Science.gov

Sample records for oxidative tissue damage

  1. Tissue damage and oxidant/antioxidant balance.

    PubMed

    Kisaoglu, Abdullah; Borekci, Bunyamin; Yapca, O Erkan; Bilen, Habib; Suleyman, Halis

    2013-02-01

    The oxidant/antioxidant balance in healthy tissues is maintained with a predominance of antioxidants. Various factors that can lead to tissue damage disrupt the oxidant/antioxidant balance in favor of oxidants. In this study, disruptions of the oxidant/antioxidant balance in favor of oxidants were found to be a consequence of the over-consumption of antioxidants. For this reason, antioxidants are considered to be of importance in the prevention and treatment of various types of tissue damage that are aggravated by stress.

  2. [Oxidative damage of gasoline engine exhausts to rat lung tissues].

    PubMed

    Che, Wang-Jun; Wang, Ling; Luo, Qing-Ying; Wu, Mei; Zhang, Zun-Zhen

    2009-01-01

    To study the effects of extracts of condensate, particulates and semivolatile organic compounds from gasoline engine exhaust on DNA damage, 8-oxoguanine DNA glycosylase-1 (OGG1) expression, and changes of ultra-structures in lungs of rats. Organic extracts of gasoline engine exhaust (GEE) was intratrachealy instilled into rat lungs at 0, 5.6, 16.7, and 50.0 L/kg body weight, respectively, once a week for a month. The single DNA strand break was measured by comet assay. The OGG1 was determined using immunohistochemistry method. The ultrastructure of lung cells was observed with electronic microscope. The rates of tailed cells detected by the comet assay increased significantly when the rats were exposed to 16.7 and 50.0 L/kg of GEE compared with those exposed to solvent only (P < 0.05). However, the tail length did not differ significantly between the groups. Similarly, exposure to 16.7 and 50.0 L/kg of GEE led to increased OGG1 significantly. Significant changes of mitochondria in type I and II alveolar cells as well as respiratory bronchiole epithelial cells were observed, which included decrease of numbers, pyknosis and swelling. Gasoline engine exhausts induce single DNA strand break, increase OGG1 expression, decrease numbers of mitochondria, and destroy ultrastructures of mitochondria in various lung cells of rats.

  3. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage.

    PubMed

    Schürmann, Nura; Forrer, Pascal; Casse, Olivier; Li, Jiagui; Felmy, Boas; Burgener, Anne-Valérie; Ehrenfeuchter, Nikolaus; Hardt, Wolf-Dietrich; Recher, Mike; Hess, Christoph; Tschan-Plessl, Astrid; Khanna, Nina; Bumann, Dirk

    2017-01-23

    Host control of infections crucially depends on the capability to kill pathogens with reactive oxygen species (ROS). However, these toxic molecules can also readily damage host components and cause severe immunopathology. Here, we show that neutrophils use their most abundant granule protein, myeloperoxidase, to target ROS specifically to pathogens while minimizing collateral tissue damage. A computational model predicted that myeloperoxidase efficiently scavenges diffusible H2O2 at the surface of phagosomal Salmonella and converts it into highly reactive HOCl (bleach), which rapidly damages biomolecules within a radius of less than 0.1 μm. Myeloperoxidase-deficient neutrophils were predicted to accumulate large quantities of H2O2 that still effectively kill Salmonella, but most H2O2 would leak from the phagosome. Salmonella stimulation of neutrophils from normal and myeloperoxidase-deficient human donors experimentally confirmed an inverse relationship between myeloperoxidase activity and extracellular H2O2 release. Myeloperoxidase-deficient mice infected with Salmonella had elevated hydrogen peroxide tissue levels and exacerbated oxidative damage of host lipids and DNA, despite almost normal Salmonella control. These data show that myeloperoxidase has a major function in mitigating collateral tissue damage during antimicrobial oxidative bursts, by converting diffusible long-lived H2O2 into highly reactive, microbicidal and locally confined HOCl at pathogen surfaces.

  4. Chinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats

    PubMed Central

    Al-Awaida, Wajdy; Akash, Muhanad; Aburubaiha, Zaid; Talib, Wamidh H.; Shehadeh, Hayel

    2014-01-01

    Objective(s): One cause of cigarette smoking is oxidative stress that may alter the cellular antioxidant defense system, induce apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. It has been shown that Chinese green tea (CGT) (Lung Chen Tea) has higher antioxidant property than black tea. In this paper, we will explore the preventive effect of CGT on cigarette smoke-induced oxidative damage, apoptosis and tissues inflammation in albino rat model. Materials and Methods: Albino rats were randomly divided into four groups, i.e. sham air (SA), cigarette smoke (CS), CGT 2% plus SA or plus CS. The exposure to smoking was carried out as a single daily dose (1 cigarette/rat) for a period of 90 days using an electronically controlled smoking machine. Sham control albino rats were exposed to air instead of cigarette smoke. Tissues were collected 24 hr after last CS exposure for histology and all enzyme assays. Apoptosis was evidenced by the fragmentation of DNA using TUNEL assay. Results: Long-term administration of cigarette smoke altered the cellular antioxidant defense system, induced apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. All these pathophysiological and biochemical events were significantly improved when the cigarette smoke-exposed albino rats were given CGT infusion as a drink instead of water. Conclusion: Exposure of albino rat model to cigarette smoke caused oxidative stress, altered the cellular antioxidant defense system, induced apoptosis in lung tissue, inflammation and tissues damage, which could be prevented by supplementation of CGT. PMID:25729541

  5. Protective Effect of PPARγ Agonists on Cerebellar Tissues Oxidative Damage in Hypothyroid Rats

    PubMed Central

    Baghcheghi, Yousef; Beheshti, Farimah; Salmani, Hossein; Soukhtanloo, Mohammad

    2016-01-01

    The aim of the current study was to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARγ) agonists on cerebellar tissues oxidative damage in hypothyroid rats. The animals included seven groups: group I (control), the animals received drinking water; group II, the animals received 0.05% propylthiouracil (PTU) in drinking water; besides PTU, the animals in groups III, IV, V, VI, and VII, were injected with 20 mg/kg vitamin E (Vit E), 10 or 20 mg/kg pioglitazone, and 2 or 4 mg/kg rosiglitazone, respectively. The animals were deeply anesthetized and the cerebellar tissues were removed for biochemical measurements. PTU administration reduced thiol content, superoxide dismutase (SOD), and catalase (CAT) activities in the cerebellar tissues while increasing malondialdehyde (MDA) and nitric oxide (NO) metabolites. Vit E, pioglitazone, and rosiglitazone increased thiol, SOD, and CAT in the cerebellar tissues while reducing MDA and NO metabolites. The results of present study showed that, similar to Vit E, both rosiglitazone and pioglitazone as PPARγ agonists exerted protective effects against cerebellar tissues oxidative damage in hypothyroid rats. PMID:28116157

  6. Contribution of Brain Tissue Oxidative Damage in Hypothyroidism-associated Learning and Memory Impairments

    PubMed Central

    Baghcheghi, Yousef; Salmani, Hossein; Beheshti, Farimah; Hosseini, Mahmoud

    2017-01-01

    The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments. PMID:28584813

  7. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle*,**

    PubMed Central

    de Carlos, Samanta Portão; Dias, Alexandre Simões; Forgiarini, Luiz Alberto; Patricio, Patrícia Damiani; Graciano, Thaise; Nesi, Renata Tiscoski; Valença, Samuel; Chiappa, Adriana Meira Guntzel; Cipriano, Gerson; de Souza, Claudio Teodoro; Chiappa, Gaspar Rogério da Silva

    2014-01-01

    OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD. PMID:25210964

  8. Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise

    PubMed Central

    Ke, Chun-Yen; Yang, Fwu-Lin; Wu, Wen-Tien; Chung, Chen-Han; Lee, Ru-Ping; Yang, Wan-Ting; Subeq, Yi-Maun; Liao, Kuang-Wen

    2016-01-01

    Exhaustive exercise results in inflammation and oxidative stress, which can damage tissue. Previous studies have shown that vitamin D has both anti-inflammatory and antiperoxidative activity. Therefore, we aimed to test if vitamin D could reduce the damage caused by exhaustive exercise. Rats were randomized to one of four groups: control, vitamin D, exercise, and vitamin D+exercise. Exercised rats received an intravenous injection of vitamin D (1 ng/mL) or normal saline after exhaustive exercise. Blood pressure, heart rate, and blood samples were collected for biochemical testing. Histological examination and immunohistochemical (IHC) analyses were performed on lungs and kidneys after the animals were sacrificed. In comparison to the exercise group, blood markers of skeletal muscle damage, creatine kinase and lactate dehydrogenase, were significantly (P < 0.05) lower in the vitamin D+exercise group. The exercise group also had more severe tissue injury scores in the lungs (average of 2.4 ± 0.71) and kidneys (average of 3.3 ± 0.6) than the vitamin D-treated exercise group did (1.08 ± 0.57 and 1.16 ± 0.55). IHC staining showed that vitamin D reduced the oxidative product 4-Hydroxynonenal in exercised animals from 20.6% to 13.8% in the lungs and from 29.4% to 16.7% in the kidneys. In summary, postexercise intravenous injection of vitamin D can reduce the peroxidation induced by exhaustive exercise and ameliorate tissue damage, particularly in the kidneys and lungs. PMID:26941574

  9. Influence of dietary carbohydrate on zinc-deficiency-induced changes in oxidative defense mechanisms and tissue oxidative damage in rats.

    PubMed

    Kim, S H; Keen, C L

    1999-10-01

    The aim of this study was to determine the effect of dietary carbohydrate type on the expression of zinc (Zn) deficiency in rats with respect to tissue oxidative damage and defense mechanisms. Rats were fed diets containing adequate (+Zn) or low concentrations (-Zn) of Zn. Both fructose- and glucose-based diets were tested. Pair-fed controls were also studied to evaluate changes in the oxidative defense system which are secondary to Zn-deficiency-induced anorexia. Plasma and liver Zn concentrations and CuZn superoxide dismutase activities were lower in the -Zn rats than in the +Zn rats. Liver glutathione (GSH) and disulfide glutathione concentrations were higher in the -Zn rats than in the +Zn rats; this difference was most pronounced in the fructose groups. Liver and heart selenium glutathione peroxidase (Se-GSH-Px) activities were lower in the -Zn-fructose group than in the +Zn-fructose group. Liver Se-GSH-Px activity was higher in the fructose groups than in the glucose groups. Liver GSH reductase (GSH-Red) activity was lower in the -Zn-fructose group than in its control group. Liver glutamine synthetase activity was lower in the -Zn-glucose group and in the fructose groups than in the glucose control group. Liver thiobarbituric acid reactive substance (TBARS) production was similar among the groups. Collectively, these results support the concept that Zn deficiency can result in an impaired oxidant defense system. Based on the observation that pair-fed control animals also showed evidence of oxidative damage, we suggest that one factor that contributes to the effect of Zn deficiency is the reduction in caloric intake that occurs in these animals. Fructose feeding resulted in increased activities of several of the oxidant defense enzymes. Protein oxidative damage assessed by glutamine synthetase activity was increased by both Zn deficiency and fructose feeding.

  10. Oxidative damage in different tissues of neonatal chicks exposed to low environmental temperature.

    PubMed

    Mujahid, Ahmad; Furuse, Mitsuhiro

    2009-04-01

    Maintenance of body temperature in a cold environment is crucial for survival in homeotherms. However, we have previously reported that on exposure to low environmental temperature, neonatal chicks (Gallus gallus) show hypothermia, decreased behavioral activity, and absence of gene transcript enhancement of putative thermogenic proteins, as well as no change in mitochondrial substrate oxidation enzymes. Various metabolic abnormalities and/or tissue damage may also decline the thermogenic capacity of low-temperature-exposed neonatal chicks. Therefore, to investigate oxidative damage in low-temperature-exposed (20 degrees C for 12 h) neonatal chicks, we studied lipid peroxidation when compared to the control chicks kept at thermoneutral temperature (30 degrees C). Malondialdehyde (MDA), was measured in plasma, brain, heart, liver and skeletal muscle (pectoralis superficialis and gastrocnemius). Weight gain and feed consumption did not change when chicks were exposed to low-temperature as compared to that of control chicks. On low-temperature exposure, body temperature was significantly decreased and plasma non-esterified fatty acid level was 1.3-fold higher than that of control chicks. In low-temperature exposed chicks, brain and heart MDA levels were 2.1- and 1.2-fold higher, respectively, than that of control chicks. This increase in MDA levels was not observed in plasma, liver and muscle of low-temperature-exposed chicks. In conclusion, there is evidence of increased lipid peroxidation in brain and heart of neonatal chicks exposed to low-temperature. We hypothesize that this oxidative damage in brain and heart may contribute to the impaired physiological, behavioral and thermoregulatory responses that potentiate the sensitivity to cold exposure.

  11. Ameliorative effect of statin therapy on oxidative damage in heart tissue of hypercholesterolemic rabbits.

    PubMed

    Sozer, Volkan

    2015-12-01

    The aim of this study was to investigate the effects of a high-cholesterol diet in the presence and absence of statin on Cu-Zn-superoxide dismutase (Cu,Zn-SOD), malondialdehyde (MDA), protein carbonyl (PCO), and nitric oxide (NO) of blood and heart tissue, the antioxidant activity of serum paraoxonase-1 (PON-1), and on the blood lipid profile of rabbits. The animals were divided into four groups each of which included 10 rabbits. Rabbits in group 1 received a regular rabbit chow diet (normal diet) for 8 weeks; those in group 2 received atorvastatin (0.3 mg atorvastatin per day/kg body weight) for 8 weeks; those in group 3 received high-cholesterol diet for 8 weeks; and those in group 4 received high-cholesterol diet for 4 weeks, a high-cholesterol diet + atorvastatin (0.3 mg atorvastatin per day/kg body weight) for 8 weeks. The parameters were measured by spectrophotometric methods. As expected, the atherogenic diet caused a pronounced increase in lipid profile (not HDL) parameters. Rabbits in group 3 showed higher PCO, MDA, and NO levels in circulating and heart tissue compared to the rabbits in group 1. Atorvastatin has prevented or limited LDL oxidation and has showed constitutively beneficial effects in group 4. Increased LDL-C, PCO, MDA, and NO levels leading to decreasing PON-1 activity thus create a predisposition to atherogenesis in this model. But atorvastatin administration partly ameliorated oxidative damage in heart injury of hypercholesterolemic rabbits. Atorvastatin which functions as a potent antioxidant agent may inhibit this LDL-C oxidation by increasing PON-1 activity in atherogenesis.

  12. Molecular mechanisms for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.

    PubMed

    Watanabe, Hiroshi

    2013-01-01

    Chronic kidney disease (CKD), marked by a progressive loss in renal function, is a leading cause of hemodialysis initiation and cardiovascular disease (CVD). There are currently 13.3 million patients with CKD and 300 thousand patients are currently undergoing hemodialysis in Japan. Therefore, preventing the initiation of dialysis and reducing the risk of cardiovascular death are high-priority issues from the viewpoint of public health and economic implications. Understanding the molecular mechanism responsible for the progression of CKD and cardiovascular damage regarding crosstalk between the kidney and cardiovascular system is an important issue in controlling the pathogenesis of CKD-CVD. However, the mechanisms involved in CKD-CVD are not well understood. This hinders the development of new treatment strategies. We have been investigating the role of protein bound uremic toxins, that are difficult to remove by hemodialysis, on the onset and progression of CKD and CVD. The relationship between their redox properties and the pathogenesis of CKD-CVD was examined. In this review, we focus on two sulfate conjugated uremic toxins, namely, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), and summarize recent studies that provide new insights on the molecular mechanisms responsible for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection.

  13. Clozapine linked to nanocapsules minimizes tissue and oxidative damage to biomolecules lipids, proteins and DNA in brain of rats Wistar.

    PubMed

    da Costa Güllich, Angélica Aparecida; Coelho, Ritiéle Pinto; Pilar, Bruna Cocco; Ströher, Deise Jaqueline; Galarça, Leandro Alex Sander Leal; Vieira, Simone Machado; da Costa Escobar Piccoli, Jacqueline; Haas, Sandra Elisa; Manfredini, Vanusa

    2015-06-01

    Clozapine, atypical antipsychotic, can change oxidative stress parameters. It is known that reactive species, in excess, can have a crucial role in the etiology of diseases, as well as, can potentiating adverse effects induce by drugs. The nanocapsules have attracted attention as carriers of several drugs, with consequent reduction of adverse effects. This study aimed to evaluate histopathology and oxidative damage of biomolecules lipids, proteins and DNA in the brain of Wistar rats after treatment with nanocapsules containing clozapine. The study consisted of eight groups of male Wistar rats (n = 6): saline (SAL), free clozapine (CZP) (25 mg/Kg i.p.), blank uncoated nanocapsules (BNC), clozapine-loaded uncoated nanocapsules (CNC) (25 mg/Kg i.p.), blank chitosan-coated nanocapsules (BCSN), clozapine-loaded chitosan-coated nanocapsules (CCSN) (25 mg/Kg i.p.), blank polyethyleneglycol-coated nanocapsules (BPEGN), clozapine-loaded polyethyleneglycol-coated nanocapsules (CPEGN) (25 mg/Kg i.p.). The animals received the formulation once a day for seven consecutive days and euthanized in the eighth day. After euthanasia, the brain was collected and homogenate was processed for further analysis. The histopathology showed less brain tissue damage in nanocapsules-treated groups. The lipid peroxidation and carbonylation of proteins showed a significant increase (p < 0.05) induced by CZP. CNC and CPEGN groups obtained a reduction membrane of lipids damage and nanocapsules-treated groups showed significant improvement protein damage. CZP was able to induce genetic oxidative damage, while the nanocapsules causing less damage to DNA. The findings show that different coatings can act protecting target tissues decreasing oxidative damage, suggesting that the drug when linked to different nanocapsules is able to mitigate the harmful effects of clozapine.

  14. Protective Role of Endogenous Ovarian Hormones Against Learning and Memory Impairments and Brain Tissues Oxidative Damage Induced by Lipopolysaccharide

    PubMed Central

    Pourganji, Masoume; Hosseini, Mahmoud; Soukhtanloo, Mohammad; Zabihi, Hoda; Hadjzadeh, Mosa Al-reza

    2014-01-01

    Background: The contribution of neuroinflammation in Alzheimer’s disease (AD) has been widely reported. The effects of female gonadal hormones in both neuroinflammation and brain cognitive functions have also been well considered. Objectives: In the present study, the possible protective role for endogenous ovarian hormones against learning and memory impairment as well as brain tissues oxidative damage induced by lipopolysachride (LPS) was investigated in rats. Materials and Methods: The rats were divided into four groups: Sham-LPS, Ovariectomized (OVX)-LPS, Sham, and OVX. The animals of sham group were in proestrous phase in which the serum concentration of estradiol is high. The Sham-LPS and OVX-LPS groups were treated with LPS (250 µg/kg) before acquisition. The animals were examined using passive avoidance (PA) test. The brains were then removed and malondialdehyde (MDA) and total thiol groups concentrations were measured. Results: The time latency to enter the dark compartment by OVX-LPS group was shorter than that of OVX at both first and 24th hours after the shock (P < 0.05 - P < 0.001). In Sham-LPS and OVX-LPS groups, total thiol concentration in hippocampal and cortical tissues were significantly lower while MDA concentrations were higher than that of Sham and OVX groups (P < 0.05 - P < 0.001). ). The hippocampal MDA concentration in OVX-LPS group was higher than Sham- LPS group (P < 0.01). Conclusions: Brain tissue oxidative damage contributed in deleterious effects of LPS on learning and memory. Some protective effects for the endogenous ovarian hormones against damaging effects of LPS on learning and memory function, as well as brain tissues oxidative damage could be postulated; however, it needs more investigation. PMID:24829769

  15. Alteration of Gene Expression Profile in Niemann-Pick Type C Mice Correlates with Tissue Damage and Oxidative Stress

    PubMed Central

    Vázquez, Mary C.; del Pozo, Talía; Robledo, Fermín A.; Carrasco, Gonzalo; Pavez, Leonardo; Olivares, Felipe; González, Mauricio; Zanlungo, Silvana

    2011-01-01

    Background Niemann-Pick type C disease (NPC) is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1+/+; WT) and homozygous-mutant (Npc1−/−; NPC) mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. Methodology/Principal Findings We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. Conclusions/Significance In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress and fibrosis

  16. Plasma marker of tissue oxidative damage and edaravone as a scavenger drug against peroxyl radicals and peroxynitrite

    PubMed Central

    Yamamoto, Yorihiro

    2017-01-01

    The percentage of the plasma oxidized form of coenzyme Q10 in the total amount of coenzyme Q10 (%CoQ10) is a useful marker of oxidative stress in the circulation. Plasma free fatty acids and their composition can be used as markers of tissue oxidative damage, as demonstrated in patients suffering from a wide variety of diseases and in humans and rats under oxidative stress. Edaravone was approved for the treatment of stroke in Japan in 2001 and its mechanism of action is based on scavenging lipid peroxyl radicals. In 2015, edaravone was also approved for the treatment of ALS patients. Edaravone functions therapeutically as a scavenger of peroxynitrite, as demonstrated by the finding that its administration raises plasma uric acid levels and decreases 3-nitrotyrosine in cerebrospinal fluid. PMID:28163382

  17. Oats supplementation prevents alcohol-induced gut leakiness in rats by preventing alcohol-induced oxidative tissue damage.

    PubMed

    Tang, Yueming; Forsyth, Christopher B; Banan, Ali; Fields, Jeremy Z; Keshavarzian, Ali

    2009-06-01

    We reported previously that oats supplementation prevents gut leakiness and alcoholic steatohepatitis (ASH) in our rat model of alcoholic liver disease. Because oxidative stress is implicated in the pathogenesis of both alcohol-induced gut leakiness and ASH, and because oats have antioxidant properties, we tested the hypothesis that oats protect by preventing alcohol-induced oxidative damage to the intestine. Male Sprague-Dawley rats were gavaged for 12 weeks with alcohol (starting dose of 1 g/kg increasing to 6 g/kg/day over the first 2 weeks) or dextrose, with or without oats supplementation (10 g/kg/day). Oxidative stress and injury were assessed by measuring colonic mucosal inducible nitric-oxide synthase (iNOS) (by immunohistochemistry), nitric oxide (colorimetric assay), and protein carbonylation and nitrotyrosination (immunoblotting). Colonic barrier integrity was determined by assessing the integrity of the actin cytoskeleton (immunohistochemistry) and the integrity of tight junctions (electron microscopy). Oats supplementation prevented alcohol-induced up-regulation of iNOS, nitric oxide overproduction in the colonic mucosa, and increases in protein carbonyl and nitrotyrosine levels. This protection was associated with prevention of ethanol (EtOH)-induced disorganization of the actin cytoskeleton and disruption of tight junctions. We conclude that oats supplementation attenuates EtOH-induced disruption of intestinal barrier integrity, at least in part, by inhibiting EtOH-induced increases in oxidative stress and oxidative tissue damage. This inhibition prevents alcohol-induced disruption of the cytoskeleton and tight junctions. This study suggests that oats may be a useful therapeutic agent--a nutraceutical--for the prevention of alcohol-induced oxidative stress and organ dysfunction.

  18. Biomarkers of oxidative stress and tissue damage released by muscle and liver after a single bout of swimming exercise.

    PubMed

    Ramos, Dionizio; Martins, Eduarda Gabrielle; Viana-Gomes, Diego; Casimiro-Lopes, Gustavo; Salerno, Verônica P

    2013-05-01

    Both acute exercise and excessive training can cause oxidative stress. The resulting increase in free radicals and the inadequate response from antioxidant systems can lead to a framework of cellular damage. An association between affected tissue and the biomarkers of oxidative stress that appear in plasma has not been clearly established. The aim of this study was to evaluate the source of oxidative stress biomarkers found in the plasma of untrained rats after a single bout of swimming exercise at 2 different intensities: low intensity (SBLIE) or high intensity (SBHIE). Immediately after the exercise, aspartate transaminase (AST), alanine transaminase (ALT), γ-glutamyltransferase (GGT), and lactate dehydrogenase (LDH) were measured in plasma to characterize cell damage. Oxidative stress was assessed using protein carbonylation (PC), total antioxidant capacity (TAC), and thiobarbituric acid reactive substances (TBARS) quantified by malondialdehyde concentration. SBHIE raised levels of plasma AST (93%) and ALT (17%), and both exercise regimens produced an increase in GGT (7%) and LDH (∼55%). Plasma levels of PC and TBARS were greater in the SBHIE group; there were no changes in TAC. SBLIE caused only a modest increase in TBARS. In muscle, there were no changes in TAC, PC, or TBARS, regardless of exercise intensity, In the liver, TAC and TBARS increased significantly in both the SBLIE and SBHIE groups. This indicates that the oxidative stress biomarkers measured in the plasma immediately after a single bout of swimming exercise were generated primarily in the liver, not in muscle.

  19. The effect of nimesulide on oxidative damage inflicted by ischemia-reperfusion on the rat renal tissue.

    PubMed

    Suleyman, Zeynep; Sener, Ebru; Kurt, Nezahat; Comez, Mehmet; Yapanoglu, Turgut

    2015-03-01

    The objective of our study is to research biochemically and histopathologically the effect of nimesulide on oxidative damage inflicted by ischemia-reperfusion (I/R) on the rat renal tissue. Twenty-four albino Wistar type of male rats were used for the experiment. The animals were divided into groups as: renal ischemia-reperfusion control (RIR), nimesulide+renal ischemia-reperfusion of 50 mg/kg (NRIR-50), nimesulide+renal ischemia-reperfusion of 100 mg/kg (NRIR-100), and sham groups (SG). In NRIR-50 and NRIR-100 groups were given nimesulide, and RIR and SG groups were given distilled water, an hour after anesthesia. Groups, except for the SG group, 1-h-ischemia and then 6-h-reperfusion were performed. In the renal tissue of the RIR group in which the malondialdehyde (MDA), myeloperoxidase (MPO), and 8-hydroxyguanine (8-OHGua) levels were measured, the COX-1 and COX-2 activities were recorded. Nimesulide at 100 mg/kg doses reduced the oxidant parameters more significantly than 50 mg/kg doses; on the other hand, it raised the antioxidant parameters. It has been shown that 100 mg/kg doses of nimesulide prevented the renal I/R damage more significantly than a dose of 50 mg/kg, which shows that nimesulide, in clinics, could be used in the prevention of I/R damage.

  20. Pentoxifylline Diminishes the Oxidative Damage to Renal Tissue Induced by Streptozotocin in the Rat

    PubMed Central

    Martínez-Morales, F.

    2004-01-01

    Oxidative damage has been suggested to be a contributing factor in the development to diabetic nephropathy (DN). Recently, there has been evidence that pentoxifylline (PTX) has free radical-scavenging properties; thus, its antiinflammatory and renoprotective effects may be related to a reduction in reactive oxygen species production. It is likely that the pharmacological effects of PTX include an antioxidant mechanism as shown in in vitro assays. The aim of this study was to evaluate whether the reported renoprotective effects of PTX could be the result of its antioxidant actions in streptozotocin (STZ)-induced DN in rats. The administration of PTX over a period of 8 weeks, in addition to displaying renoprotective effects, caused a significant reduction in lipoperoxide levels (LPOS) in the diabetic kidney (P < 0.05), compared to untreated rats. These levels were comparable to those in the healthy kidney of experimental animals (P > 0.05). All untreated STZ rats exhibited an increase in LPOS as opposed to healthy controls (H) (P < 0.001). The total antioxidant activity (TAA) in plasma was increased significantly already after 2 days of STZ (P < 0.05). When we examined the progression of TAA in STZ rats, there was a significant decrease over 8 weeks (P < 0.05). PTX treatment caused an increase in TAA when compared to untreated STZ rats (P < 0.05). Renal hypertrophy was less evident in PTX-treated STZ than in untreated STZ rats, evaluated by kidney weight/body weight ratio. These results indicate that PTX decreases the oxidative damage induced by these experimental procedures and may increase antioxidant defense mechanisms in STZ-induced diabetes in rats. PMID:15763938

  1. Quercetin, a Flavonoid Antioxidant, Ameliorated Procarbazine-Induced Oxidative Damage to Murine Tissues.

    PubMed

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Adeyemo, Oluwatobi Adewumi; Ola, Olaniyi Solomon; Olotu, Olaoluwa Oluwaseun; Echebiri, Roseline Chinonye

    2015-04-28

    Procarbazine (PCZ) (indicated in Hodgkin's disease), is an alkylating agent known to generate free radicals in vivo, while Quercetin (QCT) is a flavonoid antioxidant with proven free radical scavenging capacity. This study investigated the protective effects of QCT on PCZ-induced oxidative damage in the rat. Male Wistar rats (160-180 g) were randomized into five groups (n = 5/group): I (control), II PCZ-treated (2 mg/kg body weight (bw) for seven days); III pre-treated with QCT (20 mg/kg bw) for seven days, followed by PCZ for seven days; IV co-treated with PCZ and QCT for seven days and V administered QCT alone for seven days. PCZ caused a significant increase in plasma total bilirubin, urea, and creatinine when compared with control (P < 0.05). Similarly, plasma activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl transferase (γ-GT) were significantly increased in the PCZ-treated group relative to control. Furthermore, PCZ caused a significant decrease in the activities of hepatic superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) as well as levels of ascorbic acid (AA) and glutathione (GSH). This was followed by a significant increase in hepatic malondialdehyde (MDA) content. However, QCT pre-treatment and co-treatment ameliorated the PCZ-induced changes in plasma levels of urea, creatinine, and bilirubin as well as the activities of ALP, AST, ALT, and GGT. QCT also ameliorated hepatic AA and GSH levels and the activities of SOD, CAT, and GST. This all suggests that QCT protected against PCZ-induced oxidative damage in rats.

  2. Effects of cryotherapy combined with therapeutic ultrasound on oxidative stress and tissue damage after musculoskeletal contusion in rats.

    PubMed

    Martins, C N; Moraes, M B; Hauck, M; Guerreiro, L F; Rossato, D D; Varela, A S; da Rosa, C E; Signori, L U

    2016-12-01

    To investigate the combined effects of cryotherapy and pulsed ultrasound therapy (PUT) on oxidative stress parameters, tissue damage markers and systemic inflammation after musculoskeletal injury. Experimental animal study. Research laboratory. Seventy male Wistar rats were divided into five groups: control, lesion, cryotherapy, PUT, and cryotherapy+PUT. The gastrocnemius muscle was injured by mechanical crushing. Cryotherapy was applied immediately after injury (immersion in water at 10°C for 20minutes). PUT was commenced 24hours after injury (1MHz, 0.4W/cm(2SPTA), 20% duty cycle, 5minutes). All animals were treated every 8hours for 3 days. Oxidative stress in muscle was evaluated by concentration of reactive oxygen species (ROS), lipid peroxidation (LPO), anti-oxidant capacity against peroxyl radicals (ACAP) and catalase. Plasma levels of creatine kinase (CK), lactate dehydrogenase (LDH) and C-reactive protein (CRP) were assessed. When applied individually, cryotherapy and PUT reduced CK, LDH, CRP and LPO caused by muscle damage. Cryotherapy+PUT in combination maintained the previous results, caused a reduction in ROS [P=0.005, mean difference -0.9×10(-8) relative area, 95% confidence interval (CI) -0.2 to -1.9], and increased ACAP {P=0.007, mean difference 0.34 1/[relative area with/without 2,2-azobis(2-methylpropionamidine)dihydrochloride], 95% CI 0.07 to 0.61} and catalase (P=0.002, mean difference 0.41units/mg protein, 95% CI 0.09 to 0.73) compared with the lesion group. Cryotherapy+PUT in combination reduced oxidative stress in muscle, contributing to a reduction in adjacent damage and tissue repair. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  3. Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion.

    PubMed Central

    González-Flecha, B; Cutrin, J C; Boveris, A

    1993-01-01

    The time course of oxidative stress and tissue damage in zonal liver ischemia-reperfusion in rat liver in vivo was evaluated. After 180 min of ischemia, surface chemiluminescence decreased to zero, state 3 mitochondrial respiration decreased by 70-80%, and xanthine oxidase activity increased by 26% without change in the water content and in the activities of superoxide dismutase, catalase, and glutathione peroxidase. After reperfusion, marked increases in oxyradical production and tissue damage were detected. Mitochondrial oxygen uptake in state 3 and respiratory control as well as the activities of superoxide dismutase, catalase, and glutathione peroxidase and the level of nonenzymatic antioxidants (evaluated by the hydroperoxide-initiated chemiluminescence) were decreased. The severity of the post-reperfusion changes correlated with the time of ischemia. Morphologically, hepatocytes appeared swollen with zonal cord disarrangement which ranged from mild to severe for the tissue reperfused after 60-180 min of ischemia. Neutrophil infiltration was observed after 180 min of ischemia and 30 min of reperfusion. Mitochondria appear as the major source of hydrogen peroxide in control and in reperfused liver, as indicated by the almost complete inhibition of hydrogen peroxide production exerted by the uncoupler carbonylcyanide p-(trifluoromethoxy) phenylhydrazone. Additionally, inhibition of mitochondrial electron transfer by antimycin in liver slices reproduced the inhibition of state 3 mitochondrial respiration and the increase in hydrogen peroxide steady-state concentration found in reperfused liver. Increased rates of oxyradical production by inhibited mitochondria appear as the initial cause of oxidative stress and liver damage during early reperfusion in rat liver. Images PMID:8432855

  4. The natural xanthone alpha-mangostin reduces oxidative damage in rat brain tissue.

    PubMed

    Márquez-Valadez, Berenice; Lugo-Huitrón, Rafael; Valdivia-Cerda, Verónica; Miranda-Ramírez, Luis Rubén; Pérez-De La Cruz, Verónica; González-Cuahutencos, Octavio; Rivero-Cruz, Isabel; Mata, Rachel; Santamaría, Abel; Pedraza-Chaverrí, José

    2009-02-01

    The antiperoxidative properties of alpha-mangostin, a xanthone isolated from mangosteen fruit, were tested for the first time in nerve tissue exposed to different toxic insults. Two reliable biological preparations (rat brain homogenates and synaptosomal P2 fractions) were exposed to the toxic actions of a free radical generator (ferrous sulfate), an excitotoxic agent (quinolinate), and a mitochondrial toxin (3-nitropropionate). alpha-Mangostin decreased the lipoperoxidative action of FeSO(4) in both preparations in a concentration-dependent manner, and completely abolished the peroxidative effects of quinolinate, 3-nitropropionate and FeSO(4) + quinolinate at all concentrations tested. Interestingly, when tested alone in brain homogenates, alpha-mangostin significantly decreased the lipoperoxidation even below basal levels. alpha-Mangostin also prevented the decreased reductant capacity of mitochondria in synaptosomal fractions. Our results suggest that alpha-mangostin exerts a robust antiperoxidative effect in brain tissue preparations probably through its properties as a free radical scavenger. In light of these findings, this antioxidant should be tested in other neurotoxic models involving oxidative stress.

  5. Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited.

    PubMed

    Leonarduzzi, Gabriella; Sottero, Barbara; Poli, Giuseppe

    2010-11-01

    The complex system of molecular communications underlying cell biochemistry and function includes numerous components, kinases, phosphatases and transcription factors, that have been conclusively proven to be sensitive to cellular and tissue redox changes. Reactive oxygen species (ROS), whose constitutive generation in cells and tissues is amplified under pro-oxidant conditions, are now unanimously recognized to be important triggers and modulators of cell signaling, and consequently of cell behavior. This review considers the major signaling pathways that mediate gene regulation in response to ROS, and analyzes their modulation by the most important non-enzymatic molecules having an antioxidant effect. Because of the primary role played by ROS-mediated signaling and gene expression in pathophysiology, the so-called "antioxidant compounds" may significantly interfere with cell signal transduction, not simply by quenching ROS generation and propagation but also by intercepting reactive species at the level of critical signaling pathways. Notably, a third mechanism of action has recently emerged that is independent of antioxidant properties, i.e. direct chemical interaction of the "antioxidant" with signaling enzymes and transcription factors. However, severe inhibition of ROS production might interfere with certain physiological cellular and organ functions, and would thus eventually be detrimental rather than beneficial. To address the need for appropriate administration of non-enzymatic antioxidants, the most advanced technologies for their targeted delivery are analyzed and reported.

  6. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats.

    PubMed

    Oyagbemi, Ademola Adetokunbo; Omobowale, Temidayo Olutayo; Akinrinde, Akinleye Stephen; Saba, Adebowale Bernard; Ogunpolu, Blessing Seun; Daramola, Oluwabusola

    2015-11-01

    Removal of lead from the environment of man or otherwise, the movement of man from lead-contaminated areas has been employed as a means of abatement of the toxic effects of lead. Whether toxic effects in already-exposed individuals subside after lead withdrawal remains unanswered. To understand the reversibility of nephrotoxicity induced by lead acetate, male Wistar rats were orally exposed to 0.25, 0.5, and 1.0 mg/mL of lead acetate for 6 weeks. Activities of glutathione-s-transferase, catalase (CAT), superoxide dismutase (SOD) and the concentrations of hydrogen peroxide (H2 O2 ), and malondialdehyde increased significantly (p < 0.05) in a dose-dependent manner, whereas reduced glutathione (GSH) level and glutathione peroxidase activity were significantly reduced. The pattern of alterations in most of the oxidative stress and antioxidant parameters remained similar in rats from the withdrawal period, although CAT and SOD activities reduced, in contrast to their elevation during the exposure period. Serum creatinine levels were significantly elevated in both exposure and withdrawal experiments whereas serum blood urea nitrogen levels were not significantly different from the control in both exposure and withdrawal periods. The histological damage observed include multifocal areas of inflammation, disseminated tubular necrosis, and fatty infiltration of the kidney tubules both at exposure and withdrawal periods. The results suggest that lead acetate-induced nephrotoxicity by induction of oxidative stress and disruption of antioxidant. The aforementioned alterations were not reversed in the rats left to recover within the time course of study.

  7. Beneficial Effects of Teucrium polium and Metformin on Diabetes-Induced Memory Impairments and Brain Tissue Oxidative Damage in Rats

    PubMed Central

    Mousavi, S. Mojtaba; Niazmand, Saeed; Hosseini, Mahmoud; Hassanzadeh, Zarha; Sadeghnia, Hamid Reza; Vafaee, Farzaneh; Keshavarzi, Zakieh

    2015-01-01

    Objective. The effects of hydroalcoholic extract of Teucrium polium and metformin on diabetes-induced memory impairment and brain tissues oxidative damage were investigated. Methods. The rats were divided into: (1) Control, (2) Diabetic, (3) Diabetic-Extract 100 (Dia-Ext 100), (4) Diabetic-Extract 200 (Dia-Ext 200), (5) Diabetic-Extract 400 (Dia-Ext 400), and (6) Diabetic-Metformin (Dia-Met). Groups 3–6 were treated by 100, 200, and 400 mg/kg of the extract or metformin, respectively, for 6 weeks (orally). Results. In passive avoidance test, the latency to enter the dark compartment in Diabetic group was lower than that of Control group (P < 0.01). In Dia-Ext 100, Dia-Ext 200, and Dia-Ext 400 and Metformin groups, the latencies were higher than those of Diabetic group (P < 0.01). Lipid peroxides levels (reported as malondialdehyde, MDA, concentration) in the brain of Diabetic group were higher than Control (P < 0.001). Treatment by all doses of the extract and metformin decreased the MDA concentration (P < 0.01). Conclusions. The results of present study showed that metformin and the hydroalcoholic extract of Teucrium polium prevent diabetes-induced memory deficits in rats. Protection against brain tissues oxidative damage might have a role in the beneficial effects of the extract and metformin. PMID:25810947

  8. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    PubMed

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations

  9. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury.

    PubMed

    Fischer, Marie T; Sharma, Rakhi; Lim, Jamie L; Haider, Lukas; Frischer, Josa M; Drexhage, Joost; Mahad, Don; Bradl, Monika; van Horssen, Jack; Lassmann, Hans

    2012-03-01

    Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox, p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expression were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits in activated microglia and

  10. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury

    PubMed Central

    Fischer, Marie T.; Sharma, Rakhi; Lim, Jamie L.; Haider, Lukas; Frischer, Josa M.; Drexhage, Joost; Mahad, Don; Bradl, Monika; van Horssen, Jack

    2012-01-01

    Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox, p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expression were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits in activated microglia and

  11. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats.

    PubMed

    Anaeigoudari, Akbar; Hosseini, Mahmoud; Karami, Reza; Vafaee, Farzaneh; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2016-01-01

    In the present work, the effects of different fractions of Coriandrum sativum (C. sativum), on pentylenetetrazole (PTZ)-induced seizures and brain tissues oxidative damage were investigated in rats. The rats were divided into the following groups: (1) vehicle, (2) PTZ (90 mg/kg), (3) water fraction (WF) of C. sativum (25 and 100 mg/kg), (4) n-butanol fraction (NBF) of C. sativum (25 and 100 mg/kg), and (5) ethyl acetate fraction (EAF) of C. sativum (25 and 100 mg/kg). The first generalized tonic-clonic seizures (GTCS) latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p<0.01). In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS) latency. Malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p<0.001). Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (p<0.01 - p<0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in the brain tissues (p<0.05). Pretreatment with WF and NBF significantly elevated thiol concentrations in cortical and hippocampal tissues, respectively (p<0.05). The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  12. Prediction of tissue thermal damage.

    PubMed

    Li, Xin; Zhong, Yongmin; Subic, Aleksandar; Jazar, Reza; Smith, Julian; Gu, Chengfan

    2016-04-29

    This paper presents a method to characterize tissue thermal damage by taking into account the thermal-mechanical effect of soft tissues for thermal ablation. This method integrates the bio-heating conduction and non-rigid motion dynamics to describe thermal-mechanical behaviors of soft tissues and further extends the traditional tissue damage model to characterize thermal-mechanical damage of soft tissues. Simulations and comparison analysis demonstrate that the proposed method can effectively predict tissue thermal damage and it also provides reliable guidelines for control of the thermal ablation procedure.

  13. Effects of Regular Treadmill Exercise on a DNA Oxidative-Damage Marker and Total Antioxidant Capacity in Rat Hippocampal Tissue

    PubMed Central

    Mahjoub, Soleiman; Ghadi, Arezoo; Pourbagher, Roghayeh; Hajian-Tilaki, Karimollah

    2016-01-01

    Background and Purpose Regular exercise can result in changes in the levels of oxidative stress in the hippocampus; however, little attention has been paid to physical-activity-induced neuronal protection to exposure to lead compounds. This study investigated the effects of regular treadmill exercise on a DNA oxidative-damage marker [8-hydroxy-2'-deoxyguanosine (8-OHdG)] and the total antioxidant capacity (TAC) of hippocampal tissue in lead-acetate exposed rats. Methods This study investigated the effects of 8 weeks of regular treadmill exercise on 8-OHdG and the TAC of hippocampal tissue in lead-acetate-exposed rats. Wistar rats were randomly divided into four groups: baseline, sham (control), lead, and exercise+lead. The exercise program involved running on a treadmill with increasing intensity five times a week for 8 weeks. Animals in the lead and exercise+lead groups received lead acetate at 20 mg/kg body weight intraperitoneally three times weekly for 8 weeks. Animals in the sham group received solvent (ethyl oleate) at 30 mg/kg body weight three times weekly for 8 weeks. TAC and 8-OHdG were measured by spectrophotometric and ELISA techniques, respectively. Data were analyzed by ANOVA and Tukey's post-hoc test with a significance cutoff of p≤0.05. Results The level of 8-OHdG and the TAC were significantly higher and lower, respectively, in the lead group than in the baseline and sham groups (p<0.01). However, the 8-OHdG level and TAC value in hippocampal tissue were significantly decreased and increased, respectively, in the exercise+lead group relative to the lead group (p<0.05). Conclusions The TAC of hippocampal tissue may be directly associated with neural protection mechanisms of exercise following lead acetate injection, and the beneficial effects of regular exercise in preventing hippocampal neuronal damage could be due to decreased hippocampal oxidative stress such as reflected by a lower 8-OHdG level and increased TAC. PMID:27486937

  14. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes.

    PubMed

    Jones, D A; Prior, S L; Barry, J D; Caplin, S; Baxter, J N; Stephens, J W

    2014-12-01

    In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (P<0.05). Lower MDA concentration and longer telomere length were seen in subjects with diabetes compared to those without (P<0.05). DNA damage, analysed via Comet assay, was significantly lower in subjects with diabetes compared to those without (P<0.05). A paradoxical decrease in oxidative stress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    PubMed Central

    Anaeigoudari, Akbar; Hosseini, Mahmoud; Karami, Reza; Vafaee, Farzaneh; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2016-01-01

    Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum), on pentylenetetrazole (PTZ)-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1) vehicle, (2) PTZ (90 mg/kg), (3) water fraction (WF) of C. sativum (25 and 100 mg/kg), (4) n-butanol fraction (NBF) of C. sativum (25 and 100 mg/kg), and (5) ethyl acetate fraction (EAF) of C. sativum (25 and 100 mg/kg). Results: The first generalized tonic-clonic seizures (GTCS) latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p<0.01). In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS) latency. Malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p<0.001). Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (p<0.01 - p<0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in the brain tissues (p<0.05). Pretreatment with WF and NBF significantly elevated thiol concentrations in cortical and hippocampal tissues, respectively (p<0.05). Conclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects. PMID:27222836

  16. The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue: A study in a rat model of moderate and relatively high human exposure

    SciTech Connect

    Brzoska, Malgorzata M. Rogalska, Joanna; Kupraszewicz, Elzbieta

    2011-02-01

    It was investigated whether cadmium (Cd) may induce oxidative stress in the bone tissue in vivo and in this way contribute to skeleton damage. Total antioxidative status (TAS), antioxidative enzymes (glutathione peroxidase, superoxide dismutase, catalase), total oxidative status (TOS), hydrogen peroxide (H{sub 2}O{sub 2}), lipid peroxides (LPO), total thiol groups (TSH) and protein carbonyl groups (PC) as well as Cd in the bone tissue at the distal femoral epiphysis and femoral diaphysis of the male rats that received drinking water containing 0, 5, or 50 mg Cd/l for 6 months were measured. Cd, depending on the level of exposure and bone location, decreased the bone antioxidative capacity and enhanced its oxidative status resulting in oxidative stress and oxidative protein and/or lipid modification. The treatment with 5 and 50 mg Cd/l decreased TAS and activities of antioxidative enzymes as well as increased TOS and concentrations of H{sub 2}O{sub 2} and PC at the distal femur. Moreover, at the higher exposure, the concentration of LPO increased and that of TSH decreased. The Cd-induced changes in the oxidative/antioxidative balance of the femoral diaphysis, abundant in cortical bone, were less advanced than at the distal femur, where trabecular bone predominates. The results provide evidence that, even moderate, exposure to Cd induces oxidative stress and oxidative modifications in the bone tissue. Numerous correlations noted between the indices of oxidative/antioxidative bone status, and Cd accumulation in the bone tissue as well as indices of bone turnover and bone mineral status, recently reported by us (Toxicology 2007, 237, 89-103) in these rats, allow for the hypothesis that oxidative stress is involved in the mechanisms of damaging Cd action in the skeleton. The paper is the first report from an in vivo study indicating that Cd may affect bone tissue through disorders in its oxidative/antioxidative balance resulting in oxidative stress.

  17. Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue

    PubMed Central

    Rezaeyan, Abolhasan; Haddadi, Gholam Hassan; Hosseinzadeh, Massood; Moradi, Maryam; Najafi, Masoud

    2016-01-01

    This study was carried out to evaluate radioprotective effects of hesperidin (HES) administration before the irradiation on the cardiac oxidative stress and histopathological changes in an experimental rat model. The cardiovascular complications of radiation exposure cause morbidity and mortality in patients who received radiotherapy. HES, an antioxidant flavonoid found in citrus fruits, suggests the protection against the tissue damage. Fifty-eight rats were divided into four groups: Group 1 received phosphate buffered saline (PBS) and sham radiation; Group 2, HES and sham radiation; Group 3, PBS and radiation; and Group 4, HES and radiation. The rats were exposed to single dose of 18 Gy of 6 MV X-ray. One hundred milligrams per kilogram doses of HES was administered for 7 days before irradiation. The estimation of superoxide dismutase (SOD), malondialdehyde (MDA), and histopathological analyses was performed at 24 h and 8 weeks after radiation exposure. The irradiation of chest area resulted in an elevated MDA level and decreased SOD activity. Moreover, long-term pathological lesions of radiation were inflammation, fibrosis, the increased number of mast cells and macrophages, and development of plaque, vascular leakage, myocardial degeneration, and myocyte necrosis. Although the administration of HES decreases inflammation, fibrosis, mast cell and macrophage numbers, and myocyte necrosis, it did not result in reduced thrombus, myocardium degeneration, and vascular leakage. In conclusion, these results suggest that HES can perform a radioprotection action. The protective effect of HES may be attributable to its immunomodulatory effects and free radical-scavenging properties. PMID:27651565

  18. A comparative investigation of biochemical and histopathological effects of thiamine and thiamine pyrophosphate on ischemia-reperfusion induced oxidative damage in rat ovarian tissue.

    PubMed

    Demiryilmaz, Ismail; Sener, Ebru; Cetin, Nihal; Altuner, Durdu; Akcay, Fatih; Suleyman, Halis

    2013-09-01

    In this study, the biochemical and histopathological effects of thiamine and thiamine pyrophosphate on ischemia-reperfusion induced oxidative damage in rat ovarian tissue were investigated. Animals were divided into four groups of six rat each, ovarian ischemia-reperfusion (IR), 25 mg/kg thiamine + ovarian ischemia-reperfusion (TIR), 25 mg/kg thiamine pyrophosphate + ovarian ischemia-reperfusion (TPIR) and Sham group (SG). The results of the biochemical experiments have shown that the rat ovarian tissue with thiamine treatment, the level of MDA, GSH and the 8-hydroxyguanine are almost the same as the IR group; while in the group with thiamine pyrophosphate treatment, the level of MDA, GSH and the 8-hydroxyguanine are almost the same as the SG. Ovarian tissue of rats in the IR group were congested and dilated vessels, edema, hemorrhage, necrotic and apoptotic cells. In this group, the migration and the adhesion of the polymorphonuclear leucocytes to the endothelium were observed. Both ovaries in TPIR group, there was no difference according to the SG. Histopathology of ovarian tissues in the TIR group was almost the same with the IR group. Our results indicate that thiamine pyrophosphate significantly prevents the ischemia-reperfusion induced oxidative damage in ovarian tissue, whereas thiamine has no effect. In conclusion, we have found that thiamine pyrophosphate prevents oxidative damage due to ischemia-reperfusion injury, whereas thiamine does not have this effect. Furthermore, we have confirmed that the results of our biochemical analyses are in concordance with the histopathological findings.

  19. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats.

    PubMed

    Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Büyükbaş, Sadık

    2013-05-01

    The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.

  20. Long-term treatment with a Yang-invigorating Chinese herbal formula produces generalized tissue protection against oxidative damage in rats.

    PubMed

    Chiu, Po Yee; Leung, Hoi Yan; Siu, Ada Hoi Ling; Chen, Na; Poon, Michel K T; Ko, Kam Ming

    2008-02-01

    Previous work in our laboratory has shown that long-term treatment with Vigconic 28 (VI-28), a Yang-invigorating Chinese herbal formula used for the promotion of overall wellness in Chinese medicine, can enhance the mitochondrial functional ability and antioxidant capacity in various tissues of both male and female rats. To investigate whether the VI-28 treatment regimen could afford tissue protection against oxidative injury, the effects of long-term VI-28 treatment (80 or 240 mg/kg/d x 30) on oxidative stress-induced tissue damage in various organs (brain, heart, liver, and kidney) were examined in female rats. The results indicated that long-term VI-28 treatment invariably protected against oxidative tissue damage in the rat models of cerebral/myocardial ischemia-reperfusion injury, CCl4 hepatotoxicity, and gentamicin nephrotoxicity. The tissue protection was associated with increases in the levels and activities of mitochondrial antioxidant components as well as with the preservation of mitochondrial structural integrity. This was evidenced by decreases in the sensitivity of mitochondria to Ca2+-induced permeability transition, and in the levels of mitochondrial malondialdehyde production, Ca2+ loading, and cytochrome c release in the tissues examined. Interestingly, the VI-28 treatment increased red cell CuZn-superoxide dismutase (CuZn-SOD) levels, and these levels correlated positively with the degree of tissue protection afforded by long-term VI-28 treatment in rats. The generalized tissue protection afforded by long-term VI-28 treatment may have clinical implications in the prevention of age-related diseases, and VI-28 treatment may possibly delay the aging process.

  1. Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats.

    PubMed

    Toklu, Hale Z; Sehirli, Ozer; Erşahin, Mehmet; Süleymanoğlu, Selami; Yiğiner, Omer; Emekli-Alturfan, Ebru; Yarat, Ayşen; Yeğen, Berrak Ç; Sener, Göksel

    2010-12-01

    The putative protective effects of resveratrol against oxidative injury in the heart, kidney and brain tissues of rats induced with the two-kidney, one-clip (2K1C) hypertension model were investigated. Wistar albino rats were divided into sham-operated (n = 8) or 2K1C groups, in which rats received either resveratrol (10 mg/kg per day, i.p., n = 8), or saline (n = 8) starting at Week 3 after the surgery and continuing for the following 6 weeks. Indirect blood pressure recordings and echocardiographic images were made to evaluate cardiac function. At the end of Week 9 the animals were decapitated and plasma, heart, kidney and brain were taken for biochemical assays, while aortic rings were prepared for vascular reactivity studies. 2K1C hypertension resulted in increased blood pressure, aortic hypercontractility and reduced left ventricular function, leading to increased lipid peroxidation and myeloperoxidase activity, concomitant with significant reductions in tissue glutathione, superoxide dismutase, Na+/K+-ATPase and catalase activities in the cardiac, renal and brain tissues, indicating the presence of oxidative tissue damage in peripheral target organs. Elevated plasma levels of lactate dehydrogenase, creatine kinase, as well as reduced plasma levels of antioxidant capacity and nitric oxide further verified the severity of oxidative injury. A 6-week treatment with resveratrol reversed all the measured parameters, ameliorated hypertension-induced oxidative injury in the target organs and improved cardiovascular function. Resveratrol improved cardiovascular function through the augmentation of endogenous antioxidants and the inhibition of lipid peroxidation by maintaining a balance in oxidant/antioxidant status, which also ameliorated hypertension-induced oxidative injury in the cardiac, renal and cerebral tissues. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society of Great Britain.

  2. Oxidative stress and cellular and tissue damage in organogenic outbred mouse embryos after moderate perigestational alcohol intake.

    PubMed

    Coll, Tamara A; Chaufan, Gabriela; Pérez-Tito, Leticia; Ventureira, Martín R; Sobarzo, Cristian M A; Ríos de Molina, María Del Carmen; Cebral, Elisa

    2017-07-14

    Perigestational alcohol consumption by CF-1 mouse, from before mating up to the period of embryo organogenesis, leads to retarded early embryo development and neural tube defects. Here, we addressed if perigestational alcohol ingestion up to Day 10 of pregnancy induces oxidative stress and changes in macromolecules and organ tissues of early organogenic embryos. Adult CF-1 female mice were administered 10% ethanol in their drinking water for 17 days prior to mating and until Day 10 of gestation, whereas control females were administered ethanol-free water. Our results demonstrated significantly reduced Catalase abundance and activity and increased glutathione content in the embryos of ethanol-treated females. The nitrite level was significantly reduced, but TBARS (thiobarbituric acid reactive substances) content, an index of lipid peroxidation, did not change. Embryos derived from ethanol-treated females also showed higher abundance of 3-nitrotyrosine (3-NT)-containing proteins in all tissues, compared to the control group. Apoptosis was significantly increased in the ectoderm and mesoderm, but not in the heart-although this organ did contain more cleaved Caspase-3-positive cardiomyocytes per area of ventricular myocardium than controls. In sum, moderate perigestational alcohol ingestion up to Day 10 of gestation in mice induces oxidative stress by altering radical nitrogen species and antioxidant enzymatic and non-enzymatic mechanisms in embryos. Further, generalized protein nitration, due to unbalanced nitric oxide levels associated with tissue-specific apoptosis, was detected in embryos, suggesting that oxidative mechanisms may play an important role in the perigestational alcohol-induced malformation of organogenic embryos exposed to ethanol. © 2017 Wiley Periodicals, Inc.

  3. Augmenter of liver regeneration, a protective factor against ROS-induced oxidative damage in muscle tissue of mitochondrial myopathy affected patients.

