chemerin and decreased omentin-1 levels in morbidly obese patients are correlated with insulin resistance, oxidative stress and chronic inflammation

    PubMed Central

    CĂTOI, ADRIANA FLORINELA; SUCIU, ŞOIMIŢA; PÂRVU, ALINA ELENA; COPĂESCU, CĂTĂLIN; GALEA, ROMEO FLORIN; BUZOIANU, ANCA DANA; VEREŞIU, IOAN ANDREI; CĂTOI, CORNEL; POP, IOANA DELIA

    2014-01-01

    Background and aim Morbid obesity represents a proinflammatory and pro-oxidative state associated with dysregulation of adipokines. We aimed to evaluate the circulating levels of chemerin and omentin-1 in morbidly obese (MO) patients and to investigate the relationship between these two adipokines and between each of them and anthropometric, metabolic, oxidative stress and chronic inflammatory parameters. Material and methods 32 MO patients and 20 controls were investigated in this study. Anthropometric, metabolism parameters, inflammatory markers, oxidative stress indicators as well as chemerin and omentin-1 were measured. Results Serum levels of chemerin were increased while omentin-1 levels were decreased in MO patients when compared with controls. Chemerin correlated positively with insulin, HOMA-IR, LDL cholesterol and negatively with total antioxidant response. Omentin-1 correlated negatively with tumor necrosis factor alpha and total cholesterol. In a multiple linear stepwise regression analysis we learnt that only HOMA-IR (β=0.70, p<0.001), total cholesterol (β=0.42, p<0.001) and triglycerides (β=0.31, p<0.05) remained significantly associated with chemerin changes. Using the same analysis we noticed that total cholesterol (β=−0.71, p<0.001), fasting glucose (β= −0.40, p<0.05) and body mass index (BMI) (β= −0.38, p<0.05) were considered to be significant predictors for omentin-1 changes. Conclusions Chemerin and omentin-1 synthesis was dysregulated in MO patients. Chemerin might play a role in insulin resistance and oxidative stress. Chemerin changes seemed to be predicted mainly by insulin resistance. Omentin-1 levels were inversely associated with chronic inflammation and dyslipidemia while the main modulating factors seemed to be dyslipidemia, hyperglycemia and BMI. PMID:26527991

  3. Oxidative stress in severe acute illness.

    PubMed

    Bar-Or, David; Bar-Or, Raphael; Rael, Leonard T; Brody, Edward N

    2015-01-01

    The overall redox potential of a cell is primarily determined by oxidizable/reducible chemical pairs, including glutathione-glutathione disulfide, reduced thioredoxin-oxidized thioredoxin, and NAD(+)-NADH (and NADP-NADPH). Current methods for evaluating oxidative stress rely on detecting levels of individual byproducts of oxidative damage or by determining the total levels or activity of individual antioxidant enzymes. Oxidation-reduction potential (ORP), on the other hand, is an integrated, comprehensive measure of the balance between total (known and unknown) pro-oxidant and antioxidant components in a biological system. Much emphasis has been placed on the role of oxidative stress in chronic diseases, such as Alzheimer's disease and atherosclerosis. The role of oxidative stress in acute diseases often seen in the emergency room and intensive care unit is considerable. New tools for the rapid, inexpensive measurement of both redox potential and total redox capacity should aid in introducing a new body of literature on the role of oxidative stress in acute illness and how to screen and monitor for potentially beneficial pharmacologic agents.

  4. The metabolomics of oxidative stress.

    PubMed

    Noctor, Graham; Lelarge-Trouverie, Caroline; Mhamdi, Amna

    2015-04-01

    Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways. PMID:25306398

  5. Association of the Ala16Val MnSOD gene polymorphism with plasma leptin levels and oxidative stress biomarkers in obese patients.

    PubMed

    Becer, Eda; Çırakoğlu, Ayşe

    2015-08-15

    Chronic oxidative stress is a major characteristic of obesity. Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme known to be present within mitochondria and is considered a main defense against oxidative stress. The aim of this study was to investigate the association between the MnSOD gene Ala16Val polymorphism in obesity in terms of body mass index (BMI), lipid parameters, plasma leptin levels, homeostasis model assessment of insulin resistance (HOMA-IR), and oxidative stress biomarkers. The study included 150 obese and 120 non-obese subjects. The MnSOD Ala16Val polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Plasma leptin levels, serum lipid, superoxide dismutase (SOD), malondialdehyde (MDA), and anthropometric parameters were measured. No association was found between the MnSOD gene Ala16Val polymorphism and BMI in the study or control group. Strikingly, in the study group, obese subjects with the VV genotype had significantly higher plasma leptin levels (p<0.001) than those with the AA and AV genotypes. Serum total cholesterol (p<0.01) and MDA (p<0.001) levels were significantly higher in subjects with the VV genotype for MnSOD in the obese and non-obese groups. In the obese group, subjects with the VV genotype had significantly lower SOD (p<0.001) activity than the AA and AV genotypes. Our results suggest that the MnSOD gene polymorphism was associated with leptin levels and superoxide dismutase activity in the obese group but had no direct association with obesity. Moreover, the Ala16Val polymorphism has a significant effect on lipid profiles and MDA levels in both obese and non-obese subjects.

  6. Methoxychlor-induced alteration in the levels of HSP70 and clusterin is accompanied with oxidative stress in adult rat testis.

    PubMed

    Vaithinathan, S; Saradha, B; Mathur, P P

    2009-01-01

    Methoxychlor, an organochlorine pesticide, has been reported to induce abnormalities in male reproductive tract. However, the insight into the mechanisms of gonadal toxicity induced by methoxychlor is not well known. We investigated whether treatment with methoxychlor would alter the levels of stress proteins, heat shock proteins (HSP), and clusterin (CLU), and oxidative stress-related parameters in the testis of adult male rats. Animals were exposed to a single dose of methoxychlor (50 mg/kg body weight) orally and were terminated at various time points (0, 3, 6, 12, 24, and 72 h) using anesthetic ether. The levels of HSP70, CLU, and the activities of superoxide dismutase (SOD), catalase, and lipid peroxidation levels were evaluated in a 10% testis homogenate. A sequential reduction in the activities of catalase and SOD with concomitant increase in the levels of thiobarbituric acid reactive substance (TBARS) was observed. These changes elicited by methoxychlor were very significant between 6-12 h of posttreatment. Immunoblot analysis of HSP revealed the expression of HSP72, an inducible form of HSP, at certain time points (3-24 h) following exposure to methoxychlor. Similarly, the levels of secretory CLU (sCLU) were also found to be elevated between 3-24 h of treatment. The present data demonstrate methoxychlor-elicited increase in the levels of inducible HSP72 and sCLU, which could be a part of protective mechanism mounted to reduce cellular oxidative damage.

  7. The Effects of Zinc Sulfate on the Levels of Some Elements and Oxidative Stress Occurring in Lenses of Rats Exposed to Total Cranium Radiotherapy

    PubMed Central

    Kandaz, Mustafa; Ertekin, Mustafa Vecdi; Erdemci, Burak; Kızıltunç, Ahmet; Koçer, İbrahim; Özmen, Hilal Kızıltunç; Aktan, Meryem Işık; Beşe, Ayşe Vildan

    2009-01-01

    Objective There is currently substantial clinical interest in zinc (Zn) as an antioxidant and a protective agent against radiation-related normal tissue injury. To further assess the potential antioxidative effects, the effects of Zn were studied in rat lenses, a model of radiation-induced oxidative stress. Materials and Methods Sprague-Dawley rats were divided into three equal groups. Group 1 received neither Zn nor irradiation (control group). Group 2 (RT group) and 3 (RT+Zn group) were exposed to total cranium irradiation of 5 Gy in a single dose by using a cobalt-60 teletherapy unit. In addition to irradiation, group 3 was administered 10 mg/kg/day Zn. At the end of 10 days, the rats were killed. Their eyes were enucleated to measure the activities of antioxidant enzymes and the levels of iron, calcium, sodium and potassium. Results Irradiation significantly increased malondialdehyde levels as an end product of lipid peroxidation, glutathione peroxidase activity, and iron and calcium concentrations. Irradiation decreased super-oxide dismutase activities and zinc concentrations in the rat lens, indicating an increased oxidative stress generated by the decomposition of water and/or Fenton reaction. Malondialdehyde levels and iron and calcium concentrations were significantly decreased, and superoxide dismutase and glutathione peroxidase activities and zinc concentrations were increased, in the rat lenses of the RT+Zn group. No differences were detected in any final measurement of sodium and potassium in the direct comparison among all groups. Conclusion Zinc, acting as an antioxidant agent, may protect the lens from radiation-induced injury by improving oxidative stress generated by the decomposition of water and/or Fenton reaction. PMID:25610080

  8. Effect of Vitamin C Supplementation on Blood Lead Level, Oxidative Stress and Antioxidant Status of Battery Manufacturing Workers of Western Maharashtra, India

    PubMed Central

    Ghanwat, Ganesh; Patil, Jyotsna; Kshirsagar, Mandakini; Sontakke, Ajit; Ayachit, R.K.

    2016-01-01

    Introduction The high blood lead level induces oxidative stress and alters the antioxidant status of battery manufacturing workers. Supplementation of vitamin C is beneficial to reduce the oxidative stress and to improve the antioxidant status of these workers. Aim The main aim of this study was to observe the changes in blood lead levels, oxidative stress i.e. serum lipid peroxide and antioxidant status parameters such as erythrocyte superoxide dismutase and catalase and serum nitrite after the vitamin C supplementation in battery manufacturing workers. Materials and Methods This study included 36 battery manufacturing workers from Western Maharashtra, India, having age between 20-60 years. All study group subjects were provided vitamin C tablets (500 mg/day for one month) and a blood sample of 10 ml each was drawn by puncturing the anterior cubital vein before and after vitamin C supplementation. The biochemical parameters were estimated by using the standard methods. Results Blood lead levels were not significantly altered, however, serum lipid peroxide (p<0.001, -15.56%) and serum nitrite (p<0.001, -21.37%) levels showed significant decrease and antioxidant status parameters such as erythrocyte superoxide dismutase (p<0.001, 38.02%) and catalase (p<0.001, 32.36%) revealed significant increase in battery manufacturing workers after the supplementation of vitamin C. Conclusion One month vitamin C supplementation in battery manufacturing workers is not beneficial to decrease the blood lead levels. However, it is helpful to reduce the lipid peroxidation and nitrite formation and enhances the erythrocytes superoxide dismutase and catalase activity. PMID:27190789

  9. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    PubMed

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    G) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01) Intriguingly, among those with low chronic stress exposure, moderate (compared to low) levels of perceived stress were associated with reduced levels of oxidative damage. Hence, this study supports the emerging model that chronic stress exposure promotes oxidative damage through frequent and sustained activation of the hypothalamic-pituitary-adrenal axis. It also supports the less studied model of 'eustress' - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage.

  10. Good Stress, Bad Stress and Oxidative Stress: Insights from Anticipatory Cortisol Reactivity

    PubMed Central

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M.; Dhabhar, Firdaus S.; Su, Yali; Epel, Elissa

    2014-01-01

    8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01.) Intriguingly, among those with low chronic stress exposure, moderate (compared to low) levels of perceived stress were associated with reduced levels of oxidative damage. Hence, this study supports the emerging model that chronic stress exposure promotes oxidative damage through frequent and sustained activation of the Hypothalamic-Pituitary-Adrenal axis. It also supports the less studied model of ‘eustress’ - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage. PMID:23490070

  11. Effects of X-radiation on lung cancer cells: the interplay between oxidative stress and P53 levels.

    PubMed

    Mendes, Fernando; Sales, Tiago; Domingues, Cátia; Schugk, Susann; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Teixo, Ricardo; Silva, Rita; Casalta-Lopes, João; Rocha, Clara; Laranjo, Mafalda; Simões, Paulo César; Ribeiro, Ana Bela Sarmento; Botelho, Maria Filomena; Rosa, Manuel Santos

    2015-12-01

    Lung cancer (LC) ranks as the most prevalent and deadliest cause of cancer death worldwide. Treatment options include surgery, chemotherapy and/or radiotherapy, depending on LC staging, without specific highlight. The aim was to evaluate the effects of X-radiation in three LC cell lines. H69, A549 and H1299 cell lines were cultured and irradiated with 0.5-60 Gy of X-radiation. Cell survival was evaluated by clonogenic assay. Cell death and the role of reactive oxygen species, mitochondrial membrane potential, BAX, BCL-2 and cell cycle were analyzed by flow cytometry. Total and phosphorylated P53 were assessed by western blotting. Ionizing radiation decreases cell proliferation and viability in a dose-, time- and cell line-dependent manner, inducing cell death preferentially by apoptosis with cell cycle arrest. These results may be related to differences in P53 expression and oxidative stress response. The results obtained indicate that sensibility and/or resistance to radiation may be dependent on molecular LC characteristics which could influence response to radiotherapy and treatment success. PMID:26582337

  12. Proteomics, oxidative stress and male infertility.

    PubMed

    Agarwal, Ashok; Durairajanayagam, Damayanthi; Halabi, Jacques; Peng, Jason; Vazquez-Levin, Monica

    2014-07-01

    Oxidative stress has been established as one of the main causes of male infertility and has been implicated in many diseases associated with infertile men. It results from high concentrations of free radicals and suppressed antioxidant potential, which may alter protein expression in seminal plasma and/or spermatozoa. In recent years, proteomic analyses have been performed to characterize the protein profiles of seminal ejaculate from men with different clinical conditions, such as high oxidative stress. The aim of the present review is to summarize current findings on proteomic studies performed in men with high oxidative stress compared with those with physiological concentrations of free radicals, to better understand the aetiology of oxidative stress-induced male infertility. Each of these studies has suggested candidate biomarkers of oxidative stress, among them are DJ-1, PIP, lactotransferrin and peroxiredoxin. Changes in protein concentrations in seminal plasma samples with oxidative stress conditions were related to stress responses and to regulatory pathways, while alterations in sperm proteins were mostly associated to metabolic responses (carbohydrate metabolism) and stress responses. Future studies should include assessment of post-translational modifications in the spermatozoa as well as in seminal plasma proteomes of men diagnosed with idiopathic infertility. Oxidative stress, which occurs due to a state of imbalance between free radicals and antioxidants, has been implicated in most cases of male infertility. Cells that are in a state of oxidative stress are more likely to have altered protein expression. The aim of this review is to better understand the causes of oxidative stress-induced male infertility. To achieve this, we assessed proteomic studies performed on the seminal plasma and spermatozoa of men with high levels of oxidative stress due to various clinical conditions and compared them with men who had physiological concentrations of free

  13. Role of mitochondria in toxic oxidative stress.

    PubMed

    Fariss, Marc W; Chan, Catherine B; Patel, Manisha; Van Houten, Bennett; Orrenius, Sten

    2005-04-01

    Oxidative stress and mitochondrial oxidative damage have been implicated in the etiology of numerous common diseases. The critical mitochondrial events responsible for oxidative stress-mediated cell death (toxic oxidative stress), however, have yet to be defined. Several oxidative events implicated in toxic oxidative stress include alterations in mitochondrial lipids (e.g., cardiolipin), mitochondrial DNA, and mitochondrial proteins (eg. aconitase and uncoupling protein 2). Furthermore, recent findings indicate the enrichment of mitochondrial membranes with vitamin E protects cells against the toxic effects of oxidative stress. This review briefly summarizes the role of these mitochondrial events in toxic oxidative stress, including: 1) the protective role of mitochondrial vitamin E in toxic oxidative stress, 2) the role of mitochondrial DNA in toxic oxidative stress, 3) the interaction between cardiolipin and cytochrome c in mitochondrial regulation of apoptosis, 4) the role of mitochondrial aconitase in oxidative neurodegeneration, and 5) the role of mitochondrial uncoupling protein 2 in the pathogenesis of type 2 diabetes. PMID:15821158

  14. Moderate swimming exercise and caffeine supplementation reduce the levels of inflammatory cytokines without causing oxidative stress in tissues of middle-aged rats.

    PubMed

    Cechella, José L; Leite, Marlon R; Dobrachinski, Fernando; da Rocha, Juliana T; Carvalho, Nelson R; Duarte, Marta M M F; Soares, Félix A A; Bresciani, Guilherme; Royes, Luiz F F; Zeni, Gilson

    2014-05-01

    The levels of circulatory inflammatory markers, including interleukin (IL) IL-1β, IL-6, tumor necrosis factor-α (TNF-α) and interferon (INF-γ), are known to increase associated to aging. Caffeine has been reported to produce many beneficial effects for health. Exercise is considered to be a safe medicine to attenuate inflammation and cellular senescence. The purpose of the present study was to investigate the effects of a moderate-intensity swimming exercise (3 % of body weight, 20 min per day, 4 weeks) and sub-chronic supplementation with caffeine (30 mg/kg, 4 weeks) on the serum cytokine levels in middle-aged (18 months) Wistar rats. The effects of swimming exercise and caffeine on oxidative stress in muscle and liver of middle-aged rats were also investigated. The two-way ANOVA of pro-inflammatory cytokine levels demonstrated a significant exercise x caffeine interaction for IL-1β (F (1, 16) = 9.5772; p = 0.0069), IL-6 (F (1, 16) = 8.0463; p = 0.0119) and INF-γ (F (1, 16) = 15.078; p = 0.0013). The two-way ANOVA of TNF-α levels revealed a significant exercise × caffeine interaction (F (1, 16) = 9.6881; p = 0.00670). Swimming exercise and caffeine supplementation increased the ratio of reduced glutathione/oxidized glutathione in the rat liver and gastrocnemius muscle. Hepatic and renal markers of damage were not modified. In conclusion, a moderate-intensity swimming exercise protocol and caffeine supplementation induced positive adaptations in modulating cytokine levels without causing oxidative stress in muscle and liver of middle-aged rats. PMID:24481487

  15. Oxidative stress and seasonal coral bleaching.

    PubMed

    Downs, C A; Fauth, John E; Halas, John C; Dustan, Phillip; Bemiss, John; Woodley, Cheryl M

    2002-08-15

    During the past two decades, coral reefs have experienced extensive degradation worldwide. One etiology for this global degradation is a syndrome known as coral bleaching. Mass coral bleaching events are correlated with increased sea-surface temperatures, however, the cellular mechanism underlying this phenomenon is uncertain. To determine if oxidative stress plays a mechanistic role in the process of sea-surface temperature-related coral bleaching, we examined corals along a depth transect in the Florida Keys over a single season that was characterized by unusually high sea-surface temperatures. We observed strong positive correlations between accumulation of oxidative damage products and bleaching in corals over a year of sampling. High levels of antioxidant enzymes and small heat-shock proteins were negatively correlated with levels of oxidative damage products. Corals that experienced oxidative stress had higher chaperonin levels and protein turnover activity. Our results indicate that coral bleaching is tightly coupled to the antioxidant and cellular stress capacity of the symbiotic coral, supporting the mechanistic model that coral bleaching (zooxanthellae loss) may be a final strategy to defend corals from oxidative stress.

  16. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    PubMed Central

    Nakchat, Oranuch; Nalinratana, Nonthaneth; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-01-01

    Objective To investigate the role and mechanism of tamarind seed coat extract (TSCE) on normal human skin fibroblast CCD-1064Sk cells under normal and oxidative stress conditions induced by hydrogen peroxide (H2O2). Methods Tamarind seed coats were extracted with boiling water and then partitioned with ethyl acetate before the cell analysis. Effect of TSCE on intracellular reactive oxygen species (ROS), glutathione (GSH) level, antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity including antioxidant protein expression was investigated. Results TSCE significantly attenuated intracellular ROS in the absence and presence of H2O2 by increasing GSH level. In the absence of H2O2, TSCE significantly enhanced SOD and catalase activity but did not affected on GPx. Meanwhile, TSCE significantly increased the protein expression of SOD and GPx in H2O2-treated cells. Conclusions TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat. PMID:25182723

  17. [Oxidative stress in Crohn's disease].

    PubMed

    Moret, Inés; Cerrillo, Elena; Navarro-Puche, Ana; Iborra, Marisa; Rausell, Francisco; Tortosa, Luis; Beltrán, Belén

    2014-01-01

    Crohn's disease (CD) is characterized by transmural inflammation that is most frequently located in the region of the terminal ileum. Although the physiopathological mechanisms of the disease are not yet well defined, the unregulated immune response is associated with high production of reactive oxygen species (ROS). These elements are associated with complex systems known as antioxidant defenses, whose function is ROS regulation, thereby preventing the harmful effects of these elements. However, the presence of an imbalance between ROS production and ROS elimination by antioxidants has been widely described and leads to oxidative stress. In this article, we describe the most significant findings on oxidative stress in the intestinal mucosa and peripheral blood.

  18. Oxidative Stress in Atopic Dermatitis

    PubMed Central

    Ji, Hongxiu; Li, Xiao-Kang

    2016-01-01

    Atopic dermatitis (AD) is a chronic pruritic skin disorder affecting many people especially young children. It is a disease caused by the combination of genetic predisposition, immune dysregulation, and skin barrier defect. In recent years, emerging evidence suggests oxidative stress may play an important role in many skin diseases and skin aging, possibly including AD. In this review, we give an update on scientific progress linking oxidative stress to AD and discuss future treatment strategies for better disease control and improved quality of life for AD patients. PMID:27006746

  19. Lipid peroxidation and oxidative stress responses in juvenile salmon exposed to waterborne levels of the organophosphate compounds tris(2-butoxyethyl)- and tris(2-chloroethyl) phosphates.

    PubMed

    Arukwe, Augustine; Carteny, Camilla Catarci; Eggen, Trine

    2016-01-01

    There is limited knowledge on the toxicological, physiological, and molecular effects attributed to organophosphate (OP) compounds currently used as flame retardants or additives in consumer products. This study investigated the effects on oxidative stress and lipid peroxidation in juvenile Atlantic salmon liver and brain samples after exposure to two OP compounds, tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroethyl) phosphate (TCEP). In this study, groups of juvenile Atlantic salmon were exposed using a semistatic experimental protocol over a 7-d period to 3 different concentrations (0.04, 0.2, or 1 mg/L) of TBOEP and TCEP. When toxicological factors such as bioaccumulation and bioconcentration, and chemical structural characteristics and behavior, including absorption to solid materials, are considered, these concentrations represent environmentally relevant concentrations. The concentrations of the contaminants were derived from levels of their environmental occurrence. The expression of genes related to oxidative stress-glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST)-and to lipid peroxidation-peroxisome proliferator-activated receptors (PPAR)-were determined using quantitative (real-time) polymerase chain reaction (PCR). The presence of PPAR proteins was also investigated using immunochemical methods. Levels of thiobarbituric acid-reactive substances (TBARS) in liver were used as a measure of lipid peroxidation. Overall, our data show an increase in lipid peroxidation, and this was associated with an augmented expression of genes from the glutathione family of responses. Interestingly, PPAR expression in liver after exposure to TBOEP and TCEP was consistently decreased compared to controls, while expression in brain did not show a similar trend. The results suggest that OP contaminants may induce oxidative stress and thus production of reactive oxygen substances (ROS), and modulate lipid peroxidation processes

  20. Polycyclic aromatic hydrocarbon levels and measures of oxidative stress in the Mediterranean endemic bivalve Pinna nobilis exposed to the Don Pedro oil spill.

    PubMed

    Sureda, Antoni; Tejada, Silvia; Box, Antonio; Deudero, Salud

    2013-06-15

    The fan mussel (Pinna nobilis Linné, 1758) is the largest endemic Mediterranean bivalve subject to strict protection as an endangered species. Antioxidant biomarkers in P. nobilis gills for biomonitoring marine pollution were researched after the Don Pedro oil spill. Two sampling locations on the east and southeast of the island of Ibiza (Western Mediterranean, Spain) were selected, one extensively affected by the oil spill and the other unaffected (control area). Mussels were sampled 1 month, 6 months and 1 year after the accident. Polycyclic aromatic hydrocarbon levels and antioxidant enzymes significantly increased as result of the oil spill in all sampling periods (p<0.05). Oxidative damage in lipids significantly increased in the mussels collected in the affected area (p<0.05), though such damage was back to normal after 1 year. In conclusion, the Don Pedro oil spill induced a situation of oxidative stress on P. nobilis that continued a year later. PMID:23623655

  1. Polycyclic aromatic hydrocarbon levels and measures of oxidative stress in the Mediterranean endemic bivalve Pinna nobilis exposed to the Don Pedro oil spill.

    PubMed

    Sureda, Antoni; Tejada, Silvia; Box, Antonio; Deudero, Salud

    2013-06-15

    The fan mussel (Pinna nobilis Linné, 1758) is the largest endemic Mediterranean bivalve subject to strict protection as an endangered species. Antioxidant biomarkers in P. nobilis gills for biomonitoring marine pollution were researched after the Don Pedro oil spill. Two sampling locations on the east and southeast of the island of Ibiza (Western Mediterranean, Spain) were selected, one extensively affected by the oil spill and the other unaffected (control area). Mussels were sampled 1 month, 6 months and 1 year after the accident. Polycyclic aromatic hydrocarbon levels and antioxidant enzymes significantly increased as result of the oil spill in all sampling periods (p<0.05). Oxidative damage in lipids significantly increased in the mussels collected in the affected area (p<0.05), though such damage was back to normal after 1 year. In conclusion, the Don Pedro oil spill induced a situation of oxidative stress on P. nobilis that continued a year later.

  2. Potential Modulation of Sirtuins by Oxidative Stress.

    PubMed

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1-7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  3. Potential Modulation of Sirtuins by Oxidative Stress

    PubMed Central

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  4. Oxidative Stress Resistance in Deinococcus radiodurans†

    PubMed Central

    Slade, Dea; Radman, Miroslav

    2011-01-01

    Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health. PMID:21372322

  5. Kidney transplantation recovers the reduction level of serum sulfatide in ESRD patients via processes correlated to oxidative stress and platelet count.

    PubMed

    Wang, Lixuan; Kamijo, Yuji; Matsumoto, Akihiro; Nakajima, Takero; Higuchi, Makoto; Kannagi, Reiji; Kyogashima, Mamoru; Aoyama, Toshifumi; Hara, Atsushi

    2011-05-01

    Sulfatide is a major component of glycosphingolipids in lipoproteins. Recently, we reported that a low serum level of sulfatide in hemodialysis patients might be related to the high incidence of cardiovascular diseases. However, the serum kinetics of sulfatide in kidney disease patients and the function of endogenous serum sulfatide are still unclear. To obtain novel knowledge concerning these issues, we investigated the serum kinetics of sulfatide in 5 adult kidney transplant recipients. We also analyzed the correlated factors influencing the serum sulfatide level, using multiple regression analysis. Kidney transplantation caused a dramatic increase of serum sulfatide without an alteration of its composition in all recipients in a time-dependent manner; however, the recovery speed was slower than that of the improvement of kidney function and the serum sulfatide reached a nearly normal level after 1 year. Multiple regression analysis showed that the significant correlated factor influencing the serum sulfatide level was log duration (time parameter) throughout the observation period, and the correlated factors detected in the stable phase were the decrease of serum concentration of malondialdehyde (an oxidative stress marker) as well as the elevation of platelet count. The current study results demonstrated the gradual but reliable recovery of the serum sulfatide level in kidney transplant recipients for the first time, suggesting a close correlation between serum sulfatide and kidney function. The recovery of serum sulfatide might derive from the attenuation of systemic oxidative stress. The normal level of serum sulfatide in kidney transplant recipients might affect platelet function, and contribute to the reduction of cardiovascular disease incidence.

  6. Nicotine enantiomers and oxidative stress.

    PubMed

    Yildiz, D; Ercal, N; Armstrong, D W

    1998-09-15

    Nicotine affects a variety of cellular processes ranging from induction of gene expression to secretion of hormones and modulation of enzymatic activities. The objective of this study was to characterize the toxicity of nicotine enantiomers as well as their ability to induce oxidative stress in an in vitro model using Chinese hamster ovary (CHO) cells. Colony formation assay has demonstrated that (-)-nicotine is the more toxic of the enantiomers. At 6 mM concentrations, (-)-nicotine was found to be approximately 28- and 19-fold more potent than (+)-, and (+/-)-nicotine (racemic), respectively. Results also indicated that the toxicity of (+/-)-nicotine is higher than that of (+)-nicotine. (-)-Nicotine at a 10 mM concentration substantially decreased glutathione (GSH) levels (46% decrease). In addition, a 3-fold increase in malondialdehyde (MDA) level was evident in cells after exposure to 10 mM (-)-nicotine. Increased lactate dehydrogenase (LDH) activities in the media demonstrated that cellular membrane integrity was disturbed in nicotine treated cells. In the presence of superoxide dismutase (SOD) and catalase (CAT), the LDH activities returned to control value in 24 h with all concentrations of (-)-, (+)-, and (+/-)-nicotine. The decreases in LDH activities in the presence of the radical scavenging enzymes SOD and CAT suggest that membrane damage may be due to free radical generation. PMID:9865482

  7. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  8. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  9. Anti-heat shock protein 27 titers and oxidative stress levels are elevated in patients with valvular heart disease.

    PubMed

    Rahsepar, Amir Ali; Mirzaee, Asadollah; Moodi, Fatemeh; Moohebati, Mohsen; Tavallaie, Shima; Eshraghi, Ali; Alavi, Maryam-Sadat; Zarrabi, Laya; Pourghadamyari, Hossein; Paydar, Roghayeh; Khojasteh, Roshanak; Mousavi, Somayeh; Kia, Nadia; Amini, Maral; Ghayour-Mobarhan, Majid; Ferns, Gordon A A

    2012-11-01

    We studied the immune responses to heat shock protein (Hsp)-27 and pro-oxidant-antioxidant balance (PAB) values in patients with valvular heart disease, but free of angiographically evident coronary artery disease (CAD). Patients who were candidates for valvuloplasty surgery and 30 healthy matched controls were recruited. The anti-Hsp-27 antibody titers were 0.35 ± 0.04 absorbency units (AU) in the valvuloplasty group, being significantly higher than for the controls (0.11 ± 0.02 AU; P < .05). The PAB values were significantly higher in cases (134.67 ± 13.69 Hamidi-Koliakos(HK) unit) when compared with controls (49.78 ± 6.75 HK unit; P < .05). In cases, the ejection fraction was inversely correlated with anti-Hsp-27 antibody (P < .05) but was not significantly related to PAB values (P > .05). Based on the echocardiographic findings, the patients had no evident heart failure, but the high levels of anti-Hsp-27 and PAB values in patients with valvular heart disease may indicate that these variables can be used as markers of heart failure. However, a longitudinal study is required to confirm this hypothesis.

  10. [Oxidative stress in Crohn's disease].

    PubMed

    Moret, Inés; Cerrillo, Elena; Navarro-Puche, Ana; Iborra, Marisa; Rausell, Francisco; Tortosa, Luis; Beltrán, Belén

    2014-01-01

    Crohn's disease (CD) is characterized by transmural inflammation that is most frequently located in the region of the terminal ileum. Although the physiopathological mechanisms of the disease are not yet well defined, the unregulated immune response is associated with high production of reactive oxygen species (ROS). These elements are associated with complex systems known as antioxidant defenses, whose function is ROS regulation, thereby preventing the harmful effects of these elements. However, the presence of an imbalance between ROS production and ROS elimination by antioxidants has been widely described and leads to oxidative stress. In this article, we describe the most significant findings on oxidative stress in the intestinal mucosa and peripheral blood. PMID:23643278

  11. Oxidative stress in prostate cancer.

    PubMed

    Khandrika, Lakshmipathi; Kumar, Binod; Koul, Sweaty; Maroni, Paul; Koul, Hari K

    2009-09-18

    As prostate cancer and aberrant changes in reactive oxygen species (ROS) become more common with aging, ROS signaling may play an important role in the development and progression of this malignancy. Increased ROS, otherwise known as oxidative stress, is a result of either increased ROS generation or a loss of antioxidant defense mechanisms. Oxidative stress is associated with several pathological conditions including inflammation and infection. ROS are products of normal cellular metabolism and play vital roles in stimulation of signaling pathways in response to changing intra- and extracellular environmental conditions. Chronic increases in ROS over time are known to induce somatic mutations and neoplastic transformation. In this review we summarize the causes for increased ROS generation and its potential role in etiology and progression of prostate cancer. PMID:19185987

  12. Oxidative stress in industrial fungi.

    PubMed

    Li, Qiang; Harvey, Linda M; McNeil, Brian

    2009-01-01

    Fungi are amongst the most industrially important microorganisms in current use within the biotechnology industry. Most such fungal cultures are highly aerobic in nature, a character that has been frequently referred to in both reactor design and fungal physiology. The most fundamentally significant outcome of the highly aerobic growth environment in fermenter vessels is the need for the fungal culture to effectively combat in the intracellular environment the negative consequences of high oxygen transfer rates. The use of oxygen as the respiratory substrate is frequently reported to lead to the development of oxidative stress, mainly due to oxygen-derived free radicals, which are collectively termed as reactive oxygen species (ROS). Recently, there has been extensive research on the occurrence, extent, and consequences of oxidative stress in microorganisms, and the underlying mechanisms through which cells prevent and repair the damage caused by ROS. In the present study, we critically review the current understanding of oxidative stress events in industrially relevant fungi. The review first describes the current state of knowledge of ROS concisely, and then the various antioxidant strategies employed by fungal cells to counteract the deleterious effects, together with their implications in fungal bioprocessing are also discussed. Finally, some recommendations for further research are made. PMID:19514862

  13. An Evaluation of Acylated Ghrelin and Obestatin Levels in Childhood Obesity and Their Association with Insulin Resistance, Metabolic Syndrome, and Oxidative Stress

    PubMed Central

    Razzaghy-Azar, Maryam; Nourbakhsh, Mitra; Pourmoteabed, Abdolreza; Nourbakhsh, Mona; Ilbeigi, Davod; Khosravi, Mohsen

    2016-01-01

    Background: Ghrelin is a 28-amino acid peptide with an orexigenic property, which is predominantly produced by the stomach. Acylated ghrelin is the active form of this hormone. Obestatin is a 23-amino acid peptide which is produced by post-translational modification of a protein precursor that also produces ghrelin. Obestatin has the opposite effect of ghrelin on food intake. The aim of this study was to evaluate acylated ghrelin and obestatin levels and their ratio in obese and normal-weight children and adolescents, and their association with metabolic syndrome (MetS) parameters. Methods: Serum acyl-ghrelin, obestatin, leptin, insulin, fasting plasma glucose (FPG), lipid profile, and malondialdehyde (MDA) were evaluated in 73 children and adolescents (42 obese and 31 control). Insulin resistance was calculated by a homeostasis model assessment of insulin resistance (HOMA-IR). MetS was determined according to IDF criteria. Results: Acyl-ghrelin levels were significantly lower in obese subjects compared to the control group and lower in obese children with MetS compared to obese subjects without MetS. Obestatin was significantly higher in obese subjects compared to that of the control, but it did not differ significantly among those with or without MetS. Acyl-ghrelin to obestatin ratio was significantly lower in obese subjects compared to that in normal subjects. Acyl-ghrelin showed significant negative and obestatin showed significant positive correlations with body mass index (BMI), BMI Z-score, leptin, insulin, and HOMA-IR. Acyl-ghrelin had a significant negative correlation with MDA as an index of oxidative stress. Conclusion: Ghrelin is decreased and obestatin is elevated in obesity. Both of these hormones are associated with insulin resistance, and ghrelin is associated with oxidative stress. The balance between ghrelin and obestatin seems to be disturbed in obesity. PMID:27348010

  14. Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans.