    PubMed

    Polimeno, Lorenzo; Rossi, Roberta; Mastrodonato, Maria; Montagnani, Monica; Piscitelli, Domenico; Pesetti, Barbara; De Benedictis, Leonarda; Girardi, Bruna; Resta, Leonardo; Napoli, Anna; Francavilla, Antonio

    2013-11-01

    Mitochondria-related myopathies (MM) are a group of different diseases defined by a varying degree of dysfunctions of the mitochondrial respiratory chain which leads to reactive oxygen species (ROS) generation followed by oxidative stress and cellular damage. In mitochondrial myopathy muscle tissue an overexpression of antioxidant enzymes has been documented probably as an attempt to counteract the free radical generation. We previously documented, in human non-pathological muscle fibres, the expression of the augmenter of liver regeneration (ALR), a sulfhydryl oxidase enzyme, whose presence is related to the mitochondria; indeed it has been demonstrated that ALR mainly localizes in the mitochondrial inter-membrane space. Furthermore we reported, in different experimental models, in vivo and in vitro, the anti-apoptotic and anti-oxidative capacities of ALR, achieved by up-regulating Bcl-2 anti-apoptotic family factors and the anti-apoptotic/anti-oxidative secretory isoform of clusterin (sClu). With the present study we aimed to determine ALR, Bcl-2 protein, clusterin and ROS expression in muscle tissue biopsies from MM-affected patients. Non-pathological muscle tissue was used as control. Enzymatic, histochemical, immunohistochemical and immune electron microscopy techniques were performed. The data obtained revealed in MM-derived muscle tissue, compared to non-pathological tissue, the over-expression of ROS, ALR and Bcl-2 and the induction of the nuclear, pro-apoptotic, isoform of clusterin (nCLU).

  4. Efficacy of DL-alpha-lipoic acid on methanol induced free radical changes, protein oxidative damages and hsp70 expression in folate deficient rat nervous tissue.

    PubMed

    Rajamani, Rathinam; Muthuvel, Arumugam; Manikandan, Sundaramahalingam; Srikumar, Ramasundaram; Sheeladevi, Rathinasamy

    2007-05-01

    DL-alpha-Lipoic acid (LPA) was reported to be effective in reducing free radicals generated by oxidative stress. The protective of effect of LPA on methanol (MeOH) induced free radical changes and oxidative damages in discrete regions of rat brain have been reported in this study. Folate deficient rat (FDD) model was used. The five animal groups (saline control, FDD control, FDD+MeOH, FDD+LPA+MeOH, LPA control) were used. The FDD+MeOH and FDD+LPA+MeOH animals were injected intraperitoneally with methanol (3gm/kg). After 24h, the level of free radical scavengers such as, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione was estimated in six discrete regions of brain, retina and optic nerve. Level of protein thiol, protein carbonyl and lipid peroxidation was also estimated. Expression of heat shock protein 70 mRNA (hsp70) was studied in the cerebellum and hippocampus by reverse transcriptase PCR. All the samples showed elevation in the level of free radical scavenging enzymes and reduced level of glutathione in the FDD+MeOH group in relation to the other groups. hsp70 expression was more in FDD+MeOH group when compared to FDD+LPA+MeOH group. In conclusion, MeOH exposure leads to increased free radical generation and protein oxidative damages in the rat nervous tissue. Treatment with LPA prevents oxidative damage induced by MeOH exposure.

  5. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats.

    PubMed

    Bhattacharya, Semantee; Gachhui, Ratan; Sil, Parames C

    2013-10-01

    Diabetic complications associated with increased oxidative stress can be suppressed by antioxidants. In the present study we investigated the antidiabetic and antioxidant effects of Kombucha (KT), a fermented black tea, in comparison to that of unfermented black tea (BT), in ALX-induced diabetic rats. ALX exposure lowered the body weight and plasma insulin by about 28.12% and 61.34% respectively and elevated blood glucose level and glycated Hb by about 3.79 and 3.73 folds respectively. The oxidative stress related parameters like lipid peroxidation end products (increased by 3.38, 1.7, 1.65, 1.94 folds respectively), protein carbonyl content (increased by 2.5, 2.35, 1.8, 3.26 folds respectively), glutathione content (decreased by 59.8%, 47.27%, 53.69%, 74.03% respectively), antioxidant enzyme activities were also altered in the pancreatic, hepatic, renal and cardiac tissues of diabetic animals. Results showed significant antidiabetic potential of the fermented beverage (150 mg lyophilized extract/kg bw for 14 days) as it effectively restored ALX-induced pathophysiological changes. Moreover, it could ameliorate DNA fragmentation and caspase-3 activation in the pancreatic tissue of diabetic rats. Although unfermented black tea is effective in the above pathophysiology, KT was found to be more efficient. This might be due to the formation of some antioxidant molecules during fermentation period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Inhibition of Radiation-Induced Oxidative Damage in the Lung Tissue: May Acetylsalicylic Acid Have a Positive Role?

    PubMed

    Demirel, Can; Kilciksiz, Sevil Cagiran; Gurgul, Serkan; Erdal, Nurten; Yigit, Seyran; Tamer, Lulufer; Ayaz, Lokman

    2016-02-01

    The lung is relatively sensitive to irradiation. It is shown that acetylsalicylic acid (ASA) might reduce oxidative injury and that it has a place in protection from cancer. The aim of this study is to evaluate the potential radioprotective effects of ASA. Whole-body irradiation (6 Gy, single dose) was applied to the rats. Glutathione (GSH), malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) levels in the lung tissue were measured. Control (C), Radiation (R), Radiation + ASA (R + ASA; received irradiation and 25 mg/kg of ASA intraperitoneally (i.p.)), and Radiation + Amifostine (R + WR-2721; received irradiation and 200 mg/kg of WR-2721 i.p.) groups were used. The MPO levels decreased statistically significantly in the group administered ASA. Histopathologically, a radioprotective effect of ASA was more evident in the R + ASA group. ASA is an agent which has not been used as a radioprotector in the clinic yet, and it is worth supporting with more advanced studies.

  7. The effects of tamoxifen on learning, memory and brain tissues oxidative damage in ovariectomized and naïve female rats

    PubMed Central

    Zabihi, Hoda; Hosseini, Mahmoud; Pourganji, Masoume; Oryan, Shahrbanoo; Soukhtanloo, Mohammad; Niazmand, Saeed

    2014-01-01

    Background: Regarding the modulatory effects of tamoxifen (TAM) on the actions of estrogen in the present study, the effects of TAM on learning, memory and brain tissues oxidative damage in ovariectomized (OVX) and naοve female rats was investigated. Materials and Methods: The animals were divided into: (1) Sham, (2) OVX, (3) Sham-tamoxifen (Sham-TAM) and (4) ovariectomized-tamoxifen (OVX-TAM). The animals of the Sham-TAM and OVX-TAM groups were treated by TAM (1 mg/kg; 4 weeks). Results: In Morris water maze, the escape latency in the OVX group was higher than in the Sham group (P < 0.01). The time latency in the animals of OVX-TAM group was lower than that of OVX group (P < 0.01); however, there were no significant differences between the Sham-TAM and Sham groups. In the probe trial, the time spent in target quadrant (Q1) by the animals of OVX group was lower than that of Sham group (P < 0.01). Interestingly, the animals of OVX-TAM group spent more times in target quadrant (Q1) compared with OVX group (P < 0.01). In passive avoidance test, the animals of OVX group had lower latencies to enter the dark compartment compared with the Sham group (P < 0.05). The time latency to enter the dark compartment by animals of OVX-TAM group was higher than in OVX group (P < 0.01). In OVX-TAM group, the total thiol concentration was significantly higher (P < 0.05) and malondialdehyde concentration was lower (P < 0.01) than OVX group. Conclusions: These results allow us to propose that TAM enhances learning and memory of OVX rats. The possible mechanism may be due to the protective effects against brain tissues oxidative damage. PMID:25371876

  8. Assessment of DNA Binding and Oxidative DNA Damage by Acrylonitrile in Two Rat Target Tissues of Carcinogenicity: Implications for the Mechanism of Action.

    PubMed

    Williams, Gary M; Kobets, Tetyana; Duan, Jian-Dong; Iatropoulos, Michael J

    2017-07-17

    Exposure to acrylonitrile induces formation of tumors at multiple sites in rats, with females being more sensitive. The present study assessed possible mechanisms of acrylonitrile tumorigenicity, covalent DNA binding, DNA breakage, and oxidative DNA damage, in two target tissues, the brain and Zymbal's glands, of sensitive female Fischer (F344) and Sprague-Dawley (SD) rats. One group received acrylonitrile in drinking water at 100 ppm for 28 days. Two other groups were administered either acrylonitrile in drinking water at 100 ppm or drinking water alone for 27 days, followed by a single oral gavage dose of 11 mg/kg bw (14)C-acrylonitrile on day 28. A positive control group received a single dose of 5 mg/kg bw of 7-(14)C-benzo[a]pyrene, on day 27 following the administration of drinking water for 26 days. Using liquid scintillation counting, no association of radiolabeled acrylonitrile with brain DNA was found. In accelerator mass spectrometry analysis, the association of (14)C of acrylonitrile with DNA in brains was detected and was similar in both strains, which may reflect acrylonitrile binding to protein as well as to DNA. Nucleotide (32)P-postlabeling assay analysis of brain samples from rats of both strains yielded no evidence of acrylonitrile DNA adducts. Negative conventional comet assay results indicate the absence of direct DNA strand breaks in the brain and Zymbal's gland in both strains of rats dosed with acrylonitrile. In both rat strains, positive results in an enhanced comet assay were found only in brain samples digested with formamidopyrimidine-DNA glycosylase but not with human 8-hydroxyguanine-DNA glycosylase, indicating possible oxidative DNA damage, other than 8-oxodG formation. In conclusion, definitive evidence of DNA binding of acrylonitrile in the brain and Zymbal's gland was not obtained under the test conditions. A role for oxidative stress in tumorigenesis in the brain but not Zymbal's gland may exist.

  9. Tributyltin-mediated hepatic, renal and testicular tissue damage in male Syrian hamster (Mesocricetus auratus): a study on impact of oxidative stress.

    PubMed

    Kanimozhi, V; Palanivel, K; Akbarsha, M A; Kadalmani, B

    2016-01-01

    Organotin compounds are a versatile group of organometallic chemicals that are used in a variety of industrial and agricultural applications. Tributyltin (TBT), a common organotin, brings about severe spermatotoxic and organotoxic effects. However, information about the adverse effects of TBT on liver, kidney and testis is scanty. Hence, the present study was undertaken to elucidate the TBT-mediated oxidative stress-induced impairments in these organs. Administration of TBT through oral route at increasing doses of 50, 100 and 150 ppm for 65 days to male Syrian hamsters resulted in drastically decreased activities of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase and decreased mean levels of non-enzymatic antioxidants (reduced glutathione, vitamin C, and vitamin E) followed by a dramatic increase in the levels of lipid peroxidation in the liver, kidney and testis as compared to the control animals. Significantly high levels of serum urea, creatinine, uric acid and bilirubin were observed in TBT-treated hamsters. Also, TBT treatment induced drastic histopathological changes in the liver, kidney and testis combined with remarkable changes in serum levels of tissue injury marker enzymes Aspartate transaminases, Alkaline phosphatase and Alanine transaminase. These data affirm that exposure to TBT can lead to oxidative stress-induced damage to liver, kidney and testis.

  10. Tissue damage detection by osmotic surveillance

    PubMed Central

    Enyedi, Balázs; Kala, Snigdha; Nikolich-Zugich, Tijana; Niethammer, Philipp

    2013-01-01

    How tissue damage is detected to induce inflammatory responses is unclear. Most studies have focused on damage signals released by cell breakage and necrosis1. Whether tissues utilize other cues besides cell lysis to detect that they are damaged is unknown. We find that osmolarity differences between interstitial fluid and the external environment mediate rapid leukocyte recruitment to sites of tissue damage in zebrafish by activating cytosolic phospholipase a2 (cPLA2) at injury sites. cPLA2 initiates the production of non-canonical arachidonate metabolites that mediate leukocyte chemotaxis via a 5-oxo-ETE receptor (OXE-R). Thus, tissues can detect damage through direct surveillance of barrier integrity. By this mechanism, cell-swelling likely functions as a pro-inflammatory intermediate. PMID:23934216

  11. Tissue damage detection by osmotic surveillance.

    PubMed

    Enyedi, Balázs; Kala, Snigdha; Nikolich-Zugich, Tijana; Niethammer, Philipp

    2013-09-01

    How tissue damage is detected to induce inflammatory responses is unclear. Most studies have focused on damage signals released by cell breakage and necrosis. Whether tissues use other cues in addition to cell lysis to detect that they are damaged is unknown. We find that osmolarity differences between interstitial fluid and the external environment mediate rapid leukocyte recruitment to sites of tissue damage in zebrafish by activating cytosolic phospholipase a2 (cPLA2) at injury sites. cPLA2 initiates the production of non-canonical arachidonate metabolites that mediate leukocyte chemotaxis through a 5-oxo-ETE receptor (OXE-R). Thus, tissues can detect damage through direct surveillance of barrier integrity, with cell swelling probably functioning as a pro-inflammatory intermediate in the process.

  12. Oxidative damage in dengue fever.

    PubMed

    Seet, Raymond C S; Lee, Chung-Yung J; Lim, Erle C H; Quek, Amy M L; Yeo, Leonard L L; Huang, Shan-Hong; Halliwell, Barry

    2009-08-15

    Oxidative stress may be important in the pathogenesis of dengue infection. Using accurate markers of oxidative damage, we assessed the extent of oxidative damage in dengue patients. The levels of hydroxyeicosatetraenoic acid products (HETEs), F(2)-isoprostanes (F(2)-IsoPs), and cholesterol oxidation products (COPs) were measured in 28 adult dengue patients and 28 age-matched study controls during the febrile, defervescent, and convalescent stages of infection. We compared the absolute and the percentage change in these markers in relation to key clinical parameters and inflammatory markers. The levels of total HETEs and total HETEs/arachidonate, total F(2)-IsoPs/arachidonate, and COPs/cholesterol were higher during the febrile compared to the convalescent level. Total HETEs correlated positively with admission systolic blood pressure (r=0.52, p<0.05), whereas an inverse relationship was found between 7beta-hydroxycholesterol and systolic and diastolic blood pressure (r=-0.61 and -0.59, respectively, p<0.01). The urinary F(2)-IsoP level was higher in urine during the febrile stage compared to the convalescent level. Despite lower total cholesterol levels during the febrile stage compared to convalescent levels, a higher percentage of cholesterol was found as COPs (7beta-, 24-, and 27-hydroxycholesterol). The levels of platelet-activating factor-acetylhydrolase activity, vascular cellular adhesion molecule-1, tumor necrosis factor-alpha, and high-sensitivity C-reactive protein were higher during the febrile stage compared to their convalescent levels (p<0.01). Markers of oxidative damage are altered during the various stages of dengue infection.

  13. Insecticides induced stress response and recuperation in fish: Biomarkers in blood and tissues related to oxidative damage.

    PubMed

    Narra, Madhusudan Reddy; Rajender, Kodimyala; Reddy, R Rudra; Murty, U Suryanarayana; Begum, Ghousia

    2017-02-01

    The present research investigated the growth, blood, antioxidant response (liver), AChE (brain and muscle) and Na+/K + ATPase in gills of Clarias batrachus exposed to 0 (control), two insecticides, 1.65 mg L(-1) chlorpyrifos (CPF) and 2.14 mg L(-1) monocrotophos (MCP) for a fixed interval time of 3, 6, 9, 12 and 15 days and follow up depuration process in fresh water for 30 days (at an interval of 7, 15 and 30 days). The toxicants exposed fish indicated significantly (P < 0.05) lower weight gain and HSI. The RBC, Hb, Hct, plasma total protein, glucose, albumin, globulin and respiratory burst activity was reduced. However, WBC, plasma glucose, serum creatinine, and triglycerides were enhanced. The weight gain, HSI and all haematological parameters were reversed following depuration of CPF and MCP exposed fish. Hepatic superoxide dismutase, catalase, lipid peroxidation, reduced glutathione, and glutathione S-transferase activities were significantly activated whereas glutathione peroxidase was inhibited in both tested groups. All the antioxidant enzymes were reversed on day 15 in MCP concentration, whereas CPF on day 30 of depuration process. The inhibition of acetylcholinesterase (brain, muscle) and gill Na+/K + ATPase activities were more in CPF exposure and early recovery in MCP. The results indicated that depuration process might help in detoxification of fish and improve growth, haematological conditions, oxidative stress and AChE, Na+/K + ATPase activity. However, further studies are needed in different fish species with different toxicants to support this strategy of depuration process in order to detoxify polluted fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Effects of Nigella Sativa Hydro-alcoholic Extract on Memory and Brain Tissues Oxidative Damage after Repeated Seizures in Rats

    PubMed Central

    Vafaee, Farzaneh; Hosseini, Mahmoud; Hassanzadeh, Zahra; Edalatmanesh, Mohammad Amin; Sadeghnia, Hamid Reza; Seghatoleslam, Masoumeh; Mousavi, Seyed Mojtaba; Amani, Atefeh; Shafei, Mohammad Naser

    2015-01-01

    Regarding the therapeutic properties of Nigella sativa (NS), the effects of the plant hydro – alcoholic extract on learning, memory and brain tissues oxidative damage were investigated in penthylenetetrazole (PTZ) - induced repeated seizures. There were 4 experimental groups including: 1- control group; received saline, 2- PTZ group ; received saline and PTZ (50 mg/Kg, i.p) , 3-PTZ- NS 200 and 4- PTZ- NS 400 ; received 200 and 400 mg/Kg of NS extract respectively, before PTZ injection in 5 consecutive days. Seizure scores were lower in PTZ – NS 200 and 400, furthermore the seizure onset latencies were higher in these groups than PTZ group (P<0.05 and P<0.01 ). In Morris water maze, the time spent in target quadrant by PTZ group was lower than control group (P<0.05); while, 400 mg/Kg of the extract increased it (P<0.01). In the passive avoidance test, delay time to enter the dark by PTZ group was lower than control at 1 and 24 hours after training (P<0.01- P<0.001); while, 400 mg/Kg of the extract increased it (P<0.05). The total thiol concentration in hippocampal and cortical tissues of PTZ group was reduced while, MDA concentration was higher than control (p<0.05 - p<0.001). Administration of the extract increased the total thiol and decreased the MDA concentrations (p<0.01- p<0.001). It is concluded that the hydro-alcoholic extract of NS possess beneficial effects on learning and memory impairments in repeated seizures model which is accompanied by antioxidant effects in the brain. PMID:25901163

  15. Tissue damage thresholds during therapeutic electrical stimulation

    PubMed Central

    Cogan, Stuart F; Ludwig, Kip A; Welle, Cristin G; Takmakov, Pavel

    2017-01-01

    Objective Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. Approach In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. Main results For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. Significance It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device safety

  16. Tissue damage thresholds during therapeutic electrical stimulation

    NASA Astrophysics Data System (ADS)

    Cogan, Stuart F.; Ludwig, Kip A.; Welle, Cristin G.; Takmakov, Pavel

    2016-04-01

    Objective. Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. Approach. In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. Main results. For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. Significance. It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device

  17. Tissue damage thresholds during therapeutic electrical stimulation.

    PubMed

    Cogan, Stuart F; Ludwig, Kip A; Welle, Cristin G; Takmakov, Pavel

    2016-04-01

    Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device safety.

  18. Minimizing tissue damage in electroosmotic sampling

    PubMed Central

    Hamsher, Amy E.; Xu, Hongjuan; Guy, Yifat; Sandberg, Mats; Weber, Stephen G.

    2010-01-01

    Electroosmotic sampling is a potentially powerful method for pulling extracellular fluid into a fused-silica capillary in contact with the surface of tissue. An electric field is created in tissue by passing current through an electrolyte-filled capillary and then through the tissue. The resulting field acts on the counter ions to the surface charges in the extracellular space to create electroosmotic fluid flow within the extracellular space of a tissue. Part of the development of this approach is to define conditions under which electroosmotic sampling minimizes damage to the tissue, in this case organotypic hippocampal slice cultures (OHSCs). We have assessed tissue damage by measuring fluorescence resulting from exposing sampled tissue to propidium iodide solution 16 – 24 h after sampling. Sampling has been carried out with a variety of capillary diameters, capillary tip-tissue distance, and applied voltages. Tissue damage is negligible when the power (current × potential drop) created in the tissue is less than 120 µW. In practical terms, smaller capillary IDs, lower voltages, and greater tissue to capillary distances lead to lower power. PMID:20698578

  19. Arsenic-Induced Antioxidant Depletion, Oxidative DNA Breakage, and Tissue Damages are Prevented by the Combined Action of Folate and Vitamin B12.

    PubMed

    Acharyya, Nirmallya; Deb, Bimal; Chattopadhyay, Sandip; Maiti, Smarajit

    2015-11-01

    Arsenic is a grade I human carcinogen. It acts by disrupting one-carbon (1C) metabolism and cellular methyl (-CH3) pool. The -CH3 group helps in arsenic disposition and detoxification of the biological systems. Vitamin B12 and folate, the key promoters of 1C metabolism were tested recently (daily 0.07 and 4.0 μg, respectively/100 g b.w. of rat for 28 days) to evaluate their combined efficacy in the protection from mutagenic DNA-breakage and tissue damages. The selected tissues like intestine (first-pass site), liver (major xenobiotic metabolizer) and lung (major arsenic accumulator) were collected from arsenic-ingested (0.6 ppm/same schedule) female rats. The hemo-toxicity and liver and kidney functions were monitored. Our earlier studies on arsenic-exposed humans can correlate carcinogenesis with DNA damage. Here, we demonstrate that the supplementation of physiological/therapeutic dose of vitamin B12 and folate protected the rodents significantly from arsenic-induced DNA damage (DNA fragmentation and comet assay) and hepatic and renal tissue degeneration (histo-architecture, HE staining). The level of arsenic-induced free-radical products (TBARS and conjugated diene) was significantly declined by the restored actions of several antioxidants viz. urate, thiol, catalase, xanthine oxidase, lactoperoxidase, and superoxide dismutase in the tissues of vitamin-supplemented group. The alkaline phosphatase, transaminases, urea and creatinine (hepatic and kidney toxicity marker), and lactate dehydrogenase (tissue degeneration marker) were significantly impaired in the arsenic-fed group. But a significant protection was evident in the vitamin-supplemented group. In conclusion, the combined action of folate and B12 results in the restitution in the 1C metabolic pathway and cellular methyl pool. The cumulative outcome from the enhanced arsenic methylation and antioxidative capacity was protective against arsenic induced mutagenic DNA breakages and tissue damages.

  20. An investigation of the effect of thiamine pyrophosphate on cisplatin-induced oxidative stress and DNA damage in rat brain tissue compared with thiamine: thiamine and thiamine pyrophosphate effects on cisplatin neurotoxicity.

    PubMed

    Turan, M I; Cayir, A; Cetin, N; Suleyman, H; Siltelioglu Turan, I; Tan, H

    2014-01-01

    This study investigated the effects of thiamine pyrophosphate (TPP) at dosages of 10 and 20 mg/kg on oxidative stress induced in rat brain tissue with cisplatin and compared this with thiamine. Cisplatin neurotoxicity represents one of the main restrictions on the drug being given in effective doses. Oxidative stress is considered responsible for cisplatin toxicity. Our results showed that cisplatin increased the levels of oxidant parameters such as lipid peroxidation (thio barbituric acid reactive substance (TBARS)) and myeloperoxidase (MPO) in brain tissue and suppressed the effects of antioxidants such as total glutathione (GSH) and superoxide dismutase (SOD). TPP, especially at a dosage of 20 mg/kg, significantly reduced TBARS and MPO levels that increase with cisplatin administration compared with the thiamine group, while TPP significantly increases GSH and SOD levels. In addition, the level of 8-Gua (guanine), a product of DNA damage, was 1.7 ± 0.12 8-hydroxyl guanine (8-OH Gua)/105 Gua in brain tissue in the control group receiving cisplatin, compared with 0.97 ± 0.03 8-OH Gua/105 Gua in the thiamine pyrophosphate (20 mg/kg) group and 1.55 ± 0.11 8-OH Gua/105 Gua in the thiamine (20 mg/kg) group. These results show that thiamine pyrophosphate significantly prevents oxidative damage induced by cisplatin in brain tissue, while the protective effect of thiamine is insignificant.

  1. Lactation Affects Isolated Mitochondria and Its Fatty Acid Composition but Has No Effect on Tissue Protein Oxidation, Lipid Peroxidation or DNA-Damage in Laboratory Mice

    PubMed Central

    Valencak, Teresa G.; Raith, Johannes; Staniek, Katrin; Gille, Lars; Strasser, Alois

    2016-01-01

    Linking peak energy metabolism to lifespan and aging remains a major question especially when focusing on lactation in females. We studied, if and how lactation affects in vitro mitochondrial oxygen consumption and mitochondrial fatty acid composition. In addition, we assessed DNA damage, lipid peroxidation and protein carbonyls to extrapolate on oxidative stress in mothers. As model system we used C57BL/6NCrl mice and exposed lactating females to two ambient temperatures (15 °C and 22 °C) while they nursed their offspring until weaning. We found that state II and state IV respiration rates of liver mitochondria were significantly higher in the lactating animals than in non-lactating mice. Fatty acid composition of isolated liver and heart mitochondria differed between lactating and non-lactating mice with higher n-6, and lower n-3 polyunsaturated fatty acids in the lactating females. Surprisingly, lactation did not affect protein carbonyls, lipid peroxidation and DNA damage, nor did moderate cold exposure of 15 °C. We conclude that lactation increases rates of mitochondrial uncoupling and alters mitochondrial fatty acid composition thus supporting the “uncoupling to survive” hypothesis. Regarding oxidative stress, we found no impact of lactation and lower ambient temperature and contribute to growing evidence that there is no linear relationship between oxidative damage and lactation. PMID:26805895

  2. Lung Oxidative Damage by Hypoxia

    PubMed Central

    Araneda, O. F.; Tuesta, M.

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described. PMID:22966417

  3. Lung oxidative damage by hypoxia.

    PubMed

    Araneda, O F; Tuesta, M

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.

  4. Melatonin improves ultraviolet B-induced oxidative damage and inflammatory conditions in cutaneous tissue of a diurnal Indian palm squirrel Funambulus pennanti.

    PubMed

    Goswami, S; Haldar, C

    2014-11-01

    Skin is exposed to various abiotic and biotic factors. Solar radiation, of which ultraviolet (UV) rays are a principle component, increases the free radical load, and the accumulation of reactive oxygen species (ROS) causes lipid peroxidation, DNA damage and apoptosis, and is also associated with inflammatory responses recruiting molecules [nuclear factor (NF)-κB, interleukin (IL)-6] that can potentially further aggravate the damaged milieu of the cells. One of the potent causes of skin cancers is exposure to UV rays. UV radiation generates a wide range of biological responses such as adaptive, inflammatory and immunological reactions in the skin. To examine the effects of pretreatment with melatonin on UVB (290-320 nm) radiation-mediated damage to the skin of a diurnal rodent Funambulus pennanti. The UVB radiation (1·5 J cm(-2) for 30 min daily on the shaved abdominal area) for 4 days caused a significant increase in the lipid peroxidation products (thiobarbituric acid reactive substances, TBARS) and decreased the activity of the antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) of the skin. Pretreatment with melatonin (100 μg 100 g(-1) bodyweight subcutaneously) improved the damage induced by UVB radiation on the skin and might act via a receptor-independent mechanism. No significant effect of melatonin pretreatment was found on the expression pattern of MT1 (melatonin membrane receptor) and RORα (nuclear retinoic orphan receptor alpha), which suggests a receptor-independent action. However, NF-κB and inflammatory cytokine IL-6 levels were downregulated in the squirrels pretreated with melatonin before the UVB radiation. UVB radiation induced oxidative stress in the skin culminating in an inflammatory response. The action of melatonin in protecting the skin from oxidative damage occurs in a receptor-independent manner by lowering the oxidative damage and inflammatory response. On the other hand, melatonin decreased the

  5. Life-extending Dietary Restriction Reduces Oxidative Damage of Proteins in Grasshoppers but Does Not Alter Allocation of Ingested Nitrogen to Somatic Tissues.

    PubMed

    Heck, Matthew J; Pehlivanovic, Mirna; Purcell, Jennifer U; Hahn, Daniel A; Hatle, John D

    2017-05-01

    Dietary restriction (DR) extends life span and reduces reproduction in most animals. The disposable soma hypothesis suggests that this longevity is the result of reduced investment in reproduction and increased nutrient allocation to the soma, permitting an increase in cellular maintenance. To investigate the role of nutrient allocation upon life-extending DR, tissue-specific nitrogen allocation was tracked in grasshoppers (Romalea microptera) upon a full or restricted (60% of full) diet. In addition, carbonyl (oxidized protein) assays addressed tissue maintenance. To develop a labeled diet on which grasshoppers could thrive, hydroponically grown Romaine lettuce was enriched with 15N. This allowed quantification of nitrogen allocation upon a normal or restricted diet. There was a 50% decrease in reproductive investment upon DR. At the same time, relative allocation of 15N to the ovary did not change. Most important, relative allocation was similar between restricted and full diet grasshoppers for somatic tissues (ie, mandibular and femur muscle, dried hemolymph, gut, and fat body). Carbonyl assays of muscles, hemolymph, and gut revealed an overall reduction in protein oxidation upon DR. These data suggest that DR does not alter nutrient allocation but does reduce protein oxidation, an observation that is inconsistent with the basic predictions of the disposable soma hypothesis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Oxidative and alkylating damage in DNA.

    PubMed

    Martinez, Glaucia R; Loureiro, Ana Paula M; Marques, Sabrina A; Miyamoto, Sayuri; Yamaguchi, Lydia F; Onuki, Janice; Almeida, Eduardo A; Garcia, Camila C M; Barbosa, Lívea F; Medeiros, Marisa H G; Di Mascio, Paolo

    2003-11-01

    Modification of cellular DNA upon exposure to reactive oxygen and nitrogen species is the likely initial event involved in the induction of the mutagenic and lethal effects of various oxidative stress agents. Evidence has been accumulated for the significant implication of singlet oxygen (1O(2)), generated as the result of UVA activation of endogenous photosensitizers as porphyrins and flavins. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo) has been shown to be the exclusive product of the reaction of 1O(2) with the guanine moiety of cellular DNA, in contrast to the hydroxyl radical, which reacts almost indifferently with all the nucleobases and the sugar moiety of DNA. Furthermore 8-oxodGuo is also produced by other oxidants and can be used as an ubiquitous biomarker of DNA oxidation but can not be a specific marker of any particular species. The role of DNA etheno adducts in mutagenic and carcinogenic processes triggered by known occupational and environmental carcinogens has also been studied. Much interest in etheno adducts resulted from the detection of increased levels of 1,N(6)-etheno-2'-deoxyadenosine and 3,N(4)-etheno-2'-deoxycytidine in DNA from human, rat and mouse tissues under pathophysiological conditions associated with oxidative stress. A method involving on-line HPLC with electrospray tandem mass spectrometry detection has been developed for the analysis of 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilondGuo) in DNA. This methodology permits direct quantification of 20 fmol (7.4 adducts/10(8) dGuo) of the etheno adduct from approximately 350 microg of crude DNA hydrolysates. This method provides the first evidence of the occurrence of 1,N(2)-epsilondGuo as a basal endogenous lesion and may be utilized to better assess the biological consequences of etheno DNA damage under normal and pathological conditions. This work addresses the importance of isotope labeling associated with mass spectrometry technique for biomolecule damage studies.

  7. Protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in ovariectomized rats

    PubMed Central

    Hejazian, Seyed Hassan; Karimi, Sareh; Hosseini, Mahmoud; Mousavi, Seyed Mojtaba; Soukhtanloo, Mohammad

    2016-01-01

    Background: Regarding the anti-oxidative effects on the central nervous system, the possible protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments was investigated in ovariectomized (OVX) rats. Materials and Methods: The OVX rats treated by (1) vehicle, (2) scopolamine, and (3–4) scopolamine plus estradiol (20 or 20 or 60 μg/kg). Estradiol was administered (20 or 60 μg/kg, intraperitoneally) daily for 6 weeks after ovariectomy. The rats were examined for learning and memory using passive avoidance test. Scopolamine (2 mg/kg) was injected 30 min after training in the test. The brains were then removed to determine malondialdehyde (MDA) and thiol contents. Results: Scopolamine shortened the time latency to enter the dark compartment in (P < 0.01). Compared to scopolamine, pretreatment by both doses of estradiol prolonged the latency to enter the dark compartment (P < 0.01). The brain tissues MDA concentration as an index of lipid peroxidation was decreased (P < 0.05). Pretreatment by estradiol lowered the concentration of MDA, while it increased thiol content compared to scopolamine (P < 0.05 and P < 0.01). Conclusions: These results allow us to suggest a protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in OVX rats. PMID:27563633

  8. Free radical tissue damage: Protective role of antioxidant nutrients

    SciTech Connect

    Machling, L.J.; Bendich, A. )

    1987-12-01

    Highly reactive molecules called free radicals can cause tissue damage by reacting with polyunsaturated fatty acids in cellular membranes, nucleotides in DNA, and critical sulfhydryl bonds in proteins. Free radicals can originate endogenously from normal metabolic reactions or exogenously as components of tobacco smoke and air pollutants and indirectly through the metabolism of certain solvents, drugs, and pesticides as well as through exposure to radiation. There is some evidence that free radical damage contributes to the etiology of many chronic health problems such as emphysema, cardiovascular and inflammatory diseases, cataracts, and cancer. The extent of tissue damage is the result of the balance between the free radicals generated and the antioxidant protective defense system. Several dietary micronutrients contribute greatly to the protective system. Based on the growing interest in free radical biology and the lack of effective therapies for many of the chronic diseases, the usefulness of essential, safe nutrients in protecting against the adverse effects of oxidative injury warrants further study.

  9. Oxidative DNA damage & repair: An introduction.

    PubMed

    Cadet, Jean; Davies, Kelvin J A

    2017-06-01

    This introductory article should be viewed as a prologue to the Free Radical Biology & Medicine Special Issue devoted to the important topic of Oxidatively Damaged DNA and its Repair. This special issue is dedicated to Professor Tomas Lindahl, co-winner of the 2015 Nobel Prize in Chemistry for his seminal discoveries in the area repair of oxidatively damaged DNA. In the past several years it has become abundantly clear that DNA oxidation is a major consequence of life in an oxygen-rich environment. Concomitantly, survival in the presence of oxygen, with the constant threat of deleterious DNA mutations and deletions, has largely been made possible through the evolution of a vast array of DNA repair enzymes. The articles in this Oxidatively Damaged DNA & Repair special issue detail the reactions by which intracellular DNA is oxidatively damaged, and the enzymatic reactions and pathways by which living organisms survive such assaults by repair processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Immunochemical detection of oxidatively damaged DNA.

    PubMed

    Rossner, Pavel; Sram, Radim J

    2012-04-01

    Oxidatively damaged DNA is implicated in various diseases, including neurodegenerative disorders, cancer, diabetes, cardiovascular and inflammatory diseases as well as aging. Several methods have been developed to detect oxidatively damaged DNA. They include chromatographic techniques, the Comet assay, (32)P-postlabelling and immunochemical methods that use antibodies to detect oxidized lesions. In this review, we discuss the detection of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG), the most abundant oxidized nucleoside. This lesion is frequently used as a marker of exposure to oxidants, including environmental pollutants, as well as a potential marker of disease progression. We concentrate on studies published between the years 2000 and 2011 that used enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry to detect 8-oxodG in humans, laboratory animals and in cell lines. Oxidative damage observed in these organisms resulted from disease, exposure to environmental pollutants or from in vitro treatment with various chemical and physical factors.

  11. Quercitrin protects skin from UVB-induced oxidative damage

    SciTech Connect

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  12. Oxidative stress and oxidative damage in chemical carcinogenesis

    SciTech Connect

    Klaunig, James E. Wang Zemin; Pu Xinzhu; Zhou Shaoyu

    2011-07-15

    Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

  13. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits.

    PubMed

    Wells, Peter G; McCallum, Gordon P; Lam, Kyla C H; Henderson, Jeffrey T; Ondovcik, Stephanie L

    2010-06-01

    Several teratogenic agents, including ionizing radiation and xenobiotics such as phenytoin, benzo[a]pyrene, thalidomide, and methamphetamine, can initiate the formation of reactive oxygen species (ROS) that oxidatively damage cellular macromolecules including DNA. Oxidative DNA damage, and particularly the most prevalent 8-oxoguanine lesion, may adversely affect development, likely via alterations in gene transcription rather than via a mutational mechanism. Contributions from oxidative DNA damage do not exclude roles for alternative mechanisms of initiation like receptor-mediated processes or the formation of covalent xenobiotic-macromolecular adducts, damage to other macromolecular targets like proteins and lipids, and other effects of ROS like altered signal transduction. Even in the absence of teratogen exposure, endogenous developmental oxidative stress can have embryopathic consequences in the absence of key pathways for detoxifying ROS or repairing DNA damage. Critical proteins in pathways for DNA damage detection/repair signaling, like p53 and ataxia telangiectasia mutated, and DNA repair itself, like oxoguanine glycosylase 1 and Cockayne syndrome B, can often, but not always, protect the embryo from ROS-initiating teratogens. Protection may be variably dependent upon such factors as the nature of the teratogen and its concentration within the embryo, the stage of development, the species, strain, gender, target tissue and cell type, among other factors.

  14. Synergistic effect of folic acid and vitamin B12 in ameliorating arsenic-induced oxidative damage in pancreatic tissue of rat.

    PubMed

    Mukherjee, Sandip; Das, Dolan; Mukherjee, Maitrayee; Das, Asankur S; Mitra, Chandan

    2006-05-01

    The efficacies of two nutritional factors, folic acid and vitamin B12, were assessed in this study against arsenic-induced islet cellular toxicity. Rats were divided into four groups consisting of five rats in each group: Group A, control; Group B, arsenic-treated; Group C, arsenic+folic acid; and Group D, arsenic+folic acid+vitamin B12. The dose of arsenic, folic acid and vitamin B12, respectively, was 3 mg, 36 microg and 0.63 microg kg(-1) body weight day(-1) for 30 days. Results showed that, compared to control group, there was a significant increase in the levels of nitric oxide (NO), malondialdehyde (MDA) and hydroxyl radical (OH-) formation in the pancreatic tissue of arsenic-treated rats, while the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), and cellular content of antioxidant glutathione (GSH) were low in these animals. The serum level of tumor necrosis factor-alpha (TNF-alpha) and IL-6 was significantly high in these animals. Light microscopic examination showed a marked fall in the number of islet cells. Concomitant administration of either folic acid or folic acid and vitamin B12 with arsenic significantly restored all these parameters. Although folic acid alone could not restore the normal level of TNF-alpha and IL-6, combined folic acid and vitamin B12 could restore it. Folic acid and vitamin B12 combined also could recover islet cell count. These results suggest that folic acid+vitamin B12 are capable of reducing arsenic-induced cellular oxidative and inflammatory toxic changes. Thus, supplement with vitamin B12+folic acid may be predicted as a possible nutritional management strategy against arsenic-induced toxicity.

  15. Short-term magnesium deficiency downregulates telomerase, upregulates neutral sphingomyelinase and induces oxidative DNA damage in cardiovascular tissues: relevance to atherogenesis, cardiovascular diseases and aging

    PubMed Central

    Shah, Nilank C; Shah, Gatha J; Li, Zhiqiang; Jiang, Xian-Cheng; Altura, Bella T; Altura, Burton M

    2014-01-01

    The present work tested the hypotheses that: 1) short-term dietary deficiency of magnesium (Mg; 21 days) in rats (MgD) would result in a downregulation of telomerase in cardiac and aortic smooth muscle cells, 2) low levels of Mg2+ added to drinking water (DW) would either prevent or greatly reduce the downregulation of telomerase in MgD, 3) MgD in rats would cause an upregulation of neutral-sphingomyelinase (N-SMAse) and p53, 4) short-term MgD would result in oxidation of DNA in diverse cardiac muscle and aortic smooth muscle cells as exemplified by measurement of 8-hydroxydeoxyguanosine (8-OH-dG), and 5) cross-talk between telomerase, N-SMase, p53, and 8-OH-dG would be evident in left ventricular (LV), right ventricular (RV), atrial and aortic smooth muscle obtained from rats subjected to short-term MgD. The data indicated that short-term MgD (10% normal dietary intake) resulted in downregulation of telomerase in LV, RV, atrial and aortic muscle cells; even very low levels of water-bourne Mg2+ (e.g., 15-40 mg/lday) either prevented or ameliorated the downregulation of telomerase. Our experiments also showed that MgD resulted in a 7-10 fold increased formation of 8-OH-dG in the cardiac and aortic muscle cells. The experiments also confirmed that short-term dietary deficiency of Mg resulted in greatly increased upregulation of N-SMAse and p53 in the cardiac and aortic muscle tissues. These new experiments point to a sizeable cross-talk among telomerase, N-SMAse, and p53 in rat cardiac and peripheral vascular muscle exposed to a short-term MgD. These studies would be compatible with the idea that even short-term MgD could cause alterations of the genome in diverse cell types leading to mutations of cardiac, vascular, and endothelial cells seen in aging and atherogenesis. Since we have shown, previously, that activation of N-SMAse in MgD leads to synthesis and release of ceramide in cardiovascular tissues and cells, we believe this pathway, most likely, helps to

  16. Characterization of Oxidative Guanine Damage and Repair in Mammalian Telomeres

    PubMed Central

    Wang, Zhilong; Rhee, David B.; Lu, Jian; Bohr, Christina T.; Zhou, Fang; Vallabhaneni, Haritha; de Souza-Pinto, Nadja C.; Liu, Yie

    2010-01-01

    8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)–initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere–FISH), by chromosome orientation–FISH (CO–FISH), and by indirect immunofluorescence in combination with telomere–FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1−/−) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1−/− mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1−/− mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1−/− mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1−/− MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining

  17. Electron beam damage in oxides: a review.

    PubMed

    Jiang, Nan

    2016-01-01

    This review summarizes a variety of beam damage phenomena relating to oxides in (scanning) transmission electron microscopes, and underlines the shortcomings of currently popular mechanisms. These phenomena include mass loss, valence state reduction, phase decomposition, precipitation, gas bubble formation, phase transformation, amorphization and crystallization. Moreover, beam damage is also dependent on specimen thickness, specimen orientation, beam voltage, beam current density and beam size. This article incorporates all of these damage phenomena and experimental dependences into a general description, interpreted by a unified mechanism of damage by induced electric field. The induced electric field is produced by positive charges, which are generated from excitation and ionization. The distribution of the induced electric fields inside a specimen is beam-illumination- and specimen-shape- dependent, and associated with the experimental dependence of beam damage. Broadly speaking, the mechanism operates differently in two types of material. In type I, damage increases the resistivity of the irradiated materials, and is thus divergent, resulting in phase separation. In type II, damage reduces the resistivity of the irradiated materials, and is thus convergent, resulting in phase transformation. Damage by this mechanism is dependent on electron-beam current density. The two experimental thresholds are current density and irradiation time. The mechanism comes into effect when these thresholds are exceeded, below which the conventional mechanisms of knock-on and radiolysis still dominate.

  18. The oxidative damage initiation hypothesis for meiosis.

    PubMed

    Hörandl, Elvira; Hadacek, Franz

    2013-12-01

    The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction.

  19. DNA damage, oxidative mutagen sensitivity, and repair of oxidative DNA damage in nonmelanoma skin cancer patients.

    PubMed

    Bendesky, Andrés; Michel, Alejandra; Sordo, Monserrat; Calderón-Aranda, Emma S; Acosta-Saavedra, Leonor C; Salazar, Ana M; Podoswa, Nancy; Ostrosky-Wegman, Patricia

    2006-08-01

    Nonmelanoma skin cancer (NMSC) is the most frequent type of cancer in humans. Exposure to UV radiation is a major risk factor for NMSC, and oxidative DNA damage, caused either by UV radiation itself or by other agents, may be involved in its induction. Increased sensitivity to oxidative damage and an altered DNA repair capacity (DRC) increase the risk of many types of cancer; however, sensitivity to oxidizing agents has not been evaluated for NMSC, and results regarding DRC in NMSC are inconclusive. In the present study, we evaluated DNA damage and repair in leukocytes from 41 NMSC patients and 45 controls. The Comet assay was used to measure basal and H(2)O(2)-induced DNA damage, as well as the DRC, while the cytokinesis-block micronucleus assay was used to measure the basal level of chromosome damage. Although basal DNA damage was higher for the controls than for the patients, this finding was mainly due to sampling more controls in the summer, which was associated with longer comet tails. In contrast, H(2)O(2)-induced DNA damage was significantly higher in cases than in controls, and this parameter was not influenced by the season of the year. The DRC for the H(2)O(2)-induced damage was similar for cases and controls and unrelated to seasonality. Finally, the frequency of binucleated lymphocytes with micronuclei was similar for cases and controls. The results of this study indicate that NMSC patients are distinguished from controls by an increased sensitivity to oxidative DNA damage.

  20. Understanding and preventing mitochondrial oxidative damage

    PubMed Central

    Murphy, Michael P.

    2016-01-01

    Mitochondrial oxidative damage has long been known to contribute to damage in conditions such as ischaemia–reperfusion (IR) injury in heart attack. Over the past years, we have developed a series of mitochondria-targeted compounds designed to ameliorate or determine how this damage occurs. I will outline some of this work, from MitoQ to the mitochondria-targeted S-nitrosating agent, called MitoSNO, that we showed was effective in preventing reactive oxygen species (ROS) formation in IR injury with therapeutic implications. In addition, the protection by this compound suggested that ROS production in IR injury was mainly coming from complex I. This led us to investigate the mechanism of the ROS production and using a metabolomic approach, we found that the ROS production in IR injury came from the accumulation of succinate during ischaemia that then drove mitochondrial ROS production by reverse electron transport at complex I during reperfusion. This surprising mechanism led us to develop further new therapeutic approaches to have an impact on the damage that mitochondrial ROS do in pathology and also to explore how mitochondrial ROS can act as redox signals. I will discuss how these approaches have led to a better understanding of mitochondrial oxidative damage in pathology and also to the development of new therapeutic strategies. PMID:27911703

  1. Vascular tissue is the first site of damage in the TCDD-exposed fish embryo

    SciTech Connect

    Cantrell, S.; Tillitt, D.; Hannink, M.

    1995-12-31

    The planar halogenated hydrocarbons (PHHs) are a group of environmental contaminants that exert adverse biological effects in most vertebrate organisms. Embryonic development is the most sensitive life stage to the effects of these compounds. The reason for the enhanced sensitivity to PHHs during early life stages is unknown. To study TCDD-induced embryotoxicity, a fish species the medaka was the organism of choice. The authors localized the initial site of tissue damage in the developing embryo and investigated the mechanism of TCDD-induced tissue damage. There were three parts to this study, (1) observation of morphological anomalies in the TCDD-treated embryo, (2) immunohistochemical detection of DNA damage in the tissues of TCDD-treated embryos, and (3) test the ability of an antioxidant to delay the onset of initial tissue damage. Morphological observations show that the first visual lesions that occur in the TCDD treated embryo occur at stage 36, about day 6 post fertilization. The lesions are localized in the cardiac vasculature. Immunohistochemical staining, using the terminal nucleotide transferase assay (TdT-assay) which detects DNA damage showed that the initial site of tissue damage was in the vasculature in the cardiac region. Tissue damage was detected in neural tissue and muscle tissue at later time points. TCDD is known to induce oxidative stress in a variety of organisms, therefore; the authors tested to see if oxidative stress may play a role in TCDD-induced embryotoxicity. The TCDD-treated embryos were cultured in the antioxidant N-acetyl cysteine (NAC) and the morphological observations and TdT-assay were repeated. They found that NAC was able to delay the onset of tissue damage and NAC was able to reduce total mortality in the embryo. The results from this study indicate that the cardiac vasculature is the initial site of tissue damage.

  2. Endothelial perturbations and therapeutic strategies in normal tissue radiation damage.

    PubMed

    Korpela, Elina; Liu, Stanley K

    2014-12-18

    Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Radiotherapy side-effects diminish patients' quality of life, yet effective biological interventions for normal tissue damage are lacking. Protecting microvascular endothelial cells from the effects of irradiation is emerging as a targeted damage-reduction strategy. We illustrate the concept of the microvasculature as a mediator of overall normal tissue radiation toxicity through cell death, vascular inflammation (hemodynamic and molecular changes) and a change in functional capacity. Endothelial cell targeted therapies that protect against such endothelial cell perturbations and the development of acute normal tissue damage are mostly under preclinical development. Since acute radiation toxicity is a common clinical problem in cutaneous, gastrointestinal and mucosal tissues, we also focus on damage in these tissues.

  3. Coccidian Infection Causes Oxidative Damage in Greenfinches

    PubMed Central

    Sepp, Tuul; Karu, Ulvi; Blount, Jonathan D.; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2012-01-01

    The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant protection (TAC and OXY), plasma triglyceride and carotenoid levels or body mass, indicating that pathological consequences of infection were generally mild. Infected birds had on average 8% higher levels of plasma malondialdehyde (MDA, a toxic end-product of lipid peroxidation) than un-infected birds. The birds that had highest MDA levels subsequent to experimental infection experienced the highest decrease in infection intensity. This observation is consistent with the idea that oxidative stress is a causative agent in the control of coccidiosis and supports the concept of oxidative costs of immune responses and parasite resistance. The finding that oxidative damage accompanies even the mild infection with a common parasite highlights the relevance of oxidative stress biology for the immunoecological research. PMID:22615772

  4. Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model for Persistent Varicell-Zoster Virus Infection and Platform to Study Viral Infectivity and Oxidative Stress and Damage

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpesvirus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex threedimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6].

  5. How tissue damage MET metabolism: Regulation of the systemic damage response

    PubMed Central

    Kashio, Soshiro; Obata, Fumiaki; Miura, Masayuki

    2017-01-01

    ABSTRACT Living organisms experience tissue damage from both, the surrounding environment and from inside their bodies. Tissue repair/regeneration is triggered by local tissue injury to restore an injured, or lost, part of the body. Tissue damage results in a series of responses, not only locally but also systemically in distant tissues. In our recent publication, we established a “dual system” that induces spatiotemporal tissue damage simultaneously with gene manipulation in surrounding tissues. With this system, we demonstrated that appropriate regulation of methionine metabolism in the fat body is required for tissue repair in Drosophila wing discs, thus highlighting the importance of systemic damage response (SDR) in tissue repair. This “Extra View” aims to discuss our recent reports that propose methionine metabolism to be an essential part of SDR, together with related topics in several model organisms. PMID:27562340

  6. Oxidative Damage in Parkinson’s Disease

    DTIC Science & Technology

    2001-10-01

    of Parkinson’s Disease and the MPTP model of Parkinsonism. In the past year, we have developed a novel column switching assay for measurement of...oxidative damage to DNA in human body fluids. We have applied to this plasma samples of Parkinson’s Disease patients. We have also developed a novel...methodology. We have found a relatively high mutation rate and control samples and intend to apply this to Parkinson’s Disease . We have continued our

  7. Inflammation, oxidative DNA damage, and carcinogenesis

    SciTech Connect

    Lewis, J.G.; Adams, D.O.

    1987-12-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is though that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. The authors and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H/sub 2/O/sub 2/ and oxidized lipid products. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin that C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H/sub 2/O/sub 2/ and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice. These data support the hypothesis that inflammation and the release of genotoxic oxidants may be one mechanism whereby initiated cells receive further genetic insults. They also further complicate risk assessment by suggesting that some environmental agents may work indirectly by subverting host systems to induce damage rather than maintaining homeostasis.

  8. Inflammation, oxidative DNA damage, and carcinogenesis.

    PubMed Central

    Lewis, J G; Adams, D O

    1987-01-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is thought that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. Many studies support the multistep nature of carcinogenesis, and a significant amount of evidence indicates that more than one genetic event is necessary for neoplastic transformation. Selective growth stimulation of initiated cells by TPA does not explain how further genetic events may occur by chronic exposure to this nongenotoxic agent. We and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H2O2 and oxidized lipid products. Furthermore, macrophage populations that release both H2O2 and metabolites of arachidonic acid (AA) are more efficient at inducing oxidative DNA damage in surrounding cells than populations which only release H2O2 or metabolites of AA. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin than C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H2O2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 8. A FIGURE 8. B PMID:3129286

  9. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  10. Oxidant damage during and after spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.

    2000-01-01

    The objectives of this study were to assess oxidant damage during and after spaceflight and to compare the results against bed rest with 6 degrees head-down tilt. We measured the urinary excretion of the F(2) isoprostane, 8-iso-prostaglandin (PG) F(2alpha), and 8-oxo-7,8-dihydro-2 deoxyguanosine (8-OH DG) before, during, and after long-duration spaceflight (4-9 mo) on the Russian space station MIR, short-duration spaceflight on the shuttle, and 17 days of bed rest. Sample collections on MIR were obtained between 88 and 186 days in orbit. 8-iso-PGF(2alpha) and 8-OH DG are markers for oxidative damage to membrane lipids and DNA, respectively. Data are mean +/- SE. On MIR, isoprostane levels were decreased inflight (96. 9 +/- 11.6 vs. 76.7 +/- 14.9 ng. kg(-1). day(-1), P < 0.05, n = 6) due to decreased dietary intake secondary to impaired thermoregulation. Isoprostane excretion was increased postflight (245.7 +/- 55.8 ng. kg(-1). day(-1), P < 0.01). 8-OH DG excretion was unchanged with spaceflight and increased postflight (269 +/- 84 vs 442 +/- 180 ng. kg(-1). day(-1), P < 0.05). On the shuttle, 8-OH DG excretion was unchanged in- and postflight, but 8-iso-PGF(2alpha) excretion was decreased inflight (15.6 +/- 4.3 vs 8.0 +/- 2.7 ng. kg(-1). day(-1), P < 0.05). No changes were found with bed rest, but 8-iso-PGF(2alpha) was increased during the recovery phase (48.9 +/- 23.0 vs 65.4 +/- 28.3 ng. kg(-1). day(-1), P < 0.05). The changes in isoprostane production were attributed to decreased production of oxygen radicals from the electron transport chain due to the reduced energy intake inflight. The postflight increases in the excretion of the products of oxidative damage were attributed to a combination of an increase in metabolic activity and the loss of some host antioxidant defenses inflight. We conclude that 1) oxidative damage was decreased inflight, and 2) oxidative damage was increased postflight.

  11. Oxidant damage during and after spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.

    2000-01-01

    The objectives of this study were to assess oxidant damage during and after spaceflight and to compare the results against bed rest with 6 degrees head-down tilt. We measured the urinary excretion of the F(2) isoprostane, 8-iso-prostaglandin (PG) F(2alpha), and 8-oxo-7,8-dihydro-2 deoxyguanosine (8-OH DG) before, during, and after long-duration spaceflight (4-9 mo) on the Russian space station MIR, short-duration spaceflight on the shuttle, and 17 days of bed rest. Sample collections on MIR were obtained between 88 and 186 days in orbit. 8-iso-PGF(2alpha) and 8-OH DG are markers for oxidative damage to membrane lipids and DNA, respectively. Data are mean +/- SE. On MIR, isoprostane levels were decreased inflight (96. 9 +/- 11.6 vs. 76.7 +/- 14.9 ng. kg(-1). day(-1), P < 0.05, n = 6) due to decreased dietary intake secondary to impaired thermoregulation. Isoprostane excretion was increased postflight (245.7 +/- 55.8 ng. kg(-1). day(-1), P < 0.01). 8-OH DG excretion was unchanged with spaceflight and increased postflight (269 +/- 84 vs 442 +/- 180 ng. kg(-1). day(-1), P < 0.05). On the shuttle, 8-OH DG excretion was unchanged in- and postflight, but 8-iso-PGF(2alpha) excretion was decreased inflight (15.6 +/- 4.3 vs 8.0 +/- 2.7 ng. kg(-1). day(-1), P < 0.05). No changes were found with bed rest, but 8-iso-PGF(2alpha) was increased during the recovery phase (48.9 +/- 23.0 vs 65.4 +/- 28.3 ng. kg(-1). day(-1), P < 0.05). The changes in isoprostane production were attributed to decreased production of oxygen radicals from the electron transport chain due to the reduced energy intake inflight. The postflight increases in the excretion of the products of oxidative damage were attributed to a combination of an increase in metabolic activity and the loss of some host antioxidant defenses inflight. We conclude that 1) oxidative damage was decreased inflight, and 2) oxidative damage was increased postflight.

  12. Oxidative and non-oxidative DNA damage and cardiovascular disease.

    PubMed

    Malik, Qudsia; Herbert, Karl E

    2012-04-01

    Evidence for the association of DNA damage with cardiovascular disease has been obtained from in vitro cell culture models, experimental cardiovascular disease and analysis of samples obtained from humans with disease. There is general acceptance that several factors associated with the risk of developing cardiovascular disease cause oxidative damage to DNA in cell culture models with both nuclear and mitochondrial DNA as targets. Moreover, evidence obtained over the past 10 years points to a possible mechanistic role for DNA damage in experimental atherosclerosis culminating in recent studies challenging the assumption that DNA damage is merely a biomarker of the disease process. This kind of mechanistic insight provides a renewed impetus for further studies in this area.

  13. Bee Products Prevent Agrichemical-Induced Oxidative Damage in Fish

    PubMed Central

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; Santos da Rosa, João Gabriel; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased. PMID:24098336

  14. Bee products prevent agrichemical-induced oxidative damage in fish.

    PubMed

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; da Rosa, João Gabriel Santos; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.

  15. Plasmalogen phospholipids protect internodal myelin from oxidative damage.

    PubMed

    Luoma, Adrienne M; Kuo, Fonghsu; Cakici, Ozgur; Crowther, Michelle N; Denninger, Andrew R; Avila, Robin L; Brites, Pedro; Kirschner, Daniel A

    2015-07-01

    Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin, whole sciatic and optic nerves were incubated ex vivo with a hydroxyl radical-generating system consisting of copper (Cu), hydrogen peroxide (HP), and ortho-phenanthroline (OP). Quantitative assessment of unfixed tissue by X-ray diffraction revealed irreversible compaction of myelin membrane stacking in both sciatic and optic nerves. Incubation in the presence of the hydroxyl radical scavenger sodium formate prevented this damage, implicating hydroxyl radical species. Myelin membranes are particularly enriched in plasmalogens, a class of ether-linked phospholipids proposed to have antioxidant properties. Myelin in sciatic nerve from plasmalogen-deficient (Pex7 knockout) mice was significantly more vulnerable to Cu/OP/HP-mediated ROS-induced compaction than myelin from WT mice. Our results directly support the role of plasmalogens as endogenous antioxidants providing a defense that protects ROS-vulnerable myelin. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Oxidative damage in multiple sclerosis lesions.

    PubMed

    Haider, Lukas; Fischer, Marie T; Frischer, Josa M; Bauer, Jan; Höftberger, Romana; Botond, Gergö; Esterbauer, Harald; Binder, Christoph J; Witztum, Joseph L; Lassmann, Hans

    2011-07-01

    Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are currently poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Since mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, we analysed by immunocytochemistry the presence and cellular location of oxidized lipids and oxidized DNA in lesions and in normal-appearing white matter of 30 patients with multiple sclerosis and 24 control patients without neurological disease or brain lesions. As reported before in biochemical studies, oxidized lipids and DNA were highly enriched in active multiple sclerosis plaques, predominantly in areas that are defined as initial or 'prephagocytic' lesions. Oxidized DNA was mainly seen in oligodendrocyte nuclei, which in part showed signs of apoptosis. In addition, a small number of reactive astrocytes revealed nuclear expression of 8-hydroxy-d-guanosine. Similarly, lipid peroxidation-derived structures (malondialdehyde and oxidized phospholipid epitopes) were seen in the cytoplasm of oligodendrocytes and some astrocytes. In addition, oxidized phospholipids were massively accumulated in a fraction of axonal spheroids with disturbed fast axonal transport as well as in neurons within grey matter lesions. Neurons stained for oxidized phospholipids frequently revealed signs of degeneration with fragmentation of their dendritic processes. The extent of lipid and DNA oxidation correlated significantly with inflammation, determined by the number of CD3 positive T cells and human leucocyte antigen-D expressing macrophages and microglia in the lesions. Our data suggest profound oxidative injury of oligodendrocytes and neurons to be associated with active demyelination and axonal or neuronal injury in multiple sclerosis.

  17. Large-brained birds suffer less oxidative damage.

    PubMed

    Vágási, C I; Vincze, O; Pătraş, L; Osváth, G; Marton, A; Bărbos, L; Sol, D; Pap, P L

    2016-10-01

    Large brains (relative to body size) might confer fitness benefits to animals. Although the putative costs of well-developed brains can constrain the majority of species to modest brain sizes, these costs are still poorly understood. Given that the neural tissue is energetically expensive and demands antioxidants, one potential cost of developing and maintaining large brains is increased oxidative stress ('oxidation exposure' hypothesis). Alternatively, because large-brained species exhibit slow-paced life histories, they are expected to invest more into self-maintenance such as an efficacious antioxidative defence machinery ('oxidation avoidance' hypothesis). We predict decreased antioxidant levels and/or increased oxidative damage in large-brained species in case of oxidation exposure, and the contrary in case of oxidation avoidance. We address these contrasting hypotheses for the first time by means of a phylogenetic comparative approach based on an unprecedented data set of four redox state markers from 85 European bird species. Large-brained birds suffered less oxidative damage to lipids (measured as malondialdehyde levels) and exhibited higher total nonenzymatic antioxidant capacity than small-brained birds, whereas uric acid and glutathione levels were independent of brain size. These results were not altered by potentially confounding variables and did not depend on how relative brain size was quantified. Our findings partially support the 'oxidation avoidance' hypothesis and provide a physiological explanation for the linkage of large brains with slow-paced life histories: reduced oxidative stress of large-brained birds can secure brain functionality and healthy life span, which are integral to their lifetime fitness and slow-paced life history. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  18. DNA Damage in Plant Herbarium Tissue

    PubMed Central

    Staats, Martijn; Cuenca, Argelia; Richardson, James E.; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4–3.8% of fresh control DNA and 1.0–1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens. PMID:22163018

  19. Profiling oxidative DNA damage: effects of antioxidants.

    PubMed

    Box, Harold C; Patrzyc, Helen B; Budzinski, Edwin E; Dawidzik, Jean B; Freund, Harold G; Zeitouni, Nathalie C; Mahoney, Martin C

    2012-11-01

    The goal of this research was to determine whether antioxidant usage could be correlated with changes in DNA damage levels. Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) was used to simultaneously measure five different oxidatively-induced base modifications in the DNA of WBC. Measurements of the five modifications were made before and after an 8-week trial during which participants took the SU.VI.MAX supplement. Levels of the five DNA modifications were compared among different groupings: users versus non-users of antioxidant supplements, before versus after the supplement intervention and men versus women. The statistical significance of differences between groups was most significant for pyrimidine base modifications and the observed trends reflect trends reported in epidemiological studies of antioxidant usage. A combination of modifications derived from pyrimidine bases is suggested as a superior indicator of oxidative stress.

  20. Three-Dimensional Normal Human Neutral Progenitor Tissue-Like Assemblies: A Model for Persistent Varicella-Zoster Virus Infection and Platform to Study Oxidate Stress and Damage in Multiple Hit Scenarios

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpes virus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex three-dimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6]. By combining the RFs of microgravity, radiation, and viral infection we will demonstrate that living in the space environment leads to significant physiological consequences for the peripheral and subsequently the central nervous system (PNS, CNS) associated with OSaD generation and consequentially endangers long-duration and exploration-class missions.

  1. Therapeutic effects of an oral chelator targeting skeletal tissue damage in experimental postmenopausal osteoporosis in rats.

    PubMed

    Liu, Gang; Men, Ping; Kenner, Gerry H; Miller, Scott C

    2008-01-01

    Earlier studies revealed that age-associated iron accumulation plays an important causal role in osteopenic development after estrogen deficiency. It is believed that an increase in iron content is associated with an increased likelihood of oxidative damage at the point of iron accumulation. However, there is no direct evidence that the iron accumulated in skeletal tissue causes free radical oxidative damage and consequent bone loss. Iron depletion from skeletal tissues of ovariectomized (OVX) rats was carried out with the oral chelator [1-N-docosyl-triethylenetetraminepentaacetic acid (DoTTPA)]. Results suggest the causal role of iron in oxidative damage that may lead to bone loss in the rats. The results also show the therapeutic potential of the bone-targeted chelator to protect against bone loss associated with age-iron accumulation as well as iron overload diseases.

  2. Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2017-01-01

    Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007

  3. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we

  4. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    PubMed Central

    Colombo, N.B.R.; Rangel, M.P.; Martins, V.; Hage, M.; Gelain, D.P.; Barbeiro, D.F.; Grisolia, C.K.; Parra, E.R.; Capelozzi, V.L.

    2015-01-01

    The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress. PMID:26200231

  5. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    PubMed

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-06

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  6. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering

    PubMed Central

    Nims, Robert J.; Durney, Krista M.; Cigan, Alexander D.; Hung, Clark T.; Ateshian, Gerard A.

    2016-01-01

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process. PMID:26855751

  7. Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy.

    PubMed

    Fourcade, Stéphane; López-Erauskin, Jone; Galino, Jorge; Duval, Carine; Naudi, Alba; Jove, Mariona; Kemp, Stephan; Villarroya, Francesc; Ferrer, Isidre; Pamplona, Reinald; Portero-Otin, Manuel; Pujol, Aurora

    2008-06-15

    X-linked adrenoleukodystrophy (X-ALD) is a fatal neurodegenerative disorder, characterized by progressive cerebral demyelination cerebral childhood adrenoleukodystrophy (CCALD) or spinal cord neurodegeneration (adrenomyeloneuropathy, AMN), adrenal insufficiency and accumulation of very long-chain fatty acids (VLCFA) in tissues. The disease is caused by mutations in the ABCD1 gene, which encodes a peroxisomal transporter that plays a role in the import of VLCFA or VLCFA-CoA into peroxisomes. The Abcd1 knockout mice develop a spinal cord disease that mimics AMN in adult patients, with late onset at 20 months of age. The mechanisms underlying cerebral demyelination or axonal degeneration in spinal cord are unknown. Here, we present evidence by gas chromatography/mass spectrometry that malonaldehyde-lysine, a consequence of lipoxidative damage to proteins, accumulates in the spinal cord of Abcd1 knockout mice as early as 3.5 months of age. At 12 months, Abcd1- mice accumulate additional proteins modified by oxidative damage arising from metal-catalyzed oxidation and glycoxidation/lipoxidation. While we show that VLCFA excess activates enzymatic antioxidant defenses at the protein expression levels, both in neural tissue, in ex vivo organotypic spinal cord slices from Abcd1- mice, and in human ALD fibroblasts, we also demonstrate that the loss of Abcd1 gene function hampers oxidative stress homeostasis. We find that the alpha-tocopherol analog Trolox is able to reverse oxidative lesions in vitro, thus providing therapeutic hope. These results pave the way for the identification of therapeutic targets that could reverse the deregulated response to oxidative stress in X-ALD.

  8. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    PubMed

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  9. Peripheral endothelial cell damage after trephination of donor tissue.

    PubMed

    Terry, Mark A; Saad, Hisham A; Shamie, Neda; Shah, Anand K

    2009-12-01

    To evaluate and quantify the degree and pattern of donor endothelial cell damage, which occurs with mechanical trephination of donor corneal tissue. Twenty donor corneal-scleral tissues were used for these paired experiments. The tissues were randomized for trephination with 10 tissues trephinated by an 8.0-mm-diameter Barron trephine (Katena, Denville, NJ), and 10 tissues trephinated with an 8.0-mm-diameter UltraFit Coronet trephine (distributed by Angiotech, British Columbia, Canada) by the same investigator. Trephinated corneal buttons were then stained with vital dye stain, and the endothelial layer image captured with digital photography. The images were then analyzed by digital planimetry, and the pattern and quantity of endothelial damage was determined by an investigator who was masked to the specific trephine used for the individual tissue. Trephination created a pattern of circular damage at the edge of the donor button in every case with no break in continuity of the circle, but some portions of the circle were wider than others. Occasional, scattered, peripheral small areas also displayed damage, but no significant striae, stretch, or other central damage was noted in any donor. The mean percent damage in the series was 6.35% +/- 0.90% (range: 4.33%-7.78%). The UltraFit Coronet trephinations averaged damage of 5.64% +/- 0.85% (range: 4.33%-6.69%), and the Barron trephinations averaged damage of 6.50% +/- 0.95% (range: 4.92%-7.78%). Although 8 of 10 experimental pairs of trephinations demonstrated less peripheral endothelial damage with the UltraFit Coronet trephine, the mean damage between each group did not reach statistical significance in this small series. (P = 0.08) Donor mechanical trephination of full-thickness corneal tissue creates relatively consistent amounts of peripheral edge damage and likely no central endothelial damage. There may exist differences in edge damage between different mechanical trephination systems, and a direct comparison

  10. Perinatal tobacco smoke exposure increases vascular oxidative stress and mitochondrial damage in non-human primates.

    PubMed

    Westbrook, David G; Anderson, Peter G; Pinkerton, Kent E; Ballinger, Scott W

    2010-09-01

    Epidemiological studies suggest that events occurring during fetal and early childhood development influence disease susceptibility. Similarly, molecular studies in mice have shown that in utero exposure to cardiovascular disease (CVD) risk factors such as environmental tobacco smoke (ETS) increased adult atherogenic susceptibility and mitochondrial damage; however, the molecular effects of similar exposures in primates are not yet known. To determine whether perinatal ETS exposure increased mitochondrial damage, dysfunction and oxidant stress in primates, archived tissues from the non-human primate model Macaca mulatta (M. mulatta) were utilized. M. mulatta were exposed to low levels of ETS (1 mg/m(3) total suspended particulates) from gestation (day 40) to early childhood (1 year), and aortic tissues were assessed for oxidized proteins (protein carbonyls), antioxidant activity (SOD), mitochondrial function (cytochrome oxidase), and mitochondrial damage (mitochondrial DNA damage). Results revealed that perinatal ETS exposure resulted in significantly increased oxidative stress, mitochondrial dysfunction and damage which were accompanied by significantly decreased mitochondrial antioxidant capacity and mitochondrial copy number in vascular tissue. Increased mitochondrial damage was also detected in buffy coat tissues in exposed M. mulatta. These studies suggest that perinatal tobacco smoke exposure increases vascular oxidative stress and mitochondrial damage in primates, potentially increasing adult disease susceptibility.

  11. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    PubMed Central

    Suntres, Zacharias E.

    2011-01-01

    Reactive oxygen species (ROS), including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. PMID:21876690

  12. Oxidative Damage in the Aging Heart: an Experimental Rat Model

    PubMed Central

    Marques, Gustavo Lenci; Neto, Francisco Filipak; Ribeiro, Ciro Alberto de Oliveira; Liebel, Samuel; de Fraga, Rogério; Bueno, Ronaldo da Rocha Loures

    2015-01-01

    Introduction: Several theories have been proposed to explain the cause of ‘aging’; however, the factors that affect this complex process are still poorly understood. Of these theories, the accumulation of oxidative damage over time is among the most accepted. Particularly, the heart is one of the most affected organs by oxidative stress. The current study, therefore, aimed to investigate oxidative stress markers in myocardial tissue of rats at different ages. Methods: Seventy-two rats were distributed into 6 groups of 12 animals each and maintained for 3, 6, 9, 12, 18 and 24 months. After euthanasia, the heart was removed and the levels of non-protein thiols, lipid peroxidation, and protein carbonylation, as well as superoxide dismutase and catalase activities were determined. Results: Superoxide dismutase, catalase activity and lipid peroxidation were reduced in the older groups of animals, when compared with the younger group. However, protein carbonylation showed an increase in the 12-month group followed by a decrease in the older groups. In addition, the levels of non-protein thiols were increased in the 12-month group and not detected in the older groups. Conclusion: Our data showed that oxidative stress is not associated with aging in the heart. However, an increase in non-protein thiols may be an important factor that compensates for the decrease of superoxide dismutase and catalase activity in the oldest rats, to maintain appropriate antioxidant defenses against oxidative insults. PMID:27006709

  13. Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative damage.

    PubMed

    Montgomery, Magdalene K; Buttemer, William A; Hulbert, A J

    2012-03-01

    The oxidative damage hypothesis of aging posits that the accumulation of oxidative damage is a determinant of an animal species' maximum lifespan potential (MLSP). Recent findings in extremely long-living mammal species such as naked mole-rats challenge this proposition. Among birds, parrots are exceptionally long-living with an average MLSP of 25 years, and with some species living more than 70 years. By contrast, quail are among the shortest living bird species, averaging about 5-fold lower MLSP than parrots. To test if parrots have correspondingly (i) superior antioxidant protection and (ii) lower levels of oxidative damage compared to similar-sized quail, we measured (i) total antioxidant capacity, uric acid and reduced glutathione (GSH) levels, as well as the activities of enzymatic antioxidants (superoxide dismutase, glutathione peroxidase and catalase), and (ii) markers of mitochondrial DNA damage (8-OHdG), protein damage (protein carbonyls) and lipid peroxidation (lipid hydroperoxides and TBARS) in three species of long-living parrots and compared these results to corresponding measures in two species of short-living quails (average MLSP=5.5 years). All birds were fed the same diet to exclude differences in dietary antioxidant levels. Tissue antioxidants and oxidative damage were determined both 'per mg protein' and 'per g tissue'. Only glutathione peroxidase was consistently higher in tissues of the long-living parrots and suggests higher protection against the harmful effects of hydroperoxides, which might be important for parrot longevity. The levels of oxidative damage were mostly statistically indistinguishable between parrots and quails (67%), occasionally higher (25%), but rarely lower (8%) in the parrots. Despite indications of higher protection against some aspects of oxidative stress in the parrots, the pronounced longevity of parrots appears to be independent of their antioxidant mechanisms and their accumulation of oxidative damage.

  14. DNA damage in Fabry patients: An investigation of oxidative damage and repair.

    PubMed

    Biancini, Giovana Brondani; Moura, Dinara Jaqueline; Manini, Paula Regina; Faverzani, Jéssica Lamberty; Netto, Cristina Brinckmann Oliveira; Deon, Marion; Giugliani, Roberto; Saffi, Jenifer; Vargas, Carmen Regla

    2015-06-01

    Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels.

  15. Oxidatively induced DNA damage and its repair in cancer.

    PubMed

    Dizdaroglu, Miral

    2015-01-01

    Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.

  16. Roles of oxidative stress in synchrotron radiation X-ray-induced testicular damage of rodents

    PubMed Central

    Ma, Yingxin; Nie, Hui; Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Shao, Jiaxiang; He, Xin; Zhang, Tingting; Zheng, Chaobo; Xia, Weiliang; Ying, Weihai

    2012-01-01

    Synchrotron radiation (SR) X-ray has characteristic properties such as coherence and high photon flux, which has excellent potential for its applications in medical imaging and cancer treatment. However, there is little information regarding the mechanisms underlying the damaging effects of SR X-ray on biological tissues. Oxidative stress plays an important role in the tissue damage induced by conventional X-ray, while the role of oxidative stress in the tissue injury induced by SR X-ray remains unknown. In this study we used the male gonads of rats as a model to study the roles of oxidative stress in SR X-ray-induced tissue damage. Exposures of the testes to SR X-ray at various radiation doses did not significantly increase the lipid peroxidation of the tissues, assessed at one day after the irradiation. No significant decreases in the levels of GSH or total antioxidation capacity were found in the SR X-ray-irradiated testes. However, the SR X-ray at 40 Gy induced a marked increase in phosphorylated H2AX – a marker of double-strand DNA damage, which was significantly decreased by the antioxidant N-acetyl cysteine (NAC). NAC also attenuated the SR X-ray-induced decreases in the cell layer number of seminiferous tubules. Collectively, our observations have provided the first characterization of SR X-ray-induced oxidative damage of biological tissues: SR X-ray at high doses can induce DNA damage and certain tissue damage during the acute phase of the irradiation, at least partially by generating oxidative stress. However, SR X-ray of various radiation doses did not increase lipid peroxidation. PMID:22837810

  17. Type-dependent oxidative damage in frontotemporal lobar degeneration: cortical astrocytes are targets of oxidative damage.

    PubMed

    Martínez, Anna; Carmona, Margarita; Portero-Otin, Manuel; Naudí, Alba; Pamplona, Reinald; Ferrer, Isidre

    2008-12-01

    Oxidative injury and stress responses are common features of many neurodegenerative diseases. To assess oxidative stress responses in frontotemporal lobar degeneration (FTLD), we identified increased 4-hydroxynonenal (HNE) adducts using gel electrophoresis and Western blotting in frontal cortex samples in 6 of 6 cases of FTLD with the P301L mutation in the tau gene (FTLD-tau), in 3 of 10 cases with tau-negative ubiquitin-immunoreactive inclusions, and in 2 of 3 cases associated with motor neuron disease. Selectively increased lipoxidation-derived protein damage associated with altered membrane unsaturation and fatty acid profiles was verified by mass spectrometry in FTLD-tau and FTLD associated with motor neuron disease. All FTLD-tau and most cases with increased HNE-positive bands had marked astrocytosis as determined by glial fibrillary acidic protein (GFAP) immunohistochemistry and increased GFAP expression on Western blotting; 2 FTLD cases with tau-negative ubiquitin-immunoreactive inclusions and with increased GFAP expression did not have increased HNE adducts. Bidimensional gel electrophoresis, Western blotting, in-gel digestion, and mass spectrometry identified GFAP as a major target of lipoxidation in all positive cases; confocal microscopy revealed colocalization of HNE and GFAP in cortical astrocytes, superoxide dismutase 1 in astrocytes, and superoxide dismutase 2 in astrocytes and neurons in all FTLD types. Thus, in FTLD, there is variable disease-dependent oxidative damage that is prominent in FTLD-tau, astrocytes are targets of oxidative damage, and GFAP is a target of lipoxidation. Astrocytes are, therefore, crucial elements of oxidative stress responses in FTLD.

  18. [Scanning electron microscopy of heat-damaged bone tissue].

    PubMed

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  19. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  20. Damage mechanisms for ultrasound-induced cavitation in tissue

    NASA Astrophysics Data System (ADS)

    Warnez, M.; Vlaisavljevich, E.; Xu, Z.; Johnsen, E.

    2017-03-01

    In a variety of biomedical applications, cavitation occurs in soft tissue. Although significant amounts of research have been performed on cavitation in water, bubble dynamics, and related bioeffects remain poorly understood. We use numerical simulations of spherical bubble dynamics in soft tissue to assess the extent to which viscoelasticity affects "known" and introduces "new" damage mechanisms. We find that deviatoric stresses - although not an important damage mechanism in water - are significantly enhanced and could be an important bioeffect mechanism in tissue. Both the viscoelastic properties and the nonlinear, large-collapse radius contribute to stress amplification in the surroundings. In addition, temperatures in the surrounding medium increase more in the Zener tissue than in water, due to viscous heating.

  1. Thresholds for thermal damage to normal tissues: An update

    PubMed Central

    Yarmolenko, Pavel S.; Moon, Eui Jung; Landon, Chelsea; Manzoor, Ashley; Hochman, Daryl W.; Viglianti, Benjamin L.; Dewhirst, Mark W.

    2013-01-01

    The purpose of this review is to summarise a literature survey on thermal thresholds for tissue damage. This review covers published literature for the consecutive years from 2002–2009. The first review on this subject was published in 2003. It included an extensive discussion of how to use thermal dosimetric principles to normalise all time-temperature data histories to a common format. This review utilises those same principles to address sensitivity of a variety of tissues, but with particular emphasis on brain and testis. The review includes new data on tissues that were not included in the original review. Several important observations have come from this review. First, a large proportion of the papers examined for this review were discarded because time–temperature history at the site of thermal damage assessment was not recorded. It is strongly recommended that future research on this subject include such data. Second, very little data is available examining chronic consequences of thermal exposure. On a related point, the time of assessment of damage after exposure is critically important for assessing whether damage is transient or permanent. Additionally, virtually no data are available for repeated thermal exposures which may occur in certain recreational or occupational activities. For purposes of regulatory guidelines, both acute and lasting effects of thermal damage should be considered. PMID:21591897

  2. Tissue Plasminogen Activator Reduces Neurological Damage after Cerebral Embolism

    NASA Astrophysics Data System (ADS)

    Zivin, Justin A.; Fisher, Marc; Degirolami, Umberto; Hemenway, Carl C.; Stashak, Joan A.

    1985-12-01

    Intravenous administration of tissue plasminogen activator immediately after the injection of numerous small blood clots into the carotid circulation in rabbit embolic stroke model animals caused a significant reduction in neurological damage. In vitro studies indicate that tissue plasminogen activator produced substantial lysis of clots at concentrations comparable to those expected in vivo, suggesting that this may be the mechanism of action of this drug. Drug-induced hemorrhages were not demonstrable. Tissue plasminogen activator may be of value for the immediate treatment of embolic stroke.

  3. High-Temperature Oxide Regrowth on Mechanically-Damaged Surfaces

    SciTech Connect

    Blau, Peter Julian; Lowe, Tracie M

    2008-01-01

    Here we report the effects of mechanical damage from a sharp stylus on the regrowth of oxide layers on a Ni-based superalloy known as Pyromet 80A . It was found that the oxide that reformed on the damaged portion of a pre-oxidized surface differed from that which formed on undamaged areas after the equal exposures to elevated temperature in air. These findings have broad implications for modeling the processes of material degradation in applications such as exhaust valves in internal combustion engines because they imply that static oxidation data for candidate materials may not adequately reflect their reaction to operating environments that involve both mechanical contact and oxidation.

  4. Induction of oxidative stress and oxidative damage in rat glial cells by acrylonitrile.

    PubMed

    Kamendulis, L M; Jiang, J; Xu, Y; Klaunig, J E

    1999-08-01

    Chronic treatment of rats with acrylonitrile (ACN) resulted in a dose-related increase in glial cell tumors (astrocytomas). While the exact mechanism(s) for ACN-induced carcinogenicity remains unresolved, non-genotoxic and possibly tumor promotion modes of action appear to be involved in the induction of glial tumors. Recent studies have shown that ACN induced oxidative stress selectively in rat brain in a dose-responsive manner. The present study examined the ability of ACN to induce oxidative stress in a rat glial cell line, a target tissue, and in cultured rat hepatocytes, a non-target tissue of ACN carcinogenicity. Glial cells and hepatocytes were treated for 1, 4 and 24 h with sublethal concentrations of ACN. ACN induced an increase in oxidative DNA damage, as evidenced by increased production of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in glial cells but not in rat hepatocytes. Hydroxyl radical formation following ACN treatment was also selectively increased in glial cells. Following 1 and 4 h of ACN exposure, the levels of the non-enzymatic antioxidant glutathione, as well as the activities of the enzymatic antioxidants catalase and superoxide dismutase were significantly decreased in the rat glial cells. Lipid peroxidation and the activity of glutathione peroxidase were not affected by ACN treatment in rat glial cells. No changes in any of these biomarkers of oxidative stress were observed in hepatocytes treated with ACN. These data indicate that ACN selectively induced oxidative stress in rat glial cells.

  5. Oxidative DNA damage during night shift work.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2017-09-01

    We previously reported that compared with night sleep, day sleep among shift workers was associated with reduced urinary excretion of 8-hydroxydeoxyguanosine (8-OH-dG), potentially reflecting a reduced ability to repair 8-OH-dG lesions in DNA. We identified the absence of melatonin during day sleep as the likely causative factor. We now investigate whether night work is also associated with reduced urinary excretion of 8-OH-dG. For this cross-sectional study, 50 shift workers with the largest negative differences in night work versus night sleep circulating melatonin levels (measured as 6-sulfatoxymelatonin in urine) were selected from among the 223 shift workers included in our previous study. 8-OH-dG concentrations were measured in stored urine samples using high performance liquid chromatography with electrochemical detection. Mixed effects models were used to compare night work versus night sleep 8-OH-dG levels. Circulating melatonin levels during night work (mean=17.1 ng/mg creatinine/mg creatinine) were much lower than during night sleep (mean=51.7 ng/mg creatinine). In adjusted analyses, average urinary 8-OH-dG levels during the night work period were only 20% of those observed during the night sleep period (95% CI 10% to 30%; p<0.001). This study suggests that night work, relative to night sleep, is associated with reduced repair of 8-OH-dG lesions in DNA and that the effect is likely driven by melatonin suppression occurring during night work relative to night sleep. If confirmed, future studies should evaluate melatonin supplementation as a means to restore oxidative DNA damage repair capacity among shift workers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Oxidative damage and redox in Lysosomal Storage Disorders: Biochemical markers.

    PubMed

    Donida, Bruna; Jacques, Carlos Eduardo Diaz; Mescka, Caroline Paula; Rodrigues, Daiane Grigolo Bardemaker; Marchetti, Desirèe Padilha; Ribas, Graziela; Giugliani, Roberto; Vargas, Carmen Regla

    2017-03-01

    Lysosomal Storage Disorders (LSD) comprise a heterogeneous group of >50 genetic disorders caused by mutations in genes that encode lysosomal enzymes, transport proteins or other gene products essential for a functional lysosomal system. As a result, abnormal accumulation of substrates within the lysosome leads to a progressive cellular impairment and dysfunction of numerous organs and systems. The exact mechanisms underlying the pathophysiology of LSD remain obscure. Previous studies proposed a relationship between oxidative stress and the pathogenesis of several inborn errors of metabolism, including LSD. Considering these points, in this paper it was reviewed oxidative stress and emerging antioxidant therapy in LSD, emphasizing studies with biological samples from patients affected by this group of conditions. These studies allow presuming that metabolites accumulated in LSD cause an increase of lysosomes' number and size, which may induce excessive production of reactive species and/or deplete the tissue antioxidant capacity, leading to damage in biomolecules. In vitro and in vivo evidence showed that cell oxidative process occurs in LSD and probably contributes to the pathophysiology of these disorders. In this context, it is possible to suggest that, in the future, antioxidants could come to be used as adjuvant therapy for LSD patients.

  7. Oxidative damage and cellular defense mechanisms in sea urchin models of aging.

    PubMed

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-10-01

    The free radical, or oxidative stress, theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging because of the existence of species with tremendously different natural life spans, including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity, and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus, and Strongylocentrotus purpuratus, which has an intermediate life span. Levels of protein carbonyls and 4-hydroxynonenal measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2'-deoxyguanosine measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age pigment lipofuscin, measured in muscle, nerve, and esophagus, increased with age; however, it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species; however, further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age, and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage.

  8. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    PubMed Central

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  9. Pathophysiology of Bronchoconstriction: Role of Oxidatively Damaged DNA Repair

    PubMed Central

    Bacsi, Attila; Pan, Lang; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Purpose of review To provide an overview on the present understanding of roles of oxidative DNA damage repair in cell signaling underlying bronchoconstriction common to, but not restricted to various forms of asthma and chronic obstructive pulmonary disease Recent findings Bronchoconstriction is a tightening of smooth muscle surrounding the bronchi and bronchioles with consequent wheezing and shortness of breath. Key stimuli include air pollutants, viral infections, allergens, thermal and osmotic changes, and shear stress of mucosal epithelium, triggering a wide range of cellular, vascular and neural events. Although activation of nerve fibers, the role of G-proteins, protein kinases and Ca++, and molecular interaction within contracting filaments of muscle are well defined, the overarching mechanisms by which a wide range of stimuli initiate these events are not fully understood. Many, if not all, stimuli increase levels of reactive oxygen species (ROS), which are signaling and oxidatively modifying macromolecules, including DNA. The primary ROS target in DNA is guanine, and 8-oxoguanine is one of the most abundant base lesions. It is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair processes. The product, free 8-oxoG base, is bound by OGG1 with high affinity, and the complex then functions as an activator of small GTPases, triggering pathways for inducing gene expression and contraction of intracellular filaments in mast and smooth muscle cells. Summary Oxidative DNA damage repair-mediated cell activation signaling result in gene expression that “primes” the mucosal epithelium and submucosal tissues to generate mediators of airway smooth muscle contractions. PMID:26694039

  10. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  11. Morphological characteristics of tissue damages from electrical contact.

    PubMed

    Grigolia, D; Beriashvili, R; Kilasonia, B

    2009-05-01

    The purpose of the study was to reveal the morphological pattern of different tissues mostly vulnerable to electric contact injury from domestic electrical appliances and to determine the possible diagnostic criteria of this damage. The matter is of particular importance as domestic electrical appliances are widely used in torture and other cruel, inhuman and degrading treatment or punishment. The pilot part of the study was experimental and as the material of study have been used adult Wistar white rats. The microscopic study of slides taken from tissues damaged by electricity and dyed by routine Hematoxilin-Eosin reveals general structural changes that does not represent characteristic morphological pattern sufficient for forensic diagnosis of electric injury. The electricity damage of kidney and adrenal glands reflects the morphological pattern of stress that allows complex evaluation of damage but could have only orientating value for the estimation of cause of injury. Due to results obtained from pilot part of the study there is considered in regard to determine the possible diagnostic criteria for electrical injury of tissues the experimental morphological study must continue on skin and myocardial material using routine Hematoxilin-Eosin as well as other classical and modern morphological methods of study.

  12. Zebrafish fin regeneration after cryoinjury-induced tissue damage

    PubMed Central

    Chassot, Bérénice; Pury, David

    2016-01-01

    ABSTRACT Although fin regeneration following an amputation procedure has been well characterized, little is known about the impact of prolonged tissue damage on the execution of the regenerative programme in the zebrafish appendages. To induce histolytic processes in the caudal fin, we developed a new cryolesion model that combines the detrimental effects of freezing/thawing and ischemia. In contrast to the common transection model, the damaged part of the fin was spontaneously shed within two days after cryoinjury. The remaining stump contained a distorted margin with a mixture of dead material and healthy cells that concomitantly induced two opposing processes of tissue debris degradation and cellular proliferation, respectively. Between two and seven days after cryoinjury, this reparative/proliferative phase was morphologically featured by displaced fragments of broken bones. A blastemal marker msxB was induced in the intact mesenchyme below the damaged stump margin. Live imaging of epithelial and osteoblastic transgenic reporter lines revealed that the tissue-specific regenerative programmes were initiated after the clearance of damaged material. Despite histolytic perturbation during the first week after cryoinjury, the fin regeneration resumed and was completed without further alteration in comparison to the simple amputation model. This model reveals the powerful ability of the zebrafish to restore the original appendage architecture after the extended histolysis of the stump. PMID:27215324

  13. Oxidative base damage in RNA detected by reverse transcriptase.

    PubMed Central

    Rhee, Y; Valentine, M R; Termini, J

    1995-01-01

    Oxidative base damage in DNA and metabolic defects in the recognition and removal of such damage play important roles in mutagenesis and human disease. The extent to which cellular RNA is a substrate for oxidative damage and the possible biological consequences of RNA base oxidation, however, remain largely unexplored. Since oxidatively modified RNA may contribute to the high mutability of retroviral genomic DNA, we have been interested in developing methods for the sequence specific detection of such damage. We show here that a primer extension assay using AMV reverse transcriptase (RT) can be used to reveal oxidatively damaged sites in RNA. This finding extends the currently known range of RNA modifications detectable with AMV reverse transcriptase. Analogous assays using DNA polymerases to detect base damage in DNA substrates appear to be restricted to lesions at thymine. Oxidative base damage in the absence of any detectable chain breaks was produced by dye photosensitization of RNA. Six out of 20 dyes examined were capable of producing RT detectable lesions. RT stops were seen predominantly at purines, although many pyrimidine sites were also detected. Dye specific photofootprints revealed by RT analysis suggests differential dye binding to the RNA substrate. Some of the photoreactive dyes described here may have potential utility in RNA structural analysis, particularly in the identification of stem-loop regions in complex RNAs. Images PMID:7545285

  14. Synthesis of damaged DNA containing the oxidative lesion 3'-oxothymidine.

    PubMed

    Bedi, Mel F; Li, Weiye; Gutwald, Taylor; Bryant-Friedrich, Amanda C

    2017-09-01

    Oxidative events that take place during regular oxygen metabolism can lead to the formation of organic or inorganic radicals. The interaction of these radicals with macromolecules in the organism and with DNA in particular is suspected to lead to apoptosis, DNA lesions and cell damage. Independent generation of DNA lesions resulting from oxidative damage is used to promote the study of their effects on biological systems. An efficient synthesis of oligodeoxyribonucleotides (ODNs) containing the oxidative damage lesion 3'-oxothymidine has been accomplished via incorporation of C3'-hydroxymethyl thymidine as its corresponding 5'-phosphoramidite. Through oxidative cleavage using sodium periodate in aqueous solution, the lesion of interest is easily generated. Due to its inherent instability it cannot be directly isolated, but must be generated in situ. 3'-Oxothymidine is a demonstrated damage product formed upon generation of the C3'-thymidinyl radical in ODN. Copyright © 2017. Published by Elsevier Ltd.

  15. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate.

    PubMed

    Joyner-Matos, Joanna; Predmore, Benjamin L; Stein, Jenny R; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.

  16. Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress.

    PubMed

    Wong, Sing Wan; Yao, Yifei; Hong, Ye; Ma, Zhiyao; Kok, Stanton H L; Sun, Shan; Cho, Michael; Lee, Kenneth K H; Mak, Arthur F T

    2017-04-01

    High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H2O2). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H2O2. These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.

  17. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Systemic inflammation regulates microglial responses to tissue damage in vivo

    PubMed Central

    Gyoneva, Stefka; Davalos, Dimitrios; Biswas, Dipankar; Swanger, Sharon A.; Garnier-Amblard, Ethel; Loth, Francis; Akassoglou, Katerina; Traynelis, Stephen F.

    2015-01-01

    Microglia, the resident immune cells of the central nervous system, exist in either a “resting” state associated with physiological tissue surveillance or an “activated” state in neuroinflammation. We recently showed that ATP is the primary chemoattractor to tissue damage in vivo and elicits opposite effects on the motility of activated microglia in vitro through activation of adenosine A2A receptors. However, whether systemic inflammation affects microglial responses to tissue damage in vivo remains largely unknown. Using in vivo two-photon imaging of mice, we show that injection of lipopolysaccharide (LPS) at levels that can produce both clear neuroinflammation and some features of sepsis significantly reduced the rate of microglial response to laser-induced ablation injury in vivo. Under pro-inflammatory conditions, microglial processes initially retracted from the ablation site, but subsequently moved toward and engulfed the damaged area. Analyzing the process dynamics in 3D cultures of primary microglia indicated that only A2A, but not A1 or A3 receptors, mediate process retraction in LPS-activated microglia. The A2A receptor antagonists caffeine and preladenant reduced adenosine-mediated process retraction in activated microglia in vitro. Finally, administration of preladenant before induction of laser ablation in vivo accelerated the microglial response to injury following systemic inflammation. The regulation of rapid microglial responses to sites of injury by A2A receptors could have implications for their ability to respond to the neuronal death occurring under conditions of neuroinflammation in neurodegenerative disorders. PMID:24807189

  19. [Chemical anabiosis by aldehydes and protection of organs and tissues from ischemic damage].

    PubMed

    Bezrukova, A P; Grigor'iants, L A; Rozvadovskiĭ, V D; Lavrishcheva, G I

    2001-01-01

    The article is devoted to the medical biological problem that is the impact of endogenic aldehyde (methylenglucol) on tissue structures with the purpose of defending them from ischemic damage by reverse reduction of intensity of metabolic reactions, which is conditioned by reverse inhibition of the oxidation processes phosphorylation connected with reduction of losses and adenosine 5-triphosphate forming. It is ascertained that until methylenglucol in the ischemic tissue of concrete organ hasn't reduced to a certain critical level there is still an opportunity to reanimate this organ.

  20. Mechanisms of MDMA (ecstasy)-induced oxidative stress, mitochondrial dysfunction, and organ damage.

    PubMed

    Song, Byoung-Joon; Moon, Kwan-Hoon; Upreti, Vijay V; Eddington, Natalie D; Lee, Insong J

    2010-08-01

    Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage.

  1. Mechanisms of MDMA (Ecstasy)-Induced Oxidative Stress, Mitochondrial Dysfunction, and Organ Damage

    PubMed Central

    Song, Byoung-Joon; Moon, Kwan-Hoon; Upreti, Vijay V.; Eddington, Natalie D.; Lee, Insong J.

    2010-01-01

    Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage. PMID:20420575

  2. Electrochemical study of DNA damaged by oxidation stress.

    PubMed

    Zitka, Ondrej; Krizkova, Sona; Skalickova, Sylvie; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-02-01

    Many compounds can interact with DNA leading to changes of DNA structure as point mutation and bases excision, which could trigger some metabolic failures, which leads to the changes in DNA structure resulting in cancer. Oxidation of nucleic acid bases belongs to the one of the mostly occurred type of DNA damaging leading to the above mentioned phenomena. The investigation of processes of DNA oxidation damage is topical and electrochemical methods include a versatile and sensitive tool for these purposes. 8-hydroxydeoxyguanosine (8-OHdG) is the most widely accepted marker of DNA damage. Oxidative damage to DNA by free radicals and exposure to ionizing radiation generate several other products within the double helix besides mentioned oxidation products of nucleic acid bases. The basic electrochemical behaviour of nucleic acids bases on various types of carbon electrodes is reviewed. Further, we address our attention on description of oxidation mechanisms and on detection of the most important products of nucleic bases oxidation. The miniaturization of detector coupled with some microfluidic devices is suggested and discussed. The main aim of this review is to report the advantages and features of the electrochemical detection of guanine oxidation product as 8-OHdG and other similarly produced molecules as markers for DNA damage.

  3. Tissue Damage Characterization Using Non-invasive Optical Modalities

    NASA Astrophysics Data System (ADS)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p < 0.05). Burn depth and viable vessel density were estimated via histological samples. 42% of vessels in the dermal layer were viable for superficial burns, compared to 25% for deep burns. The differences detected in optical properties and hemoglobin content by optical measurements

  4. A Topical Mitochondria-Targeted Redox-Cycling Nitroxide Mitigates Oxidative Stress-Induced Skin Damage.

    PubMed

    Brand, Rhonda M; Epperly, Michael W; Stottlemyer, J Mark; Skoda, Erin M; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E; Greenberger, Joel S; Falo, Louis D

    2017-03-01

    Skin is the largest human organ, and it provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation-induced skin damage ranges from photoaging and cutaneous carcinogenesis caused by UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation-induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species. Mitochondria are particularly susceptible to oxidative stress, and mitochondrial-dependent apoptosis plays a major role in radiation-induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent reactive oxygen species accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrially targeted antioxidant prevents and mitigates radiation-induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin's antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Effects of Hydrogen Peroxide on Wound Healing in Mice in Relation to Oxidative Damage

    PubMed Central

    Ho, Rongjian; Wasser, Martin; Du, Tiehua; Ng, Wee Thong; Halliwell, Barry

    2012-01-01

    It has been established that low concentrations of hydrogen peroxide (H2O2) are produced in wounds and is required for optimal healing. Yet at the same time, there is evidence that excessive oxidative damage is correlated with poor-healing wounds. In this paper, we seek to determine whether topical application of H2O2 can modulate wound healing and if its effects are related to oxidative damage. Using a C57BL/6 mice excision wound model, H2O2 was found to enhance angiogenesis and wound closure at 10 mM but retarded wound closure at 166 mM. The delay in closure was also associated with decreased connective tissue formation, increased MMP-8 and persistent neutrophil infiltration. Wounding was found to increase oxidative lipid damage, as measured by F2-isoprostanes, and nitrative protein damage, as measured by 3-nitrotyrosine. However H2O2 treatment did not significantly increase oxidative and nitrative damage even at concentrations that delay wound healing. Hence the detrimental effects of H2O2 may not involve oxidative damage to the target molecules studied. PMID:23152875

  6. Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection.

    PubMed

    ten Broek, Richard P G; Wilbers, Joyce; van Goor, Harry

    2011-06-01

    Minimizing peritoneal tissue injury during abdominal surgery has the benefit of reducing postoperative inflammatory response, pain, and adhesion formation. Ultrasonic dissection seems to reduce tissue damage. This study aimed to compare electrocautery and ultrasonic dissection in terms of peritoneal tissue ischemia measured by microdialysis. In this study, 18 Wistar rats underwent a median laparotomy and had a peritoneal microdialysis catheter implanted in the left lateral sidewall. The animals were randomly assigned to receive two standard peritoneal incisions parallel to the catheter by either ultrasonic dissection or electrocautery. After the operation, samples of microdialysis dialysate were taken every 2 h until 72 h postoperatively for measurements of pyruvate, lactate, glucose, and glycerol, and ratios were calculated. The mean lactate-pyruvate ratio (LPR), lactate-glucose ratio (LGR), and glycerol concentration were significantly higher in the electrocautery group than in the ultrasonic dissection group until respectively 34, 48, and 48 h after surgery. The mean areas under the curve (AUC) of LPR, LGR, and glycerol concentration also were higher in the electrocautery group than in the ultrasonic dissection group (4,387 vs. 1,639, P=0.011; 59 vs. 21, P=0.008; 7,438 vs. 4,169, P=0.008, respectively). Electrosurgery causes more ischemic peritoneal tissue damage than ultrasonic dissection.

  7. Pathology of perinatal brain damage: background and oxidative stress markers.

    PubMed

    Tonni, Gabriele; Leoncini, Silvia; Signorini, Cinzia; Ciccoli, Lucia; De Felice, Claudio

    2014-07-01

    To review historical scientific background and new perspective on the pathology of perinatal brain damage. The relationship between birth asphyxia and subsequent cerebral palsy has been extensively investigated. The role of new and promising clinical markers of oxidative stress (OS) is presented. Electronic search of PubMed-Medline/EMBASE database has been performed. Laboratory and clinical data involving case series from the research group are reported. The neuropathology of birth asphyxia and subsequent perinatal brain damage as well as the role of electronic fetal monitoring are reported following a review of the medical literature. This review focuses on OS mechanisms underlying the neonatal brain damage and provides different perspective on the most reliable OS markers during the perinatal period. In particular, prior research work on neurodevelopmental diseases, such as Rett syndrome, suggests the measurement of oxidized fatty acid molecules (i.e., F4-Neuroprostanes and F2-Dihomo-Isoprostanes) closely related to brain white and gray matter oxidative damage.

  8. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    EPA Science Inventory

    Rationale:

    Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  9. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    EPA Science Inventory

    Rationale:

    Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  10. Strong, damage tolerant oxide-fiber/oxide matrix composites

    NASA Astrophysics Data System (ADS)

    Bao, Yahua

    cationic polyelectrolytes to have a positive surface charge and then dipped into diluted, negatively-charged AlPO4 colloidal suspension (0.05M) at pH 7.5. Amorphous AlPO4 (crystallizes to tridymite- and cristobalite-forms at 1080°C) nano particles were coated on fibers layer-by-layer using an electrostatic attraction protocol. A uniform and smooth coating was formed which allowed fiber pullout from the matrix of a Nextel 720/alumina mini-composite hot-pressed at 1250°C/20MPa. Reaction-bonded mullite (RBM), with low formation temperature and sintering shrinkage was synthesized by incorporation of mixed-rare-earth-oxide (MREO) and mullite seeds. Pure mullite formed with 7.5wt% MREO at 1300°C. Introduction of 5wt% mullite seeds gave RBM with less than 3% shrinkage and 20% porosity. AlPO4-coated Nextel 720/RBM composites were successful fabricated by EPID and pressureless sintering at 1300°C. Significant fiber pullout occurred and the 4-point bend strength was around 170MPa (with 25-30vol% fibers) at room temperature and 1100°C and a Work-of-Fracture 7KJ/m2. At 1200°C, the composite failed in shear due to the MREO-based glassy phase in the matrix. AlPO4-coated Nextel 720 fiber/aluminosilicate (no MREO) showed damage tolerance at 1200°C with a bend strength 170MPa.

  11. A review of the impact of oxidative stress and some antioxidant therapies on renal damage.

    PubMed

    Tamay-Cach, F; Quintana-Pérez, J C; Trujillo-Ferrara, J G; Cuevas-Hernández, R I; Del Valle-Mondragón, L; García-Trejo, E M; Arellano-Mendoza, M G

    2016-01-01

    An increase in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to complications during chronic kidney disease (CKD). This increase essentially derives from the impairment of natural antioxidant systems of the organism. The resulting oxidative stress produces damage to kidney tissue, especially by affecting nephrons and more generally by disrupting the function and structure of the glomerulus and interstitial tubule. This leads to a rapid decline in the condition of the patient and finally renal failure. Possible causes of kidney tissue damage are explored, as are different therapies, especially those related to the administration of antioxidants.

  12. Oxidative Damage in the Guinea Pig Hippocampal Slice

    DTIC Science & Technology

    1989-01-01

    oxidation to the observed damage. the actions of the oxidants, chloramine -T and N-chlorosuccinimide (NCS). were studied on electrophysiological...hippocampus evoked a population postsynaptic potential (population PSP) in the dendritic layer and a population spike in the cell body layer. Chloramine -T (25...produced by free radicals but can rot account for the postsynaptic effects. Keywords- Chloramine -T. N-chlorosuccinimide. Oxidation. Free radical

  13. Age-Dependent Oxidative DNA Damage Does Not Correlate with Reduced Proliferation of Cardiomyocytes in Humans

    PubMed Central

    Li, Minghui; Liu, Jinfen; Jiang, Chuan; Zhang, Haibo; Ye, Lincai; Zheng, Jinghao

    2017-01-01

    Background Postnatal human cardiomyocyte proliferation declines rapidly with age, which has been suggested to be correlated with increases in oxidative DNA damage in mice and plays an important role in regulating cardiomyocyte proliferation. However, the relationship between oxidative DNA damage and age in humans is unclear. Methods Sixty right ventricular outflow myocardial tissue specimens were obtained from ventricular septal defect infant patients during routine congenital cardiac surgery. These specimens were divided into three groups based on age: group A (age 0–6 months), group B (age, 7–12 months), and group C (>12 months). Each tissue specimen was subjected to DNA extraction, RNA extraction, and immunofluorescence. Results Immunofluorescence and qRT-PCR analysis revealed that DNA damage markers—mitochondrial DNA copy number, oxoguanine 8, and phosphorylated ataxia telangiectasia mutated—were highest in Group B. However immunofluorescence and qRT-PCR demonstrated that two cell proliferation markers, Ki67 and cyclin D2, were decreased with age. In addition, wheat germ agglutinin-staining indicated that the average size of cardiomyocytes increased with age. Conclusions Oxidative DNA damage of cardiomyocytes was not correlated positively with age in human beings. Oxidative DNA damage is unable to fully explain the reduced proliferation of human cardiomyocytes. PMID:28099512

  14. Protective effect of diallyl trisulfide against naphthalene-induced oxidative stress and inflammatory damage in mice.

    PubMed

    Zhang, Fang; Zhang, Yongchun; Wang, Kaiming; Liu, Guangpu; Yang, Min; Zhao, Zhongxi; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2016-06-01

    The aim of this study was to investigate the possible protective effects of diallyl trisulfide (DATS) against naphthalene-induced oxidative and inflammatory damage in the livers and lungs of mice. Elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels showed significant hepatic damage after the challenge with 100 mg/kg naphthalene. Hepatic malondialdehyde (MDA) contents and the activity of myeloperoxidase (MPO) increased significantly, accompanying a decrease in the hepatic activity of total superoxide dismutase (SOD) and glutathione (GSH) levels after the naphthalene damage. In addition, the serum levels of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 8 (IL-8) increased significantly in the groups damaged with naphthalene. The main parameters related to oxidative stress and inflammatory responses in the lungs, including the NO, MPO, and GSH contents, were determined, and the histopathological and immunohistochemical changes in the lung and liver tissues were also observed. In the DATS-treated groups, all of the oxidative and inflammatory damage in the serum, liver, and lung tissues were significantly prevented. © The Author(s) 2016.

  15. Photoexcited riboflavin induces oxidative damage to human serum albumin

    NASA Astrophysics Data System (ADS)

    Hirakawa, Kazutaka; Yoshioka, Takuto

    2015-08-01

    Photoexcited riboflavin induced damage of human serum albumin (HSA), a water soluble protein, resulting in the diminishment of fluorescence from the tryptophan residue. Because riboflavin hardly photosensitized singlet oxygen generation and sodium azide, a singlet oxygen quencher, did not inhibit protein damage, electron transfer-mediated oxidation of HSA was speculated. Fluorescence lifetime of riboflavin was not affected by HSA, suggesting that the excited triplet state of riboflavin is responsible for protein damage through electron transfer. In addition, the preventive effect of xanthone derivatives, triplet quenchers, on photosensitized protein damage could be evaluated using this photosensitized reaction system of riboflavin and HSA.

  16. Oxidative DNA Damage in Blood of CVD Patients Taking Detralex

    PubMed Central

    Krzyściak, Wirginia; Cierniak, Agnieszka; Kózka, Mariusz; Kozieł, Joanna

    2011-01-01

    The main goal of the work reported here was to determine the degree of oxidative/alkali-labile DNA damages in peripheral blood as well as in the blood stasis from varicose vein of (chronic venous disorder) CVD patients. Moreover, determination of the impact of Detralex usage on the level of (oxidative) DNA damages in CVD patients was evaluated as well. The degree of oxidative DNA damages was studied in a group consisted of thirty patients with diagnosed chronic venous insufficiency (CVI) in the 2nd and 3rd degree, according to clinical state, etiology, anatomy and pathophysiology (CEAP), and qualified to surgical procedure. The control group consisted of normal volunteers (blood donors) qualified during standard examinations at Regional Centers of Blood Donation and Blood Therapy. The comet assay was used for determination of DNA damages. Analyses of the obtained results showed increase in the level of oxidative/alkali-labile DNA damages in lymphocytes originating from antebrachial blood of CVD patients as compared to the control group (Control) (p < 0.002; ANOVA). In addition, it was demonstrated that the usage of Detralex® resulted in decrease of the level of oxidative/alkali-labile DNA damages in CVD patients as compared to patients without Detralex® treatment (p < 0.001; ANOVA). Based on findings from the study, it may be hypothesized about occurrence of significant oxidative DNA damages as the consequence of strong oxidative stress in CVD. In addition, antioxidative effectiveness of Detralexu® was observed at the recommended dose, one tablet twice daily. PMID:21912579

  17. Superoxide and the production of oxidative DNA damage.

    PubMed Central

    Keyer, K; Gort, A S; Imlay, J A

    1995-01-01

    The conventional model of oxidative DNA damage posits a role for superoxide (O2-) as a reductant for iron, which subsequently generates a hydroxyl radical by transferring the electron to H2O2. The hydroxyl radical then attacks DNA. Indeed, mutants of Escherichia coli that lack superoxide dismutase (SOD) were 10-fold more vulnerable to DNA oxidation by H2O2 than were wild-type cells. Even the pace of DNA damage by endogenous oxidants was great enough that the SOD mutants could not tolerate air if enzymes that repair oxidative DNA lesions were inactive. However, DNA oxidation proceeds in SOD-proficient cells without the involvement of O2-, as evidenced by the failure of SOD overproduction or anaerobiosis to suppress damage by H2O2. Furthermore, the mechanism by which excess O2- causes damage was called into question when the hypersensitivity of SOD mutants to DNA damage persisted for at least 20 min after O2- had been dispelled through the imposition of anaerobiosis. That behavior contradicted the standard model, which requires that O2- be present to rereduce cellular iron during the period of exposure to H2O2. Evidently, DNA oxidation is driven by a reductant other than O2-, which leaves the mechanism of damage promotion by O2- unsettled. One possibility is that, through its well-established ability to leach iron from iron-sulfur clusters, O2- increases the amount of free iron that is available to catalyze hydroxyl radical production. Experiments with iron transport mutants confirmed that increases in free-iron concentration have the effect of accelerating DNA oxidation. Thus, O2- may be genotoxic only in doses that exceed those found in SOD-proficient cells, and in those limited circumstances it may promote DNA damage by increasing the amount of DNA-bound iron. PMID:7592468

  18. Renal tissue damage induced by focused shock waves

    NASA Astrophysics Data System (ADS)

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  19. Oxidative DNA damage in osteoarthritic porcine articular cartilage

    PubMed Central

    Chen, Antonia F.; Davies, Catrin M.; De Lin, Ming; Fermor, Beverley

    2008-01-01

    Purpose Osteoarthritis (OA) is associated with increased levels of reactive oxygen species. This study investigated if increased oxidative DNA damage accumulates in OA articular cartilage compared with non-OA articular cartilage from pigs with spontaneous OA. Additionally, the ability of nitric oxide (NO) or peroxynitrite (ONOO-) induced DNA damage in non-OA chondrocytes to undergo endogenous repair was investigated. Methods Porcine femoral condyles were graded for the stage of OA, macroscopically by the Collins Scale, and histologically by the modified Mankin Grade. Levels of DNA damage were determined in non-OA and OA cartilage, using the comet assay. For calibration, DNA damage was measured by exposing non-OA chondrocytes to 0-12 Gray of x-ray irradiation. Non-OA articular chondrocytes were treated with 0-500 μM of NO donors (NOC-18 or SIN-1), and DNA damage assessed after treatment and 5 days recovery. Results A significant increase (p<0.01) in oxidative DNA damage occurred in OA chondrocytes in joints with Mankin Grades 3 or greater, compared to non-OA chondrocytes. The percentage of nuclei containing DNA damage increased significantly (p<0.001) from early to late grades of OA. An increase of approximately 0.65-1.7 breaks/1000kB of DNA occurred in OA, compared to non-OA nuclei. NOC-18 or SIN-1 caused significant DNA damage (p<0.001) in non-OA chondrocytes that did not undergo full endogenous repair after 5 days (p<0.05). Conclusion Our data suggest significant levels of oxidative DNA damage occur in OA chondrocytes that accumulates with OA progression. Additionally, DNA damage induced by NO and ONOO- in non-OA chondrocytes does not undergo full endogenous repair. PMID:18720406

  20. Exercise-induced muscle damage impairs insulin signaling pathway associated with IRS-1 oxidative modification.

    PubMed

    Aoi, W; Naito, Y; Tokuda, H; Tanimura, Y; Oya-Ito, T; Yoshikawa, T

    2012-01-01

    Strenuous exercise induces delayed-onset muscle damage including oxidative damage of cellular components. Oxidative stress to muscle cells impairs glucose uptake via disturbance of insulin signaling pathway. We investigated glucose uptake and insulin signaling in relation to oxidative protein modification in muscle after acute strenuous exercise. ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed downhill running exercise at 30 m/min for 30 min. At 24 hr after exercise, metabolic performance and insulin-signaling proteins in muscle tissues were examined. In whole body indirect calorimetry, carbohydrate utilization was decreased in the exercised mice along with reduction of the respiratory exchange ratio compared to the rested control mice. Insulin-stimulated uptake of 2-deoxy-[(3)H]glucose in damaged muscle was decreased after acute exercise. Tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidyl-3-kinase/Akt signaling were impaired by exercise, leading to inhibition of the membrane translocation of glucose transporter 4. We also found that acute exercise caused 4-hydroxy-nonenal modification of IRS-1 along with elevation of oxidative stress in muscle tissue. Impairment of insulin-induced glucose uptake into damaged muscle after strenuous exercise would be related to disturbance of insulin signal transduction by oxidative modification of IRS-1.