    PubMed

    Thomas, Edwina; Roman, Elvira; Claypool, Steven; Manzoor, Nikhat; Pla, Jesús; Panwar, Sneh Lata

    2013-11-01

    Mitochondrial dysfunction in Candida albicans is known to be associated with drug susceptibility, cell wall integrity, phospholipid homeostasis, and virulence. In this study, we deleted CaFZO1, a key component required during biogenesis of functional mitochondria. Cells with FZO1 deleted displayed fragmented mitochondria, mitochondrial genome loss, and reduced mitochondrial membrane potential and were rendered sensitive to azoles and peroxide. In order to understand the cellular response to dysfunctional mitochondria, genome-wide expression profiling of fzo1Δ/Δ cells was performed. Our results show that the increased susceptibility to azoles was likely due to reduced efflux activity of CDR efflux pumps, caused by the missorting of Cdr1p into the vacuole. In addition, fzo1Δ/Δ cells showed upregulation of genes involved in iron assimilation, in iron-sufficient conditions, characteristic of iron-starved cells. One of the consequent effects was downregulation of genes of the ergosterol biosynthesis pathway with a commensurate decrease in cellular ergosterol levels. We therefore connect deregulated iron metabolism to ergosterol biosynthesis pathway in response to dysfunctional mitochondria. Impaired activation of the Hog1 pathway in the mutant was the basis for increased susceptibility to peroxide and increase in reactive oxygen species, indicating the importance of functional mitochondria in controlling Hog1-mediated oxidative stress response. Mitochondrial phospholipid levels were also altered as indicated by an increase in phosphatidylserine and phosphatidylethanolamine and decrease in phosphatidylcholine in fzo1Δ/Δ cells. Collectively, these findings reinforce the connection between functional mitochondria and azole tolerance, oxidant-mediated stress, and iron homeostasis in C. albicans.

  15. Oxidative Stress in Patients With Acne Vulgaris

    PubMed Central

    Arican, Ozer; Belge Kurutas, Ergul; Sasmaz, Sezai

    2005-01-01

    Acne vulgaris is one of the common dermatological diseases and its pathogenesis is multifactorial. In this study, we aim to determine the effects of oxidative stress in acne vulgaris. Forty-three consecutive acne patients and 46 controls were enrolled. The parameters of oxidative stress such as catalase (CAT), glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), and malondialdehyde (MDA) in the venous blood of cases were measured spectrophotometrically. The values compared with control group, the relation between the severity and distribution of acne, and the correlation of each enzyme level were researched. CAT and G6PD levels in patients were found to be statistically decreased, and SOD and MDA levels were found to be statistically increased (P < .001). However, any statistical difference and correlation could not be found between the severity and distribution of lesions and the mean levels of enzymes. In addition, we found that each enzyme is correlated with one another. Our findings show that oxidative stress exists in the acne patients. It will be useful to apply at least one antioxidant featured drug along with the combined acne treatment. PMID:16489259

  16. Oxidative Stress and Periodontal Disease in Obesity.

    PubMed

    Dursun, Erhan; Akaln, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  17. Oxidative Stress and Periodontal Disease in Obesity

    PubMed Central

    Dursun, Erhan; Akalın, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-01-01

    Abstract Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women. Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated. Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status

  18. Long-term perturbation of muscle iron homeostasis following hindlimb suspension in old rats is associated with high levels of oxidative stress and impaired recovery from atrophy

    PubMed Central

    Xu, Jinze; Hwang, Judy C.Y.; Lees, Hazel A.; Wohlgemuth, Stephanie E.; Knutson, Mitchell D.; Judge, Andrew R.; Dupont-Versteegden, Esther E.; Marzetti, Emanuele; Leeuwenburgh, Christiaan

    2015-01-01

    In the present study, we investigated the effects of 7 and 14 days of re-loading following 14-day muscle unweighting (hindlimb suspension, HS) on iron transport, non-heme iron levels and oxidative damage in the gastrocnemius muscle of young (6 months) and old (32 months) male Fischer 344×Brown Norway rats. Our results demonstrated that old rats had lower muscle mass, higher levels of total non-heme iron and oxidative damage in skeletal muscle in comparison with young rats. Non-heme iron concentrations and total non-heme iron amounts were 3.4- and 2.3-fold higher in aged rats as compared with their young counterparts, respectively. Seven and 14 days of re-loading was associated with higher muscle weights in young animals as compared with age-matched HS rats, but there was no difference in muscle weights among aged HS, 7 and 14 days of re-loading rats, indicating that aged rats may have a lower adaptability to muscle disuse and a lower capacity to recover from muscle atrophy. Protein levels of cellular iron transporters, such as divalent metal transport-1 (DMT1), transferrin receptor-1 (TfR1), Zip14, and ferroportin (FPN), and their mRNA abundance were determined. TfR1 protein and mRNA levels were significantly lower in aged muscle. Seven and 14 days of re-loading were associated with higher TfR1 mRNA and protein levels in young animals in comparison with their age-matched HS counterparts, but there was no difference between cohorts in aged animals, suggesting adaptive responses in the old to cope with iron deregulation. The extremely low expression of FPN in skeletal muscle might lead to inefficient iron export in the presence of iron overload and play a critical role in age-related iron accumulation in skeletal muscle. Moreover, oxidative stress was much greater in the muscles of the older animals measured as 4-hydroxy-2-nonhenal (HNE)-modified proteins and 8-oxo-7,8-dihydroguanosine levels. These markers remained fairly constant with either HS or re-loading in

  19. [Does nitric oxide stress exist?].

    PubMed

    Torreilles, J; Guérin, M C

    1995-01-01

    Ten years ago, the term "oxidative stress" (sigma -O2) was created to define oxidative damage inflicted to the organism. This definition brings together processes involving reactive oxygen species production and action such as free radical production during univalent reduction of oxygen within mitochondria, activation of NADPH-dependent oxidase system on the membrane surface of neutrophils, flavoprotein-catalyzed redox cycling of xenobiotics and exposure to chemical and physical agents in the environment. Since the discovery of the nitric oxide biosynthetic pathway, the deleterious effects of uncontrolled nitric oxide generation are generally classified as oxidative stress. Indeed, products of the reaction of NO and superoxide lead to oxidants such as peroxinitrite, nitrogen dioxide and hydroxyl radical, which are involved in mechanisms of cell-mediated immune reactions and defence of the intracellular environment against microbiol invasion. However NO can also regulate many biological reactions and signal transduction pathways that lead to a variety of physiological responses such as blood pressure, neurotransmission, platelet aggregation, endothelin generation or smooth muscle cell proliferation. Then the uncontrolled NO production can lead to a variety of physiological and pathophysiological responses similar to a Nitric Oxide Stress: activation of guanylate cyclase and production of cGMP: overstimulation of the inducible L-arginine to L-citrulline and NO pathway by bactericidal endotoxins and cytokines has been shown to promote undesired increases in vasodilatation, which may account for hypotension in septic shock and cytokine therapy. stimulation of auto-ADP-ribosylation and modification of SH-groups of glyceraldehyde-3-phosphate dehydrogenase in a cGMP-independent mechanism: by this way, NO in excess can strongly inhibits this important glycolytic enzyme and reduce the cellular energy production. inhibition of ribonucleotide reductase: extensive inhibition

  20. Oxidative stress in neurodegenerative diseases.

    PubMed

    Chen, Xueping; Guo, Chunyan; Kong, Jiming

    2012-02-15

    Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2 (-)) and hydroxyl radical (OH(-)), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention.

  1. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise.

    PubMed

    Guaraldo, Simone A; Serra, Andrey Jorge; Amadio, Eliane Martins; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2016-07-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p <0.01) and the LLLT and exercise group (p <0.05). The results indicate that the activities of CAT, SOD, and GPx were higher and statistically significant (p <0.05) in the LLLT/exercise group than those in the LLLT and exercise groups. Young animals presented lesser and statistically significant activities of antioxidant enzymes compared to the aged group. The LLLT/exercise group and the LLLT and exercise group could also mitigate the concentration of TBARS (p > 0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT. PMID:26861983

  2. Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2014-05-01

    Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor which has anticancer effects. We evaluated the growth inhibitory effects of SAHA on HeLa cervical cancer cells in relation to reactive oxygen species (ROS) levels. SAHA inhibited the growth of HeLa cells with an IC(50) of approximately 10 µM at 24 h, and induced apoptosis which was accompanied by the cleavage of PARP, caspase-3 activation and loss of mitochondrial membrane potential (MMP; ∆ψ(m)). All the tested caspase inhibitors prevented HeLa cell death induced by SAHA whereas TNF-α intensified apoptotic cell death in SAHA-treated HeLa cells. With respect to ROS and glutathione (GSH) levels, SAHA increased ROS levels, especially mitochondrial O(2)•- in HeLa cells and also induced GSH depletion. Caspase inhibitors reduced the levels of ROS and GSH depletion in SAHA-treated HeLa cells whereas TNF-α enhanced the levels in these cells. The well-known antioxidant N-acetyl cysteine (NAC) attenuated cell death and an increase in ROS levels was caused by SAHA. Moreover, SAHA decreased the levels of thioredoxin 1 (Trx1) in HeLa cells. While the downregulation of Trx1 enhanced cell death and ROS levels in SAHA-treated HeLa cells, the overexpression of Trx1 attenuated the levels in these cells. In conclusion, SAHA inhibited the growth of HeLa cell via caspase-dependent apoptosis, which was influenced by the mitochondrial O(2)•- and Trx1 levels.

  3. The influence of low-level laser therapy on parameters of oxidative stress and DNA damage on muscle and plasma in rats with heart failure.

    PubMed

    Biasibetti, Micheli; Rojas, Denise B; Hentschke, Vítor S; Moura, Dinara Jaqueline; Karsten, Marlus; Wannmacher, Clóvis M D; Saffi, Jenifer; Dal Lago, Pedro

    2014-11-01

    In heart failure (HF), there is an imbalance between the production of reactive oxygen species and the synthesis of antioxidant enzymes, causing damage to the cardiovascular function and increased susceptibility to DNA damage. The aim of this study was to evaluate the influence of low-level laser therapy (LLLT) on parameters of oxidative stress and DNA damage in skeletal muscle and plasma of rats with HF. Wistar rats were allocated into six groups: "placebo" HF rats (P-HF, n = 9), "placebo" Sham rats (P-sham, n = 8), HF rats at a dose 3 J/cm(2) of LLLT (3 J/cm(2)-HF, n = 8), sham rats at a dose 3 J/cm(2) of LLLT (3 J/cm(2)-sham, n = 8), HF rats at a dose 21 J/cm(2) of LLLT (21 J/cm(2)-HF, n = 8) and sham rats at a dose 21 J/cm(2) of LLLT (21 J/cm(2)-sham, n = 8). Animals were submitted to a LLLT protocol for 10 days at the right gastrocnemius muscle. Comparison between groups showed a significant reduction in superoxide dismutase (SOD) activity in the 3 J/cm(2)-HF group (p = 0.03) and the 21 J/cm(2)-HF group (p = 0.01) compared to the P-HF group. 2',7'-Dihydrodichlorofluorescein (DCFH) oxidation levels showed a decrease when comparing 3 J/cm(2)-sham to P-sham (p = 0.02). The DNA damage index had a significant increase either in 21 J/cm(2)-HF or 21 J/cm(2)-sham in comparison to P-HF (p = 0.004) and P-sham (p = 0.001) and to 3 J/cm(2)-HF (p = 0.007) and 3 J/cm(2)-sham (p = 0.037), respectively. Based on this, laser therapy appears to reduce SOD activity and DCFH oxidation levels, changing the oxidative balance in the skeletal muscle of HF rats. Otherwise, high doses of LLLT seem to increase DNA damage.

  4. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress.

    PubMed

    Macedo, Aline Barbosa; Moraes, Luis Henrique Rapucci; Mizobuti, Daniela Sayuri; Fogaça, Aline Reis; Moraes, Fernanda Dos Santos Rapucci; Hermes, Tulio de Almeida; Pertille, Adriana; Minatel, Elaine

    2015-01-01

    The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.

  5. Strategies for Reducing or Preventing the Generation of Oxidative Stress

    PubMed Central

    Poljsak, B.

    2011-01-01

    The reduction of oxidative stress could be achieved in three levels: by lowering exposure to environmental pollutants with oxidizing properties, by increasing levels of endogenous and exogenous antioxidants, or by lowering the generation of oxidative stress by stabilizing mitochondrial energy production and efficiency. Endogenous oxidative stress could be influenced in two ways: by prevention of ROS formation or by quenching of ROS with antioxidants. However, the results of epidemiological studies where people were treated with synthetic antioxidants are inconclusive and contradictory. Recent evidence suggests that antioxidant supplements (although highly recommended by the pharmaceutical industry and taken by many individuals) do not offer sufficient protection against oxidative stress, oxidative damage or increase the lifespan. The key to the future success of decreasing oxidative-stress-induced damage should thus be the suppression of oxidative damage without disrupting the wellintegrated antioxidant defense network. Approach to neutralize free radicals with antioxidants should be changed into prevention of free radical formation. Thus, this paper addresses oxidative stress and strategies to reduce it with the focus on nutritional and psychosocial interventions of oxidative stress prevention, that is, methods to stabilize mitochondria structure and energy efficiency, or approaches which would increase endogenous antioxidative protection and repair systems. PMID:22191011

  6. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River

    PubMed Central

    Farombi, E. O.; Adelowo, O. A.; Ajimoko, Y. R.

    2007-01-01

    Clarias gariepinus were significantly (P<0.001) elevated in the liver, kidney, gills and heart by 177%, 102%, 168% and 71% respectively compared to that from Agodi fish farm. Overall, the results demonstrate that alteration in the antioxidant enzymes, glutathione system and induction of lipid peroxidation reflects the presence of heavy metals which may cause oxidative stress in the Clarias gariepinus from Ogun River. The study therefore provides a rational use of biomarkers of oxidative stress in biomonitoring of aquatic pollution. PMID:17617680

  7. Postpartum levels of 8-iso-prostaglandin F2α in plasma and milk phospholipid fractions as biomarker of oxidative stress in first-lactating dairy cows.

    PubMed

    Vernunft, A; Viergutz, T; Plinski, C; Weitzel, J M

    2014-08-01

    F2-isoprostanes such as 8-iso-prostaglandin F2 (8-iso-PGF2α) are formed by free radical-catalyzed mechanisms from membrane phospholipids and from low density lipoproteins through peroxidation of arachidonic acid. Esterified 8-iso-PGF2α is cleaved by phospholipases, circulates in blood and is excreted as putatively harmful oxidatively modified lipid via the kidney into urine. In this study we demonstrate that 8-iso-PGF2α concentrations in plasma samples from heifers are higher (p<0.005) compared to those from first-lactating dairy cows at 71 days postpartum. Furthermore, plasma 8-iso-PGF2α concentrations vary with ovarian activity and differ in response to luteolytic initiation as well as activation of the hypothalamic-pituitary-gonadal axis between heifers and first-lactating cows. Sustainable concentrations of 8-iso-PGF2α (50-150 pg/ml) are detectable in the phospholipid fraction of milk, suggesting milk as an additional excretion route for 8-isoprostanes. Plasma levels largely paralleled levels in milk (p<0.001). Plasma phospholipid 8-iso-PGF2α concentrations in cyclic cows decreased (p<0.05) from day 38 to day 71 postpartum, whereas milk phospholipid 8-iso-PGF2α rather increased (p<0.05). Cyclic cows tend to have higher 8-isoprostane levels compared to acyclic animals. In contrast to lipohydroperoxides, concentration of 8-iso-PGF2α were not correlated with milk yield (p>0.05). Our data indicate 8-iso-PGF2α may be a novel biomarker of oxidative stress in dairy cow, which is detectable in blood as well as in milk.

  8. Inorganic and methylmercury levels in plasma are differentially associated with age, gender, and oxidative stress markers in a population exposed to mercury through fish consumption.

    PubMed

    Carneiro, Maria Fernanda Hornos; Grotto, Denise; Barbosa, Fernando

    2014-01-01

    This study aimed to determine the concentrations of plasma methylmercury (Me-Hg) and inorganic mercury (I-Hg) in a population exposed to Me-Hg. In addition, associations between each form of mercury (Hg) and gender, age, plasma selenium (Se), and oxidative stress markers were also investigated. The mean plasma I-Hg level was 5.7 μg/L while the mean for plasma Me-Hg was 3.6 μg/L, representing approximately 59 and 41% of the total Hg in blood, respectively. However, several plasma samples contained higher percentages of Me-Hg. Age displayed a direct linkage with plasma I-Hg levels, whereas gender did not correlate with any of the Hg species. In addition, fish intake was only correlated with and a predictor of plasma Me-Hg, suggesting that plasma I-Hg levels originated endogenously through a demethylation reaction that needs to be verified. Further, plasma Me-Hg was markedly correlated with adverse effects to a greater extent than plasma I-Hg and may be considered a valuable, reliable internal dose biomarker for Hg in chronically Me-Hg- exposed individuals.

  9. Oxidative stress-elevated high gamma glutamyl transferase levels, and aging, intake of tropical food plants, migration and visual disability in Central Africans

    PubMed Central

    Longo-Mbenza, Benjamin; Muaka, Moïse Mvitu; Mokondjimobe, Etienne; Ndembe, Dalida Kibokela; Mona, Doris Tulomba; Buassabu-bu-Tsumbu, Baudouin

    2012-01-01

    AIM To investigate the independent pathogenic role of high serum gamma-glutamyl transferase (GGT) levels, sociodemographic data, dietary and environmental risk factors for visual disability (VD). METHODS This was a case-control study, run in 200 black Congolese patients managed in Saint Joseph Hospital Ophthalmology Division from Kinshasa town. Logistic regression model was used to identify determinants of VD (n=58) among sex, age, cigarette smoking, alcohol abuse, rural-urban migration, education levels, aging ≥60 years, intake of red Beans, Safou fruit and Taro leaves, lipid profile, residence, socioeconomic status, and GGT. RESULTS After adjusting for confounding factors, we identified migration (OR=3.7 95% CI: 1.2-11.3; P=0.023), low education level (OR=3.1 95% CI 1.1-8.5; P=0.026), no intake of Safou fruit (OR=34.2 95% CI 11.5-102; P<0.0001), age ≥ 60 years (OR=2.5 95% CI 1.01-6.5; P=0.049), and serum GGT ≥10 U/L (OR=3.6 95% CI 1.3-9.6; P=0.012) as the significant and independent determinants of VD. CONCLUSION VD appears as a major public health problem in Central Africa to be prevented or delayed by control of migration, lifestyle changes, antioxidant supplements, appropriate diet, nutrition education, and blocking of oxidative stress. PMID:22937512

  10. Oxidative Stress in Cardiovascular Disease

    PubMed Central

    Csányi, Gábor; Miller, Francis J.

    2014-01-01

    In the special issue “Oxidative Stress in Cardiovascular Disease” authors were invited to submit papers that investigate key questions in the field of cardiovascular free radical biology. The original research articles included in this issue provide important information regarding novel aspects of reactive oxygen species (ROS)-mediated signaling, which have important implications in physiological and pathophysiological cardiovascular processes. The issue also included a number of review articles that highlight areas of intense research in the fields of free radical biology and cardiovascular medicine. PMID:24722571

  11. The effects of graded levels of calorie restriction: II. Impact of short term calorie and protein restriction on circulating hormone levels, glucose homeostasis and oxidative stress in male C57BL/6 mice

    PubMed Central

    Mitchell, Sharon E.; Delville, Camille; Konstantopedos, Penelope; Hurst, Jane; Derous, Davina; Green, Cara; Chen, Luonan; Han, Jackie J.D.; Wang, Yingchun; Promislow, Daniel E.L.; Lusseau, David; Douglas, Alex; Speakman, John R.

    2015-01-01

    Limiting food intake attenuates many of the deleterious effects of aging, impacting upon healthspan and leading to an increased lifespan. Whether it is the overall restriction of calories (calorie restriction: CR) or the incidental reduction in macronutrients such as protein (protein restriction: PR) that mediate these effects is unclear. The impact of 3 month CR or PR, (10 to 40%), on C57BL/6 mice was compared to controls fed ad libitum. Reductions in circulating leptin, tumor necrosis factor-α and insulin-like growth factor-1 (IGF-1) were relative to the level of CR and individually associated with morphological changes but remained unchanged following PR. Glucose tolerance and insulin sensitivity were improved following CR but not affected by PR. There was no indication that CR had an effect on oxidative damage, however CR lowered antioxidant activity. No biomarkers of oxidative stress were altered by PR. CR significantly reduced levels of major urinary proteins suggesting lowered investment in reproduction. Results here support the idea that reduced adipokine levels, improved insulin/IGF-1 signaling and reduced reproductive investment play important roles in the beneficial effects of CR while, in the short-term, attenuation of oxidative damage is not applicable. None of the positive effects were replicated with PR. PMID:26061745

  12. Lamins as mediators of oxidative stress

    SciTech Connect

    Sieprath, Tom; Darwiche, Rabih; De Vos, Winnok H.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer The nuclear lamina defines structural and functional properties of the cell nucleus. Black-Right-Pointing-Pointer Lamina dysfunction leads to a broad spectrum of laminopathies. Black-Right-Pointing-Pointer Recent data is reviewed connecting laminopathies to oxidative stress. Black-Right-Pointing-Pointer A framework is proposed to explain interactions between lamins and oxidative stress. -- Abstract: The nuclear lamina defines both structural and functional properties of the eukaryotic cell nucleus. Mutations in the LMNA gene, encoding A-type lamins, lead to a broad spectrum of diseases termed laminopathies. While different hypotheses have been postulated to explain disease development, there is still no unified view on the mechanistic basis of laminopathies. Recent observations indicate that laminopathies are often accompanied by altered levels of reactive oxygen species and a higher susceptibility to oxidative stress at the cellular level. In this review, we highlight the role of reactive oxygen species for cell function and disease development in the context of laminopathies and present a framework of non-exclusive mechanisms to explain the reciprocal interactions between a dysfunctional lamina and altered redox homeostasis.

  13. Oxidative Stress, Cytotoxicity and Genotoxicity in Earthworm Eisenia fetida at Different Di-n-Butyl Phthalate Exposure Levels

    PubMed Central

    Ma, Tingting; Chen, Li’ke; Wu, Longhua; Zhang, Haibo; Luo, Yongming

    2016-01-01

    Recognized as ubiquitous contaminants in soil, the environmental risk of phthalic acid esters (PAEs) is of great concern recently. Effects of di-n-butyl phthalate (DnBP), an extensively used PAE compound to Eisenia fetida have been investigated in spiked natural brown yellow soil (Alfisol) for soil contact test. The toxicity of DnBP to E. fetida on the activity of superoxide dismutase (SOD) activity, peroxidase (POD), reactive oxygen species (ROS) content, and the apoptosis of coelomocytes and DNA damage at the 7th, 14th, 21st and 28th day of the incubation have been paid close attention to. In general, SOD activity and ROS content were significantly induced, opposite to total protein content and POD activity, during the toxicity test of 28 days especially under concentrations higher than 2.5 mg kg-1. The reduction in neutral red retention (NRR) time along with the increase of dead coelomocytes as the increasing of DnBP concentrations, indicating severe damage to cell viability under varying pollutant stress during cultivation, which could also be proved by comet assay results for exerting evident DNA damage in coelomocytes. DnBP in spiked natural soil could indeed cause damage to tissues, coelomocytes and the nucleus of E. fetida. The key point of the apparent change in different indices presented around 2.5 mg DnBP kg-1 soil, which could be recommended as the threshold of DnBP soil contamination, so that further investigation on threshold values to other soil animals or microorganisms could be discussed. PMID:26982081

  14. Oxidative Stress, Cytotoxicity and Genotoxicity in Earthworm Eisenia fetida at Different Di-n-Butyl Phthalate Exposure Levels.

    PubMed

    Ma, Tingting; Chen, Li'ke; Wu, Longhua; Zhang, Haibo; Luo, Yongming

    2016-01-01

    Recognized as ubiquitous contaminants in soil, the environmental risk of phthalic acid esters (PAEs) is of great concern recently. Effects of di-n-butyl phthalate (DnBP), an extensively used PAE compound to Eisenia fetida have been investigated in spiked natural brown yellow soil (Alfisol) for soil contact test. The toxicity of DnBP to E. fetida on the activity of superoxide dismutase (SOD) activity, peroxidase (POD), reactive oxygen species (ROS) content, and the apoptosis of coelomocytes and DNA damage at the 7th, 14th, 21st and 28th day of the incubation have been paid close attention to. In general, SOD activity and ROS content were significantly induced, opposite to total protein content and POD activity, during the toxicity test of 28 days especially under concentrations higher than 2.5 mg kg-1. The reduction in neutral red retention (NRR) time along with the increase of dead coelomocytes as the increasing of DnBP concentrations, indicating severe damage to cell viability under varying pollutant stress during cultivation, which could also be proved by comet assay results for exerting evident DNA damage in coelomocytes. DnBP in spiked natural soil could indeed cause damage to tissues, coelomocytes and the nucleus of E. fetida. The key point of the apparent change in different indices presented around 2.5 mg DnBP kg-1 soil, which could be recommended as the threshold of DnBP soil contamination, so that further investigation on threshold values to other soil animals or microorganisms could be discussed. PMID:26982081

  15. Effect of Selenium on the Levels of Cytokines and Trace Elements in Toxin-Mediated Oxidative Stress in Male Rats.

    PubMed

    Ansar, S

    2016-01-01

    Selenium is an essential cofactor in the key enzymes involved in cellular antioxidant defense. This study was designed to investigate the protective effects of selenium on mercury chloride (HgCl2)-induced toxicity. Male Wistar rats were randomly divided into four groups of six animals each. The first group was control; the second group was treated with mercuric chloride (HgCl2: 50 mg/kg/bw). The third group was treated with sodium selenite (Se 0.2 mg/kg/bw), and the fourth group received Se (0.2 mg/kg/bw) plus HgCl2 (50 mg/kg for 24 h). The influence of Se on mercury induced levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) and zinc, copper, and iron in serum of rats were observed. The serum MDA, SOD, zinc, and iron concentrations were found to be statistically different among the control and toxin-treated group. The serum levels of IL-6, IL-10, and TNF-α were also measured. There was a significant decrease in the levels of TNF-α, IL-6, and IL-10 in toxin-treated group II compared with that of the control group (p < 0.05). A significant increase in the serum levels of inflammatory cytokines IL-6, TNF-α, and IL-10 after administration of Se seemed to counteract some of the damage, as indicated by differences in the serum concentrations of major elements. PMID:26089086

  16. Plasma and tissue levels of neuropeptide y in experimental septic shock: relation to hemodynamics, inflammation, oxidative stress, and hemofiltration.

    PubMed

    Kuncová, Jitka; Sýkora, Roman; Chvojka, Jiří; Svíglerová, Jitka; Stengl, Milan; Kroužecký, Aleš; Nalos, Lukáš; Matějovič, Martin

    2011-06-01

    Neuropeptide Y (NPY), a potent vasoconstrictor released from the sympathetic nerves, has been suggested to counterbalance sepsis-induced vasodilation. Thus, the changes in plasma and tissue NPY concentrations in relation to hemodynamic variables and inflammatory markers in a porcine model of moderate septic shock were investigated. Susceptibility of NPY to be removed by continuous hemofiltration in two settings has been also studied. Thirty-four domestic pigs were divided into five groups: (i) control group; (ii) control group with conventional hemofiltration; (iii) septic group; (iv) septic group with conventional hemofiltration; and (v) septic group with high-volume hemofiltration. Sepsis induced by fecal peritonitis continued for 22 h. Hemofiltration was applied for the last 10 h. Hemodynamic and inflammatory parameters (heart rate, mean arterial pressure, cardiac output, systemic vascular resistance, plasma concentrations of tumor necrosis factor-α, interleukin-6, and NPY) were measured before and at 12 and 22 h of peritonitis. NPY tissue levels were determined in the left ventricle and mesenteric and coronary arteries. Sepsis induced long-lasting increases in the systemic NPY levels without affecting its tissue concentrations. Continuous hemofiltration at any dose did not reduce sepsis-induced elevations in NPY plasma concentrations, nor did it affect the peptide tissue levels. The increases in NPY systemic levels were significantly correlated with changes in the systemic vascular resistance. The results support the hypothesis of NPY implication in the regulation of the vascular resistance under septic conditions and indicate that NPY clearance rate during hemofiltration does not exceed the capacity of perivascular nerves to release it.

  17. Peroxisomal metabolism and oxidative stress.

    PubMed

    Nordgren, Marcus; Fransen, Marc

    2014-03-01

    Peroxisomes are ubiquitous and multifunctional organelles that are primarily known for their role in cellular lipid metabolism. As many peroxisomal enzymes catalyze redox reactions as part of their normal function, these organelles are also increasingly recognized as potential regulators of oxidative stress-related signaling pathways. This in turn suggests that peroxisome dysfunction is not only associated with rare inborn errors of peroxisomal metabolism, but also with more common age-related diseases such as neurodegeneration, type 2 diabetes, and cancer. This review intends to provide a comprehensive picture of the complex role of mammalian peroxisomes in cellular redox metabolism. We highlight how peroxisomal metabolism may contribute to the bioavailability of important mediators of oxidative stress, with particular emphasis on reactive oxygen species. In addition, we review the biological properties of peroxisome-derived signaling messengers and discuss how these molecules may mediate various biological responses. Furthermore, we explore the emerging concepts that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. This is particularly relevant to the observed demise of peroxisome function which accompanies cellular senescence, organismal aging, and age-related diseases. PMID:23933092

  18. Peroxisomal metabolism and oxidative stress.

    PubMed

    Nordgren, Marcus; Fransen, Marc

    2014-03-01

    Peroxisomes are ubiquitous and multifunctional organelles that are primarily known for their role in cellular lipid metabolism. As many peroxisomal enzymes catalyze redox reactions as part of their normal function, these organelles are also increasingly recognized as potential regulators of oxidative stress-related signaling pathways. This in turn suggests that peroxisome dysfunction is not only associated with rare inborn errors of peroxisomal metabolism, but also with more common age-related diseases such as neurodegeneration, type 2 diabetes, and cancer. This review intends to provide a comprehensive picture of the complex role of mammalian peroxisomes in cellular redox metabolism. We highlight how peroxisomal metabolism may contribute to the bioavailability of important mediators of oxidative stress, with particular emphasis on reactive oxygen species. In addition, we review the biological properties of peroxisome-derived signaling messengers and discuss how these molecules may mediate various biological responses. Furthermore, we explore the emerging concepts that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. This is particularly relevant to the observed demise of peroxisome function which accompanies cellular senescence, organismal aging, and age-related diseases.