  1. Assessing laser-tissue damage with bioluminescent imaging.

    PubMed

    Wilmink, Gerald J; Opalenik, Susan R; Beckham, Joshua T; Davidson, Jeffrey M; Jansen, E Duco

    2006-01-01

    Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (lambda=10.6 microm, 0.679 to 2.262 Wcm2, cw, unfocused Gaussian beam, omegaL=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 Wcm2 activated the hsp70 response, and a higher irradiance of 2.262 Wcm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin

  2. Assessing laser-tissue damage with bioluminescent imaging

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Josh T.; Davidson, Jeffrey M.; Jansen, Eric D.

    2006-07-01

    Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (λ=10.6 µm, 0.679 to 2.262 W/cm2, cw, unfocused Gaussian beam, ωL=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 W/cm2 activated the hsp70 response, and a higher irradiance of 2.262 W/cm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin and

  3. Viewing oxidative stress through the lens of oxidative signalling rather than damage.

    PubMed

    Foyer, Christine H; Ruban, Alexander V; Noctor, Graham

    2017-03-07

    Concepts of the roles of reactive oxygen species (ROS) in plants and animals have shifted in recent years from focusing on oxidative damage effects to the current view of ROS as universal signalling metabolites. Rather than having two opposing activities, i.e. damage and signalling, the emerging concept is that all types of oxidative modification/damage are involved in signalling, not least in the induction of repair processes. Examining the multifaceted roles of ROS as crucial cellular signals, we highlight as an example the loss of photosystem II function called photoinhibition, where photoprotection has classically been conflated with oxidative damage.

  4. Acrylonitrile-Induced Oxidative Stress and Oxidative DNA Damage in Male Sprague-Dawley Rats

    PubMed Central

    Kamendulis, Lisa M.; Klaunig, James E.

    2009-01-01

    Studies have demonstrated that the induction of oxidative stress may be involved in brain tumor induction in rats by acrylonitrile. The present study examined whether acrylonitrile induces oxidative stress and DNA damage in rats and whether blood can serve as a valid surrogate for the biomonitoring of oxidative stress induced by acrylonitrile in the exposed population. Male Sprague-Dawley rats were treated with 0, 3, 30, 100, and 200 ppm acrylonitrile in drinking water for 28 days. One group of rats were also coadministered N-acetyl cysteine (NAC) (0.3% in diet) with acrylonitrile (200 ppm in drinking water) to examine whether antioxidant supplementation was protective against acrylonitrile-induced oxidative stress. Direct DNA strand breakage in white blood cells (WBC) and brain was measured using the alkaline comet assay. Oxidative DNA damage in WBC and brain was evaluated using formamidopyrimidine DNA glycosylase (fpg)-modified comet assay and with high-performance liquid chromatography-electrochemical detection. No significant increase in direct DNA strand breaks was observed in brain and WBC from acrylonitrile-treated rats. However, oxidative DNA damage (fpg comet and 8′hydroxyl-2-deoxyguanosine) in brain and WBC was increased in a dose-dependent manner. In addition, plasma levels of reactive oxygen species (ROS) increased in rats administered acrylonitrile. Dietary supplementation with NAC prevented acrylonitrile-induced oxidative DNA damage in brain and WBC. A slight, but significant, decrease in the GSH:GSSG ratio was seen in brain at acrylonitrile doses > 30 ppm. These results provide additional support that the mode of action for acrylonitrile-induced astrocytomas involves the induction of oxidative stress and damage. Significant associations were seen between oxidative DNA damage in WBC and brain, ROS formation in plasma, and the reported tumor incidences. Since oxidative DNA damage in brain correlated with oxidative damage in WBC, these results suggest

  5. Oxidative Damage in Parkinson’s Disease

    DTIC Science & Technology

    2003-01-01

    supranuclear palsy brains. There were no significant alterations in 8-hydroxy-2- deoxyguanosine in the plasma of PD patients. We found that...patients and a number of specific genes linked to oxidative stress were reduced in expression. There was increased lipid peroxidation in progressive

  6. Protective effect of Pterostilbene against free radical mediated oxidative damage

    PubMed Central

    2013-01-01

    Background Pterostilbene, a methoxylated analog of Resveratrol, is gradually gaining more importance as a therapeutic drug owing to its higher lipophilicity, bioavailability and biological activity than Resveratrol. This study was undertaken to characterize its ability to scavenge free radicals such as superoxide, hydroxyl and hydrogen peroxide and to protect bio-molecules within a cell against oxidative insult. Methods Anti-oxidant activity of Pterostilbene was evaluated extensively by employing several in vitro radical scavenging/inhibiting assays and pulse radiolysis study. In addition, its ability to protect rat liver mitochondria against tertiary-butyl hydroperoxide (TBHP) and hydroxyl radical generated oxidative damage was determined by measuring the damage markers such as protein carbonyls, protein sulphydryls, lipid hydroperoxides, lipid peroxides and 8-hydroxy-2'-deoxyguanosine. Pterostilbene was also evaluated for its ability to inhibit •OH radical induced single strand breaks in pBR322 DNA. Result Pterostilbene exhibited strong anti-oxidant activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide in a concentration dependent manner. Pterostilbene conferred protection to proteins, lipids and DNA in isolated mitochondrial fractions against TBHP and hydroxyl radical induced oxidative damage. It also protected pBR322 DNA against oxidative assault. Conclusions Thus, present study provides an evidence for the strong anti-oxidant property of Pterostilbene, methoxylated analog of Resveratrol, thereby potentiating its role as an anti-oxidant. PMID:24070177

  7. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  8. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  9. DNA damage and oxidative status in PFAPA syndrome.

    PubMed

    Tuğrul, Selahattin; Doğan, Remzi; Kocyigit, Abdurrahim; Torun, Emel; Senturk, Erol; Ozturan, Orhan

    2015-10-01

    PFAPA syndrome is a clinical entity of unknown etiology which presents with periodic episodes of fever, aphthous stomatitis, tonsillitis or pharyngitis, and cervical adenitis. In this study we investigated DNA damage and the oxidative stress parameters in patients diagnosed with PFAPA, to elucidate the underlying pathophysiological mechanism of this syndrome. Thirty-one patients diagnosed with PFAPA (Group 1), 22 patients diagnosed with normal tonsillitis or pharyngitis (Group 2), and 20 healthy volunteers (Group 3) were included in our study. Heparinized peripheral blood samples were drawn from all patients and volunteers. DNA damage was assessed by single cell alkaline electrophoresis assay in peripheral mononuclear leukocytes. Plasma levels of total antioxidant status (TAS) and total oxidative status (TOS) were determined by using a novel automated measurement method, and oxidative stress index (OSI) was calculated. DNA damage in the mononuclear leukocytes of Group 1 was significantly higher than that of Group 2 and Group 3. The oxidative stress parameters revealed that the TOS and OSI values of Group 1 were significantly higher than those of Group 2 and Group 3. TAS values of Group 1 were significantly lower than those of Group 2 and Group 3. Correlation analysis of Group 1 demonstrated a significant correlation between TOS, one of the oxidative stress parameters, and DNA damage. Correlations between DNA damage and C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values were also significant. Our study indicated that both the inflammatory and the oxidative stress parameters were significantly increased in patients with PFAPA syndrome, accompanied by a significant positive correlation between DNA damage and oxidative stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  11. Neutrophil-derived ROS contribute to oxidative DNA damage induction by quartz particles.

    PubMed

    van Berlo, Damien; Wessels, Anton; Boots, Agnes W; Wilhelmi, Verena; Scherbart, Agnes M; Gerloff, Kirsten; van Schooten, Frederik J; Albrecht, Catrin; Schins, Roel P F

    2010-12-01

    The carcinogenicity of respirable quartz is considered to be driven by reactive oxygen species (ROS) generation in association with chronic inflammation. The contribution of phagocyte-derived ROS to inflammation, oxidative stress, and DNA damage responses was investigated in the lungs of C57BL/6J wild-type and p47(phox-/-) mice, 24h after pharyngeal aspiration of DQ12 quartz (100 mg/kg bw). Bone-marrow-derived neutrophils from wild-type and p47(phox-/-) mice were used for parallel in vitro investigations in coculture with A549 human alveolar epithelial cells. Quartz induced a marked neutrophil influx in both wild-type and p47(phox-/-) mouse lungs. Significant increases in mRNA expression of the oxidative stress markers HO-1 and γ-GCS were observed only in quartz-treated wild-type animals. Oxidative DNA damage in lung tissue was not affected by quartz exposure and did not differ between p47(phox-/-) and WT mice. Differences in mRNA expression of the DNA repair genes OGG1, APE-1, DNA Polβ, and XRCC1 were also absent. Quartz treatment of cocultures containing wild-type neutrophils, but not p47(phox-/-) neutrophils, caused increased oxidative DNA damage in epithelial cells. Our study demonstrates that neutrophil-derived ROS significantly contribute to pulmonary oxidative stress responses after acute quartz exposure, yet their role in the associated induction of oxidative DNA damage could be shown only in vitro.

  12. Oxidative Damage in Parkinson’s Disease

    DTIC Science & Technology

    2000-10-01

    and a significant increase in tissue malondialdehyde levels in the superior frontal cortex, the Parkinsonian syndrome known as Progressive Supranuclear ... Palsy . We are continuing studies looking at in situ hybridization probes for free radical enzymes. We have developed a novel column-switching assay...alpha-synuclein in the substantia nigra. These studies have, therefore, made significant progress on the original aims of the proposal.

  13. Melaleuca alternifolia essential oil enhances the non-specific immune system and prevents oxidative damage in Rhamdia quelen experimentally infected by Aeromonas hydrophila: Effects on cholinergic and purinergic systems in liver tissue.

    PubMed

    Baldissera, Matheus D; Souza, Carine F; Júnior, Guerino B; de Vargas, Agueda C; Boligon, Aline A; de Campos, Marli M A; Stefani, Lenita M; Baldisserotto, Bernardo

    2017-02-01

    The aim of this study was to evaluate the effects of M. alternifolia essential oil used to treat silver catfish (Rhamdia quelen) experimentally infected by Aeromonas hydrophila on oxidative stress variables, and for the first time, on hepatic enzymes of the cholinergic and adenosinergic systems. For that, fish were divided into six groups (A-F), each containing seven animals. Groups A, B and C were composed of uninfected animals, while animals in groups D, E and F were intramuscularly inoculated with A. hydrophila. Groups B and E received a prophylactic bath with M. alternifolia essential oil (50 μL/L, diluted in ethanol) for seven days, while groups C and F were exposed to ethanol. After the prophylactic baths, groups D, E and F were inoculated with 100 μL of A. hydrophila solution (2.1 × 10(9) colony-forming unit). Two days after inoculation, the animals were euthanized and liver samples were collected. Infected animals (the group D) showed increased TBARS and protein carbonylation levels, while CAT, AChE and ADA activities decreased compared to uninfected animals (the group A). The prophylactic treatment with M. alternifolia essential oil (the group E) prevented the alterations caused by A. hydrophila, but it did not change AChE activity. Thus, the prophylactic treatment prevents damage caused by lipids and proteins, as well as alterations of the adenosinergic system, demonstrating that the anti-inflammatory effect of TTO is mediated by the adenosinergic pathway. In addition, TTO prophylactic treatment might be considered an important approach to prevent the hepatic damage caused by A. hydrophila.

  14. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress

    PubMed Central

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-01-01

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy. PMID:26427872

  15. Obesity-Related Perivascular Adipose Tissue Damage Is Reversed by Sustained Weight Loss in the Rat.

    PubMed

    Bussey, Charlotte E; Withers, Sarah B; Aldous, Robert G; Edwards, Gillian; Heagerty, Anthony M

    2016-07-01

    Perivascular adipose tissue (PVAT) exerts an anticontractile effect in response to various vasoconstrictor agonists, and this is lost in obesity. A recent study reported that bariatric surgery reverses the damaging effects of obesity on PVAT function. However, PVAT function has not been characterized after weight loss induced by caloric restriction, which is often the first line treatment for obesity. Contractility studies were performed using wire myography on small mesenteric arteries with and without PVAT from control, diet-induced obese, calorie restricted and sustained weight loss rats. Changes in the PVAT environment were assessed using immunohistochemistry. PVAT from healthy animals elicited an anticontractile effect in response to norepinephrine. This was abolished in diet-induced obesity through a mechanism involving increased local tumor necrosis factor-α and reduced nitric oxide bioavailability within PVAT. Sustained weight loss led to improvement in PVAT function associated with restoration of adipocyte size, reduced tumor necrosis factor-α, and increased nitric oxide synthase function. This was associated with reversal of obesity-induced hypertension and normalization of plasma adipokine levels, including leptin and insulin. We have shown that diet-induced weight loss reverses obesity-induced PVAT damage through a mechanism involving reduced inflammation and increased nitric oxide synthase activity within PVAT. These data reveal inflammation and nitric oxide synthase, particularly endothelial nitric oxide synthase, as potential targets for the treatment of PVAT dysfunction associated with obesity and metabolic syndrome. © 2016 American Heart Association, Inc.

  16. IL-22 Protects against Tissue Damage during Cutaneous Leishmaniasis.

    PubMed

    Gimblet, Ciara; Loesche, Michael A; Carvalho, Lucas; Carvalho, Edgar M; Grice, Elizabeth A; Artis, David; Scott, Phillip

    2015-01-01

    Cutaneous leishmaniasis is a disease characterized by ulcerating skin lesions, the resolution of which requires an effective, but regulated, immune response that limits parasite growth without causing permanent tissue damage. While mechanisms that control the parasites have been well studied, the factors regulating immunopathologic responses are less well understood. IL-22, a member of the IL-10 family of cytokines, can contribute to wound healing, but in other instances promotes pathology. Here we investigated the role of IL-22 during leishmania infection, and found that IL-22 limits leishmania-induced pathology when a certain threshold of damage is induced by a high dose of parasites. Il22-/- mice developed more severe disease than wild-type mice, with significantly more pathology at the site of infection, and in some cases permanent loss of tissue. The increased inflammation was not due to an increased parasite burden, but rather was associated with the loss of a wound healing phenotype in keratinocytes. Taken together, these studies demonstrate that during cutaneous leishmaniasis, IL-22 can play a previously unappreciated role in controlling leishmania-induced immunopathology.

  17. Effect of procyandin oligomers on oxidative hair damage.

    PubMed

    Kim, Moon-Moo

    2011-02-01

    Procyanidins are a subclass of flavonoids and consist of oligomers of catechin that naturally occur in plants and are known to exert many physiological effects, including antioxidant, anti-inflammatory, and enzyme inhibitory effects. These possible inhibitory effects of the procyanidins were known to involve metal chelation, radical trapping, or direct enzyme binding. The purpose of this study was to investigate the effect of procyandin oligomers on hair damage induced by oxidative stress. In this study, several methods for evaluating oxidative damage in bleached hair are utilized to analyze the protective effect of procyandin oligomers against oxidative hair damage. It was observed that procyanidin oligomers strongly bind to keratin in hair and inhibit the breakdown of hair caused by oxidative damage in an analysis of hair using electrophoresis, transmission electron microscope, and fluorescence dye. These results confirm that procyanidin oligomers can be applicable as a potential candidate to the development of hair care with protective effect on hair damage. © 2011 John Wiley & Sons A/S.

  18. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells

    PubMed Central

    Costello, James C.; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S.; Collins, James J.

    2013-01-01

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics—quinolones, aminoglycosides, and β-lactams—cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic–induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-L-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people. PMID:23825301

  20. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells.

    PubMed

    Kalghatgi, Sameer; Spina, Catherine S; Costello, James C; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S; Collins, James J

    2013-07-03

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics-quinolones, aminoglycosides, and β-lactams-cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic-induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-l-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.

  1. Biochemical and biomolecular aspects of oxidative stress due to acute and severe hypoxia in human muscle tissue.

    PubMed

    Corbucci, G G; Sessego, R; Velluti, C; Salvi, M

    1995-01-01

    Mitochondrial oxidative stress was investigated in severe and acute hypoxia and in reperfusion applied to human muscle tissues. The biochemical and biomolecular relationship between the response of the respiratory-chain enzymic complexes and the metabolism of specific hypoxia stress proteins (HSP) suggest an adaptive mechanism which antagonizes the oxidative damage due to acute and severe tissue hypoxia.

  2. Selenium Nanoparticles Attenuate Oxidative Stress and Testicular Damage in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Dkhil, Mohamed A; Zrieq, Rafat; Al-Quraishy, Saleh; Abdel Moneim, Ahmed E

    2016-11-19

    We investigated the protective and antioxidative effects of selenium nanoparticles (SeNPs) in streptozotocin STZ-induced diabetic rats. STZ-diabetic rats were exposed daily to treatments with SeNPs and/or insulin and then the effect of these treatments on the parameters correlated to oxidative damage of the rat testes were assessed. Biochemical analysis revealed that SeNPs are able to ameliorate the reduction in the serum testosterone caused by STZ-induced diabetes. Furthermore, SeNPs could significantly decrease testicular tissue oxidative stress markers, namely lipid peroxidation and nitric oxide. In contrast, treatment of the STZ-diabetic rats with SeNPs increased the glutathione content and antioxidant enzyme activities in testicular tissues. Moreover, microscopic analysis proved that SeNPs are able to prevent histological damage in the testes of STZ-diabetic rats. Molecular analysis revealed that the mRNA level of Bcl-2 (B-cell lymphoma 2) is significantly upregulated. On the contrary, the mRNA level of Bax (Bcl-2 Associated X Protein) was significantly downregulated. Furthermore, treatment of STZ-diabetic rats with SeNPs led to an elevation in the expression of PCNA (Proliferating Cell Nuclear Antigen Gene). Interestingly, the insulin treatment also exhibited a significant improvement in the testicular function in STZ-diabetic rats. Collectively, our results demonstrated the possible effects of SeNPs in attenuating diabetes-induced oxidative damage, in particular in testicular tissue.

  3. Inducible repair of oxidative DNA damage in Escherichia coli.

    PubMed

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  4. Microsomal oxidative damage promoted by acetaminophen metabolism.

    PubMed

    Letelier, María Eugenia; López-Valladares, Miguel; Peredo-Silva, Liliana; Rojas-Sepúlveda, Daniel; Aracena, Paula

    2011-10-01

    Adverse reactions of acetaminophen have been associated to oxidative stress, which may be elicited by reactive oxygen species (ROS) and/or production of the metabolite NAPQI. Both phenomena would arise through the activity of liver cytochrome P450 (CYP450) system, but their contribution to this oxidative stress is yet to be clarified. A NADPH oxidase activity has been proposed in rat liver microsomes. This activity may be due to the presence of NAD(P)H oxidase (NOX) isoforms in liver endoplasmic reticulum. Both NOX and the CYP450 system activities can catalyze ROS generation using NADPH as a cofactor. Therefore, acetaminophen biotransformation, which requires NADPH, may promote ROS generation through either activity or both. To discriminate between these possibilities, rat liver microsomes were incubated with acetaminophen and NADPH in the presence or absence of specific inhibitors. Incubation with NADPH and acetaminophen elicited lipid peroxidation and decreased thiol content and glutathione-S-transferase (GST) activity. The NOX inhibitors apocynin and plumbagin prevented all these phenomena but the decrease in thiol content. In contrast, this decrease was completely prevented by the specific CYP450 system inhibitor SKF-525A. These data suggest that ROS generation following incubation of microsomes with acetaminophen and NADPH appears to be mainly caused by a NOX activity. In light of these data, toxicity of acetaminophen is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Superoxide Dismutase 1 Protects Hepatocytes from Type I Interferon-Driven Oxidative Damage

    PubMed Central

    Bhattacharya, Anannya; Hegazy, Ahmed N.; Deigendesch, Nikolaus; Kosack, Lindsay; Cupovic, Jovana; Kandasamy, Richard K.; Hildebrandt, Andrea; Merkler, Doron; Kühl, Anja A.; Vilagos, Bojan; Schliehe, Christopher; Panse, Isabel; Khamina, Kseniya; Baazim, Hatoon; Arnold, Isabelle; Flatz, Lukas; Xu, Haifeng C.; Lang, Philipp A.; Aderem, Alan; Takaoka, Akinori; Superti-Furga, Giulio; Colinge, Jacques; Ludewig, Burkhard; Löhning, Max; Bergthaler, Andreas

    2015-01-01

    Summary Tissue damage caused by viral hepatitis is a major cause of morbidity and mortality worldwide. Using a mouse model of viral hepatitis, we identified virus-induced early transcriptional changes in the redox pathways in the liver, including downregulation of superoxide dismutase 1 (Sod1). Sod1−/− mice exhibited increased inflammation and aggravated liver damage upon viral infection, which was independent of T and NK cells and could be ameliorated by antioxidant treatment. Type I interferon (IFN-I) led to a downregulation of Sod1 and caused oxidative liver damage in Sod1−/− and wild-type mice. Genetic and pharmacological ablation of the IFN-I signaling pathway protected against virus-induced liver damage. These results delineate IFN-I mediated oxidative stress as a key mediator of virus-induced liver damage and describe a mechanism of innate-immunity-driven pathology, linking IFN-I signaling with antioxidant host defense and infection-associated tissue damage. Video Abstract PMID:26588782

  6. Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo

    2013-01-01

    Background Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Methods Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Results Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly

  7. Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration.

    PubMed

    Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo

    2013-09-30

    Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly, however, late oxidative

  8. Oxidative stress, DNA damage and repair in carcinogenesis: have we established a connection?

    PubMed

    Georgakilas, Alexandros G

    2012-12-31

    The production of a plethora of reactive oxygen and nitrogen species in the cell and tissues as the result of endogenous or exogenous mechanisms and interaction of our cells with the environment define the so called 'oxidative load'. The final balance between the oxidatively-induced stress and the various cellular defense mechanisms draw the picture on the landscape of oxidative injury and biological consequences. In this Special Issue, I have compiled a synthesis of concise reviews by leading experts in their fields. The articles focus on the current status and advances in the various pathways leading to the production of high oxidative stress, DNA damage and its processing in human cells and tissues. Significant mechanistic insights are offered as well as connections with biological and clinical significance. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Reduced host cell reactivation of oxidatively damaged DNA in ageing human fibroblasts.

    PubMed

    Rainbow, Andrew J; Zacal, Natalie J; Leach, Derrik M

    2013-06-01

    Many reports have linked oxidative damage to DNA and the associated avoidance and/or repair processes to carcinogenesis, ageing and neurodegeneration. Cancer incidence increases with age and there is evidence that oxidative stress plays a role in human ageing and neurodegeneration. Several reports have suggested that the accumulation of unrepaired DNA lesions plays a causal role in mammalian ageing. Since base excision repair (BER) is the main pathway for the repair of oxidative DNA lesions, the relationship of BER to human ageing and carcinogenesis is of considerable interest. The aim of the present study was to examine the relationship between donor age and increasing time of cells in tissue culture and the repair of oxidative DNA damage in primary human skin fibroblasts. Methylene blue (MB) acts as a photosensitizer and after excitation by visible light (VL) produces reactive oxygen species that result in oxidative damage to DNA. MB+VL produce predominantly 8-hydroxyguanine as well as other single base modifications in DNA that are repaired by BER. We used host cell reactivation (HCR) of a non-replicating recombinant human adenovirus, Ad5CMVlacZ, which expresses the β-galactosidase (β-gal) reporter gene, to measure BER of MB+VL-damaged DNA. HCR of β-gal activity for the MB+VL-treated reporter gene was examined in 10 fibroblast strains from normal donors of ages 2 to 82. The effect of cell passage number on HCR was also examined in human skin fibroblasts from 2 normal donors. We found a significant reduction in HCR with increasing cell passage number, indicating that BER decreases with increasing time of cells grown in tissue culture. We also found a significant correlation of donor age with HCR of the MB+VL-treated reporter gene for high passage number, but not for low passage number fibroblasts. The present study provides evidence that a decrease in BER of oxidatively damaged DNA may play a role in carcinogenesis, ageing and neurodegeneration.

  10. Arsenosugar induced blood and brain oxidative stress, DNA damage and neurobehavioral impairments.

    PubMed

    Bin Sayeed, Muhammad Shahdaat; Ratan, Md; Hossen, Farhad; Hassan, Faizule; Faisal, Mohammad; Kadir, Mohammad Fahim

    2013-02-01

    The effect of Arsenosugar on motor function and contextual memory-related to place and event; the extent of DNA damage and oxidative stress in male swiss albino mice was investigated. Passive avoidance test was used for memory test; rota motor test was used for motor function. Several biochemical parameters were used for assessing oxidative stress due to arsenosugar ingestion. Decreased passive avoidance time and decreased retention time in rotating rod indicated disruption of normal neurobehavior. Significant dose-dependent DNA damage was found in mice blood and brain. Decreased super oxide dismutase, increased lipid peroxidation, decreased protein sulfohydryl content, increased protein carbonyl content in blood and hippocampal tissue; glutathione in blood and glutathione peroxidase in hippocampal tissue indicated the ability of arsenosugar to cause oxidative stress. This study concludes with evidence that arsenosugar ingestion causes higher oxidative stress, increases DNA damage in the blood and hippocampus in vivo. This might be responsible for the dysfunction of cognitive and motor functions. However, further investigation is suggested for deciphering the biomolecular mechanism.

  11. Platelet-rich plasma reduces the oxidative damage determined by a skeletal muscle contusion in rats.

    PubMed

    Martins, Rodrigo Pereira; Hartmann, Diane Duarte; de Moraes, Jefferson Potiguara; Soares, Felix Alexandre Antunes; Puntel, Gustavo Orione

    2016-12-01

    Platelet-rich plasma (PRP) has received increasing attention and is widely used in clinical practice in order to stimulate human tissue healing. Contusions are very common injuries observed in sports and affect the function of the musculoskeletal system. This study investigated the effects of PRP on the oxidative damage determined by a contusion induced in gastrocnemius muscle of rats. PRP was injected intramuscularly immediately after injury and every 48 h, and the biochemical analysis was performed 1, 3, 5, or 7 days after the contusion onset in order to evaluate the changes characteristics of the healing process. The contusion increased the levels of oxidative stress markers such as thiobarbituric acid reactive substances and oxidized dichlorofluorescein both in skeletal muscle tissue and erythrocytes preparations, and PRP treatment significantly reduced these oxidative damage markers. Furthermore, the contusion decreased the cellular viability in the site of the lesion and PRP was effective in diminishing this effect. Moreover, PRP increased the levels of enzymatic antioxidants superoxide dismutase and catalase activities in the injured muscle, and also the non-protein thiols (-SH) group levels in erythrocytes. In conclusion PRP, in the form that was used in this study, was able to modulate the oxidative damage determined by a classical skeletal muscle injury possibly by reducing the impairment of myocytes mitochondrial function and improving their endogenous antioxidant defense systems.

  12. Oxidative DNA damage during sleep periods among nightshift workers.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2016-08-01

    Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Protective effect of an aminothiazole compound against γ-radiation induced oxidative damage.

    PubMed

    De, Strayo; Devasagayam, Thomas P A

    2011-11-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. During radiotherapy of cancer, one of the undesirable side-effects is toxicity to normal cells. Compounds with antioxidant activities are being tried as 'prophylactic radioprotectants' to overcome this problem. We evaluated the protective effect of an aminothiazole compound, in the form of dendrodoine analogue (DA) originally derived from a marine tunicate, against γ-radiation-induced damage to lipid, protein, and DNA besides its cytotoxicity. Oxidative damage was examined by different biochemcial assays. Our studies reveal that DA gave significant protection, in fairly low concentrations, against damage induced by γ-radiation to rat liver mitochondria, plasmid pBR322 DNA, and mouse splenic lymphocytes in vitro. It also protected against oxidative damage in whole-body irradiated mice exposed to therapeutic dose of radiation (2 Gy) in vivo. Spleen, a major target organ for radiation damage, of the irradiated mice showed significant protection when treated with DA, as examined by histopathology. In conclusion, due to the possible protective effects against normal cells/tissues both in vitro and in vivo, DA shows potential to be a radioprotector for possible use during radiotherapy.

  14. Dimethoate-induced oxidative stress and DNA damage in Oncorhynchus mykiss.

    PubMed

    Dogan, Demet; Can, Canan; Kocyigit, Abdurrahim; Dikilitas, Murat; Taskin, Abdullah; Bilinc, Hasan

    2011-06-01

    The present study was conducted in order to investigate pro-oxidant activity of dimethoate in liver and brain tissues following sublethal pesticide exposure for 5, 15 and 30 d by using SOD, GPx, CAT enzyme activities and lipid peroxidation as biomarkers as well as DNA damaging potential via detecting% Tail DNA, Tail moment and Olive tail moment as endpoints in erythrocytes of Oncorhynchus mykiss in an in vitro experiment. Antioxidant enzyme activities were found to elicit two staged response which was an initial induction followed by a sharp inhibition in liver tissue while a sustained increase in GPx activity and slight stimulation in SOD activity were detected in brain tissue. Lipid peroxidation showed an ascending pattern throughout the exposure period in both tissues and a decreasing trend was determined in tissue protein levels which was proved to be positively correlated with duration. Similar findings were obtained from outcomes preferred to quantify DNA damage and TM was decided to reflect the extent of damage more sensitively because of determined positive correlation with concentrations applied. Considering these results, it can be concluded that oxidative stress condition evoked by dimethoate could not be responded effectively and genotoxic nature of pesticide was proven by determined clastogenic effect possibly via being an alkylation agent or stimulating the production of reactive species.

  15. The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation

    PubMed Central

    Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp

    2016-01-01

    SUMMARY Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca2+ was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei, and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation, by transducing cell swelling and lysis into proinflammatory eicosanoid signaling. PMID:27203112

  16. The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation.

    PubMed

    Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp

    2016-05-19

    Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling.

  17. Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients.

    PubMed

    Sertan Copoglu, U; Virit, Osman; Hanifi Kokacya, M; Orkmez, Mustafa; Bulbul, Feridun; Binnur Erbagci, A; Semiz, Murat; Alpak, Gokay; Unal, Ahmet; Ari, Mustafa; Savas, Haluk A

    2015-09-30

    Increasing evidence shows that oxidative stress plays a role in the pathophysiology of schizophrenia. But there is not any study which examines the effects of oxidative stress on DNA in schizophrenia patients. Therefore we aimed to assess the oxidative stress levels and oxidative DNA damage in schizophrenia patients with and without symptomatic remission. A total of 64 schizophrenia patients (38 with symptomatic remission and 26 without symptomatic remission) and 80 healthy volunteers were included in the study. 8-hydroxydeoxyguanosine (8-OHdG), total oxidant status (TOS) and total antioxidant status (TAS) were measured in plasma. TOS, oxidative stress index (OSI) and 8-OHdG levels were significantly higher in non-remission schizophrenic (Non-R-Sch) patients than in the controls. TOS and OSI levels were significantly higher in remission schizophrenic (R-Sch) patients than in the controls. TAS level were significantly lower and TOS and OSI levels were significantly higher in R-Sch patients than in Non-R-Sch patients. Despite the ongoing oxidative stress in patients with both R-Sch and Non-R-Sch, oxidative DNA damage was higher in only Non-R-Sch patients compared to controls. It is suggested that oxidative stress can cause the disease via DNA damage, and oxidative stress plays a role in schizophrenia through oxidative DNA damage.

  18. In vivo oxidation and surface damage in retrieved ethylene oxide-sterilized total knee arthroplasties.

    PubMed

    MacDonald, Daniel; Hanzlik, Josa; Sharkey, Peter; Parvizi, Javad; Kurtz, Steven M

    2012-07-01

    Gas sterilization (eg, ethylene oxide [EtO] and gas plasma) was introduced for polyethylene to reduce oxidation due to free radicals occurring during radiation sterilization. Recently, oxidation has been observed in polyethylenes with undetectable levels of free radicals, which were expected to be oxidatively stable. It is unclear whether in vivo oxidation will occur in unirradiated inserts sterilized with EtO. We analyzed the oxidation, mechanical behavior, and surface damage mechanisms of tibial inserts of a single design sterilized using EtO. We collected 20 EtO-sterilized tibial inserts at revision surgeries. We assessed oxidative using Fourier transform infrared spectroscopy and mechanical properties using the small punch test. Surface damage was assessed using damage scoring techniques and micro-CT. Oxidation indexes were low and uniform between the regions. The subtle changes did not affect the mechanical properties of the polymer. The dominant surface damage modes included burnishing, abrasion, and third-body wear. There was no evidence of delamination in the retrievals. The retrieved EtO-sterilized UHMWPE retrievals remained stable with respect to both oxidative and mechanical properties for up to 10 years in vivo. We did observe slight measurable amounts of oxidation in the inserts; however, it was far below levels that would be expected to compromise the strength of the polymer. Due to the stable oxidative and mechanical properties, EtO-sterilized tibial components appear to be an effective alternative to gamma-sterilized inserts, at least in short-term implantations.

  19. Oxidative Damage and Autophagy in the Human Trabecular Meshwork as Related with Ageing

    PubMed Central

    Pulliero, Alessandra; Seydel, Anke; Camoirano, Anna; Saccà, Sergio Claudio; Sandri, Marco; Izzotti, Alberto

    2014-01-01

    Autophagy is an intracellular lysosomal degradation process induced under stress conditions. Autophagy also plays a major role in ocular patho-physiology. Molecular aging does occur in the trabecular meshwork, the main regulator of aqueous humor outflow, and trabecular meshwork senescence is accompanied by increased oxidative stress. However, the role of autophagy in trabecular meshwork patho-physiology has not yet been examined in vivo in human ocular tissues. The purpose of the herein presented study is to evaluate autophagy occurrence in ex-vivo collected human trabecular meshwork specimens and to evaluate the relationship between autophagy, oxidative stress, and aging in this tissue. Fresh trabecular meshwork specimens were collected from 28 healthy corneal donors devoid of ocular pathologies and oxidative DNA damage, and LC3 and p62 protein expression analyzed. In a subset of 10 subjects, further to trabecular meshwork proteins, the amounts of cathepesin L and ubiquitin was analyzed by antibody microarray in aqueous humor. Obtained results demonstrate that autophagy activation, measured by LC3II/I ratio, is related with. oxidative damage occurrence during aging in human trabecular meshwork. The expression of autophagy marker p62 was lower in subjects older than 60 years as compared to younger subjects. These findings reflect the occurrence of an agedependent increase in the autophagy as occurring in the trabecular meshwork. Furthermore, we showed that aging promotes trabecular-meshwork senescence due to increased oxidative stress paralleled by autophagy increase. Indeed, both oxidative DNA damage and autophagy were more abundant in subjects older than 60 years. These findings shed new light on the role of oxidative damage and autophagy during trabecular-meshwork aging. PMID:24945152

  20. Prolonged fasting does not increase oxidative damage or inflammation in postweaned northern elephant seal pups.

    PubMed

    Vázquez-Medina, José Pablo; Crocker, Daniel E; Forman, Henry Jay; Ortiz, Rudy M

    2010-07-15

    Elephant seals are naturally adapted to survive up to three months of absolute food and water deprivation (fasting). Prolonged food deprivation in terrestrial mammals increases reactive oxygen species (ROS) production, oxidative damage and inflammation that can be induced by an increase in the renin-angiotensin system (RAS). To test the hypothesis that prolonged fasting in elephant seals is not associated with increased oxidative stress or inflammation, blood samples and muscle biopsies were collected from early (2-3 weeks post-weaning) and late (7-8 weeks post-weaning) fasted seals. Plasma levels of oxidative damage, inflammatory markers and plasma renin activity (PRA), along with muscle levels of lipid and protein oxidation, were compared between early and late fasting periods. Protein expression of angiotensin receptor 1 (AT(1)), pro-oxidant (Nox4) and antioxidant enzymes (CuZn- and Mn-superoxide dismutases, glutathione peroxidase and catalase) was analyzed in muscle. Fasting induced a 2.5-fold increase in PRA, a 50% increase in AT(1), a twofold increase in Nox4 and a 70% increase in NADPH oxidase activity. By contrast, neither tissue nor systemic indices of oxidative damage or inflammation increased with fasting. Furthermore, muscle antioxidant enzymes increased 40-60% with fasting in parallel with an increase in muscle and red blood cell antioxidant enzyme activities. These data suggest that, despite the observed increases in RAS and Nox4, an increase in antioxidant enzymes appears to be sufficient to suppress systemic and tissue indices of oxidative damage and inflammation in seals that have fasted for a prolonged period. The present study highlights the importance of antioxidant capacity in mammals during chronic periods of stress to help avoid deleterious systemic consequences.

  1. Oxidative DNA damage induced by activation of polychlorinated biphenyls (PCBs): implications for PCB-induced oxidative stress in breast cancer.

    PubMed

    Oakley, G G; Devanaboyina, U; Robertson, L W; Gupta, R C

    1996-12-01

    We have previously reported that mono- and dichlorinated biphenyls (PCBs) can be metabolized to dihydroxy compounds and further oxidized to reactive metabolites which form adducts with nitrogen and sulfur nucleophiles including DNA [Amaro et al. (1966) Chem. Res. Toxicol. 9, 623-629; Oakley et al. (1996) Carcinogenesis 17, 109-114]. The former studies also demonstrated that during the metabolism of PCBs superoxide may be produced. We have therefore examined the abilities of PCB metabolites to induce free radical-mediated oxidative DNA damage using a newly developed, highly sensitive, 32P-postlabeling assay for 8-oxode-oxyguanosine (8-oxodG) [Devanaboyina, U., and Gupta, R. (1996) Carcinogenesis 17, 917-924]. The incubation of 3,4-dichloro-2'5'-dihydroxybiphenyl (100 microM) with calf thymus DNA (300 micrograms/microL) in the presence of the breast tissue and milk-associated enzyme, lactoperoxidase (10 mU/mL), and H2O2 (0.5 mM) resulted in a significant increase in free radical-induced DNA damage (253 8-oxodG/10(6) nucleotides) as compared to vehicle-treated DNA (118 8-oxodG/10(6) nucleotides). Substituting CuCl(2) (100 microM) for lactoperoxidase/H2O2, however, resulted in a substantial increase in 8-oxodG content (2669 8-oxodG/10(6) nucleotides). FeCl(3) was ineffective, suggesting that CuCl(2) but not FeCl(3) mediates oxidation of PCB dihydroxy metabolites, resulting in oxidative DNA damage. The addition of catalase (100 U/mL) and sodium azide (0.1 M) reduced the effect of CuCl(2) (849 and 896 8-oxodG/10(6) nucleotides, respectively), while superoxide dismutase (600 U/mL) moderately stimulated and glutathione (100 microM) substantially stimulated 8-oxodG formation (3014 and 4415 8-oxodG/10(6) nucleotides, respectively). The effect of various buffers as well as the effects of PCB structure on Cu(II)-mediated oxidative DNA damage were examined. These results demonstrate that free radicals and oxidative DNA damage are produced during oxidation of lower chlorinated

  2. Ceruloplasmin protects injured spinal cord from iron-mediated oxidative damage.

    PubMed

    Rathore, Khizr I; Kerr, Bradley J; Redensek, Adriana; López-Vales, Rubèn; Jeong, Suh Young; Ponka, Prem; David, Samuel

    2008-11-26

    CNS injury-induced hemorrhage and tissue damage leads to excess iron, which can cause secondary degeneration. The mechanisms that handle this excess iron are not fully understood. We report that spinal cord contusion injury (SCI) in mice induces an "iron homeostatic response" that partially limits iron-catalyzed oxidative damage. We show that ceruloplasmin (Cp), a ferroxidase that oxidizes toxic ferrous iron, is important for this process. SCI in Cp-deficient mice demonstrates that Cp detoxifies and mobilizes iron and reduces secondary tissue degeneration and functional loss. Our results provide new insights into how astrocytes and macrophages handle iron after SCI. Importantly, we show that iron chelator treatment has a delayed effect in improving locomotor recovery between 3 and 6 weeks after SCI. These data reveal important aspects of the molecular control of CNS iron homeostasis after SCI and suggest that iron chelator therapy may improve functional recovery after CNS trauma and hemorrhagic stroke.

  3. Contribution of Oxidative Damage to Antimicrobial Lethality▿

    PubMed Central

    Wang, Xiuhong; Zhao, Xilin

    2009-01-01

    A potential pathway linking hydroxyl radicals to antimicrobial lethality was examined by using mutational and chemical perturbations of Escherichia coli. Deficiencies of sodA or sodB had no effect on norfloxacin lethality; however, the absence of both genes together reduced lethal activity, consistent with rapid conversion of excessive superoxide to hydrogen peroxide contributing to quinolone lethality. Norfloxacin was more lethal with a mutant deficient in katG than with its isogenic parent, suggesting that detoxification of peroxide to water normally reduces quinolone lethality. An iron chelator (bipyridyl) and a hydroxyl radical scavenger (thiourea) reduced the lethal activity of norfloxacin, indicating that norfloxacin-stimulated accumulation of peroxide affects lethal activity via hydroxyl radicals generated through the Fenton reaction. Ampicillin and kanamycin, antibacterials unrelated to fluoroquinolones, displayed behavior similar to that of norfloxacin except that these two agents showed hyperlethality with an ahpC (alkyl hydroperoxide reductase) mutant rather than with a katG mutant. Collectively, these data are consistent with antimicrobial stress increasing the production of superoxide, which then undergoes dismutation to peroxide, from which a highly toxic hydroxyl radical is generated. Hydroxyl radicals then enhance antimicrobial lethality, as suggested by earlier work. Such findings indicate that oxidative stress networks may provide targets for antimicrobial potentiation. PMID:19223646

  4. Obesity Exacerbates Sepsis-Induced Oxidative Damage in Organs.

    PubMed

    Petronilho, Fabricia; Giustina, Amanda Della; Nascimento, Diego Zapelini; Zarbato, Graciela Freitas; Vieira, Andriele Aparecida; Florentino, Drielly; Danielski, Lucinéia Gainski; Goldim, Mariana Pereira; Rezin, Gislaine Tezza; Barichello, Tatiana

    2016-12-01

    Sepsis progression is linked to the imbalance between reactive oxygen species and antioxidant enzymes. Sepsis affects multiple organs, but when associated with a chronic inflammatory disease, such as obesity, it may be exacerbated. We hypothesized that obesity could aggravate the oxidative damage to peripheral organs of rats submitted to an animal model of sepsis. Male Wistar rats aged 8 weeks received hypercaloric nutrition for 2 months to induce obesity. Sepsis was induced by cecal ligation and puncture (CLP) procedure, and sham-operated rats were considered as control group. The experimental groups were divided into sham + eutrophic, sham + obese, CLP + eutrophic, and CLP + obese. Twelve and 24 h after surgery, oxidative damage to lipids and proteins and superoxide dismutase (SOD) and catalase (CAT) activities were evaluated in the liver, lung, kidney, and heart. The data indicate that obese rats subjected to sepsis present oxidative stress mainly in the lung and liver. This alteration reflected an oxidative damage to lipids and proteins and an imbalance of SOD and CAT levels, especially 24 h after sepsis. It follows that obesity due to its pro-inflammatory phenotype can aggravate sepsis-induced damage in peripheral organs.

  5. Oxidative damage is ameliorated by curcumin treatment in brain and sciatic nerve of diabetic rats.

    PubMed

    Acar, Abdullah; Akil, Esref; Alp, Harun; Evliyaoglu, Osman; Kibrisli, Erkan; Inal, Ali; Unan, Fatma; Tasdemir, Nebahat

    2012-07-01

    To date, there have not been enough studies about the effects of curcumin against oxidative stress on sciatic nerves caused by streptozotocin (STZ) in diabetic rats. Therefore, this study was undertaken to determine whether curcumin, by virtue of its antioxidant properties, could affect the oxidant/antioxidant balance in the sciatic nerve and brain tissues of streptozotocin (STZ)-induced diabetic rats. A total of 28 rats were randomly divided into four groups of seven rats each: normal controls, only curcumin treated, diabetic controls, and diabetics treated with curcumin. Biomarkers-malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and NO levels-for oxidative stress in the brain and sciatic nerve tissues of the rats were measured. We found a significant increase in MDA, NO, TOS, and OSI, along with a reduction in TAS levels in the brains and sciatic nerves of the STZ-induced diabetic rats (for both parameters p < 0.05). The MDA, TOS, OSI, and NO levels in these tissues were significantly reduced in the curcumin-treated diabetic group compared to the untreated diabetic group. In conclusion, the results of this study suggested that curcumin exhibits neuroprotective effects against oxidative damage in the brain and sciatic tissues of diabetic rats.

  6. Mass spectrometric quantification of amino acid oxidation products identifies oxidative mechanisms of diabetic end-organ damage

    PubMed Central

    Vivekanadan-Giri, Anuradha; Wang, Jeffrey H.; Byun, Jaeman

    2010-01-01

    Diabetes mellitus is increasingly prevalent worldwide. Diabetic individuals are at markedly increased risk for premature death due to cardiovascular disease. Furthermore, substantial morbidity results from microvascular complications which include retinopathy, nephropathy, and neuropathy. Clinical studies involving diabetic patients have suggested that degree of diabetic hyperglycemia correlates with risk of complications. Recent evidence implicates a central role for oxidative stress and vascular inflammation in all forms of insulin resistance, obesity, diabetes and its complications. Although, glucose promotes glycoxidation reactions in vitro and products of glycoxidation and lipoxidation are elevated in plasma and tissue in diabetics, the exact relationships among hyperglycemia, the diabetic state, and oxidative stress are not well-understood. Using a combination of in vitro and in vivo experiments, we have identified amino acid oxidation markers that serve as molecular fingerprints of specific oxidative pathways. Quantification of these products utilizing highly sensitive and specific gas chromatography/mass spectrometry in animal models of diabetic complications and in humans has provided insights in oxidative pathways that result in diabetic complications. Our studies strongly support the hypothesis that unique oxidants are generated in the microenvironment of tissues vulnerable to diabetic damage. Potential therapies interrupting these reactive pathways in target tissue are likely to be beneficial in preventing diabetic complications. PMID:18752069

  7. Can graphene oxide cause damage to eyesight?

    PubMed

    Yan, Lu; Wang, Yaping; Xu, Xu; Zeng, Chao; Hou, Jiangping; Lin, Mimi; Xu, Jingzhou; Sun, Fei; Huang, Xiaojie; Dai, Liming; Lu, Fan; Liu, Yong

    2012-06-18

    As graphene becomes one of the most exciting candidates for multifunctional biomedical applications, contact between eyes and graphene-based materials is inevitable. On the other hand, eyes, as a special organ in the human body, have unique advantages to be used for testing new biomedical research and development, such as drug delivery. Intraocular biocompatible studies on graphene-related materials are thus essential. Here, we report our recent studies on intraocular biocompatibility and cytotoxicity of graphene oxide (GO) both in vitro and in vivo. The successful preparation of GO nanosheets was confirmed using atomic force microscopy, contact angle analyzer, Fourier transform infrared spectroscopy, and Raman spectroscopy. The influence of GO on human retinal pigment epithelium (RPE) cells in terms of the cell morphology, viability, membrane integrity, and apoptosis was investigated using various techniques, including optical micrography, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, and apoptosis assay. The addition of GO had little influence on cell morphology, but the change was visible after long-time culturing. RPE cells showed higher than 60% cell viability by CCK-8 assay in GO solutions and less than 8% LDH release, although a small amount of apoptosis (1.5%) was observed. In vitro results suggested good biocompatibility of GO to RPE cells with slight adverse influence, on the cell viability and morphology in long-time periods, along with aggregation of GO. Thus, some further studies are needed to clarify the cytotoxicity mechanism of GO. GO intravitreally injected eyes showed few changes in eyeball appearance, intraocular pressure (IOP), eyesight, and histological photos. Our results suggested that GO did not cause any significant toxicity to the cell growth and proliferation. Intravitreal injection of GO into rabbits' eyes did not lead to much change in the eyeball appearance, IOP, electroretinogram, and histological examination.

  8. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage.

    PubMed

    Farfán Labonne, Blanca Eugenia; Gutiérrez, Mario; Gómez-Quiroz, Luis Enrique; Konigsberg Fainstein, Mina; Bucio, Leticia; Souza, Verónica; Flores, Oscar; Ortíz, Victor; Hernández, Elizabeth; Kershenobich, David; Gutiérrez-Ruíz, María Concepción

    2009-12-01

    Acetaldehyde (Ac), the main metabolite of ethanol oxidation, is a very reactive compound involved in alcohol-induced liver damage. In the present work, we studied the effect of Ac in mitochondria functionality. Mitochondria from Wistar rats were isolated and treated with Ac. Ac decreased respiratory control by 50% which was associated with a decrease in adenosine triphosphate content (28.5%). These results suggested that Ac could be inducing changes in cell redox status. We determined protein oxidation, superoxide dismutase (SOD) activity, and glutathione ratio, indicating that Ac induced an enhanced oxidation of proteins and a decrease in SOD activity (90%) and glutathione/oxidized GSH ratio (36%). The data suggested that Ac-induced oxidative stress mediated by mitochondria dysfunction can lead to cell sensitization and to a second oxidative challenge. We pretreated hepatocytes with Ac followed by treatment with antimycin A, and this experiment revealed a noticeable decrease in cell viability, determined by neutral red assay, in comparison with cells treated with Ac alone. Our data demonstrate that Ac impairs mitochondria functionality generating oxidative stress that sensitizes cells to a second damaging signal contributing to the development of alcoholic liver disease.

  9. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  10. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  11. Anti- and pro-oxidant effects of (+)-catechin on hemoglobin-induced protein oxidative damage.

    PubMed

    Lu, Naihao; Chen, Puqing; Yang, Qin; Peng, Yi-Yuan

    2011-06-01

    Evidence to support the role of heme proteins as major inducers of oxidative damage is increasingly present. Flavonoids have been widely used to ameliorate oxidative damage in vivo and in vitro, where the mechanism of this therapeutic action was usually dependent on their anti-oxidant effects. In this study, we investigated the influence of (+)-catechin, a polyphenol identified in tea, cocoa, and red wine, on hemoglobin-induced protein oxidative damage. It was found that (+)-catechin had the capacities to act as a free radical scavenger and reducing agent to remove cytotoxic ferryl hemoglobin, demonstrating apparent anti-oxidant activities. However, the presence of (+)-catechin surprisingly promoted hemoglobin-induced protein oxidation, which was probably due to the ability of this anti-oxidant to rapidly trigger the oxidative degradation of normal hemoglobin. In addition, hemoglobin-H2O2-induced protein carbonyl formation was significantly enhanced by (+)-catechin at lower concentrations, while it was efficiently inhibited when higher concentrations were used. These novel results showed that the dietary intake and therapeutic use of catechins might possess pro-oxidant activity through aggravating hemoglobin-related oxidative damage. The dual effects on hemoglobin redox reactions may provide new insights into the physiological implications of tea extract and wine (catechins) with cellular heme proteins.

  12. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    PubMed

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  13. A radiation damage repair model for normal tissues

    NASA Astrophysics Data System (ADS)

    Partridge, Mike

    2008-07-01

    A cellular Monte Carlo model describing radiation damage and repair in normal epithelial tissues is presented. The deliberately simplified model includes cell cycling, cell motility and radiation damage response (cell cycle arrest and cell death) only. Results demonstrate that the model produces a stable equilibrium system for mean cell cycle times in the range 24-96 h. Simulated irradiation of these stable equilibrium systems produced a range of responses that are shown to be consistent with experimental and clinical observation, including (i) re-epithelialization of radiation-induced lesions by a mixture of cell migration into the wound and repopulation at the periphery; (ii) observed radiosensitivity that is quantitatively consistent with both rate of induction of irreparable DNA lesions and, independently, with the observed acute oral and pharyngeal mucosal reactions to radiotherapy; (iii) an observed time between irradiation and maximum toxicity that is consistent with experimental data for skin; (iv) quantitatively accurate predictions of low-dose hyper-radiosensitivity; (v) Gomperzian repopulation for very small lesions (~2000 cells) and (vi) a linear rate of re-epithelialization of 5-10 µm h-1 for large lesions (>15 000 cells).

  14. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model.

    PubMed

    Sanders, Laurie H; Greenamyre, J Timothy

    2013-09-01

    Parkinson disease (PD), the most common neurodegenerative movement disorder, is associated with selective degeneration of nigrostriatal dopamine neurons. Although the underlying mechanisms contributing to neurodegeneration in PD seem to be multifactorial, mitochondrial impairment and oxidative stress are widely considered to be central to many forms of the disease. Whether oxidative stress is a cause or a consequence of dopaminergic death, there is substantial evidence for oxidative stress both in human PD patients and in animal models of PD, especially using rotenone, a complex I inhibitor. There are many indices of oxidative stress, but this review covers the recent evidence for oxidative damage to nucleic acids, lipids, and proteins in both the brain and the peripheral tissues in human PD and in the rotenone model. Limitations of the existing literature and future perspectives are discussed. Understanding how each particular macromolecule is damaged by oxidative stress and the interplay of secondary damage to other biomolecules may help us design better targets for the treatment of PD. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion

    PubMed Central

    Rodríguez-Lara, Simón Quetzalcoatl; Ramírez-Lizardo, Ernesto Javier; Totsuka-Sutto, Sylvia Elena; Castillo-Romero, Araceli; García-Cobián, Teresa Arcelia

    2016-01-01

    Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states. PMID:28116037

  16. Bromination of deoxycytidine by eosinophil peroxidase: A mechanism for mutagenesis by oxidative damage of nucleotide precursors

    PubMed Central

    Henderson, Jeffrey P.; Byun, Jaeman; Williams, Michelle V.; McCormick, Michael L.; Parks, William C.; Ridnour, Lisa A.; Heinecke, Jay W.

    2001-01-01

    Oxidants generated by eosinophils during chronic inflammation may lead to mutagenesis in adjacent epithelial cells. Eosinophil peroxidase, a heme enzyme released by eosinophils, generates hypobromous acid that damages tissue in inflammatory conditions. We show that human eosinophils use eosinophil peroxidase to produce 5-bromodeoxycytidine. Flow cytometric, immunohistochemical, and mass spectrometric analyses all demonstrated that 5-bromodeoxycytidine generated by eosinophil peroxidase was taken up by cultured cells and incorporated into genomic DNA as 5-bromodeoxyuridine. Although previous studies have focused on oxidation of chromosomal DNA, our observations suggest another mechanism for oxidative damage of DNA. In this scenario, peroxidase-catalyzed halogenation of nucleotide precursors yields products that subsequently can be incorporated into DNA. Because the thymine analog 5-BrUra mispairs with guanine in DNA, generation of brominated pyrimidines by eosinophils might constitute a mechanism for cytotoxicity and mutagenesis at sites of inflammation. PMID:11172002

  17. Ascorbic acid and beta-carotene reduce stress-induced oxidative organ damage in rats.

    PubMed

    Esrefoglu, M; Akinci, A; Taslidere, E; Elbe, H; Cetin, A; Ates, B

    2016-10-01

    Antioxidants are potential therapeutic agents for reducing stress-induced organ damage. We investigated the effects of ascorbic acid and β-carotene on oxidative stress-induced cerebral, cerebellar, cardiac and hepatic damage using microscopy and biochemistry. Male Wistar albino rats were divided into five groups: untreated control, stressed, stressed + saline, stressed + ascorbic acid and stressed + β-carotene. The rats in the stressed groups were subjected to starvation, immobilization and cold. The histopathological damage scores for the stressed and stressed + saline groups were higher than those of the control group for all organs examined. The histopathological damage scores and mean tissue malondialdehyde levels for the groups treated with antioxidants were lower than those for the stressed and stressed + saline groups. Mean tissue superoxide dismutase activities for groups that received antioxidants were higher than those for the stressed + saline group for most organs evaluated. Ascorbic acid and β-carotene can reduce stress-induced organ damage by both inhibiting lipid oxidation and supporting the cellular antioxidant defense system.

  18. N-acetylcysteine amide protects against methamphetamine-induced tissue damage in CD-1 mice.

    PubMed

    Zhang, X; Tobwala, S; Ercal, N

    2012-09-01

    Methamphetamine (METH), a highly addictive drug used worldwide, induces oxidative stress in various animal organs, especially the brain. This study evaluated oxidative damage caused by METH to tissues in CD-1 mice and identified a therapeutic drug that could protect against METH-induced toxicity. Male CD-1 mice were pretreated with a novel thiol antioxidant, N-acetylcysteine amide (NACA, 250 mg/kg body weight) or saline. Following this, METH (10 mg/kg body weight) or saline intraperitoneal injections were administered every 2 h over an 8-h period. Animals were killed 24 h after the last exposure. NACA-treated animals exposed to METH experienced significantly lower oxidative stress in their kidneys, livers, and brains than the untreated group, as indicated by their levels of glutathione, malondialdehyde, and protein carbonyl and their catalase and glutathione peroxidase activity. This suggests that METH induces oxidative stress in various organs and that a combination of NACA as a neuro- or tissue-protective agent, in conjunction with current treatment, might effectively treat METH abusers.

  19. Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment.

    PubMed

    Reckziegel, Patrícia; Dias, Verônica Tironi; Benvegnú, Dalila; Boufleur, Nardeli; Silva Barcelos, Raquel Cristine; Segat, Hecson Jesser; Pase, Camila Simonetti; Dos Santos, Clarissa Marques Moreira; Flores, Erico Marlon Moraes; Bürger, Marilise Escobar

    2011-05-30

    We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Acetyl-L-carnitine protects neuronal function from alcohol-induced oxidative damage in the brain.

    PubMed

    Rump, Travis J; Abdul Muneer, P M; Szlachetka, Adam M; Lamb, Allyson; Haorei, Catherine; Alikunju, Saleena; Xiong, Huangui; Keblesh, James; Liu, Jianuo; Zimmerman, Matthew C; Jones, Jocelyn; Donohue, Terrence M; Persidsky, Yuri; Haorah, James

    2010-11-30

    The studies presented here demonstrate the protective effect of acetyl-L-carnitine (ALC) against alcohol-induced oxidative neuroinflammation, neuronal degeneration, and impaired neurotransmission. Our findings reveal the cellular and biochemical mechanisms of alcohol-induced oxidative damage in various types of brain cells. Chronic ethanol administration to mice caused an increase in inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine adduct formation in frontal cortical neurons but not in astrocytes from brains of these animals. Interestingly, alcohol administration caused a rather selective activation of NADPH oxidase (NOX), which, in turn, enhanced levels of reactive oxygen species (ROS) and 4-hydroxynonenal, but these were predominantly localized in astrocytes and microglia. Oxidative damage in glial cells was accompanied by their pronounced activation (astrogliosis) and coincident neuronal loss, suggesting that inflammation in glial cells caused neuronal degeneration. Immunohistochemistry studies indicated that alcohol consumption induced different oxidative mediators in different brain cell types. Thus, nitric oxide was mostly detected in iNOS-expressing neurons, whereas ROS were predominantly generated in NOX-expressing glial cells after alcohol ingestion. Assessment of neuronal activity in ex vivo frontal cortical brain tissue slices from ethanol-fed mice showed a reduction in long-term potentiation synaptic transmission compared with slices from controls. Coadministration of ALC with alcohol showed a significant reduction in oxidative damage and neuronal loss and a restoration of synaptic neurotransmission in this brain region, suggesting that ALC protects brain cells from ethanol-induced oxidative injury. These findings suggest the potential clinical utility of ALC as a neuroprotective agent that prevents alcohol-induced brain damage and development of neurological disorders. Published by Elsevier Inc.

  1. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress.

    PubMed

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-11-13

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy.

  2. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  3. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    PubMed

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  4. DNA damage in digestive gland and mantle tissue of the mussel Perna perna.

    PubMed

    de Almeida, Eduardo Alves; Marques, Sabrina de Almeida; Klitzke, Clécio Fernando; Bainy, Afonso Celso Dias; de Medeiros, Marisa Helena Gennari; Di Mascio, Paolo; Loureiro, Ana Paula de Melo

    2003-07-01

    Data concerning the susceptibility of DNA to damage by reactive oxygen and nitrogen species and other endogenous compounds produced by physiological stress in marine organisms is lacking, especially in bivalve mollusks. In this article, we analyzed the background levels of lipid peroxidation (malondialdehyde, MDA), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 1,N2-etheno-2'-deoxyguanosine (1,N2-epsilon dGuo) in digestive gland and mantle tissue of mussels Perna perna collected at a cultivation zone in Florianópolis (Santa Catarina, Brazil). The present data point to the possibility of the use of both 8-oxodGuo and 1,N2-epsilon dGuo as complementary indicators of oxidative stress processes in mussels. A sensitive method coupling high performance liquid chromatography to mass spectrometry was applied for the detection of 1,N2-epsilon dGuo in mussel tissues.

  5. Guarding chromosomes from oxidative DNA damage to the very end.

    PubMed

    Tan, Rong; Lan, Li

    2016-07-01

    The ends of each chromosome are capped by the telomere assembly to protect chromosomal integrity from telomere attrition and DNA damage. In response to DNA damage, DNA repair factors are enriched at damage sites by a sophisticated signaling and recruitment cascade. However, DNA damage response at telomeres is different from non-telomeric region of genomic DNA due to specialized sequences and structures of the telomeres. In the course of normal DNA replication or DNA damage repair, both the telomere shelterin protein complex and the condensed telomeric chromatin structure in mammalian cells are modified to protect telomeres from exposing free DNA ends which are subject to both telemere shortening and chromosome end fusion. Initiation of either homologous recombination or non-homologous end joint repair at telomeres requires disassembling and/or post-translational modifications of the shelterin complex and telomeric chromatin. In addition, cancer cells utilize distinct mechanisms to maintain telomere length and cell survival upon damage. In this review, we summarize current studies that focus on telomere end protection and telomere DNA repair using different methodologies to model telomere DNA damage and disruption. These include genetic ablation of sheltering proteins, targeting endonuclease to telomeres, and delivering oxidative damage directly. These different approaches, when combined, offer better understanding of the mechanistic differences in DNA damage response between telomeric and genomic DNA, which will provide new hope to identify potential cancer therapeutic targets to curtail cancer cell proliferation via induction of telomere dysfunctions. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    NASA Technical Reports Server (NTRS)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  7. Antioxidant enzymatic defenses and oxidative damage in Dentex dentex fed on different dietary macronutrient levels.

    PubMed

    Pérez-Jiménez, Amalia; Hidalgo, M Carmen; Morales, Amalia E; Arizcun, Marta; Abellán, Emilia; Cardenete, Gabriel

    2009-11-01

    A wide range of antioxidant mechanisms are present in fish maintaining an adequate "oxidative balance". When this balance tilts in favor of the oxidant agents "oxidative stress" arises with detrimental effects in molecules of great biological importance. Little has been reported about the influence of different dietary energy sources on antioxidant defenses in fish. The influence of different dietary macronutrient combinations on the key antioxidant enzyme activity, the oxidative damage to lipids and proteins and the possible modifications in the SOD isoenzymatic pattern were evaluated in liver, white muscle, heart and erythrocytes of common dentex (Dentex dentex). Four experimental diets with different protein:lipid:carbohydrate ratios (43/16/28; 43/24/4; 38/19/28 and 38/24/13) were formulated. In general, neither different dietary macronutrient levels nor the interaction among them induces substantial modifications in enzymatic antioxidant defense mechanisms. Two constitutive SOD isoforms, CuZn-SOD I and Mn-SOD, were detected in the tissues analyzed in all experimental groups, independently of diet formulation, but, a third SOD isoenzyme, CuZn-SOD II seems to be induced in white muscle by higher dietary protein levels. Densitometric analyses of western blotting membranes revealed higher CuZn-SOD expression in the heart of dentex fed on lower dietary protein levels, although these differences did not correlate with the SOD activity. Finally, a direct relation exists between the lipid or protein intake level and occurrence of oxidative damage in different tissue components.

  8. DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos

    PubMed Central

    Montero, Juan A.; Sanchez-Fernandez, Cristina; Lorda-Diez, Carlos I.; Garcia-Porrero, Juan A.; Hurle, Juan M.

    2016-01-01

    DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of γH2AX with other downstream DNA repair factors, including MDC1, Rad50 and 53BP1 suggests a defensive response of cells against DNA damage. The relative distribution of cells γH2AX-only positive, TUNEL-only positive, and cells double positive for both markers is consistent with a sequence of degenerative events starting by damage of the DNA. In support of this interpretation, the relative number of γH2AX-only cells increases after caspase inhibition while the relative number of TUNEL-only cells increases after inhibition of ATM. Furthermore, cultured interdigits survived and maintained intense chondrogenic potential, even at advanced stages of degeneration, discarding a previous commitment to die. Our findings support a new biological paradigm considering embryonic cell death secondary to genotoxic stimuli, challenging the idea that considers physiological cell death a cell suicide regulated by an internal death clock that pre-programmes degeneration. PMID:27752097

  9. Measuring Oxidative DNA Damage With 8-Hydroxy-2'-Deoxyguanosine Levels in Patients With Laryngeal Cancer.

    PubMed

    Mazlumoglu, Muhammet Recai; Ozkan, Ozalkan; Alp, Hamit Hakan; Ozyildirim, Ercan; Bingol, Fatih; Yoruk, Ozgur; Kuduban, Ozan

    2017-02-01

    8-Hydroxy-2'-deoxyguanosine is a biomolecule associated with DNA damage. We evaluated oxidative stress and DNA damage in patients with laryngeal cancer by measuring 8-hydroxy-2'-deoxyguanosine levels. This study enrolled 117 subjects, including 64 controls and 53 patients who had benign vocal cord lesions or laryngeal cancer. The benign excised lesions, tumor tissue, noncancerous laryngeal tissue, blood, and urine were subjected to high-performance liquid chromatography, and 8-hydroxy-2'-deoxyguanosine levels were compared between groups. Blood and urine 8-hydroxy-2'-deoxyguanosine levels in patients with laryngeal carcinoma were significantly higher than in the controls ( P = .00002, P = .00001). The 8-hydroxy-2'-deoxyguanosine level was significantly higher in tumor tissues than in non-tumor tissue and benign vocal cord lesion tissues ( P = .00002, P = .000001). We determined that laryngeal cancer was associated with oxidative stress, which may be quantified by measuring 8-hydroxy-2'-deoxyguanosine. For a patient with a suspicious laryngeal lesion, 8-hydroxy-2'-deoxyguanosine levels in blood and urine can provide advance information about the likely diagnosis.

  10. Oxidative stress and mitochondrial damage in coronary artery bypass graft surgery: effects of antioxidant treatments.

    PubMed

    Milei, J; Ferreira, R; Grana, D R; Boveris, A

    2001-01-01

    We examined antioxidant actions in 73 patients undergoing coronary artery surgery by assessing mitochondrial damage and oxidative stress in ventricular biopsies obtained at preischemia and postreperfusion. Those patients who received antioxidant therapy benefited by less oxidative stress and mitochondrial damage.

  11. Reduction in oxidatively generated DNA damage following smoking cessation

    PubMed Central

    2011-01-01

    Background Cigarette smoking is a known cause of cancer, and cancer may be in part due to effects of oxidative stress. However, whether smoking cessation reverses oxidatively induced DNA damage unclear. The current study sought to examine the extent to which three DNA lesions showed significant reductions after participants quit smoking. Methods Participants (n = 19) in this study were recruited from an ongoing 16-week smoking cessation clinical trial and provided blood samples from which leukocyte DNA was extracted and assessed for 3 DNA lesions (thymine glycol modification [d(TgpA)]; formamide breakdown of pyrimidine bases [d(TgpA)]; 8-oxo-7,8-dihydroguanine [d(Gh)]) via liquid chromatography tandem mass spectrometry (LC-MS/MS). Change in lesions over time was assessed using generalized estimating equations, controlling for gender, age, and treatment condition. Results Overall time effects for the d(TgpA) (χ2(3) = 8.068, p < 0.045), d(PfpA) (χ2(3) = 8.477, p < 0.037), and d(Gh) (χ2(3) = 37.599, p < 0.001) lesions were seen, indicating levels of each decreased significantly after CO-confirmed smoking cessation. The d(TgpA) and d(PfpA) lesions show relatively greater rebound at Week 16 compared to the d(Gh) lesion (88% of baseline for d(TgpA), 64% of baseline for d(PfpA), vs 46% of baseline for d(Gh)). Conclusions Overall, results from this analysis suggest that cigarette smoking contributes to oxidatively induced DNA damage, and that smoking cessation appears to reduce levels of specific damage markers between 30-50 percent in the short term. Future research may shed light on the broader array of oxidative damage influenced by smoking and over longer durations of abstinence, to provide further insights into mechanisms underlying carcinogenesis. PMID:21569419

  12. The acute toxicity of iron and copper: biomolecule oxidation and oxidative damage in rat liver.

    PubMed

    Boveris, Alberto; Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Torti, Horacio; Massot, Francisco; Repetto, Marisa G

    2012-11-01

    The transition metals iron (Fe) and copper (Cu) are needed at low levels for normal health and at higher levels they become toxic for humans and animals. The acute liver toxicity of Fe and Cu was studied in Sprague Dawley male rats (200 g) that received ip 0-60 mg/kg FeCl(2) or 0-30 mg/kg CuSO(4). Dose and time-responses were determined for spontaneous in situ liver chemiluminescence, phospholipid lipoperoxidation, protein oxidation and lipid soluble antioxidants. The doses linearly defined the tissue content of both metals. Liver chemiluminescence increased 4 times and 2 times after Fe and Cu overloads, with half maximal responses at contents (C(50%)) of 110 μgFe/g and 42 μgCu/g liver, and with half maximal time responses (t(1/2)) of 4h for both metals. Phospholipid peroxidation increased 4 and 1.8 times with C(50%) of 118 μg Fe/g and 45 μg Cu/g and with t(1/2) of 7h and 8h. Protein oxidation increased 1.6 times for Fe with C(50%) at 113 μg Fe/g and 1.2 times for Cu with 50 μg Cu/g and t(1/2) of 4h and 5h respectively. The accumulation of Fe and Cu in liver enhanced the rate of free radical reactions and produced oxidative damage. A similar free radical-mediated process, through the formation HO(•) and RO(•) by a Fenton-like homolytic scission of H(2)O(2) and ROOH, seems to operate as the chemical mechanism for the liver toxicity of both metals.

  13. Overloaded training increases exercise-induced oxidative stress and damage.

    PubMed

    Palazzetti, Stephane; Richard, Marie-Jeanne; Favier, Alain; Margaritis, Irene

    2003-08-01

    We hypothesized that overloaded training (OT) in triathlon would induce oxidative stress and damage on muscle and DNA. Nine male triathletes and 6 male sedentary subjects participated in this study. Before and after a 4-week OT, triathletes exercised for a duathlon. Blood ratio of reduced vs. oxidized glutathione (GSH/GSSG), plasma thiobarbituric acid reactive substances (TBARS), leukocyte DNA damage, creatine kinase (CK), and CK-MB mass in plasma, erythrocyte superoxide dismutase (SOD) activity, erythrocyte and plasma glutathione peroxidase (GSH-Px) activities, and plasma total antioxidant status (TAS) were measured before and after OT in pre- and postexercise situations. Triathletes were overloaded in response to OT. In rest conditions, OT induced plasma GSH-Px activity increase and plasma TAS decrease (both p < 0.05). In exercise conditions, OT resulted in higher exercise-induced variations of blood GSH/GSSG ratio, TBARS level (both p < 0.05), and CK-MB mass (p < 0.01) in plasma; and decreased TAS response (p < 0.05). OT could compromise the antioxidant defense mechanism with respect to exercise-induced response. The resulting increased exercise-induced oxidative stress and further cellular susceptibility to damage needs more study.

  14. Fermented goat milk improves antioxidant status and protects from oxidative damage to biomolecules during anemia recovery.

    PubMed

    Moreno-Fernandez, Jorge; Diaz-Castro, Javier; Alférez, María Jm; Boesch, Christine; Nestares, Teresa; López-Aliaga, Inmaculada

    2017-03-01

    Iron deficiency anemia (IDA) is one of the most common nutritional problems in the world, and it is accepted that reactive oxygen species (ROS) production is altered during IDA. The aim of this study was to assess the influence of fermented goat and cow milks on enzymatic antioxidant activities and gene expression, and their role in protecting from oxidative damage during anemia recovery. After feeding the fermented milks-based diets (cow or goat), a significant elevation of some antioxidant endogenous enzymes was found, together with an increase in total antioxidant status (TAS), and a decrease in 8-hydroxy-2'-deoxyguanosine (8-OHdG) was recorded in animals consuming fermented goat milk-based diet. In contrast, DNA strand breaks, hydroperoxides, 15-F2t-isoprostanes and protein carbonyl groups were lower in some tissues in animals fed fermented goat milk-based diet, revealing an improvement in both systemic and cellular antioxidant activity of plasma and tissues due to fermented goat milk consumption. Fermented goat milk consumption induces a protective increase in TAS together with lower oxidative damage biomarkers, revealing that the milk protects main cell bioconstituents (lipids, protein, DNA, prostaglandins) from evoked oxidative damage during anemia recovery. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Biochemical and Biological Characterization of a New Oxidized Avidin with Enhanced Tissue Binding Properties

    PubMed Central

    Verdoliva, Antonio; Bellofiore, Piero; Rivieccio, Vincenzo; Catello, Sergio; Colombo, Maurizio; Albertoni, Claudio; Rosi, Antonio; Leoni, Barbara; Anastasi, Anna Maria; De Santis, Rita

    2010-01-01

    Chicken avidin and bacterial streptavidin are widely employed in vitro for their capacity to bind biotin, but their pharmacokinetics and immunological properties are not always optimal, thereby limiting their use in medical treatments. Here we investigate the biochemical and biological properties of a new modified avidin, obtained by ligand-assisted sodium periodate oxidation of avidin. This method allows protection of biotin-binding sites of avidin from inactivation caused by the oxidation step and delay of avidin clearance from injected tissue by generation of aldehyde groups from avidin carbohydrate moieties. Oxidized avidin shows spectroscopic properties similar to that of native avidin, indicating that tryptophan residues are spared from oxidation damage. In strict agreement with these results, circular dichroism and isothermal titration calorimetry analyses confirm that the ligand-assisted oxidation preserves the avidin protein structure and its biotin binding capacity. In vitro cell binding and in vivo tissue residence experiments demonstrate that aldehyde groups provide oxidized avidin the property to bind cellular and interstitial protein amino groups through Schiff's base formation, resulting in a tissue half-life of 2 weeks, compared with 2 h of native avidin. In addition, the efficient uptake of the intravenously injected 111In-BiotinDOTA (ST2210) in the site previously treated with modified avidin underlines that tissue-bound oxidized avidin retains its biotin binding capacity in vivo. The results presented here indicate that oxidized avidin could be employed to create a stable artificial receptor in diseased tissues for the targeting of biotinylated therapeutics. PMID:20100839

  16. Biochemical and biological characterization of a new oxidized avidin with enhanced tissue binding properties.

    PubMed

    Verdoliva, Antonio; Bellofiore, Piero; Rivieccio, Vincenzo; Catello, Sergio; Colombo, Maurizio; Albertoni, Claudio; Rosi, Antonio; Leoni, Barbara; Anastasi, Anna Maria; De Santis, Rita

    2010-03-19

    Chicken avidin and bacterial streptavidin are widely employed in vitro for their capacity to bind biotin, but their pharmacokinetics and immunological properties are not always optimal, thereby limiting their use in medical treatments. Here we investigate the biochemical and biological properties of a new modified avidin, obtained by ligand-assisted sodium periodate oxidation of avidin. This method allows protection of biotin-binding sites of avidin from inactivation caused by the oxidation step and delay of avidin clearance from injected tissue by generation of aldehyde groups from avidin carbohydrate moieties. Oxidized avidin shows spectroscopic properties similar to that of native avidin, indicating that tryptophan residues are spared from oxidation damage. In strict agreement with these results, circular dichroism and isothermal titration calorimetry analyses confirm that the ligand-assisted oxidation preserves the avidin protein structure and its biotin binding capacity. In vitro cell binding and in vivo tissue residence experiments demonstrate that aldehyde groups provide oxidized avidin the property to bind cellular and interstitial protein amino groups through Schiff's base formation, resulting in a tissue half-life of 2 weeks, compared with 2 h of native avidin. In addition, the efficient uptake of the intravenously injected (111)In-BiotinDOTA (ST2210) in the site previously treated with modified avidin underlines that tissue-bound oxidized avidin retains its biotin binding capacity in vivo. The results presented here indicate that oxidized avidin could be employed to create a stable artificial receptor in diseased tissues for the targeting of biotinylated therapeutics.

  17. Oxidatively generated DNA/RNA damage in psychological stress states.

    PubMed

    Jørgensen, Anders

    2013-07-01

    Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8-oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased in schizophrenia patients, providing a possible molecular link between schizophrenia and its associated signs of accelerated aging. We found no association between psychopathology, perceived stress or cortisol secretion and 8-oxodG/8-oxoGuo excretion in the patients. In the controls, there were positive correlations between 8-oxodG/8-ocoGuo excretion and 9AM plasma cortisol, but no associations to perceived stress. In an animal study of experimentally induced chronic stress performed in metabolism cages, we found no increase in urinary 8-oxodG/8-oxoGuo or cerebral (hippocampal and frontal cortex) levels of oxidatively generated nucleic acid damage. However, there was a trend towards an increased expression of genes involved in DNA repair, possibly reflecting a compensatory mechanism. In a study of 220 elderly, mostly healthy individuals from the Italian InChianti cohort, we found a significant association between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between

  18. Tyrosine-dependent oxidative DNA damage induced by carcinogenic tetranitromethane.

    PubMed

    Murata, Mariko; Kurimoto, Saori; Kawanishi, Shosuke

    2006-10-01

    Tetranitromethane (TNM) is used as an oxidizer in rocket propellants and explosives and as an additive to increase the cetane number of diesel fuel. TNM was reported to induce pulmonary adenocarcinomas and squamous cell carcinomas in mice and rats. However, the mechanisms underlying carcinogenesis induced by TNM has not yet been clarified. We previously revealed that nitroTyr and nitroTyr-containing peptides caused Cu(II)-dependent DNA damage in the presence of P450 reductase, which is considered to yield nitroreduction. Since TNM is a reagent for nitration of Tyr in proteins and peptides, we have hypothesized that TNM-treated Tyr and Tyr-containing peptides induce DNA damage by the modification of Tyr. We examined DNA damage induced by TNM-treated amino acids or peptides using (32)P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene. TNM-treated Tyr and Lys-Tyr-Lys induced DNA damage including the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in the presence of Cu(II) and NADH. DNA damage was inhibited by catalase and bathocuproine, indicating the involvement of H(2)O(2) and Cu(I). The cytosine residue of the ACG sequence complementary to codon 273, well-known hotspots of the p53 gene, was cleaved with piperidine and Fpg treatments. On the other hand, nitroTyr and Lys-nitroTyr-Lys did not induce DNA damage in the presence of Cu(II) and NADH. Time-of-flight mass spectrometry confirmed that reactions between Lys-Tyr-Lys and TNM yielded not only Lys-nitroTyr-Lys but also Lys-nitrosoTyr-Lys. Therefore, it is speculated that the nitrosotyrosine residue can induce oxidative DNA damage in the presence of Cu(II) and NADH. It is concluded that Tyr-dependent DNA damage may play an important role in the carcinogenicity of TNM. TNM is a new type of carcinogen that induces DNA damage not by itself but via Tyr modification.

  19. Oxidative damage to poultry: from farm to fork.

    PubMed

    Estévez, M

    2015-06-01

    Poultry and poultry meat are particularly susceptible to oxidative reactions. Oxidation processes have been for decades the focus of animal and meat scientists owing to the negative impact of these reactions on animal growth, performance, and food quality. Lipid oxidation has been recognized a major threat to the quality of processed poultry products. The recent discoveries on the occurrence of protein oxidation in muscle foods have increased the scientific and technological interest in a topic that broadens the horizons of food biochemistry into innovative fields. Furthermore, in recent years we have witnessed a growing interest in consumers on the impact of diet and oxidation on health and aging. Hence, the general description of oxidative reactions as harmful phenomena goes beyond the actual impact on animal production and food quality and reaches the potential influence of oxidized foods on consumer health. Likewise, the current antioxidant strategies aim for the protection of the living tissues, the food systems, and a potential health benefit in the consumer upon ingestion. Along these lines, the application of phytochemicals and other microelements (Se, Cu) with antioxidant potential in the feeds or directly in the meat product are strategies of substantial significance. The present paper reviews in a concise manner the most relevant and novel aspects of the mechanisms and consequences of oxidative reactions in poultry and poultry meat, and describes current antioxidant strategies against these undesirable reactions. © 2015 Poultry Science Association Inc.

  20. How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    The capacity of ionizing radiation to affect tissue function, control tumor growth and elicit pathological sequelae has been attributed in great part to its effects on cellular DNA, which, as the transmitter of genetic information, can both register damage and perpetuate it. Nonetheless, multicellular organisms function as the result of the cooperation of many cell types. What then occurs when individual cells are damaged by ionizing radiation? Is tissue response a sum of cellular effects such as cell death and DNA damage? Or does the tissue respond as a coherent unit to the damage of its parts? In this paper, data in support of the latter model that indicate a role for cytokines, in particular transforming growth factor beta1, as critical components of extracellular signaling pathways that mediate tissue response to radiation will be reviewed. The key to manipulating the consequences of radiation exposure lies in understanding the complex interplay of events initiated at the cellular level, but acting on the tissue.

  1. How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    The capacity of ionizing radiation to affect tissue function, control tumor growth and elicit pathological sequelae has been attributed in great part to its effects on cellular DNA, which, as the transmitter of genetic information, can both register damage and perpetuate it. Nonetheless, multicellular organisms function as the result of the cooperation of many cell types. What then occurs when individual cells are damaged by ionizing radiation? Is tissue response a sum of cellular effects such as cell death and DNA damage? Or does the tissue respond as a coherent unit to the damage of its parts? In this paper, data in support of the latter model that indicate a role for cytokines, in particular transforming growth factor beta1, as critical components of extracellular signaling pathways that mediate tissue response to radiation will be reviewed. The key to manipulating the consequences of radiation exposure lies in understanding the complex interplay of events initiated at the cellular level, but acting on the tissue.

  2. Thermal damage produced by high-irradiance continuous wave CO sub 2 laser cutting of tissue

    SciTech Connect

    Schomacker, K.T.; Walsh, J.T. Jr.; Flotte, T.J.; Deutsch, T.F. )

    1990-01-01

    Thermal damage produced by continuous wave (cw) CO{sub 2} laser ablation of tissue in vitro was measured for irradiances ranging from 360 W/cm{sup 2} to 740 kW/cm{sup 2} in order to investigate the extent to which ablative cooling can limit tissue damage. Damage zones thinner than 100 microns were readily produced using single pulses to cut guinea pig skin as well as bovine cornea, aorta, and myocardium. Multiple pulses can lead to increased damage. However, a systematic decrease in damage with irradiance, predicted theoretically by an evaporation model of ablation, was not observed. The damage-zone thickness was approximately constant around the periphery of the cut, consistent with the existence of a liquid layer which stores heat and leads to tissue damage, and with a model of damage and ablation recently proposed by Zweig et al.

  3. Protective Effects of Extracts from Fructus rhodomyrti against Oxidative DNA Damage In Vitro and In Vivo

    PubMed Central

    Ke, Yuebin; Xu, Xinyun; Wu, Shuang; Huang, Juan; Misra, Hara; Li, Yunbo

    2013-01-01

    Objective. To evaluate the potential protective effects of extracts from Fructus rhodomyrti (FR) against oxidative DNA damage using a cellular system and the antioxidant ability on potassium bromate- (KBrO3-) mediated oxidative stress in rats. Methods. The effects of FR on DNA damage induced by hydrogen peroxide (H2O2) were evaluated by comet assay in primary spleen lymphocytes cultures. The effects of FR on the activities of SOD, CAT, and GPx and the levels of GSH, hydroperoxides, and 8-OHdG were determined in the plasma and tissues of rats treated with KBrO3. Results. FR was shown to effectively protect against DNA damage induced by H2O2  in vitro, and the maximum protective effect was observed when FR was diluted 20 times. Endogenous antioxidant status, namely, the activities of SOD, CAT, and GPx and the levels of GSH were significantly decreased in the plasma, the liver, and the kidney of the KBrO3-treated rats, while the pretreatment of FR prevented the decreases of these parameters. In addition, the pretreatment of FR was also able to prevent KBrO3-induced increases in the levels of hydroperoxides and 8-OHdG in the plasma, the liver, and the kidney in rats. Conclusions. Our findings suggested that FR might act as a chemopreventive agent with antioxidant properties offering effective protection against oxidative DNA damage in a concentration-dependent manner in vitro and in vivo. PMID:24089629

  4. Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: implications for gastric carcinogenesis.

    PubMed

    Xu, Hangxiu; Chaturvedi, Rupesh; Cheng, Yulan; Bussiere, Francoise I; Asim, Mohammad; Yao, Micheal D; Potosky, Darryn; Meltzer, Stephen J; Rhee, Juong G; Kim, Sung S; Moss, Steven F; Hacker, Amy; Wang, Yanlin; Casero, Robert A; Wilson, Keith T

    2004-12-01

    Oxidative stress is linked to carcinogenesis due to its ability to damage DNA. The human gastric pathogen Helicobacter pylori exerts much of its pathogenicity by inducing apoptosis and DNA damage in host gastric epithelial cells. Polyamines are abundant in epithelial cells, and when oxidized by the inducible spermine oxidase SMO(PAOh1) H(2)O(2) is generated. Here, we report that H. pylori up-regulates mRNA expression, promoter activity, and enzyme activity of SMO(PAOh1) in human gastric epithelial cells, resulting in DNA damage and apoptosis. H. pylori-induced H(2)O(2) generation and apoptosis in these cells was equally attenuated by an inhibitor of SMO(PAOh1), by catalase, and by transient transfection with small interfering RNA targeting SMO(PAOh1). Conversely, SMO(PAOh1) overexpression induced apoptosis to the same levels as caused by H. pylori. Importantly, in H. pylori-infected tissues, there was increased expression of SMO(PAOh1) in both human and mouse gastritis. Laser capture microdissection of human gastric epithelial cells demonstrated expression of SMO(PAOh1) that was significantly attenuated by H. pylori eradication. These results identify a pathway for oxidative stress-induced epithelial cell apoptosis and DNA damage due to SMO(PAOh1) activation by H. pylori that may contribute to the pathogenesis of the infection and development of gastric cancer.

  5. Measurement of oxidatively generated base damage in cellular DNA.

    PubMed

    Cadet, Jean; Douki, Thierry; Ravanat, Jean-Luc

    2011-06-03

    This survey focuses on the critical evaluation of the main methods that are currently available for monitoring single and complex oxidatively generated damage to cellular DNA. Among chromatographic methods, HPLC-ESI-MS/MS and to a lesser extent HPLC-ECD which is restricted to a few electroactive nucleobases and nucleosides are appropriate for measuring the formation of single and clustered DNA lesions. Such methods that require optimized protocols for DNA extraction and digestion are sensitive enough for measuring base lesions formed under conditions of severe oxidative stress including exposure to ionizing radiation, UVA light and high intensity UVC laser pulses. In contrast application of GC-MS and HPLC-MS methods that are subject to major drawbacks have been shown to lead to overestimated values of DNA damage. Enzymatic methods that are based on the use of DNA repair glycosylases in order to convert oxidized bases into strand breaks are suitable, even if they are far less specific than HPLC methods, to deal with low levels of single modifications. Several other methods including immunoassays and (32)P-postlabeling methods that are still used suffer from drawbacks and therefore are not recommended. Another difficult topic is the measurement of oxidatively generated clustered DNA lesions that is currently achieved using enzymatic approaches and that would necessitate further investigations.

  6. Homologous recombination is required for recovery from oxidative DNA damage.

    PubMed

    Hayashi, Michio; Umezu, Keiko

    2017-04-03

    We have been studying the genetic events, including chromosome loss, chromosome rearrangements and intragenic point mutations, that are responsible for the deletion of a URA3 marker in a loss of heterozygosity (LOH) assay in the yeast Saccharomycess cerevisiae. With this assay, we previously showed that homologous recombination plays an important role in genome maintenance in response to DNA lesions that occur spontaneously in normally growing cells. Here, to investigate DNA lesions capable of triggering homologous recombination, we examined the effects of oxidative stress, a prominent cause of endogenous DNA damage, on LOH events. Treatment of log-phase cells with H2O2 first caused growth arrest and then, during the subsequent recovery, chromosome loss and various chromosome rearrangements were induced more than 10-fold. Further analysis of the rearrangements showed that gene conversion was strongly induced, approximately 100 times more frequently than in untreated cells. Consistent with these results, two diploid strains deficient for homologous recombination, rad52Δ/rad52Δ and rad51Δ/rad51Δ, were sensitive to H2O2 treatment. In addition, chromosome DNA breaks were detected in H2O2-treated cells using pulsed-field gel electrophoresis. Altogether, these results suggest that oxidative stress induced recombinogenic lesions on chromosomes, which then triggered homologous recombination leading to chromosome rearrangements, and that this response contributed to the survival of cells afflicted by oxidative DNA damage. We therefore conclude that homologous recombination is required for the recovery of cells from oxidative stress.

  7. Choreography of oxidative damage repair in mammalian genomes.

    PubMed

    Mitra, Sankar; Izumi, Tadahide; Boldogh, Istvan; Bhakat, Kishor K; Hill, Jeff W; Hazra, Tapas K

    2002-07-01

    The lesions induced by reactive oxygen species in both nuclear and mitochondrial genomes include altered bases, abasic (AP) sites, and single-strand breaks, all repaired primarily via the base excision repair (BER) pathway. Although the basic BER process (consisting of five sequential steps) could be reconstituted in vitro with only four enzymes, it is now evident that repair of oxidative damage, at least in mammalian cell nuclei, is more complex, and involves a number of additional proteins, including transcription- and replication-associated factors. These proteins may be required in sequential repair steps in concert with other cellular changes, starting with nuclear targeting of the early repair enzymes in response to oxidative stress, facilitation of lesion recognition, and access by chromatin unfolding via histone acetylation, and formation of metastable complexes of repair enzymes and other accessory proteins. Distinct, specific subclasses of protein complexes may be formed for repair of oxidative lesions in the nucleus in transcribed vs. nontranscribed sequences in chromatin, in quiescent vs. cycling cells, and in nascent vs. parental DNA strands in replicating cells. Characterizing the proteins for each repair subpathway, their signaling-dependent modifications and interactions in the nuclear as well as mitochondrial repair complexes, will be a major focus of future research in oxidative damage repair.

  8. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    PubMed

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites.

  9. Tamoxifen inhibits mitochondrial oxidative stress damage induced by copper orthophenanthroline.

    PubMed

    Buelna-Chontal, Mabel; Hernández-Esquivel, Luz; Correa, Francisco; Díaz-Ruiz, Jorge Luis; Chávez, Edmundo

    2016-12-01

    In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu(2+) -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca(2+) release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu(2+) -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu(2+) -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.

  10. Prevention of oxidative DNA damage in rats by brussels sprouts.

    PubMed

    Deng, X S; Tuo, J; Poulsen, H E; Loft, S

    1998-03-01

    The alleged cancer preventive effects of cruciferous vegetables could be related to protection from mutagenic oxidative DNA damage. We have studied the effects of Brussels sprouts, some non-cruciferous vegetables and isolated glucosinolates on spontaneous and induced oxidative DNA damage in terms of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in groups of 6-8 male Wistar rats. Excess oxidative DNA damage was induced by 2-nitropropane (2-NP 100 mg/kg). Four days oral administration of 3 g of cooked Brussels sprouts homogenate reduced the spontaneous urinary 8-oxodG excretion by 31% (p<0.05) whereas raw sprouts, beans and endive (1:1), isolated indolyl glucosinolates and breakdown products had no significant effect. An aqueous extract of cooked Brussels sprouts (corresponding to 6.7 g vegetable per day for 4 days) decreased the spontaneous 8-oxodG excretion from 92 +/- 12 to 52 +/- 15 pmol/24 h (p<0.05). After 2-NP administration the 8-oxodG excretion was increased to 132 +/- 26 pmol/24 h (p<0.05) whereas pretreatment with the sprouts extract reduced this to 102 +/- 30 pmol/24 h (p<0.05). The spontaneous level of 8-oxodG in nuclear DNA from liver and bone marrow was not significantly affected by the sprouts extract whereas the level decreased by 27% in the kidney (p<0.05). In the liver 2-NP increased the 8-oxodG levels in nuclear DNA 8.7 and 3.8 times (p<0.05) 6 and 24 h after dose, respectively. The sprouts extract reduced this increase by 57% (p<0.05) at 6 h whereas there was no significant effect at 24 h. In the kidneys 2-NP increased the 8-oxodG levels 2.2 and 1.2 times (p<0.05) 6 and 24 h after dose, respectively. Pretreatment with the sprouts extract abolished these increases (p<0.05). Similarly, in the bone marrow the extract protected completely (p<0.05) against a 4.9-fold 2-NP induced increase (p<0.05) in the 8-oxodG level. These findings demonstrate that cooked Brussels sprouts contain bioactive substance(s) with a potential for reducing the physiological

  11. OXIDANT CONDITIONING PROTECTS CARTILAGE FROM MECHANICALLY-INDUCED DAMAGE

    PubMed Central

    Ramakrishnan, Prem; Hecht, Benjamin; Pedersen, Doug; Lavery, Matthew; Maynard, Jerry; Buckwalter, Joseph; Martin, James

    2013-01-01

    Articular cartilage degeneration in osteoarthritis has been linked to abnormal mechanical stresses that are known to cause chondrocyte apoptosis and metabolic derangement in in vitro models. Evidence implicating oxidative damage as the immediate cause of these harmful effects suggests that the anti-oxidant defenses of chondrocytes might influence their tolerance for mechanical injury. Based on evidence that anti-oxidant defenses in many cell types are stimulated by moderate oxidant exposure, we hypothesized that oxidant pre-conditioning would reduce acute chondrocyte death and proteoglycan depletion in cartilage explants after exposure to abnormal mechanical stresses. Porcine cartilage explants were treated every 48 hours with tert-butyl hydrogen peroxide (tBHP) at non-lethal concentrations (25, 100, 250, 500 µM) for a varying number of times (1, 2 or 4) prior to a bout of unconfined axial compression (5 MPa, 1 Hz, 1800 cycles). When compared with untreated controls, tBHP had significant positive effects on post-compression viability, lactate production, and proteoglycan losses. Overall, the most effective regime was 100 µM tBHP applied 4 times. RNA analysis revealed significant effects of 100 µM tBHP on gene expression. Catalase, hypoxia-inducible factor-1alpha (HIF-1α), and glyceraldehyde 6-phosphate dehydrogenase (GAPDH) were significantly increased relative to untreated controls in explants treated 4 times with 100 µM tBHP, a regime that also resulted in a significant decrease in matrix metalloproteinase-3 (MMP-3) expression. These findings demonstrate that repeated exposure of cartilage to sub-lethal concentrations of peroxide can moderate the acute effects of mechanical stress, a conclusion supported by evidence of peroxide-induced changes in gene expression that could render chondrocytes more resistant to oxidative damage. PMID:20058262

  12. Joint toxicity of chlorpyrifos and cadmium on the oxidative stress and mitochondrial damage in neuronal cells.

    PubMed

    Xu, Ming-Yuan; Wang, Pan; Sun, Ying-Jian; Yang, Lin; Wu, Yi-Jun

    2017-05-01

    Pesticides and heavy metals can be easily biomagnified in food chains and bioaccumulated in individuals, thus pose significant threat to human health. However, their joint toxicity for long-term exposure at low dose has not been thoroughly investigated. In the present study, we investigated the oxidative damages in brain of rats exposed subchronically to organophosphorus pesticide chlorpyrifos (CPF) and heavy metal cadmium (Cd), and their mixtures at the environmentally relevant doses. Rats were given different doses of CPF and Cd by oral gavage for three months. After treatment, brain tissues were subjected for biochemical analysis. Mitochondrial damage and reactive oxidative species were also measured in neuroblastoma SH-SY5Y cells treated with CPF, Cd and their mixtures. The results showed that CPF and Cd generated protein and lipid peroxidation, disturbed the total antioxidant capability, and altered mitochondria ultrastructure in the brain. Lipids and proteins were sensitive to the oxidative damage induced by CPF and Cd. CPF and Cd decreased mitochondrial potential and induced reactive oxygen species in SH-SY5Y cells. However, the mixture did not display higher toxicity than the sum of that of the individual treatments. Thus, CPF and Cd could have a potential antagonistic interaction on the induction of oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Oxidative damage in young alcohol drinkers: A preliminary study.

    PubMed

    Rendón-Ramírez, Adela; Cortés-Couto, Miriam; Martínez-Rizo, Abril Bernardette; Muñiz-Hernández, Saé; Velázquez-Fernández, Jesús Bernardino

    2013-11-01

    Oxidative damage (OD) biomarkers have been used to evaluate metabolic stress undergone by alcoholic individuals. In alcoholic patients, these biomarkers are usually measured at late stages, i.e., when the alcoholic patients are showing clear signs of impaired hepatic function. OD biomarkers are sensitive indicators of impaired metabolic function, and might be useful in early stages of alcohol consumption to identify individuals who are at greater risk of damage in later stages of alcohol consumption. The aim of the present work was to evaluate some OD biomarkers in young people at early stages of alcohol consumption. The study was carried out in a group of young people (18-23 years old) who drank alcohol, Youngsters Exposed to Alcohol (YEA) with an average intake of 118 g of ethanol/week, and a control group (CG) of non-drinkers. Blood counts, alcohol dehydrogenase (ADH) activity, glutathione peroxidase (GSH-Px) activity, oxidative damage to DNA, and lipid peroxidation were determined in both groups. The anthropometric and blood parameters of both groups were similar and no clinical symptoms of hepatic damage were observed. Nevertheless, ADH activity, lipid peroxidation, and percentage of damaged DNA cells were higher in the YEA group than in the control group. In contrast, GSH-Px activity was lower in the YEA group than in the control group. Alteration in OD biomarkers can be found in individuals with 4-5 years of alcohol drinking history. To our knowledge, this is the first study giving evidence of OD in individuals at early stages of alcohol abuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Evaluating Radioprotective Effect of Hesperidin on Acute Radiation Damage in the Lung Tissue of Rats

    PubMed Central

    Rezaeyan, A.; Fardid, R.; Haddadi, G.H.; Takhshid, M.A.; Hosseinzadeh, M.; Najafi, M.; Salajegheh, A.

    2016-01-01

    Background: Oxidative stress plays an important role in the pathogenesis and progression of γ-irradiation-induced cellular damage, Lung is a radiosensitive organ and its damage is a dose-limiting factor in radiotherapy. The administration of dietary antioxidants has been suggested to protect against the succeeding tissue damage. The present study aimed to evaluate the radioprotective efficacy of Hesperidin (HES) against γ-irradiation-induced tissue damage in the lung of male rats. Materials and Methods: Thirty two rats were divided into four groups. Rats in Group 1 received PBS and underwent sham irradiation. Rats in Group 2 received HES and underwent sham irradiation. Rats in Group 3 received PBS and underwent γ-irradiation. Rats in Group 4 received HES and underwent γ-irradiation. These rats were exposed to γ-radiation 18 Gy using a single fraction cobalt-60 unit, and were administered HES (100 mg/kg/d, b.w, orally) for 7 days prior to irradiation. Rats in each group were sacrificed 24 hours after radiotherapy (RT) for the determination of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and histopathological evaluations. Results: Compared to group 1, the level of SOD and GSH significantly decreased and MDA level significantly increased in group 3 at 24 h following irradiation, (p=0.001, p<0.001, p=0.001), respectively. A statistically significant difference in all parameters was observed for rats in group 4 as compared to group 3 (p<0.05). Histopathological results 24 hours after RT showed that radiation has increased inflammation, lymphocyte, macrophage and neutrophil compared to group 1 ( p<0.0125). Oral administration of HES before RT significantly decreased macrophage and neutrophil when compared to group 3 (p<0.0125), but partly there was inflammation and lymphocyte that indicated there was no significant difference when compared to group 3 (p>0.0125). Conclusion: Oral administration of HES was found to offer protection against

  15. Transcription-coupled homologous recombination after oxidative damage.

    PubMed

    Wei, Leizhen; Levine, Arthur Samuel; Lan, Li

    2016-08-01

    Oxidative DNA damage induces genomic instability and may lead to mutagenesis and carcinogenesis. As severe blockades to RNA polymerase II (RNA POLII) during transcription, oxidative DNA damage and the associated DNA strand breaks have a profoundly deleterious impact on cell survival. To protect the integrity of coding regions, high fidelity DNA repair at a transcriptionally active site in non-dividing somatic cells, (i.e., terminally differentiated and quiescent/G0 cells) is necessary to maintain the sequence integrity of transcribed regions. Recent studies indicate that an RNA-templated, transcription-associated recombination mechanism is important to protect coding regions from DNA damage-induced genomic instability. Here, we describe the discovery that G1/G0 cells exhibit Cockayne syndrome (CS) B (CSB)-dependent assembly of homologous recombination (HR) factors at double strand break (DSB) sites within actively transcribed regions. This discovery is a challenge to the current dogma that HR occurs only in S/G2 cells where undamaged sister chromatids are available as donor templates. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Grape seed extract Vitis vinifera protects against radiation-induced oxidative damage and metabolic disorders in rats.

    PubMed

    Saada, Helen N; Said, Ussama Z; Meky, Nefissa H; Abd El Azime, Afrag S

    2009-03-01

    Whole body exposure to ionizing radiation induces the formation of reactive oxygen species (ROS) in different tissues provoking oxidative damage, organ dysfunction and metabolic disturbances. The present study was designed to determine the possible protective effect of grape seed extract (GSE), rich in proanthocyanidins against gamma-radiation-induced oxidative stress in heart and pancreas tissues associated with serum metabolic disturbances. Irradiated rats were whole body exposed to 5 Gy gamma-radiation. GSE-treated irradiated rats received 100 mg GSE/kg/day, by gavage, for 14 days before irradiation. The animals were killed on days 1, 14 and 28 after irradiation. Significant decreases of SOD, CAT and GSH-Px activities associated with significant increases of TBARS levels were recorded in both tissues after irradiation. GSE administration pre-irradiation significantly attenuated the radiation-induced oxidative stress in heart tissues which was substantiated by a significant amelioration of serum LDH, CPK and AST activities. GSE treatment also attenuated the oxidative stress in pancreas tissues which was associated with a significant improvement in radiation-induced hyperglycemia and hyperinsulinemia. In conclusion, the present data demonstrate that GSE would protect the heart and pancreas tissues from oxidative damage induced by ionizing irradiation. (c) 2008 John Wiley & Sons, Ltd.

  17. Oxidative guanine base damage regulates human telomerase activity

    PubMed Central

    Fouquerel, Elise; Lormand, Justin; Bose, Arindam; Lee, Hui-Ting; Kim, Grace S.; Li, Jianfeng; Sobol, Robert W.; Freudenthal, Bret D.; Myong, Sua; Opresko, Patricia L.

    2016-01-01

    Changes in telomere length are associated with degenerative diseases and cancer. Oxidative stress and DNA damage have been linked to both positive and negative alterations in telomere length and integrity. Here we examined how the common oxidative lesion 8-oxo-7,8-dihydro-2′-deoxyguanine (8-oxoG) regulates telomere elongation by telomerase. When present in the deoxynucleoside triphosphate pool as 8-oxodGTP, telomerase utilization of the oxidized nucleotide during telomere extension is mutagenic and terminates further elongation. Depletion of the enzyme that removes oxidized dNTPs, MTH1, increases telomere dysfunction and cell death in telomerase positive cancer cells harboring shortened telomeres. In contrast, a pre-existing 8-oxoG within the telomeric DNA sequence promotes telomerase activity by destabilizing G-quadruplex structure in the DNA. We show that the mechanism by which 8-oxoG arises in the telomere, either by insertion of oxidized nucleotides or by direct reaction with free radicals, dictates whether telomerase is inhibited or stimulated and thereby, mediates the biological outcome. PMID:27820808

  18. Oxidant-induced DNA damage of target cells.

    PubMed Central

    Schraufstätter, I; Hyslop, P A; Jackson, J H; Cochrane, C G

    1988-01-01

    In this study we examined the leukocytic oxidant species that induce oxidant damage of DNA in whole cells. H2O2 added extracellularly in micromolar concentrations (10-100 microM) induced DNA strand breaks in various target cells. The sensitivity of a specific target cell was inversely correlated to its catalase content and the rate of removal of H2O2 by the target cell. Oxidant species produced by xanthine oxidase/purine or phorbol myristate acetate-stimulated monocytes induced DNA breakage of target cells in proportion to the amount of H2O2 generated. These DNA strand breaks were prevented by extracellular catalase, but not by superoxide dismutase. Cytotoxic doses of HOCl, added to target cells, did not induce DNA strand breakage, and myeloperoxidase added extracellularly in the presence of an H2O2-generating system, prevented the formation of DNA strand breaks in proportion to its H2O2 degrading capacity. The studies also indicated that H2O2 formed hydroxyl radical (.OH) intracellularly, which appeared to be the most likely free radical responsible for DNA damage: .OH was detected in cells exposed to H2O2; the DNA base, deoxyguanosine, was hydroxylated in cells exposed to H2O2; and intracellular iron was essential for induction of DNA strand breaks. PMID:2843565

  19. Oxidative Stress Damage as a Detrimental Factor in Preterm Birth Pathology

    PubMed Central

    Menon, Ramkumar

    2014-01-01

    Normal term and spontaneous preterm births (PTB) are documented to be associated with oxidative stress (OS), and imbalances in the redox system (balance between pro- and antioxidant) have been reported in the maternal–fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term) and pathophysiologic (preterm) pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging). The aging of the fetal cells is predominated by p38 mitogen activated kinase (p38MAPK) pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways. PMID:25429290

  20. Estimation of oxidative DNA damage in man from urinary excretion of repair products.

    PubMed

    Loft, S; Poulsen, H E

    1998-01-01

    DNA is constantly damaged and repaired in living cells. The repair products of the oxidative DNA lesions, i.e. oxidised nucleosides and bases, are poor substrates for the enzymes involved in nucleotide synthesis, are fairly water soluble, and generally excreted into the urine without further metabolism. Among the possible products, 8-oxo-2'-deoxyguanosine, 8-oxoguanine, thymine glycol, thymidine glycol and, 5-hydroxymethyluracil have so far been identified in urine. It should be emphasised that the excretion of the repair products in urine represents the average rate of damage in the total body whereas the level of oxidised bases in nuclear DNA is a concentration measurement in that specific tissue/cells in the moment of sampling. The rate of oxidative DNA modifications has been studied in humans by means of the repair products as urinary biomarkers, particularly with respect to 8-oxo-2'-deoxyguanosine. The data obtained so far indicate that the important determinants of the oxidative damage rate include tobacco smoking, oxygen consumption and some inflammatory diseases whereas diet composition, energy restriction and antioxidant supplements have but a minimal influence, possibly with the exception of yet unidentified phytochemicals, e.g. from cruciferous vegetables. The data are consistent with the experimentally based notion that oxidative DNA damage is an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still warranted. In the future the use of biomarkers may provide this evidence and allow further investigations on the qualitative and quantitative importance of oxidative DNA modification and carcinogenesis in man, as well as elucidate possible preventive measures.

  1. SOS processing of unique oxidative DNA damages in Escherichia coli.

    PubMed

    Laspia, M F; Wallace, S S

    1989-05-05

    phi X174 replicative form (RF) I transfecting DNA containing thymine glycols (5,6-dihydroxy-5,6-dihydrothymine), urea glycosides or apurinic (AP) sites was used to study SOS processing of unique DNA damages in Escherichia coli. All three lesions can be found in DNA damaged by chemical oxidants or radiation and are representative of several common structural modifications of DNA bases. When phi X DNA containing thymine glycols was transfected into host cells that were ultraviolet-irradiated to induce the SOS response, a substantial increase in survival was observed compared to transfection into uninduced hosts. Studies with mutants demonstrated that both the activated form of RecA and UmuDC proteins were required for this reactivation. In contrast, no increase in survival was observed when DNA containing urea glycosides or AP sites was transfected into ultraviolet-induced hosts. These data suggest that SOS-induced reactivation does not reflect a generalized repair system for all replication-blocking, lethal lesions but rather that the efficiency of reactivation is damage dependent. Further, we found that a significant fraction of potentially lethal thymine glycols could be ultraviolet-reactivated in an umuC lexA recA-independent manner, suggesting the existence of an as yet uncharacterized damage-inducible SOS-independent mode of thymine glycol repair.

  2. Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage.

    PubMed

    Sahu, Bidya Dhar; Kuncha, Madhusudana; Sindhura, G Jeevana; Sistla, Ramakrishna

    2013-03-15

    Nephrotoxicity is an important complication in cancer patients undergoing cisplatin therapy. Oxidative stress, inflammation and apoptosis/necrosis are the major patho-mechanisms of cisplatin induced nephrotoxicity. In the present study, hesperidin, a naturally-occurring bioflavonoid has been demonstrated to have protective effect on cisplatin-induced renal injury in rats. Cisplatin intoxication resulted in structural and functional renal impairment which was revealed by massive histopathological changes and elevated blood urea nitrogen and serum creatinine levels, respectively. Renal injury was associated with oxidative stress/lipid peroxidation as evident by increased reactive oxygen species (ROS) and malondialdehyde (MDA) formation with decreased levels of antioxidants such as reduced glutathione, vitamin C, catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase. Cisplatin administration also triggered inflammatory response in rat kidneys by inducing pro-inflammatory cytokine, TNF-α, with the increased expression of myeloperoxidase (MPO). Furthermore, cisplatin increased the activity of caspase-3 and DNA damage with decreased tissue nitric oxide levels. Hesperidin treatment significantly attenuated the cisplatin-induced oxidative stress/lipid peroxidation, inflammation (infiltration of leukocytes and pro-inflammatory cytokine), apoptosis/necrosis (caspase-3 activity with DNA damage) as well as increased expression of nitric oxide in the kidney and improved renal function. Thus, our results suggest that hesperidin co-administration may serve as a novel and promising preventive strategy against cisplatin-induced nephrotoxicity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. The effect of thiamine and thiamine pyrophosphate on oxidative liver damage induced in rats with cisplatin.

    PubMed

    Turan, Mehmet Ibrahim; Siltelioglu Turan, Isil; Mammadov, Renad; Altınkaynak, Konca; Kisaoglu, Abdullah

    2013-01-01

    The aim of this study was to investigate the effect of thiamine and thiamine pyrophosphate (TPP) on oxidative stress induced with cisplatin in liver tissue. Rats were divided into four groups; thiamine group (TG), TPP + cisplatin group (TPG), healthy animal group (HG), and cisplatin only group (CG). Oxidant and antioxidant parameters in liver tissue and AST, ALT, and LDH levels in rat sera were measured in all groups. Malondialdehyde levels in the CG, TG, TPG, and HG groups were 11 ± 1.4, 9 ± 0.5, 3 ± 0.5, and 2.2 ± 0.48  μ mol/g protein, respectively. Total glutathione levels were 2 ± 0.7, 2.8 ± 0.4, 7 ± 0.8, and 9 ± 0.6 nmol/g protein, respectively. Levels of 8-OH/Gua, a product of DNA damage, were 2.7 ± 0.4 pmol/L, 2.5 ± 0.5, 1.1 ± 0.3, and 0.9 ± 0.3 pmol/L, respectively. A statistically significant difference was determined in oxidant/antioxidant parameters and AST, ALT, and LDH levels between the TPG and CG groups (P < 0.05). No significant difference was determined between the TG and CG groups (P > 0.05). In conclusion, cisplatin causes oxidative damage in liver tissue. TPP seems to have a preventive effect on oxidative stress in the liver caused by cisplatin.

  4. The Effect of Thiamine and Thiamine Pyrophosphate on Oxidative Liver Damage Induced in Rats with Cisplatin

    PubMed Central

    Turan, Mehmet Ibrahim; Siltelioglu Turan, Isil; Mammadov, Renad; Altınkaynak, Konca; Kisaoglu, Abdullah

    2013-01-01

    The aim of this study was to investigate the effect of thiamine and thiamine pyrophosphate (TPP) on oxidative stress induced with cisplatin in liver tissue. Rats were divided into four groups; thiamine group (TG), TPP + cisplatin group (TPG), healthy animal group (HG), and cisplatin only group (CG). Oxidant and antioxidant parameters in liver tissue and AST, ALT, and LDH levels in rat sera were measured in all groups. Malondialdehyde levels in the CG, TG, TPG, and HG groups were 11 ± 1.4, 9 ± 0.5, 3 ± 0.5, and 2.2 ± 0.48 μmol/g protein, respectively. Total glutathione levels were 2 ± 0.7, 2.8 ± 0.4, 7 ± 0.8, and 9 ± 0.6 nmol/g protein, respectively. Levels of 8-OH/Gua, a product of DNA damage, were 2.7 ± 0.4 pmol/L, 2.5 ± 0.5, 1.1 ± 0.3, and 0.9 ± 0.3 pmol/L, respectively. A statistically significant difference was determined in oxidant/antioxidant parameters and AST, ALT, and LDH levels between the TPG and CG groups (P < 0.05). No significant difference was determined between the TG and CG groups (P > 0.05). In conclusion, cisplatin causes oxidative damage in liver tissue. TPP seems to have a preventive effect on oxidative stress in the liver caused by cisplatin. PMID:23841092

  5. Relationship between indium exposure and oxidative damage in workers in indium tin oxide production plants.

    PubMed

    Liu, Hung-Hsin; Chen, Chang-Yun; Chen, Gun-Ing; Lee, Lien-Hsiung; Chen, Hsiu-Ling

    2012-05-01

    The study aimed to assess the relationship between indium exposure and surfactant protein and any oxidative damage in indium tin oxide (ITO)-exposed workers. The study was conducted in two typical ITO-manufacturing plants in Taiwan. One hundred and seventy manufacturing workers and 132 administrators were recruited. The geometric mean serum indium (S-In) level in the workers of the manufacturing department was 1.26 μg/l, which was significantly higher than those in the administrative department (0.72 μg/l). The S-In levels of 49 workers were higher than 3 μg/l (49/302, 16.2%), exceeding an occupational exposure limit suggested by the Japan Society for Occupational Health. Significant positive relationships were found between S-In and surfactant protein A (SP-A), and surfactant protein D (SP-D) levels. SP-A and SP-D levels were elevated significantly in the workers with moderately high indium exposure. The present study indicates a significant elevating trend of SP-A and SP-D levels in ITO-manufacturing workers, which are sensitive markers of interstitial lung disease. Though the indium exposure is not directly linked to all indicators of oxidative DNA damage, the ITO-manufacturing workplace is suggested to be related to oxidative DNA damage for the workers in the current study. Therefore, in addition to the indium exposure, there might be other occupational hazards in the ITO workplace to cause oxidative damage.