  19. Inflammation, Oxidative Stress, and Obesity

    PubMed Central

    Fernández-Sánchez, Alba; Madrigal-Santillán, Eduardo; Bautista, Mirandeli; Esquivel-Soto, Jaime; Morales-González, Ángel; Esquivel-Chirino, Cesar; Durante-Montiel, Irene; Sánchez-Rivera, Graciela; Valadez-Vega, Carmen; Morales-González, José A.

    2011-01-01

    Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6); other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS), generating a process known as oxidative stress (OS). Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO), and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease. PMID:21686173

  20. Oxidative stress parameters in silver catfish (Rhamdia quelen) juveniles infected with Ichthyophthirius multifiliis and maintained at different levels of water pH.

    PubMed

    Garcia, L O; Becker, A G; Bertuzzi, T; Cunha, M A; Kochhann, D; Finamor, I A; Riffel, A P K; Llesuy, S; Pavanato, M A; Baldisserotto, B

    2011-05-31

    The aim of this study was to determine oxidative stress parameters in the liver, gill and muscle of silver catfish juveniles infected with Ichthyophthirius multifiliis and maintained at pH 5.0 or 7.0 for three days. Juveniles were infected by adding one I. multifiliis-infected juvenile and water containing theronts to tanks. After the appearance of white spots on the skin, infected juveniles exposed to pH 5.0 and 7.0 showed significantly higher thiobarbituric acid reactive substances (TBARS) levels in the liver and gills compared to uninfected juveniles. Liver of infected juveniles exposed to pH 7.0 showed higher catalase (CAT) and lower glutathione-S-transferase (GST) activities, but those maintained at pH 5.0 showed significantly higher GST activity than uninfected juveniles. The gills of infected juveniles showed significantly higher CAT (day two) and GST activity at both pH 5.0 and 7.0 compared to uninfected juveniles. Muscle of infected juveniles showed significantly lower CAT and GST activity and TBARS levels (at day three) when maintained at both pH 5.0 and 7.0 compared to uninfected juveniles. In conclusion, I. multifiliis infection induces liver and gill damage via lipid peroxidation products in silver catfish, but higher antioxidant enzyme activity could indicate a greater degree of protection against this parasite.

  1. Impact of Oxidative Stress in Fetal Programming

    PubMed Central

    Thompson, Loren P.; Al-Hasan, Yazan

    2012-01-01

    Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring. PMID:22848830

  2. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung.

    PubMed

    Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P; Ward, William O; Peltier, Richard E; Zelikoff, Judith; Chen, Lung-chi

    2015-01-01

    to WTC dusts could potentially have adversely affected the respiratory system - in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/biochemical changes in situ. PMID:24911330

  3. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung

    PubMed Central

    Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P.; Ward, William O.; Peltier, Richard E.; Zelikoff, Judith; Chen, Lung-chi

    2015-01-01

    potentially have adversely affected the respiratory system – in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/ biochemical changes in situ. PMID:24911330

  4. High level of intracellular sperm oxidative stress negatively influences embryo pronuclear formation after intracytoplasmic sperm injection treatment.

    PubMed

    Ghaleno, L R; Valojerdi, M R; Hassani, F; Chehrazi, M; Janzamin, E

    2014-12-01

    This study evaluates the relationship between sperm intracellular reactive oxygen species (ROS; H2 O2 , O2 ), DNA fragmentation (DF), low mitochondria membrane potential (MMP) of sperm and normal pronuclear formation among intracytoplasmic sperm injection (ICSI) patients. Semen samples were obtained from 62 infertile male who were candidates for ICSI treatment. After sperm processing, metaphase II (MII) oocytes were injected, and the mean percentages of intracellular ROS, MMP and DF were evaluated using flow cytometry. The mean percentages of pronuclear formation and zygote score (Z) were also recorded, and Pearson, Spearman's rank correlation coefficient and Kruskal-Wallis tests were applied to analyse the data. The amounts of sperm intracellular H2 O2 and O2-˙ had significant positive correlation with low MMP (P < 0.01). The intracellular ROS had a negative correlation with pronuclear formation (P < 0.05), and its effect was higher than 66.66%. In addition, the mean percentages of neither H2 O2 nor O2-˙ affected the quality of pronuclear embryos (Z-score). This study shows that although high levels of both sperm intracellular H2 O2 and O2-˙ in ICSI patients have deleterious effect on sperm MMP, only H2 O2 may interfere in pronuclear formation.

  5. The level and distribution of heavy metals and changes in oxidative stress indices in humans from Lahore district, Pakistan.

    PubMed

    Bibi, M; Hashmi, M Z; Malik, R N

    2016-01-01

    Human biomonitoring is a well-recognized tool for estimating the exposure of humans to environmental pollutants. However, heavy metals' pollution from anthropogenic origin is a cause for concern because of its potential accumulation in the environment and living organisms, leading to long-term toxic effects. This study was aimed to assess the concentrations of cadmium (Cd), chromium (Cr), lead (Pb), copper (Cu), nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), and zinc (Zn) in human biological samples (urine, whole blood, hair, and nails) and antioxidant response in blood samples from 48 individuals exposed to heavy metals and to compare them with different age classes and sites. The results indicated that there were metal-specific differences in concentration in exposure groups among the studied sites. The concentration of heavy metals in blood samples showed the following order : Pb > Cd > Ni > Co > Cr. In urine samples, the order was Cu > Pb > Cr > Ni > Co > Cd; in nails samples, the order was Pb > Ni > Cr > Co > Cd > Mn; and in hair samples, the trend was Pb > Ni > Cr > Mn > Cd > Co. A significant (p > 0.05) decrease in antioxidants enzymes activity was observed with increase in heavy metals concentrations. This is the first study reporting biological evidence of altered toxic metals' concentration in humans in Lahore, Pakistan, due to environmental exposure. Further research, including risk analysis studies, food chain contamination, and epidemiological and clinical investigations, are needed to assess optimal levels for dietary exposure in the study area and associated adverse health outcomes.

  6. Anesthetic requirements and stress hormone responses in chronic spinal cord-injured patients undergoing surgery below the level of injury: nitrous oxide vs remifentanil

    PubMed Central

    Kang, Dong Ho; Lee, Seong-Heon; Kim, Seok Jai; Choi, Jeong-Il; Jeong, Cheol-Won; Jeong, Seong Wook

    2013-01-01

    Background Nitrous oxide (N2O) and remifentanil both have anesthetic-reducing and antinociceptive effects. We aimed to determine the anesthetic requirements and stress hormone responses in spinal cord-injured (SCI) patients undergoing surgery under sevoflurane anesthesia with or without pharmacodynamically equivalent doses of N2O or remifentanil. Methods Forty-five chronic, complete SCI patients undergoing surgery below the level of injury were randomly allocated to receive sevoflurane alone (control, n = 15), or in combination with 67% N2O (n = 15) or target-controlled infusion of 1.37 ng/ml remifentanil (n = 15). Sevoflurane concentrations were titrated to maintain a Bispectral Index (BIS) value between 40 and 50. Measurements included end-tidal sevoflurane concentrations, mean arterial blood pressure (MAP), heart rate (HR), and plasma catecholamine and cortisol concentrations. Results During surgery, MAP, HR, and BIS did not differ among the groups. Sevoflurane concentrations were lower in the N2O group (0.94 ± 0.30%) and the remifentanil group (1.06 ± 0.29%) than in the control group (1.55 ± 0.34%) (P < 0.001, both). Plasma concentrations of norepinephrine remained unchanged compared to baseline values in each group, with no significant differences among groups throughout the study. Cortisol levels decreased during surgery as compared to baseline values, and returned to levels higher than baseline at 1 h after surgery (P < 0.05) without inter-group differences. Conclusions Remifentanil (1.37 ng/ml) and N2O (67%) reduced the sevoflurane requirements similarly by 31-39%, with no significant differences in hemodynamic and neuroendocrine responses. Either remifentanil or N2O can be used as an anesthetic adjuvant during sevoflurane anesthesia in SCI patients undergoing surgery below the level of injury. PMID:24427459

  7. Red and Infrared Low-Level Laser Therapy Prior to Injury with or without Administration after Injury Modulate Oxidative Stress during the Muscle Repair Process

    PubMed Central

    Mesquita-Ferrari, Raquel Agnelli

    2016-01-01

    Introduction Muscle injury is common among athletes and amateur practitioners of sports. Following an injury, the production of reactive oxygen species (ROS) occurs, which can harm healthy muscle fibers (secondary damage) and delay the repair process. Low-level laser therapy (LLLT) administered prior to or following an injury has demonstrated positive and protective effects on muscle repair, but the combination of both administration times together has not been clarified. Aim To evaluate the effect of LLLT (660 nm and 780 nm, 10 J/cm², 40 mW, 3.2 J) prior to injury with or without the administration after injury on oxidative stress during the muscle repair process. Methods Wistar rats were divided into following groups: control; muscle injury alone; LLLT 660 nm + injury; LLLT 780 nm + injury; LLLT 660 nm before and after injury; and LLLT 780 nm before and after injury. The rats were euthanized on days 1, 3 and 7 following cryoinjury of the tibialis anterior (TA) muscle, which was then removed for analysis. Results Lipid peroxidation decreased in the 660+injury group after one day. Moreover, red and infrared LLLT employed at both administration times induced a decrease in lipid peroxidation after seven days. CAT activity was altered by LLLT in all periods evaluated, with a decrease after one day in the 780+injury+780 group and after seven days in the 780+injury group as well as an increase in the 780+injury and 780+injury+780 groups after three days. Furthermore, increases in GPx and SOD activity were found after seven days in the 780+injury+780 group. Conclusion The administration of red and infrared laser therapy at different times positively modulates the activity of antioxidant enzymes and reduces stress markers during the muscle repair process. PMID:27082964

  8. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  9. FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESSES AND THEIR CLASSIFICATIONS.

    PubMed

    Lushchak, V I

    2015-01-01

    The phrases "free radicals" and "reactive oxygen species" (ROS) are frequently used interchangeably although this is not always correct. This article gives a brief description of two mentioned oxygen forms. During the first two-three decades after ROS discovery in biological systems (1950-1970 years) they were considered only as damaging agents, but later their involvement in organism protection and regulation of the expression of certain genes was found. The physiological state of increased steady-state ROS level along with certain physiological effects has been called oxidative stress. This paper describes ROS homeostasis and provides several classifications of oxidative stresses. The latter are based on time-course and intensity principles. Therefore distinguishing between acute and chronic stresses on the basis of the dynamics, and the basal oxidative stress, low intensity oxidative stress, strong oxidative stress, and finally a very strong oxidative stress based on the intensity of the action of the inductor of the stress are described. Potential areas of research include the development of this field with complex classification of oxidative stresses, an accurate identification of cellular targets of ROS action, determination of intracellular spatial and temporal distribution of ROS and their effects, deciphering the molecular mechanisms responsible for cell response to ROS attacks, and their participation in the normal cellular functions, i.e. cellular homeostasis and its regulation. PMID:27025055

  10. FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESSES AND THEIR CLASSIFICATIONS.

    PubMed

    Lushchak, V I

    2015-01-01

    The phrases "free radicals" and "reactive oxygen species" (ROS) are frequently used interchangeably although this is not always correct. This article gives a brief description of two mentioned oxygen forms. During the first two-three decades after ROS discovery in biological systems (1950-1970 years) they were considered only as damaging agents, but later their involvement in organism protection and regulation of the expression of certain genes was found. The physiological state of increased steady-state ROS level along with certain physiological effects has been called oxidative stress. This paper describes ROS homeostasis and provides several classifications of oxidative stresses. The latter are based on time-course and intensity principles. Therefore distinguishing between acute and chronic stresses on the basis of the dynamics, and the basal oxidative stress, low intensity oxidative stress, strong oxidative stress, and finally a very strong oxidative stress based on the intensity of the action of the inductor of the stress are described. Potential areas of research include the development of this field with complex classification of oxidative stresses, an accurate identification of cellular targets of ROS action, determination of intracellular spatial and temporal distribution of ROS and their effects, deciphering the molecular mechanisms responsible for cell response to ROS attacks, and their participation in the normal cellular functions, i.e. cellular homeostasis and its regulation.

  11. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    PubMed Central

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  12. Comparison of Effect of Two-Hour Exposure to Forest and Urban Environments on Cytokine, Anti-Oxidant, and Stress Levels in Young Adults

    PubMed Central

    Im, Su Geun; Choi, Han; Jeon, Yo-Han; Song, Min-Kyu; Kim, Won; Woo, Jong-Min

    2016-01-01

    The purpose of this study was to investigate the effect of two-hour exposure to a forest environment on cytokine, anti-oxidant and stress levels among university students and to compare the results to those measured in urban environments. Forty-one subjects were recruited. For our crossover design, subjects were divided into two groups based on similar demographic characteristics. Group A remained in the urban environment and was asked to perform regular breathing for 2 h. Blood samples were collected and the serum levels of cytokines including interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), and glutathione peroxidase (GPx) were examined. Subjects were moved to a small town in a rural area for an equal amount of time to exclude carryover effects, and then remained for another 2 h in a forest environment. The second set of blood samples was collected to assess the effect of exposure to the forest environment. Using the same method, Group B was first exposed to the forest environment, followed by exposure to the urban environment. Blood samples collected after the subjects were exposed to the forest environment showed significantly lower levels of IL-8 and TNF-α compared to those in samples collected after urban environment exposure (10.76 vs. 9.21, t = 4.559, p < 0.001, and 0.97 vs. 0.87, t = 4.130, p < 0.001). The GPx concentration increased significantly after exposure to the forest environment (LnGPx = 5.09 vs. LnGPx = 5.21, t = −2.039, p < 0.05). PMID:27347982

  13. Comparison of Effect of Two-Hour Exposure to Forest and Urban Environments on Cytokine, Anti-Oxidant, and Stress Levels in Young Adults.

    PubMed

    Im, Su Geun; Choi, Han; Jeon, Yo-Han; Song, Min-Kyu; Kim, Won; Woo, Jong-Min

    2016-01-01

    The purpose of this study was to investigate the effect of two-hour exposure to a forest environment on cytokine, anti-oxidant and stress levels among university students and to compare the results to those measured in urban environments. Forty-one subjects were recruited. For our crossover design, subjects were divided into two groups based on similar demographic characteristics. Group A remained in the urban environment and was asked to perform regular breathing for 2 h. Blood samples were collected and the serum levels of cytokines including interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), and glutathione peroxidase (GPx) were examined. Subjects were moved to a small town in a rural area for an equal amount of time to exclude carryover effects, and then remained for another 2 h in a forest environment. The second set of blood samples was collected to assess the effect of exposure to the forest environment. Using the same method, Group B was first exposed to the forest environment, followed by exposure to the urban environment. Blood samples collected after the subjects were exposed to the forest environment showed significantly lower levels of IL-8 and TNF-α compared to those in samples collected after urban environment exposure (10.76 vs. 9.21, t = 4.559, p < 0.001, and 0.97 vs. 0.87, t = 4.130, p < 0.001). The GPx concentration increased significantly after exposure to the forest environment (LnGPx = 5.09 vs. LnGPx = 5.21, t = -2.039, p < 0.05).

  14. In vivo levels of diadenosine tetraphosphate and adenosine tetraphospho-guanosine in Physarum polycephalum during the cell cycle and oxidative stress.

    PubMed Central

    Garrison, P N; Mathis, S A; Barnes, L D

    1986-01-01

    Cellular levels of diadenosine tetraphosphate (Ap4A) and adenosine tetraphospho-guanosine (Ap4G) were specifically measured during the cell cycle of Physarum polycephalum by a high-pressure liquid chromatographic method. Ap4A was also measured indirectly by a coupled phosphodiesterase-luciferase assay. No cell cycle-specific changes in either Ap4A or Ap4G were detected in experiments involving different methods of assay, different strains of P. polycephalum, or different methods of fixation of macroplasmodia. Our results on Ap4A are in contrast with those reported previously (C. Weinmann-Dorsch, G. Pierron, R. Wick, H. Sauer, and F. Grummt, Exp. Cell Res. 155:171-177, 1984). Weinmann-Dorsch et al. reported an 8- to 30-fold increase in Ap4A in early S phase in P. polycephalum, as measured by the phosphodiesterase-luciferase assay. We also measured levels of Ap4A, Ap4G, and ATP in macroplasmodia treated with 0.1 mM dinitrophenol. Ap4A and Ap4G transiently increased three- to sevenfold after 1 h and then decreased concomitantly with an 80% decrease in the level of ATP after 2 h in the presence of dinitrophenol. These results do not support the hypothesis that Ap4A is a positive pleiotypic activator that modulates DNA replication, but they are consistent with the hypothesis proposed for procaryotes that Ap4A and Ap4G are signal nucleotides or alarmones of oxidative stress (B.R. Bochner, P.C. Lee, S.W. Wilson, C.W. Cutler, and B.N. Ames, Cell 37:225-232, 1984). PMID:3785160

  15. Comparison of Effect of Two-Hour Exposure to Forest and Urban Environments on Cytokine, Anti-Oxidant, and Stress Levels in Young Adults.

    PubMed

    Im, Su Geun; Choi, Han; Jeon, Yo-Han; Song, Min-Kyu; Kim, Won; Woo, Jong-Min

    2016-01-01

    The purpose of this study was to investigate the effect of two-hour exposure to a forest environment on cytokine, anti-oxidant and stress levels among university students and to compare the results to those measured in urban environments. Forty-one subjects were recruited. For our crossover design, subjects were divided into two groups based on similar demographic characteristics. Group A remained in the urban environment and was asked to perform regular breathing for 2 h. Blood samples were collected and the serum levels of cytokines including interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), and glutathione peroxidase (GPx) were examined. Subjects were moved to a small town in a rural area for an equal amount of time to exclude carryover effects, and then remained for another 2 h in a forest environment. The second set of blood samples was collected to assess the effect of exposure to the forest environment. Using the same method, Group B was first exposed to the forest environment, followed by exposure to the urban environment. Blood samples collected after the subjects were exposed to the forest environment showed significantly lower levels of IL-8 and TNF-α compared to those in samples collected after urban environment exposure (10.76 vs. 9.21, t = 4.559, p < 0.001, and 0.97 vs. 0.87, t = 4.130, p < 0.001). The GPx concentration increased significantly after exposure to the forest environment (LnGPx = 5.09 vs. LnGPx = 5.21, t = -2.039, p < 0.05). PMID:27347982

  16. Evaluation of Stress Levels of Professionals.

    ERIC Educational Resources Information Center

    Schnorr, Janet K.; McWilliams, Jettie M.

    This study was conducted to analyze levels and areas of stress of professionals in selected service professions and to establish national norms of stress for these professions. The 60-item Tennessee Stress Scale-R (TSS-R) is a work-related stress inventory for professionals which provides a measure of stress in three areas: stress producers,…

  17. Oxidative Stress and Bronchopulmonary Dysplasia

    PubMed Central

    Perrone, Serafina; Tataranno, Maria Luisa; Buonocore, Giuseppe

    2012-01-01

    Bronchopulmonary dysplasia (BPD) is the major cause of pulmonary disease in infants. The pathophysiology and management of BPD changed with the improvement of neonatal intensive care unit (NICU) management and with the increase of survival rates. Despite the improvements made, BPD is still a public health concern, resulting in frequent hospitalizations with high rates of mortality, impaired weight and height growth, and neurodevelopmental disorders. Lung injury in the neonatal period has multiple etiologic factors – genetic, hemodynamic, metabolic, nutritional, mechanical, and infectious mechanisms – act in a cumulative and synergic way. Free radical (FR) generation is largely recognized as the major cause of lung damage. Oxidative stress (OS) is the final common endpoint for a complex convergence of events, some genetically determined and some triggered by in utero stressors. Inflammatory placental disorders and chorioamnionitis also play an important role due to the coexistence of inflammatory and oxidative lesions. In addition, the contribution of airway inflammation has been extensively studied. The link between inflammation and OS injury involves the direct activation of inflammatory cells, especially granulocytes, which potentiates the inflammatory reaction. Individualized interventions to support ventilation, minimize oxygen exposure, minimize apnea, and encourage growth should decrease both the frequency and severity of BPD. Future perspectives suggest supplementation with enzymatic and/or non-enzymatic antioxidants. The use of antioxidants in preterm newborns particularly exposed to OS and at risk for BPD represents a logical strategy to ameliorate FRs injury, but further studies are needed to support this hypothesis. PMID:24027702

  18. Effect of Oxidative Stress in Hemodialysed Patients

    PubMed Central

    Peti, Attila; Csiky, Botond; Guth, Eszter; Kenyeres, Peter; Mezosi, Emese; Kovacs, Gabor L.

    2011-01-01

    Aims, subjects and methods Markers of oxidative stress and inflammatory activation of endothelium, as well as the adipose tissue secreted adipokines, e.g. adiponectin show altered pattern in renal failure. However, their internal relations have not been fully evaluated in this special patient population. In our cross sectional study, beside the routine clinical and biochemical parameters, plasma malondialdehyde, glutathione (GSH), catalase, total peroxidase, as well as serum E-selectin and adiponectin were measured in 70 hemodialysed (HD) patients. Results GSH showed negative correlations with systolic and diastolic blood pressure (BP) values, while a positive one with HDL-cholesterol level, as expected. Interestingly, the level of sE-selectin was inversely correlated only with the age. In multiple regression analyses where anthropometric, BP and laboratory parameters were included and sE-selectin was the dependent variable, the inverse association between the age and level of sE-Selectin turned out being an independent factor. Conclusions In HD kidney failure patients of the biochemical cardiovascular risk markers those related to oxidative stress, endothelial dysfunction, or altered adipokine homeostasis are not necessarily strongly associated. Larger studies may be needed to confirm our novel observation, a negative and independent correlation of age to sE-Selectin level.

  19. Hypertension and physical exercise: The role of oxidative stress.

    PubMed

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. PMID:26987496

  20. Clinical Perspective of Oxidative Stress in Sporadic ALS

    PubMed Central

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  1. Induction of Oxidative Stress in Kidney

    PubMed Central

    Ozbek, Emin

    2012-01-01

    Oxidative stress has a critical role in the pathophysiology of several kidney diseases, and many complications of these diseases are mediated by oxidative stress, oxidative stress-related mediators, and inflammation. Several systemic diseases such as hypertension, diabetes mellitus, and hypercholesterolemia; infection; antibiotics, chemotherapeutics, and radiocontrast agents; and environmental toxins, occupational chemicals, radiation, smoking, as well as alcohol consumption induce oxidative stress in kidney. We searched the literature using PubMed, MEDLINE, and Google scholar with “oxidative stress, reactive oxygen species, oxygen free radicals, kidney, renal injury, nephropathy, nephrotoxicity, and induction”. The literature search included only articles written in English language. Letters or case reports were excluded. Scientific relevance, for clinical studies target populations, and study design, for basic science studies full coverage of main topics, are eligibility criteria for articles used in this paper. PMID:22577546

  2. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  3. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  4. Comparative analysis of the protective effects of caffeic acid phenethyl ester (CAPE) on pulmonary contusion lung oxidative stress and serum copper and zinc levels in experimental rat model.

    PubMed

    Sırmalı, Mehmet; Solak, Okan; Tezel, Cagatay; Sırmalı, Rana; Ginis, Zeynep; Atik, Dilek; Agackıran, Yetkin; Koylu, Halis; Delibas, Namık

    2013-01-01

    The aim of this study was to investigate the effects of caffeic acid phenethyl ester (CAPE) in the lungs by biochemical and histopathological analyses in an experimental isolated lung contusion model. Eighty-one male Sprague-Dawley rats were used. The animals were divided randomly into four groups: group 1 (n = 9) was defined as without contusion and without CAPE injection. Group 2 (n = 9) was defined as CAPE 10 μmol/kg injection without lung contusion. Group 3 (n = 36) was defined as contusion without CAPE-administrated group which consisted of four subgroups that were created according to analysis between days 0, 1, 2, and 3. Group 4 (n = 27) was defined as CAPE 10 μmol/kg administrated after contusion group divided into three subgroups according to analysis on days 1, 2, and 3. CAPE 10 μmol/kg was injected intraperitoneally 30 min after trauma and on days 1 and 2. Blood samples were obtained to measure catalase (CAT) and superoxide dismutase (SOD) activities and level of malondialdehyde (MDA) and for blood gas analysis. Trace elements such as zinc and copper were measured in serum. The lung tissue was also removed for histopathological examination. Isolated lung contusion increased serum and tissue SOD and CAT activities and MDA levels (p < 0.05). Both serum and tissue SOD, MDA, and CAT levels on day 3 were lower in group 4 compared to group 3 (p < 0.05). Further, the levels of SOD, MDA, and CAT in group 4 were similar compared to group 1 (p > 0.05). CAPE also had a significant beneficial effect on blood gases (p < 0.05). Both serum zinc and copper levels were (p < 0.05) influenced by the administration of CAPE. Histopathological examination revealed lower scores in group 4 compared to group 3 (p < 0.05) and no significant differences compared to group 1 (p > 0.05). CAPE appears to be effective in protecting against severe oxidative stress and tissue damage caused by pulmonary contusion in an

  5. Vascular oxidant stress and inflammation in hyperhomocysteinemia.

    PubMed

    Papatheodorou, Louisa; Weiss, Norbert

    2007-11-01

    Elevated plasma levels of homocysteine are a metabolic risk factor for atherosclerotic vascular disease, as shown in numerous clinical studies that linked elevated homocysteine levels to de novo and recurrent cardiovascular events. High levels of homocysteine promote oxidant stress in vascular cells and tissue because of the formation of reactive oxygen species (ROS), which have been strongly implicated in the development of atherosclerosis. In particular, ROS have been shown to cause endothelial injury, dysfunction, and activation. Elevated homocysteine stimulates proinflammatory pathways in vascular cells, resulting in leukocyte recruitment to the vessel wall, mediated by the expression of adhesion molecules on endothelial cells and circulating monocytes and neutrophils, in the infiltration of leukocytes into the arterial wall mediated by increased secretion of chemokines, and in the differentiation of monocytes into cholesterol-scavenging macrophages. Furthermore, it stimulates the proliferation of vascular smooth muscle cells followed by the production of extracellular matrix. Many of these events involve redox-sensitive signaling events, which are promoted by elevated homocysteine, and result in the formation of atherosclerotic lesions. In this article, we review current knowledge about the role of homocysteine on oxidant stress-mediated vascular inflammation during the development of atherosclerosis.

  6. Nutritionally Mediated Oxidative Stress and Inflammation

    PubMed Central

    Muñoz, Alexandra; Costa, Max

    2013-01-01

    There are many sources of nutritionally mediated oxidative stress that trigger inflammatory cascades along short and long time frames. These events are primarily mediated via NFκB. On the short-term scale postprandial inflammation is characterized by an increase in circulating levels of IL-6 and TNF-α and is mirrored on the long-term by proinflammatory gene expression changes in the adipocytes and peripheral blood mononuclear cells (PBMCs) of obese individuals. Specifically the upregulation of CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL2/MIP-2α, and CXCL3/MIP-2β is noted because these changes have been observed in both adipocytes and PBMC of obese humans. In comparing numerous human intervention studies it is clear that pro-inflammatory and anti-inflammatory consumption choices mediate gene expression in humans adipocytes and peripheral blood mononuclear cells. Arachidonic acid and saturated fatty acids (SFAs) both demonstrate an ability to increase pro-inflammatory IL-8 along with numerous other inflammatory factors including IL-6, TNFα, IL-1β, and CXCL1 for arachidonic acid and IGB2 and CTSS for SFA. Antioxidant rich foods including olive oil, fruits, and vegetables all demonstrate an ability to lower levels of IL-6 in PBMCs. Thus, dietary choices play a complex role in the mediation of unavoidable oxidative stress and can serve to exacerbate or dampen the level of inflammation. PMID:23844276

  7. Salivary Nitric Oxide, a Biomarker for Stress and Anxiety?

    PubMed Central

    Al-Smadi, Ahmed Mohammad; Ashour, Ala Fawzi; Al-Awaida, Wajdy

    2016-01-01

    Objective To investigate if salivary nitrate correlates to the daily psychological stress and anxiety in a group of human subjects. Methods The convenient sample recruitment method was employed; data from seventy three subjects were analyzed. The Perceived Stress Scale (PSS) and Hamilton Anxiety Rating Scale (HAM-A) inventories were used to determine stress and anxiety scores respectively. Salivary nitric oxide was measured through nitrate (NOx) levels using the Griess reaction method. Results Although stress and anxiety were correlated. No significant correlation exists between salivary nitrate and daily psychological stress and anxiety in the study's participants. Conclusion While all previous studies focused NOx levels in acute stress models. This is the first study to investigate the correlation between salivary nitrates and daily psychological stress and anxiety. Although stress and anxiety were correlated, there is no correlation between salivary nitrates and daily psychological stress and anxiety. Further studies are required to investigate this correlation using other biological samples such as plasma. PMID:27247597

  8. Clinical Relevance of Biomarkers of Oxidative Stress

    PubMed Central

    Frijhoff, Jeroen; Winyard, Paul G.; Zarkovic, Neven; Davies, Sean S.; Stocker, Roland; Cheng, David; Knight, Annie R.; Taylor, Emma Louise; Oettrich, Jeannette; Ruskovska, Tatjana; Gasparovic, Ana Cipak; Cuadrado, Antonio; Weber, Daniela; Poulsen, Henrik Enghusen; Grune, Tilman; Schmidt, Harald H.H.W.

    2015-01-01

    Abstract Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. Future Directions: Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 23, 1144–1170. PMID:26415143

  9. A Meta-Analysis of Oxidative Stress Markers in Depression

    PubMed Central

    Liu, Tao; Zhong, Shuming; Liao, Xiaoxiao; Chen, Jian; He, Tingting; Lai, Shunkai; Jia, Yanbin

    2015-01-01

    Object Studies have suggested that depression was accompanied by oxidative stress dysregulation, including abnormal total antioxidant capacity (TAC), antioxidants, free radicals, oxidative damage and autoimmune response products. This meta-analysis aims to analyse the clinical data quantitatively by comparing the oxidative stress markers between depressed patients and healthy controls. Methods A search was conducted to collect the studies that measured the oxidative stress markers in depressed patients. Studies were searched in Embase, Medline, PsychINFO, Science direct, CBMDisc, CNKI and VIP from 1990 to May 2015. Data were subjected to meta-analysis by using a random effects model for examining the effect sizes of the results. Bias assessments, heterogeneity assessments and sensitivity analyses were also conducted. Results 115 articles met the inclusion criteria. Lower TAC was noted in acute episodes (AEs) of depressed patients (p<0.05). Antioxidants, including serum paraoxonase, uric acid, albumin, high-density lipoprotein cholesterol and zinc levels were lower than controls (p<0.05); the serum uric acid, albumin and vitamin C levels were increased after antidepressant therapy (p<0.05). Oxidative damage products, including red blood cell (RBC) malondialdehyde (MDA), serum MDA and 8-F2-isoprostanes levels were higher than controls (p<0.05). After antidepressant medication, RBC and serum MDA levels were decreased (p<0.05). Moreover, serum peroxide in free radicals levels were higher than controls (p<0.05). There were no differences between the depressed patients and controls for other oxidative stress markers. Conclusion This meta-analysis supports the facts that the serum TAC, paraoxonase and antioxidant levels are lower, and the serum free radical and oxidative damage product levels are higher than controls in depressed patients. Meanwhile, the antioxidant levels are increased and the oxidative damage product levels are decreased after antidepressant medication

  10. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis.

    PubMed

    D'Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M; Mitsumoto, Hiroshi

    2013-12-01

    Sporadic amyotrophic lateral sclerosis (ALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/antioxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting that multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly supports the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  11. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  12. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  13. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  14. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  15. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    PubMed

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy.

  16. Oxidative Stress Related Diseases in Newborns

    PubMed Central

    Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  17. Oxidative Stress Related Diseases in Newborns.

    PubMed

    Ozsurekci, Yasemin; Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  18. Correlation of Zinc with Oxidative Stress Biomarkers

    PubMed Central

    Morales-Suárez-Varela, María; Llopis-González, Agustín; González-Albert, Verónica; López-Izquierdo, Raúl; González-Manzano, Isabel; Cháves, Javier; Huerta-Biosca, Vicente; Martin-Escudero, Juan C.

    2015-01-01

    Hypertension and smoking are related with oxidative stress (OS), which in turn reports on cellular aging. Zinc is an essential element involved in an individual’s physiology. The aim of this study was to evaluate the relation of zinc levels in serum and urine with OS and cellular aging and its effect on the development of hypertension. In a Spanish sample with 1500 individuals, subjects aged 20–59 years were selected, whose zinc intake levels fell within the recommended limits. These individuals were classified according to their smoking habits and hypertensive condition. A positive correlation was found (Pearson’s C = 0.639; p = 0.01) between Zn serum/urine quotient and oxidized glutathione levels (GSSG). Finally, risk of hypertension significantly increased when the GSSG levels exceeded the 75 percentile; OR = 2.80 (95%CI = 1.09–7.18) and AOR = 3.06 (95%CI = 0.96–9.71). Low zinc levels in serum were related with OS and cellular aging and were, in turn, to be a risk factor for hypertension.  PMID:25774936

  19. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context.