  6. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    PubMed

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  7. Modeling electrical power absorption and thermally-induced biological tissue damage.

    PubMed

    Zohdi, T I

    2014-01-01

    This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model's behavior.

  8. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    SciTech Connect

    Milatovic, Dejan; Yu, Yingchun

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  9. Manuka honey protects middle-aged rats from oxidative damage

    PubMed Central

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-01-01

    OBJECTIVE: This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. METHOD: Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. RESULTS: Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. CONCLUSIONS: Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status. PMID:24270958

  10. Nrf2 as a master regulator of tissue damage control and disease tolerance to infection.

    PubMed

    Soares, Miguel P; Ribeiro, Ana M

    2015-08-01

    Damage control refers to those actions made towards minimizing damage or loss. Depending on the context, these can range from emergency procedures dealing with the sinking of a ship or to a surgery dealing with severe trauma or even to an imaginary company in Marvel comics, which repairs damaged property arising from conflicts between super heroes and villains. In the context of host microbe interactions, tissue damage control refers to an adaptive response that limits the extent of tissue damage associated with infection. Tissue damage control can limit the severity of infectious diseases without interfering with pathogen burden, conferring disease tolerance to infection. This contrasts with immune-driven resistance mechanisms, which although essential to protect the host from infection, can impose tissue damage to host parenchyma tissues. This damaging effect is countered by stress responses that confer tissue damage control and disease tolerance to infection. Here we discuss how the stress response regulated by the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) acts in such a manner. © 2015 Authors.

  11. Nrf2 as a master regulator of tissue damage control and disease tolerance to infection

    PubMed Central

    Soares, Miguel P.; Ribeiro, Ana M.

    2015-01-01

    Damage control refers to those actions made towards minimizing damage or loss. Depending on the context, these can range from emergency procedures dealing with the sinking of a ship or to a surgery dealing with severe trauma or even to an imaginary company in Marvel comics, which repairs damaged property arising from conflicts between super heroes and villains. In the context of host microbe interactions, tissue damage control refers to an adaptive response that limits the extent of tissue damage associated with infection. Tissue damage control can limit the severity of infectious diseases without interfering with pathogen burden, conferring disease tolerance to infection. This contrasts with immune-driven resistance mechanisms, which although essential to protect the host from infection, can impose tissue damage to host parenchyma tissues. This damaging effect is countered by stress responses that confer tissue damage control and disease tolerance to infection. Here we discuss how the stress response regulated by the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) acts in such a manner. PMID:26551709

  12. Agmatine improves locomotor function and reduces tissue damage following spinal cord injury.

    PubMed

    Yu, C G; Marcillo, A E; Fairbanks, C A; Wilcox, G L; Yezierski, R P

    2000-09-28

    Clinically effective drug treatments for spinal cord injury (SCI) remain unavailable. Agmatine, an NMDA receptor antagonist and inhibitor of nitric oxide synthase (NOS), is an endogenous neuromodulator found in the brain and spinal cord. Evidence is presented that agmatine significantly improves locomotor function and reduces tissue damage following traumatic SCI in rats. The results suggest the importance of future therapeutic strategies encompassing the use of single drugs with multiple targets for the treatment of acute SCI. The therapeutic targets of agmatine (NMDA receptor and NOS) have been shown to be critically linked to the pathophysiological sequelae of CNS injury and this, combined with the non-toxic profile, lends support to agmatine being considered as a potential candidate for future clinical applications.

  13. Urokinase plasminogen activator protects cardiac myocytes from oxidative damage and apoptosis via hOGG1 induction.

    PubMed

    Hohensinner, Philipp J; Takacs, Nikol; Kaun, Christoph; Thaler, Barbara; Krychtiuk, Konstantin A; Pfaffenberger, Stefan; Aliabadi, Arezu; Zuckermann, Andreas; Huber, Kurt; Wojta, Johann

    2017-08-01

    The role of uPA in tissue remodeling and cell migration is already well established. In addition, uPA was reported to stabilize p53, a key cell cycle control, DNA repair and apoptosis initiation protein. We aimed to determine the role of uPA-uPAR signaling towards cell survival or apoptosis in human adult cardiac myocytes (HACM). HACM were stimulated with uPA and DNA damage was inflicted by incubating cells with 200 µM H2O2. To analyze for apoptotic cells we applied TUNEL staining. Oxidative damage foci were analyzed by staining for 8-oxoguanine base pairs. In vivo qPCR analysis from RNA extracted from failing human hearts demonstrated a close relation of uPA with apoptosis and the p53 pathway. Furthermore, we observed a close correlation of uPA and p53 protein in homogenized tissue lysates. In vitro studies revealed that uPA preincubation protected HACM from oxidative damage induced cell death and reduced oxidative damage foci. uPA protection is independent of its catalytic activity, as the amino terminal fragment of uPA showed similar protection. A key enzyme for repairing oxidative DNA damage is the p53 target hOGG1. We found a significant increase of hOGG1 after pretreatment of HACM with uPA. Knockdown of hOGG1 completely abrogated the protective effect of uPA. We conclude that uPA might have a tissue protective role in human hearts besides its role in tissue remodeling. Tissue protection is mediated by the DNA repair protein hOGG1. This might be beneficial during tissue remodeling and thus could be a target for therapeutic approaches in the diseased heart.

  14. Textile industrial effluent induces mutagenicity and oxidative DNA damage and exploits oxidative stress biomarkers in rats.

    PubMed

    Akhtar, Muhammad Furqan; Ashraf, Muhammad; Anjum, Aftab Ahmad; Javeed, Aqeel; Sharif, Ali; Saleem, Ammara; Akhtar, Bushra

    2016-01-01

    Exposure to complex mixtures like textile effluent poses risks to animal and human health such as mutations, genotoxicity and oxidative damage. Aim of the present study was to quantify metals in industrial effluent and to determine its mutagenic, genotoxic and cytotoxic potential and effects on oxidative stress biomarkers in effluent exposed rats. Metal analysis revealed presence of high amounts of zinc, copper, chromium, iron, arsenic and mercury in industrial effluent. Ames test with/without enzyme activation and MTT assay showed strong association of industrial effluent with mutagenicity and cytotoxicity respectively. In-vitro comet assay revealed evidence of high oxidative DNA damage. When Wistar rats were exposed to industrial effluent in different dilutions for 60 days, then activities of total superoxide dismutase and catalase and hydrogen peroxide concentration were found to be significantly lower in kidney, liver and blood/plasma of effluent exposed rats than control. Vitamin C in a dose of 50 mg/kg/day significantly reduced oxidative effects of effluent in rats. On the basis of this study it is concluded that industrial effluent may cause mutagenicity, in-vitro oxidative stress-related DNA damage and cytotoxicity and may be associated with oxidative stress in rats. Vitamin C may have ameliorating effect when exposed to effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Can exercise training counteract doxorubicin-induced oxidative damage of testis proteome?

    PubMed

    Magalhães, José; Ascensão, António; Padrão, Ana I; Aleixo, Inês M; Santos-Alves, Estela; Rocha-Rodrigues, Sílvia; Ferreira, André; Korrodi-Gregório, Luis; Vitorino, Rui; Ferreira, Rita; Fardilha, Margarida

    2017-10-05

    The use of the chemotherapeutic drug doxorubicin (DOX) is limited by its toxicity in several organs such as testes. So, we analyzed the effect of endurance treadmill exercise training (EX) performed before sub-chronic DOX treatment on sperm count and motility, testes markers of oxidative damage and apoptosis. Tissue profiling of proteins more susceptible to oxidation was made to identify the molecular pathways regulated by oxidative modifications, as nitration and carbonylation. Twenty-four adult male rats were divided into four groups (n=6/group): sedentary saline (SED+SAL), sedentary sub-chronically injected with DOX (2mg-kg-1 per week, during 7 weeks; SED+DOX), 12 weeks trained saline (EX+SAL) and trained treated with DOX (EX+DOX). DOX treatment started 5 weeks after the beginning of the exercise program. Testes caspase-3, -8 and -9, as well as aconitase activities, the content of malondialdehyde (MDA), sulfhydryl groups (-SH), carbonyl and nitrotyrosine derivatives were determined. Modified proteins were identified by 2D-Western blot followed by MALDI-TOF/TOF mass spectrometry, and bioinformatic analysis was performed to assess the biological processes regulated by these chemical modifications. The decreased sperm motility induced by DOX was not modified by exercise. Significant increases in MDA content in SED+DOX and in caspase-3 and -9 activities in EX+DOX were found. Despite no significant differences in the levels of carbonylated and nitrated proteins, exercise modulated testis proteome susceptibility to oxidation in DOX-treated group, with less modified proteins identified. Zinc finger Ran-binding domain-containing protein 2 (ZRAB2) and AN1-type zinc finger protein 3 (ZFAN3) were among the proteins found oxidativelly modified. Although no marked alterations in testes oxidative damage were noticed, proteomic analysis of oxidativelly modified proteins highlighted the protective role of exercise against oxidative damage of some proteins involved in metabolism

  16. Comparison of Oxidative Stress/DNA Damage in Semen and Blood of Fertile and Infertile Men

    PubMed Central

    Guz, Jolanta; Gackowski, Daniel; Foksinski, Marek; Rozalski, Rafal; Zarakowska, Ewelina; Siomek, Agnieszka; Szpila, Anna; Kotzbach, Marcin; Kotzbach, Roman; Olinski, Ryszard

    2013-01-01

    Abnormal spermatozoa frequently display typical features of oxidative stress, i.e. excessive level of reactive oxygen species (ROS) and depleted antioxidant capacity. Moreover, it has been found that a high level of oxidatively damaged DNA is associated with abnormal spermatozoa and male infertility. Therefore, the aim of our study was the comparison of oxidative stress/DNA damage in semen and blood of fertile and infertile men. The broad range of parameters which describe oxidative stress and oxidatively damaged DNA and repair were analyzed in the blood plasma and seminal plasma of groups of fertile and infertile subjects. These parameters include: (i) 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanine (8-oxoGua) levels in urine; (ii) 8-oxodG level in DNA isolated from leukocytes and spermatozoa; (iii) antioxidant vitamins (A, C and E) and uric acid. Urinary excretion of 8-oxodG and 8-oxoGua and the level of oxidatively damaged DNA in leukocytes as well as the level of antioxidant vitamins were analyzed using HPLC and HPLC/GC/MS methods. The results of our study demonstrate that 8-oxodG level significantly correlated with every parameter which describe sperm quality: sperm count, motility and morphology. Moreover, the data indicate a higher level of 8-oxodG in sperm DNA compared with DNA of surrogate tissue (leukocytes) in infertile men as well as in healthy control group. For the whole study population the median values of 8-oxodG/106 dG were respectively 7.85 and 5.87 (p = 0.000000002). Since 8-oxodG level in sperm DNA is inversely correlated with urinary excretion rate of 8-oxoGua, which is the product of OGG1 activity, we hypothesize that integrity of spermatozoa DNA may be highly dependent on OGG1 activity. No relationship between the whole body oxidative stress and that of sperm plasma was found, which suggests that the redox status of semen may be rather independent on this characteristic for other tissues. PMID:23874641

  17. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900MHz radiofrequency fields.

    PubMed

    Sun, Yulong; Zong, Lin; Gao, Zhen; Zhu, Shunxing; Tong, Jian; Cao, Yi

    2017-03-01

    HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900MHz radiofrequency fields (RF) at 120μW/cm(2) power intensity for 4h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2'-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of long-term ingestion of white tea on oxidation produced by aging and acute oxidative damage in rats.

    PubMed

    Espinosa Ruiz, Cristóbal; Cabrera, Lorena; López-Jiménez, José Ángel; Zamora, Salvador; Pérez-Llamas, Francisca

    2017-09-19

    The infusion tea extracted from the leaves of the plant Camellia sinensis can be used in the prevention of cancer, cardiovascular and neurodegenerative diseases, and aging, while adriamycin (ADR) is an anticancer drug that increases oxidative stress in cells. The present study evaluated the protective effect of the long-term consumption of white tea used at two different doses against the oxidative stress produced by aging and acute oxidation caused ADR treatment. At wearing, rats received distilled water (control), or 0.15 (dose 1) or 0.45 mg (dose 2) of solid tea extract/kilogram body weight in their drink. At 12 months, about half of the rats of each group were injected with a bolus of ADR, and six rats of the control group with an injection of saline solution and sacrificed. The rest of the animals continued in their cages until 24 months of age, when they were sacrificed. Lipid and protein oxidation of liver and brain microsomes was analyzed by measuring hydroperoxide and carbonyl levels. White tea consumption for 12 months at a non-pharmacological dose was seen to reverse the oxidative damage caused by ADR in both liver and brain, while the consumption of white tea for 20 months at a non-pharmacological dose had no effect on carbonyl or hydroperoxides in these tissues. The long-term ingestion of white tea protected tissues from acute oxidative stress but did not affect chronic oxidative agents such aging.

  19. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    PubMed Central

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. PMID:22915786

  20. Increased oxidative DNA damage seen in renal biopsies adjacent stones in patients with nephrolithiasis.

    PubMed

    Kittikowit, Wipawee; Waiwijit, Uraiwan; Boonla, Chanchai; Ruangvejvorachai, Preecha; Pimratana, Chaowat; Predanon, Chagkrapan; Ratchanon, Supoj; Tosukhowong, Piyaratana

    2014-10-01

    Urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage, is significantly higher in nephrolithiasis patients than in healthy individuals, indicating that these patients have higher degree of oxidative stress. In the present study, we investigated 8-OHdG expression in renal biopsies of patients with nephrolithiasis and in renal tubular cells (HK-2 cells) exposed to calcium oxalate monohydrate (COM). We performed immunohistochemical staining for 8-OHdG in renal biopsies adjacent stones obtained from 28 patients with nephrolithiasis. Controls were noncancerous renal tissues from nephrectomies of patients with renal cancer. 8-OHdG was overexpressed in the nucleus of renal tubular cells in patients with nephrolithiasis compared with controls. Only one nephrolithiasis biopsy was negative for 8-OHdG, whereas in 19 cases 8-OHdG was highly expressed. The level of expression of 8-OHdG among patients with calcium oxalate (mostly mixed with calcium phosphate) and uric acid stones was not significantly different. Increased leukocyte infiltration was observed in renal tissues from patients with nephrolithiasis. Exposure of HK-2 cells to COM caused increased intracellular reactive oxygen species and nuclear expression of 8-OHdG. To our knowledge, this is the first report of increased 8-OHdG expression in renal tubular cells of patients with nephrolithiasis. In vitro, COM crystals were capable of inducing oxidative damage of DNA in the proximal renal tubular cells.

  1. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    NASA Astrophysics Data System (ADS)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.

  2. Measurement of oxidative damage at individual gene levels by quantitative PCR using 8-hydroxyguanine glycosylase (OGG1).

    PubMed

    Choi, Jinhee; Kim, Dae-Yong; Hyun, Jin-Won; Yoon, Sun-Hee; Choi, Eun-Mi; Hahm, Ki-Baik; Rhee, Kwang-Ho; Chung, Myung-Hee

    2003-01-01

    In this study, an attempt was made to develop a method to estimate oxidative damage of individual genes for assessing chemopreventive potential of dietary or medicinal plants. Oxidative damage was investigated on the two genes in gastric mucosal tissue infected with Helicobacter pylori, which were genes of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), a house-keeping gene, and gene of insulin-like growth factor II receptor (IGFIIR), a gene known to be mutated frequently in gastric carcinoma. The oxidative damage in genomic DNA in the above tissue was confirmed by immunohistochemical study using monoclonal antibody to 8-hydroxyguanine (oh(8)G), which showed much higher degree of staining in their nuclei. Using the method we developed, it was demonstrated that the number of oh(8)G (indicated by 8-hydroxyguanine glycosylase (OGG1) sensitive sites) in GAPDH was almost not changed in H. pylori-infected tissue but in IGFIIR, it increased significantly. These results indicate that this method is valid for the estimate of oxidative damage of individual genes and also showed that the susceptibility of genomic DNA to attack of reactive oxygen species is not homogeneous but different depending upon the region of DNA. We expect to use this method in studies of carcinogenic mechanism and chemoprevention since it can provide more specific information pertaining to individual genes we are interested in. Copyright 2003 Elsevier Science B.V.

  3. Visualizing and quantifying oxidized protein thiols in tissue sections: a comparison of dystrophic mdx and normal skeletal mouse muscles.

    PubMed

    Iwasaki, Tomohito; Terrill, Jessica; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2013-12-01

    Reactive oxygen species (ROS) are not only a cause of oxidative stress in a range of disease conditions but are also important regulators of physiological pathways in vivo. One mechanism whereby ROS can regulate cell function is by modification of proteins through the reversible oxidation of their thiol groups. An experimental challenge has been the relative lack of techniques to probe the biological significance of protein thiol oxidation in complex multicellular tissues and organs. We have developed a sensitive and quantitative fluorescence labeling technique to detect and localize protein thiol oxidation in histological tissue sections. In our technique, reduced and oxidized protein thiols are visualized and quantified on two consecutive tissue sections and the extent of protein thiol oxidation is expressed as a percentage of total protein thiols (reduced plus oxidized). We tested the application of this new technique using muscles of dystrophic (mdx) and wild-type C57Bl/10Scsn (C57) mice. In mdx myofibers, protein thiols were consistently more oxidized (19 ± 3%) compared with healthy myofibers (10 ± 1%) in C57 mice. A striking observation was the localization of intensive protein thiol oxidation (70 ± 9%) within myofibers associated with necrotic damage. Oxidative stress is an area of active investigation in many fields of research, and this technique provides a useful tool for locating and further understanding protein thiol oxidation in normal, damaged, and diseased tissues.

  4. Oxidative stress in hoof laminar tissue of horses with lethal gastrointestinal diseases.

    PubMed

    Laskoski, Luciane Maria; Dittrich, Rosangela Locatelli; Valadão, Carlos Augusto Araújo; Brum, Juliana Sperotto; Brandão, Yara; Brito, Harald Fernando Vicente; de Sousa, Renato Silva

    2016-03-01

    Tissue damage caused by oxidative stress is involved in the pathogenesis of several diseases in animals and man, and is believed to play a role in the development of laminitis in horses. The aim of this study was to investigate the oxidative stress associated with laminar lesions in horses with lethal gastrointestinal disorders. Laminar tissue samples of the hoof of 30 horses were used. Tissue samples were divided as follows: six healthy horses (control group-CG), and 24 horses that died after complications of gastrointestinal diseases (group suffering from gastrointestinal disorders-GDG). Superoxide dismutase (SOD2) and nitrotyrosine immunostaining and the severity of laminar lesions were evaluated. Presence of laminar lesions and immunostaining for nitrotyrosine and SOD2 were only evident in horses from the GDG group. Thus, oxidative stress may play a role in the pathogenesis of laminar lesions secondary to gastrointestinal disorders.

  5. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.

    PubMed

    Rausch, M K; Karniadakis, G E; Humphrey, J D

    2017-02-01

    Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues.

  6. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    PubMed

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined.

  7. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    PubMed

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  8. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    PubMed Central

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J.

    2011-01-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells. PMID:22254082

  9. Direct contribution of obesity to oxidative damage to macromolecules.

    PubMed

    Karbownik-Lewinska, Małgorzata; Szosland, Janusz; Kokoszko-Bilska, Agnieszka; Stępniak, Jan; Zasada, Krzysztof; Gesing, Adam; Lewinski, Andrzej

    2012-01-01

    Obesity constitutes a common modifiable risk factor for certain non-communicable diseases (NCDs) associated with enhanced oxidative stress. The aim of the study was to examine serum concentrations of malondialdehyde + 4-hydroxyalkenals (MDA+4-HDA), as an index of lipid peroxidation (LPO), and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) concentration in peripheral blood lymphocytes, as an index of nuclear DNA damage, in overweight and obese adult patients. LPO and 8-oxodG, as well as clinical and laboratory parameters, which are frequently affected by obesity, were evaluated in 58 overweight and obese adult patients, and in 20 healthy volunteers. Both LPO and 8-oxodG levels were increased in overweight and obese patients, with further increase observed with the increasing body mass index (BMI). LPO correlated positively with body mass, BMI, waist circumference, hip circumference, waist:hip ratio, systolic or diastolic blood pressure, glucose, C-reactive protein and ferritin concentrations. 8-oxodG correlated positively with body mass, BMI, hip circumference and triglyceride concentration, whereas it correlated negatively with iron concentration. Expectedly, positive correlation between LPO and 8-oxodG was also found. BMI constituted the only independent determinant (predictor) of LPO in overweight and obese patients. Consistently, LPO did constitute the only independent determinant of obesity. Overweight and obesity in adults are directly associated with increased oxidative damage to macromolecules.

  10. Age-related differences in experimental stroke: possible involvement of mitochondrial dysfunction and oxidative damage.

    PubMed

    Li, Nanlin; Kong, Xiangwei; Ye, Ruidong; Yang, Qianzi; Han, Junliang; Xiong, Lize

    2011-06-01

    Age is the single most important risk factor for cerebral stroke. Unfortunately, the effect of age on ischemic brain damage is less clear. In this study, we sought to examine the potential influence of aging on the histologic and functional outcomes after ischemia. Juvenile (4 weeks of age), young adult (4 months of age), mid-aged (11-12 months of age), and aged (18-19 months of age) mice were subjected to transient middle cerebral artery occlusion. There was no remarkable difference of infarct volume on postoperative days 1 and 3. However, on postoperative day 7, aged mice exhibited significantly worsened infarct volume compared with juvenile and young mice. Intriguingly, the increase of infarct volume was most prominent in the striatal area rather than in cortex. Accordingly, aged mice displayed a slower and incomplete functional recovery after stroke. We further evaluated the effects of aging on the oxidative damage and mitochondrial dysfunction following ischemia. Brain tissues were assayed for lipid, DNA, and protein peroxidation products, mitochondrial enzyme activities, mitochondrial membrane potential, production of reactive oxygen species, and antioxidant activities. Aging was associated with declined mitochondrial function and antioxidant detoxification following ischemia, thereby inducing a deteriorated oxidative damage. Regional subanalyses demonstrated that, in accordance with infarct area, the pro-oxidant/antioxidant imbalance occurred more prominently in subcortical areas. Collectively, these findings suggest mitochondria-mediated oxidative damage may be involved in the age-related aggravated injury in subcortical areas. Mitochondrial protection could be a promising target for neuroprotective therapy, especially in the aged population.

  11. Reproductive Benefit of Oxidative Damage: An Oxidative Stress “Malevolence”?

    PubMed Central

    Poljsak, B.; Milisav, I.; Lampe, T.; Ostan, I.

    2011-01-01

    High levels of reactive oxygen species (ROS) compared to antioxidant defenses are considered to play a major role in diverse chronic age-related diseases and aging. Here we present an attempt to synthesize information about proximate oxidative processes in aging (relevant to free radical or oxidative damage hypotheses of aging) with an evolutionary scenario (credited here to Dawkins hypotheses) involving tradeoffs between the costs and benefits of oxidative stress to reproducing organisms. Oxidative stress may be considered a biological imperfection; therefore, the Dawkins' theory of imperfect adaptation of beings to environment was applied to the role of oxidative stress in processes like famine and infectious diseases and their consequences at the molecular level such as mutations and cell signaling. Arguments are presented that oxidative damage is not necessarily an evolutionary mistake but may be beneficial for reproduction; this may prevail over its harmfulness to health and longevity in evolution. Thus, Dawkins' principle of biological “malevolence” may be an additional biological paradigm for explaining the consequences of oxidative stress. PMID:21969876

  12. Oxidative damage of naphthenic acids on the Eisenia fetida earthworm.

    PubMed

    Wang, Jie; Cao, Xiaofeng; Chai, Liwei; Liao, Jingqiu; Huang, Yi; Tang, Xiaoyan

    2016-11-01

    Naphthenic acids (NAs) have been gaining recognition in recent years as potentially harmful environmental contaminants. Few studies have focused on the potential ecotoxicity of NAs to terrestrial environment. In this study, the responses of antioxidant system and lipid peroxidation and DNA damage were investigated after exposing Eisenia fetida to soil contaminated with NAs. The results indicated that NAs induced a significant increase (p < 0.05) in superoxide dismutase and catalase enzyme activities. The glutathione peroxidase enzyme activities were significantly inhibited (p < 0.05) in the medium and high dose treatments. An increase in malondialidehyde indicated that NAs could cause cellular lipid peroxidation in the tested earthworms. The percentage of DNA in the tail of comet assay of coelomocytes as an indication of DNA damage increased after treatment with different doses of NAs, and a dose-dependent DNA damage of coelomocytes was found. In conclusion, oxidative stress caused by NAs exposure induces physiological responses and genotoxicity on earthworms. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1337-1343, 2016. © 2015 Wiley Periodicals, Inc.

  13. DNA photo-oxidative damage hazard in transfection complexes.

    PubMed

    Rudiuk, Sergii; Franceschi-Messant, Sophie; Chouini-Lalanne, Nadia; Perez, Emile; Rico-Lattes, Isabelle

    2011-01-01

    Complexes of DNA with various cationic vectors have been largely used for nonviral transfection, and yet the photochemical stability of DNA in such complexes has never been considered. We studied, for the first time, the influence of DNA complexation by a cationic lipid and polymers on the amount of damage induced by benzophenone photosensitization. The localization of benzophenone inside the hydrophobic domains formed by a cationic lipid, DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride), and close to DNA, locally increases the photoinduced cleavage by the reactive oxygen species generated. The same effect was found in the case of DNA complexation with an amphiphilic polymer (polynorbornenemethyleneammonium chloride). However, a decrease in DNA damage was observed in the case of complexation with a hydrophilic polymer (polyethylenimine). The DNA protection in this case was because of the absence of benzophenone hydrophobic incorporation into the complex, and to DNA compaction which decreased the probability of radical attack. These results underline the importance of the chemical structure of the nonviral transfection vector in limiting the risks of photo-oxidative damage of the complexed DNA. © 2010 The Authors. Photochemistry and Photobiology © 2010 The American Society of Photobiology.

  14. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    PubMed Central

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  15. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    PubMed Central

    Han, Ye; Xu, Qi; Hu, Jiang-ning; Han, Xin-yue; Li, Wei; Zhao, Li-chun

    2015-01-01

    The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties. PMID:25608939

  16. Intraneuronal amyloid beta accumulation and oxidative damage to nucleic acids in Alzheimer disease.

    PubMed

    Nunomura, Akihiko; Tamaoki, Toshio; Tanaka, Koich; Motohashi, Nobutaka; Nakamura, Masao; Hayashi, Takaaki; Yamaguchi, Haruyasu; Shimohama, Shun; Lee, Hyoung-gon; Zhu, Xiongwei; Smith, Mark A; Perry, George

    2010-03-01

    In an analysis of amyloid pathology in Alzheimer disease, we used an in situ approach to identify amyloid-beta (Abeta) accumulation and oxidative damage to nucleic acids in postmortem brain tissue of the hippocampal formation from subjects with Alzheimer disease. When carboxyl-terminal-specific antibodies directed against Abeta40 and Abeta42 were used for immunocytochemical analyses, Abeta42 was especially apparent within the neuronal cytoplasm, at sites not detected by the antibody specific to Abeta-oligomer. In comparison to the Abeta42-positive neurons, neurons bearing oxidative damage to nucleic acids were more widely distributed in the hippocampus. Comparative density measurements of the immunoreactivity revealed that levels of intraneuronal Abeta42 were inversely correlated with levels of intraneuronal 8-hydroxyguanosine, an oxidized nucleoside (r=- 0.61, p<0.02). Together with recent evidence that the Abeta peptide can act as an antioxidant, these results suggest that intraneuronal accumulation of non-oligomeric Abeta may be a compensatory response in neurons to oxidative stress in Alzheimer disease.

  17. Brain oxidative damage restored by Sesbania grandiflora in cigarette smoke-exposed rats.

    PubMed

    Ramesh, Thiyagarajan; Sureka, Chandrabose; Bhuvana, Shanmugham; Begum, Vavamohaideen Hazeena

    2015-08-01

    Cigarette smoking has been associated with high risk of neurological diseases such as stroke, Alzheimer's disease, multiple sclerosis, etc., The present study was designed to evaluate the restorative effects of Sesbania grandiflora (S. grandiflora) on oxidative damage induced by cigarette smoke exposure in the brain of rats. Adult male Wistar-Kyoto rats were exposed to cigarette smoke for a period of 90 days and consecutively treated with S. grandiflora aqueous suspension (SGAS, 1000 mg/kg body weight per day by oral gavage) for a period of 3 weeks. The levels of protein carbonyl, nitric oxide, and activities of cytochrome P450, NADPH oxidase and xanthine oxidase were significantly increased, whereas the levels of total thiol, protein thiol, non-protein thiol, nucleic acids, tissue protein and the activities of Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase were significantly diminished in the brain of rats exposed to cigarette smoke as compared with control rats. Also cigarette smoke exposure resulted in a significant alteration in brain total lipid, total cholesterol, triglycerides and phospholipids content. Treatment of SGAS is regressed these alterations induced by cigarette smoke. The results of our study suggest that S. grandiflora restores the brain from cigarette smoke induced oxidative damage. S. grandiflora could have rendered protection to the brain by stabilizing their cell membranes and prevented the protein oxidation, probably through its free radical scavenging and anti-peroxidative effect.

  18. Oxidative damage involves in the inhibitory effect of nitric oxide on spore germination of Penicillium expansum.

    PubMed

    Lai, Tongfei; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2011-01-01

    The effects of nitric oxide (NO) on spore germination of Penicillium expansum were investigated and a possible mechanism was evaluated. The results indicated that NO released by sodium nitroprusside (SNP) significantly suppressed fungal growth. With the use of an oxidant sensitive probe and Western blot analysis, an increased level of intracellular reactive oxygen species (ROS) and enhanced carbonylation damage were detected in spores of P. expansum under NO stress. Exogenous superoxide dismutase (SOD) and ascorbic acid (Vc) could increase the resistance of the spore to the inhibitory effect of NO. The activities of SOD and catalase (CAT), as well as ATP content in spores under NO stress were also lower than those in the control. We suggest that NO in high concentration induces the generation of ROS which subsequently causes severe oxidative damage to proteins crucial to the process of spore germination of P. expansum.

  19. Investigation of water spray to reduce collateral thermal damage during laser resection of soft tissue

    NASA Astrophysics Data System (ADS)

    Theisen-Kunde, D.; Wolken, H.; Ellebrecht, D.; Danicke, V.; Wurster, L.; Kleemann, M.; Birngruber, R.

    2013-06-01

    To reduce unwanted collateral thermal damage to surrounding tissue and organs during laparoscopic laser dissection (cw, wavelength: 1.9μm) of porcine liver water spray was used. Size and amount of the produced water droplets of the water spray were photographed by short time imaging and analyzed by imaging software. At in vivo measurements on fresh porcine liver the depth of thermal damage was reduced by 85 % with water spray and the lateral size of thermal damage at the tissue surface could be reduced by 67%. This results show that especially for laparoscopic laser surgery water spray application might be a useful tool to avoid unwanted collateral thermal damage.

  20. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  1. Spatial Pattern of Cell Damage in Tissue from Heavy Ions

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A new Monte Carlo algorithm was developed that can model passage of heavy ions in a tissue, and their action on the cellular matrix for 2- or 3-dimensional cases. The build-up of secondaries such as projectile fragments, target fragments, other light fragments, and delta-rays was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix). A simple model of tissue was given as abstract spheres with close approximation to real cell geometries (3-d cell matrix), as well as a realistic model of tissue was proposed based on microscopy images. Image segmentation was used to identify cells in an irradiated cell culture monolayer, or slices of tissue. The cells were then inserted into the model box pixel by pixel. In the case of cell monolayers (2-d), the image size may exceed the modeled box size. Such image was is moved with respect to the box in order to sample as many cells as possible. In the case of the simple tissue (3-d), the tissue box is modeled with periodic boundary conditions, which extrapolate the technique to macroscopic volumes of tissue. For real tissue, specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated based on BNL data, and other experimental data.

  2. Chronic Cadmium Treatment Promotes Oxidative Stress and Endothelial Damage in Isolated Rat Aorta

    PubMed Central

    Almenara, Camila C. P.; Broseghini-Filho, Gilson B.; Vescovi, Marcus V. A.; Angeli, Jhuli K.; Faria, Thaís de O.; Stefanon, Ivanita; Vassallo, Dalton V.; Padilha, Alessandra S.

    2013-01-01

    Cadmium is a highly toxic metal that is present in phosphate fertilizers, and the incidence of cadmium poisoning in the general population has increased, mainly due to cigarette smoking. Once absorbed, cadmium accumulates in the tissues, causing harmful effects including high blood pressure, endothelial damage and oxidative stress. Oxidative stress is known to efficiently produce oxidized low-density lipoprotein and consequently atherosclerosis, mainly in the aorta. However, the mechanisms through which endothelial damage is induced by cadmium have not been elucidated. Thus, the aim of this study was to investigate the effects of this metal in the isolated aorta and the possible role of oxidative stress. Rats received 100 mg.L−1 cadmium chloride (CdCl2) in the drinking water or distilled water alone for four weeks. The pressor effect of cadmium was followed throughout the exposure period by tail plethysmography. At the end of the fourth week, the blood cadmium content was established, and the vascular reactivity of the isolated aorta to phenylephrine, acetylcholine and sodium nitroprusside was analyzed in the context of endothelium denudation and incubation with L-NAME, apocynin, losartan, enalapril, superoxide dismutase (SOD) or catalase. We observed an increased response to phenylephrine in cadmium-treated rats. This increase was abolished by catalase and SOD incubation. Apocynin treatment reduced the phenylephrine response in both treatment groups, but its effect was greater in cadmium-treated rats, and NOX2 expression was greater in the cadmium group. These results suggested that cadmium in blood concentrations similar to those found in occupationally exposed populations is able to stimulate NOX2 expression, contributing to oxidative stress and reducing NO bioavailability, despite enhanced eNOS expression. These findings suggest that cadmium exposure promotes endothelial damage that might contribute to inflammation, vascular injury and the development of

  3. Free radicals and tissue damage produced by exercise

    SciTech Connect

    Davies, K.J.A.; Quintanilha, A.T.; Brooks, G.A; Packer, L.

    1982-08-31

    Reported is a two- to three-fold increase in free radical (R*) concentrations of muscle and liver following exercise to exhaustion. Exhaustive exercise also resulted in decreased mitochondrial respiratory control, loss of sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) integrity, and increased levels of lipid peroxidation products. Free radical concentrations, lipid peroxidation, and SR, ER, and mitochondrial damage were similar in exercise exhausted control animals and non-exercised vitamin E deficient animals, suggesting the possibility of a common R* dependent damage process. In agreement with previous work showing that exercise endurance capacity is largely determined by the functional mitochondrial content of muscle, vitamin E deficient animals endurance was 40% lower than that of controls. The results suggest that R* induced damage may provide a stimulus to the mitochondrial biogenesis which results from endurance training.

  4. Detection of CCl/sub 4/-induced oxidation of hepatic tissue in vivo by oxygen-18 tracing

    SciTech Connect

    Hatch, G.E.; Santrock, J.; Slade, R.; Hayes, J.M.

    1988-01-01

    Oxygen can become a damaging influence in tissues and cells exposed to environmental pollutants. This paper describes the first application of a new technique for tracing oxygen in tissues exposed to pollutants. Carbon tetrachloride (CCl/sub 4/) was found to cause oxidation of liver tissue in rats which was measurable using oxygen-18 labeling procedures. Rats that breathed oxygen-18 while being exposed to CCl/sub 4/ were found to have oxidized lipids, macromolecules, and water-soluble substances in their livers. The techniques outlined in the paper should be useful for elucidating mechanisms of injury and increased aging of tissues exposed to pollutants.

  5. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    PubMed Central

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  6. Evaluation of Oxidation Damage in Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1996-01-01

    A method based on the technique of dilatometry has been established to quantitatively evaluate the interfacial damage due to the oxidation in a thermal barrier coating system. Strain isolation and adhesion coefficients have been proposed to characterize the thermal barrier coating (TBC) performance based on its thermal expansion behavior. It has been found that, for a thermal barrier coating system consisting of ZrO2-8%Y2O3/FeCrAlY/4140 steel substrate, the oxidation of the bond coat and substrate significantly reduced the ceramic coating adherence, as inferred from the dilatometry measurements. The in-situ thermal expansion measurements under 30 deg C to 700 deg C thermal cycling in air showed that the adhesion coefficient, A(sub i) decreased by 25% during the first 35 oxidation cycles. Metallography showed that delamination occurred at both the ceramic/bond coat and bond coat/substrate interfaces. In addition, the strain isolation effect has been improved by increasing the FeCrAlY bond coat thickness. The strain isolation coefficient, Si, increased from about 0.04 to 0.25, as the bond coat thickness changed from 0.1 mm to 1.0 mm. It may be possible to design optimum values of strain isolation and interface adhesion coefficients to achieve the best TBC performance.

  7. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.

    PubMed

    Palacino, James J; Sagi, Dijana; Goldberg, Matthew S; Krauss, Stefan; Motz, Claudia; Wacker, Maik; Klose, Joachim; Shen, Jie

    2004-04-30

    Loss-of-function mutations in parkin are the predominant cause of familial Parkinson's disease. We previously reported that parkin-/- mice exhibit nigrostriatal deficits in the absence of nigral degeneration. Parkin has been shown to function as an E3 ubiquitin ligase. Loss of parkin function, therefore, has been hypothesized to cause nigral degeneration via an aberrant accumulation of its substrates. Here we employed a proteomic approach to determine whether loss of parkin function results in alterations in abundance and/or modification of proteins in the ventral midbrain of parkin-/- mice. Two-dimensional gel electrophoresis followed by mass spectrometry revealed decreased abundance of a number of proteins involved in mitochondrial function or oxidative stress. Consistent with reductions in several subunits of complexes I and IV, functional assays showed reductions in respiratory capacity of striatal mitochondria isolated from parkin-/- mice. Electron microscopic analysis revealed no gross morphological abnormalities in striatal mitochondria of parkin-/- mice. In addition, parkin-/- mice showed a delayed rate of weight gain, suggesting broader metabolic abnormalities. Accompanying these deficits in mitochondrial function, parkin-/- mice also exhibited decreased levels of proteins involved in protection from oxidative stress. Consistent with these findings, parkin-/- mice showed decreased serum antioxidant capacity and increased protein and lipid peroxidation. The combination of proteomic, genetic, and physiological analyses reveal an essential role for parkin in the regulation of mitochondrial function and provide the first direct evidence of mitochondrial dysfunction and oxidative damage in the absence of nigral degeneration in a genetic mouse model of Parkinson's disease.

  8. Protective Effect of Folic Acid on Oxidative DNA Damage

    PubMed Central

    Guo, Xiaojuan; Cui, Huan; Zhang, Haiyang; Guan, Xiaoju; Zhang, Zheng; Jia, Chaonan; Wu, Jia; Yang, Hui; Qiu, Wenting; Zhang, Chuanwu; Yang, Zuopeng; Chen, Zhu; Mao, Guangyun

    2015-01-01

    Abstract Although previous reports have linked DNA damage with both transmissions across generations as well as our own survival, it is unknown how to reverse the lesion. Based on the data from a Randomized, Double-blind, Placebo Controlled Clinical Trial, this study aimed to assess the efficacy of folic acid supplementation (FAS) on DNA oxidative damage reversal. In this randomized clinical trial (RCT), a total of 450 participants were enrolled and randomly assigned to 3 groups to receive folic acid (FA) 0.4 mg/day (low-FA), 0.8 mg/day (high-FA), or placebo (control) for 8 weeks. The urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and creatinine (Cr) concentration at pre- and post-FAS were measured with modified enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. A multivariate general linear model was applied to assess the individual effects of FAS and the joint effects between FAS and hypercholesterolemia on oxidative DNA damage improvement. This clinical trial was registered with ClinicalTrials.gov, number NCT02235948. Of the 438 subjects that received FA fortification or placebo, the median (first quartile, third quartile) of urinary 8-OHdG/Cr for placebo, low-FA, and high-FA groups were 58.19 (43.90, 82.26), 53.51 (38.97, 72.74), 54.73 (39.58, 76.63) ng/mg at baseline and 57.77 (44.35, 81.33), 51.73 (38.20, 71.30), and 50.65 (37.64, 76.17) ng/mg at the 56th day, respectively. A significant decrease of urinary 8-OHdG was observed after 56 days FA fortification (P < 0.001). Compared with the placebo, after adjusting for some potential confounding factors, including the baseline urinary 8-OHdG/Cr, the urinary 8-OHdG/Cr concentration significantly decreased after 56 days FAS [β (95% confidence interval) = −0.88 (−1.62, −0.14) and P = 0.020 for low-FA; and β (95% confidence interval) = −2.68 (−3.42, −1.94) and P < 0.001 for high-FA] in a dose-response fashion (Ptrend

  9. Oxidative photodegradation of ocular tissues: beneficial effects of filtering and exogenous antioxidants.

    PubMed

    Hammond, Billy R; Johnson, Bart A; George, Eric R

    2014-12-01

    The fact that light is necessary for life is generally accepted as an axiom. The extent to which light interacts and influences human biology, however, is often not fully appreciated. Exposure to sunlight, for instance, can both promote and degrade human health. There is now general scientific consensus that, although the eye evolved to respond to light, it is also damaged by excessive exposure. Light-mediated ocular damage is involved in the pathophysiology of many common forms of blindness. The type of ocular tissue damage induced by light exposure depends on the extent of exposure and wavelength. The tissues of the lens, cornea, and retina contain specific chemical moieties that have been proven to exhibit light-mediated oxidative degradation. Proteins and lipids present in the cornea, lens, and retina, meet all of the physical requirements known to initiate the process of oxidative photodegradation upon exposure to solar radiation. As such, different mechanisms have evolved in the lens, cornea, and retina to ameliorate such light-mediated oxidative damage. It appears, however, that such mechanisms are ill-matched to handle modern conditions: namely, poor diet and longer life-spans (and the degenerative diseases that accompany them). Hence, steps must be taken to protect the eye from the damaging effects of light. Preventative measures include minimizing actinic light exposure, providing exogenous filtering (e.g., through the use of protective lenses), and enhancing antioxidant defenses (e.g., through increased dietary intake of antioxidants). These strategies may yield long-term benefits in terms of reducing oxidative photodegradation of the ocular tissues. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters

    PubMed Central

    Lee, De-Hyung; Gold, Ralf; Linker, Ralf A.

    2012-01-01

    Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS). Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2). Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Here, fumaric acid esters (FAE) are a new, orally available treatment option which had already been tested in phase II/III MS trials demonstrating beneficial effects on relapse rates and magnetic resonance imaging markers. In vitro, application of dimethylfumarate (DMF) leads to stabilization of Nrf2, activation of Nrf2-dependent transcriptional activity and abundant synthesis of detoxifying proteins. Furthermore, application of FAE involves direct modification of the inhibitor of Nrf2, Kelch-like ECH-associated protein 1. On cellular levels, the application of FAE enhances neuronal survival and protects astrocytes against oxidative stress. Increased levels of Nrf2 are detected in the central nervous system of DMF treated mice suffering from experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In EAE, DMF ameliorates the disease course and improves preservation of myelin, axons and neurons. Finally, Nrf2 is also up-regulated in the spinal cord of autopsy specimens from untreated patients with MS, probably as part of a naturally occurring anti-oxidative response. In summary, oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapies like FAE. PMID:23109883

  11. Mechanisms of cell damage in agitated microcarrier tissue culture reactors

    NASA Technical Reports Server (NTRS)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1986-01-01

    Cells growing on microcarriers may be damaged by collisions of the microcarrier against another microcarrier or the reactor agitator. Bead-bead collisions are caused by small-scale turbulence, which can also cause high local shear stress on the cells. The cells are also exposed to 10-20 Hz cyclic shear stress by bead rotation.

  12. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay.

    PubMed

    Cobley, James N; Margaritelis, Nikos V; Morton, James P; Close, Graeme L; Nikolaidis, Michalis G; Malone, John K

    2015-01-01

    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical ((·)OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and (·)OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  13. Purification of a protease in red blood cells that degrades oxidatively damaged haemoglobin.

    PubMed Central

    Fagan, J M; Waxman, L

    1991-01-01

    Haemoglobin damaged by exposure of red blood cells to oxidants is rapidly degraded by a proteolytic pathway which does not require ATP [Fagan, Waxman & Goldberg (1986) J. Biol. Chem. 261, 5705-5713]. By fractionating erythrocyte lysates, we have purified two proteases which hydrolyse oxidatively damaged haemoglobin (Ox-Hb). One protease hydrolysed small fluorogenic substrates in addition to Ox-Hb. Its molecular mass was approximately 700 kDa and it consisted of several subunits ranging in size from 22 to 30 kDa. This enzyme may be related to the high-molecular-mass multicatalytic proteinase previously isolated from a variety of tissue and cell types. The other Ox-Hb-degrading activity had an apparent molecular mass of 400 kDa on gel filtration, a subunit size of 110 kDa and an isoelectric point between 4.5 and 5.0. This protease also hydrolysed the small polypeptides insulin and glucagon, as well as other large proteins such as lysozyme. Insulin blocked the degradation of Ox-Hb and Ox-Hb blocked the hydrolysis of insulin by the purified protease. Thiol reagents and metal chelators strongly inhibited the hydrolysis of both Ox-Hb and insulin, whereas inhibitors of serine, aspartic and thiol proteases had little effect. These properties suggest that the Ox-Hb-degrading activity purified from rabbit erythrocytes is the cytosolic insulin-degrading enzyme that is believed to play a role in the metabolism of insulin in several tissues. We propose that this enzyme may also function as a key component in a cytoplasmic degradative pathway responsible for removing proteins damaged by oxidants. Images Fig. 6. PMID:1872813

  14. Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats.

    PubMed

    Sankar, Palanisamy; Telang, Avinash Gopal; Kalaivanan, Ramya; Karunakaran, Vijayakaran; Suresh, Subramaniyam; Kesavan, Manickam

    2016-03-01

    Arsenic exposure through drinking water causes oxidative stress and tissue damage in the kidney and brain. Curcumin (CUR) is a good antioxidant with limited clinical application because of its hydrophobic nature and limited bioavailability, which can be overcome by the encapsulation of CUR with nanoparticles (NPs). The present study investigates the therapeutic efficacy of free CUR and NP-encapsulated CUR (CUR-NP) against sodium arsenite-induced renal and neuronal oxidative damage in rat. The CUR-NP prepared by emulsion technique and particle size ranged between 120 and 140 nm, with the mean particle size being 130.8 nm. Rats were divided into five groups (groups 1-5) with six animals in each group. Group 1 served as control. Group 2 rats were exposed to sodium arsenite (25 ppm) daily through drinking water for 42 days. Groups 3, 4, and 5 were treated with arsenic as in Group 2; however, these animals were also administered with empty NPs, CUR (100 mg/kg body weight), and CUR-NP (100 mg/kg), respectively, by oral gavage during the last 14 days of arsenic exposure. Arsenic exposure significantly increased serum urea nitrogen and creatinine levels. Arsenic increased lipid peroxidation (LPO), reduced glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were depleted significantly in both kidney and brain. Treatment with free CUR and CUR-NP decreased the LPO and increased the enzymatic and nonenzymatic antioxidant system in kidney and brain. Histopathological examination showed that kidney and brain injury mediated by arsenic was ameliorated by treatment. However, the amelioration percentage indicates that CUR-NP had marked therapeutic effect on arsenic-induced oxidative damage in kidney and brain tissues.

  15. Resveratrol Protects Sepsis-Induced Oxidative DNA Damage in Liver and Kidney of Rats

    PubMed Central

    Aydın, Sevtap; Şahin, Tevfik Tolga; Bacanlı, Merve; Taner, Gökçe; Başaran, Arif Ahmet; Aydın, Mehtap; Başaran, Nurşen

    2016-01-01

    Background The increases of free radicals have been proposed to be involved in the pathogenesis of sepsis, which leads to multiple-organ dysfunction syndromes. The uses of antioxidants as a complementary tool in the medical care of oxidative stress-related diseases have attracted attention of researchers. Resveratrol (RV) has suggested being antioxidant, anti-proliferative, and anti-inflammatory effects in various experimental models and clinical settings. Aims This study was undertaken to evaluate the protective effects of RV on oxidative DNA damage induced by sepsis in the liver and kidney tissues of Wistar albino rats. Study Design Animal experimentation. Methods Four experimental groups consisting of eight animals for each was created using a total of thirty-two male Wistar albino rats. Sham group was given 0.5 mL of saline intra-peritoneal (ip) only following laparatomy. Sepsis group was given 0.5 mL saline ip only following the induction of sepsis. RV-treated group was given a dose of 100 mg/kg ip RV in 0.5 mL saline following laparatomy. RV-treated sepsis group was given 100 mg/kg ip RV in 0.5 mL saline following the induction of sepsis. A model of sepsis was created by cecal ligation and puncture technique. In the liver and kidney tissues, oxidative stress parameters (malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPX)) and a proinflammatory cytokine (tumor necrosis factor alpha (TNF-alpha)), were evaluated spectrophotometrically and DNA damage was determined by the alkaline single cell gel electrophoresis (comet assay) technique using formamidopyrimidine DNA glycosylase protein. Results In the RV-treated sepsis group, the levels of MDA and TNF-alpha were lower and GSH levels, SOD and GPX activities were higher than in the septic rats (p<0.05). RV treatment significantly reduced the sepsis-induced oxidative DNA damage in the liver and kidney cells (p<0.05). Conclusion It is suggested that RV treatment

  16. The effect of thalidomide on ethanol-induced gastric mucosal damage in mice: involvement of inflammatory cytokines and nitric oxide.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-01-05

    Excessive ethanol ingestion causes gastric mucosal damage through the inflammatory and oxidative processes. The present study was aimed to evaluate the protective effect of thalidomide on ethanol-induced gastric mucosal damage in mice. The animals were pretreated with vehicle or thalidomide (30 or 60 mg/kg, orally), and one hour later, the gastric mucosal injury was induced by oral administration of acidified ethanol. The animals were euthanized one hour after ethanol ingestion, and gastric tissues were collected to biochemical analyzes. The gastric mucosal lesions were assessed by macroscopic and histopathological examinations. The results showed that treatment of mice with thalidomide prior to the administration of ethanol dose-dependently reduced the gastric ulcer index. Thalidomide pretreatment significantly reduced the levels of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6], malondialdehyde (MDA) and myeloperoxidase (MPO) activity. In addition, thalidomide significantly inhibited ethanol-induced nitric oxide (NO) overproduction in gastric tissue. Histological observations showed that ethanol-induced gastric mucosal damage was attenuated by thalidomide pretreatment. It seems that thalidomide as an anti-inflammatory agent may have a protective effect against alcohol-induced mucosal damage by inhibition of neutrophil infiltration and reducing the production of nitric oxide and inflammatory cytokines in gastric tissue.

  17. Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation

    PubMed Central

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X.; Villoslada, Pablo

    2013-01-01

    Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of

  18. Oxidative damage induced in Vicia faba by coke plant wastewater.

    PubMed

    Liu, Yuxiang; Lv, Yongkang

    2011-10-01

    The present study investigated toxic impacts of coke plant wastewater over a concentration gradient of COD( Cr) 40-640 mg/l on malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in roots and leaves of Vicia faba. MDA levels and SOD activities were significantly increased at all concentrations both in roots and leaves of Vicia faba; CAT and POD activities were significantly enhanced in roots at low concentrations and were significantly decreased at high concentrations (COD(Cr) 320 and 640 mg/l for CAT; COD( Cr) 640 mg/l for POD). In leaves, CAT and POD activities remained enhanced at all concentration and did not show significant difference at COD( Cr) 640 mg/l for CAT and COD(Cr) 40, 640 mg/l for POD. These results suggest that coke plant wastewater can cause oxidative damage in roots and leaves of Vicia faba and root enzymes seemed more sensitive to the wastewater.

  19. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.).

    PubMed

    Bartoli, Carlos Guillermo; Gómez, Facundo; Martínez, Dana Ethel; Guiamet, Juan José

    2004-08-01

    Photosynthesis, respiration, and other processes produce reactive oxygen species (ROS) that can cause oxidative modifications to proteins, lipids, and DNA. The production of ROS increases under stress conditions, causing oxidative damage and impairment of normal metabolism. In this work, oxidative damage to various subcellular compartments (i.e. chloroplasts, mitochondria, and peroxisomes) was studied in two cultivars of wheat differing in ascorbic acid content, and growing under good irrigation or drought. In well-watered plants, mitochondria contained 9-28-fold higher concentrations of oxidatively modified proteins than chloroplasts or peroxisomes. In general, oxidative damage to proteins was more intense in the cultivar with the lower content of ascorbic acid, particularly in the chloroplast stroma. Water stress caused a marked increase in oxidative damage to proteins, particularly in mitochondria and peroxisomes. These results indicate that mitochondria are the main target for oxidative damage to proteins under well-irrigated and drought conditions.

  20. Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage.

    PubMed

    Ahuja, Nitina; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2015-02-01

    Plant essential oils and their constituent monoterpenes are widely known plant growth retardants but their mechanism of action is not well understood. We explored the mechanism of phytotoxicity of eugenol, a monoterpenoid alcohol, proposed as a natural herbicide. Eugenol (100-1000 µM) retarded the germination of Avena fatua and strongly inhibited its root growth compared to the coleoptile growth. We further investigated the underlying physiological and biochemical alterations leading to the root growth inhibition. Eugenol induced the generation of reactive oxygen species (ROS) leading to oxidative stress and membrane damage in the root tissue. ROS generation measured in terms of hydrogen peroxide, superoxide anion and hydroxyl radical content increased significantly in the range of 24 to 144, 21 to 91, 46 to 173% over the control at 100 to 1000 µM eugenol, respectively. The disruption in membrane integrity was indicated by 25 to 125% increase in malondialdehyde (lipid peroxidation byproduct), and decreased conjugated diene content (~10 to 41%). The electrolyte leakage suggesting membrane damage increased both under light as well as dark conditions measured over a period from 0 to 30 h. In defense to the oxidative damage due to eugenol, a significant upregulation in the ROS-scavenging antioxidant enzyme machinery was observed. The activities of superoxide dismutases, catalases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases were elevated by ~1.5 to 2.8, 2 to 4.3, 1.9 to 5.0, 1.4 to 3.9, 2.5 to 5.5 times, respectively, in response to 100 to 1000 µM eugenol. The study concludes that eugenol inhibits early root growth through ROS-mediated oxidative damage, despite an activation of the antioxidant enzyme machinery.

  1. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice

    PubMed Central

    Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim

    2016-01-01

    Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384

  2. Tissue specific response to DNA damage: C. elegans as role model.

    PubMed

    Lans, Hannes; Vermeulen, Wim

    2015-08-01

    The various symptoms associated with hereditary defects in the DNA damage response (DDR), which range from developmental and neurological abnormalities and immunodeficiency to tissue-specific cancers and accelerated aging, suggest that DNA damage affects tissues differently. Mechanistic DDR studies are, however, mostly performed in vitro, in unicellular model systems or cultured cells, precluding a clear and comprehensive view of the DNA damage response of multicellular organisms. Studies performed in intact, multicellular animals models suggest that DDR can vary according to the type, proliferation and differentiation status of a cell. The nematode Caenorhabditis elegans has become an important DDR model and appears to be especially well suited to understand in vivo tissue-specific responses to DNA damage as well as the impact of DNA damage on development, reproduction and health of an entire multicellular organism. C. elegans germ cells are highly sensitive to DNA damage induction and respond via classical, evolutionary conserved DDR pathways aimed at efficient and error-free maintenance of the entire genome. Somatic tissues, however, respond differently to DNA damage and prioritize DDR mechanisms that promote growth and function. In this mini-review, we describe tissue-specific differences in DDR mechanisms that have been uncovered utilizing C. elegans as role model. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Using electrolyte leakage tests to determine lifting windows and detect tissue damage

    Treesearch

    Richard W. Tinus

    2002-01-01

    Physiological testing is rapidly coming into use as a means to determine the condition of nursery stock and predict how it will respond to treatment or use. One such test, the electrolyte leakage test, can be used to measure cold hardiness and detect tissue damage. The principle of this test is that when cell membranes are damaged, electrolytes leak out into the water...

  4. Risk of Oxidative Damage to Bone from Increased Iron Stores During Space Flight

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Smith, S. M.