  20. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context. PMID:25542633

  1. Oxidative stress and oxidative damage in chemical carcinogenesis

    SciTech Connect

    Klaunig, James E. Wang Zemin; Pu Xinzhu; Zhou Shaoyu

    2011-07-15

    Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

  2. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  3. [Oxidative stress in bipolar affective disorder].

    PubMed

    Reininghaus, E Z; Zelzer, S; Reininghaus, B; Lackner, N; Birner, A; Bengesser, S A; Fellendorf, F T; Kapfhammer, H-P; Mangge, H

    2014-09-01

    The results of mortality studies have indicated that medical conditions, such as cardiovascular disease, obesity and diabetes are the most important causes of mortality among patients with bipolar disorder. The reasons for the increased incidence and mortality are not fully understood. Oxidative stress and an inadequate antioxidative system might be one missing link and could also help to further elucidate the pathophysiological basis of bipolar disorder. This article provides a comprehensive review of oxidative stress in general and about the existing data for bipolar disorder. In addition information is given about possible therapeutic strategies to reduce oxidative stress and the use in bipolar disorder. PMID:24441847

  4. Bacterial responses to photo-oxidative stress

    PubMed Central

    Ziegelhoffer, Eva C.; Donohue, Timothy J.

    2009-01-01

    Singlet oxygen is one of several reactive oxygen species that can destroy biomolecules, microorganisms and other cells. Traditionally, the response to singlet oxygen has been termed photo-oxidative stress, as light-dependent processes in photosynthetic cells are major biological sources of singlet oxygen. Recent work identifying a core set of singlet oxygen stress response genes across various bacterial species highlights the importance of this response for survival by both photosynthetic and non-photosynthetic cells. Here, we review how bacterial cells mount a transcriptional response to photo-oxidative stress in the context of what is known about bacterial stress responses to other reactive oxygen species. PMID:19881522

  5. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  6. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease.

    PubMed

    Mota, Sandra I; Costa, Rui O; Ferreira, Ildete L; Santana, Isabel; Caldeira, Gladys L; Padovano, Carmela; Fonseca, Ana C; Baldeiras, Inês; Cunha, Catarina; Letra, Liliana; Oliveira, Catarina R; Pereira, Cláudia M F; Rego, Ana Cristina

    2015-07-01

    Oxidative stress and endoplasmic reticulum (ER) stress have been associated with Alzheimer's disease (AD) progression. In this study we analyzed whether oxidative stress involving changes in Nrf2 and ER stress may constitute early events in AD pathogenesis by using human peripheral blood cells and an AD transgenic mouse model at different disease stages. Increased oxidative stress and increased phosphorylated Nrf2 (p(Ser40)Nrf2) were observed in human peripheral blood mononuclear cells (PBMCs) isolated from individuals with mild cognitive impairment (MCI). Moreover, we observed impaired ER Ca2+ homeostasis and increased ER stress markers in PBMCs from MCI individuals and mild AD patients. Evidence of early oxidative stress defense mechanisms in AD was substantiated by increased p(Ser40)Nrf2 in 3month-old 3xTg-AD male mice PBMCs, and also with increased nuclear Nrf2 levels in brain cortex. However, SOD1 protein levels were decreased in human MCI PBMCs and in 3xTg-AD mice brain cortex; the latter further correlated with reduced SOD1 mRNA levels. Increased ER stress was also detected in the brain cortex of young female and old male 3xTg-AD mice. We demonstrate oxidative stress and early Nrf2 activation in AD human and mouse models, which fails to regulate some of its targets, leading to repressed expression of antioxidant defenses (e.g., SOD-1), and extending to ER stress. Results suggest markers of prodromal AD linked to oxidative stress associated with Nrf2 activation and ER stress that may be followed in human peripheral blood mononuclear cells.

  7. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio).

    PubMed

    Brun, Nadja Rebecca; Christen, Verena; Furrer, Gerhard; Fent, Karl

    2014-10-01

    Indium and indium tin oxide (ITO) are extensively used in electronic technologies. They may be introduced into the environment during production, use, and leaching from electronic devices at the end of their life. At present, surprisingly little is known about potential ecotoxicological implications of indium contamination. Here, molecular effects of indium nitrate (In(NO3)3) and ITO nanoparticles were investigated in vitro in zebrafish liver cells (ZFL) cells and in zebrafish embryos and novel insights into their molecular effects are provided. In(NO3)3 led to induction of endoplasmic reticulum (ER) stress response, induction of reactive oxygen species (ROS) and induction of transcripts of pro-apoptotic genes and TNF-α in vitro at a concentration of 247 μg/L. In(NO3)3 induced the ER stress key gene BiP at mRNA and protein level, as well as atf6, which ultimately led to induction of the important pro-apoptotic marker gene chop. The activity of In(NO3)3 on ER stress induction was much stronger than that of ITO, which is explained by differences in soluble free indium ion concentrations. The effect was also stronger in ZFL cells than in zebrafish embryos. Our study provides first evidence of ER stress and oxidative stress induction by In(NO3)3 and ITO indicating a critical toxicological profile that needs further investigation.

  8. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    PubMed Central

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  9. Oxidative stress in normal and diabetic rats.

    PubMed

    Torres, M D; Canal, J R; Pérez, C

    1999-01-01

    Parameters related to oxidative stress were studied in a group of 10 Wistar diabetic rats and 10 control rats. The levels of total erythrocyte catalase activity in the diabetic animals were significantly (p<0.001) greater than the control levels. The diabetic animals presented an amount of vitamin E far greater (p<0.0001) than the controls, as was also the case for the vitaminE/polyunsaturated fatty acid (PUFA) and vitaminE/linoleic acid (C18:2) ratios. Greater vitaminE/triglyceride (TG) ratio, however, appeared in the control group. The corresponding vitamin A ratios (vitaminA/TG, vitaminA/PUFA, vitaminA/C 18:2) were higher in the control group. Our work corroborates the findings that fatty acid metabolism presents alterations in the diabetes syndrome and that the antioxidant status is affected. PMID:10523056

  10. Oxidized Extracellular DNA as a Stress Signal in Human Cells

    PubMed Central

    Ermakov, Aleksei V.; Konkova, Marina S.; Kostyuk, Svetlana V.; Izevskaya, Vera L.; Veiko, Natalya N.

    2013-01-01

    The term “cell-free DNA” (cfDNA) was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA). Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DNA could serve as a stress signal that promotes irradiation-induced bystander effect. Evidence points to TLR9 as a possible candidate for oxidized DNA sensor. An exposure to oxidized ecDNA stimulates a synthesis of reactive oxygen species (ROS) that evokes an adaptive response that includes transposition of the homologous loci within the nucleus, polymerization and the formation of the stress fibers of the actin, as well as activation of the ribosomal gene expression, and nuclear translocation of NF-E2 related factor-2 (NRF2) that, in turn, mediates induction of phase II detoxifying and antioxidant enzymes. In conclusion, the oxidized DNA is a stress signal released in response to oxidative stress in the cultured cells and, possibly, in the human body; in particular, it might contribute to systemic abscopal effects of localized irradiation treatments. PMID:23533696

  11. Melamine Induces Oxidative Stress in Mouse Ovary

    PubMed Central

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathi-one peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway. PMID:26545251

  12. Melamine Induces Oxidative Stress in Mouse Ovary.

    PubMed

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  13. Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana1

    PubMed Central

    Richards, Keith D.; Schott, Eric J.; Sharma, Yogesh K.; Davis, Keith R.; Gardner, Richard C.

    1998-01-01

    Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al. PMID:9449849

  14. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats.

    PubMed

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases.

  15. Mycotoxin-Containing Diet Causes Oxidative Stress in the Mouse

    PubMed Central

    Hou, Yan-Jun; Zhao, Yong-Yan; Xiong, Bo; Cui, Xiang-Shun; Kim, Nam-Hyung; Xu, Yin-Xue; Sun, Shao-Chen

    2013-01-01

    Mycotoxins which mainly consist of Aflatoxin (AF), Zearalenone (ZEN) and Deoxynivalenol (DON) are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize) was incorporated into the diet at three different doses (0, 5 and 20%) to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx) activity and malondialdehyde (MDA) level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT) activity in the serum, liver and kidney as well as superoxide dismutase (SOD) activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse. PMID:23555961

  16. [Mitochondria and oxidative stress participation in renal inflammatory process].

    PubMed

    Manucha, Walter

    2014-01-01

    The apoptosis and renal fibrosis are processes inherent to the chronic kidney disease, and consequently a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with chronic renal disease associated to an increase of the oxidative stress. The injured tubular cells linked to the interstitial macrophages and myofibroblasts produce cytokines and growth factors that encourage an inflammatory condition, inducing the apoptosis of the tubular cells and enabling the accumulation of the extracellular matrix. The angiotensin II has a central role in the renal fibrogenesis leading to a rapid progression of the chronic kidney disease. The growing levels of the angiotensin II induce pro-inflammatory cytokines, the activation of NF-kB, adhesion molecules,chemokines, growth factors, and oxidative stress. The current evidence suggests that the angiotensin II increases the mitochondrial oxidative stress, regulates the induction of the apoptosis and conditions the inflammatory process. Therefore the mitochondria and the oxidative stress would play a determinant role in the renal inflammatory process. Finally, this review summarizes our present knowledge regarding the possible mechanisms that would contribute to the apoptosis conditioned by inflammation and/or oxidative stress during the chronic renal disease. Additionally, a new concept of the anti-inflammatory tools is proposed to regulate the mitochondrial oxidative stress that would directly affect the inflammatory process and apoptosis. This concept could have positive consequences on the treatment of renal inflammatory pathologies and related diseases.

  17. Trap generation and occupation in stressed gate oxides under spatially variable oxide electric field

    NASA Astrophysics Data System (ADS)

    Avni, E.; Shappir, J.

    1987-11-01

    The spatial variation of the oxide field in metal-oxide-silicon devices due to charge trapping under electron injection stress is included in a self-consistent trapping model. The model predicts the spatial distribution of the stress-generated trapping sites and their occupation level under different conditions of applied voltages and total injected charge. The calculated results agree quite well with the experimental results of prolonged charge injection, as expressed in shifts of the flatband voltage.

  18. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.

  19. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  20. Oxidative stress in aging human skin.

    PubMed

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-04-21

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.

  1. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  2. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  3. Chlorophytum borivilianum Root Extract Maintains near Normal Blood Glucose, Insulin and Lipid Profile Levels and Prevents Oxidative Stress in the Pancreas of Streptozotocin-Induced Adult Male Diabetic Rats

    PubMed Central

    Giribabu, Nelli; Kumar, Kilari Eswar; Rekha, Somesula Swapna; Muniandy, Sekaran; Salleh, Naguib

    2014-01-01

    The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes. Methods: C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated. Results: C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-β cell functioning index, number of Islets/pancreas, number of β-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats. Conclusions: C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes. PMID:25249786

  4. Diabetes, Oxidative Stress and Physical Exercise

    PubMed Central

    Atalay, Mustafa; Laaksonen, David E.

    2002-01-01

    Oxidative stress, an imbalance between the generation of reactive oxygen species and antioxidant defense capacity of the body, is closely associated with aging and a number of diseases including cancer, cardiovascular diseases, diabetes and diabetic complications. Several mechanisms may cause oxidative insult in diabetes, although their exact contributions are not entirely clear. Accumulating evidence points to many interrelated mechanisms that increase production of reactive oxygen and nitrogen species or decrease antioxidant protection in diabetic patients. In modern medicine, regular physical exercise is an important tool in the prevention and treatment of diseases including diabetes. Although acute exhaustive exercise increases oxidative stress, exercise training has been shown to up regulate antioxidant protection. This review aims to summarize the mechanisms of increased oxidative stress in diabetes and with respect to acute and chronic exercise. PMID:24672266

  5. Oxidative Stress in Placenta: Health and Diseases

    PubMed Central

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  6. Mammalian Metallothionein-2A and Oxidative Stress

    PubMed Central

    Ling, Xue-Bin; Wei, Hong-Wei; Wang, Jun; Kong, Yue-Qiong; Wu, Yu-You; Guo, Jun-Li; Li, Tian-Fa; Li, Ji-Ke

    2016-01-01

    Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy. PMID:27608012

  7. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  8. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  9. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.

  10. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  11. Role of oxidative stress on platelet hyperreactivity during aging.

    PubMed

    Fuentes, Eduardo; Palomo, Iván

    2016-03-01

    Thrombotic events are common causes of morbidity and mortality in the elderly. Age-accelerated vascular injury is commonly considered to result from increased oxidative stress. There is abundant evidence that oxidative stress regulate several components of thrombotic processes, including platelet activation. Thus oxidative stress can trigger platelet hyperreactivity by decreasing nitric oxide bioavailability. Therefore oxidative stress measurement may help in the early identification of asymptomatic subjects at risk of thrombosis. In addition, oxidative stress inhibitors and platelet-derived nitric oxide may represent a novel anti-aggregation/-activation approach. In this article the relative contribution of oxidative stress and platelet activation in aging is explored.

  12. Effects of oxidative stress on erythrocyte deformability

    NASA Astrophysics Data System (ADS)

    Bayer, Rainer; Wasser, Gerd

    1996-05-01

    Hemolysis as a consequence of open heart surgery is well investigated and explained by the oxidative and/or mechanical stress produced, e.g. by the heart lung machine. In Europe O3 is widely used by physicians, dedicated to alternative medicine. They apply O3 mostly by means of the Major Autohematotherapy (MAH, a process of removing 50 - 100 ml of blood, adding O3 gas to it and returning it to the patient's body). No controlled studies on the efficacy of O3 are available so far, but several anecdotal cases appear to confirm that MAH improves microcirculation, possibly due to increased RBC flexibility. Most methods established to estimate RBC deformability are hard to standardize and include high error of measurement. For our present investigation we used the method of laser diffraction in combination with image analysis. The variation coefficient of the measurement is less than 1%. Previous investigations of our group have shown, that mechanical stress decreases deformability, already at rather low levels of mechanical stress which do not include hemolysis. On the other hand exposure to O2, H2O2 or O3 does not alter the deformability of RBC and--except O3--does not induce considerably hemolysis. However this only holds true if deformability (shear rates 36/s - 2620/s) is determined in isotonic solutions. In hypertonic solutions O3 decreases RBC deformability, but improves it in hypotonic solutions. The results indicate that peroxidative stress dehydrates RBC and reduces their size. To explain the positive effect of O3 on the mechanical fragility of RBC we tentatively assume, that the reduction of RBC size facilitates the feed through small pore filters. In consequence, the size reduction in combination with undisturbed deformability at iso-osmolarity may have a beneficial effect on microcirculation.

  13. Markers of Oxidative Stress and Neuroprogression in Depression Disorder.

    PubMed

    Vaváková, Magdaléna; Ďuračková, Zdeňka; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed.

  14. Markers of Oxidative Stress and Neuroprogression in Depression Disorder

    PubMed Central

    Vaváková, Magdaléna; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed. PMID:26078821

  15. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  16. Mild oxidative stress is beneficial for sperm telomere length maintenance

    PubMed Central

    Mishra, Swetasmita; Kumar, Rajeev; Malhotra, Neena; Singh, Neeta; Dada, Rima

    2016-01-01

    AIM: To evaluate telomere length in sperm DNA and its correlation with oxidative stress (normal, mild, severe). METHODS: The study included infertile men (n = 112) and age matched fertile controls (n = 102). The average telomere length from the sperm DNA was measured using a quantitative real time PCR based assay. Seminal reactive oxygen species (ROS) and 8-Isoprostane (8-IP) levels were measured by chemiluminescence assay and ELISA respectively. RESULTS: Average sperm telomere length in infertile men and controls was 0.609 ± 0.15 and 0.789 ± 0.060, respectively (P < 0.0001). Seminal ROS levels in infertile was higher [66.61 ± 28.32 relative light units (RLU)/s/million sperm] than in controls (14.04 ± 10.67 RLU/s/million sperm) (P < 0.0001). The 8-IP level in infertile men was significantly higher (421.55 ± 131.29 pg/mL) than in controls (275.94 ± 48.13 pg/mL) (P < 0.001). When correlated to oxidative stress, in normal range of oxidative stress (ROS, 0-21.3 RLU/s/million sperm) the average telomere length in cases was 0.663 ± 0.14, in mild oxidative stress (ROS, 21.3-35 RLU/s/million sperm) it was elevated (0.684 ± 0.12) and in severe oxidative stress (ROS > 35 RLU/s/million sperm) average telomere length was decreased to 0.595 ± 0.15. CONCLUSION: Mild oxidative stress results in lengthening of telomere length, but severe oxidative stress results in shorter telomeres. Although telomere maintenance is a complex trait, the study shows that mild oxidative stress is beneficial in telomere length maintenance and thus a delicate balance needs to be established to maximize the beneficial effects of free radicals and prevent harmful effects of supra physiological levels. Detailed molecular evaluation of telomere structure, its correlation with oxidative stress would aid in elucidating the cause of accelerated telomere length attrition. PMID:27376021

  17. Oxidative stress alters global histone modification and DNA methylation.

    PubMed

    Niu, Yingmei; DesMarais, Thomas L; Tong, Zhaohui; Yao, Yixin; Costa, Max

    2015-05-01

    The JmjC domain-containing histone demethylases can remove histone lysine methylation and thereby regulate gene expression. The JmjC domain uses iron Fe(II) and α-ketoglutarate (αKG) as cofactors in an oxidative demethylation reaction via hydroxymethyl lysine. We hypothesize that reactive oxygen species will oxidize Fe(II) to Fe(III), thereby attenuating the activity of JmjC domain-containing histone demethylases. To minimize secondary responses from cells, extremely short periods of oxidative stress (3h) were used to investigate this question. Cells that were exposed to hydrogen peroxide (H2O2) for 3h exhibited increases in several histone methylation marks including H3K4me3 and decreases of histone acetylation marks including H3K9ac and H4K8ac; preincubation with ascorbate attenuated these changes. The oxidative stress level was measured by generation of 2',7'-dichlorofluorescein, GSH/GSSG ratio, and protein carbonyl content. A cell-free system indicated that H2O2 inhibited histone demethylase activity where increased Fe(II) rescued this inhibition. TET protein showed a decreased activity under oxidative stress. Cells exposed to a low-dose and long-term (3 weeks) oxidative stress also showed increased global levels of H3K4me3 and H3K27me3. However, these global methylation changes did not persist after washout. The cells exposed to short-term oxidative stress also appeared to have higher activity of class I/II histone deacetylase (HDAC) but not class III HDAC. In conclusion, we have found that oxidative stress transiently alters the epigenetic program process through modulating the activity of enzymes responsible for demethylation and deacetylation of histones. PMID:25656994

  18. In vitro model suggests oxidative stress involved in keratoconus disease

    NASA Astrophysics Data System (ADS)

    Karamichos, D.; Hutcheon, A. E. K.; Rich, C. B.; Trinkaus-Randall, V.; Asara, J. M.; Zieske, J. D.

    2014-04-01

    Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype.

  19. Diabetic Cardiovascular Disease Induced by Oxidative Stress.

    PubMed

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M; Tsao, Philip S

    2015-10-23

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  20. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  1. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    PubMed Central

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  2. The impact of oxidative stress on hair.

    PubMed

    Trüeb, R M

    2015-12-01

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health. PMID:26574302

  3. The impact of oxidative stress on hair.

    PubMed

    Trüeb, R M

    2015-12-01

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health.

  4. Salivary markers of oxidative stress in oral diseases

    PubMed Central

    Tóthová, L'ubomíra; Kamodyová, Natália; Červenka, Tomáš; Celec, Peter

    2015-01-01

    Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis, and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status, and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis. PMID:26539412

  5. Linking phosphorus availability with photo-oxidative stress in plants.

    PubMed

    Hernández, Iker; Munné-Bosch, Sergi

    2015-05-01

    Plants have evolved a plethora of mechanisms to circumvent the potential damaging effects of living under low phosphorus availability in the soil. These mechanisms include different levels of organization, from root-shoot signalling at the whole-plant level to specific biochemical responses at the subcellular level, such as reductions in photosynthesis and the consequent activation of photo- and antioxidant mechanisms in chloroplasts. Some recent studies clearly indicate that severe phosphorus deficiency can lead to alterations in the photosynthetic apparatus, including reductions in CO2 assimilation rates, a down-regulation of photosynthesis-related genes and photoinhibition at the photosystem II level, thus causing potential photo-oxidative stress. Photo-oxidative stress is characterized by an increased production of reactive oxygen species in chloroplasts, which at low concentrations can serve a signalling, protective role, but when present at high concentrations can cause damage to lipids, proteins and nucleic acids, thus leading to irreversible injuries. We discuss here the mechanisms that phosphate-starved plants have evolved to withstand photo-oxidative stress, including changes at the subcellular level (e.g. activation of photo- and antioxidant protection mechanisms in chloroplasts), cellular and tissular levels (e.g. activation of photorespiration and anthocyanin accumulation) and whole-plant level (alterations in source-sink relationships modulated by hormones). Of particular importance is the current evidence demonstrating that phosphate-starved plants activate simultaneous responses at multiple levels, from transcriptional changes to root-shoot signalling, to prevent oxidative damage. In this review, we summarize current knowledge about the occurrence of photo-oxidative stress in phosphate-starved plants and highlight the mechanisms these plants have evolved to prevent oxidative damage under phosphorus limitation at the subcellular, cellular and whole

  6. Oxidative and nitrative stress in neurodegeneration.

    PubMed

    Cobb, Catherine A; Cole, Marsha P

    2015-12-01

    Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage. PMID:26024962

  7. Oxidative stress in pregnancy and reproduction.

    PubMed

    Duhig, Kate; Chappell, Lucy C; Shennan, Andrew H

    2016-09-01

    Oxidative stress is implicated in the pathophysiology of many reproductive complications including infertility, miscarriage, pre-eclampsia, fetal growth restriction and preterm labour. The presence of excess reactive oxygen species can lead to cellular damage of deoxyribonucleic acids, lipids and proteins. Antioxidants protect cells from peroxidation reactions, limiting cellular damage and helping to maintain cellular membrane integrity. There is overwhelming evidence for oxidative stress causing harm in reproduction. However, there is sparse evidence that supplementation with commonly used antioxidants (mostly vitamins C and E) makes any difference in overcoming oxidative stress or reversing disease processes. There may be potential for antioxidant therapy to ameliorate or prevent disease, but this requires a thorough understanding of the mechanism of action and specificity of currently used antioxidants. PMID:27630746

  8. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees.

  9. Contaminant-induced oxidative stress in fish: a mechanistic approach.

    PubMed

    Lushchak, Volodymyr I

    2016-04-01

    The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described.

  10. Contaminant-induced oxidative stress in fish: a mechanistic approach.

    PubMed

    Lushchak, Volodymyr I

    2016-04-01

    The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described. PMID:26607273

  11. Oxidative stress-induced calcium signalling in Aspergillus nidulans.

    PubMed

    Greene, Vilma; Cao, Hong; Schanne, Francis A X; Bartelt, Diana C

    2002-05-01

    The effects of oxidative stress on levels of calcium ion (Ca(2+)) in Aspergillus nidulans were measured using strains expressing aequorin in the cytoplasm (Aeq(cyt)) and mitochondria (Aeq(mt)). When oxidative stress was induced by exposure to 10-mM H(2)O(2), the mitochondrial calcium response (Ca(mt)(2+)) was greater than the change in cytoplasmic calcium (Ca(c)(2+)). The Ca(mt)(2+) response to H(2)O(2) was dose dependent, while the increase in [Ca(c)(2+)] did not change with increasing H(2)O(2). The increase in both [Ca(c)(2+)] and [Ca(mt)(2+)] in response to oxidative stress was enhanced by exposure of cells to Ca(2+). The presence of chelator in the external medium only partially inhibited the Ca(mt)(2+) and Ca(c)(2+) responses to oxidative stress. Reagents that alter calcium fluxes had varied effects on the Ca(mt)(2+) response to peroxide. Ruthenium red blocked the increase in [Ca(mt)(2+)], while neomycin caused an even greater increase in [Ca(mt)(2+)]. Treatment with ruthenium red and neomycin had no effect on the Ca(c)(2+) response. Bafilomycin A and oligomycin had no effect on either the mitochondrial or cytoplasmic response. Inhibitors of both voltage-regulated calcium channels and intracellular calcium release channels inhibited the Ca(2+)-dependent component of the Ca(mt)(2+) response to oxidative stress. We conclude that the more significant Ca(2+) response to oxidative stress occurs in the mitochondria and that both intracellular and extracellular calcium pools can contribute to the increases in [Ca(c)(2+)] and [Ca(mt)(2+)] induced by oxidative stress.

  12. Markers of Oxidative Stress during Diabetes Mellitus

    PubMed Central

    Tiwari, Brahm Kumar; Pandey, Kanti Bhooshan; Abidi, A. B.; Rizvi, Syed Ibrahim

    2013-01-01

    The prevalence of diabetes mellitus is rising all over the world. Uncontrolled state of hyperglycemia due to defects in insulin secretion/action leads to a variety of complications including peripheral vascular diseases, nephropathy, neuropathy, retinopathy, morbidity, and/or mortality. Large body of evidence suggests major role of reactive oxygen species/oxidative stress in development and progression of diabetic complications. In the present paper, we have discussed the recent researches on the biomarkers of oxidative stress during type 2 diabetes mellitus. PMID:26317014

  13. Oxidative Stress in Schizophrenia: An Integrated Approach

    PubMed Central

    Bitanihirwe, Byron K.Y.; Woo, Tsung-Ung W.

    2010-01-01

    Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioural and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-D-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons.[bkyb1] Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia. PMID:20974172

  14. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention. PMID:26596837

  15. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  16. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  17. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  18. Examining the relationships between egg cortisol and oxidative stress in developing wild sockeye salmon (Oncorhynchus nerka).

    PubMed

    Taylor, Jessica J; Sopinka, Natalie M; Wilson, Samantha M; Hinch, Scott G; Patterson, David A; Cooke, Steven J; Willmore, William G

    2016-10-01

    Maternally-derived hormones in oocytes, such as glucocorticoids (GCs), play a crucial role in embryo development in oviparous taxa. In fishes, maternal stressor exposure increases circulating and egg cortisol levels, the primary GC in fishes, as well as induces oxidative stress. Elevated egg cortisol levels modify offspring traits but whether maternal oxidative stress correlates with circulating and egg cortisol levels, and whether maternal/egg cortisol levels correlate with offspring oxidative stress have yet to be determined. The objective of this study was to examine the relationships among maternal and egg cortisol, and maternal and offspring oxidative stress to provide insight into the potential intergenerational effects of stressor exposure in sockeye salmon (Oncorhynchus nerka). Antioxidant concentration and oxidative stress were measured in maternal tissues (plasma, brain, heart and liver) as well as offspring developmental stages (pre-fertilization, 24h post-fertilization, eyed, and hatch), and were compared to both naturally-occurring and experimentally-elevated (via cortisol egg bath) levels of cortisol in eggs. Oxygen radical absorptive capacity of tissues from maternal sockeye salmon was measured spectrophotometrically and was not correlated with maternal or egg cortisol concentrations. Also, naturally-occurring and experimentally-elevated cortisol levels in eggs (to mimic maternal stress) did not affect oxidative stress or antioxidant capacity of the offspring. We conclude that the metrics of maternal stress examined in sockeye salmon (i.e., maternal/egg cortisol, maternal oxidative stress) are independent of each other, and that egg cortisol content does not influence offspring oxidative stress.

  19. Oxidative stress modulation in hepatitis C virus infected cells

    PubMed Central

    Lozano-Sepulveda, Sonia A; Bryan-Marrugo, Owen L; Cordova-Fletes, Carlos; Gutierrez-Ruiz, Maria C; Rivas-Estilla, Ana M

    2015-01-01

    Hepatitis C virus (HCV) replication is associated with the endoplasmic reticulum, where the virus can induce cellular stress. Oxidative cell damage plays an important role in HCV physiopathology. Oxidative stress is triggered when the concentration of oxygen species in the extracellular or intracellular environment exceeds antioxidant defenses. Cells are protected and modulate oxidative stress through the interplay of intracellular antioxidant agents, mainly glutathione system (GSH) and thioredoxin; and antioxidant enzyme systems such as superoxide dismutase, catalase, GSH peroxidase, and heme oxygenase-1. Also, the use of natural and synthetic antioxidants (vitamin C and E, N-acetylcysteine, glycyrrhizin, polyenylphosphatidyl choline, mitoquinone, quercetin, S-adenosylmethionine and silymarin) has already shown promising results as co-adjuvants in HCV therapy. Despite all the available information, it is not known how different agents with antiviral activity can interfere with the modulation of the cell redox state induced by HCV and decrease viral replication. This review describes an evidence-based consensus on molecular mechanisms involved in HCV replication and their relationship with cell damage induced by oxidative stress generated by the virus itself and cell antiviral machinery. It also describes some molecules that modify the levels of oxidative stress in HCV-infected cells. PMID:26692473

  20. Arterial Stiffness, Oxidative Stress, and Smoke Exposure in Wildland Firefighters

    PubMed Central

    Gaughan, Denise M.; Siegel, Paul D.; Hughes, Michael D.; Chang, Chiung-Yu; Law, Brandon F.; Campbell, Corey R.; Richards, Jennifer C.; Kales, Stefanos F.; Chertok, Marcia; Kobzik, Lester; Nguyen, Phuongson; O’Donnell, Carl R.; Kiefer, Max; Wagner, Gregory R.; Christiani, David C.

    2015-01-01

    Objectives To assess the association between exposure, oxidative stress, symptoms, and cardiorespiratory function in wildland firefighters. Methods We studied two Interagency Hotshot Crews with questionnaires, pulse wave analysis for arterial stiffness, spirometry, urinary 8-iso-prostaglandin F2α (8-isoprostane) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), and the smoke exposure marker (urinary levoglucosan). Arterial stiffness was assessed by examining levels of the aortic augmentation index, expressed as a percentage. An oxidative stress score comprising the average of z-scores created for 8-OHdG and 8-isoprostane was calculated. Results Mean augmentation index % was higher for participants with higher oxidative stress scores after adjusting for smoking status. Specifically for every one unit increase in oxidative stress score the augmentation index % increased 10.5% (95% CI: 2.5, 18.5%). Higher mean lower respiratory symptom score was associated with lower percent predicted forced expiratory volume in one second/forced vital capacity. Conclusions Biomarkers of oxidative stress may serve as indicators of arterial stiffness in wildland firefighters. PMID:24909863

  1. [Oxidative stress and inflammation: hypothesis for the mechanism of aging].

    PubMed

    Tsubota, Kazuo

    2007-03-01

    Oxidative stress due to free radicals is related to the pathogenesis of many chronic disorders including cancer, inflammation, and neurological diseases. Oxidative stress such as aging and light exposure is also considered to be associated with age-related macular degeneration and cataract. The ocular surface is chronically exposed to oxidative stress including ultraviolet light, the oxygen in air, and changes in oxygen pressure due to blinking. We demonstrated that a rat dry eye model with a jogging board showed corneal epithelial disoders and elevated levels of oxidative stress, suggesting that the pathogenesis of epithelial disorders in dry eye with low frequency of blinking is related to oxidative stress. Next, using a model of laser-induced choroidal neovascularization (CNV), we showed that angiotensin receptormediated inflammation is required for the development of CNV. We also demonstrated that mice deficient in superoxide dismutase (SOD) showed typical clinical features of AMD. Finally, we proposed our thoughts about regenerative medicine, that is, to maintain quiescent stem cells, we have to regulate the aging of stem cells. PMID:17402562

  2. Does aspirin-induced oxidative stress cause asthma exacerbation?

    PubMed

    Kacprzak, Dorota; Pawliczak, Rafał

    2015-06-19

    Aspirin-induced asthma (AIA) is a distinct clinical syndrome characterized by severe asthma exacerbations after ingestion of aspirin or other non-steroidal anti-inflammatory drugs. The exact pathomechanism of AIA remains unknown, though ongoing research has shed some light. Recently, more and more attention has been focused on the role of aspirin in the induction of oxidative stress, especially in cancer cell systems. However, it has not excluded the similar action of aspirin in other inflammatory disorders such as asthma. Moreover, increased levels of 8-isoprostanes, reliable biomarkers of oxidative stress in expired breath condensate in steroid-naïve patients with AIA compared to AIA patients treated with steroids and healthy volunteers, has been observed. This review is an attempt to cover aspirin-induced oxidative stress action in AIA and to suggest a possible related pathomechanism.