    2014-01-01

    Iron stores are increased secondary to neocytolysis of red blood cells and a high dietary intake of iron during space flight. This raises concerns about the risk of excess iron causing oxidative damage in many tissues, including bone. Biomarkers of iron status, oxidative damage, and bone resorption during space flight were analyzed for 23 (16 M/7 F) International Space Station crewmembers as part of the Nutrition SMO project. Up to 5 in-flight blood samples and 24-h urine pools were collected over the course of the 4-6 month missions. Serum iron increased slightly during space flight and was decreased at landing (P < 0.0004). An increase in serum ferritin early in flight (217% in women and 68% in men, P < 0.0004), returning to preflight concentrations at landing, and a decrease in transferrin and transferrin receptors during flight indicated that a transient increase in iron stores occurred. No inflammatory response was observed during flight. The oxidative damage markers 8-hydroxy-2'-deoxyguanosine and prostaglandin F(sub 2(alpha)) were positively correlated (both P < 0.001) with serum ferritin. A greater area under the curve for ferritin during flight was correlated with greater changes in bone mineral density of several bone regions after flight (1). In a separate study (2), a ground-based investigation was conducted that examined the combined effects of radiation exposure and iron overload on sensitivity to radiation injury in several physiological systems in 12-wk male Sprague-Dawley rats. The rats were acclimated to an adequate iron diet (45 mg iron (ferric citrate)/kg diet) for 3 wk and then assigned to one of four groups: adequate iron (Fe) diet/no radiation, adequate Fe diet/ radiation, moderately high Fe diet (650 mg Fe (ferric citrate)/kg diet)/no radiation, and moderately high Fe diet/radiation. Animals remained on the assigned diet for 4 wk. Starting on day 14 of experimental diet treatment, animals were exposed to a fractionated dose (0.375 Gy) of Cs

  5. Oxidative damage in keratinocytes exposed to cigarette smoke and aldehydes.

    PubMed

    Avezov, Katia; Reznick, Abraham Z; Aizenbud, Dror

    2014-06-01

    Cigarette smoke (CS) is a significant environmental source of human exposure to chemically active saturated (acetaldehyde) and α,β-unsaturated aldehydes (acrolein) inducing protein carbonylation and dysfunction. The exposure of oral tissues to environmental hazards is immense, especially in smokers. The objectives of the current study were to examine the effect of aldehydes originating from CS on intracellular proteins of oral keratinocytes and to observe the antioxidant response in these cells. Intracellular protein carbonyl modification under CS, acrolein and acetaldehyde exposure in the HaCaT keratinocyte cell line, representing oral keratinocytes was examined by Western blot. Possible intracellular enzymatic dysfunction under the above conditions was examined by lactate dehydrogenase (LDH) activity assay. Oxidative stress response was investigated, by DCF (2,7-dichlorodihydrofluorescein) assay and GSH (glutathione) oxidation. Intracellular protein carbonyls increased 5.2 times after CS exposure and 2.7 times after exposure to 1 μmol of acrolein. DCF assay revealed an increase of fluorescence intensity 3.2 and 3.1 times after CS and acrolein exposure, respectively. CS caused a 72.5% decrease in intracellular GSH levels compared to controls. Activity of intracellular LDH was preserved. α,β-Unsaturated aldehydes from CS are capable of intracellular protein carbonylation and have a role in intracellular oxidative stress elevation in keratinocytes, probably due to the reduction in GSH levels.

  6. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling

    PubMed Central

    Suzuki, Maiko; Bandoski, Cheryl; Bartlett, John D.

    2015-01-01

    Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These

  7. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling.

    PubMed

    Suzuki, Maiko; Bandoski, Cheryl; Bartlett, John D

    2015-12-01

    Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These

  8. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage.

    PubMed

    Aparicio-Domingo, Patricia; Romera-Hernandez, Monica; Karrich, Julien J; Cornelissen, Ferry; Papazian, Natalie; Lindenbergh-Kortleve, Dicky J; Butler, James A; Boon, Louis; Coles, Mark C; Samsom, Janneke N; Cupedo, Tom

    2015-10-19

    Disruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence of this high mitotic activity, mucosal surfaces are frequently targeted by anticancer therapies, leading to dose-limiting side effects. The cellular mechanisms that control tissue protection and mucosal healing in response to intestinal damage remain poorly understood. Type 3 innate lymphoid cells (ILC3s) are regulators of homeostasis and tissue responses to infection at mucosal surfaces. We now demonstrate that ILC3s are required for epithelial activation and proliferation in response to small intestinal tissue damage induced by the chemotherapeutic agent methotrexate. Multiple subsets of ILC3s are activated after intestinal tissue damage, and in the absence of ILC3s, epithelial activation is lost, correlating with increased pathology and severe damage to the intestinal crypts. Using ILC3-deficient Lgr5 reporter mice, we show that maintenance of intestinal stem cells after damage is severely impaired in the absence of ILC3s or the ILC3 signature cytokine IL-22. These data unveil a novel function of ILC3s in limiting tissue damage by preserving tissue-specific stem cells.

  9. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage

    PubMed Central

    Maxwell, Adam D.; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P.; Xu, Zhen; Cain, Charles A.

    2010-01-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in-vitro and predict in-vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom’s response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue, at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-Mode ultrasound image, similar to histotripsy lesions in tissue. High speed imaging of the optically-transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. PMID:21030142

  10. The effects of thyroid scintigraphy studies on oxidative damage in patients.

    PubMed

    Ciçek, E; Yildiz, M; Delibaş, N; Bahçeli, S

    2006-06-01

    The majority of radiation injury in cells depends on oxidative stress. Irradiation and absorbed doses, duration of the irradiation and the susceptibility of the tissue against radiation are the factors that cause variations on living cells. The aim of this study was to investigate gamma radiation-induced oxidative damage in erythrocytes after thyroid scintigraphy with Tc-99m pertechnetate. Fifteen patients (8 women and 7 men) who performed thyroid scintigraphy with Tc-99m pertechnetate were included in this study. The median age was 52 +/- 8 years (range 33-65). The blood samples were taken from patients just before, 1 hour after and three hours after injection of radiopharmaceutical. Malondialdehyde (MDA) and antioxidant enzymes such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) levels were measured to evaluate the gamma radiation induced oxidative damage. No difference was detected in any final measurement activities of erythrocyte antioxidant enzyme such as SOD and GPX in the direct comparison between the before and after injection of the radiopharmaceutical groups, except erythrocyte CAT activities measured 1 hour after and 3 hours after injection of the radiopharmaceutical (p < 0.05). MDA levels were decreased 1 hour after and 3 hours after injection of the radiopharmaceutical.

  11. Effect of Sargassum thunbergii on ROS mediated oxidative damage and identification of polyunsaturated fatty acid components.

    PubMed

    Kim, Jung-Ae; Kong, Chang-Suk; Kim, Se-Kwon

    2010-05-01

    In this study, we examined protective effect of Sargassum thunbergii on reactive oxygen species (ROS) mediated oxidative stress in cellular systems. In addition, polyunsaturated fatty acids from S. thunbergii were identified and quantified by gas chromatography mass spectroscopy. Intracellular ROS levels were measured using a oxidation sensitive dye, 2',7'-dichlorofluorescein diacetate (DCFH-DA). Treatment with S. thunbergii significantly reduced intracellular ROS mediated cell damage and inhibited myeloperoxidase (MPO) activity assessed in tumor necrosis factor-alpha (TNF-alpha) stimulated human monocytic leukemia in a concentration-dependent manner. Moreover, antioxidative mechanisms by S. thunbergii were evaluated by measuring the expression levels of antioxidative enzymes such as superoxide dismutase (SOD-1), catalase, glutathione peroxidase and glutathione reductase. SOD-1 and glutathione reductase were up-regulated by S. thunbergii. Furthermore, S. thunbergii contains polyunsaturated fatty acids such as arachidonic acid, arachidic acid, palmitic acid, elaidic acid, linoleic acid, stearic acid and cis-5,8,11,14,17-eicosanoic acid. Therefore, these results suggested that S. thunbergii has nutraceutical effectiveness in prevention of ROS-induced tissue damage and potential natural antioxidant related to oxidative stress, which can be traceable to polyunsaturated fatty acids contained in S. thunbergii.

  12. Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic.

    PubMed

    Xu, Zhao; Wang, Zhou; Li, Jian-jun; Chen, Chen; Zhang, Ping-chuan; Dong, Lu; Chen, Jing-hong; Chen, Qun; Zhang, Xiao-tian; Wang, Zhi-lun

    2013-08-01

    Arsenic (As) is a toxic metalloid existing widely in the environment, and chronic exposure to it through contaminated drinking water has become a global problem of public health. The present study focused on the protective effects of selenium on oxidative damage of chronic arsenic poisoning in rat liver. Rats were divided into four groups at random and given designed treatments for 20 weeks. The oxidative damage of liver tissue was evaluated by lipid peroxidation and antioxidant enzymes. Oxidative stress related genes were detected to reflect the liver stress state at the molecular level. Compared to the control and Na2SeO3 groups, the MDA content in liver tissue was decreased and the activities of antioxidant enzymes were increased in the Na2SeO3 intervention group. The mRNA levels of SOD1, CAT, GPx and Txnrd1 were increased significantly (P<0.05) in the combined Na2SeO3+NaAsO2 treatment group. The expressions of HSP70 and HO-1 were significantly (P<0.05) increased in the NaAsO2 group and reduced in the combined treatment group. The results indicate that long-term intake of NaAsO2 causes oxidative damage in the rat liver, and Na2SeO3 protects liver cells by adjusting the expression of oxidative stress related genes to improve the activities of antioxidant enzymes. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo.

    PubMed

    Moszczynska, Anna; Yamamoto, Bryan K

    2011-03-01

    Methamphetamine (METH) is toxic to dopaminergic (DAergic) terminals in animals and humans. An early event in METH neurotoxicity is an oxidative stress followed by damage to proteins and lipids. The removal of damaged proteins is accomplished by the ubiquitin-proteasome system (UPS) and the impairment of this system can cause neurodegeneration. Whether dysfunction of the UPS contributes to METH toxicity to DAergic terminals has not been determined. The present investigation examined the effects of METH on functions of parkin and proteasome in rat striatal synaptosomes. METH rapidly modified parkin via conjugation with 4-hydroxy-2-nonenal (4-HNE) to decrease parkin levels and decreased the activity of the 26S proteasome while simultaneously increasing chymotrypsin-like activity and 20S proteasome levels. Prior injections of vitamin E diminished METH-induced changes to parkin and the 26S proteasome as well as long-term decreases in DA and its metabolites' concentrations in striatal tissue. These results suggest that METH causes lipid peroxidation-mediated damage to parkin and the 26S proteasome. As the changes in parkin and 26S occur before the sustained deficits in DAergic markers, an early loss of UPS function may be important in mediating the long-term degeneration of striatal DAergic terminals via toxic accumulation of parkin substrates and damaged proteins. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  14. Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo

    PubMed Central

    Moszczynska, Anna; Yamamoto, Bryan K.

    2010-01-01

    Methamphetamine (METH) is toxic to dopaminergic (DAergic) terminals in animals and humans. An early event in METH neurotoxicity is oxidative stress followed by damage to proteins and lipids. The removal of damaged proteins is accomplished by the ubiquitin-proteasome system (UPS) and the impairment of this system can cause neurodegeneration. Whether dysfunction of the UPS contributes to METH toxicity to DAergic terminals has not been determined. The present investigation examined the effects of METH on functions of parkin and proteasome in rat striatal synaptosomes. METH rapidly modified parkin via conjugation with 4-hydroxy-2-nonenal (4-HNE) to decrease parkin levels and decreased the activity of the 26S proteasome while simultaneously increasing chymotrypsin-like activity and 20S proteasome levels. Prior injections of vitamin E diminished METH-induced changes to parkin and the 26S proteasome as well as long-term decreases in DA and its metabolites’ concentrations in striatal tissue. These results suggest that METH causes lipid peroxidation-mediated damage to parkin and the 26S proteasome. As the changes in parkin and 26S occur before the sustained deficits in DAergic markers, an early loss of UPS function may be important in mediating the long-term degeneration of striatal DAergic terminals via toxic accumulation of parkin substrates and damaged proteins. PMID:21166679

  15. Impact-induced muscle damage and urinary pterins in professional rugby: 7,8-dihydroneopterin oxidation by myoglobin.

    PubMed

    Lindsay, A; Healy, J; Mills, W; Lewis, J; Gill, N; Draper, N; Gieseg, S P

    2016-03-01

    Muscle damage caused through impacts in rugby union is known to increase oxidative stress and inflammation. Pterins have been used clinically as markers of oxidative stress, inflammation, and neurotransmitter synthesis. This study investigates the release of myoglobin from muscle tissue due to force-related impacts and how it is related to the subsequent oxidation of 7,8-dihydroneopterin to specific pterins. Effects of iron and myoglobin on 7,8-dihydroneopterin oxidation were examined in vitro via strong cation-exchange high-performance liquid chromatography (SCX-HPLC) analysis of neopterin, xanthopterin, and 7,8-dihydroxanthopterin. Urine samples were collected from 25 professional rugby players pre and post four games and analyzed for myoglobin by enzyme-linked immunosorbent assay, and 7,8-dihydroneopterin oxidation products by HPLC. Iron and myoglobin oxidized 7,8-dihydroneopterin to neopterin, xanthopterin, and 7,8-dihydroxanthopterin at concentrations at or above 10 μM and 50 μg/mL, respectively. All four games showed significant increases in myoglobin, neopterin, total neopterin, biopterin, and total biopterin, which correlated between each variable (P < 0.05). Myoglobin and iron facilitate 7,8-dihydroneopterin oxidation to neopterin and xanthopterin. In vivo delocalization of myoglobin due to muscle damage may contribute to oxidative stress and inflammation after rugby. Increased concentrations of biopterin and total biopterin may indicate production of nitric oxide and monoamine neurotransmitters in response to the physical stress.

  16. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus.

    PubMed

    Dvorak, Katerina; Payne, Claire M; Chavarria, Melissa; Ramsey, Lois; Dvorakova, Barbora; Bernstein, Harris; Holubec, Hana; Sampliner, Richard E; Guy, Naihsuan; Condon, Amanda; Bernstein, Carol; Green, Sylvan B; Prasad, Anil; Garewal, Harinder S

    2007-06-01

    Barrett's oesophagus is a premalignant condition associated with an increased risk for the development of oesophageal adenocarcinoma (ADCA). Previous studies indicated that oxidative damage contributes to the development of ADCA. To test the hypothesis that bile acids and gastric acid, two components of refluxate, can induce oxidative stress and oxidative DNA damage. Oxidative stress was evaluated by staining Barrett's oesophagus tissues with different degrees of dysplasia with 8-hydroxy-deoxyguanosine (8-OH-dG) antibody. The levels of 8-OH-dG were also evaluated ex vivo in Barrett's oesophagus tissues incubated for 10 min with control medium and medium acidified to pH 4 and supplemented with 0.5 mM bile acid cocktail. Furthermore, three oesophageal cell lines (Seg-1 cells, Barrett's oesophagus cells and HET-1A cells) were exposed to control media, media containing 0.1 mM bile acid cocktail, media acidified to pH 4, and media at pH 4 supplemented with 0.1 mM bile acid cocktail, and evaluated for induction of reactive oxygen species (ROS). Immunohistochemical analysis showed that 8-OH-dG is formed mainly in the epithelial cells in dysplastic Barrett's oesophagus. Importantly, incubation of Barrett's oesophagus tissues with the combination of bile acid cocktail and acid leads to increased formation of 8-OH-dG. An increase in ROS in oesophageal cells was detected after exposure to pH 4 and bile acid cocktail. Oxidative stress and oxidative DNA damage can be induced in oesophageal tissues and cells by short exposures to bile acids and low pH. These alterations may underlie the development of Barrett's oesophagus and tumour progression.

  17. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils' oxidative stress in chronic exercise.

    PubMed

    Funes, Lorena; Carrera-Quintanar, Lucrecia; Cerdán-Calero, Manuela; Ferrer, Miguel D; Drobnic, Franchek; Pons, Antoni; Roche, Enrique; Micol, Vicente

    2011-04-01

    Intense exercise is directly related to muscular damage and oxidative stress due to excessive reactive oxygen species (ROS) in both, plasma and white blood cells. Nevertheless, exercise-derived ROS are essential to regulate cellular adaptation to exercise. Studies on antioxidant supplements have provided controversial results. The purpose of this study was to determine the effect of moderate antioxidant supplementation (lemon verbena extract) in healthy male volunteers that followed a 90-min running eccentric exercise protocol for 21 days. Antioxidant enzymes activities and oxidative stress markers were measured in neutrophils. Besides, inflammatory cytokines and muscular damage were determined in whole blood and serum samples, respectively. Intense running exercise for 21 days induced antioxidant response in neutrophils of trained male through the increase of the antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase. Supplementation with moderate levels of an antioxidant lemon verbena extract did not block this cellular adaptive response and also reduced exercise-induced oxidative damage of proteins and lipids in neutrophils and decreased myeloperoxidase activity. Moreover, lemon verbena supplementation maintained or decreased the level of serum transaminases activity indicating a protection of muscular tissue. Exercise induced a decrease of interleukin-6 and interleukin-1β levels after 21 days measured in basal conditions, which was not inhibited by antioxidant supplementation. Therefore, moderate antioxidant supplementation with lemon verbena extract protects neutrophils against oxidative damage, decreases the signs of muscular damage in chronic running exercise without blocking the cellular adaptation to exercise.

  18. Rat MYH, a glycosylase for repair of oxidatively damaged DNA, has brain-specific isoforms that localize to neuronal mitochondria.

    PubMed

    Englander, Ella W; Hu, Zhaoyong; Sharma, Abha; Lee, Heung-Man; Wu, Zhao-Hui; Greeley, George H

    2002-12-01

    Mitochondrial genomes are exposed to a heavy load of reactive oxygen species (ROS) that damage DNA. Since in neurons, mitochondrial DNA integrity must be maintained over the entire mammalian life span, neuronal mitochondria most likely repair oxidatively damaged DNA. We show that the Escherichia coli MutY DNA glycosylase homolog (MYH) in rat (rMYH) involved in repair of oxidative damage is abundantly expressed in the rat brain, with isoforms that are exclusive to brain tissue. Confocal microscopy and western analyses reveal localization of rMYH in neuronal mitochondria. To assess involvement of MYH in the neuronal response to oxidative DNA damage, we used a rat model of respiratory hypoxia, in which acutely reduced blood oxygenation leads to generation of superoxide, and formation and subsequent removal of 8-hydroxy-2'-deoxyguanosine (8OHdG). Removal of 8OHdG is accompanied by a spatial increase in rMYH immunoreactivity in the brain and an increase in levels of one of the three mitochondrial MYH isoforms, suggesting that inducible and non-inducible MYH isoforms exist in the brain. The mitochondrial localization of oxidative DNA damage repair enzymes in neurons may represent a specialized neuronal mechanism that safeguards mitochondrial genomes in the face of routine and accidental exposures to heavy loads of injurious ROS.

  19. Oxidative damage to rat brain in iron and copper overloads.

    PubMed

    Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Semprine, Jimena; Fuda, Julián; Torti, Horacio; Boveris, Alberto; Repetto, Marisa G

    2014-08-01

    This study reports on the acute brain toxicity of Fe and Cu in male Sprague-Dawley rats (200 g) that received 0 to 60 mg kg(-1) (ip) FeCl2 or CuSO4. Brain metal contents and time-responses were determined for rat survival, in situ brain chemiluminescence and phospholipid and protein oxidation products. Metal doses hyperbolically defined brain metal content. Rat survival was 91% and 60% after Fe and Cu overloads. Brain metal content increased from 35 to 114 μg of Fe per g and from 3.6 to 34 μg of Cu per g. Brain chemiluminescence (10 cps cm(-2)) increased 3 and 2 times after Fe and Cu overloads, with half maximal responses (C50) of 38 μg of Fe per g of brain and 15 μg of Cu per g of brain, and with half time responses (t1/2) of 12 h for Fe and 20 h for Cu. Phospholipid peroxidation increased by 56% and 31% with C50 of 40 μg of Fe per g and 20 μg of Cu per g and with t1/2 of 9 h and 14 h. Protein oxidation increased by 45% for Fe with a C50 of 40 μg of Fe per g and 18% for Cu with a C50 of 10 μg of Cu per g and a t1/2 of 12 h for both metals. Fe and Cu brain toxicities are likely mediated by Haber-Weiss type HO˙ formation with subsequent oxidative damage.

  20. Ablation of brain by erbium laser: study of dynamic behavior and tissue damage

    NASA Astrophysics Data System (ADS)

    Cubeddu, Rinaldo; Sozzi, C.; Taroni, Paola; Valentini, Gianluca; Bottiroli, Giovanni F.; Croce, Anna C.

    1994-02-01

    In this work two aspects of the ablation of brain by Erbium laser have been mainly addressed: the time evolution of the phenomenon and the damages, both thermal and mechanical, produced in the tissues. The time resolved images acquired during the laser interaction revealed that deep lacerations develop in the tissue due to a mechanical stress. The damages have been evaluated by studying the changes in the autofluorescence emission properties and the reduction in enzymatic activities (NADH Oxidase and ATPase). The results obtained in this study indicate that the thermal alterations resulting from the exposure to Erbium laser are limited, whereas the mechanical damages can be very pronounced.

  1. Oxidative Damage Does Not Occur in Striped Hamsters Raising Natural and Experimentally Increased Litter Size.

    PubMed

    Zhao, Xiao-Ya; Zhang, Ji-Ying; Cao, Jing; Zhao, Zhi-Jun

    2015-01-01

    Life-history theory assumes that animals can balance the allocation of limited energy or resources to the competing demands of growth, reproduction and somatic maintenance, while consequently maximizing their fitness. However, somatic damage caused by oxidative stress in reproductive female animals is species-specific or is tissue dependent. In the present study, several markers of oxidative stress (hydrogen peroxide, H2O2 and malonadialdehyde, MDA) and antioxidant (catalase, CAT and total antioxidant capacity, T-AOC) were examined in striped hamsters during different stages of reproduction with experimentally manipulated litter size. Energy intake, resting metabolic rate (RMR), and mRNA expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and UCP3 in skeletal muscle were also examined. H2O2 and MDA levels did not change in BAT and liver, although they significantly decreased in skeletal muscle in the lactating hamsters compared to the non-reproductive group. However, H2O2 levels in the brain were significantly higher in lactating hamsters than non-reproductive controls. Experimentally increasing litter size did not cause oxidative stress in BAT, liver and skeletal muscle, but significantly elevated H2O2 levels in the brain. CAT activity of liver decreased, but CAT and T-AOC activity of BAT, skeletal muscle and the brain did not change in lactating hamsters compared to non-reproductive controls. Both antioxidants did not change with the experimentally increasing litter size. RMR significantly increased, but BAT UCP1 mRNA expression decreased with the experimentally increased litter size, suggesting that it was against simple positive links between metabolic rate, UCP1 expression and free radicals levels. It may suggest that the cost of reproduction has negligible effect on oxidative stress or even attenuates oxidative stress in some active tissues in an extensive range of animal species. But the increasing reproductive effort may cause oxidative

  2. Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage

    PubMed Central

    Zhang, Chao; Luo, Tao; Cui, Shijun; Gu, Yongquan; Bian, Chunjing; Chen, Yibin; Yu, Xiaochun; Wang, Zhonggao

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational modification in oxidative damage repair. The low level of PARylation is not caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase, PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs than that in the control cells. Using PARG inhibitor to suppress PARG activity facilitates oxidative damage-induced PARylation as well as DNA damage repair. Thus, our study demonstrates a novel molecular mechanism for oxidative damage-induced VSMCs death. This study also identifies the use of PARG inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015; 48(6): 354-359] PMID:25748172

  3. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    PubMed

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  4. Measurement of Isoprostanes as Markers of Oxidative Stress in Neuronal Tissue

    PubMed Central

    Milatovic, Dejan; Aschner, Michael

    2009-01-01

    Oxidative stress is implicated in the pathogenesis of a variety of human diseases, including neurodegenerative disease, atherosclerosis and cancer, as well as progressive and even normal aging processes. Increased generation of free radicals derived primarily from molecular oxygen has also been associated with neuronal damage induced by a variety of environmental agents. However, measuring oxidative stress in biological systems is complex and requires accurate quantification of either free radicals or damaged biomolecules. One method to quantify oxidative injury is to measure lipid peroxidation. Lipids are readily attacked by free radicals, resulting in the formation of a number of peroxidation products. F2-isoprostanes (F2-IsoPs) are one group of these compounds, which are derived by the free radical peroxidation of arachidonic acid (AA). The F2-IsoPs, prostaglandine F2-like compounds, have been shown as the most accurate measure of oxidative damage in vivo. This review summarizes current methodology used to quantify F2-IsoPs and discusses the utility of these and other prostaglandine (PG)-like compounds as in vivo biomarkers of oxidative stress in neuronal tissues. PMID:20191108

  5. Changes of color coordinates of biological tissue with superficial skin damage due to mechanical trauma

    NASA Astrophysics Data System (ADS)

    Pteruk, Vail; Mokanyuk, Olexander; Kvaternuk, Olena; Yakenina, Lesya; Kotyra, Andrzej; Romaniuk, Ryszard S.; Dussembayeva, Shynar

    2015-12-01

    Change of color coordinates of normal and pathological biological tissues is based on calculated spectral diffuse reflection. The proposed color coordinates of normal and pathological biological tissues of skin provided using standard light sources, allowing accurately diagnose skin damage due to mechanical trauma with a blunt object for forensic problems.

  6. Influence of PACAP on oxidative stress and tissue injury following small-bowel autotransplantation.

    PubMed

    Ferencz, Andrea; Racz, Boglarka; Tamas, Andrea; Reglodi, Dora; Lubics, Andrea; Nemeth, Jozsef; Nedvig, Klara; Kalmar-Nagy, Karoly; Horvath, Ors Peter; Weber, Gyorgy; Roth, Erzsebet

    2009-02-01

    Tissue injury caused by cold preservation and reperfusion remains an unsolved problem during small-bowel transplantation. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present and plays a central role in the intestinal physiology. This study investigated effect of PACAP-38 on the oxidative stress and tissue damage in autotransplanted intestine. Sham-operated, ischemia/reperfusion, and autotransplanted groups were established in Wistar rats. In ischemia/reperfusion groups, 1 h (group A), 2 h (group B), and 3 h (group C) ischemia followed by 3 h of reperfusion was applied. In autotransplanted groups, total orthotopic intestinal autotransplantation was performed. Grafts were preserved in University of Wisconsin (UW) solution and in UW containing 30 microg PACAP-38 for 1, 2, 3, and 6 h. Reperfusion lasted 3 h in all groups. Endogenous PACAP-38 concentration was measured by radioimmunoassay. To determine oxidative stress parameters, malondialdehyde, reduced glutathione, and superoxide dismutase were measured in tissue samples. Tissue damage was analyzed by qualitative and quantitative methods on hematoxylin/eosin-stained sections. Concentration of endogenous PACAP-38 significantly decreased in groups B and C compared to sham-operated group. Preservation solution containing PACAP-38 ameliorated bowel tissue oxidative injury induced by cold ischemia and reperfusion. Histological results showed that preservation caused destruction of the mucous, submucous, and muscular layers, which were further deteriorated by the end of reperfusion. In contrast, PACAP-38 significantly protected the intestinal structure. Ischemia/reperfusion decreased the endogenous PACAP-38 concentration in the intestinal tissue. Administration of PACAP-38 mitigated the oxidative injury and histological lesions in small-bowel autotransplantation model.

  7. Application of Immunohistochemical Staining to Detect Antigen Destruction as a Measure of Tissue Damage

    PubMed Central

    Onul, Abdullah; Colvard, Michael D.; Paradise, William A.; Elseth, Kim M.; Vesper, Benjamin J.; Gouvas, Eftychia; Deliu, Zane; Garcia, Kelly D.; Pestle, William J.

    2012-01-01

    Electrocautery and directed energy devices (DEDs) such as lasers, which are used in surgery, result in tissue damage that cannot be readily detected by traditional histological methods, such as hematoxylin and eosin staining. Alternative staining methods, including 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to stain live tissue, have been reported. Despite providing superior detection of damaged tissue relative to the hematoxylin and eosin (H&E) method, the MTT method possesses a number of drawbacks, most notably that it must be carried out on live tissue samples. Herein, we report the development of a novel staining method, “antigen destruction immunohistochemistry” (ADI), which can be carried out on paraffin-embedded tissue. The ADI method takes advantage of epitope loss to define the area of tissue damage and provides many of the benefits of live tissue MTT staining without the drawbacks inherent to that method. In addition, the authors provide data to support the use of antibodies directed at a number of gene products for use in animal tissue for which there are no species-specific antibodies commercially available, as well as an example of a species-specific direct antibody. Data are provided that support the use of this method in many tissue models, as well as evidence that ADI is comparable to the live tissue MTT method. PMID:22723525

  8. Application of immunohistochemical staining to detect antigen destruction as a measure of tissue damage.

    PubMed

    Onul, Abdullah; Colvard, Michael D; Paradise, William A; Elseth, Kim M; Vesper, Benjamin J; Gouvas, Eftychia; Deliu, Zane; Garcia, Kelly D; Pestle, William J; Radosevich, James A

    2012-09-01

    Electrocautery and directed energy devices (DEDs) such as lasers, which are used in surgery, result in tissue damage that cannot be readily detected by traditional histological methods, such as hematoxylin and eosin staining. Alternative staining methods, including 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to stain live tissue, have been reported. Despite providing superior detection of damaged tissue relative to the hematoxylin and eosin (H&E) method, the MTT method possesses a number of drawbacks, most notably that it must be carried out on live tissue samples. Herein, we report the development of a novel staining method, "antigen destruction immunohistochemistry" (ADI), which can be carried out on paraffin-embedded tissue. The ADI method takes advantage of epitope loss to define the area of tissue damage and provides many of the benefits of live tissue MTT staining without the drawbacks inherent to that method. In addition, the authors provide data to support the use of antibodies directed at a number of gene products for use in animal tissue for which there are no species-specific antibodies commercially available, as well as an example of a species-specific direct antibody. Data are provided that support the use of this method in many tissue models, as well as evidence that ADI is comparable to the live tissue MTT method.

  9. Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity.

    PubMed

    Ben Ammar, J; Lanoisellé, J-L; Lebovka, N I; Van Hecke, E; Vorobiev, E

    2011-01-01

    Efficiency of pulsed electric field (PEF) induced permeabilization at 293 K in selected fruit and vegetable plant tissues (apple, potato, carrot, courgette, orange, and banana) at electric field strength (E) of 400 V·cm(-1), 1000 V·cm(-1) and pulse duration (t(p)) of 1000 μs was studied experimentally. The mean cell radius (〈r〉) was within 30 to 60 μm, and the ratio of electrical conductivities of the intact and damaged tissues (σ(i)/σ(d)) was within 0.07 to 0.79 for the studied tissues. Electroporation theory predicts higher damage for tissue with larger cells; however, the direct correlation between PEF damage efficiency and size of cell was not always observed. To explain this anomaly, a theoretical Monte Carlo model was developed and checked for parameters typical for potato tissue. The model showed a strong dependence of PEF damage efficiency and power consumption (W) on σ(i)/σ(d) ratio. The optimum value of electric field strength (E(opt)) was an increasing function of σ(i)/σ(d), and plant tissues with high σ(i)/σ(d) ratio (σ(i)/σ(d) ≈ 1) required application of a rather strong field (for example, E(opt) ≈ 3000 V·cm(-1) for σ(i)/σ(d) ≈ 0.8). However, the PEF treatment at a lower field (E ≈ 400 V·cm(-1)) allowed regulation of the selectivity of damage of cells in dependence of their size. A good qualitative correspondence between experimental data and simulation results were observed.

  10. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    PubMed

    Calvo, Jennifer A; Moroski-Erkul, Catherine A; Lake, Annabelle; Eichinger, Lindsey W; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T; Christiani, David C; Meira, Lisiane B; Samson, Leona D

    2013-04-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  11. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage.

    PubMed

    Luna, Carlos; Alique, Matilde; Navalmoral, Estefanía; Noci, Maria-Victoria; Bohorquez-Magro, Lourdes; Carracedo, Julia; Ramírez, Rafael

    2016-01-01

    Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects.

  12. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage

    PubMed Central

    Luna, Carlos; Alique, Matilde; Navalmoral, Estefanía; Noci, Maria-Victoria; Bohorquez-Magro, Lourdes; Carracedo, Julia; Ramírez, Rafael

    2016-01-01

    Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects. PMID:27042026

  13. Tissue precooling for thermochemical damage reduction during laser surgery.

    PubMed

    Laufer, G; Joachims, H Z; Mordechovitz, D; Armon, E

    1987-01-01

    This report describes a preliminary investigation of the possibility of reducing the thermal damage induced by lasers in the course of laser surgery. Skin incisions made by CO2 laser beams--with and without precooling--were evaluated and compared with scalpel cuts. Full thickness cuts were carried out on the flank of adult cats. Precooling was achieved by spraying chlorethyl just before the laser application. Both the precooled and the regular laser incisions were bloodless. The precooled cuts however produced considerably less amount of charring and therefore smoother and cleaner cut edge. The incisions were sutured and the cats were kept under supervision. Upon inspection four weeks later all incisions were completely healed. No skin thickening or keloid were present. The scar produced by the regular laser technique was much more pronounced and wide relative both to the scars of the precooled or the scalpel cuts which were almost alike.

  14. Of flies, mice, and men: evolutionarily conserved tissue damage responses and aging.

    PubMed

    Neves, Joana; Demaria, Marco; Campisi, Judith; Jasper, Heinrich

    2015-01-12

    Studies in flies, mice, and human models have provided a conceptual framework for how paracrine interactions between damaged cells and the surrounding tissue control tissue repair. These studies have amassed evidence for an evolutionarily conserved secretory program that regulates tissue homeostasis. This program coordinates cell survival and proliferation during tissue regeneration and repair in young animals. By virtue of chronic engagement, however, it also contributes to the age-related decline of tissue homeostasis leading to degeneration, metabolic dysfunction, and cancer. Here, we review recent studies that shed light on the nature and regulation of this evolutionarily conserved secretory program.

  15. Of flies, mice and men: Evolutionarily conserved tissue damage responses and aging

    PubMed Central

    Neves, Joana; Demaria, Marco; Campisi, Judith; Jasper, Heinrich

    2015-01-01

    SUMMARY Studies in flies, mice, and human models have provided a conceptual framework for how paracrine interactions between damaged cells and the surrounding tissue control tissue repair. These studies have amassed evidence for an evolutionarily conserved secretory program that regulates tissue homeostasis. This program coordinates cell survival and proliferation during tissue regeneration and repair in young animals. By virtue of chronic engagement, however, it also contributes to the age-related decline of tissue homeostasis leading to degeneration, metabolic dysfunction and cancer. Here we review recent studies that shed light on the nature and regulation of this evolutionary conserved secretory program. PMID:25584795

  16. The p66Shc protein controls redox signaling and oxidation-dependent DNA damage in human liver cells.

    PubMed

    Perrini, Sebastio; Tortosa, Federica; Natalicchio, Annalisa; Pacelli, Consiglia; Cignarelli, Angelo; Palmieri, Vincenzo O; Caccioppoli, Cristina; De Stefano, Francesca; Porro, Stefania; Leonardini, Anna; Ficarella, Romina; De Fazio, Michele; Cocco, Tiziana; Puglisi, Francesco; Laviola, Luigi; Palasciano, Giuseppe; Giorgino, Francesco

    2015-11-15

    The p66Shc protein mediates oxidative stress-related injury in multiple tissues. Steatohepatitis is characterized by enhanced oxidative stress-mediated cell damage. The role of p66Shc in redox signaling was investigated in human liver cells and alcoholic steatohepatitis. HepG2 cells with overexpression of wild-type or mutant p66Shc, with Ser36 replacement by Ala, were obtained through infection with recombinant adenoviruses. Reactive oxygen species and oxidation-dependent DNA damage were assessed by measuring dihydroethidium oxidation and 8-hydroxy-2'-deoxyguanosine accumulation into DNA, respectively. mRNA and protein levels of signaling intermediates were evaluated in HepG2 cells and liver biopsies from control and alcoholic steatohepatitis subjects. Exposure to H2O2 increased reactive oxygen species and phosphorylation of p66Shc on Ser36 in HepG2 cells. Overexpression of p66Shc promoted reactive oxygen species synthesis and oxidation-dependent DNA damage, which were further enhanced by H2O2. p66Shc activation also resulted in increased Erk-1/2, Akt, and FoxO3a phosphorylation. Blocking of Erk-1/2 activation inhibited p66Shc phosphorylation on Ser36. Increased p66Shc expression was associated with reduced mRNA levels of antioxidant molecules, such as NF-E2-related factor 2 and its target genes. In contrast, overexpression of the phosphorylation defective p66Shc Ala36 mutant inhibited p66Shc signaling, enhanced antioxidant genes, and suppressed reactive oxygen species and oxidation-dependent DNA damage. Increased p66Shc protein levels and Akt phosphorylation were observed in liver biopsies from alcoholic steatohepatitis compared with control subjects. In human alcoholic steatohepatitis, increased hepatocyte p66Shc protein levels may enhance susceptibility to DNA damage by oxidative stress by promoting reactive oxygen species synthesis and repressing antioxidant pathways. Copyright © 2015 the American Physiological Society.

  17. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    SciTech Connect

    Chen, Haw-Wen; Huang, Chin-Shiu; Li, Chien-Chun; Lin, Ai-Hsuan; Huang, Yu-Ju; Wang, Tsu-Shing; Yao, Hsien-Tsung; Lii, Chong-Kuei

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1 μM which peaked at 30 min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50 mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p < 0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl{sub 4}) at day 6. Andrographolide pretreatment suppressed CCl{sub 4}-induced plasma aminotransferase activity and hepatic lipid peroxidation (p < 0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. - Highlights: • The bioavailability of andrographolide is 1.19% in rats. • Plasma concentration reaches 1 μM after giving 50 mg/kg andrographolide. • Andrographolide up-regulates Nrf2-dependent antioxidant genes. • Andrographolide increases antioxidant defense

  18. Oxidative damage: the biochemical mechanism of cellular injury and necrosis in choline deficiency.

    PubMed

    Repetto, Marisa G; Ossani, Georgina; Monserrat, Alberto J; Boveris, Alberto

    2010-02-01

    Oxidative stress and damage are characterized by decreased tissue antioxidant levels, consumption of tissue alpha-tocopherol, and increased lipid peroxidation. These processes occur earlier than necrosis in the liver, heart, kidney, and brain of weanling rats fed a choline deficient (CD) diet. In tissues, water-soluble antioxidants were analyzed as total reactive antioxidant potential (TRAP), alpha-tocopherol content was estimated from homogenate chemiluminescence (homogenate-CL), and lipid peroxidation was evaluated by thiobarbituric acid reactive substances (TBARS). Histopathology showed hepatic steatosis at days 1-7, tubular and glomerular necrosis in kidney at days 6 and 7, and inflammation and necrosis in heart at days 6 and 7. TRAP levels decreased by 18%, 48%, 56%, and 66% at day 7, with t(1/2) (times for half maximal change) of 2.0, 1.8, 2.5, and 3.0 days in liver, kidney, heart, and brain, respectively. Homogenate-CL increased by 97%, 113%, 18%, and 297% at day 7, with t(1/2) of 2.5, 2.6, 2.8, and 3.2 days in the four organs, respectively. TBARS contents increased by 98%, 157%, 104%, and 347% at day 7, with t(1/2) of 2.6, 2.8, 3.0, and 5.0 days in the four organs, respectively. Plasma showed a 33% decrease in TRAP and a 5-fold increase in TBARS at day 5. Oxidative stress and damage are processes occurring earlier than necrosis in the kidney and heart. In case of steatosis prior to antioxidant consumption and increased lipid peroxidation, no necrosis is observed in the liver.

  19. Effect of thiamine pyrophosphate on ischemia-reperfusion induced oxidative damage in rat kidney

    PubMed Central

    Altuner, Durdu; Cetin, Nihal; Suleyman, Bahadir; Aslan, Zeynep; Hacimuftuoglu, Ahmet; Gulaboglu, Mine; Isaoglu, Neslihan; Demiryilmaz, Ismail; Suleyman, Halis

    2013-01-01

    Objectives: The biochemical effects of thiamine pyrophosphate on ischemia-reperfusion (IR) induced oxidative damage and DNA mutation in rat kidney tissue were investigated, and compared to thiamine. Materials and Methods: Rats were divided into four groups: Renal ischemia-reperfusion (RIR); thiamine pyrophosphate + RIR (TPRIR); thiamine + RIR (TRIR); and sham group (SG). Results: The results of biochemical experiments have shown that malondialdehyde (MDA) levels in rat kidney tissue after TRIR and TPRIR treatment were 7.2 ± 0.5 (P > 0.05) and 3.3 ± 0.3 (P < 0.0001) μmol/g protein, respectively. The MDA levels in the SG rat kidney tissue and in RIR group were 3.6 ± 0.2 (P < 0.0001) and 7.6 ± 0.6 μmol/g protein, respectively. Total glutathione (tGSH) levels in TRIR, TPRIR, SG, and RIR animal groups were 2.2 ± 0.3 (P > 0.05), 5.8 ± 0.4 (P < 0.0001), 6.2 ± 0.2 (P < 0.0001), and 1.7 ± 0.2 nmol/g protein, respectively. In the TRIR, TPRIR, SG, and RIR animal groups; 8-hydroxyguanine (8-OHGua)/Gua levels, which indicate mutagenic DNA, were 1.75 ± 0.12 (P > 0.05), 0.93 ± 0.1 (P < 0.0001), 0.85 ± 0.08 (P < 0.0001), and 1.93 ± 0.24 pmol/L, respectively. Conclusions: It has been shown that thiamine pyrophosphate prevents increase in mutagenic DNA in IR induced oxidative damage, whereas thiamine does not have this effect. PMID:24014907

  20. Protective Effect of Cleistocalyx nervosum var. paniala Fruit Extract against Oxidative Renal Damage Caused by Cadmium.

    PubMed

    Poontawee, Warut; Natakankitkul, Surapol; Wongmekiat, Orawan

    2016-01-22

    Cadmium nephrotoxicity is a serious environmental health problem as it will eventually end up with end stage renal disease. The pathobiochemical mechanism of this toxic heavy metal is related to oxidative stress. This study investigated whether Cleistocalyx nervosum var. paniala fruit extract (CNFE) could protect the kidney against oxidative injury caused by cadmium. Initial analysis of the extract revealed antioxidant abilities and high levels of polyphenols, particularly catechin. Its potential renal benefits was further explored in rats treated with vehicle, CNFE, cadmium (2 mg/kg), and cadmium plus CNFE (0.5, 1, 2 g/kg) for four weeks. Oxidative renal injury was developed after cadmium exposure as evidenced by blood urea nitrogen and creatinine retention, glomerular filtration reduction, renal structural damage, together with increased nitric oxide and malondialdehyde, but decreased antioxidant thiols, superoxide dismutase, and catalase in renal tissues. Cadmium-induced nephrotoxicity was diminished in rats supplemented with CNFE, particularly at the doses of 1 and 2 g/kg. It is concluded that CNFE is able to protect against the progression of cadmium nephrotoxicity, mostly via its antioxidant power. The results also point towards a promising role for this naturally-occurring antioxidant to combat other human disorders elicited by disruption of redox homeostasis.

  1. Protective Effect of Psidium guajava in Arsenic-induced Oxidative Stress and Cytological Damage in Rats

    PubMed Central

    Tandon, Neeraj; Roy, Manju; Roy, Sushovan; Gupta, Neelu

    2012-01-01

    This study was undertaken to evaluate the protective effect of aqueous extract of Psidium guajava leaves against sodium arsenite-induced toxicity in experimental rats. Animals were divided into four groups. Control group received arsenic free distilled water and three treatment groups (II, III, and IV) exposed to the arsenic (NaAsO2) (20 mg/kg b.wt) through drinking water. Group III and IV were administered a daily oral dose of P. guajava leaf extract 50 and 100 mg/kg b.wt. (AEPG50 and AEPG100) for the period of 6 weeks. Blood samples and organs were collected at the end of the experiment. Arsenic exposure resulted in significant rise in lipid peroxidation (LPO) levels in erythrocyte, liver, kidney, and brain. In addition toxin decreased (P<0.05) the level of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the studied tissues. Residual effect of arsenic in various tissues was also observed. Histopathological results revealed mild to severe type of necrosis and degenerative changes in kidney and liver of arsenic intoxicated animals. Cytological alteration in brain tissue was also observed. Treatment with AEPG100 (aqueous extract of P. guajava) @100 mg/kg body weight) significantly restored activities of oxidative stress markers like LPO levels, GSH levels, SOD, and CAT activities but having the limited protective activity of the herbal extract was observed on tissues architecture. It is therefore concluded that prophylactic co-administration of AEPG could provide specific protection from oxidative injury and to some extent on tissue damage. PMID:23293461

  2. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    PubMed

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Chemical modification of normal tissue damage induced by photodynamic therapy.

    PubMed Central

    Sigdestad, C. P.; Fingar, V. H.; Wieman, T. J.; Lindberg, R. D.

    1996-01-01

    One of the limitations of successful use of photodynamic therapy (PDT) employing porphyrins is the acute and long-term cutaneous photosensitivity. This paper describes results of experiments designed to test the effects of two radiation protective agents (WR-2721, 500 mg kg-1 or WR-3689, 700 mg kg-1) on murine skin damage induced by PDT. C3H mice were shaved and depilated three days prior to injection with the photosensitiser, Photofrin (5 or 10 mg kg-1). Twenty-four hours later, the mice were injected intraperitoneally with a protector 30 min prior to Argon dye laser (630 nm) exposure. The skin response was followed for two weeks post irradiation using an arbitrary response scale. A light dose response as well as a drug dose response was obtained. The results indicate that both protectors reduced the skin response to PDT, however WR-2721 was demonstrated to be the most effective. The effect of the protectors on vascular stasis after PDT was determined using a fluorescein dye exclusion assay. In mice treated with Photofrin (5 mg kg-1), and 630 nm light (180 J cm-2) pretreatment with either WR-2721 or WR-3689 resulted in significant protection of the vascular effects of PDT. These studies document the ability of the phosphorothioate class of radiation protective agents to reduce the effects of light on photosensitized skin. They do so in a drug dose-dependent fashion with maximum protection at the highest drug doses. PMID:8763855

  4. A study of pyrimidine base damage in relation to oxidative stress and cancer

    PubMed Central

    Iijima, H; Patrzyc, H B; Budzinski, E E; Freund, H G; Dawidzik, J B; Rodabaugh, K J; Box, H C

    2009-01-01

    Background: A long-standing hypothesis is that oxidative stress is a risk factor for cancer. Support for this hypothesis comes from observations of higher levels of oxidative damage in the DNA of WBC of cancer patients compared with healthy controls. Methods: Two generally overlooked types of DNA damage, the formamide modification and the thymine glycol modification, both derived from pyrimidine bases, were assayed as markers of oxidative stress. Damage levels were measured in the DNA of WBC of ovarian cancer patients and of healthy controls. Results: The levels of both modifications were higher in ovarian cancer patients than in healthy controls although in the case of the formamide modification age could not be ruled out as a factor. Conclusion: Our results in combination with other published measurements of oxidative DNA damage support the hypothesis that oxidative damage, on average, is higher in WBC of cancer patients than in healthy controls. PMID:19603029

  5. Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage.

    PubMed

    Stephenson, Makeda K; Farris, Ashley L; Grayson, Warren L

    2017-08-01

    While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage. 3D printing of scaffolds is aimed at improving the mechanical structure and microenvironment necessary for bone regeneration within a damaged joint. Advances in our understanding of stem cell biology and cell manufacturing processes are informing translational strategies for the therapeutic use of allogeneic and autologous cells. Finally, bioreactors used in combination with cells and biomaterials are promising strategies for generating large tissue grafts for repairing damaged tissues in pre-clinical models. Together, these advances along with ongoing research directions are making tissue engineering increasingly viable for the treatment of joint damage.

  6. Enantioselective oxidative damage of chiral pesticide dichlorprop to maize.

    PubMed

    Wu, Tong; Li, Xiuying; Huang, Honglin; Zhang, Shuzhen

    2011-04-27

    To investigate the enantioselective oxidative damage of the pesticide dichlorprop (DCPP) to maize, young seedlings were exposed to solutions of DCPP enantiomers and racemate at different concentrations. Early root development was more influenced by (R)-DCPP than racemic (rac)- and (S)-DCPP. Inhibition rates of seed germination, seedling biomass, and root and shoot elongation were all in the order of (R)-DCPP > (rac)-DCPP > (S)-DCPP treatments. The antioxidant enzyme activities of superoxide dismutase (SOD) and peroxidase (POD) were significantly upregulated by exposure to lower concentrations of (R)-DCPP than (rac)- and (S)-DCPP. Direct determination of the formation of hydroxyl radical (•OH) with electron paramagnetic resonance (EPR) spectroscopy indicated that the •OH level in maize roots followed the order of (R)-DCPP > (rac)-DCPP > (S)-DCPP treatments. All of these results provide solicited evidence of the significant enantioselective phytotoxicity of DCPP to maize with a higher toxicity of (R)-DCPP than (S)- and (rac)-DCPP.

  7. An Update on Oxidative Damage to Spermatozoa and Oocytes

    PubMed Central

    Opuwari, Chinyerum S.; Henkel, Ralf R.

    2016-01-01

    On the one hand, reactive oxygen species (ROS) are mandatory mediators for essential cellular functions including the function of germ cells (oocytes and spermatozoa) and thereby the fertilization process. However, the exposure of these cells to excessive levels of oxidative stress by too high levels of ROS or too low levels of antioxidative protection will render these cells dysfunctional thereby failing the fertilization process and causing couples to be infertile. Numerous causes are responsible for the delicate bodily redox system being out of balance and causing disease and infertility. Many of these causes are modifiable such as lifestyle factors like obesity, poor nutrition, heat stress, smoking, or alcohol abuse. Possible correctable measures include foremost lifestyle changes, but also supplementation with antioxidants to scavenge excessive ROS. However, this should only be done after careful examination of the patient and establishment of the individual bodily antioxidant needs. In addition, other corrective measures include sperm separation for assisted reproductive techniques. However, these techniques have to be carried out very carefully as they, if applied wrongly, bear risks of generating ROS damaging the germ cells and preventing fertilization. PMID:26942204

  8. Biological oxidative damage by carbon nanotubes: fingerprint or footprint?

    PubMed

    Hsieh, Shu-Feng; Bello, Dhimiter; Schmidt, Daniel F; Pal, Anoop K; Rogers, Eugene J

    2012-02-01

    Carbon nanotubes (CNTs) have received much attention for performance and toxicity, but vary substantially in terms of impurity type and content, morphology, and surface activity. This study determined the decrease of antioxidant capacity, defined as biological oxidative damage (BOD), of CNTs-exposed serum. The variability in several physicochemical properties of CNTs and their links to BOD elicited in human serum were explored. Tremendous variation in transition metal type and content (104-fold), specific surface area (SSA, nine-fold), and BOD were observed. Mass specific BOD (mBOD) varied from 0.006-0.187 μmol TEU mg(-1), whereas surface area specific BOD (sBOD) varied from 0.068-0.42 μmol TEU m(-2). The sBOD increased in a stepwise fashion from ∼0.1-0.32 μmol TEU m(-2) for tubes with outer diameter less than 10 nm. The mBOD and sBOD may be useful denominators of surface activity and impurity content and assist in designing safer CNTs.

  9. Nitroxide stable radicals protect beating cardiomyocytes against oxidative damage

    SciTech Connect

    Samuni, A.; Winkelsberg, D.; Pinson, A.; Hahn, S.M.; Mitchell, J.B.; Russo, A. )

    1991-05-01

    The protective effect of stable nitroxide radicals against oxidative damage was studied using cardiomyocyte cultures obtained from newborn rats. Monolayered cardiomyocytes were exposed to H{sub 2}O{sub 2} and the effect on spontaneous beating and leakage of LDH was determined. Hydrogen peroxide irreversibly blocked rhythmic beating and resulted in a significant membrane injury as shown by release of LDH. The injury was prevented by catalase which removes H{sub 2}O{sub 2} and by cell-permeable, metal-chelating agents such as desferrioxamine or bipyridine. In contrast, reagents which are excluded from the cell such as superoxide dismutase or DTPA did not protect the cells against H{sub 2}O{sub 2}. Five- and six-membered ring, stable nitroxide radicals which have previously been shown to chemically act as low-molecular weight, membrane-permeable, SOD-mimetic compounds provided full protection. The nitroxides prevented leakage of LDH and preserved normal cardiomyocyte contractility, presumably by intercepting intracellular O{sub 2}-radicals. Alternatively, protection may result through nitroxides reacting with reduced transition metal ions or by detoxifying secondary organic radicals.

  10. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    PubMed

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig.

    PubMed

    Hong, Sung Hwa; Park, Sook Kyung; Cho, Yang-Sun; Lee, Hyun-Seok; Kim, Ki Ryung; Kim, Myung Gu; Chung, Won-Ho

    2006-01-01

    Gentamicin is a well-known ototoxic aminoglycoside. However, the mechanism underlying this ototoxicity remains unclear. One of the mechanisms which may be responsible for this ototoxicity is excitotoxic damage to hair cells. The overstimulation of the N-methyl-d-aspartate (NMDA) receptors increases the production of nitric oxide (NO), which induces oxidative stress on hair cells. In order to determine the mechanism underlying this excitotoxicity, we treated guinea pigs with gentamicin by placing gentamicin (0.5 mg) pellets into a round window niche. After the sacrifice of the animals, which occurred at 3, 7 and 14 days after the treatment, the numbers of hair cells in the animals were counted with a scanning electron microscope. We then performed immunostaining using neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS) and nitrotyrosine antibodies. The number of hair cells in the animals was found to decrease significantly after 7 days. nNOS and iNOS expression levels were observed to have increased 3 days after treatment. Nitrotyrosine was expressed primarily at the calyceal afferents of the type I hair cells 3 days after treatment. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining revealed positive hair cells 3 days after treatment. Our results suggest that inner ear treatment with gentamicin may upregulate nNOS and iNOS to induce oxidative stress in the calyceal afferents of type I hair cells, via nitric oxide overproduction.

  12. Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat.

    PubMed

    Bavita, A; Shashi, B; Navtej, S B

    2012-05-01

    Effect of sodium nitroprusside (SNP), a donor of nitric oxide (NO) was examined in two wheat (Triticum aestivum L.) cultivars, C 306 (heat tolerant) and PBW 550 (comparatively heat susceptible) to study the extent of oxidative injury and activities of antioxidant enzyme in relation to high temperature (HT) stress. HT stress resulted in a marked decrease in membrane thermostability (MTS) and 2, 3, 5-triphenyl tetrazolium chloride (TTC) cell viability whereas content of lipid peroxide increased in both the cultivars. The tolerant cultivar C 306 registered less damage to cellular membranes compared to PBW 550 under HT stress. Activities of antioxidant enzymes viz, superoxide dismutase, catalase, ascorbate peroxidase, guaicol peroxidase and glutathione reductase increased with HT in both the cultivars. Following treatment with SNP, activities of all antioxidant enzymes further increased in correspondence with an increase in MTS and TTC. Apparently, lipid peroxide content was reduced by SNP more in shoots of heat tolerant cultivar C 306 indicating better protection over roots under HT stress. The up-regulation of the antioxidant system by NO possibly contributed to better tolerance against HT induced oxidative damage in wheat.

  13. Propagation of damage in brain tissue: coupling the mechanics of oedema and oxygen delivery.

    PubMed

    Lang, Georgina E; Vella, Dominic; Waters, Sarah L; Goriely, Alain

    2015-11-01

    Brain tissue swelling, or oedema, is a dangerous consequence of traumatic brain injury and stroke. In particular, a locally swollen region can cause the injury to propagate further through the brain: swelling causes mechanical compression of the vasculature in the surrounding tissue and so can cut off that tissue's oxygen supply. We use a triphasic mathematical model to investigate this propagation, and couple tissue mechanics with oxygen delivery. Starting from a fully coupled, finite elasticity, model, we show that simplifications can be made that allow us to express the volume of the propagating region of damage analytically in terms of key parameters. Our results show that performing a craniectomy, to alleviate pressure in the brain and allow the tissue to swell outwards, reduces the propagation of damage; this finding agrees with experimental observations.

  14. Gastroprotective action of Cissus quadrangularis extract against NSAID induced gastric ulcer: role of proinflammatory cytokines and oxidative damage.

    PubMed

    Jainu, Mallika; Devi, Chennam Srinivasulu Shyamala

    2006-07-10

    The objective of this research was to analyse the gastroprotective effect of Cissus quadrangularis extract (CQE) along with its mechanism underlying the therapeutic action against the gastric mucosal damage induced by aspirin. In this study, we investigated the effect of CQE on the course of experimentally induced gastric ulcer by analyzing the levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), microvascular permeability, activity of nitric oxide synthase-2 (NOS-2), mitochondrial antioxidants, lipid peroxidation and DNA damage. A significant increase in vascular permeability, NOS-2 activity, TNF-alpha, IL-1beta levels and oxidative damage were noted in aspirin administered rats. Pretreatment with CQE (500 mg/kg bw/day) by oral gavage for 7 days significantly attenuated these biochemical changes caused by aspirin in rats. Tissue damage was showed by decreased levels of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) and an associated rise in lipid peroxidation (LPO) in mitochondria, which were reversed by CQE. In addition, CQE prevents oxidative damage of DNA by reducing DNA fragmentation indicating its block on cell death. Ulcer protection in CQE treated rats was confirmed by histoarchitecture, which was comprised of reduced size of ulcer crater and restoration of mucosal epithelium. Thus, reduced neutrophil infiltration, antiapoptotic and antioxidant action have a pivotal role in the gastroprotective effect of CQE.

  15. Modulating effects of pycnogenol® on oxidative stress and DNA damage induced by sepsis in rats.

    PubMed

    Taner, Gökçe; Aydın, Sevtap; Bacanlı, Merve; Sarıgöl, Zehra; Sahin, Tolga; Başaran, A Ahmet; Başaran, Nurşen

    2014-11-01

    The aim of this study was to evaluate the protective effects of Pycnogenol® (Pyc), a complex plant extract from the bark of French maritime pine, on oxidative stress parameters (superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities and total glutathione (GSH) and malondialdehyde (MDA) levels), an inflammatory cytokine (tumor necrosis factor alpha (TNF-α) level) and also DNA damage in Wistar albino rats. Rats were treated with 100 mg/kg intraperitonally Pyc following the induction of sepsis by cecal ligation and puncture. The decreases in MDA levels and increases in GSH levels, and SOD and GPx activities were observed in the livers and kidneys of Pyc-treated septic rats. Plasma TNF-α level was found to be decreased in the Pyc-treated septic rats. In the lymphocytes, kidney, and liver tissue cells of the sepsis-induced rats, Pyc treatment significantly decreased the DNA damage and oxidative base damage using standard alkaline assay and formamidopyrimidine DNA glycosylase-modified comet assay, respectively. In conclusion, Pyc treatment might have a role in the prevention of sepsis-induced oxidative damage not only by decreasing DNA damage but also increasing the antioxidant status and DNA repair capacity in rats.

  16. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    PubMed

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  17. Effects of montmorillonite on alleviating dietary Cd-induced oxidative damage in carp (Carassius auratus).

    PubMed

    Kim, Song Gwan; Dai, Wei; Xu, Zirong; Li, Guanghuan

    2011-06-01

    The present study was designed to investigate the effects of montmorillonite (MMT) on dietary Cd-induced oxidative damage in liver and kidney of carp (Carassius auratus). One hundred eighty carp were randomly divided into four groups and fed with a basal diet, a basal diet supplemented with 0.5% MMT, Cd-comtaminated basal diet (120 mg Cd/kg dry weight) and Cd-contaminated basal diet supplemented with 0.5% MMT, respectively. After 60 days, fish were sacrificed to measure malondialdehyde (MDA) content and antioxidative indices in liver and kidney. The results showed that the exposure of carp to dietary Cd caused decreases in glutathione peroxidase activity, catalase activity, superoxide dismutase activity, glutathione content and total antioxidant capacity level, while MMT supplemented in diet compensated Cd-induced decreases in above antioxidant indices to some extent in liver and kidney. As compared with the control group, increases in MDA content were observed in both measured tissues of carp exposed to dietary Cd, while MDA content decreased in carp exposed to Cd-contaminated basal diet supplemented with MMT in comparison with the Cd-contaminated group. It was suggested that MMT, when co-administered with Cd in diet, could alleviate dietary Cd-induced oxidative damage in liver and kidney of carp.

  18. Chronic PARP-1 inhibition reduces carotid vessel remodeling and oxidative damage of the dorsal hippocampus in spontaneously hypertensive rats

    PubMed Central

    Eros, Krisztian; Magyar, Klara; Deres, Laszlo; Skazel, Arpad; Riba, Adam; Vamos, Zoltan; Kalai, Tamas; Gallyas, Ferenc; Sumegi, Balazs; Toth, Kalman

    2017-01-01

    Vascular remodeling during chronic hypertension may impair the supply of tissues with oxygen, glucose and other compounds, potentially unleashing deleterious effects. In this study, we used Spontaneously Hypertensive Rats and normotensive Wistar-Kyoto rats with or without pharmacological inhibition of poly(ADP-ribose)polymerase-1 by an experimental compound L-2286, to evaluate carotid artery remodeling and consequent damage of neuronal tissue during hypertension. We observed elevated oxidative stress and profound thickening of the vascular wall with fibrotic tissue accumulation induced by elevated blood pressure. 32 weeks of L-2286 treatment attenuated these processes by modulating mitogen activated protein kinase phosphatase-1 cellular levels in carotid arteries. In hypertensive animals, vascular inflammation and endothelial dysfunction was observed by NF-κB nuclear accumulation and impaired vasodilation to acetylcholine, respectively. Pharmacological poly(ADP-ribose)polymerase-1 inhibition interfered in these processes and mitigated Apoptosis Inducing Factor dependent cell death events, thus improved structural and functional alterations of carotid arteries, without affecting blood pressure. Chronic poly(ADP-ribose)polymerase-1 inhibition protected neuronal tissue against oxidative damage, assessed by nitrotyrosine, 4-hydroxinonenal and 8-oxoguanosine immunohistochemistry in the area of Cornu ammonis 1 of the dorsal hippocampus in hypertensive rats. In this area, extensive pyramidal cell loss was also attenuated by treatment with lowered poly(ADP-ribose)polymer formation. It also preserved the structure of fissural arteries and attenuated perivascular white matter lesions and reactive astrogliosis in hypertensive rats. These data support the premise in which chronic poly(ADP-ribose)polymerase-1 inhibition has beneficial effects on hypertension related tissue damage both in vascular tissue and in the hippocampus by altering signaling events, reducing oxidative

  19. Tissue plasminogen activator prevents white matter damage following stroke

    PubMed Central

    Correa, Fernando; Gauberti, Maxime; Parcq, Jérôme; Macrez, Richard; Hommet, Yannick; Obiang, Pauline; Hernangómez, Miriam; Montagne, Axel; Liot, Géraldine; Guaza, Carmen; Maubert, Eric; Ali, Carine; Vivien, Denis

    2011-01-01

    Tissue plasminogen activator (tPA) is the only available treatment for acute stroke. In addition to its vascular fibrinolytic action, tPA exerts various effects within the brain, ranging from synaptic plasticity to control of cell fate. To date, the influence of tPA in the ischemic brain has only been investigated on neuronal, microglial, and endothelial fate. We addressed the mechanism of action of tPA on oligodendrocyte (OL) survival and on the extent of white matter lesions in stroke. We also investigated the impact of aging on these processes. We observed that, in parallel to reduced levels of tPA in OLs, white matter gets more susceptible to ischemia in old mice. Interestingly, tPA protects murine and human OLs from apoptosis through an unexpected cytokine-like effect by the virtue of its epidermal growth factor–like domain. When injected into aged animals, tPA, although toxic to the gray matter, rescues white matter from ischemia independently of its proteolytic activity. These studies reveal a novel mechanism of action of tPA and unveil OL as a target cell for cytokine effects of tPA in brain diseases. They show overall that tPA protects white matter from stroke-induced lesions, an effect which may contribute to the global benefit of tPA-based stroke treatment. PMID:21576385

  20. Relationship between genotoxicity and oxidative stress induced by mercury on common carp (Cyprinus carpio) tissues.

    PubMed

    García-Medina, Sandra; Galar-Martínez, Marcela; Gómez-Oliván, Leobardo Manuel; Ruiz-Lara, Karina; Islas-Flores, Hariz; Gasca-Pérez, Eloy

    2017-09-21

    Mercury is one of the most toxic metals in aquatic systems since it is able to induce neurobehavioral disorders as well as renal and gastrointestinal tract damage. The common carp Cyprinus carpio is an important species from both an ecological and economic viewpoint as it is consumed in many countries, the top producers being Mexico, China, India and Japan. The present study aimed to evaluate the relation between Hg-induced oxidative stress and genotoxicity in diverse tissues of C. carpio. Specimens were exposed to 0.01mgHg/L (the maximum permissible limit for aquatic life protection), and lipid peroxidation, protein carbonyl content and the activity of antioxidant enzymes were evaluated at 96h. Micronuclei frequency and DNA damage by comet assay were determined at 12, 24, 48, 72 and 96h. Hg induced oxidative stress and genotoxicity on exposed fish, since inhibition of antioxidant enzymes activity and increases in lipid peroxidation, DNA damage and micronuclei frequency occurred. Blood, gill and liver were more susceptible to oxidative stress, while blood were more sensitive to genotoxicity. In conclusion, Hg at concentrations equal to the maximum permissible limit for aquatic life protection induced oxidative stress and genotoxicity on C. carpio, and these two effects prove to be correlated. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Relationship between tissue hydroxyl radical and oxidatively modified macromolecule levels.

    PubMed

    Sasaki, Toru; Mogi, Sho-Ichi; Kaneko, Takao; Kojima, Haruka; Katoh, Shinsuke; Sano, Akira; Kojima, Shuji

    2014-04-01

    The relationship between hydroxyl radical (·OH) and oxidatively modified macromolecule formations was examined in tissues from young and aged mice. To determine the ·OH generation in tissues in vivo using the hydroxylation trapping reaction of ·OH into salicylic acid (SA), analytical conditions for dihydroxybenzoic acid (DHBA) and SA determination, and optimum dosages of SA for administration and time-points of tissue sampling were determined. 2, 3-DHBA levels in tissues from young mice and age-related changes were determined with the oxidatively modified macromolecules. 2, 3-DHBA, a hydroxylation compound of SA, is considered to be suitable for determination of ·OH levels in tissues. Tissue levels of 2, 3-DHBA expressed as a molar ratio to SA, was comparable among tissues, and was in accordance with 8-oxo-2'-deoxyguanosine (8-oxodG) and carbonylated proteins. In the aging process, 2, 3-DHBA levels in the brain and heart increased in the biphasic pattern in accordance with the 8-oxodG and thiobarbituric acid reactive substances (TBARS) levels, whereas levels of carbonylated proteins were not changed with age. An in vivo method for ·OH measurement using hydroxylation of SA was optimized. However, as a limitation, 2, 3-DHBA, as well as other oxidative stress markers, could be affected by various in vivo factors. The accordance was seen among 2, 3-DHBA, 8-oxodG and carbonylated protein levels in tissues from young mice. The tissue levels of 2, 3-DHBA increased in accordance with the 8-oxodG and TBARS during the aging process. © 2013 Japan Geriatrics Society.

  2. Protection by N-acetylcysteine against pulmonary endothelial cell damage induced by oxidant injury.

    PubMed

    Sala, R; Moriggi, E; Corvasce, G; Morelli, D

    1993-03-01

    The protective effect of N-acetylcysteine (NAC) against oxidant lung injury was investigated in a model of acute immunological alveolitis in the rat. Intrapulmonary immune complex deposition into rat lungs, induced by intratracheal infusion of immunoglobulin G (IgG) anti-bovine serum albumin (BSA) antibodies and intravenous injection of the antigen, caused lung damage associated with a marked decrease in [14C]5-hydroxytryptamine ([14C]5HT) uptake capacity, taken as a biochemical marker of endothelial cell function. The oral administration of a single dose of NAC (2 mmol.kg-1) 60 min before antigen/antibody (Ag/Ab) treatment was effective in preventing pulmonary endothelial cell [14C]5HT uptake loss induced by immune complex deposition. The mechanisms involved in this lung protective action of NAC were investigated by studying the antioxidant activity of NAC on hypoxanthine/xanthine oxidase-induced lung damage in vitro, and the effectiveness of the drug as lung glutathione (reduced form) (GSH) precursor in diethylmaleate-depleted rats. The results obtained provide further evidence on the ability of NAC to reduce the susceptibility of lung tissue to free radical-induced damage, by potentiating the antioxidant defence systems.

  3. Omega-3 prevents behavior response and brain oxidative damage in the ketamine model of schizophrenia.

    PubMed

    Zugno, A I; Chipindo, H L; Volpato, A M; Budni, J; Steckert, A V; de Oliveira, M B; Heylmann, A S; da Rosa Silveira, F; Mastella, G A; Maravai, S G; Wessler, P G; Binatti, A R; Panizzutti, B; Schuck, P F; Quevedo, J; Gama, C S

    2014-02-14

    Supplementation with omega-3 has been identified as an adjunctive alternative for the treatment of psychiatric disorders, in order to minimize symptoms. Considering the lack of understanding concerning the pathophysiology of schizophrenia, the present study hypothesized that omega 3 prevents the onset of symptoms similar to schizophrenia in young Wistar rats submitted to ketamine treatment. Moreover, the role of oxidative stress in this model was assessed. Omega-3 (0.8g/kg) or vehicle was given by orogastric gavage once daily. Both treatments were performed during 21days, starting at the 30th day of life in young rats. After 14days of treatment with omega-3 or vehicle, a concomitant treatment with saline or ketamine (25mg/kg ip daily) was started and maintained until the last day of the experiment. We evaluated the pre-pulse inhibition of the startle reflex, activity of antioxidant systems and damage to proteins and lipids. Our results demonstrate that supplementation of omega-3 prevented: decreased inhibition of startle reflex, damage to lipids in the hippocampus and striatum and damage to proteins in the prefrontal cortex. Furthermore, these changes are associated with decreased GPx in brain tissues evaluated. Together, our results suggest the prophylactic role of omega-3 against the outcome of symptoms associated with schizophrenia.

  4. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance.

    PubMed

    Melgar, Juan Carlos; Guidi, Lucia; Remorini, Damiano; Agati, Giovanni; Degl'innocenti, Elena; Castelli, Silvana; Camilla Baratto, Maria; Faraloni, Cecilia; Tattini, Massimiliano

    2009-09-01

    The interactive effects of root-zone salinity and sunlight on leaf biochemistry, with special emphasis on antioxidant defences, were analysed in Olea europaea L. cv. Allora, during the summer period. Plants were grown outside under 15% (shade plants) or 100% sunlight (sun plants) and supplied with 0 or 125 mM NaCl. The following measurements were performed: (1) the contribution of ions and soluble carbohydrates to osmotic potentials; (2) the photosystem II (PSII) photochemistry and the photosynthetic pigment concentration; (3) the concentration and the tissue-specific distribution of leaf flavonoids; (4) the activity of antioxidant enzymes; and (5) the leaf oxidative damage. The concentrations of Na(+) and Cl(-) were significantly greater in sun than in shade leaves, as also observed for the concentration of the 'antioxidant' sugar-alcohol mannitol. The de-epoxidation state of violaxanthin-cycle pigments increased in response to salinity stress in sun leaves. This finding agrees with a greater maximal PSII photochemistry (F(v)/F(m)) at midday, detected in salt-treated than in control plants, growing in full sunshine. By contrast, salt-treated plants in the shade suffered from midday depression in F(v)/F(m) to a greater degree than that observed in control plants. The high concentration of violaxanthin-cycle pigments in sun leaves suggests that zeaxanthin may protect the chloroplast from photo-oxidative damage, rather than dissipating excess excitation energy via non-photochemical quenching mechanisms. Dihydroxy B-ring-substituted flavonoid glycosides accumulate greatly in the mesophyll, not only in the epidermal cells, in response to high sunlight. The activity of antioxidant enzymes varied little because of sunlight irradiance, but declined sharply in response to high salinity in shade leaves. Interestingly, control and particularly salt-treated plants in the shade underwent greater oxidative damage than their sunny counterparts. These findings, which conform to

  5. Oxidative DNA damage levels and catalase activity in the clam Ruditapes decussatus as pollution biomarkers of Tunisian marine environment.

    PubMed

    Jebali, Jamel; Banni, Mohamed; de Almeida, Eduardo Alves; Boussetta, Hamadi

    2007-01-01

    Levels of the oxidative DNA damage 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) and catalase (CAT) activity were measured in the digestive gland and gills of clams Ruditapes decussatus, related to the presence of pollutants along Tunisian marine environment. Increased levels of CAT were observed in tissues of clams from all the sites studied, compared to control values, and elevated 8-oxodG levels were observed at specific sites. Results obtained in this work indicate that the measurement of 8-oxodG levels and CAT activity in tissues of R. decussatus is promising in pollution monitoring studies of the Tunisian marine environment.

  6. Interspecies comparisons of tissue DNA damage, repair, fixation, and replication.

    PubMed Central

    Slaga, T J

    1988-01-01

    The many anatomical, physiological, and biochemical differences among various mammalian species make it difficult to extrapolate carcinogenic potency data from animals to humans. The process is further complicated by the multistep origin of most malignant tumors in animals and humans due to the interaction of target cells with both endogenous and exogenous factors. Species differences in these aspects of carcinogenesis must also be considered when attempting to evaluate the carcinogenic risks of chemicals to humans. Cancer development in animals involves at least three distinct stages: initiation, promotion, and progression. Intra- and interspecies differences in susceptibility to carcinogenesis may be related to any one or a combination of these stages. Variation in species susceptibility to tumor initiation may result from differences in the abilities of various species to metabolize a potential carcinogen to an ultimate carcinogenic form and/or to detoxify the carcinogen. Most comparative studies among species have only revealed subtle differences in metabolism. DNA adducts from several activated carcinogens have been found to be the same in a number of tissues from various species, including humans. Capacity for DNA repair is apparently a critical factor in the initiation of carcinogenesis in target cells of different species but is less critical among mice that differ in susceptibility to two-stage carcinogenesis of the skin and liver. Susceptibility variations among stocks and strains to such carcinogenesis appear to be related to alterations in tumor promotion. Additional comparative studies are critically needed on all aspects of carcinogenesis to permit effective extrapolation of carcinogenic potency data from animals to humans. PMID:3289910

  7. Interspecies comparisons of tissues DNA damage, repair, fixation, and replication

    SciTech Connect

    Slaga, T.J.

    1988-04-01

    The many anatomical, physiological, and biochemical differences among various mammalian species make it difficult to extrapolate carcinogenic potency data from animals to humans. The process is further complicated by the multistep origin of most malignant tumors in animals and humans due to the interaction of target cells with both endogenous and exogenous factors. Species differences in these aspects of carcinogenesis must also be considered when attempting to evaluate the carcinogenic risks of chemicals to humans. Cancer development in animals involves at least three distinct stages: initiation, promotion, and progression. Intra- and interspecies differences in susceptibility to carcinogenesis may be related to any one or a combination of these stages. Variation in species susceptibility to tumor initiation may result from differences in the abilities of various species to metabolize a potential carcinogen to an ultimate carcinogenic form and/or to detoxify the carcinogen. Most comparative studies among species have only revealed subtle differences in metabolism. DNA adducts from several activated carcinogens have been found to be the same in a number of tissues from various species, including humans. Capacity for DNA repair is apparently a critical factor in the initiation of carcinogenesis in target cells of different species but is less critical among mice that differ in susceptibility to two-stage carcinogenesis of the skin and liver. Susceptibility variations among stocks and strains to such carcinogenesis appear to be related to alterations in tumor promotion. Additional comparative studies are critically needed on all aspects of carcinogenesis to permit effective extrapolation of carcinogenic potency data from animals to humans.

  8. Cafeteria diet-induced obesity causes oxidative damage in white adipose.

    PubMed

    Johnson, Amy R; Wilkerson, Matthew D; Sampey, Brante P; Troester, Melissa A; Hayes, D Neil; Makowski, Liza

    2016-04-29

    Obesity continues to be one of the most prominent public health dilemmas in the world. The complex interaction among the varied causes of obesity makes it a particularly challenging problem to address. While typical high-fat purified diets successfully induce weight gain in rodents, we have described a more robust model of diet-induced obesity based on feeding rats a diet consisting of highly palatable, energy-dense human junk foods - the "cafeteria" diet (CAF, 45-53% kcal from fat). We previously reported that CAF-fed rats became hyperphagic, gained more weight, and developed more severe hyperinsulinemia, hyperglycemia, and glucose intolerance compared to the lard-based 45% kcal from fat high fat diet-fed group. In addition, the CAF diet-fed group displayed a higher degree of inflammation in adipose and liver, mitochondrial dysfunction, and an increased concentration of lipid-derived, pro-inflammatory mediators. Building upon our previous findings, we aimed to determine mechanisms that underlie physiologic findings in the CAF diet. We investigated the effect of CAF diet-induced obesity on adipose tissue specifically using expression arrays and immunohistochemistry. Genomic evidence indicated the CAF diet induced alterations in the white adipose gene transcriptome, with notable suppression of glutathione-related genes and pathways involved in mitigating oxidative stress. Immunohistochemical analysis indicated a doubling in adipose lipid peroxidation marker 4-HNE levels compared to rats that remained lean on control standard chow diet. Our data indicates that the CAF diet drives an increase in oxidative damage in white adipose tissue that may affect tissue homeostasis. Oxidative stress drives activation of inflammatory kinases that can perturb insulin signaling leading to glucose intolerance and diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage

    PubMed Central

    Varanita, Tatiana; Soriano, Maria Eugenia; Romanello, Vanina; Zaglia, Tania; Quintana-Cabrera, Rubén; Semenzato, Martina; Menabò, Roberta; Costa, Veronica; Civiletto, Gabriele; Pesce, Paola; Viscomi, Carlo; Zeviani, Massimo; Di Lisa, Fabio; Mongillo, Marco; Sandri, Marco; Scorrano, Luca

    2015-01-01

    Summary Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo. PMID:26039448

  10. Influence of estrogen on markers of muscle tissue damage following eccentric exercise.

    PubMed

    Carter, A; Dobridge, J; Hackney, A C

    2001-01-01

    This study tested the hypothesis that estrogen levels of women influences the development of a muscle-tissue damage (creatine kinase, CK) marker and delayed onset muscle soreness (DOMS) following eccentric exercise. Seventeen oral contraceptive (OC) users and ten eumenorrheic (EU) subjects completed a 30-min downhill running bout at approximately 60% VO2max. The OC completed the exercise during the mid-luteal phase (day 22.9 +/- 1.5; high estrogen) while the EU did their exercise in the mid-follicular phase (day 9.6 +/- 4.4; low estrogen) of the menstrual cycle, respectively. The CK activity and DOMS were assessed pre-exercise, immediately post-, 24, 48 and 72 h post-exercise. ANOVA results indicated that there was a significant increase in CK activity in response to the downhill run (p < 0.001), and the interaction of group x time was significantly different (p < 0.01). The OC group had lower CK at 72 h post-exercise than did the EU group. Pre-exercise estrogen levels correlated with the overall mean CK (r = -0.43, p < 0.05) and 72 h (r = -0.38, p < 0.05) responses, respectively. Exercise caused an increase in DOMS in both groups (p < 0.001); but, no significant interaction was observed. These findings suggest that elevated estrogen levels have a protective effect on muscle tissue following eccentric exercise. The mechanism of this protective effect is unclear but may be related to the anti-oxidant characteristics and membrane stability properties associated with estrogen and its derivatives.

  11. Ellagic and ferulic acids alleviate gamma radiation and aluminium chloride-induced oxidative damage.

    PubMed

    Salem, Ahmed M; Mohammaden, Tarek F; Ali, Mohamed A M; Mohamed, Enas A; Hassan, Hesham F

    2016-09-01

    Ionizing radiation interacts with biological systems through the generation of free radicals, which induce oxidative stress. Aluminium (Al) can negatively impact human health by direct interaction with antioxidant enzymes. Ellagic acid (EA) and Ferulic acid (FA) are plant polyphenolic compounds, have gained attention due to their multiple biological activities. To date, no studies investigating the antioxidant effect of EA/FA in a model involving both γ radiation and aluminium chloride (AlCl3) have been reported. Herein, we investigated the protective effect of EA and FA against oxidative stress induced by γ radiation and AlCl3 in rats. Rats were divided into thirteen groups: a negative control group, 3 positive control groups (γ-irradiated, AlCl3-treated and γ-irradiated+AlCl3-treated) and 9 groups (3 γ-irradiated, 3 AlCl3-treated and 3 γ-irradiated+AlCl3-treated) treated with EA and/or FA. Liver function and lipid profile were assessed. Levels of lipid peroxidation, protein oxidation and endogenous antioxidants as well as the concentrations of copper, iron and zinc were estimated in liver tissue homogenate. Furthermore, liver tissue sections were histologically examined. Oral administration of EA and/or FA resulted in 1) amelioration of AlCl3 and/or γ-radiation-induced hepatic function impairment, dyslipidemia and hepatic histological alterations; 2) reduction in liver MDA and PCC levels; 3) elevation of liver CAT, GPx and SOD activity as well as GSH level; 4) elevation in liver Cu concentrations which was accompanied by a reduction in Fe and Zn concentrations. Oral administration of EA and/or FA may be useful for ameliorating γ radiation and/or AlCl3-induced oxidative damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sigma 1 receptor stimulation protects against oxidative damage through suppression of the ER stress responses in the human lens.

    PubMed

    Wang, Lixin; Eldred, Julie A; Sidaway, Peter; Sanderson, Julie; Smith, Andrew J O; Bowater, Richard P; Reddan, John R; Wormstone, I Michael

    2012-01-01

    Stimulation of sigma-1 receptors is reported to protect against oxidative stress. The present study uses cells and tissue from the human lens to elucidate the relationship between the sigma 1 receptor, ER stress and oxidative stress-induced damage. Exposure of the human lens cell line FHL124 to increasing concentrations of H(2)O(2) led to reduced cell viability and increased apoptosis. In response to 30 μM H(2)O(2), levels of the ER stress proteins BiP, ATF6 and pEIF2α were significantly increased within 4h of exposure. Expression of the sigma 1 receptor was markedly increased in response to H(2)O(2). Application of 10 and 30 μM (+)-pentazocine, a sigma 1 receptor agonist, significantly inhibited the H(2)O(2) induced cell death. (+)-Pentazocine also suppressed the oxidative stress induced reduction of pro-caspase 12 and suppressed the induction of the ER stress proteins BiP and EIF2α. When applied to cultured human lenses, (+)-pentazocine protected against apoptotic cell death, LDH release and against H(2)O(2) induced opacification. These data demonstrate that stimulation of the sigma 1 receptor provides significant protection from oxidative damage and is, therefore, a putative therapeutic approach to delay the onset of diseases that may be triggered by oxidative damage, including cataract formation.

  13. Pulmonary hypertension and vascular oxidative damage in cigarette smoke exposed eNOS(-/-) mice and human smokers.

    PubMed

    Wright, J L; Zhou, S; Churg, A

    2012-09-01

    Cigarette smoke is known to be associated with pulmonary hypertension in humans and in animal models. Although the etiology of pulmonary hypertension in smokers is not understood, recent work has suggested a role for inducible nitric oxide synthase (iNOS) in inducing oxidative stress. To further evaluate this question, we assessed eNOS-/- mice exposed to air or cigarette smoke for the presence of pulmonary hypertension and examined vascular remodeling and expression of nitrotyrosine, a marker of reactive nitrogen species-induced oxidative damage, using immunohistochemistry. To ascertain whether oxidants may play a role in humans, we also examined lung tissue from nonsmokers, and patients with chronic obstructive pulmonary disease (COPD) with and without pulmonary hypertension. We found that eNOS(-/-) mice developed increased pulmonary arterial pressure after six months cigarette smoke exposure, and this was associated with vascular remodeling and increased vascular nitrotyrosine staining. iNOS gene expression was decreased in the pulmonary arteries of the smoke exposed animals, and no protein was detectable by immunohistochemistry. In humans, vascular nitrotyrosine staining intensity was increased in smokers with COPD compared to nonsmokers, and further increased in smokers with combined COPD and pulmonary hypertension. We conclude that cigarette smoke-induced pulmonary hypertension is associated with evidence of oxidative vascular damage by reactive nitrogen species, but that iNOS does not appear to be the major contributor to such damage. Most likely the source of reactive nitrogen species is the cigarette smoke itself.

  14. Inorganic arsenic in drinking water accelerates N-butyl-N-(4-hydroxybutyl)nitrosamine-induced bladder tissue damage in mice

    SciTech Connect

    Lin, Paul-Yann; Lin, Yung-Lun; Huang, Chin-Chin; Chen, Sin-Syu; Liu, Yi-Wen

    2012-02-15

    Epidemiological studies have revealed that exposure to an arsenic-contaminated environment correlates with the incidence of bladder cancer. Bladder cancer is highly recurrent after intravesical therapy, and most of the deaths from this disease are due to invasive metastasis. In our present study, the role of inorganic arsenic in bladder carcinogenesis is characterized in a mouse model. This work provides the first evidence that inorganic arsenic in drinking water promotes N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced bladder tissue damage, including the urothelium and submucosal layer. This damage to the bladder epithelium induced by BBN includes thickening of the submucosal layer, the loss of the glycosaminoglycan layer and an increase in both the deoxyguanosine oxidation and cytosine methylation levels in the DNA. Further, when 10 ppm inorganic arsenic is combined with BBN, the number of bladder submucosal capillaries is increased. In addition, inorganic arsenic also increases the deoxyguanosine oxidation level, alters the cytosine methylation state, decreases the activities of glutathione reductase and glucose-6-phosphate dehydrogenase, decreases the protein expression of NAD(P)H quinone oxidoreductase-1 (NQO-1) and increases the protein expression of specific protein 1 (Sp1) in bladder tissues. In summary, our data reveal that inorganic arsenic in drinking water promotes the BBN-induced pre-neoplastic damage of bladder tissue in mice, and that the 8-hydroxy-2′-deoxyguanosine, 5-methylcytosine, NQO-1 protein and Sp1 protein levels may be pre-neoplastic markers of bladder tumors. -- Highlights: ► The role of inorganic arsenic in bladder carcinogenesis is characterized in mice. ► We examine the changes in the histology and biochemistry of bladder tissues. ► Inorganic arsenic enhances BBN-induced DNA oxidation while decreases BBN-induced DNA methylation in the mouse bladder. ► Inorganic arsenic alters the activities of the anti-oxidant enzymes in

  15. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Schnurri regulates hemocyte function to promote tissue recovery after DNA damage

    PubMed Central

    Kelsey, Ellen Miriam; Luo, Xi; Brückner, Katja; Jasper, Heinrich

    2012-01-01

    Tissue recovery after injury requires coordinated regulation of cell repair and apoptosis, removal of dead cells and regeneration. A critical step in this process is the recruitment of blood cells that mediate local inflammatory and immune responses, promoting tissue recovery. Here we identify a new role for the transcriptional regulator Schnurri (Shn) in the recovery of UV-damaged Drosophila retina. Using an experimental paradigm that allows precise quantification of tissue recovery after a defined dose of UV, we find that Shn activity in the retina is required to limit tissue damage. This function of Shn relies on its transcriptional induction of the PDGF-related growth factor Pvf1, which signals to tissue-associated hemocytes. We show that the Pvf1 receptor PVR acts in hemocytes to induce a macrophage-like morphology and that this is required to limit tissue loss after irradiation. Our results identify a new Shn-regulated paracrine signaling interaction between damaged retinal cells and hemocytes that ensures recovery and homeostasis of the challenged tissue. PMID:22275438

  17. Dissecting the Molecular Mechanism of Ionizing Radiation-Induced Tissue Damage in the Feather Follicle

    PubMed Central

    Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao

    2014-01-01

    Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage. PMID:24586618

  18. Carcinoma cells misuse the host tissue damage response to invade the brain.

    PubMed

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-08-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C-X-C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4-regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia-induced apoptosis.

  19. Dissecting the molecular mechanism of ionizing radiation-induced tissue damage in the feather follicle.

    PubMed

    Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao

    2014-01-01

    Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage.

  20. Polymorphic trial in oxidative damage of arsenic exposed Vietnamese

    SciTech Connect

    Fujihara, Junko; Soejima, Mikiko; Yasuda, Toshihiro; Koda, Yoshiro; Kunito, Takashi; Iwata, Hisato; Tanabe, Shinsuke; Takeshita, Haruo

    2011-10-15

    Arsenic causes DNA damage and changes the cellular capacity for DNA repair. Genes in the base excision repair (BER) pathway influence the generation and repair of oxidative lesions. Single nucleotide polymorphisms (SNPs) in human 8-oxoguanine DNA glycosylase (hOGG1) Ser326Cys; apurinic/apyrimidinic endonuclease (APE1) Asp148Glu; X-ray and repair and cross-complementing group 1 (XRCC1) Arg280His and Arg399Gln in the BER genes were analyzed, and the relationship between these 4 SNPs and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations of 100 Vietnamese population exposed to arsenic was investigated. Individuals with hOGG1 326Cys/Cys showed significantly higher urinary 8-OHdG concentrations than did those with 326 Ser/Cys and Ser/Ser. As for APE1 Asp148Glu, heterozygous subjects showed significantly higher urinary 8-OHdG concentrations than did those homozygous for Asp/Asp. Moreover, global ethnic comparison of the allelic frequencies of the 4SNPs was performed in 10 population and previous reported data. The mutant allele frequencies of hOGG1 Ser326Cys in the Asian populations were higher than those in the African and Caucasian populations. As for APE1 Asp148Glu, Caucasians showed higher mutant frequencies than those shown by African and Asian populations. Among Asian populations, the Bangladeshi population showed relatively higher mutant allele frequencies of the APE1 Asp148Glu polymorphism. This study is the first to demonstrate the existence of genetic heterogeneity in a worldwide distribution of SNPs (hOGG1 Ser326Cys, APE1 Asp148Glu, XRCC1 Arg280His, and XRCC1 Arg399Gln) in the BER genes. - Highlights: > We showed that hOGG1 and APE1 are associated with urinary 8-OHdG concentrations. > We showed the existence of inter-ethnic differences in hOGG1 and APE1 polymorphism. > These polymorphisms is a genetic marker of susceptibility to oxidative stress.

  1. Preliminary evaluation of a model of stimulant use, oxidative damage, and executive dysfunction

    PubMed Central

    Winhusen, Theresa; Walker, Jessica; Brigham, Gregory; Lewis, Daniel; Somoza, Eugene; Theobald, Jeff; Somoza, Veronika

    2014-01-01

    Background Illicit stimulant use increases oxidative stress and oxidative stress has been found to be associated with deficits in memory, attention, and problem-solving. Objective To test a model of the association among oxidative DNA damage, a severe form of oxidative stress, and stimulant use, executive function, and stimulant-use outcomes. Methods Six sites evaluating 12-step facilitation for stimulant abusers obtained peripheral blood samples from methamphetamine-dependent (n=45) and cocaine-dependent (n=120) participants. The blood samples were submitted to a comet assay to assess oxidative DNA damage. Executive Dysfunction was assessed with the Frontal Systems Behavior Scale (FrSBe), which is a reliable and valid self-report assessment of executive dysfunction, disinhibition, and apathy. Stimulant-use measures included self-reported stimulant use and stimulant urine drug screens (UDS). Results While more recent cocaine use (<30 days abstinence) was associated with greater oxidative DNA damage (W=2.4, p<.05, d=.36), the results did not support the hypothesized relationship between oxidative DNA damage, executive dysfunction, and stimulant-use outcomes for cocaine-dependent patients. Support for the model was found for methamphetamine-dependent patients, with oxidative DNA damage significantly greater in methamphetamine-dependent patients with executive dysfunction (W=2.2, p<.05, d=.64) and with executive dysfunction being a significant mediator of oxidative DNA damage and stimulant use during active treatment (ab=0.089, p<.05). As predicted, neither disinhibition nor apathy were significant mediators of oxidative damage and future stimulant use. Conclusion These findings provide preliminary support for a model in which oxidative damage resulting from methamphetamine use results in executive dysfunction which in turn increases vulnerability to future stimulant use. PMID:23808868

  2. Fourier transform infrared spectroscopic imaging identifies early biochemical markers of tissue damage

    NASA Astrophysics Data System (ADS)

    Varma, Vishal K.; Ohlander, Samuel; Nguyen, Peter; Vendryes, Christopher; Parthiban, Sujeeth; Hamilton, Blake; Wallis, M. Chad; Kajdacsy-Balla, Andre; Hannaford, Blake; Lendvay, Thomas; Hotaling, James M.; Walsh, Michael J.

    2014-03-01

    Fourier Transform Infrared (FT-IR) spectroscopic imaging can allow for the rapid imaging of tissue biochemistry in a label-free and non-perturbing fashion. With the rapid adoption of new minimally invasive surgery (MIS) technologies over the last 20 years, adequate skill to safely and effectively use these technologies may not be achieved and risk of undue physical pressure being placed on tissues is a concern. Previous work has demonstrated that a number of histological stains can detect tissue damage, however, this process requires the initiation and progression of a signaling cascade that results in the epitope of interest being expressed. We proposed to identify the early biochemical markers associated with physical tissue damage from applied forces, thus not requiring transcriptional and translational protein synthesis as traditional immunohistochemistry does. To demonstrate that FT-IR can measure biochemical changes in tissues that have undergone physical force, we took ex-vivo lamb's liver that had been freshly excised and applied varying levels of physical pressure (0kPa to 30kPa). Tissues were then formalin-fixed, paraffin-embedded, and sectioned on to glass for H and E staining to identify damage and on to an IR slide for FT-IR imaging. Regions of interest containing hepatocytes were identified and average FT-IR spectra were extracted from the damaged and undamaged livers. FT-IR spectra showed clear biochemical changes associated with tissue damage. In addition, chemical changes could be observed proceeding histological changes observed when using conventional staining approaches.

  3. 17β estradiol induced ROS generation, DNA damage and enzymatic responses in the hepatic tissue of Japanese sea bass.

    PubMed

    Thilagam, Harikrishnan; Gopalakrishnan, Singaram; Qu, Hai-Dong; Bo, Jun; Wang, Ke-Jian

    2010-10-01

    The importance of endocrine disrupting chemicals and their effects on fish has been documented in recent years. However, little is known about whether the estrogenic compound 17β estradiol (E2) causes oxidative stress in the hepatic tissue of fish. Therefore, this work tested the hypothesis that E2 might cause oxidative stress in the Japanese sea bass Lateolabrax japonicus liver. To test this hypothesis, its effects on reactive oxygen species (ROS) production, DNA damage, antioxidants and biotransformation enzyme were investigated in two different size groups (fingerling and juvenile groups) following 30 days exposure. Results showed that there was a good relationship between the E2 exposure concentration, plasma E2 level and ROS generation. In addition ROS production correlated negatively with 7-ethoxyresorufin-O-deethylase activity and positively with DNA damage and lipid peroxidation (LPO). Antioxidant enzymes such as superoxide dismutase and catalase did not show any significant relation with ROS, LPO and DNA damage. In contrast, glutathione mediated enzymes showed a good relationship with the above parameters suggesting that the glutathione system in fish might be responsible for protection against the impact of E2 and also indicating a possible adaptive response during exposure periods. In addition, it was observed that fingerling was more susceptible to E2 exposure than juvenile fish. The present study provided strong evidence that the ROS level increased significantly in the liver of E2 exposed fish, and that ROS might serve as a biomarker to indicate estrogen contamination.

  4. Magnesium sulfate affords protection against oxidative damage during severe preeclampsia.

    PubMed

    Abad, C; Vargas, F R; Zoltan, T; Proverbio, T; Piñero, S; Proverbio, F; Marín, R

    2015-02-01

    MgSO4 is the drug of choice to prevent seizures in preeclamptic pregnant women, but its mechanism of action at the molecular level remains an enigma. In previous works, we found that treating preeclamptic women with MgSO4 reduces the lipid peroxidation of their red blood cell membranes to normal levels and leads to a significant reduction in the osmotic fragility of the red blood cells that is increased during preeclampsia. In addition, the increase in lipid peroxidation of red cell membranes induced by the Fenton reaction does not occur when MgSO4 is present. The antioxidant protection of MgSO4 was evaluated in UV-C-treated red blood cell ghosts and syncytiotrophoblast plasma membranes by measuring their level of lipid peroxidation. The interaction of MgSO4 with free radicals was assessed for its association with the galvinoxyl radical, the quenching of H2O2-induced chemiluminescence and its effect on sensitized peroxidation of linoleic acid. a) MgSO4 protected red blood cell ghosts and the syncytiotrophoblast plasma membranes of normotensive pregnant women against lipid peroxidation induced by UV-C irradiation. b) MgSO4 does not seem to scavenge the galvinoxyl free radical. c) The quenching of the H2O2-enhanced luminol chemiluminescence is increased by the presence of MgSO4. d) The peroxidation of linoleic acid is significantly blocked by MgSO4. MgSO4 may provide protection against oxidative damage of plasma membranes through interactions with alkyl radicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    PubMed Central

    Akıncı, Ayşin; Eşrefoğlu, Mukaddes; Taşlıdere, Elif; Ateş, Burhan

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation Methods: Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ) groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals’ stomachs were arranged for microscopic and biochemical examinations. Results: Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57) was higher than that of the control group (1.50±0.22) (p<0.05). Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05), the stress and stress + standard diet groups (p<0.05), and the stress and stress + LPZ groups (p<0.05). The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05). Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50) and superoxide dismutase (15.18±1.05) and catalase (16.68±2.29) activities. Conclusion: Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system. PMID:28251024

  6. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage.

    PubMed

    Akıncı, Ayşin; Eşrefoğlu, Mukaddes; Taşlıdere, Elif; Ateş, Burhan

    2017-01-01

    Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Animal experimentation. Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ) groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals' stomachs were arranged for microscopic and biochemical examinations. Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57) was higher than that of the control group (1.50±0.22) (p<0.05). Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05), the stress and stress + standard diet groups (p<0.05), and the stress and stress + LPZ groups (p<0.05). The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05). Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50) and superoxide dismutase (15.18±1.05) and catalase (16.68±2.29) activities. Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system.

  7. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress.

    PubMed

    Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang

    2016-03-01

    Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P < 0.01). Basal expressions of HO-1 and Nrf-2 proteins were found in normal brain tissue. CO poisoning could activate HO-1/Nrf-2 pathway, start oxidative stress response. After the administration of Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P < 0.01). These findings suggest that Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning.

  8. Experimental Colitis Is Attenuated by Cardioprotective Diet Supplementation That Reduces Oxidative Stress, Inflammation, and Mucosal Damage.

    PubMed

    Vargas Robles, Hilda; Citalán Madrid, Alí Francisco; García Ponce, Alexander; Silva Olivares, Angelica; Shibayama, Mineko; Betanzos, Abigail; Del Valle Mondragón, Leonardo; Nava, Porfirio; Schnoor, Michael

    2016-01-01

    Inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD) are multifactorial, relapsing disorders of the gastrointestinal tract. However, the etiology is still poorly understood but involves altered immune responses, epithelial dysfunction, environmental factors, and nutrition. Recently, we have shown that the diet supplement corabion has cardioprotective effects due to reduction of oxidative stress and inflammation. Since oxidative stress and inflammation are also prominent risk factors in IBD, we speculated that corabion also has beneficial effects on experimental colitis. Colitis was induced in male mice by administration of 3.5% (w/v) dextran sulfate sodium (DSS) in drinking water for a period of 3 or 7 days with or without daily gavage feeding of corabion consisting of vitamin C, vitamin E, L-arginine, and eicosapentaenoic and docosahexaenoic acid. We found that corabion administration attenuated DSS-induced colon shortening, tissue damage, and disease activity index during the onset of colitis. Mechanistically, these effects could be explained by reduced neutrophil recruitment, oxidative stress, production of proinflammatory cytokines, and internalization of the junctional proteins ZO-1 and E-cadherin leading to less edema formation. Thus, corabion may be a useful diet supplement for the management of chronic inflammatory intestinal disorders such as IBD.

  9. Influence of green tea extract on oxidative damage and apoptosis induced by deltamethrin in rat brain.

    PubMed

    Ogaly, Hanan A; Khalaf, A A; Ibrahim, Marwa A; Galal, Mona K; Abd-Elsalam, Reham M

    2015-01-01

    In the present study, we investigated the protective effect of an aqueous extract of green tea leaves (GTE) against neurotoxicity and oxidative damage induced by deltamethrin (DM) in male rats. Four different groups of rats were used: the 1st group was the vehicle treated control group, the 2nd group received DM (0.6 mg/kg BW), the 3rd group received DM plus GTE, and the 4th received GTE alone (25 mg/kg BW). The brain tissues were collected at the end of the experimental regimen for subsequent investigation. Rats that were given DM had a highly significant elevation in MDA content, nitric oxide concentration, DNA fragmentation and expression level of apoptotic genes, TP53 and COX2. Additionally, a significant reduction in the total antioxidant capacity in the second group was detected. The findings for the 3rd group highlight the efficacy of GTE as a neuro-protectant in DM-induced neurotoxicity through improving the oxidative status and DNA fragmentation as well as suppressing the expression of the TP53 and COX2 genes. In conclusion, GTE, at a concentration of 25mg/kg/day, protected against DM-induced neurotoxicity through its antioxidant and antiapoptotic influence; therefore, it can be used as a protective natural product against DM-induced neurotoxicity.

  10. Oxidative stress and DNA damage responses to phenanthrene exposure in the estuarine guppy Poecilia vivipara.

    PubMed

    Machado, Anderson Abel de Souza; Hoff, Mariana Leivas Müller; Klein, Roberta Daniele; Cordeiro, Gilson Junior; Lencina Avila, Jannine Marquez; Costa, Patrícia Gomes; Bianchini, Adalto

    2014-07-01

    Despite ubiquitous phenanthrene contamination in aquatic coastal areas, little is known regarding its potential effects on estuarine fishes. The present work evaluated the response of a large suite of oxidative stress- and DNA damage-related biomarkers to phenanthrene exposure (10, 20 and 200 μg L(-1), 96 h) using DMSO as the solvent in estuarine guppy Poecilia vivipara (salinity 24 psu). Phenanthrene affected oxidative stress-related parameters, and decreased antioxidant defenses and reactive oxygen species in the gills and muscle overall. Lipid peroxidation occurred in muscle at 200 μg L(-1) phenanthrene. Genotoxicity was increased at 20 μg L(-1), while 200 μg L(-1) caused a relative decrease in erythrocyte release into the bloodstream. These findings indicated that phenanthrene is genotoxic and can induce oxidative stress, depending on tissue and phenanthrene concentration analyzed. Thus, some of the biomarkers analyzed in the present study are sufficiently sensitive to monitor the exposure of the guppy P. vivipara to phenanthrene in salt water. However, further studies are required for a better interpretation of the dose-response patterns observed.

  11. Experimental Colitis Is Attenuated by Cardioprotective Diet Supplementation That Reduces Oxidative Stress, Inflammation, and Mucosal Damage

    PubMed Central

    Vargas Robles, Hilda; Citalán Madrid, Alí Francisco; García Ponce, Alexander; Silva Olivares, Angelica; Shibayama, Mineko; Betanzos, Abigail; Del Valle Mondragón, Leonardo; Nava, Porfirio; Schnoor, Michael

    2016-01-01

    Inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD) are multifactorial, relapsing disorders of the gastrointestinal tract. However, the etiology is still poorly understood but involves altered immune responses, epithelial dysfunction, environmental factors, and nutrition. Recently, we have shown that the diet supplement corabion has cardioprotective effects due to reduction of oxidative stress and inflammation. Since oxidative stress and inflammation are also prominent risk factors in IBD, we speculated that corabion also has beneficial effects on experimental colitis. Colitis was induced in male mice by administration of 3.5% (w/v) dextran sulfate sodium (DSS) in drinking water for a period of 3 or 7 days with or without daily gavage feeding of corabion consisting of vitamin C, vitamin E, L-arginine, and eicosapentaenoic and docosahexaenoic acid. We found that corabion administration attenuated DSS-induced colon shortening, tissue damage, and disease activity index during the onset of colitis. Mechanistically, these effects could be explained by reduced neutrophil recruitment, oxidative stress, production of proinflammatory cytokines, and internalization of the junctional proteins ZO-1 and E-cadherin leading to less edema formation. Thus, corabion may be a useful diet supplement for the management of chronic inflammatory intestinal disorders such as IBD. PMID:26881044

  12. Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions.

    PubMed

    Niebur, G L; Yuen, J C; Burghardt, A J; Keaveny, T M

    2001-05-01

    High-resolution finite element models of trabecular bone failure could be used to augment current techniques for measuring damage in trabecular bone. However, the sensitivity of such models to the assumed tissue yield properties and apparent loading conditions is unknown. The goal of this study was to assess the sensitivity of the amount and mode (tension vs. compression) of tissue level yielding in trabecular bone to these factors. Linear elastic, high-resolution finite element models of nine bovine tibial trabecular bone specimens were used to calculate the fraction of the total tissue volume that exceeded each criterion for apparent level loading to the reported elastic limit in both on-axis and transverse compression and tension, and in shear. Four candidate yield criteria were studied, based on values suggested in the literature. Both the amount and the failure mode of yielded tissue were sensitive to the magnitudes of the tissue yield strains, the degree of tension-compression asymmetry of the yield criterion, and the applied apparent loads. The amount of yielded tissue was most sensitive to the orientation of the applied apparent loading, with the most tissue yielding for loading along the principal trabecular orientation and the least for loading perpendicular to it, regardless of the assumed tissue level yield criterion. Small changes in the magnitudes and the degree of asymmetry of the tissue yield criterion resulted in much larger changes in the amount of yielded tissue in the model. The results indicate that damage predictions based on high-resolution finite element models are highly sensitive to the assumed tissue yield properties. As such, good estimates of these values are needed before high-resolution finite element models can be applied to the study of trabecular bone damage. Regardless of the assumed tissue yield properties, the amount and type of damage that occurs in trabecular bone depends on the relative orientations of the applied apparent

  13. Deformation and reperfusion damages and their accumulation in subcutaneous tissues during loading and unloading: a theoretical modeling of deep tissue injuries.

    PubMed

    Mak, Arthur F T; Yu, Yanyan; Kwan, Linda P C; Sun, Lei; Tam, Eric W C

    2011-11-21

    Deep tissue injuries (DTI) involve damages in the subcutaneous tissues under intact skin incurred by prolonged excessive epidermal loadings. This paper presents a new theoretical model for the development of DTI, broadly based on the experimental evidence in the literatures. The model covers the loading damages implicitly inclusive of both the direct mechanical and ischemic injuries, and the additional reperfusion damages and the competing healing processes during the unloading phase. Given the damage accumulated at the end of the loading period, the relative strength of the reperfusion and the healing capacity of the involved tissues system, the model provides a description of the subsequent damage evolution during unloading. The model is used to study parametrically the scenario when reperfusion damage dominates over healing upon unloading and the opposite scenario when the loading and subsequent reperfusion damages remain small relative to the healing capacity of the tissues system. The theoretical model provides an integrated understanding of how tissue damage may further build-up paradoxically even with unloading, how long it would take for the loading and reperfusion damages in the tissues to become fully recovered, and how such loading and reperfusion damages, if not given sufficient time for recovery, may accumulate over multiple loading and unloading cycles, leading to clinical deep tissues ulceration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Oxidative DNA damage correlates with cell immortalization and mir-92 expression in hepatocellular carcinoma

    PubMed Central

    2012-01-01

    Background MicroRNAs expression has been extensively studied in hepatocellular carcinoma but little is known regarding the relationship, if any, with inflammation, production of reactive oxygen species (ROS), host’s repair mechanisms and cell immortalization. This study aimed at assessing the extent of oxidative DNA damage (8-hydroxydeoxyguanosine - 8-OHdG) in different phases of the carcinogenetic process, in relation to DNA repair gene polymorphism, telomeric dysfunction and to the expression of several microRNAs, non-coding genes involved in post-transcriptional regulation, cell proliferation, differentiation and death. Methods Tissue samples obtained either at surgery, [neoplastic (HCC) and adjacent non-cancerous cirrhotic tissues (NCCT)] at percutaneous or laparoscopic biopsy (patients with HCV or HBV-related hepatitis or patients undergoing cholecystectomy) were analysed for 8-OHdG (HPLC-ED), OGG1 (a DNA repair gene) polymorphism (PCR-RFLP), telomerase activity, telomere length (T/S, by RT-PCR), Taqman microRNA assay and Bad/Bax mRNA (RT-PCR). Fifty-eight samples from 29 HCC patients (obtained in both neoplastic and peritumoral tissues), 22 from chronic hepatitis (CH) and 10 controls (cholecystectomy patients - CON) were examined. Results Eight-OHdG levels were significantly higher in HCC and NCCT than in CH and CON (p=0.001). Telomerase activity was significantly higher in HCC than in the remaining subgroups (p=0.002); conversely T/S was significantly lower in HCC (p=0.05). MiR-199a-b, -195, -122, -92a and −145 were down-regulated in the majority of HCCs while miR-222 was up-regulated. A positive correlation was observed among 8-OHdG levels, disease stage, telomerase activity, OGG1 polymorphisms and ALT/GGT levels. In HCC, miR-92 expression correlated positively with telomerase activity, 8-OHdG levels and Bad/Bax mRNA. Conclusions The above findings confirm the accumulation, in the progression of chronic liver damage to HCC, of a ROS-mediated oxidative

  15. Oxidative DNA damage correlates with cell immortalization and mir-92 expression in hepatocellular carcinoma.

    PubMed

    Cardin, Romilda; Romilda, Cardin; Piciocchi, Marika; Marika, Piciocchi; Sinigaglia, Alessandro; Alessandro, Sinigaglia; Lavezzo, Enrico; Enrico, Lavezzo; Bortolami, Marina; Marina, Bortolami; Kotsafti, Andromachi; Andromachi, Kotsafti; Cillo, Umberto; Umberto, Cillo; Zanus, Giacomo; Giacomo, Zanus; Mescoli, Claudia; Claudia, Mescoli; Rugge, Massimo; Massimo, Rugge; Farinati, Fabio; Fabio, Farinati

    2012-05-15

    MicroRNAs expression has been extensively studied in hepatocellular carcinoma but little is known regarding the relationship, if any, with inflammation, production of reactive oxygen species (ROS), host's repair mechanisms and cell immortalization. This study aimed at assessing the extent of oxidative DNA damage (8-hydroxydeoxyguanosine - 8-OHdG) in different phases of the carcinogenetic process, in relation to DNA repair gene polymorphism, telomeric dysfunction and to the expression of several microRNAs, non-coding genes involved in post-transcriptional regulation, cell proliferation, differentiation and death. Tissue samples obtained either at surgery, [neoplastic (HCC) and adjacent non-cancerous cirrhotic tissues (NCCT)] at percutaneous or laparoscopic biopsy (patients with HCV or HBV-related hepatitis or patients undergoing cholecystectomy) were analysed for 8-OHdG (HPLC-ED), OGG1 (a DNA repair gene) polymorphism (PCR-RFLP), telomerase activity, telomere length (T/S, by RT-PCR), Taqman microRNA assay and Bad/Bax mRNA (RT-PCR). Fifty-eight samples from 29 HCC patients (obtained in both neoplastic and peritumoral tissues), 22 from chronic hepatitis (CH) and 10 controls (cholecystectomy patients - CON) were examined. Eight-OHdG levels were significantly higher in HCC and NCCT than in CH and CON (p=0.001). Telomerase activity was significantly higher in HCC than in the remaining subgroups (p=0.002); conversely T/S was significantly lower in HCC (p=0.05). MiR-199a-b, -195, -122, -92a and -145 were down-regulated in the majority of HCCs while miR-222 was up-regulated. A positive correlation was observed among 8-OHdG levels, disease stage, telomerase activity, OGG1 polymorphisms and ALT/GGT levels. In HCC, miR-92 expression correlated positively with telomerase activity, 8-OHdG levels and Bad/Bax mRNA. The above findings confirm the accumulation, in the progression of chronic liver damage to HCC, of a ROS-mediated oxidative DNA damage, and suggest that this correlates

  16. Antioxidant and micronutrient-rich milk formula reduces lead poisoning and related oxidative damage in lead-exposed mice.

    PubMed

    Zhang, Yu; Li, Qingqing; Liu, Xiaojie; Zhu, Hui; Song, Aihua; Jiao, Jingjing

    2013-07-01

    Lead poisoning is a global environmental disease that induces lifelong adverse health effects. The effect of a milk formula consisting of antioxidant of bamboo leaves (AOB), vitamin C (Vc), calcium lactate (CaLac), ferrous sulfate (FeSO₄) and zinc sulfate (ZnSO₄) on the reduction of lead and lead-induced oxidative damage in lead-exposed mice was studied. The lead-reducing effect of milk formula was investigated via a 7-week toxicokinetics study and a tissue distribution level examination. The ameliorating effect of milk formula on lead-induced oxidative damage was investigated. Results demonstrated current milk formula could effectively reduce blood lead levels (BLLs) and lead distribution levels of liver, kidneys, thighbones and brain in mice based on metal ion-mediated antagonism and chelation mechanisms. This milk formula could not only protect lead-susceptible tissues against lead poisoning, but also maintain normal absorption and distribution of essential elements in vivo. Meanwhile, current milk formula could prevent the reduction of δ-aminolevulinic acid dehydratase (δ-ALAD) activity and enhancement of free erythrocyte protoporphyrins (FEP) levels in blood erythrocytes of mice. Also, this formula could indirectly protect blood cell membranes against lead-induced lipid peroxidation. We conclude that current optimized milk formula effectively reduces lead poisoning and lead-induced in vivo oxidative damage in lead-exposed mice.

  17. Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice modulates oxidative damage induced by low dose X-ray in mice.

    PubMed

    Mohammad, Mohd Khairul Amran; Mohamed, Muhamad Idham; Zakaria, Ainul Mardhiyah; Abdul Razak, Hairil Rashmizal; Saad, Wan Mazlina Md

    2014-01-01

    Watermelon is a natural product that contains high level of antioxidants and may prevent oxidative damage in tissues due to free radical generation following an exposure to ionizing radiation. The present study aimed to investigate the radioprotective effects of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice against oxidative damage induced by low dose X-ray exposure in mice. Tw