  3. Sudden infant death syndrome: oxidative stress.

    PubMed

    Reid, G M; Tervit, H

    1999-06-01

    In studies of oxidative stress in sudden infant death syndrome (SIDS) there were two major findings: (1) During normal post-natal development, there was a gradual decline in the number of Cu/Zn superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) immunoreactive neurons in the hippocampus and parahippocampus gyrus in the brain; (2) The total number of immunoreactive neurons was elevated in SIDS victims compared to age-matched controls in infants 6 months of age and under (1). SOD and neuronal aging and degeneration in the hippocampus and neocortex were features of SIDS, Alzheimer's disease and Down's syndrome. In the SIDS study of infants from 3-6 months of age, the elevation of SOD in SIDS victims was significant, whereas no significant elevation of GSHPx was detected. An imbalance between SOD and GSHPx was said to be crucial in the prevention of toxicity of free radicals (1). Zinc-deficient cells cannot up-regulate gene expression of the scavenger enzymes SOD and GSHPx in cells exposed to high levels of superoxide and hydrogen peroxide (2). GSHPx coupled to reduced nicotine adenine diphosphate (NADPH) regenerating systems via glutathione reductase is virtually able to guarantee an effective protection of biological structures against oxidative attack (22). When the capacity of the cell to regenerate GSH is exceeded - primarily due to an insufficient supply of NADPH-oxidised glutathione (GSSG) is released from the cell and protein synthesis turns off (20). We hypothesize that the increased incidence of aging and neuronal death and increased incidence of SOD and GSHPx reactive neurons in early post-natal development indicates an increased up-regulation of gene expression of scavenger enzymes during high exposure to oxidative stress after birth. GSH-dependent peroxide metabolism is linked to the pentose phosphate shunt via NADPH-dependent glutathione reductase (GR). GSHPx is a selenium containing enzyme which together with catalase (CAT) SOD and vitamin E

  4. Proteomic analysis of seminal fluid from men exhibiting oxidative stress

    PubMed Central

    2013-01-01

    Background Seminal plasma serves as a natural reservoir of antioxidants. It helps to remove excessive formation of reactive oxygen species (ROS) and consequently, reduce oxidative stress. Proteomic profiling of seminal plasma proteins is important to understand the molecular mechanisms underlying oxidative stress and sperm dysfunction in infertile men. Methods This prospective study consisted of 52 subjects: 32 infertile men and 20 healthy donors. Once semen and oxidative stress parameters were assessed (ROS, antioxidant concentration and DNA damage), the subjects were categorized into ROS positive (ROS+) or ROS negative (ROS-). Seminal plasma from each group was pooled and subjected to proteomics analysis. In-solution digestion and protein identification with liquid chromatography tandem mass spectrometry (LC-MS/MS), followed by bioinformatics analyses was used to identify and characterize potential biomarker proteins. Results A total of 14 proteins were identified in this analysis with 7 of these common and unique proteins were identified in both the ROS+ and ROS- groups through MASCOT and SEQUEST analyses, respectively. Prolactin-induced protein was found to be more abundantly present in men with increased levels of ROS. Gene ontology annotations showed extracellular distribution of proteins with a major role in antioxidative activity and regulatory processes. Conclusions We have identified proteins that help protect against oxidative stress and are uniquely present in the seminal plasma of the ROS- men. Men exhibiting high levels of ROS in their seminal ejaculate are likely to exhibit proteins that are either downregulated or oxidatively modified, and these could potentially contribute to male infertility. PMID:24004880

  5. Investigating First Year Education Students' Stress Level

    ERIC Educational Resources Information Center

    Geng, Gretchen; Midford, Richard

    2015-01-01

    This paper investigated the stress levels of first-year education students who undertake teaching practicum and theory units during their first year of teacher education program. First, 139 first-year and 143 other years' education students completed the PSS-10 scale, which measures perceived level of stress. Then, 147 first-year education…

  6. Reproductive Benefit of Oxidative Damage: An Oxidative Stress “Malevolence”?

    PubMed Central

    Poljsak, B.; Milisav, I.; Lampe, T.; Ostan, I.

    2011-01-01

    High levels of reactive oxygen species (ROS) compared to antioxidant defenses are considered to play a major role in diverse chronic age-related diseases and aging. Here we present an attempt to synthesize information about proximate oxidative processes in aging (relevant to free radical or oxidative damage hypotheses of aging) with an evolutionary scenario (credited here to Dawkins hypotheses) involving tradeoffs between the costs and benefits of oxidative stress to reproducing organisms. Oxidative stress may be considered a biological imperfection; therefore, the Dawkins' theory of imperfect adaptation of beings to environment was applied to the role of oxidative stress in processes like famine and infectious diseases and their consequences at the molecular level such as mutations and cell signaling. Arguments are presented that oxidative damage is not necessarily an evolutionary mistake but may be beneficial for reproduction; this may prevail over its harmfulness to health and longevity in evolution. Thus, Dawkins' principle of biological “malevolence” may be an additional biological paradigm for explaining the consequences of oxidative stress. PMID:21969876

  7. Oxidative stress and tardive dyskinesia: pharmacogenetic evidence.

    PubMed

    Cho, Chul-Hyun; Lee, Heon-Jeong

    2013-10-01

    Tardive dyskinesia (TD) is a serious adverse effect of long-term antipsychotic use. Because of genetic susceptibility for developing TD and because it is difficult to predict and prevent its development prior to or during the early stages of medication, pharmacogenetic research of TD is important. Additionally, these studies enhance our knowledge of the genetic mechanisms underlying abnormal dyskinetic movements, such as Parkinson's disease. However, the pathophysiology of TD remains unclear. The oxidative stress hypothesis of TD is one of the possible pathophysiologic models for TD. Preclinical and clinical studies of the oxidative stress hypothesis of TD indicate that neurotoxic free radical production is likely a consequence of antipsychotic medication and is related to the occurrence of TD. Several studies on TD have focused on examining the genes involved in oxidative stress. Among them, manganese superoxide dismutase gene Ala-9Val polymorphisms show a relatively consistent association with TD susceptibility, although not all studies support this. Numerous pharmacogenetic studies have found a positive relationship between TD and oxidative stress based on genes involved in the antioxidant defense mechanism, dopamine turnover and metabolism, and other antioxidants such as estrogen and melatonin. However, many of the positive findings have not been replicated. We expect that more research will be needed to address these issues. PMID:23123399

  8. Oxidative Stress Control by Apicomplexan Parasites

    PubMed Central

    Izui, Natália M.; Schettert, Isolmar; Liebau, Eva

    2015-01-01

    Apicomplexan parasites cause infectious diseases that are either a severe public health problem or an economic burden. In this paper we will shed light on how oxidative stress can influence the host-pathogen relationship by focusing on three major diseases: babesiosis, coccidiosis, and toxoplasmosis. PMID:25722976

  9. Oxidative stress and reactive oxygen species.

    PubMed

    Galli, Francesco; Piroddi, Marta; Annetti, Claudia; Aisa, Cristina; Floridi, Emanuela; Floridi, Ardesio

    2005-01-01

    This article discusses different aspects concerning classification/nomenclature, biochemical properties and pathophysiological roles of reactive oxygen species (ROS) which are pivotal to interpret the concept of oxidative stress. In vitro studies in both the prokaryotes and eukaryotes clearly demonstrate that exogenous or constitutive and inducible endogenous sources of ROS together with cofactors such as transition metals can damage virtually all the biomolecules. This adverse chemistry is at the origin of structural and metabolic defects that ultimately may lead to cell dysfunction and death as underlying mechanisms in tissue degeneration processes. The same biomolecular interpretation of aging has been proposed to embodies an oxidative stress-based process and oxidative stress may virtually accompany all the inflammatory events. As a consequence, ROS have proposed to play several roles in the pathogenesis of chronic-degenerative conditions, such as athero-thrombotic events, neurodegeneration, cancer, some forms of anemia, auto-immune diseases, and the entire comorbidity of uremia and diabetes. Nowadays, the chance to investigate biochemical and toxicological aspects of ROS with advanced biomolecular tools has, if needed, still more emphasized the interest on this area of biomedicine. These technological advancements and the huge information available in literature represent in our time a challenge to further understand the clinical meaning of oxidative stress and to develop specific therapeutic strategies.

  10. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response.

    PubMed

    Busch, Andrea W U; Montgomery, Beronda L

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  11. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  12. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress.

    PubMed

    Wages, Phillip A; Lavrich, Katelyn S; Zhang, Zhenfa; Cheng, Wan-Yun; Corteselli, Elizabeth; Gold, Avram; Bromberg, Philip; Simmons, Steven O; Samet, James M

    2015-12-21

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0-1000 μM 1,2-NQ for 0-30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress.

  13. Oxidative stress responses and NRF2 in human leukaemia.

    PubMed

    Abdul-Aziz, Amina; MacEwan, David J; Bowles, Kristian M; Rushworth, Stuart A

    2015-01-01

    Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently been identified to have dysregulated metabolism in human leukaemia. This suggests that critical balance of intracellular ROS levels is required for cancer cell function, growth, and survival. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor plays a dual role in cancer. Primarily, NRF2 is a transcription factor functioning to protect nonmalignant cells from malignant transformation and oxidative stress through transcriptional activation of detoxifying and antioxidant enzymes. However, once malignant transformation has occurred within a cell, NRF2 functions to protect the tumour from oxidative stress and chemotherapy-induced cytotoxicity. Moreover, inhibition of the NRF2 oxidative stress pathway in leukaemia cells renders them more sensitive to cytotoxic chemotherapy. Our improved understanding of NRF2 biology in human leukaemia may permit mechanisms by which we could potentially improve future cancer therapies. This review highlights the mechanisms by which leukaemic cells exploit the NRF2/ROS response to promote their growth and survival.

  14. Oxidative Stress Responses and NRF2 in Human Leukaemia

    PubMed Central

    Abdul-Aziz, Amina; MacEwan, David J.; Bowles, Kristian M.; Rushworth, Stuart A.

    2015-01-01

    Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently been identified to have dysregulated metabolism in human leukaemia. This suggests that critical balance of intracellular ROS levels is required for cancer cell function, growth, and survival. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor plays a dual role in cancer. Primarily, NRF2 is a transcription factor functioning to protect nonmalignant cells from malignant transformation and oxidative stress through transcriptional activation of detoxifying and antioxidant enzymes. However, once malignant transformation has occurred within a cell, NRF2 functions to protect the tumour from oxidative stress and chemotherapy-induced cytotoxicity. Moreover, inhibition of the NRF2 oxidative stress pathway in leukaemia cells renders them more sensitive to cytotoxic chemotherapy. Our improved understanding of NRF2 biology in human leukaemia may permit mechanisms by which we could potentially improve future cancer therapies. This review highlights the mechanisms by which leukaemic cells exploit the NRF2/ROS response to promote their growth and survival. PMID:25918581

  15. IGF-1, oxidative stress, and atheroprotection

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  16. Measuring Science Teachers' Stress Level Triggered by Multiple Stressful Conditions

    ERIC Educational Resources Information Center

    Halim, Lilia; Samsudin, Mohd Ali; Meerah, T. Subahan M.; Osman, Kamisah

    2006-01-01

    The complexity of science teaching requires science teachers to encounter a range of tasks. Some tasks are perceived as stressful while others are not. This study aims to investigate the extent to which different teaching situations lead to different stress levels. It also aims to identify the easiest and most difficult conditions to be regarded…

  17. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo; Aschner, Michael; Rocha, Joao B.T.

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  18. Oxidative stress and DNA damage in agricultural workers.

    PubMed

    Kisby, Glen E; Muniz, Juan F; Scherer, Jennifer; Lasarev, Michael R; Koshy, Mary; Kow, Yoke W; McCauley, Linda

    2009-01-01

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A pilot study of pesticide applicators and farm workers working in the fruit orchards of Oregon (i.e., apples, pears) was conducted to examine the relationship between organophosphate (OP) pesticide exposure and oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay) and serum analyzed for lipid peroxides (i.e., malondialdehyde [MDA]). Cellular DNA damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farm workers and applicators (p < .001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farm workers and applicators, respectively, than in controls. Serum MDA levels were 4.9 times and 24 times higher in farm workers and applicators, respectively, than in controls. DNA damage and oxidative DNA repair were significantly greater in lymphocytes from applicators and farm workers when compared with controls. A separate field study showed that DNA damage was also significantly greater (p < .001) in buccal cells (i.e., leukocytes) collected from migrant farm workers working with fungicides in the berry crops in Oregon. Markers of oxidative stress (i.e., reactive oxygen species, reduced levels of glutathione) and oxidative DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and cancer. PMID:19437279

  19. Inflammatory and oxidative stress in rotavirus infection

    PubMed Central

    Guerrero, Carlos A; Acosta, Orlando

    2016-01-01

    Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines. PMID:27175349

  20. Multimarker Screening of Oxidative Stress in Aging

    PubMed Central

    Syslová, Kamila; Böhmová, Adéla; Kuzma, Marek; Pelclová, Daniela; Kačer, Petr

    2014-01-01

    Aging is a complex process of organism decline in physiological functions. There is no clear theory explaining this phenomenon, but the most accepted one is the oxidative stress theory of aging. Biomarkers of oxidative stress, substances, which are formed during oxidative damage of phospholipids, proteins, and nucleic acids, are present in body fluids of diseased people as well as the healthy ones (in a physiological concentration). 8-iso prostaglandin F2α is the most prominent biomarker of phospholipid oxidative damage, o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine are biomarkers of protein oxidative damage, and 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanosine are biomarkers of oxidative damage of nucleic acids. It is thought that the concentration of biomarkers increases as the age of people increases. However, the concentration of biomarkers in body fluids is very low and, therefore, it is necessary to use a sensitive analytical method. A combination of HPLC and MS was chosen to determine biomarker concentration in three groups of healthy people of a different age (twenty, forty, and sixty years) in order to find a difference among the groups. PMID:25147595

  1. [Mitochondria, oxidative stress and aging].

    PubMed

    Szarka, András; Bánhegyi, Gábor; Sümegi, Balázs

    2014-03-23

    The free radical theory of aging was defined in the 1950s. On the base of this theory, the reactive oxygen species formed in the metabolic pathways can play pivotal role in ageing. The theory was modified by defining the mitochondrial respiration as the major cellular source of reactive oxygen species and got the new name mitochondrial theory of aging. Later on the existence of a "vicious cycle" was proposed, in which the reactive oxygen species formed in the mitochondrial respiration impair the mitochondrial DNA and its functions. The formation of reactive oxygen species are elevated due to mitochondrial dysfunction. The formation of mitochondrial DNA mutations can be accelerated by this "vicious cycle", which can lead to accelerated aging. The exonuclease activity of DNA polymerase γ, the polymerase responsible for the replication of mitochondrial DNA was impaired in mtDNA mutator mouse recently. The rate of somatic mutations in mitochondrial DNA was elevated and an aging phenotype could have been observed in these mice. Surprisingly, no oxidative impairment neither elevated reactive oxygen species formation could have been observed in the mtDNA mutator mice, which may question the existence of the "vicious cycle".

  2. [Mitochondria, oxidative stress and aging].

    PubMed

    Szarka, András; Bánhegyi, Gábor; Sümegi, Balázs

    2014-03-23

    The free radical theory of aging was defined in the 1950s. On the base of this theory, the reactive oxygen species formed in the metabolic pathways can play pivotal role in ageing. The theory was modified by defining the mitochondrial respiration as the major cellular source of reactive oxygen species and got the new name mitochondrial theory of aging. Later on the existence of a "vicious cycle" was proposed, in which the reactive oxygen species formed in the mitochondrial respiration impair the mitochondrial DNA and its functions. The formation of reactive oxygen species are elevated due to mitochondrial dysfunction. The formation of mitochondrial DNA mutations can be accelerated by this "vicious cycle", which can lead to accelerated aging. The exonuclease activity of DNA polymerase γ, the polymerase responsible for the replication of mitochondrial DNA was impaired in mtDNA mutator mouse recently. The rate of somatic mutations in mitochondrial DNA was elevated and an aging phenotype could have been observed in these mice. Surprisingly, no oxidative impairment neither elevated reactive oxygen species formation could have been observed in the mtDNA mutator mice, which may question the existence of the "vicious cycle". PMID:24631932

  3. Oxidative stress markers in patients with hymenoptera venom allergy.

    PubMed

    Patella, Vincenzo; Incorvaia, Cristoforo; Minciullo, Paola Lucia; Oricchio, Carmine; Saitta, Salvatore; Florio, Giovanni; Saija, Antonella; Gangemi, Sebastiano

    2015-01-01

    Oxidative stress occurs in many allergic and immunologic disorders as a result of the imbalance between the endogenous production of free reactive oxygen species (ROS) and/or the reduction of antioxidant defense mechanisms. Advanced glycation end products (AGEs), advanced oxidation protein products (AOPPs), and nitrosylated proteins (NPs) can be used as markers of oxidative stress and inflammation. Our objective was to examine the serum levels of AGEs, AOPPs, and NPs in patients with allergic reactions to hymenoptera venom before and after ultrarush venom immunotherapy (VIT). The study included two groups of patients: 30 patients allergic to yellow jacket or honey bee venom and treated by aqueous preparation of Vespula spp (26 patients) or Apis mellifera (four patients) VIT, and 30 healthy donors as controls. Blood samples were collected to measure serum levels of AGEs, AOPPs, and NPs at baseline (T1), at the end of the incremental phase of the VIT protocol (T2), and after 15 days (T3). Serum AOPP levels at T1 were significantly higher in comparison with controls (p = 0.001), whereas serum levels of NPs at T1 were significantly lower than those in controls (p < 0.0001). No significant difference in circulating levels of AOPPs, AGEs, and NPs was found during immunotherapy. These findings suggest that, although hymenoptera venom allergy (HVA) is characterized by isolated episodes of reactions to stinging insect venom and is not included among chronic inflammatory diseases, an oxidative stress status occurs in patients suffering from this kind of allergy. Furthermore, VIT does not modify serum levels of these oxidative stress biomarkers.

  4. Protective Effects of Carvacrol against Oxidative Stress Induced by Chronic Stress in Rat's Brain, Liver, and Kidney

    PubMed Central

    Samarghandian, Saeed; Farkhondeh, Tahereh; Samini, Fariborz; Borji, Abasalt

    2016-01-01

    Restraint stress may be associated with elevated free radicals, and thus, chronic exposure to oxidative stress may cause tissue damage. Several studies have reported that carvacrol (CAR) has a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CAR on restraint stress induced oxidative stress damage in the brain, liver, and kidney. For chronic restraint stress, rats were kept in the restrainers for 6 h every day, for 21 consecutive days. The animals received systemic administrations of CAR daily for 21 days. To evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) activities were measured in the brain, liver, and kidney. In the stressed animals that received vehicle, the MDA level was significantly higher (P < 0.001) and the levels of GSH and antioxidant enzymes were significantly lower than the nonstressed animals (P < 0.001). CAR ameliorated the changes in the stressed animals as compared with the control group (P < 0.001). This study indicates that CAR can prevent restraint stress induced oxidative damage. PMID:26904286

  5. Muscle Aging and Oxidative Stress in Wild-Caught Shrews

    PubMed Central

    Hindle, Allyson G.; Lawler, John M.; Campbell, Kevin L.; Horning, Markus

    2010-01-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free radical theory of aging in wild mammals, given their short (<18 month) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2× higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  6. Muscle aging and oxidative stress in wild-caught shrews.

    PubMed

    Hindle, Allyson G; Lawler, John M; Campbell, Kevin L; Horning, Markus

    2010-04-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free-radical theory of aging in wild mammals, given their short (<18months) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2x higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  7. Is the oxidative stress theory of aging dead?

    PubMed

    Pérez, Viviana I; Bokov, Alex; Van Remmen, Holly; Mele, James; Ran, Qitao; Ikeno, Yuji; Richardson, Arlan

    2009-10-01

    Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. While data from studies in invertebrates (e.g., C. elegans and Drosophila) and rodents show a correlation between increased lifespan and resistance to oxidative stress (and in some cases reduced oxidative damage to macromolecules), direct evidence showing that alterations in oxidative damage/stress play a role in aging are limited to a few studies with transgenic Drosophila that overexpress antioxidant enzymes. Over the past eight years, our laboratory has conducted an exhaustive study on the effect of under- or overexpressing a large number and wide variety of genes coding for antioxidant enzymes. In this review, we present the survival data from these studies together. Because only one (the deletion of the Sod1 gene) of the 18 genetic manipulations we studied had an effect on lifespan, our data calls into serious question the hypothesis that alterations in oxidative damage/stress play a role in the longevity of mice.

  8. Oxidative stress and mitochondrial dysfunction in fibromyalgia.

    PubMed

    Cordero, Mario D; de Miguel, Manuel; Carmona-López, Inés; Bonal, Pablo; Campa, Francisco; Moreno-Fernández, Ana María

    2010-01-01

    Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology and pathophysiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of FM. Furthermore, it is controversial the role of mitochondria in the oxidant imbalance documented in FM. Signs and symptoms associated with muscular alteration and mitochondrial dysfunction, including oxidative stress, have been observed in patients with FM. To this respect, Coenzyme Q10 (CoQ10) deficiency, an essential electron carrier in the mitochondrial respiratory chain and a strong antioxidant, alters mitochondria function and mitochondrial respiratory complexes organization and leading to increased ROS generation. Recently have been showed CoQ10 deficiency in blood mononuclear cells in FM patients, so if the hypothesis that mitochondrial dysfunction is the origin of oxidative stress in FM patients is demonstrated, could help to understand the complex pathophysiology of this disorder and may lead to development of new therapeutic strategies for prevention and treatment of this disease.

  9. Effect of Oxidative Stress on Male Reproduction

    PubMed Central

    Virk, Gurpriya; Ong, Chloe; du Plessis, Stefan S

    2014-01-01

    Infertility affects approximately 15% of couples trying to conceive, and a male factor contributes to roughly half of these cases. Oxidative stress (OS) has been identified as one of the many mediators of male infertility by causing sperm dysfunction. OS is a state related to increased cellular damage triggered by oxygen and oxygen-derived free radicals known as reactive oxygen species (ROS). During this process, augmented production of ROS overwhelms the body's antioxidant defenses. While small amounts of ROS are required for normal sperm functioning, disproportionate levels can negatively impact the quality of spermatozoa and impair their overall fertilizing capacity. OS has been identified as an area of great attention because ROS and their metabolites can attack DNA, lipids, and proteins; alter enzymatic systems; produce irreparable alterations; cause cell death; and ultimately, lead to a decline in the semen parameters associated with male infertility. This review highlights the mechanisms of ROS production, the physiological and pathophysiological roles of ROS in relation to the male reproductive system, and recent advances in diagnostic methods; it also explores the benefits of using antioxidants in a clinical setting. PMID:24872947

  10. Increased Oxidative Stress Induces Apoptosis in Human Cystic Fibrosis Cells

    PubMed Central

    Rottner, Mathilde; Tual-Chalot, Simon; Mostefai, H. Ahmed; Andriantsitohaina, Ramaroson; Freyssinet, Jean-Marie; Martínez, María Carmen

    2011-01-01

    Oxidative stress results in deleterious cell function in pathologies associated with inflammation. Here, we investigated the generation of superoxide anion as well as the anti-oxidant defense systems related to the isoforms of superoxide dismutases (SOD) in cystic fibrosis (CF) cells. Pro-apoptotic agents induced apoptosis in CF but not in control cells that was reduced by treatment with SOD mimetic. These effects were associated with increased superoxide anion production, sensitive to the inhibition of IκB-α phosphorylation, in pancreatic but not tracheal CF cells, and reduced upon inhibition of either mitochondrial complex I or NADPH oxidase. CF cells exhibited reduced expression, but not activity, of both Mn-SOD and Cu/Zn-SOD when compared to control cells. Although, expression of EC-SOD was similar in normal and CF cells, its activity was reduced in CF cells. We provide evidence that high levels of oxidative stress are associated with increased apoptosis in CFTR-mutated cells, the sources being different depending on the cell type. These observations underscore a reduced anti-oxidant defense mechanism, at least in part, via diminished EC-SOD activity and regulation of Cu/Zn-SOD and Mn-SOD expressions. These data point to new therapeutic possibilities in targeting anti-oxidant pathways to reduce oxidative stress and apoptosis in CF cells. PMID:21931865

  11. Oxidative stress response pathways: Fission yeast as archetype.

    PubMed

    Papadakis, Manos A; Workman, Christopher T

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.

  12. Cocoa phenolic extract protects pancreatic beta cells against oxidative stress.

    PubMed

    Martín, María Angeles; Ramos, Sonia; Cordero-Herrero, Isabel; Bravo, Laura; Goya, Luis

    2013-08-01

    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE) containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5-20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult. PMID:23912326

  13. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    PubMed Central

    Martín, María Ángeles; Ramos, Sonia; Cordero-Herrero, Isabel; Bravo, Laura; Goya, Luis

    2013-01-01

    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE) containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult. PMID:23912326

  14. Oxidative stress and anti-oxidative mobilization in burn injury.

    PubMed

    Parihar, Arti; Parihar, Mordhwaj S; Milner, Stephen; Bhat, Satyanarayan

    2008-02-01

    A severe burn is associated with release of inflammatory mediators which ultimately cause local and distant pathophysiological effects. Mediators including Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are increased in affected tissue, which are implicated in pathophysiological events observed in burn patients. The purpose of this article is to understand the role of oxidative stress in burns, in order to develop therapeutic strategies. All peer-reviewed, original and review articles published in the English language literature relevant to the topic of oxidative stress in burns in animals and human subjects were selected for this review and the possible roles of ROS and RNS in the pathophysiology of burns are discussed. Both increased xanthine oxidase and neutrophil activation appear to be the oxidant sources in burns. Free radicals have been found to have beneficial effects on antimicrobial action and wound healing. However following a burn, there is an enormous production of ROS which is harmful and implicated in inflammation, systemic inflammatory response syndrome, immunosuppression, infection and sepsis, tissue damage and multiple organ failure. Thus clinical response to burn is dependent on the balance between production of free radicals and its detoxification. Supplementation of antioxidants in human and animal models has proven benefit in decreasing distant organ failure suggesting a cause and effect relationship. We conclude that oxidative damage is one of the mechanisms responsible for the local and distant pathophysiological events observed after burn, and therefore anti-oxidant therapy might be beneficial in minimizing injury in burned patients.

  15. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  16. Age-related Oxidative Stress Compromises Endosomal Proteostasis

    PubMed Central

    Cannizzo, Elvira S.; Clement, Cristina C.; Morozova, Kateryna; Valdor, Rut; Kaushik, Susmita; Almeida, Larissa N.; Follo, Carlo; Sahu, Ranjit; Cuervo, Ana Maria; Macian, Fernando; Santambrogio, Laura

    2012-01-01

    A hallmark of aging is an imbalance between production and clearance of reactive oxygen species and increased levels of oxidatively damaged biomolecules. Herein we demonstrate that splenic and nodal antigen presenting cells purified from old mice accumulate oxidatively modified proteins with side chain carbonylation, advanced glycation end products and lipid peroxidation. We show further that the endosomal accumulation of oxidatively modified proteins interferes with the efficient processing of exogenous antigens and degradation of macroautophagy-delivered proteins. In support of a causative role for oxidized products in the inefficient immune response, a decrease in oxidative stress improved the adaptive immune response to immunizing antigens. These findings underscore a previously unrecognized negative effect of age-dependent changes in cellular proteostasis on the immune response. PMID:22840404

  17. Increased oxidative stress in pemphigus vulgaris is related to disease activity and HLA-association.

    PubMed

    Shah, Amit Aakash; Dey-Rao, Rama; Seiffert-Sinha, Kristina; Sinha, Animesh A

    2016-06-01

    Pemphigus vulgaris (PV) is a rare blistering skin disorder characterized by the disadhesion of keratinocytes due to autoantibody attack against epidermal targets including desmoglein (Dsg) 3, Dsg 1 and possibly other adhesion and non-adhesion molecules. The mechanisms leading to immune-mediated pathology in PV are multifactorial and not fully understood. Recently, oxidative stress (antioxidant/oxidant disequilibrium) has been proposed as a contributory mechanism of autoimmune skin diseases, including PV. In this study, we directly assessed oxidative stress via measurement of total antioxidant capacity (TAC) using ELISA in 47 PV patients, 25 healthy controls and 18 bullous pemphigoid (BP) patients. We also performed microarray gene expression analysis on a separate set of 21 PV patients and 10 healthy controls to evaluate transcriptional dysregulation in oxidative stress-related pathways. Our data indicate that there is a significant reduction in TAC levels in PV patients compared with healthy controls, as well as BP patients. Furthermore, PV patients with active disease have significantly lower TAC levels than PV patients in remission. We also find that HLA allele status has a significant influence on oxidative stress. These findings are corroborated by microarray analysis showing differentially expressed genes involved in oxidative stress between the aforementioned groups. Collectively, our findings provide support for a role of oxidative stress in PV. Whether increased oxidative stress leads to disease manifestation and/or activity, or if disease activity leads to increased oxidative stress remains unknown. Future longitudinal studies may help to further elucidate the relationship between PV and oxidative stress.

  18. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    PubMed

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione.

  19. Single Nucleotide Polymorphisms in Noncoding Regions of Rad51C Do Not Change the Risk of Unselected Breast Cancer but They Modulate the Level of Oxidative Stress and the DNA Damage Characteristics: A Case-Control Study

    PubMed Central

    Gresner, Peter; Gromadzinska, Jolanta; Jablonska, Ewa; Stepnik, Maciej; Zambrano Quispe, Oscar; Twardowska, Ewa; Wasowicz, Wojciech

    2014-01-01

    Deleterious and missense mutations of RAD51C have recently been suggested to modulate the individual susceptibility to hereditary breast and ovarian cancer and unselected ovarian cancer, but not unselected breast cancer (BrC). We enrolled 132 unselected BrC females and 189 cancer-free female subjects to investigate whether common single nucleotide polymorphisms (SNPs) in non-coding regions of RAD51C modulate the risk of BrC, and whether they affect the level of oxidative stress and the extent/characteristics of DNA damage. Neither SNPs nor reconstructed haplotypes were found to significantly affect the unselected BrC risk. Contrary to this, carriers of rs12946522, rs16943176, rs12946397 and rs17222691 rare-alleles were found to present significantly increased level of blood plasma TBARS compared to respective wild-type homozygotes (p<0.05). Furthermore, these carriers showed significantly decreased fraction of oxidatively generated DNA damage (34% of total damaged DNA) in favor of DNA strand breakage, with no effect on total DNA damage, unlike respective wild-types, among which more evenly distributed proportions between oxidatively damaged DNA (48% of total DNA damage) and DNA strand breakage was found (p<0.0005 for the difference). Such effects were found among both the BrC cases and healthy subjects, indicating that they cannot be assumed as causal factors contributing to BrC development. PMID:25343521

  20. Single nucleotide polymorphisms in noncoding regions of Rad51C do not change the risk of unselected breast cancer but they modulate the level of oxidative stress and the DNA damage characteristics: a case-control study.

    PubMed

    Gresner, Peter; Gromadzinska, Jolanta; Jablonska, Ewa; Stepnik, Maciej; Zambrano Quispe, Oscar; Twardowska, Ewa; Wasowicz, Wojciech

    2014-01-01

    Deleterious and missense mutations of RAD51C have recently been suggested to modulate the individual susceptibility to hereditary breast and ovarian cancer and unselected ovarian cancer, but not unselected breast cancer (BrC). We enrolled 132 unselected BrC females and 189 cancer-free female subjects to investigate whether common single nucleotide polymorphisms (SNPs) in non-coding regions of RAD51C modulate the risk of BrC, and whether they affect the level of oxidative stress and the extent/characteristics of DNA damage. Neither SNPs nor reconstructed haplotypes were found to significantly affect the unselected BrC risk. Contrary to this, carriers of rs12946522, rs16943176, rs12946397 and rs17222691 rare-alleles were found to present significantly increased level of blood plasma TBARS compared to respective wild-type homozygotes (p<0.05). Furthermore, these carriers showed significantly decreased fraction of oxidatively generated DNA damage (34% of total damaged DNA) in favor of DNA strand breakage, with no effect on total DNA damage, unlike respective wild-types, among which more evenly distributed proportions between oxidatively damaged DNA (48% of total DNA damage) and DNA strand breakage was found (p<0.0005 for the difference). Such effects were found among both the BrC cases and healthy subjects, indicating that they cannot be assumed as causal factors contributing to BrC development.

  1. Single nucleotide polymorphisms in noncoding regions of Rad51C do not change the risk of unselected breast cancer but they modulate the level of oxidative stress and the DNA damage characteristics: a case-control study.

    PubMed

    Gresner, Peter; Gromadzinska, Jolanta; Jablonska, Ewa; Stepnik, Maciej; Zambrano Quispe, Oscar; Twardowska, Ewa; Wasowicz, Wojciech

    2014-01-01

    Deleterious and missense mutations of RAD51C have recently been suggested to modulate the individual susceptibility to hereditary breast and ovarian cancer and unselected ovarian cancer, but not unselected breast cancer (BrC). We enrolled 132 unselected BrC females and 189 cancer-free female subjects to investigate whether common single nucleotide polymorphisms (SNPs) in non-coding regions of RAD51C modulate the risk of BrC, and whether they affect the level of oxidative stress and the extent/characteristics of DNA damage. Neither SNPs nor reconstructed haplotypes were found to significantly affect the unselected BrC risk. Contrary to this, carriers of rs12946522, rs16943176, rs12946397 and rs17222691 rare-alleles were found to present significantly increased level of blood plasma TBARS compared to respective wild-type homozygotes (p<0.05). Furthermore, these carriers showed significantly decreased fraction of oxidatively generated DNA damage (34% of total damaged DNA) in favor of DNA strand breakage, with no effect on total DNA damage, unlike respective wild-types, among which more evenly distributed proportions between oxidatively damaged DNA (48% of total DNA damage) and DNA strand breakage was found (p<0.0005 for the difference). Such effects were found among both the BrC cases and healthy subjects, indicating that they cannot be assumed as causal factors contributing to BrC development. PMID:25343521

  2. Oxidative stress and Parkinson’s disease

    PubMed Central

    Blesa, Javier; Trigo-Damas, Ines; Quiroga-Varela, Anna; Jackson-Lewis, Vernice R.

    2015-01-01

    Parkinson disease (PD) is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in PD. Environmental factors, such as neurotoxins, pesticides, insecticides, dopamine (DA) itself, and genetic mutations in PD-associated proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process. PMID:26217195

  3. Exercise and oxidative stress methodology: a critique.

    PubMed

    Jenkins, R R

    2000-08-01

    Historically, exercise physiologists' interest in oxygen has primarily centered on the problem of oxygen consumption. However, the interest of the general scientific community in oxygen-centered radicals has raised awareness of the oxygen paradox and has motivated investigators to question whether exercise-stimulated "overconsumption" of oxygen might induce an oxidative stress and pose some risk to biological systems. In recent years, a considerable amount of research has demonstrated that radicals are capable of damaging a vast array of biological targets. Unfortunately, the work related to oxidative stress and antioxidants subsequent to exercise has been narrow in scope. This paper provides a brief review of the shortcomings of the present state of knowledge in this discipline and outlines topics requiring attention. PMID:10919973

  4. Roles of TRPM2 in oxidative stress.

    PubMed

    Takahashi, Nobuaki; Kozai, Daisuke; Kobayashi, Ryohei; Ebert, Maximilian; Mori, Yasuo

    2011-09-01

    Reactive oxygen species (ROS) play critical roles in cell death, diseases, and normal cellular processes. TRPM2 is a member of transient receptor potential (TRP) protein superfamily and forms a Ca(2+)-permeable nonselective cation channel activated by ROS, specifically by hydrogen peroxide (H(2)O(2)), and at least in part via second-messenger mechanisms. Accumulating evidence has indicated that TRPM2 mediates multiple cellular responses, after our finding that Ca(2+) influx via TRPM2 regulates H(2)O(2)-induced cell death. Recently, we have demonstrated that Ca(2+) influx through TRPM2 induces chemokine production in monocytes and macrophages, which aggravates inflammatory neutrophil infiltration in mice. However, understanding is still limited for in vivo physiological or pathophysiological significance of ROS-induced TRPM2 activation. In this review, we summarize mechanisms underlying activation of TRPM2 channels by oxidative stress and downstream biological responses, and discuss the biological importance of oxidative stress-activated TRP channels.

  5. Influence of Endodontic Treatment on Systemic Oxidative Stress

    PubMed Central

    Inchingolo, Francesco; Marrelli, Massimo; Annibali, Susanna; Cristalli, Maria Paola; Dipalma, Gianna; Inchingolo, Alessio Danilo; Palladino, Antonio; Inchingolo, Angelo Michele; Gargari, Marco; Tatullo, Marco

    2014-01-01

    Introduction: An increased production of oxidizing species related to reactive oral diseases, such as chronic apical periodontitis, could have systemic implications such as an increase in cardiovascular morbidity. Based on this consideration, we conducted a prospective study to assess whether subjects affected by chronic periodontitis presented with higher values of oxidative stress than reference values before endodontic treatment, and whether endodontic treatment can reduce the oxidative imbalance and bring it back to normal in these subjects. Materials and methods: The authors recruited 2 groups of patients from private studies and dental clinics: these patients were recruited randomly. The oxidative balance in both patients with chronic apical periodontitis (CAP) and healthy control patients was determined by measuring the oxidant status, using an identification of the reactive oxygen metabolites (d-ROMs) test, while the antioxidant status in these patients was determined using a biological antioxidant potential (BAP) test. Both these tests were carried on plasma samples taken from enrolled patients. Values were measured both before the endodontic treatment of the patients with chronic apical periodontitis, and 30 and 90 days after treatment, and compared to those obtained from healthy control patients. Results: It was found that, on recruitment, the patients with chronic apical periodontitis exhibited significantly higher levels of oxidative stress than control patients, as determined by the d-ROMs and BAP tests. Furthermore, the d-ROMs test values were shown to decrease and the BAP test values to increase over time in patients with chronic apical periodontitis following endodontic therapy. As the levels of oxidative stress in these patients tended to reduce and return to normal by 90 days following treatment. Conclusions: This study has demonstrated a positive association between chronic apical periodontitis and oxidative stress. Subjects affected by chronic

  6. Oxidative stress in coronary artery bypass surgery

    PubMed Central

    Dias, Amaury Edgardo Mont’Serrat Ávila Souza; Melnikov, Petr; Cônsolo, Lourdes Zélia Zanoni

    2015-01-01

    Objective The aim of this prospective study was to assess the dynamics of oxidative stress during coronary artery bypass surgery with cardiopulmonary bypass. Methods Sixteen patients undergoing coronary artery bypass grafting were enrolled. Blood samples were collected from the systemic circulation during anesthesia induction (radial artery - A1), the systemic venous return (B1 and B2) four minutes after removal of the aortic cross-clamping, of the coronary sinus (CS1 and CS2) four minutes after removal of the aortic cross-clamping and the systemic circulation four minutes after completion of cardiopulmonary bypass (radial artery - A2). The marker of oxidative stress, malondialdehyde, was measured using spectrophotometry. Results The mean values of malondialdehyde were (ng/dl): A1 (265.1), B1 (490.0), CS1 (527.0), B2 (599.6), CS2 (685.0) and A2 (527.2). Comparisons between A1/B1, A1/CS1, A1/B2, A1/CS2, A1/A2 were significant, with ascending values (P<0.05). Comparisons between the measurements of the coronary sinus and venous reservoir after the two moments of reperfusion (B1/B2 and CS1/CS2) were higher when CS2 (P<0.05). Despite higher values ​​after the end of cardiopulmonary bypass (A2), when compared to samples of anesthesia (A1), those show a downward trend when compared to the samples of the second moment of reperfusion (CS2) (P<0.05). Conclusion The measurement of malondialdehyde shows that coronary artery bypass grafting with cardiopulmonary bypass is accompanied by increase of free radicals and this trend gradually decreases after its completion. Aortic clamping exacerbates oxidative stress but has sharper decline after reperfusion when compared to systemic metabolism. The behavior of thiobarbituric acid species indicates that oxidative stress is an inevitable pathophysiological component. PMID:27163415

  7. ER Protein Processing Under Oxidative Stress: Implications and Prevention.

    PubMed

    Khalil, Mahmoud F; Valenzuela, Carlos; Sisniega, Daniella; Skouta, Rachid; Narayan, Mahesh

    2016-06-01

    Elevated levels of mitochondrial nitrosative stress have been associated with the pathogenesis of both Parkinson's and Alzheimer's diseases. The mechanism involves catalytic poisoning of the endoplasmic reticulum (ER)-resident oxidoreductase chaperone, protein disulfide isomerase (PDI), and the subsequent accumulation of ER-processed substrate proteins. Using a model system to mimic mitochondrial oxidative and nitrosative stress, we demonstrate a PDI-independent mechanism whereby reactive oxygen species (ROS) compromise regeneration rates of disulfide bond-containing ER-processed proteins. Under ROS-duress, the secretion-destined traffic adopts disulfide-exposed structures making the protein flux retrotranslocation biased. We also demonstrate that ROS-compromised protein maturation rates can be rescued by the polyphenol ellagic acid (EA). Our results are significant in that they reveal an additional mechanism which could promote neurodegenerative disorders. Furthermore, our data reveal that EA possesses therapeutic potential as a lead prophylactic agent against oxidative/nitrosative stress-related neurodegenerative diseases. PMID:26983927

  8. Oxidative stress impact on growth hormone secretion in the eye

    PubMed Central

    Šarić, Borna; Šarić, Vlatka Brzović; Barberić, Monika; Predović, Jurica; Rumenjak, Vlatko; Cerovski, Branimir

    2015-01-01

    Aim To evaluate the influence of oxidative stress on extrapituitary growth hormone (GH) secretion in the eye and to analyze the interdependence between eye and serum GH levels under normal and hypoxic conditions. Methods Pars plana vitrectomy (PPV) was performed in 32 patients with developed proliferative diabetic retinopathy (PDR) and 49 non-diabetic controls, both of whom required this procedure as part of their regular treatment in the period from April 2013 to December 2014. During PPV, vitreous samples were taken and blood was simultaneously collected from the cubital vein. GH levels in serum and vitreous samples were measured by electrochemical luminescence assay. Oxidative stress was measured by enzyme-linked immunosorbent assay of advanced oxidation protein products (AOPP) and lipid hydroperoxide (LPO) in serum and vitreous. Results Serum AOPP levels were significantly higher than vitreous levels in both groups (P < 0.001 for each group) and LPO levels were significantly higher only in PDR group (P < 0.001). There was a significant positive correlation between serum and vitreous LPO levels in PDR group (r = 0.909; P < 0.001). Serum GH levels were significantly higher than vitreous levels in both groups (P < 0.001 for each group). Serum GH levels were significantly higher in PDR group than in controls (P = 0.012). Vitreous GH values were slightly higher in PDR group, but the difference was not significant. Conclusion Our study confirms that GH production in the eye is autonomous and independent of oxidative stress or pituitary GH influence. PMID:26321025

  9. Oxidative stress response and Nrf2 signaling in aging

    PubMed Central

    Zhang, Hongqiao; Davies, Kelvin J. A.; Forman, Henry Jay

    2015-01-01

    Increasing oxidative stress, a major characteristic of aging, has been implicated in variety of age-related pathologies. In aging, oxidant production from several sources is increased while antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins also declines. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels including transcription, post-translation, and interaction with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the change of Nrf2 regulatory mechanisms with aging. PMID:26066302

  10. Cadmium-induced oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Muthukumar, Kannan; Nachiappan, Vasanthi

    2010-12-01

    The present study was undertaken to determine the effect of cadmium (Cd) on the antioxidant status of the yeast Saccharomyces cerevisiae. S. cerevisiae serves as a good eukaryotic model system for the study of the molecular mechanisms of oxidative stress. We investigated the adaptative response of S. cerevisiae exposed to Cd. Yeast cells could tolerate up to 100 microM Cd and an inhibition in the growth and viability was observed. Exposure of yeast cells to Cd showed an increase in malondialdehyde and glutathione. The activities of catalase, superoxide dismutase and glutathione peroxidase were also high in Cd-exposed cells. The incorporation of Cd led to significant increase in iron, zinc and inversely the calcium, copper levels were reduced. The results suggest that antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumably, these enzymes are essential for counteracting the pro-oxidant effects of Cd. PMID:21355423

  11. Symbiosis-induced adaptation to oxidative stress.

    PubMed

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host. PMID:15634847

  12. Symbiosis-induced adaptation to oxidative stress.

    PubMed

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  13. The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress

    PubMed Central

    Charron, Jean-Benoit F; Ouellet, Francois; Houde, Mario; Sarhan, Fathey

    2008-01-01

    Background Lipocalins are a large and diverse family of small, mostly extracellular proteins implicated in many important functions. This family has been studied in bacteria, invertebrate and vertebrate animals but little is known about these proteins in plants. We recently reported the identification and molecular characterization of the first true lipocalins from plants, including the Apolipoprotein D ortholog AtTIL identified in the plant model Arabidopsis thaliana. This study aimed to determine its physiological role in planta. Results Our results demonstrate that the AtTIL lipocalin is involved in modulating tolerance to oxidative stress. AtTIL knock-out plants are very sensitive to sudden drops in temperature and paraquat treatment, and dark-grown plants die shortly after transfer to light. These plants accumulate a high level of hydrogen peroxide and other ROS, which causes an oxidative stress that is associated with a reduction in hypocotyl growth and sensitivity to light. Complementation of the knock-out plants with the AtTIL cDNA restores the normal phenotype. On the other hand, overexpression enhances tolerance to stress caused by freezing, paraquat and light. Moreover, this overexpression delays flowering and maintains leaf greenness. Microarray analyses identified several differentially-regulated genes encoding components of oxidative stress and energy balance. Conclusion This study provides the first functional evidence that a plant lipocalin is involved in modulating tolerance to oxidative stress. These findings are in agreement with recently published data showing that overexpression of ApoD enhances tolerance to oxidative stress and increases life span in mice and Drosophila. Together, the three papers strongly support a similar function of lipocalins in these evolutionary-distant species. PMID:18671872

  14. Chrononutrition against Oxidative Stress in Aging

    PubMed Central

    Garrido, M.; Terrón, M. P.; Rodríguez, A. B.

    2013-01-01

    Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases. PMID:23861994

  15. Oxidative Stress in Ageing of Hair

    PubMed Central

    Trüeb, Ralph M

    2009-01-01

    Experimental evidence supports the hypothesis that oxidative stress plays a major role in the ageing process. Reactive oxygen species are generated by a multitude of endogenous and environmental challenges. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage cellular structural membranes, lipids, proteins, and DNA. The body possesses endogenous defence mechanisms, such as antioxidative enzymes and non-enzymatic antioxidative molecules, protecting it from free radicals by reducing and neutralizing them. With age, the production of free radicals increases, while the endogenous defence mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, presumably resulting in the ageing phenotype. Ageing of hair manifests as decrease of melanocyte function or graying, and decrease in hair production or alopecia. There is circumstantial evidence that oxidative stress may be a pivotal mechanism contributing to hair graying and hair loss. New insights into the role and prevention of oxidative stress could open new strategies for intervention and reversal of the hair graying process and age-dependent alopecia. PMID:20805969

  16. Inducing mitophagy in diabetic platelets protects against severe oxidative stress.

    PubMed

    Lee, Seung Hee; Du, Jing; Stitham, Jeremiah; Atteya, Gourg; Lee, Suho; Xiang, Yaozu; Wang, Dandan; Jin, Yu; Leslie, Kristen L; Spollett, Geralyn; Srivastava, Anup; Mannam, Praveen; Ostriker, Allison; Martin, Kathleen A; Tang, Wai Ho; Hwa, John

    2016-01-01

    Diabetes mellitus (DM) is a growing international concern. Considerable mortality and morbidity associated with diabetes mellitus arise predominantly from thrombotic cardiovascular events. Oxidative stress-mediated mitochondrial damage contributes significantly to enhanced thrombosis in DM A basal autophagy process has recently been described as playing an important role in normal platelet activation. We now report a substantial mitophagy induction (above basal autophagy levels) in diabetic platelets, suggesting alternative roles for autophagy in platelet pathology. Using a combination of molecular, biochemical, and imaging studies on human DM platelets, we report that platelet mitophagy induction serves as a platelet protective mechanism that responds to oxidative stress through JNK activation. By removing damaged mitochondria (mitophagy), phosphorylated p53 is reduced, preventing progression to apoptosis, and preserving platelet function. The absence of mitophagy in DM platelets results in failure to protect against oxidative stress, leading to increased thrombosis. Surprisingly, this removal of damaged mitochondria does not require contributions from transcription, as platelets lack a nucleus. The considerable energy and resources expended in "prepackaging" the complex mitophagy machinery in a short-lived normal platelet support a critical role, in anticipation of exposure to oxidative stress. PMID:27221050

  17. PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co₃O₄ p-type semiconductor in cells and the lung.

    PubMed

    Zhang, Haiyuan; Pokhrel, Suman; Ji, Zhaoxia; Meng, Huan; Wang, Xiang; Lin, Sijie; Chang, Chong Hyun; Li, Linjiang; Li, Ruibin; Sun, Bingbing; Wang, Meiying; Liao, Yu-Pei; Liu, Rong; Xia, Tian; Mädler, Lutz; Nel, André E

    2014-04-30

    We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0-8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E(c) levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from -4.12 to -4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E(v), E(c), and E(f) levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4. PMID:24673286

  18. PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co3O4p-Type Semiconductor in Cells and the Lung

    PubMed Central

    2014-01-01

    We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0–8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the Ec levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from −4.12 to −4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of Ev, Ec, and Ef levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4. PMID:24673286

  19. Melanocytes as instigators and victims of oxidative stress.

    PubMed

    Denat, Laurence; Kadekaro, Ana L; Marrot, Laurent; Leachman, Sancy A; Abdel-Malek, Zalfa A

    2014-06-01

    Epidermal melanocytes are particularly vulnerable to oxidative stress owing to the pro-oxidant state generated during melanin synthesis, and to the intrinsic antioxidant defenses that are compromised in pathologic conditions. Melanoma is thought to be oxidative stress driven, and melanocyte death in vitiligo is thought to be instigated by a highly pro-oxidant state in the epidermis. We review the current knowledge about melanin and the redox state of melanocytes, how paracrine factors help counteract oxidative stress, the role of oxidative stress in melanoma initiation and progression and in melanocyte death in vitiligo, and how this knowledge can be harnessed for melanoma and vitiligo treatment. PMID:24573173

  20. Melanocytes as Instigators and Victims of Oxidative Stress

    PubMed Central

    Denat, L.; Kadekaro, A.L.; Marrot, L.; Leachman, S.; Abdel-Malek, Z.A.

    2014-01-01

    Epidermal melanocytes are particularly vulnerable to oxidative stress due to the pro-oxidant state generated during melanin synthesis, and to intrinsic antioxidant defences that are compromised in pathologic conditions. Melanoma is thought to be oxidative stress-driven, and melanocyte death in vitiligo is thought to be instigated by a highly pro-oxidant state in the epidermis. We review the current knowledge about melanin and the redox state of melanocytes, how paracrine factors help counteract oxidative stress, the role of oxidative stress in melanoma initiation and progression and in melanocyte death in vitiligo, and how this knowledge can be harnessed for melanoma and vitiligo treatment. PMID:24573173

  1. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms.

    PubMed

    Ramu, Vemanna S; Paramanantham, Anjugam; Ramegowda, Venkategowda; Mohan-Raju, Basavaiah; Udayakumar, Makarla; Senthil-Kumar, Muthappa

    2016-01-01

    In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.

  2. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms

    PubMed Central

    Ramu, Vemanna S.; Paramanantham, Anjugam; Ramegowda, Venkategowda; Mohan-Raju, Basavaiah; Udayakumar, Makarla

    2016-01-01

    In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses. PMID:27314499

  3. Oxidative Stress and Nutritional Status in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Dhakal, Niraj; Baral, Nirmal; Shrestha, Shrijana; Dhakal, Subodh Sagar; Bhatta, Narendra; Dubey, Raju Kumar

    2015-01-01

    Background: Oxidative stress and malnutrition are shown to have pathogenic effect in Chronic Obstructive Pulmonary Disease (COPD). Aim: This study was done to assess the burden of oxidative stress in COPD and to determine its relation to their nutritional status. Materials and Methods: In this cross-sectional study, 100 COPD cases from emergency and medical ward and meeting inclusion criteria, along with age, sex and occupation (mainly farmers, housewives and drivers) matched 100 controls without COPD and meeting inclusion criteria were enrolled. Oxidative stress was assessed by measuring lipid peroxidation product, Malondialdehyde (MDA) and antioxidants, like Vitamin C, E and Red Blood Cell Catalase (RBCC). Mini Nutritional Assessment (MNA) tool and Body Mass Index (BMI) were used to assess nutritional status. Statistical Analysis: Chi-square test was applied for categorical variable. Student t-test was applied for comparison of means. Analysis of Variance (ANOVA) was applied for comparison between groups followed by Bonferroni post hoc analysis. Pearson correlation method was used for quantitative variables. Statistical significance was defined as p< 0.05 (two tailed). Results: COPD cases had significantly high MDA level with low level of Vitamin E and catalase as compared to controls (p < 0.001). Most of the COPD cases were underweight (BMI ≤ 18.5 Kg/m2) and malnourished (MNA score less than 7). Bonferroni post-hoc analysis, showed significantly high burden of oxidative stress in underweight and malnourished cases as compared to normal weight (p < 0.05) among COPD cases. Highly significant correlation was seen between BMI and plasma MDA level (r = −0.27, p = 0.008) in COPD cases. Conclusion: This study shows impaired oxidant/antioxidant balance along with malnutrition and underweight in COPD, which signals for considering antioxidant therapy along with nutritional management. PMID:25859442

  4. Concepts of oxidative stress and antioxidant defense in Crohn's disease.

    PubMed

    Alzoghaibi, Mohammed A

    2013-10-21

    Oxygen free radical and lipid peroxides (oxidative stress) are highly reactive and represent very damaging compounds. Oxidative stress could be a major contributing factor to the tissue injury and fibrosis that characterize Crohn's disease. An imbalance between increased reactive oxygen species levels and decreased antioxidant defenses occurs in Crohn's patients. Decreased blood levels of vitamins C and E and decreased intestinal mucosal levels of CuZn superoxide dismutase, glutathione, vitamin A, C, E, and β-carotene have been reported for Crohn's patients. Increased levels of proinflammatory cytokines, such as interleukin-1 and -8 and tumor necrosis factor, have been detected in inflammatory bowel disease. Oxidative stress significantly increased the production of neutrophils, chemokines, and interleukin-8. These effects were inhibited by antioxidant vitamins and arachidonic acid metabolite inhibitors in human intestinal smooth muscle cells isolated from the bowels of Crohn's disease patients. The main pathological feature of Crohn's disease is an infiltration of polymorphonuclear neutrophils and mononuclear cells into the affected part of the intestine. Activated neutrophils produce noxious substances that cause inflammation and tissue injury. Due to the physiological and biochemical actions of reactive oxygen species and lipid peroxides, many of the clinical and pathophysiological features of Crohn's disease might be explained by an imbalance of increased reactive oxygen species and a net decrease of antioxidant molecules. This review describes the general concepts of free radical, lipid peroxide and antioxidant activities and eventually illustrates their interferences in the development of Crohn's strictures.

  5. A novel approach in psoriasis: first usage of known protein oxidation markers to prove oxidative stress.

    PubMed

    Yazici, Cevat; Köse, Kader; Utaş, Serap; Tanrikulu, Esen; Taşlidere, Nazan

    2016-04-01

    Oxidative stress may play a pivotal role in the pathogenesis of psoriasis, an inflammatory/hyperproliferative skin disease characterized by the cutaneous accumulation of neutrophils releasing reactive oxygen species, as revealed in a number of studies. This study was performed to demonstrate the presence of oxidative stress in psoriasis, as measured by protein oxidation markers. Twenty-nine psoriasis patients were selected based on disease severity assessment using body surface area as well as the psoriasis area severity index (PASI), and were grouped as mild (PASI ≤ 10) and moderate-to-severe (PASI > 10). The measured parameters in psoriatic patients and fourteen healthy volunteers were as follows: erythrocyte sedimentation rate (ESR), high sensitive C-reactive protein (CRP), myeloperoxidase (MPO) activity, neopterin, total lipid hydroperoxides (LHP), pyrrolized protein (PP), protein carbonyl compounds (PCC), advanced oxidation protein products (AOPP), thiol levels, along with complete blood count. Except lower thiols, all parameters were found to be higher in total patients as well as in subgroups, compared to controls. There was no significant difference among the subgroups. In conclusion, protein oxidation in psoriatics, not only in moderate-to-severe, but also in mild patients, may be explained by the findings of inflammation, phagocytic cell oxidation, and MPO-hypochlorous acid-oxidation reactions; as reflected by increased total/differential leucocytes counts, CRP, ESR as well as MPO, neopterin, AOPP, PCC, PP, LHP, and decreased thiol levels. Demonstrating the AOPP and PP formation for the first time, oxidants from active neutrophils/monocytes may play an important role in the pathogenesis of psoriasis, leading to oxidative stress, especially by protein oxidation.

  6. Positive oxidative stress in aging and aging-related disease tolerance.

    PubMed

    Yan, Liang-Jun

    2014-01-01

    It is now well established that reactive oxygen species (ROS), reactive nitrogen species (RNS), and a basal level of oxidative stress are essential for cell survival. It is also well known that while severe oxidative stress often leads to widespread oxidative damage and cell death, a moderate level of oxidative stress, induced by a variety of stressors, can yield great beneficial effects on adaptive cellular responses to pathological challenges in aging and aging-associated disease tolerance such as ischemia tolerance. Here in this review, I term this moderate level of oxidative stress as positive oxidative stress, which usually involves imprinting molecular signatures on lipids and proteins via formation of lipid peroxidation by-products and protein oxidation adducts. As ROS/RNS are short-lived molecules, these molecular signatures can thus execute the ultimate function of ROS/RNS. Representative examples of lipid peroxidation products and protein oxidation adducts are presented to illustrate the role of positive oxidative stress in a variety of pathological settings, demonstrating that positive oxidative stress could be a valuable prophylactic and/or therapeutic approach targeting aging and aging-associated diseases.

  7. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    PubMed

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials.

  8. Toxicological and pharmacological concerns on oxidative stress and related diseases

    SciTech Connect

    Saeidnia, Soodabeh; Abdollahi, Mohammad

    2013-12-15

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.

  9. Residual stresses in oxide scale formed on Fe-17Cr stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xiao, Ji; Prud'homme, Nathalie; Chen, Zhe; Ji, Vincent

    2014-10-01

    The purpose of this work was to investigate residual stresses in the oxide scale formed on ferritic stainless steel, which is proposed to be used as interconnector in the planar solid oxide fuel cells (SOFCs). The oxidation of the alloy has been conducted at 700 °C, 800 °C and 900 °C for 12-96 h by thermal gravimetric analysis (TGA) system. The oxide surface morphology, cross-section microstructure and the chemical composition of the oxide scale were studied after oxidation, and the residual stresses distribution of the oxide scale were determined at room temperature. It has been found that the oxide scale composed of an inner Cr2O3 layer and an outer Mn1.5Cr1.5O4 spinel layer, the residual stresses in both oxide layers are compressive and the growth stresses plays an important role. The competition of the stresses generation and relaxation during oxidation and cooling affects the residual stresses level. The evolution of residual stresses in the two layers is different according to the oxidation temperature, and the stresses in the two layers are interactional.

  10. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging?

    PubMed

    Salmon, Adam B; Richardson, Arlan; Pérez, Viviana I

    2010-03-01

    The oxidative stress theory of aging predicts that manipulations that alter oxidative stress/damage will alter aging. The gold standard for determining whether aging is altered is life span, i.e., does altering oxidative stress/damage change life span? Mice with genetic manipulations in their antioxidant defense system designed to directly address this prediction have, with few exceptions, shown no change in life span. However, when these transgenic/knockout mice are tested using models that develop various types of age-related pathology, they show alterations in progression and/or severity of pathology as predicted by the oxidative stress theory: increased oxidative stress accelerates pathology and reduced oxidative stress retards pathology. These contradictory observations might mean that (a) oxidative stress plays a very limited, if any, role in aging but a major role in health span and/or (b) the role that oxidative stress plays in aging depends on environment. In environments with minimal stress, as expected under optimal husbandry, oxidative damage plays little role in aging. However, under chronic stress, including pathological phenotypes that diminish optimal health, oxidative stress/damage plays a major role in aging. Under these conditions, enhanced antioxidant defenses exert an "antiaging" action, leading to changes in life span, age-related pathology, and physiological function as predicted by the oxidative stress theory of aging.

  11. Oxidative Stress-Dependent Coronary Endothelial Dysfunction in Obese Mice.

    PubMed

    Gamez-Mendez, Ana María; Vargas-Robles, Hilda; Ríos, Amelia; Escalante, Bruno

    2015-01-01

    Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks diet-induced obese C57BL/6 mice model. Coronary perfusion pressure in response to acetylcholine in isolated hearts from obese mice showed increased vasoconstriction and reduced vasodilation responses compared with control mice. Vascular nitric oxide assessed in situ with DAF-2 DA showed diminished levels in coronary arteries from obese mice in both basal and acetylcholine-stimulated conditions. Also, released prostacyclin was decreased in heart perfusates from obese mice, along with plasma tetrahydrobiopterin level and endothelium nitric oxide synthase dimer/monomer ratio. Obesity increased thromboxane A2 synthesis and oxidative stress evaluated by superoxide and peroxynitrite levels, compared with control mice. Obese mice treated with apocynin, a NADPH oxidase inhibitor, reversed all parameters to normal levels. These results suggest that after 8 weeks on a high-fat diet, the increase in oxidative stress lead to imbalance in vasoactive substances and consequently to endothelial dysfunction in coronary arteries.

  12. Increased oxidative stress following acute and chronic high altitude exposure.

    PubMed

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  13. Oxidative stress and plasma lipoproteins in cancer patients

    PubMed Central

    Maia, Fernanda Maria Machado; Santos, Emanuelly Barbosa; Reis, Germana Elias

    2014-01-01

    Objective To evaluate the relation between oxidative stress and lipid profile in patients with different types of cancer. Methods This was an observational cross-sectional. A total of 58 subjects were evaluated, 33 males, divided into two groups of 29 patients each: Group 1, patients with cancer of the digestive tract and accessory organs; Group 2 patients with other types of cancers, all admitted to a public hospital. The plasma levels (lipoproteins and total cholesterol, HDL, and triglycerides, for example) were analyzed by enzymatic kits, and oxidative stress based on thiobarbituric acid-reactive substances, by assessing the formation of malondialdehyde. Results In general the levels of malondialdehyde of patients were high (5.00μM) as compared to 3.31μM for healthy individuals. The median values of lipids exhibited normal triacylglycerol (138.78±89.88mg/dL), desirable total cholesterol values (163.04±172.38mg/dL), borderline high LDL (151.30±178.25mg/dL) and low HDL (31.70±22.74mg/dL). Median HDL levels in Group 1 were lower (31.32mg/dL) than the cancer patients in Group 2 (43.67mg/dL) (p=0.038). Group 1 also showed higher levels of oxidative stress (p=0.027). Conclusion The lipid profile of patients with cancer was not favorable, which seems to have contributed to higher lipid peroxidation rate, generating a significant oxidative stress. PMID:25628201

  14. Deferasirox Reduces Oxidative Stress in Patients With Transfusion Dependency

    PubMed Central

    Saigo, Katsuyasu; Kono, Mari; Takagi, Yuri; Takenokuchi, Mariko; Hiramatsu, Yasushi; Tada, Hiroshi; Hishita, Terutoshi; Misawa, Masahito; Imoto, Shion; Imashuku, Shinsaku

    2013-01-01

    Background Iron chelation therapy is useful against the over-accumulation of iron and is expected to reduce oxidative stress resulting from the Fenton reaction and Haber-Weiss reaction. We monitored oxidative status and serum ferritin levels after in vivo administration of deferasirox (DFS) and studied the in vitro effects of iron chelators on neutrophil function. Methods Nine patients suffering from transfusion dependency were recruited for this study, and derivatives of reactive oxygen metabolite (dROM) tests to detect serum hydroperoxide levels were evaluated in addition to serum ferritin levels. Human neutrophil reactive oxygen species (ROS) production was determined with flow cytometry. Results Ferritin levels decreased after DFS treatment (P = 0.068), and a significant reduction in dROM levels was measured (P = 0.031). Fifty microM DFS significantly inhibited ROS production induced by fMLP in vitro (P < 0.0001), and tended to inhibit that induced by PMA. On the other hand, deferioxamine failed to inhibit ROS production even at high concentrations. Conclusions In vivo administration of DFS resulted in the reduction of oxidative stress, and this effect was considered to depend not only on a reduction in iron storage but also on the ability of DFS to inhibit neutrophil ROS production in vitro at clinically relevant plasma levels. Further studies are needed to examine the effects of iron chelators. PMID:23390477

  15. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    PubMed Central

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio

    2014-01-01

    Abstract Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. Critical Issues: Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. Future Directions: The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability. Antioxid. Redox Signal. 20, 507–518. PMID:23641894

  16. Oxidative stress, thyroid dysfunction & Down syndrome

    PubMed Central

    Campos, Carlos; Casado, Ángela

    2015-01-01

    Down syndrome (DS) is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1) is coded on chromosome 21 and it is overexpressed (~50%) resulting in an increase of reactive oxygen species (ROS) due to overproduction of hydrogen peroxide (H2O2). ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS. PMID:26354208

  17. Energy intake, oxidative stress and antioxidant in mice during lactation

    PubMed Central

    ZHENG, Guo-Xiao; LIN, Jiang-Tao; ZHENG, Wei-Hong; CAO, Jing; ZHAO, Zhi-Jun

    2015-01-01

    Reproduction is the highest energy demand period for small mammals, during which both energy intake and expenditure are increased to cope with elevated energy requirements of offspring growth and somatic protection. Oxidative stress life history theory proposed that reactive oxygen species (ROS) were produced in direct proportion to metabolic rate, resulting in oxidative stress and damage to macromolecules. In the present study, several markers of oxidative stress and antioxidants activities were examined in brain, liver, kidneys, skeletal muscle and small intestine in non-lactating (Non-Lac) and lactating (Lac) KM mice. Uncoupling protein (ucps) gene expression was examined in brain, liver and muscle. During peak lactation, gross energy intake was 254% higher in Lac mice than in Non-Lac mice. Levels of H2O2 of Lac mice were 17.7% higher in brain (P<0.05), but 21.1% (P<0.01) and 14.5% (P<0.05) lower in liver and small intestine than that of Non-Lac mice. Malonadialdehyde (MDA) levels of Lac mice were significantly higher in brain, but lower in liver, kidneys, muscle and small intestine than that of Non-Lac mice. Activity of glutathione peroxidase (GSH-PX) was significantly decreased in brain and liver in the Lac group compared with that in the Non-Lac group. Total antioxidant capacity (T-AOC) activity of Lac mice was significantly higher in muscle, but lower in kidneys than Non-Lac mice. Ucp4 and ucp5 gene expression of brain was 394% and 577% higher in Lac mice than in Non-Lac mice. These findings suggest that KM mice show tissue-dependent changes in both oxidative stress and antioxidants. Activities of antioxidants may be regulated physiologically in response to the elevated ROS production in several tissues during peak lactation. Regulations of brain ucp4 and ucp5 gene expression may be involved in the prevention of oxidative damage to the tissue. PMID:25855228

  18. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    PubMed Central

    Hacioglu, Gulay; Senturk, Ayse; Ince, Imran; Alver, Ahmet

    2016-01-01

    Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain. PMID:27279982

  19. Oxidative Stress Induces Senescence in Cultured RPE Cells

    PubMed Central

    Aryan, Nona; Betts-Obregon, Brandi S.; Perry, George; Tsin, Andrew T.

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence. PMID:27651846

  20. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    PubMed

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence. PMID:27651846

  1. Oxidative Stress Induces Senescence in Cultured RPE Cells

    PubMed Central

    Aryan, Nona; Betts-Obregon, Brandi S.; Perry, George; Tsin, Andrew T.

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  2. Markers of Oxidative Stress in Pregnant Women with Sleep Disturbances

    PubMed Central

    Rajendiran, Soundravally; Nimesh, Archana; Ananthanarayanan, P. H.; Dhiman, Pooja

    2015-01-01

    Objective The quality and duration of sleep is impaired during pregnancy. Our study aimed to determine whether maternal sleep deprivation occurring during the second and third trimester of pregnancy could alter fetal well-being with respect to birth weight and APGAR score by altering the inflammatory status and oxidative stress in the mothers.  Methods Sleep adequacy was assessed using the Pittsburgh Sleep Quality Index (PSQI). We investigated the inflammatory status and oxidative stress at term in the blood of pregnant subjects with and without sleep deprivation by measuring the levels of protein-bound sialic acid (PBSA), high-sensitivity C-reactive protein (hsCRP), malondialdehyde (MDA) and protein carbonyl (PCO). Homocysteine (Hcy) and its vitamin determinants were also measured. Fetal outcome with respect to birth weight and APGAR score were compared between study subjects.  Results A significant increase was observed in the levels of hsCRP, PBSA, Hcy, MDA, and PCO, in the sleep-deprived group when compared to the control group. Fetal outcome at birth showed a significant difference between the cases with high sleep deprivation and those with low sleep deprivation.  Conclusion Sleep deprivation in pregnancy leads to an increase in the inflammatory parameters, oxidative stress, and Hcy levels. Fetal outcome at birth was affected more in mothers with high sleep deprivation than those with low sleep deprivation. Follow-up in these babies are needed to reveal any differences in their growth and development. PMID:26366260

  3. Comparison of Oxidative Stress Status in Dogs Undergoing Laparoscopic and Open Ovariectomy

    PubMed Central

    LEE, Jae Yeon; KIM, Myung Cheol

    2013-01-01

    ABSTRACT The present study evaluated and compared the oxidative stress status of dogs undergoing laparoscopic or open ovariectomy. Twelve healthy female dogs were divided into two groups according to the type of the surgical procedure, laparoscopic or open ovariectomy. Plasma total oxidant status (TOS), total antioxidant status (TAS) and oxidative stress index (OSI) levels for the evaluation of oxidative stress were determined. Increases in plasma TOS and OSI levels and decreases in TAS levels were observed in both groups after surgery. The TOS level was significantly lower in the laparoscopic ovariectomy group compared with the open surgery group. Laparoscopic ovariectomy is a safe and beneficial surgical alternative to traditional ovariectomy with respect to oxidative stress status in dogs. PMID:24107463

  4. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli.

    PubMed

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs) have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH) and adenosine triphosphate (ATP) significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH), glutathione S-transferase (GST), super oxide dismutase (SOD), and catalase (CAT). These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and heat stress

  5. Oxidative Stress and IgG Antibody Modify Periodontitis-CRP Association.

    PubMed

    Singer, R E; Moss, K; Kim, S J; Beck, J D; Offenbacher, S

    2015-12-01

    In a previous report, we demonstrated the inverse association of high serum 8-isoprostane levels, a marker for oxidative stress, with decreased serum IgG antibodies to oral bacteria. The association between increased serum IgG with increased plaque and periodontitis (increased probing depths) was attenuated by high systemic oxidative stress. Other investigations have reported a role for systemic oxidative stress as a stimulus of hepatic C-reactive protein (CRP) response. These observations led us to hypothesize that the reported relationship of periodontitis to elevated serum CRP, a systemic inflammatory marker, may be modified by oxidative stress and that the levels of serum antibodies to oral bacteria might be an intermediary explanatory variable linking the association of systemic oxidative stress, periodontal disease, and levels of CRP. This hypothesis was explored as a secondary analysis of the Dental ARIC (Atherosclerosis Risk in Communities) study using serum levels of CRP, serum IgG levels to 16 oral organisms, serum levels of 8-isoprostane, and periodontal status. The findings indicate periodontitis is associated with high CRP in the presence of elevated oxidative stress that serves to suppress the IgG response. Only within the highest 8-isoprostane quartile was periodontitis (pocket depth) associated with increased serum CRP levels (P = 0.0003). Increased serum IgG antibody levels to oral bacteria were associated with lowered serum CRP levels. Thus, systemic oxidative stress, which has been demonstrated to be associated with increased levels of CRP in other studies, appears to be associated with the suppression of bacterial-specific IgG levels, which in the presence of periodontal disease can result in an enhanced systemic CRP response. Conversely, individuals with increased serum IgG antibodies to plaque bacteria exhibit lowered serum CRP levels. These 2 factors, oxidative stress and the serum IgG response, appear to function in opposing directions to

  6. Oxidative stress in toxicology: established mammalian and emerging piscine model systems.

    PubMed Central

    Kelly, K A; Havrilla, C M; Brady, T C; Abramo, K H; Levin, E D

    1998-01-01

    Interest in the toxicological aspects of oxidative stress has grown in recent years, and research has become increasingly focused on the mechanistic aspects of oxidative damage and cellular responses in biological systems. Toxic consequences of oxidative stress at the subcellular level include lipid peroxidation and oxidative damage to DNA and proteins. These effects are often used as end points in the study of oxidative stress. Typically, mammalian species have been used as models to study oxidative stress and to elucidate the mechanisms underlying cellular damage and response, largely because of the interest in human health issues surrounding oxidative stress. However, it is becoming apparent that oxidative stress also affects aquatic organisms exposed to environmental pollutants. Research in fish has demonstrated that mammalian and piscine systems exhibit similar toxicological and adaptive responses to oxidative stress. This suggests that piscine models, in addition to traditional mammalian models, may be useful for further understanding the mechanisms underlying the oxidative stress response. Images Figure 1 Figure 2 Figure 3 PMID:9637794

  7. Oxidative stress in myelin sheath: The other face of the extramitochondrial oxidative phosphorylation ability.

    PubMed

    Ravera, S; Bartolucci, M; Cuccarolo, P; Litamè, E; Illarcio, M; Calzia, D; Degan, P; Morelli, A; Panfoli, I

    2015-01-01

    Oxidative phosphorylation (OXPHOS) is not only the main source of ATP for the cell, but also a major source of reactive oxygen species (ROS), which lead to oxidative stress. At present, mitochondria are considered the organelles responsible for the OXPHOS, but in the last years we have demonstrated that it can also occur outside the mitochondrion. Myelin sheath is able to conduct an aerobic metabolism, producing ATP that we have hypothesized is transferred to the axon, to support its energetic demand. In this work, spectrophotometric, cytofluorimetric, and luminometric analyses were employed to investigate the oxidative stress production in isolated myelin, as far as its respiratory activity is concerned. We have evaluated the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), markers of lipid peroxidation, as well as of hydrogen peroxide (H2O2), marker of ROS production. To assess the presence of endogenous antioxidant systems, superoxide dismutase, catalase, and glutathione peroxidase activities were assayed. The effect of certain uncoupling or antioxidant molecules on oxidative stress in myelin was also investigated. We report that isolated myelin produces high levels of MDA, 4-HNE, and H2O2, likely through the pathway composed by Complex I-III-IV, but it also contains active superoxide dismutase, catalase, and glutathione peroxidase, as antioxidant defense. Uncoupling compounds or Complex I inhibitors increase oxidative stress, while antioxidant compounds limit ROS generation. Data may shed new light on the role of myelin sheath in physiology and pathology. In particular, it can be presumed that the axonal degeneration associated with myelin loss in demyelinating diseases is related to oxidative stress caused by impaired OXPHOS.

  8. Increased DNA damage and oxidative stress among silver jewelry workers.

    PubMed

    Aktepe, Necmettin; Kocyigit, Abdurrahim; Yukselten, Yunus; Taskin, Abdullah; Keskin, Cumali; Celik, Hakim

    2015-04-01

    Silver has long been valued as a precious metal, and it is used to make ornaments, jewelry, high-value tableware, utensils, and currency coins. Human exposures to silver and silver compounds can occur oral, dermal, or by inhalation. In this study, we investigated genotoxic and oxidative effects of silver exposure among silver jewelry workers. DNA damage in peripheral mononuclear leukocytes was measured by using the comet assay. Serum total antioxidative status (TAS), total oxidative status (TOS), total thiol contents, and ceruloplasmin levels were measured by using colorimetric methods among silver jewelry workers. Moreover, oxidative stress index (OSI) was calculated. Results were compared with non-exposed healthy subjects. The mean values of mononuclear leukocyte DNA damage were significantly higher than control subjects (p < 0.001). Serum TOS, OSI, and ceruloplasmin levels were also found to be higher in silver particles exposed group than those of non-exposed group (p < 0.001, p < 0.001, p < 0.01, respectively). However, serum TAS levels and total thiol contents of silver exposed group were found significantly lower (p < 0.05, p < 0.001, respectively). Exposure to silver particles among silver jewelry workers caused oxidative stress and accumulation of severe DNA damage.

  9. Oxidative stress--a key emerging impact factor in health, ageing, lifestyle and aesthetics.

    PubMed

    Kandola, K; Bowman, A; Birch-Machin, M A

    2015-12-01

    Oxidative stress is the resultant damage that arises due to redox imbalances, more specifically an increase in destructive free radicals and reduction in protection from antioxidants and the antioxidant defence pathways. Oxidation of lipids by reactive oxygen species (ROS) can damage cellular structures and result in premature cell death. At low levels, ROS-induced oxidative stress can be prevented through the action of antioxidants, however, when ROS are present in excess, inflammation and cytotoxicity eventually results leading to cellular oxidative stress damage. Increasing evidence for the role of oxidative stress in various diseases including neurological, dermatological, and cardiovascular diseases is now emerging. Mitochondria are the principal source (90%) of ROS in the cell, with superoxide radicals being generated when molecular oxygen is combined with free electrons. Given the key role of mitochondria in the generation of cellular oxidative stress it is worth considering this organelle and the process in more detail and to provide methods of intervention.

  10. Oxidative stress and lung pathology following geogenic dust exposure.

    PubMed

    Leetham, M; DeWitt, J; Buck, B; Goossens, D; Teng, Y; Pollard, J; McLaurin, B; Gerads, R; Keil, D

    2016-10-01

    This study was designed to evaluate markers of systemic oxidative stress and lung histopathology following subacute exposure to geogenic dust with varying heavy metal content collected from a natural setting prone to wind erosion and used heavily for off-road vehicle recreation. Adult female B6C3F1 mice were exposed to several concentrations of dust collected from seven different types of surfaces at the Nellis Dunes Recreation Area in Clark County, Nevada, designated here as CBN 1-7. Dust representing each of the seven surface types, with an average median diameter of 4.2 μm, was selected and administered via oropharyngeal aspiration to mice at concentrations from 0.01 to 100 mg of dust kg(-1) of body weight. Exposures were given four times spaced a week apart over a 28 day period to mimic a month of weekend exposures. Lung pathology was evaluated while plasma markers of oxidative stress included levels of reactive oxygen and nitrogen species, superoxide dismutase, total antioxidant capacity and total glutathione. Overall, results of these assays to evaluate markers of oxidative stress indicate that no single CBN surface type was able to consistently induce markers of systemic oxidative stress at a particular dose or in a dose-response manner. All surface types were able to induce some level of lung inflammation, typically at the highest exposure levels. These data suggest that dust from the Nellis Dunes Recreation Area may present a potential health risk, but additional studies are necessary to characterize the full extent of health risks to humans. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26922875

  11. Oxidative stress and lung pathology following geogenic dust exposure.

    PubMed

    Leetham, M; DeWitt, J; Buck, B; Goossens, D; Teng, Y; Pollard, J; McLaurin, B; Gerads, R; Keil, D

    2016-10-01

    This study was designed to evaluate markers of systemic oxidative stress and lung histopathology following subacute exposure to geogenic dust with varying heavy metal content collected from a natural setting prone to wind erosion and used heavily for off-road vehicle recreation. Adult female B6C3F1 mice were exposed to several concentrations of dust collected from seven different types of surfaces at the Nellis Dunes Recreation Area in Clark County, Nevada, designated here as CBN 1-7. Dust representing each of the seven surface types, with an average median diameter of 4.2 μm, was selected and administered via oropharyngeal aspiration to mice at concentrations from 0.01 to 100 mg of dust kg(-1) of body weight. Exposures were given four times spaced a week apart over a 28 day period to mimic a month of weekend exposures. Lung pathology was evaluated while plasma markers of oxidative stress included levels of reactive oxygen and nitrogen species, superoxide dismutase, total antioxidant capacity and total glutathione. Overall, results of these assays to evaluate markers of oxidative stress indicate that no single CBN surface type was able to consistently induce markers of systemic oxidative stress at a particular dose or in a dose-response manner. All surface types were able to induce some level of lung inflammation, typically at the highest exposure levels. These data suggest that dust from the Nellis Dunes Recreation Area may present a potential health risk, but additional studies are necessary to characterize the full extent of health risks to humans. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Voluntary locomotor activity mitigates oxidative damage associated with isolation stress in the prairie vole (Microtus ochrogaster)

    PubMed Central

    Fletcher, Kelsey L.; Whitley, Brittany N.; Treidel, Lisa A.; Thompson, David; Williams, Annie; Noguera, Jose C.; Stevenson, Jennie R.; Haussmann, Mark F.

    2015-01-01

    Organismal performance directly depends on an individual's ability to cope with a wide array of physiological challenges. For social animals, social isolation is a stressor that has been shown to increase oxidative stress. Another physiological challenge, routine locomotor activity, has been found to decrease oxidative stress levels. Because we currently do not have a good understanding of how diverse physiological systems like stress and locomotion interact to affect oxidative balance, we studied this interaction in the prairie vole (Microtus ochrogaster). Voles were either pair housed or isolated and within the isolation group, voles either had access to a moving wheel or a stationary wheel. We found that chronic periodic isolation caused increased levels of oxidative stress. However, within the vole group that was able to run voluntarily, longer durations of locomotor activity were associated with less oxidative stress. Our work suggests that individuals who demonstrate increased locomotor activity may be better able to cope with the social stressor of isolation. PMID:26179798

  13. Voluntary locomotor activity mitigates oxidative damage associated with isolation stress in the prairie vole (Microtus ochrogaster).

    PubMed

    Fletcher, Kelsey L; Whitley, Brittany N; Treidel, Lisa A; Thompson, David; Williams, Annie; Noguera, Jose C; Stevenson, Jennie R; Haussmann, Mark F

    2015-07-01

    Organismal performance directly depends on an individual's ability to cope with a wide array of physiological challenges. For social animals, social isolation is a stressor that has been shown to increase oxidative stress. Another physiological challenge, routine locomotor activity, has been found to decrease oxidative stress levels. Because we currently do not have a good understanding of how diverse physiological systems like stress and locomotion interact to affect oxidative balance, we studied this interaction in the prairie vole (Microtus ochrogaster). Voles were either pair housed or isolated and within the isolation group, voles either had access to a moving wheel or a stationary wheel. We found that chronic periodic isolation caused increased levels of oxidative stress. However, within the vole group that was able to run voluntarily, longer durations of locomotor activity were associated with less oxidative stress. Our work suggests that individuals who demonstrate increased locomotor activity may be better able to cope with the social stressor of isolation.

  14. Voluntary locomotor activity mitigates oxidative damage associated with isolation stress in the prairie vole (Microtus ochrogaster).

    PubMed

    Fletcher, Kelsey L; Whitley, Brittany N; Treidel, Lisa A; Thompson, David; Williams, Annie; Noguera, Jose C; Stevenson, Jennie R; Haussmann, Mark F

    2015-07-01

    Organismal performance directly depends on an individual's ability to cope with a wide array of physiological challenges. For social animals, social isolation is a stressor that has been shown to increase oxidative stress. Another physiological challenge, routine locomotor activity, has been found to decrease oxidative stress levels. Because we currently do not have a good understanding of how diverse physiological systems like stress and locomotion interact to affect oxidative balance, we studied this interaction in the prairie vole (Microtus ochrogaster). Voles were either pair housed or isolated and within the isolation group, voles either had access to a moving wheel or a stationary wheel. We found that chronic periodic isolation caused increased levels of oxidative stress. However, within the vole group that was able to run voluntarily, longer durations of locomotor activity were associated with less oxidative stress. Our work suggests that individuals who demonstrate increased locomotor activity may be better able to cope with the social stressor of isolation. PMID:26179798

  15. Increased oxidative stress in barn swallows from the Chernobyl region.

    PubMed

    Bonisoli-Alquati, Andrea; Mousseau, Timothy A; Møller, Anders Pape; Caprioli, Manuela; Saino, Nicola

    2010-02-01

    The Chernobyl nuclear accident produced the largest unintended release of radionuclides in history, with dramatic consequences for humans and other organisms. Exposure to ionizing radiation is known to reduce circulating and stored levels of specific antioxidants in birds and humans, thus potentially increasing oxidative stress. However, overall effects of radioactive exposure on oxidative status have never been investigated in any free ranging vertebrate. We measured plasma antioxidant capacity and concentration of reactive oxygen metabolites in adult barn swallows (Hirundo rustica) from colonies with variable background radiation levels in the Chernobyl region in Ukraine and Belarus. We predicted that antioxidants would decrease while reactive oxygen metabolites would increase with exposure to increasing levels of radiation at the breeding sites. Consistent with this expectation, radiation level positively predicted plasma concentration of reactive oxygen metabolites, whereas no significant covariation was found with non-enzymatic plasma antioxidant capacity. An index of oxidative stress was also larger in barn swallows exposed to high contamination levels. Thus, radioactive contamination appeared to be responsible for the increased generation of reactive oxygen metabolites and the imbalance between reactive oxygen metabolites and non-enzymatic plasma antioxidant capacity.

  16. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. PMID:27422326

  17. Kinins— The Kallikrein-Kinin System and Oxidative Stress

    PubMed Central

    Kayashima, Yukako; Smithies, Oliver; Kakoki, Masao

    2012-01-01

    Purpose of review The Kallikrein-kinin system (KKS) constitutes a complex multi-enzyme cascade that produces several bioactive kinin peptides and their derivatives including bradykinin. In addition to the classical notion of the KKS as a potent vasodilator and a mediator of inflammatory responses, recent studies suggest a link between the KKS and oxidative stress. A number of established mouse model with altered levels of KKS components opened the way to evaluate precise functions of the KKS. Here we review recent findings on the role of the KKS in cardiovascular diseases and chronic kidney diseases, and discuss potential benefits of KKS activation in these diseases. Recent findings Deletion of both B1R and B2R in a diabetic mouse model exacerbates its renal phenotypes, suggesting that the KKS exerts protective effects on diabetic nephropathy by suppressing oxidative stress, presumably via nitric oxide (NO) and prostaglandins (PGs). Summary Accumulating evidence has highlighted the importance of the KKS as a protective system against oxidative stress and organ damage in the heart and kidney. The activation of the KKS by ACE inhibitors and vasopeptidase inhibitors is likely to be beneficial in senescence-associated cardiovascular diseases and chronic kidney diseases. PMID:22048723

  18. Oxidative stress in prostate hyperplasia and carcinogenesis.

    PubMed

    Udensi, Udensi K; Tchounwou, Paul B

    2016-01-01

    Prostatic hyperplasia (PH) is a common urologic disease that affects mostly elderly men. PH can be classified as benign prostatic hyperplasia (BPH), or prostate cancer (PCa) based on its severity. Oxidative stress (OS) is known to influence the activities of inflammatory mediators and other cellular processes involved in the initiation, promotion and progression of human neoplasms including prostate cancer. Scientific evidence also suggests that micronutrient supplementation may restore the antioxidant status and hence improve the clinical outcomes for patients with BPH and PCa. This review highlights the recent studies on prostate hyperplasia and carcinogenesis, and examines the role of OS on the molecular pathology of prostate cancer progression and treatment. PMID:27609145

  19. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays.

  20. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. PMID:26071933

  1. Oxidative stress and antioxidants: Distress or eustress?

    PubMed

    Niki, Etsuo

    2016-04-01

    There is a growing consensus that reactive oxygen species (ROS) are not just associated with various pathologies, but that they act as physiological redox signaling messenger with important regulatory functions. It is sometimes stated that "if ROS is a physiological signaling messenger, then removal of ROS by antioxidants such as vitamins E and C may not be good for human health." However, it should be noted that ROS acting as physiological signaling messenger and ROS removed by antioxidants are not the same. The lipid peroxidation products of polyunsaturated fatty acids and cholesterol induce adaptive response and enhance defense capacity against subsequent oxidative insults, but it is unlikely that these lipid peroxidation products are physiological signaling messenger produced on purpose. The removal of ROS and inhibition of lipid peroxidation by antioxidants should be beneficial for human health, although it has to be noted also that they may not be an effective inhibitor of oxidative damage mediated by non-radical oxidants. The term ROS is vague and, as there are many ROS and antioxidants which are different in chemistry, it is imperative to explicitly specify ROS and antioxidant to understand the effects and role of oxidative stress and antioxidants properly.

  2. Increased brain nitric oxide levels following ethanol administration.

    PubMed

    Finnerty, Niall; O'Riordan, Saidhbhe L; Klamer, Daniel; Lowry, John; Pålsson, Erik

    2015-05-01

    Nitric oxide is a ubiquitous messenger molecule, which at elevated concentrations has been implicated in the pathogenesis of several neurological disorders. Its role in oxidative stress, attributed in particular to the formation of peroxynitrite, proceeds through its high affinity for the superoxide radical. Alcoholism has recently been associated with the induction of oxidative stress, which is generally defined as a shift in equilibrium between pro-oxidant and anti-oxidant species in the direction of the former. Furthermore, its primary metabolite acetaldehyde, has been extensively associated with oxidative damage related toxic effects following alcohol ingestion. The principal objective of this study was the application of long term in vivo electrochemistry (LIVE) to investigate the effect of ethanol (0.125, 0.5 and 2.0 g kg(-1)) and acetaldehyde (12.5, 50 and 200 mg kg(-1)) on NO levels in the nucleus accumbens of freely moving rats. Systemic administrations of ethanol and acetaldehyde resulted in a dose-dependent increases in NO levels, albeit with very differing time courses. Subsequent to this the effect on accumbal NO levels, of subjecting the animal to different drug combinations, was also elucidated. The nitric oxide synthase inhibitor L-NAME (20 mg kg(-1)) and acetaldehyde sequestering agent D-penicillamine (50 mg kg(-1)) both attenuated the increase in NO levels following ethanol (1 g kg(-1)) administration. Conversely, the alcohol dehydrogenase inhibitor 4-methylpyrazole (25 mg kg(-1)) and catalase inhibitor sodium azide (10 mg kg(-1)) potentiated the increase in NO levels following ethanol administration. Finally, dual inhibition of aldehyde dehydrogenase and catalase by cyanamide (25 mg kg(-1)) caused an attenuation of ethanol effects on NO levels. Taken together these data highlight a robust increase in brain NO levels following systemic alcohol administration which is dependent on NO synthase activity and may involve both alcohol- and acetaldehyde

  3. Oxidative stress and proteasome inhibitors in multiple myeloma.

    PubMed

    Lipchick, Brittany C; Fink, Emily E; Nikiforov, Mikhail A

    2016-03-01

    Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents. PMID:26827824

  4. Oxidative stress and related factors in patients with ankylosing spondylitis

    PubMed Central

    Solmaz, Dilek; Kozacı, Didem; Sarı, İsmail; Taylan, Ali; Önen, Fatoş; Akkoç, Nurullah; Akar, Servet

    2016-01-01

    Objective Ankylosing spondylitis (AS) is a chronic inflammatory disease of the spine and sacroiliac joints of unknown etiology. Recent studies have reported increased oxidative stress, which is implicated in the pathogenesis of a number of diseases, in AS. The purpose of this study was to investigate oxidative stress and related factors in AS. Material and Methods Eighty-five patients with AS [36 (16–64) years; 65 male/20 female] and 56 healthy subjects [36 (21–63) years; 39 male/17 female] with no known cardiovascular risk factors were enrolled. Serum total oxidant status (TOS) and total anti-oxidant status (TAS) were studied. The Bath ankylosing spondylitis functional index (BASFI), Bath ankylosing spondylitis disease activity index (BASDAI), and Bath ankylosing spondylitis metrology index (BASMI) were calculated. A logistic regression model was used to identify the independent risk factors for TOS. Results No differences were observed in terms of demographic characteristics, laboratory findings, or TAS concentrations between the patient and control groups. However, the serum TOS levels were significantly higher in the AS group than in the controls (p=0.003). The comparison of cases of active (BASDAI ≥4) and inactive AS revealed significantly higher TOS levels in the active disease group. The TOS and TAS concentrations did not differ between patients treated with biological agents and those treated with conventional agents. Correlation analysis yielded significant correlations between TOS and TAS, BASMI, BASFI, BASDAI, erythrocyte sedimentation rate (ESR), and high-sensitive C-reactive protein (hs-CRP) (p<0.05; r values ranged from 0.291 to 0.452) and a positive correlation between TAS and BASMI (p<0.05; r=0.344). Based on regression analysis, BASDAI, BASMI, and hs-CRP independently predicted the TOS levels [p<0.05, R2: 0.262, and standard error of the estimate (SEE): 10.96] Conclusion Oxidative stress levels were higher in patients with AS than in healthy

  5. Reproduction is not costly in terms of oxidative stress.

    PubMed

    Ołdakowski, Łukasz; Wasiluk, Aleksandra; Sadowska, Edyta T; Koteja, Paweł; Taylor, Jan R E

    2015-12-01

    One of the core assumptions of life-history theory is the negative trade-off between current and future reproduction. Investment in current reproduction is expected to decrease future reproductive success or survival, but the physiological mechanisms underlying these costs are still obscure. To test for a role of oxidative stress, we measured oxidative damage to lipids and proteins in liver, heart, kidneys and muscles, as well as the level of antioxidants (total glutathione and catalase), in breeding and non-breeding bank voles. We used females from lines selected for high aerobic metabolism and non-selected control lines and manipulated their reproductive investment by decreasing or increasing litter size. Unlike in most previous studies, the females reared four consecutive litters (the maximum possible during a breeding season). Contrary to predictions, oxidative damage in reproducing females was decreased or not changed, and did not differ between the selected and control lines. Oxidative damage to lipids and proteins in the liver was lower in females that weaned enlarged litters than in non-breeding ones, and was intermediate in those with reduced litters. Oxidative damage to proteins in the heart also tended to be lower in breeding females than in non-breeding ones. A negative relationship between the level of oxidative damage and activity of catalase in kidneys indicated a protective action of antioxidants. In conclusion, our study falsified the hypothesis that oxidative stress is a part of the proximate physiological mechanism underlying the fundamental life-history trade-off between current and future reproduction. PMID:26519508

  6. Estrogen and estrogen receptors in cardiovascular oxidative stress.

    PubMed

    Arias-Loza, Paula-Anahi; Muehlfelder, Melanie; Pelzer, Theo

    2013-05-01

    The cardiovascular system of a premenopausal woman is prepared to adapt to the challenges of increased cardiac output and work load that accompany pregnancy. Thus, it is tempting to speculate whether enhanced adaptability of the female cardiovascular system might be advantageous under conditions that promote cardiovascular disease. In support of this concept, 17β-estradiol as the major female sex hormone has been shown to confer protective cardiovascular effects in experimental studies. Mechanistically, these have been partially linked to the prevention and protection against oxidative stress. Current evidence indicates that estrogens attenuate oxidative stress at two levels: first, by preventing generation of reactive oxygen species (ROS) and, second, by scavenging ROS in the myocardium and in the vasculature. The purpose of this review is to give an overview on current concepts on conditions and mechanisms by which estrogens protect the cardiovascular system against ROS-mediated cellular injury.

  7. Neurodegeneration in Friedreich's Ataxia: From Defective Frataxin to Oxidative Stress

    PubMed Central

    Gomes, Cláudio M.; Santos, Renata

    2013-01-01

    Friedreich's ataxia is the most common inherited autosomal recessive ataxia and is characterized by progressive degeneration of the peripheral and central nervous systems and cardiomyopathy. This disease is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. This small protein with an α/β sandwich fold undergoes complex processing and imports into the mitochondria, generating isoforms with distinct N-terminal lengths which may underlie different functionalities, also in respect to oligomerization. Missense mutations in the FXN coding region, which compromise protein folding, stability, and function, are found in 4% of FRDA heterozygous patients and are useful to understand how loss of functional frataxin impacts on FRDA physiopathology. In cells, frataxin deficiency leads to pleiotropic phenotypes, including deregulation of iron homeostasis and increased oxidative stress. Increasing amount of data suggest that oxidative stress contributes to neurodegeneration in Friedreich's ataxia. PMID:23936609

  8. [Relationship of bilirubin to diseases caused by increased oxidative stress].

    PubMed

    Vítek, L

    2013-07-01

    Oxidative stress contributes importantly to pathogenesis of numerous civilization diseases, including cardiovascular diseases, cancer, as well as autoimmune and neurodegenerative conditions. Bilirubin is the major product of the heme catabolic pathway in the intravascular compartment. For long time, bilirubin was considered to be only a waste product, however, recent data from the last 2 decades have proved its important antioxidant properties, which contributes to defense against increased oxidative stress. Numerous experimental as well as clinical studies have demonstrated association between low bilirubin concentrations and cardiovascular diseases, diabetes, certain cancers, autoimunne diseases, such as lupus erythematodes, or rheumatoid arthritis or neurological psychiatric disorders, such as schizofrenia. On the other hand, subjects with mildly elevated blood bilirubin levels, typical for Gilbert syndrome, have decreased risk of these diseases. PMID:23909269

  9. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress.

    PubMed

    de Sá, Rafael A; de Castro, Frederico A V; Eleutherio, Elis C A; de Souza, Raquel M; da Silva, Joaquim F M; Pereira, Marcos D

    2013-01-01

    Propolis is a natural product widely used for humans. Due to its complex composition, a number of applications (antimicrobial, antiinflammatory, anesthetic, cytostatic and antioxidant) have been attributed to this substance. Using Saccharomyces cerevisiae as a eukaryotic model we investigated the mechanisms underlying the antioxidant effect of propolis from Guarapari against oxidative stress. Submitting a wild type (BY4741) and antioxidant deficient strains (ctt1Δ, sod1Δ, gsh1Δ, gtt1Δ and gtt2Δ) either to 15 mM menadione or to 2 mM hydrogen peroxide during 60 min, we observed that all strains, except the mutant sod1Δ, acquired tolerance when previously treated with 25 μg/mL of alcoholic propolis extract. Such a treatment reduced the levels of ROS generation and of lipid peroxidation, after oxidative stress. The increase in Cu/Zn-Sod activity by propolis suggests that the protection might be acting synergistically with Cu/Zn-Sod.

  10. Dietary contaminants and oxidative stress in Inuit of Nunavik.

    PubMed

    Bélanger, Marie-Claire; Dewailly, Eric; Berthiaume, Line; Noël, Micheline; Bergeron, Jean; Mirault, Marc-Edouard; Julien, Pierre

    2006-08-01

    The aim of the present study was to investigate the potential deleterious effects of dietary contaminants such as polychlorinated biphenyls (PCBs) and methylmercury (MeHg) on different molecules sensitive to oxidative stress, namely, plasma oxidized low-density lipoproteins (OxLDLs), plasma homocysteine (Hcy), blood glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione (GSH). We also planned to assess the potential beneficial effects of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) and selenium (Se) that are also present in the traditional Inuit diet. A total of 99 participants were studied. Plasma levels of PCBs, blood levels of Se and MeHg, plasma lipids (triacylglycerols, total, LDL-, and high-density lipoprotein cholesterol [LDL-C and HDL-C, respectively], apolipoprotein B-LDL), erythrocyte n-3 PUFAs, OxLDL, Hcy, blood GPx, GSH, and GR have been determined. Mean concentrations of MeHg, Se, and PCBs were respectively 10- to 14-fold, 8- to 15-fold, and 16- to 18-fold higher than reported in white population consuming little or no fish. Multivariate analyses show that variance in plasma OxLDL concentrations was predicted by LDL-C (P = .007), HDL-C (P = .005), and PCBs (P = .006). The level of LDL oxidation, represented as the ratio OxLDL/apolipoprotein B-LDL, was predicted by LDL-C (P = .0002), HDL-C (P = .002), and GSH (P = .005). Concentration of plasma Hcy was positively predicted by age (P = .02) but negatively by body mass index (P = .04) and Se (P = .005). Glutathione was predicted by the smoking status (P = .004) and the level of LDL oxidation (P = .005), whereas GR was only predicted by the smoking status (P = .0009). The variance of GPx was not predicted by any contaminant or other physiological parameter. Dietary MeHg showed no association with the examined oxidative biomarkers, whereas PCB level was a predictor of the plasma concentration of OxLDL, although this concentration remained very low. The level of GPx activity

  11. Oxidative Stress Status in Childhood Obesity: A Potential Risk Predictor

    PubMed Central

    Kilic, Elif; Özer, Ömer Faruk; Erek, Aybala Toprak; Erman, Hayriye; Torun, Emel; Ayhan, Sıddıka Kesgin; Caglar, Hifa Gülru; Selek, Sahbettin; Kocyigit, Abdurrahim

    2016-01-01

    Background Childhood obesity characterized by excessive fat in the body is one of the most serious health problems worldwide due to the social, medical, and physiological complications. Obesity and associated diseases are triggering factors for oxidative stress and inflammation. The aim of this study was to explore the possible association between childhood obesity and inflammatory and oxidative status. Material/Methods Thirty-seven obese children and 37 healthy controls selected from among children admitted to BLIND University Paediatrics Department were included in the study. Anthropometric measurements were performed using standard methods. Glucose, lipid parameters, CRP, insulin, total oxidant status (TOS), total anti-oxidant status (TAS) levels, and total thiol levels (TTL) were measured in serum. HOMA index (HOMA-IR) were calculated. The differences between the groups were evaluated statistically using the Mann-Whitney U test. Results Body mass index was significantly higher in the obese group (median: 28.31(p<0.001). Glucose metabolism, insulin, and HOMA-IR levels were significantly higher in the obese group (both p<0.001). Total cholesterol, HDL cholesterol, LDL cholesterol, and triglyceride levels were significantly higher in the obese group (p<0.001). TAS (med: 2.5 μmol Trolox eq/L (1.7–3.3)) and TOS (med: 49.1 μmol H2O2 eq/L (34.5–78.8)) levels and TTL (med: 0.22 mmol/L (0.16–0.26)) were significantly higher in the obese group (p=0.001). CRP levels showed positive correlation with TOS and negative correlation with TTL levels (p=0.005, r=0.473; p=0.01, r=−0.417; respectively). TTL levels exhibited negative correlation with TOS levels (p=0.03, r=−0.347). Conclusions In conclusion, obese children were exposed to more oxidative burden than children with normal weight. Increased systemic oxidative stress induced by childhood obesity can cause development of obesity-related complications and diseases. Widely focussed studies are required on the use

  12. A mitochondrial superoxide theory for oxidative stress diseases and aging.

    PubMed

    Indo, Hiroko P; Yen, Hsiu-Chuan; Nakanishi, Ikuo; Matsumoto, Ken-Ichiro; Tamura, Masato; Nagano, Yumiko; Matsui, Hirofumi; Gusev, Oleg; Cornette, Richard; Okuda, Takashi; Minamiyama, Yukiko; Ichikawa, Hiroshi; Suenaga, Shigeaki; Oki, Misato; Sato, Tsuyoshi; Ozawa, Toshihiko; Clair, Daret K St; Majima, Hideyuki J

    2015-01-01

    Fridovich identified CuZnSOD in 1969 and manganese superoxide dismutase (MnSOD) in 1973, and proposed "the Superoxide Theory," which postulates that superoxide (O2 (•-)) is the origin of most reactive oxygen species (ROS) and that it undergoes a chain reaction in a cell, playing a central role in the ROS producing system. Increased oxidative stress on an organism causes damage to cells, the smallest constituent unit of an organism, which can lead to the onset of a variety of chronic diseases, such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis and other neurological diseases caused by abnormalities in biological defenses or increased intracellular reactive oxygen levels. Oxidative stress also plays a role in aging. Antioxidant systems, including non-enzyme low-molecular-weight antioxidants (such as, vitamins A, C and E, polyphenols, glutathione, and coenzyme Q10) and antioxidant enzymes, fight against oxidants in cells. Superoxide is considered to be a major factor in oxidant toxicity, and mitochondrial MnSOD enzymes constitute an essential defense against superoxide. Mitochondria are the major source of superoxide. The reaction of superoxide generated from mitochondria with nitric oxide is faster than SOD catalyzed reaction, and produces peroxynitrite. Thus, based on research conducted after Fridovich's seminal studies, we now propose a modified superoxide theory; i.e., superoxide is the origin of reactive oxygen and nitrogen species (RONS) and, as such, causes various redox related diseases and aging.

  13. Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis.

    PubMed

    Richier, Sophie; Sabourault, Cécile; Courtiade, Juliette; Zucchini, Nathalie; Allemand, Denis; Furla, Paola

    2006-09-01

    Symbiosis between cnidarian and photosynthetic protists is widely distributed over temperate and tropical seas. These symbioses can periodically breakdown, a phenomenon known as cnidarian bleaching. This event can be irreversible for some associations subjected to acute and/or prolonged environmental disturbances, and leads to the death of the animal host. During bleaching, oxidative stress has been described previously as acting at molecular level and apoptosis is suggested to be one of the mechanisms involved. We focused our study on the role of apoptosis in bleaching via oxidative stress in the association between the sea anemone Anemonia viridis and the dinoflagellates Symbiodinium species. Characterization of caspase-like enzymes were conducted at the biochemical and molecular level to confirm the presence of a caspase-dependent apoptotic phenomenon in the cnidarian host. We provide evidence of oxidative stress followed by induction of caspase-like activity in animal host cells after an elevated temperature stress, suggesting the concomitant action of these components in bleaching. PMID:16907933

  14. Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis.

    PubMed

    Richier, Sophie; Sabourault, Cécile; Courtiade, Juliette; Zucchini, Nathalie; Allemand, Denis; Furla, Paola

    2006-09-01

    Symbiosis between cnidarian and photosynthetic protists is widely distributed over temperate and tropical seas. These symbioses can periodically breakdown, a phenomenon known as cnidarian bleaching. This event can be irreversible for some associations subjected to acute and/or prolonged environmental disturbances, and leads to the death of the animal host. During bleaching, oxidative stress has been described previously as acting at molecular level and apoptosis is suggested to be one of the mechanisms involved. We focused our study on the role of apoptosis in bleaching via oxidative stress in the association between the sea anemone Anemonia viridis and the dinoflagellates Symbiodinium species. Characterization of caspase-like enzymes were conducted at the biochemical and molecular level to confirm the presence of a caspase-dependent apoptotic phenomenon in the cnidarian host. We provide evidence of oxidative stress followed by induction of caspase-like activity in animal host cells after an elevated temperature stress, suggesting the concomitant action of these components in bleaching.

  15. Tyrosine promotes oxidative stress in cerebral cortex of young rats.

    PubMed

    Sgaravatti, Angela M; Vargas, Bethânia A; Zandoná, Bernardo R; Deckmann, Kátia B; Rockenbach, Francieli J; Moraes, Tarsila B; Monserrat, José M; Sgarbi, Mirian B; Pederzolli, Carolina D; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir; Dutra-Filho, Carlos Severo

    2008-10-01

    Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II, where tyrosine levels are highly elevated in tissues and physiological fluids of affected patients. In tyrosinemia type II, high levels of tyrosine are correlated with eyes, skin and central nervous system disturbances. Considering that the mechanisms of brain damage in these disorders are poorly known, in the present study, we investigated whether oxidative stress is elicited by l-tyrosine in cerebral cortex homogenates of 14-day-old Wistar rats. The in vitro effect of 0.1-4.0mM l-tyrosine was studied on the following oxidative stress parameters: total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), ascorbic acid content, reduced glutathione (GSH) content, spontaneous chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), thiol-disulfide redox state (SH/SS ratio), protein carbonyl content, formation of DNA-protein cross-links, and the activities of the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glucose-6-phosphate dehydrogenase (G6PDH). TRAP, TAR, ascorbic acid content, SH/SS ratio and CAT activity were significantly diminished, while formation of DNA-protein cross-link was significantly enhanced by l-tyrosine in vitro. In contrast, l-tyrosine did not affect the other parameters of oxidative stress evaluated. These results indicate that l-tyrosine decreases enzymatic and non-enzymatic antioxidant defenses, changes the redox state and stimulates DNA damage in cerebral cortex of young rats in vitro. This suggests that oxidative stress may represent a pathophysiological mechanism in tyrosinemic patients, in which this amino acid accumulates.

  16. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  17. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    SciTech Connect

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  18. Chasing great paths of Helmut Sies "Oxidative Stress".

    PubMed

    Majima, Hideyuki J; Indo, Hiroko P; Nakanishi, Ikuo; Suenaga, Shigeaki; Matsumoto, Ken-Ichiro; Matsui, Hirofumi; Minamiyama, Yukiko; Ichikawa, Hiroshi; Yen, Hsiu-Chuan; Hawkins, Clare L; Davies, Michael J; Ozawa, Toshihiko; St Clair, Daret K

    2016-04-01

    Prof. Dr. Helmut Sies is a pioneer of "Oxidative Stress", and has published over 18 papers with the name of "Oxidative Stress" in the title. He has been Editor-in-Chief of the journal "Archives of Biochemistry and Biophysics" for many years, and is a former Editor-in-Chief of the journal "Free Radical Research". He has clarified our understanding of the causes of chronic developing diseases, and has studied antioxidant factors. In this article, importance of "Oxidative Stress" and our mitochondrial oxidative stress studies; roles of mitochondrial ROS, effects of vitamin E and its homologues in oxidative stress-related diseases, effects of antioxidants in vivo and in vitro, and a mitochondrial superoxide theory for oxidative stress diseases and aging are introduced, and some of our interactions with Helmut are described, congratulating and appreciating his great path.

  19. Going retro: Oxidative stress biomarkers in modern redox biology.

    PubMed

    Margaritelis, N V; Cobley, J N; Paschalis, V; Veskoukis, A S; Theodorou, A A; Kyparos, A; Nikolaidis, M G

    2016-09-01

    The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting.

  20. Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy

    PubMed Central

    Muriach, María; Flores-Bellver, Miguel; Romero, Francisco J.; Barcia, Jorge M.

    2014-01-01

    Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation. PMID:25215171

  1. Oxidative stress in marine environments: biochemistry and physiological ecology.

    PubMed

    Lesser, Michael P

    2006-01-01

    Oxidative stress-the production and accumulation of reduced oxygen intermediates such as superoxide radicals, singlet oxygen, hydrogen peroxide, and hydroxyl radicals-can damage lipids, proteins, and DNA. Many disease processes of clinical interest and the aging process involve oxidative stress in their underlying etiology. The production of reactive oxygen species is also prevalent in the world's oceans, and oxidative stress is an important component of the stress response in marine organisms exposed to a variety of insults as a result of changes in environmental conditions such as thermal stress, exposure to ultraviolet radiation, or exposure to pollution. As in the clinical setting, reactive oxygen species are also important signal transduction molecules and mediators of damage in cellular processes, such as apoptosis and cell necrosis, for marine organisms. This review brings together the voluminous literature on the biochemistry and physiology of oxidative stress from the clinical and plant physiology disciplines with the fast-increasing interest in oxidative stress in marine environments.

  2. Examining the relationships between egg cortisol and oxidative stress in developing wild sockeye salmon (Oncorhynchus nerka).

    PubMed

    Taylor, Jessica J; Sopinka, Natalie M; Wilson, Samantha M; Hinch, Scott G; Patterson, David A; Cooke, Steven J; Willmore, William G

    2016-10-01

    Maternally-derived hormones in oocytes, such as glucocorticoids (GCs), play a crucial role in embryo development in oviparous taxa. In fishes, maternal stressor exposure increases circulating and egg cortisol levels, the primary GC in fishes, as well as induces oxidative stress. Elevated egg cortisol levels modify offspring traits but whether maternal oxidative stress correlates with circulating and egg cortisol levels, and whether maternal/egg cortisol levels correlate with offspring oxidative stress have yet to be determined. The objective of this study was to examine the relationships among maternal and egg cortisol, and maternal and offspring oxidative stress to provide insight into the potential intergenerational effects of stressor exposure in sockeye salmon (Oncorhynchus nerka). Antioxidant concentration and oxidative stress were measured in maternal tissues (plasma, brain, heart and liver) as well as offspring developmental stages (pre-fertilization, 24h post-fertilization, eyed, and hatch), and were compared to both naturally-occurring and experimentally-elevated (via cortisol egg bath) levels of cortisol in eggs. Oxygen radical absorptive capacity of tissues from maternal sockeye salmon was measured spectrophotometrically and was not correlated with maternal or egg cortisol concentrations. Also, naturally-occurring and experimentally-elevated cortisol levels in eggs (to mimic maternal stress) did not affect oxidative stress or antioxidant capacity of the offspring. We conclude that the metrics of maternal stress examined in sockeye salmon (i.e., maternal/egg cortisol, maternal oxidative stress) are independent of each other, and that egg cortisol content does not influence offspring oxidative stress. PMID:27316822

  3. Enhanced Oxidative Stress Is Responsible for TRPV4-Induced Neurotoxicity

    PubMed Central

    Hong, Zhiwen; Tian, Yujing; Yuan, Yibiao; Qi, Mengwen; Li, Yingchun; Du, Yimei; Chen, Lei; Chen, Ling

    2016-01-01

    Transient receptor potential vanilloid 4 (TRPV4) has been reported to be responsible for neuronal injury in pathological conditions. Excessive oxidative stress can lead to neuronal damage, and activation of TRPV4 increases the production of reactive oxygen species (ROS) and nitric oxide (NO) in many types of cells. The present study explored whether TRPV4-induced neuronal injury is mediated through enhancing oxidative stress. We found that intracerebroventricular injection of the TRPV4 agonist GSK1016790A increased the content of methane dicarboxylic aldehyde (MDA) and NO in the hippocampus, which was blocked by administration of the TRPV4 specific antagonist HC-067047. The activities of catalase (CAT) and glutathione peroxidase (GSH-Px) were decreased by GSK1016790A, whereas the activity of superoxide dismutase (SOD) remained unchanged. Moreover, the protein level and activity of neuronal nitric oxide synthase (nNOS) were increased by GSK1016790A, and the GSK1016790A-induced increase in NO content was blocked by an nNOS specific antagonist ARL-17477. The GSK1016790A-induced modulations of CAT, GSH-Px and nNOS activities and the protein level of nNOS were significantly inhibited by HC-067047. Finally, GSK1016790A-induced neuronal death and apoptosis in the hippocampal CA1 area were markedly attenuated by administration of a ROS scavenger Trolox or ARL-17477. We conclude that activation of TRPV4 enhances oxidative stress by inhibiting CAT and GSH-Px and increasing nNOS, which is responsible, at least in part, for TRPV4-induced neurotoxicity. PMID:27799895

  4. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats.

    PubMed

    López-López, Ana Laura; Jaime, Herlinda Bonilla; Escobar Villanueva, María Del Carmen; Padilla, Malinalli Brianza; Palacios, Gonzalo Vázquez; Aguilar, Francisco Javier Alarcón

    2016-07-01

    Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the first work to report that the pancreas redox state is subject to chronic stress conditions. The TAC was constant in the liver and reduced in the pancreas. An increase in the TNF-α, IL-1β, and IL-6 inflammatory markers and a decrease in the IL-10 level due to CUMS was shown, thereby resulting in the generation of a systemic inflammation state after 60days of treatment. Together, the CUMS consequences on day 60 suggest that both processes can contribute to the development of chronic degenerative diseases, such as cardiovascular disease and diabetes mellitus. CUMS is an animal model that in addition to avoiding habituation activates damage mechanisms such as oxidative stress and low-grade chronic

  5. Oxidative stress in psoriasis and potential therapeutic use of antioxidants.

    PubMed

    Lin, Xiran; Huang, Tian

    2016-06-01

    The pathophysiology of psoriasis is complex and dynamic. Recently, the involvement of oxidative stress in the pathogenesis of psoriasis has been proposed. Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control and/or molecular damage. In this article, the published studies on the role of oxidative stress in psoriasis pathogenesis are reviewed, focusing on the impacts of oxidative stress on dendritic cells, T lymphocytes, and keratinocytes, on angiogenesis and on inflammatory signaling (mitogen-activated protein kinase, nuclear factor-κB, and Janus kinase/signal transducer and activator of transcription). As there is compelling evidence that oxidative stress is involved in the pathogenesis of psoriasis, the possibility of using this information to develop novel strategies for treatment of patients with psoriasis is of considerable interest. In this article, we also review the published studies on treating psoriasis with antioxidants and drugs with antioxidant activity. PMID:27098416

  6. Interfacial stress transfer in graphene oxide nanocomposites.

    PubMed

    Li, Zheling; Young, Robert J; Kinloch, Ian A

    2013-01-23

    Raman spectroscopy has been used for the first time to monitor interfacial stress transfer in poly(vinyl alcohol) nanocomposites reinforced with graphene oxide (GO). The graphene oxide nanocomposites were prepared by a simple mixing method and casting from aqueous solution. They were characterized using scanning electron microscopy, X-ray diffraction, and polarized Raman spectroscopy and their mechanical properties determined by tensile testing and dynamic mechanical thermal analysis. It was found that GO was fully exfoliated during the nanocomposite preparation process and that the GO nanoplatelets tended align in the plane of the films. The stiffness and yield stress of the nanocomposites were found to increase with GO loading but the extension to failure decreased. It was shown that the Raman D band at ~1335 cm(-1) downshifted as the nanocomposites were strained as a result of the interfacial stress transfer between the polymer matrix and GO reinforcement. From knowledge of the Grüneisen parameter for graphene, it was possible to estimate the effective Young's modulus of the GO from the Raman D band shift rate per unit strain to be of the order of 120 GPa. A similar value of effective modulus was found from the tensile mechanical data using the "rule of mixtures" that decreased with GO loading. The accepted value of Young's modulus for GO is in excess of 200 GPa and it is suggested that the lower effective Young's modulus values determined may be due to a combination of finite flake dimensions, waviness and wrinkles, aggregation, and misalignment of the GO flakes.

  7. Management of multicellular senescence and oxidative stress

    PubMed Central

    Haines, David D; Juhasz, Bela; Tosaki, Arpad

    2013-01-01

    Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs’ apoptosis, necrosis, autophagy and ‘necroapoptophagy’. The concept of ‘necroapoptophagy’ is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a

  8. Oxidative stress modulates theophylline effects on steroid responsiveness.

    PubMed

    Marwick, John A; Wallis, Gillian; Meja, Koremu; Kuster, Bernhard; Bouwmeester, Tewis; Chakravarty, Probir; Fletcher, Danielle; Whittaker, Paul A; Barnes, Peter J; Ito, Kazuhiro; Adcock, Ian M; Kirkham, Paul A

    2008-12-19

    Oxidative stress is a central factor in many chronic inflammatory diseases such as severe asthma and chronic obstructive pulmonary disease (COPD). Oxidative stress reduces the anti-inflammatory corticosteroid action and may therefore contribute to the relative corticosteroid insensitivity seen in these diseases. Low concentrations of theophylline can restore the anti-inflammatory action of corticosteroids in oxidant exposed cells, however the mechanism remains unknown. Here, we demonstrate that a low concentration of theophylline restores corticosteroid repression of pro-inflammatory mediator release and histone acetylation in oxidant exposed cells. Global gene expression analysis shows that theophylline regulates distinct pathways in naïve and oxidant exposed cells and reverses oxidant mediated modulated of pathways. Furthermore, quantitative chemoproteomics revealed that theophylline has few high affinity targets in naive cells but an elevated affinity in oxidant stressed cells. In conclusion, oxidative stress alters theophylline binding profile and gene expression which may result in restoration of corticosteroid function. PMID:18951874

  9. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    PubMed

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people.

  10. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    PubMed

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. PMID:27224647

  11. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis.

    PubMed

    Tunc-Ozdemir, Meral; Miller, Gad; Song, Luhua; Kim, James; Sodek, Ahmet; Koussevitzky, Shai; Misra, Amarendra Narayan; Mittler, Ron; Shintani, David

    2009-09-01

    Thiamin and thiamin pyrophosphate (TPP) are well known for their important roles in human nutrition and enzyme catalysis. In this work, we present new evidence for an additional role of these compounds in the protection of cells against oxidative damage. Arabidopsis (Arabidopsis thaliana) plants subjected to abiotic stress conditions, such as high light, cold, osmotic, salinity, and oxidative treatments, accumulated thiamin and TPP. Moreover, the accumulation of these compounds in plants subjected to oxidative stress was accompanied by enhanced expression of transcripts encoding thiamin biosynthetic enzymes. When supplemented with exogenous thiamin, wild-type plants displayed enhanced tolerance to oxidative stress induced by paraquat. Thiamin application was also found to protect the reactive oxygen species-sensitive ascorbate peroxidase1 mutant from oxidative stress. Thiamin-induced tolerance to oxidative stress was accompanied by decreased production of reactive oxygen species in plants, as evidenced from decreased protein carbonylation and hydrogen peroxide accumulation. Because thiamin could protect the salicylic acid induction-deficient1 mutant against oxidative stress, thiamin-induced oxidative protection is likely independent of salicylic acid signaling or accumulation. Taken together, our studies suggest that thiamin and TPP function as important stress-response molecules that alleviate oxidative stress during different abiotic stress conditions.

  12. The shared role of oxidative stress and inflammation in major depressive disorder and nicotine dependence.

    PubMed

    Nunes, Sandra Odebrecht Vargas; Vargas, Heber Odebrecht; Prado, Eduardo; Barbosa, Decio Sabbatini; de Melo, Luiz Picoli; Moylan, Steven; Dodd, Seetal; Berk, Michael

    2013-09-01

    Nicotine dependence is common in people with mood disorders; however the operative pathways are not well understood. This paper reviews the contribution of inflammation and oxidative stress pathways to the co-association of depressive disorder and nicotine dependence, including increased levels of pro-inflammatory cytokines, increased acute phase proteins, decreased levels of antioxidants and increased oxidative stress. These could be some of the potential pathophysiological mechanisms involved in neuroprogression. The shared inflammatory and oxidative stress pathways by which smoking may increase the risk for development of depressive disorders are in part mediated by increased levels of pro-inflammatory cytokines, diverse neurotransmitter systems, activation the hypothalamic-pituitary-adrenal (HPA) axis, microglial activation, increased production of oxidative stress and decreased levels of antioxidants. Depressive disorder and nicotine dependence are additionally linked imbalance between neuroprotective and neurodegenerative metabolites in the kynurenine pathway that contribute to neuroprogression. These pathways provide a mechanistic framework for understanding the interaction between nicotine dependence and depressive disorder.

  13. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

    PubMed

    Plaisance, Valérie; Brajkovic, Saška; Tenenbaum, Mathie; Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  14. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    PubMed Central

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  15. Oxidative Stress Contributes to Autophagy Induction in Response to Endoplasmic Reticulum Stress in Chlamydomonas reinhardtii1[W

    PubMed Central

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D.; Crespo, José L.

    2014-01-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  16. 8-Hydroxydeoxyguanosine: not mere biomarker for oxidative stress, but remedy for oxidative stress-implicated gastrointestinal diseases.

    PubMed

    Ock, Chan-Young; Kim, Eun-Hee; Choi, Duck Joo; Lee, Ho Jae; Hahm, Ki-Baik; Chung, Myung Hee

    2012-01-28

    Reactive oxygen species (ROS) attack guanine bases in DNA easily and form 8-hydroxydeoxyguanosine (8-OHdG), which can bind to thymidine rather than cytosine, based on which, the level of 8-OHdG is generally regarded as a biomarker of mutagenesis consequent to oxidative stress. For example, higher levels of 8-OHdG are noted in Helicobacter pylori-associated chronic atrophic gastritis as well as gastric cancer. However, we have found that exogenous 8-OHdG can paradoxically reduce ROS production, attenuate the nuclear factor-κB signaling pathway, and ameliorate the expression of proinflammatory mediators such as interleukin (IL)-1, IL-6, cyclo-oxygenase-2, and inducible nitric oxide synthase in addition to expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX)-1, NOX organizer-1 and NOX activator-1 in various conditions of inflammation-based gastrointestinal (GI) diseases including gastritis, inflammatory bowel disease, pancreatitis, and even colitis-associated carcinogenesis. Our recent finding that exogenous 8-OHdG was very effective in either inflammation-based or oxidative-stress-associated diseases of stress-related mucosal damage has inspired the hope that synthetic 8-OHdG can be a potential candidate for the treatment of inflammation-based GI diseases, as well as the prevention of inflammation-associated GI cancer. In this editorial review, the novel fact that exogenous 8-OHdG can be a functional molecule regulating oxidative-stress-induced gastritis through either antagonizing Rac-guanosine triphosphate binding or blocking the signals responsible for gastric inflammatory cascade is introduced.

  17. Oxidative stress and nitrosative stress are involved in different stages of proteolytic pulmonary emphysema.

    PubMed

    Lanzetti, Manuella; da Costa, Cristiane Aguiar; Nesi, Renata Tiscoski; Barroso, Marina Valente; Martins, Vanessa; Victoni, Tatiana; Lagente, Vincent; Pires, Karla Maria Pereira; e Silva, Patrícia Machado Rodrigues; Resende, Angela Castro; Porto, Luis Cristóvão; Benjamim, Cláudia Farias; Valença, Samuel Santos

    2012-12-01

    Our aim was to investigate the role of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were subjected to pancreatic porcine elastase (PPE) instillation (0.05 or 0.5 U per mouse, i.t.) to induce pulmonary emphysema. Lungs were collected on days 7, 14, and 21 after PPE instillation. The control group was sham injected. Also, mice treated with 1% aminoguanidine (AMG) and inducible NO synthase (iNOS) knockout mice received 0.5 U PPE (i.t.), and lungs were analyzed 21 days after. We performed bronchoalveolar lavage, biochemical analyses of oxidative stress, and lung stereology and morphometry assays. Emphysema was observed histologically at 21 days after 0.5 U PPE treatment; tissues from these mice exhibited increased alveolar linear intercept and air-space volume density in comparison with the control group. TNF-α was elevated at 7 and 14 days after 0.5 U PPE treatment, concomitant with a reduction in the IL-10 levels at the same time points. Myeloperoxidase was elevated in all groups treated with 0.5 U PPE. Oxidative stress was observed during early stages of emphysema, with increased nitrite levels and malondialdehyde and superoxide dismutase activity at 7 days after 0.5 U PPE treatment. Glutathione peroxidase activity was increased in all groups treated with 0.5 U PPE. The emphysema was attenuated when iNOS was inhibited using 1% AMG and in iNOS knockout mice. Furthermore, proteolytic stimulation by PPE enhanced the expression of nitrotyrosine and iNOS, whereas the PPE+AMG group showed low expression of iNOS and nitrotyrosine. PPE stimulus also induced endothelial (e) NOS expression, whereas AMG reduced eNOS. Our results suggest that the oxidative and nitrosative stress pathways are triggered by nitric oxide production via iNOS expression in pulmonary emphysema.

  18. Oxidative stress, activity behaviour and body mass in captive parrots.

    PubMed

    Larcombe, S D; Tregaskes, C A; Coffey, J; Stevenson, A E; Alexander, L G; Arnold, K E

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally 'active' individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes.

  19. Oxidative stress, activity behaviour and body mass in captive parrots.

    PubMed

    Larcombe, S D; Tregaskes, C A; Coffey, J; Stevenson, A E; Alexander, L G; Arnold, K E

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally 'active' individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes. PMID:27293729

  20. Oxidative stress, activity behaviour and body mass in captive parrots

    PubMed Central

    Larcombe, S. D.; Tregaskes, C. A.; Coffey, J.; Stevenson, A. E.; Alexander, L. G.; Arnold, K. E.

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally ‘active’ individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes. PMID

  1. Influence of a thiazole derivative on ethanol and thermally oxidized sunflower oil-induced oxidative stress.

    PubMed

    Kode, Aruna; Rajagopalan, Rukkumani; Penumathsa, Suresh Varma; Menon, Venugopal P

    2004-10-01

    The present work describes the protective influence of the dendrodoine analogue (DA) [4-amino-5-benzoyl-2-(4-methoxy phenylamino) thiazole] on thermally oxidized sunflower oil and ethanol-induced oxidative stress. Ethanol was fed to animals at a level of 20% [(7.9 g/kg body weight (bw)] and thermally oxidized sunflower oil at a level of 15% (15 mL/100 g feed). Hepatotoxicity was assessed by measuring the activity of plasma aspartate transaminase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT), which were elevated in thermally oxidized oil, and ethanol fed rats when compared with normal control rats. Tissue damage was associated with increased lipid peroxidation and disruption in the antioxidant defence mechanism in thermally oxidized oil- and ethanol-fed groups when compared with normal control group. The activity of liver marker enzymes (AST, ALP and GGT) and the level of lipid peroxidation decreased when DA was administered along with ethanol and thermally oxidized oil. The antioxidant status was near normal in DA-administered groups. Thus we propose that DA exerts antioxidant properties by modulating the activity of hepatic marker enzymes, level of lipid peroxidation and antioxidant status.

  2. Arsenic: toxicity, oxidative stress and human disease.

    PubMed

    Jomova, K; Jenisova, Z; Feszterova, M; Baros, S; Liska, J; Hudecova, D; Rhodes, C J; Valko, M

    2011-03-01

    Arsenic (As) is a toxic metalloid element that is present in air, water and soil. Inorganic arsenic tends to be more toxic than organic arsenic. Examples of methylated organic arsenicals include monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. Reactive oxygen species (ROS)-mediated oxidative damage is a common denominator in arsenic pathogenesis. In addition, arsenic induces morphological changes in the integrity of mitochondria. Cascade mechanisms of free radical formation derived from the superoxide radical, combined with glutathione-depleting agents, increase the sensitivity of cells to arsenic toxicity. When both humans and animals are exposed to arsenic, they experience an increased formation of ROS/RNS, including peroxyl radicals (ROO•), the superoxide radical, singlet oxygen, hydroxyl radical (OH•) via the Fenton reaction, hydrogen peroxide, the dimethylarsenic radical, the dimethylarsenic peroxyl radical and/or oxidant-induced DNA damage. Arsenic induces the formation of oxidized lipids which in turn generate several bioactive molecules (ROS, peroxides and isoprostanes), of which aldehydes [malondialdehyde (MDA) and 4-hydroxy-nonenal (HNE)] are the major end products. This review discusses aspects of chronic and acute exposures of arsenic in the etiology of cancer, cardiovascular disease (hypertension and atherosclerosis), neurological disorders, gastrointestinal disturbances, liver disease and renal disease, reproductive health effects, dermal changes and other health disorders. The role of antioxidant defence systems against arsenic toxicity is also discussed. Consideration is given to the role of vitamin C (ascorbic acid), vitamin E (α-tocopherol), curcumin, glutathione and antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase in their protective roles against arsenic-induced oxidative stress.

  3. Oxidative stress and ageing of the post-ovulatory oocyte.

    PubMed

    Lord, Tessa; Aitken, R John

    2013-12-01

    With extended periods of time following ovulation, the metaphase II stage oocyte experiences deterioration in quality referred to as post-ovulatory oocyte ageing. Post-ovulatory ageing occurs both in vivo and in vitro and has been associated with reduced fertilization rates, poor embryo quality, post-implantation errors and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been established, the molecular mechanisms controlling this process are not well defined. This review analyses the relationships between biochemical changes exhibited by the ageing oocyte and the symptoms associated with the ageing phenotype. We also discuss molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We propose that oxidative stress may act as the initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to cause a decline in levels of critical cell cycle factors such as maturation-promoting factor, impair calcium homoeostasis, induce mitochondrial dysfunction and directly damage multiple intracellular components of the oocyte such as lipids, proteins and DNA. Finally, this review addresses current strategies for delaying post-ovulatory oocyte ageing with a particular focus on the potential use of compounds such as caffeine or selected antioxidants in the development of more refined media for the preservation of oocyte integrity during IVF procedures.

  4. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    EPA Science Inventory

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels